Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,67 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
)
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
import sys
|
4 |
+
|
5 |
+
try:
|
6 |
+
import torch
|
7 |
+
except ImportError:
|
8 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install",
|
9 |
+
"torch==2.0.1+cpu",
|
10 |
+
"torchvision==0.15.2+cpu",
|
11 |
+
"-f", "https://download.pytorch.org/whl/torch_stable.html"])
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import torchvision.transforms as transforms
|
16 |
+
from PIL import Image
|
17 |
+
import gradio as gr
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
class ModifiedLargeNet(nn.Module):
|
22 |
+
def __init__(self):
|
23 |
+
super(ModifiedLargeNet, self).__init__()
|
24 |
+
self.name = "modified_large"
|
25 |
+
self.fc1 = nn.Linear(128 * 128 * 3, 256)
|
26 |
+
self.fc2 = nn.Linear(256, 128)
|
27 |
+
self.fc3 = nn.Linear(128, 3) # 3 classes: Rope, Hammer, Other
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
x = x.view(-1, 128 * 128 * 3)
|
31 |
+
x = torch.relu(self.fc1(x))
|
32 |
+
x = torch.relu(self.fc2(x))
|
33 |
+
x = self.fc3(x)
|
34 |
+
return x
|
35 |
+
|
36 |
+
|
37 |
+
model = ModifiedLargeNet()
|
38 |
+
model.load_state_dict(torch.load("modified_large_net.pt", map_location=torch.device("cpu")))
|
39 |
+
model.eval()
|
40 |
+
|
41 |
+
|
42 |
+
transform = transforms.Compose([
|
43 |
+
transforms.Resize((128, 128)),
|
44 |
+
transforms.ToTensor(),
|
45 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
46 |
+
])
|
47 |
+
|
48 |
+
|
49 |
+
def predict(image):
|
50 |
+
|
51 |
+
image = transform(image).unsqueeze(0)
|
52 |
+
with torch.no_grad():
|
53 |
+
outputs = model(image)
|
54 |
+
probabilities = torch.softmax(outputs, dim=1).numpy()[0]
|
55 |
+
classes = ["Rope", "Hammer", "Other"]
|
56 |
+
return {cls: float(prob) for cls, prob in zip(classes, probabilities)}
|
57 |
+
|
58 |
+
interface = gr.Interface(
|
59 |
+
fn=predict,
|
60 |
+
inputs=gr.Image(type="pil"),
|
61 |
+
outputs=gr.Label(num_top_classes=3),
|
62 |
+
title="Mechanical Tools Classifier",
|
63 |
+
description="Upload an image of a tool to classify it as 'Rope', 'Hammer', or 'Other'.",
|
64 |
+
)
|
65 |
+
|
66 |
+
if __name__ == "__main__":
|
67 |
+
interface.launch()
|