from huggingface_hub import InferenceClient import gradio as gr css = ''' .gradio-container{max-width: 1000px !important} h1{text-align:center} footer { visibility: hidden } ''' client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3") def format_prompt(message, history): system_prompt = " # Extract the benefits of the product, not the features. # You should be as brief as possible. # Omit the price, if any. # Do not mention the name of the product. ##Use 3 paragraphs without bulletpoints or numbers. # Try to synthesize or summarize. # Focus only on the benefits. # Highlight how this product helps the customer. # Always respond in Spanish. # The text you create will be used in an e-commerce product sales page through the Internet, so it must be persuasive, attractive, and above all very short and summarized. # Remember to keep the text short, summarized, synthesized in three paragraphs. # Surprise me with your best ideas! # Always answers in AMERICAN SPANISH. Stop after finish the first content generated. " prompt = "" # Verifica que cada elemento en history sea una tupla con exactamente dos valores for entry in history: if isinstance(entry, tuple) and len(entry) == 2: user_prompt, bot_response = entry prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " else: raise ValueError("Cada entrada en 'history' debe ser una tupla con exactamente dos valores: (user_prompt, bot_response)") prompt += f"[INST] {system_prompt} {message} [/INST]" return prompt def generate( prompt, history, temperature=0.2, max_new_tokens=1000, top_p=0.95, repetition_penalty=1.0, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt, history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output # Define el chatbot con el nuevo tipo "messages" mychatbot = gr.Chatbot( type="messages", # Cambiado de tuplas a formato OpenAI avatar_images=["./user.png", "./botm.png"], bubble_full_width=False, show_label=False, show_copy_button=True, ) # Ajusta la configuraciĆ³n de la interfaz demo = gr.ChatInterface( fn=generate, chatbot=mychatbot, title="Bot con I.A. para crear BENEFICIOS de productos.

", description="

Estos BENEFICIOS van en la descripcion LARGA de producto (En la parte de ARRIBA).


"+ "

Si desea usar otro BOT de I.A. escoja:

"+ " Marketing de Contenidos | "+ " Creacion de TITULOS | "+ " Descripcion de Productos |"+ " Caracteristicas de Productos | "+ " Desarrollado por MAGNET IMPACT - Agencia de Marketing Digital ", css=css, theme="bethecloud/storj_theme" ) demo.queue().launch(show_api=False) # Obtener y mostrar URL url = demo.url print("URL del chatbot: ", url)