import gradio as gr from transformers import pipeline model_id = "Subhajit01/distilbert-base-uncased-finetuned-emotion" classifier = pipeline("text-classification", model=model_id) labels = ['sadness', 'joy', 'love', 'anger', 'fear', 'surprise'] def predict(text): max_prob_id = 0 max_prob = 0 preds = classifier(text, return_all_scores=True) for i in range(len(preds[0])): if (preds[0][i]["score"] > max_prob): max_prob = preds[0][i]["score"] max_prob_id = i return labels[max_prob_id] iface = gr.Interface(fn=predict, inputs="text", outputs="text", title="Sentiment Analyzer", description="Enter text to analyze its sentiment.") iface.launch(share= True)