import streamlit as st from transformers import pipeline from PIL import Image import base64 pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") # Set the title and text color to dark green st.markdown('

R3SELL

', unsafe_allow_html=True) # Create a file input option for uploading an image file_name = st.file_uploader("Upload an image file (JPEG, PNG, etc.)") # Create a camera input widget to capture images from the webcam image = st.camera_input("Capture an image from your webcam") # Add a text bar to add a title image_title = st.text_input("Image Title", value="Specificity is nice!") # Add a text bar to add a description image_description = st.text_input("Image Description", value="(Optional)") if file_name is not None or image is not None: # Check if the image is a webcam image if file_name == 'webcam_image.jpg': # Use the Base64 encoded image image = Image.open('data:image/jpeg;base64,' + img_encoded) else: # Open the uploaded image image = Image.open(file_name) # Pass the captured image to the pipeline function predictions = pipeline(image) col1, col2 = st.columns(2) col1.image(image, use_column_width=True) col2.header("Probabilities") for p in predictions: col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")