File size: 7,214 Bytes
437883c 8895767 437883c 8895767 437883c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import pandas as pd
import json
import streamlit as st
import shared_streamlit_funcs as my
if "ld_num_ss_inputs" not in st.session_state:
st.session_state["ld_num_ss_inputs"] = 1
def increment_ss_inputs():
st.session_state.ld_num_ss_inputs += 1
def decrement_ss_inputs():
st.session_state.ld_num_ss_inputs = max(1, st.session_state.ld_num_ss_inputs-1)
def short_cg(cg):
return {"Teaching, Guidance, and Counseling":"Teaching...",
"Case Management":"Case Mngmnt",
"Surveillance":"Surveillance",
"Treatments and Procedures":"Treatments..."}[cg]
def json_to_output_df(json_str, input_list):
indata =json.loads(json_str)
outdata = {"Output":[""]*len(input_list), "Explanation":[""]*len(input_list)}
# Format is: {<op-name>:{output:[{associated-item:{...}}], explanation:{tested-features:{...}}}}
haserr = False
try:
# Process output for each op type
for opname,opdata in indata.items():
# Process output for each input
for response in opdata:
# Process the output and explanation
if "explanation" not in response or "output" not in response:
continue
ss_ind = input_list.index(response["explanation"]["tested-features"]["member-data"]["sign-symptom"][0])
outdata["Explanation"][ss_ind] = json.dumps(response["explanation"]["tested-features"]["member-data"])
outdata["Output"][ss_ind] = json.dumps(response["output"][0]["associated-item"])
except Exception as e:
print("ERROR in LogicDemo json_to_output_df(): "+str(e))
haserr = True
if haserr:
retval = pd.DataFrame()
else:
retval = pd.DataFrame(data=outdata)
return retval
# Initialize the session
if "agent" not in st.session_state:
my.init()
## SET UP STREAMLIT PAGE
# emojis: https://www.webfx.com/tools/emoji-cheat-sheet/
st.set_page_config(page_title="🧠CRL Demo", layout="wide")
st.subheader("Cognitive Reasoner Lite Demo")
st.title("Generalized Rule Logic")
st.markdown("**Demonstrates teaching the agent a single rule that lets it respond to many inputs.**")
## Define S/S and intervention concepts
ss_list = [
"Decreased Bowel Sounds",
"Difficulty Providing Preventive and Therapeutic Health Care",
"Limited Recall of Long Past Events",
"Infection",
"Heartburn/Belching/Indigestion",
"Electrolyte Imbalance",
"Difficulty Expressing Grief Responses",
"Absent/Abnormal Response To Sound",
"Minimal Shared Activities"
]
intvn_list = [
("Teaching, Guidance, and Counseling","Anatomy/Physiology","bowel function"),
("Case Management","Other Community Resources","long term care options"),
("Teaching, Guidance, and Counseling","Continuity of Care","simplified routine"),
("Teaching, Guidance, and Counseling","Wellness","prevention of infection/sepsis"),
("Surveillance","Signs/Symptoms-Physical","epigastric / heartburn pain or discomfort"),
("Surveillance","Signs/Symptoms-Physical","intake and output"),
("Case Management","Support Group","age/cultural/condition-specific groups"),
("Teaching, Guidance, and Counseling","Signs/Symptoms-Physical","increased hearing loss/other changes"),
("Teaching, Guidance, and Counseling","Behavioral Health Care","therapy to strengthen family support systems"),
]
# Reset the agent before defining and linking concepts
agent_config = my.make_agent()
# Allow the user to choose how to map S/Ss to Interventions
st.header("Training:")
st.subheader("How do you want the agent to map symptoms to interventions?")
map_xpnd = st.expander(label="Mappings",expanded=True)
row = map_xpnd.container()
map_col1, map_col2 = row.columns(2)
map_col1.subheader("Symptom")
map_col2.subheader("Intervention")
intvn_labels = [short_cg(cg)+"; "+tg+"; "+cd for (cg, tg, cd) in intvn_list]
# cd_list = [list(t) for t in zip(*intvn_list)][-1] # Transpose the list of tuples and convert to a list and get just the last list
for ind,ss in enumerate(ss_list):
row = map_xpnd.container()
map_col1, map_col2 = row.columns(2)
map_col1.text(ss)
intvn_select = map_col2.selectbox(label="Maps to Intervention:",options=range(len(intvn_labels)),index=ind, key="mapbox-"+str(ind), format_func=lambda x: intvn_labels[x])
# Tell the agent to associate this S/S with this intvn
ss_concept = st.session_state.agent.getConcept("{'member-data':{'sign-symptom':'"+ss+"'}}")
cg,tg,cd = intvn_list[intvn_select]
intvn_concept = st.session_state.agent.getConcept("{'intervention':{'category':'"+cg+"','target':'"+tg+"','care-descriptor':'"+cd+"'}}")
st.session_state.agent.linkConcepts(agent_config.decisionTypeId, "SS-INTVN", ss_concept, intvn_concept)
st.subheader("What do you want the agent to report?")
select_report_attr = st.selectbox(label="Intervention element", options=["Category","Target","Care Descriptor", "All"], index=1)
report_attr = {"Category":"category", "Target":"target", "Care Descriptor":"care-descriptor", "All":""}[select_report_attr]
# Define action behavior to report result (triggered as soon as the intervention concept is active in WM)
# Report just the active 'target-id' elements of the intervention associated with the matched condition
intvn_conc = st.session_state.agent.getConcept("{'intervention':null}")
st.session_state.agent.trainAction(agent_config, intvn_conc, my.ReportActiveConceptActionInList("associated-item", report_attr))
st.markdown("---")
st.header("Input:")
st.subheader("Choose a request to send to the agent.")
if st.session_state.ld_num_ss_inputs > len(ss_list):
st.session_state.ld_num_ss_inputs = len(ss_list)
ss_input_select_list = [st.selectbox(label="Signs/Symptom:", options=ss_list, index=i, key="ss_in-"+str(i)) for i in range(st.session_state.ld_num_ss_inputs)]
in_col1, in_col2 = st.columns(8)[0:2]
in_col1.button(label="New Input", on_click=increment_ss_inputs, disabled=(st.session_state.ld_num_ss_inputs >= len(ss_list)))
in_col2.button(label="Remove Input", on_click=decrement_ss_inputs, disabled=(st.session_state.ld_num_ss_inputs <= 1)) # em: —, en: –
# Send a partial pattern to the agent's input
st.session_state.agent.clearInput()
for select in ss_input_select_list:
st.session_state.agent.addInput("{'member-data':{'sign-symptom':'"+select+"'}}")
st.markdown("---")
st.header("Agent Output:")
# Show the input to the user
io_col1, io_col2 = st.columns(2)
io_col1.text("Input sent to agent:")
io_col1.dataframe(data={'Signs/Symptoms':ss_input_select_list})
io_col1.text_area(label="Raw JSON Input", value=st.session_state.agent.getInputAsJsonString(), height=200)
# Run the agent with the given input to get a corresponding memory
st.session_state.agent.setMaxOpCycles(-1)
st.session_state.agent.queryDecision(agent_config.decisionTypeId, 5)
output = st.session_state.agent.getOutputAsJsonString()
query_time_ms = st.session_state.agent.getLastQueryTime()/1000000.0
io_col2.text("Agent Response: ("+str(query_time_ms)+" ms)")
io_col2.dataframe(data=json_to_output_df(output, ss_input_select_list),)
io_col2.text_area(label="Raw JSON Output:",value=output, height=500)
|