Update videoretalking/models/base_blocks.py
Browse files- videoretalking/models/base_blocks.py +553 -553
videoretalking/models/base_blocks.py
CHANGED
|
@@ -1,554 +1,554 @@
|
|
| 1 |
-
import math
|
| 2 |
-
import torch
|
| 3 |
-
import torch.nn as nn
|
| 4 |
-
import torch.nn.functional as F
|
| 5 |
-
from torch.nn.modules.batchnorm import BatchNorm2d
|
| 6 |
-
from torch.nn.utils.spectral_norm import spectral_norm as SpectralNorm
|
| 7 |
-
|
| 8 |
-
from models.ffc import FFC
|
| 9 |
-
from basicsr.archs.arch_util import default_init_weights
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
class Conv2d(nn.Module):
|
| 13 |
-
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs):
|
| 14 |
-
super().__init__(*args, **kwargs)
|
| 15 |
-
self.conv_block = nn.Sequential(
|
| 16 |
-
nn.Conv2d(cin, cout, kernel_size, stride, padding),
|
| 17 |
-
nn.BatchNorm2d(cout)
|
| 18 |
-
)
|
| 19 |
-
self.act = nn.ReLU()
|
| 20 |
-
self.residual = residual
|
| 21 |
-
|
| 22 |
-
def forward(self, x):
|
| 23 |
-
out = self.conv_block(x)
|
| 24 |
-
if self.residual:
|
| 25 |
-
out += x
|
| 26 |
-
return self.act(out)
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
class ResBlock(nn.Module):
|
| 30 |
-
def __init__(self, in_channels, out_channels, mode='down'):
|
| 31 |
-
super(ResBlock, self).__init__()
|
| 32 |
-
self.conv1 = nn.Conv2d(in_channels, in_channels, 3, 1, 1)
|
| 33 |
-
self.conv2 = nn.Conv2d(in_channels, out_channels, 3, 1, 1)
|
| 34 |
-
self.skip = nn.Conv2d(in_channels, out_channels, 1, bias=False)
|
| 35 |
-
if mode == 'down':
|
| 36 |
-
self.scale_factor = 0.5
|
| 37 |
-
elif mode == 'up':
|
| 38 |
-
self.scale_factor = 2
|
| 39 |
-
|
| 40 |
-
def forward(self, x):
|
| 41 |
-
out = F.leaky_relu_(self.conv1(x), negative_slope=0.2)
|
| 42 |
-
# upsample/downsample
|
| 43 |
-
out = F.interpolate(out, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
|
| 44 |
-
out = F.leaky_relu_(self.conv2(out), negative_slope=0.2)
|
| 45 |
-
# skip
|
| 46 |
-
x = F.interpolate(x, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
|
| 47 |
-
skip = self.skip(x)
|
| 48 |
-
out = out + skip
|
| 49 |
-
return out
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
class LayerNorm2d(nn.Module):
|
| 53 |
-
def __init__(self, n_out, affine=True):
|
| 54 |
-
super(LayerNorm2d, self).__init__()
|
| 55 |
-
self.n_out = n_out
|
| 56 |
-
self.affine = affine
|
| 57 |
-
|
| 58 |
-
if self.affine:
|
| 59 |
-
self.weight = nn.Parameter(torch.ones(n_out, 1, 1))
|
| 60 |
-
self.bias = nn.Parameter(torch.zeros(n_out, 1, 1))
|
| 61 |
-
|
| 62 |
-
def forward(self, x):
|
| 63 |
-
normalized_shape = x.size()[1:]
|
| 64 |
-
if self.affine:
|
| 65 |
-
return F.layer_norm(x, normalized_shape, \
|
| 66 |
-
self.weight.expand(normalized_shape),
|
| 67 |
-
self.bias.expand(normalized_shape))
|
| 68 |
-
else:
|
| 69 |
-
return F.layer_norm(x, normalized_shape)
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
def spectral_norm(module, use_spect=True):
|
| 73 |
-
if use_spect:
|
| 74 |
-
return SpectralNorm(module)
|
| 75 |
-
else:
|
| 76 |
-
return module
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
class FirstBlock2d(nn.Module):
|
| 80 |
-
def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 81 |
-
super(FirstBlock2d, self).__init__()
|
| 82 |
-
kwargs = {'kernel_size': 7, 'stride': 1, 'padding': 3}
|
| 83 |
-
conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
|
| 84 |
-
|
| 85 |
-
if type(norm_layer) == type(None):
|
| 86 |
-
self.model = nn.Sequential(conv, nonlinearity)
|
| 87 |
-
else:
|
| 88 |
-
self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity)
|
| 89 |
-
|
| 90 |
-
def forward(self, x):
|
| 91 |
-
out = self.model(x)
|
| 92 |
-
return out
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
class DownBlock2d(nn.Module):
|
| 96 |
-
def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 97 |
-
super(DownBlock2d, self).__init__()
|
| 98 |
-
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
|
| 99 |
-
conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
|
| 100 |
-
pool = nn.AvgPool2d(kernel_size=(2, 2))
|
| 101 |
-
|
| 102 |
-
if type(norm_layer) == type(None):
|
| 103 |
-
self.model = nn.Sequential(conv, nonlinearity, pool)
|
| 104 |
-
else:
|
| 105 |
-
self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity, pool)
|
| 106 |
-
|
| 107 |
-
def forward(self, x):
|
| 108 |
-
out = self.model(x)
|
| 109 |
-
return out
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
class UpBlock2d(nn.Module):
|
| 113 |
-
def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 114 |
-
super(UpBlock2d, self).__init__()
|
| 115 |
-
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
|
| 116 |
-
conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
|
| 117 |
-
if type(norm_layer) == type(None):
|
| 118 |
-
self.model = nn.Sequential(conv, nonlinearity)
|
| 119 |
-
else:
|
| 120 |
-
self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity)
|
| 121 |
-
|
| 122 |
-
def forward(self, x):
|
| 123 |
-
out = self.model(F.interpolate(x, scale_factor=2))
|
| 124 |
-
return out
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
class ADAIN(nn.Module):
|
| 128 |
-
def __init__(self, norm_nc, feature_nc):
|
| 129 |
-
super().__init__()
|
| 130 |
-
|
| 131 |
-
self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)
|
| 132 |
-
|
| 133 |
-
nhidden = 128
|
| 134 |
-
use_bias=True
|
| 135 |
-
|
| 136 |
-
self.mlp_shared = nn.Sequential(
|
| 137 |
-
nn.Linear(feature_nc, nhidden, bias=use_bias),
|
| 138 |
-
nn.ReLU()
|
| 139 |
-
)
|
| 140 |
-
self.mlp_gamma = nn.Linear(nhidden, norm_nc, bias=use_bias)
|
| 141 |
-
self.mlp_beta = nn.Linear(nhidden, norm_nc, bias=use_bias)
|
| 142 |
-
|
| 143 |
-
def forward(self, x, feature):
|
| 144 |
-
|
| 145 |
-
# Part 1. generate parameter-free normalized activations
|
| 146 |
-
normalized = self.param_free_norm(x)
|
| 147 |
-
# Part 2. produce scaling and bias conditioned on feature
|
| 148 |
-
feature = feature.view(feature.size(0), -1)
|
| 149 |
-
actv = self.mlp_shared(feature)
|
| 150 |
-
gamma = self.mlp_gamma(actv)
|
| 151 |
-
beta = self.mlp_beta(actv)
|
| 152 |
-
|
| 153 |
-
# apply scale and bias
|
| 154 |
-
gamma = gamma.view(*gamma.size()[:2], 1,1)
|
| 155 |
-
beta = beta.view(*beta.size()[:2], 1,1)
|
| 156 |
-
out = normalized * (1 + gamma) + beta
|
| 157 |
-
return out
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
class FineADAINResBlock2d(nn.Module):
|
| 161 |
-
"""
|
| 162 |
-
Define an Residual block for different types
|
| 163 |
-
"""
|
| 164 |
-
def __init__(self, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 165 |
-
super(FineADAINResBlock2d, self).__init__()
|
| 166 |
-
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
|
| 167 |
-
self.conv1 = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect)
|
| 168 |
-
self.conv2 = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect)
|
| 169 |
-
self.norm1 = ADAIN(input_nc, feature_nc)
|
| 170 |
-
self.norm2 = ADAIN(input_nc, feature_nc)
|
| 171 |
-
self.actvn = nonlinearity
|
| 172 |
-
|
| 173 |
-
def forward(self, x, z):
|
| 174 |
-
dx = self.actvn(self.norm1(self.conv1(x), z))
|
| 175 |
-
dx = self.norm2(self.conv2(x), z)
|
| 176 |
-
out = dx + x
|
| 177 |
-
return out
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
class FineADAINResBlocks(nn.Module):
|
| 181 |
-
def __init__(self, num_block, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 182 |
-
super(FineADAINResBlocks, self).__init__()
|
| 183 |
-
self.num_block = num_block
|
| 184 |
-
for i in range(num_block):
|
| 185 |
-
model = FineADAINResBlock2d(input_nc, feature_nc, norm_layer, nonlinearity, use_spect)
|
| 186 |
-
setattr(self, 'res'+str(i), model)
|
| 187 |
-
|
| 188 |
-
def forward(self, x, z):
|
| 189 |
-
for i in range(self.num_block):
|
| 190 |
-
model = getattr(self, 'res'+str(i))
|
| 191 |
-
x = model(x, z)
|
| 192 |
-
return x
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
class ADAINEncoderBlock(nn.Module):
|
| 196 |
-
def __init__(self, input_nc, output_nc, feature_nc, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 197 |
-
super(ADAINEncoderBlock, self).__init__()
|
| 198 |
-
kwargs_down = {'kernel_size': 4, 'stride': 2, 'padding': 1}
|
| 199 |
-
kwargs_fine = {'kernel_size': 3, 'stride': 1, 'padding': 1}
|
| 200 |
-
|
| 201 |
-
self.conv_0 = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs_down), use_spect)
|
| 202 |
-
self.conv_1 = spectral_norm(nn.Conv2d(output_nc, output_nc, **kwargs_fine), use_spect)
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
self.norm_0 = ADAIN(input_nc, feature_nc)
|
| 206 |
-
self.norm_1 = ADAIN(output_nc, feature_nc)
|
| 207 |
-
self.actvn = nonlinearity
|
| 208 |
-
|
| 209 |
-
def forward(self, x, z):
|
| 210 |
-
x = self.conv_0(self.actvn(self.norm_0(x, z)))
|
| 211 |
-
x = self.conv_1(self.actvn(self.norm_1(x, z)))
|
| 212 |
-
return x
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
class ADAINDecoderBlock(nn.Module):
|
| 216 |
-
def __init__(self, input_nc, output_nc, hidden_nc, feature_nc, use_transpose=True, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 217 |
-
super(ADAINDecoderBlock, self).__init__()
|
| 218 |
-
# Attributes
|
| 219 |
-
self.actvn = nonlinearity
|
| 220 |
-
hidden_nc = min(input_nc, output_nc) if hidden_nc is None else hidden_nc
|
| 221 |
-
|
| 222 |
-
kwargs_fine = {'kernel_size':3, 'stride':1, 'padding':1}
|
| 223 |
-
if use_transpose:
|
| 224 |
-
kwargs_up = {'kernel_size':3, 'stride':2, 'padding':1, 'output_padding':1}
|
| 225 |
-
else:
|
| 226 |
-
kwargs_up = {'kernel_size':3, 'stride':1, 'padding':1}
|
| 227 |
-
|
| 228 |
-
# create conv layers
|
| 229 |
-
self.conv_0 = spectral_norm(nn.Conv2d(input_nc, hidden_nc, **kwargs_fine), use_spect)
|
| 230 |
-
if use_transpose:
|
| 231 |
-
self.conv_1 = spectral_norm(nn.ConvTranspose2d(hidden_nc, output_nc, **kwargs_up), use_spect)
|
| 232 |
-
self.conv_s = spectral_norm(nn.ConvTranspose2d(input_nc, output_nc, **kwargs_up), use_spect)
|
| 233 |
-
else:
|
| 234 |
-
self.conv_1 = nn.Sequential(spectral_norm(nn.Conv2d(hidden_nc, output_nc, **kwargs_up), use_spect),
|
| 235 |
-
nn.Upsample(scale_factor=2))
|
| 236 |
-
self.conv_s = nn.Sequential(spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs_up), use_spect),
|
| 237 |
-
nn.Upsample(scale_factor=2))
|
| 238 |
-
# define normalization layers
|
| 239 |
-
self.norm_0 = ADAIN(input_nc, feature_nc)
|
| 240 |
-
self.norm_1 = ADAIN(hidden_nc, feature_nc)
|
| 241 |
-
self.norm_s = ADAIN(input_nc, feature_nc)
|
| 242 |
-
|
| 243 |
-
def forward(self, x, z):
|
| 244 |
-
x_s = self.shortcut(x, z)
|
| 245 |
-
dx = self.conv_0(self.actvn(self.norm_0(x, z)))
|
| 246 |
-
dx = self.conv_1(self.actvn(self.norm_1(dx, z)))
|
| 247 |
-
out = x_s + dx
|
| 248 |
-
return out
|
| 249 |
-
|
| 250 |
-
def shortcut(self, x, z):
|
| 251 |
-
x_s = self.conv_s(self.actvn(self.norm_s(x, z)))
|
| 252 |
-
return x_s
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
class FineEncoder(nn.Module):
|
| 256 |
-
"""docstring for Encoder"""
|
| 257 |
-
def __init__(self, image_nc, ngf, img_f, layers, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 258 |
-
super(FineEncoder, self).__init__()
|
| 259 |
-
self.layers = layers
|
| 260 |
-
self.first = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect)
|
| 261 |
-
for i in range(layers):
|
| 262 |
-
in_channels = min(ngf*(2**i), img_f)
|
| 263 |
-
out_channels = min(ngf*(2**(i+1)), img_f)
|
| 264 |
-
model = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
|
| 265 |
-
setattr(self, 'down' + str(i), model)
|
| 266 |
-
self.output_nc = out_channels
|
| 267 |
-
|
| 268 |
-
def forward(self, x):
|
| 269 |
-
x = self.first(x)
|
| 270 |
-
out=[x]
|
| 271 |
-
for i in range(self.layers):
|
| 272 |
-
model = getattr(self, 'down'+str(i))
|
| 273 |
-
x = model(x)
|
| 274 |
-
out.append(x)
|
| 275 |
-
return out
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
class FineDecoder(nn.Module):
|
| 279 |
-
"""docstring for FineDecoder"""
|
| 280 |
-
def __init__(self, image_nc, feature_nc, ngf, img_f, layers, num_block, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 281 |
-
super(FineDecoder, self).__init__()
|
| 282 |
-
self.layers = layers
|
| 283 |
-
for i in range(layers)[::-1]:
|
| 284 |
-
in_channels = min(ngf*(2**(i+1)), img_f)
|
| 285 |
-
out_channels = min(ngf*(2**i), img_f)
|
| 286 |
-
up = UpBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
|
| 287 |
-
res = FineADAINResBlocks(num_block, in_channels, feature_nc, norm_layer, nonlinearity, use_spect)
|
| 288 |
-
jump = Jump(out_channels, norm_layer, nonlinearity, use_spect)
|
| 289 |
-
setattr(self, 'up' + str(i), up)
|
| 290 |
-
setattr(self, 'res' + str(i), res)
|
| 291 |
-
setattr(self, 'jump' + str(i), jump)
|
| 292 |
-
self.final = FinalBlock2d(out_channels, image_nc, use_spect, 'tanh')
|
| 293 |
-
self.output_nc = out_channels
|
| 294 |
-
|
| 295 |
-
def forward(self, x, z):
|
| 296 |
-
out = x.pop()
|
| 297 |
-
for i in range(self.layers)[::-1]:
|
| 298 |
-
res_model = getattr(self, 'res' + str(i))
|
| 299 |
-
up_model = getattr(self, 'up' + str(i))
|
| 300 |
-
jump_model = getattr(self, 'jump' + str(i))
|
| 301 |
-
out = res_model(out, z)
|
| 302 |
-
out = up_model(out)
|
| 303 |
-
out = jump_model(x.pop()) + out
|
| 304 |
-
out_image = self.final(out)
|
| 305 |
-
return out_image
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
class ADAINEncoder(nn.Module):
|
| 309 |
-
def __init__(self, image_nc, pose_nc, ngf, img_f, layers, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 310 |
-
super(ADAINEncoder, self).__init__()
|
| 311 |
-
self.layers = layers
|
| 312 |
-
self.input_layer = nn.Conv2d(image_nc, ngf, kernel_size=7, stride=1, padding=3)
|
| 313 |
-
for i in range(layers):
|
| 314 |
-
in_channels = min(ngf * (2**i), img_f)
|
| 315 |
-
out_channels = min(ngf *(2**(i+1)), img_f)
|
| 316 |
-
model = ADAINEncoderBlock(in_channels, out_channels, pose_nc, nonlinearity, use_spect)
|
| 317 |
-
setattr(self, 'encoder' + str(i), model)
|
| 318 |
-
self.output_nc = out_channels
|
| 319 |
-
|
| 320 |
-
def forward(self, x, z):
|
| 321 |
-
out = self.input_layer(x)
|
| 322 |
-
out_list = [out]
|
| 323 |
-
for i in range(self.layers):
|
| 324 |
-
model = getattr(self, 'encoder' + str(i))
|
| 325 |
-
out = model(out, z)
|
| 326 |
-
out_list.append(out)
|
| 327 |
-
return out_list
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
class ADAINDecoder(nn.Module):
|
| 331 |
-
"""docstring for ADAINDecoder"""
|
| 332 |
-
def __init__(self, pose_nc, ngf, img_f, encoder_layers, decoder_layers, skip_connect=True,
|
| 333 |
-
nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 334 |
-
|
| 335 |
-
super(ADAINDecoder, self).__init__()
|
| 336 |
-
self.encoder_layers = encoder_layers
|
| 337 |
-
self.decoder_layers = decoder_layers
|
| 338 |
-
self.skip_connect = skip_connect
|
| 339 |
-
use_transpose = True
|
| 340 |
-
for i in range(encoder_layers-decoder_layers, encoder_layers)[::-1]:
|
| 341 |
-
in_channels = min(ngf * (2**(i+1)), img_f)
|
| 342 |
-
in_channels = in_channels*2 if i != (encoder_layers-1) and self.skip_connect else in_channels
|
| 343 |
-
out_channels = min(ngf * (2**i), img_f)
|
| 344 |
-
model = ADAINDecoderBlock(in_channels, out_channels, out_channels, pose_nc, use_transpose, nonlinearity, use_spect)
|
| 345 |
-
setattr(self, 'decoder' + str(i), model)
|
| 346 |
-
self.output_nc = out_channels*2 if self.skip_connect else out_channels
|
| 347 |
-
|
| 348 |
-
def forward(self, x, z):
|
| 349 |
-
out = x.pop() if self.skip_connect else x
|
| 350 |
-
for i in range(self.encoder_layers-self.decoder_layers, self.encoder_layers)[::-1]:
|
| 351 |
-
model = getattr(self, 'decoder' + str(i))
|
| 352 |
-
out = model(out, z)
|
| 353 |
-
out = torch.cat([out, x.pop()], 1) if self.skip_connect else out
|
| 354 |
-
return out
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
class ADAINHourglass(nn.Module):
|
| 358 |
-
def __init__(self, image_nc, pose_nc, ngf, img_f, encoder_layers, decoder_layers, nonlinearity, use_spect):
|
| 359 |
-
super(ADAINHourglass, self).__init__()
|
| 360 |
-
self.encoder = ADAINEncoder(image_nc, pose_nc, ngf, img_f, encoder_layers, nonlinearity, use_spect)
|
| 361 |
-
self.decoder = ADAINDecoder(pose_nc, ngf, img_f, encoder_layers, decoder_layers, True, nonlinearity, use_spect)
|
| 362 |
-
self.output_nc = self.decoder.output_nc
|
| 363 |
-
|
| 364 |
-
def forward(self, x, z):
|
| 365 |
-
return self.decoder(self.encoder(x, z), z)
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
class FineADAINLama(nn.Module):
|
| 369 |
-
def __init__(self, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 370 |
-
super(FineADAINLama, self).__init__()
|
| 371 |
-
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
|
| 372 |
-
self.actvn = nonlinearity
|
| 373 |
-
ratio_gin = 0.75
|
| 374 |
-
ratio_gout = 0.75
|
| 375 |
-
self.ffc = FFC(input_nc, input_nc, 3,
|
| 376 |
-
ratio_gin, ratio_gout, 1, 1, 1,
|
| 377 |
-
1, False, False, padding_type='reflect')
|
| 378 |
-
global_channels = int(input_nc * ratio_gout)
|
| 379 |
-
self.bn_l = ADAIN(input_nc - global_channels, feature_nc)
|
| 380 |
-
self.bn_g = ADAIN(global_channels, feature_nc)
|
| 381 |
-
|
| 382 |
-
def forward(self, x, z):
|
| 383 |
-
x_l, x_g = self.ffc(x)
|
| 384 |
-
x_l = self.actvn(self.bn_l(x_l,z))
|
| 385 |
-
x_g = self.actvn(self.bn_g(x_g,z))
|
| 386 |
-
return x_l, x_g
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
class FFCResnetBlock(nn.Module):
|
| 390 |
-
def __init__(self, dim, feature_dim, padding_type='reflect', norm_layer=BatchNorm2d, activation_layer=nn.ReLU, dilation=1,
|
| 391 |
-
spatial_transform_kwargs=None, inline=False, **conv_kwargs):
|
| 392 |
-
super().__init__()
|
| 393 |
-
self.conv1 = FineADAINLama(dim, feature_dim, **conv_kwargs)
|
| 394 |
-
self.conv2 = FineADAINLama(dim, feature_dim, **conv_kwargs)
|
| 395 |
-
self.inline = True
|
| 396 |
-
|
| 397 |
-
def forward(self, x, z):
|
| 398 |
-
if self.inline:
|
| 399 |
-
x_l, x_g = x[:, :-self.conv1.ffc.global_in_num], x[:, -self.conv1.ffc.global_in_num:]
|
| 400 |
-
else:
|
| 401 |
-
x_l, x_g = x if type(x) is tuple else (x, 0)
|
| 402 |
-
|
| 403 |
-
id_l, id_g = x_l, x_g
|
| 404 |
-
x_l, x_g = self.conv1((x_l, x_g), z)
|
| 405 |
-
x_l, x_g = self.conv2((x_l, x_g), z)
|
| 406 |
-
|
| 407 |
-
x_l, x_g = id_l + x_l, id_g + x_g
|
| 408 |
-
out = x_l, x_g
|
| 409 |
-
if self.inline:
|
| 410 |
-
out = torch.cat(out, dim=1)
|
| 411 |
-
return out
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
class FFCADAINResBlocks(nn.Module):
|
| 415 |
-
def __init__(self, num_block, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 416 |
-
super(FFCADAINResBlocks, self).__init__()
|
| 417 |
-
self.num_block = num_block
|
| 418 |
-
for i in range(num_block):
|
| 419 |
-
model = FFCResnetBlock(input_nc, feature_nc, norm_layer, nonlinearity, use_spect)
|
| 420 |
-
setattr(self, 'res'+str(i), model)
|
| 421 |
-
|
| 422 |
-
def forward(self, x, z):
|
| 423 |
-
for i in range(self.num_block):
|
| 424 |
-
model = getattr(self, 'res'+str(i))
|
| 425 |
-
x = model(x, z)
|
| 426 |
-
return x
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
class Jump(nn.Module):
|
| 430 |
-
def __init__(self, input_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 431 |
-
super(Jump, self).__init__()
|
| 432 |
-
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
|
| 433 |
-
conv = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect)
|
| 434 |
-
if type(norm_layer) == type(None):
|
| 435 |
-
self.model = nn.Sequential(conv, nonlinearity)
|
| 436 |
-
else:
|
| 437 |
-
self.model = nn.Sequential(conv, norm_layer(input_nc), nonlinearity)
|
| 438 |
-
|
| 439 |
-
def forward(self, x):
|
| 440 |
-
out = self.model(x)
|
| 441 |
-
return out
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
class FinalBlock2d(nn.Module):
|
| 445 |
-
def __init__(self, input_nc, output_nc, use_spect=False, tanh_or_sigmoid='tanh'):
|
| 446 |
-
super(FinalBlock2d, self).__init__()
|
| 447 |
-
kwargs = {'kernel_size': 7, 'stride': 1, 'padding':3}
|
| 448 |
-
conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
|
| 449 |
-
if tanh_or_sigmoid == 'sigmoid':
|
| 450 |
-
out_nonlinearity = nn.Sigmoid()
|
| 451 |
-
else:
|
| 452 |
-
out_nonlinearity = nn.Tanh()
|
| 453 |
-
self.model = nn.Sequential(conv, out_nonlinearity)
|
| 454 |
-
|
| 455 |
-
def forward(self, x):
|
| 456 |
-
out = self.model(x)
|
| 457 |
-
return out
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
class ModulatedConv2d(nn.Module):
|
| 461 |
-
def __init__(self,
|
| 462 |
-
in_channels,
|
| 463 |
-
out_channels,
|
| 464 |
-
kernel_size,
|
| 465 |
-
num_style_feat,
|
| 466 |
-
demodulate=True,
|
| 467 |
-
sample_mode=None,
|
| 468 |
-
eps=1e-8):
|
| 469 |
-
super(ModulatedConv2d, self).__init__()
|
| 470 |
-
self.in_channels = in_channels
|
| 471 |
-
self.out_channels = out_channels
|
| 472 |
-
self.kernel_size = kernel_size
|
| 473 |
-
self.demodulate = demodulate
|
| 474 |
-
self.sample_mode = sample_mode
|
| 475 |
-
self.eps = eps
|
| 476 |
-
|
| 477 |
-
# modulation inside each modulated conv
|
| 478 |
-
self.modulation = nn.Linear(num_style_feat, in_channels, bias=True)
|
| 479 |
-
# initialization
|
| 480 |
-
default_init_weights(self.modulation, scale=1, bias_fill=1, a=0, mode='fan_in', nonlinearity='linear')
|
| 481 |
-
|
| 482 |
-
self.weight = nn.Parameter(
|
| 483 |
-
torch.randn(1, out_channels, in_channels, kernel_size, kernel_size) /
|
| 484 |
-
math.sqrt(in_channels * kernel_size**2))
|
| 485 |
-
self.padding = kernel_size // 2
|
| 486 |
-
|
| 487 |
-
def forward(self, x, style):
|
| 488 |
-
b, c, h, w = x.shape
|
| 489 |
-
style = self.modulation(style).view(b, 1, c, 1, 1)
|
| 490 |
-
weight = self.weight * style
|
| 491 |
-
|
| 492 |
-
if self.demodulate:
|
| 493 |
-
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
|
| 494 |
-
weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
|
| 495 |
-
|
| 496 |
-
weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size)
|
| 497 |
-
|
| 498 |
-
# upsample or downsample if necessary
|
| 499 |
-
if self.sample_mode == 'upsample':
|
| 500 |
-
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
|
| 501 |
-
elif self.sample_mode == 'downsample':
|
| 502 |
-
x = F.interpolate(x, scale_factor=0.5, mode='bilinear', align_corners=False)
|
| 503 |
-
|
| 504 |
-
b, c, h, w = x.shape
|
| 505 |
-
x = x.view(1, b * c, h, w)
|
| 506 |
-
out = F.conv2d(x, weight, padding=self.padding, groups=b)
|
| 507 |
-
out = out.view(b, self.out_channels, *out.shape[2:4])
|
| 508 |
-
return out
|
| 509 |
-
|
| 510 |
-
def __repr__(self):
|
| 511 |
-
return (f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, '
|
| 512 |
-
f'kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})')
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
class StyleConv(nn.Module):
|
| 516 |
-
def __init__(self, in_channels, out_channels, kernel_size, num_style_feat, demodulate=True, sample_mode=None):
|
| 517 |
-
super(StyleConv, self).__init__()
|
| 518 |
-
self.modulated_conv = ModulatedConv2d(
|
| 519 |
-
in_channels, out_channels, kernel_size, num_style_feat, demodulate=demodulate, sample_mode=sample_mode)
|
| 520 |
-
self.weight = nn.Parameter(torch.zeros(1)) # for noise injection
|
| 521 |
-
self.bias = nn.Parameter(torch.zeros(1, out_channels, 1, 1))
|
| 522 |
-
self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
| 523 |
-
|
| 524 |
-
def forward(self, x, style, noise=None):
|
| 525 |
-
# modulate
|
| 526 |
-
out = self.modulated_conv(x, style) * 2**0.5 # for conversion
|
| 527 |
-
# noise injection
|
| 528 |
-
if noise is None:
|
| 529 |
-
b, _, h, w = out.shape
|
| 530 |
-
noise = out.new_empty(b, 1, h, w).normal_()
|
| 531 |
-
out = out + self.weight * noise
|
| 532 |
-
# add bias
|
| 533 |
-
out = out + self.bias
|
| 534 |
-
# activation
|
| 535 |
-
out = self.activate(out)
|
| 536 |
-
return out
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
class ToRGB(nn.Module):
|
| 540 |
-
def __init__(self, in_channels, num_style_feat, upsample=True):
|
| 541 |
-
super(ToRGB, self).__init__()
|
| 542 |
-
self.upsample = upsample
|
| 543 |
-
self.modulated_conv = ModulatedConv2d(
|
| 544 |
-
in_channels, 3, kernel_size=1, num_style_feat=num_style_feat, demodulate=False, sample_mode=None)
|
| 545 |
-
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
|
| 546 |
-
|
| 547 |
-
def forward(self, x, style, skip=None):
|
| 548 |
-
out = self.modulated_conv(x, style)
|
| 549 |
-
out = out + self.bias
|
| 550 |
-
if skip is not None:
|
| 551 |
-
if self.upsample:
|
| 552 |
-
skip = F.interpolate(skip, scale_factor=2, mode='bilinear', align_corners=False)
|
| 553 |
-
out = out + skip
|
| 554 |
return out
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from torch.nn.modules.batchnorm import BatchNorm2d
|
| 6 |
+
from torch.nn.utils.spectral_norm import spectral_norm as SpectralNorm
|
| 7 |
+
|
| 8 |
+
from videoretalking.models.ffc import FFC
|
| 9 |
+
from basicsr.archs.arch_util import default_init_weights
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class Conv2d(nn.Module):
|
| 13 |
+
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs):
|
| 14 |
+
super().__init__(*args, **kwargs)
|
| 15 |
+
self.conv_block = nn.Sequential(
|
| 16 |
+
nn.Conv2d(cin, cout, kernel_size, stride, padding),
|
| 17 |
+
nn.BatchNorm2d(cout)
|
| 18 |
+
)
|
| 19 |
+
self.act = nn.ReLU()
|
| 20 |
+
self.residual = residual
|
| 21 |
+
|
| 22 |
+
def forward(self, x):
|
| 23 |
+
out = self.conv_block(x)
|
| 24 |
+
if self.residual:
|
| 25 |
+
out += x
|
| 26 |
+
return self.act(out)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class ResBlock(nn.Module):
|
| 30 |
+
def __init__(self, in_channels, out_channels, mode='down'):
|
| 31 |
+
super(ResBlock, self).__init__()
|
| 32 |
+
self.conv1 = nn.Conv2d(in_channels, in_channels, 3, 1, 1)
|
| 33 |
+
self.conv2 = nn.Conv2d(in_channels, out_channels, 3, 1, 1)
|
| 34 |
+
self.skip = nn.Conv2d(in_channels, out_channels, 1, bias=False)
|
| 35 |
+
if mode == 'down':
|
| 36 |
+
self.scale_factor = 0.5
|
| 37 |
+
elif mode == 'up':
|
| 38 |
+
self.scale_factor = 2
|
| 39 |
+
|
| 40 |
+
def forward(self, x):
|
| 41 |
+
out = F.leaky_relu_(self.conv1(x), negative_slope=0.2)
|
| 42 |
+
# upsample/downsample
|
| 43 |
+
out = F.interpolate(out, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
|
| 44 |
+
out = F.leaky_relu_(self.conv2(out), negative_slope=0.2)
|
| 45 |
+
# skip
|
| 46 |
+
x = F.interpolate(x, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
|
| 47 |
+
skip = self.skip(x)
|
| 48 |
+
out = out + skip
|
| 49 |
+
return out
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class LayerNorm2d(nn.Module):
|
| 53 |
+
def __init__(self, n_out, affine=True):
|
| 54 |
+
super(LayerNorm2d, self).__init__()
|
| 55 |
+
self.n_out = n_out
|
| 56 |
+
self.affine = affine
|
| 57 |
+
|
| 58 |
+
if self.affine:
|
| 59 |
+
self.weight = nn.Parameter(torch.ones(n_out, 1, 1))
|
| 60 |
+
self.bias = nn.Parameter(torch.zeros(n_out, 1, 1))
|
| 61 |
+
|
| 62 |
+
def forward(self, x):
|
| 63 |
+
normalized_shape = x.size()[1:]
|
| 64 |
+
if self.affine:
|
| 65 |
+
return F.layer_norm(x, normalized_shape, \
|
| 66 |
+
self.weight.expand(normalized_shape),
|
| 67 |
+
self.bias.expand(normalized_shape))
|
| 68 |
+
else:
|
| 69 |
+
return F.layer_norm(x, normalized_shape)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def spectral_norm(module, use_spect=True):
|
| 73 |
+
if use_spect:
|
| 74 |
+
return SpectralNorm(module)
|
| 75 |
+
else:
|
| 76 |
+
return module
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class FirstBlock2d(nn.Module):
|
| 80 |
+
def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 81 |
+
super(FirstBlock2d, self).__init__()
|
| 82 |
+
kwargs = {'kernel_size': 7, 'stride': 1, 'padding': 3}
|
| 83 |
+
conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
|
| 84 |
+
|
| 85 |
+
if type(norm_layer) == type(None):
|
| 86 |
+
self.model = nn.Sequential(conv, nonlinearity)
|
| 87 |
+
else:
|
| 88 |
+
self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity)
|
| 89 |
+
|
| 90 |
+
def forward(self, x):
|
| 91 |
+
out = self.model(x)
|
| 92 |
+
return out
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
class DownBlock2d(nn.Module):
|
| 96 |
+
def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 97 |
+
super(DownBlock2d, self).__init__()
|
| 98 |
+
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
|
| 99 |
+
conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
|
| 100 |
+
pool = nn.AvgPool2d(kernel_size=(2, 2))
|
| 101 |
+
|
| 102 |
+
if type(norm_layer) == type(None):
|
| 103 |
+
self.model = nn.Sequential(conv, nonlinearity, pool)
|
| 104 |
+
else:
|
| 105 |
+
self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity, pool)
|
| 106 |
+
|
| 107 |
+
def forward(self, x):
|
| 108 |
+
out = self.model(x)
|
| 109 |
+
return out
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
class UpBlock2d(nn.Module):
|
| 113 |
+
def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 114 |
+
super(UpBlock2d, self).__init__()
|
| 115 |
+
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
|
| 116 |
+
conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
|
| 117 |
+
if type(norm_layer) == type(None):
|
| 118 |
+
self.model = nn.Sequential(conv, nonlinearity)
|
| 119 |
+
else:
|
| 120 |
+
self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity)
|
| 121 |
+
|
| 122 |
+
def forward(self, x):
|
| 123 |
+
out = self.model(F.interpolate(x, scale_factor=2))
|
| 124 |
+
return out
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
class ADAIN(nn.Module):
|
| 128 |
+
def __init__(self, norm_nc, feature_nc):
|
| 129 |
+
super().__init__()
|
| 130 |
+
|
| 131 |
+
self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)
|
| 132 |
+
|
| 133 |
+
nhidden = 128
|
| 134 |
+
use_bias=True
|
| 135 |
+
|
| 136 |
+
self.mlp_shared = nn.Sequential(
|
| 137 |
+
nn.Linear(feature_nc, nhidden, bias=use_bias),
|
| 138 |
+
nn.ReLU()
|
| 139 |
+
)
|
| 140 |
+
self.mlp_gamma = nn.Linear(nhidden, norm_nc, bias=use_bias)
|
| 141 |
+
self.mlp_beta = nn.Linear(nhidden, norm_nc, bias=use_bias)
|
| 142 |
+
|
| 143 |
+
def forward(self, x, feature):
|
| 144 |
+
|
| 145 |
+
# Part 1. generate parameter-free normalized activations
|
| 146 |
+
normalized = self.param_free_norm(x)
|
| 147 |
+
# Part 2. produce scaling and bias conditioned on feature
|
| 148 |
+
feature = feature.view(feature.size(0), -1)
|
| 149 |
+
actv = self.mlp_shared(feature)
|
| 150 |
+
gamma = self.mlp_gamma(actv)
|
| 151 |
+
beta = self.mlp_beta(actv)
|
| 152 |
+
|
| 153 |
+
# apply scale and bias
|
| 154 |
+
gamma = gamma.view(*gamma.size()[:2], 1,1)
|
| 155 |
+
beta = beta.view(*beta.size()[:2], 1,1)
|
| 156 |
+
out = normalized * (1 + gamma) + beta
|
| 157 |
+
return out
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
class FineADAINResBlock2d(nn.Module):
|
| 161 |
+
"""
|
| 162 |
+
Define an Residual block for different types
|
| 163 |
+
"""
|
| 164 |
+
def __init__(self, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 165 |
+
super(FineADAINResBlock2d, self).__init__()
|
| 166 |
+
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
|
| 167 |
+
self.conv1 = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect)
|
| 168 |
+
self.conv2 = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect)
|
| 169 |
+
self.norm1 = ADAIN(input_nc, feature_nc)
|
| 170 |
+
self.norm2 = ADAIN(input_nc, feature_nc)
|
| 171 |
+
self.actvn = nonlinearity
|
| 172 |
+
|
| 173 |
+
def forward(self, x, z):
|
| 174 |
+
dx = self.actvn(self.norm1(self.conv1(x), z))
|
| 175 |
+
dx = self.norm2(self.conv2(x), z)
|
| 176 |
+
out = dx + x
|
| 177 |
+
return out
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
class FineADAINResBlocks(nn.Module):
|
| 181 |
+
def __init__(self, num_block, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 182 |
+
super(FineADAINResBlocks, self).__init__()
|
| 183 |
+
self.num_block = num_block
|
| 184 |
+
for i in range(num_block):
|
| 185 |
+
model = FineADAINResBlock2d(input_nc, feature_nc, norm_layer, nonlinearity, use_spect)
|
| 186 |
+
setattr(self, 'res'+str(i), model)
|
| 187 |
+
|
| 188 |
+
def forward(self, x, z):
|
| 189 |
+
for i in range(self.num_block):
|
| 190 |
+
model = getattr(self, 'res'+str(i))
|
| 191 |
+
x = model(x, z)
|
| 192 |
+
return x
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
class ADAINEncoderBlock(nn.Module):
|
| 196 |
+
def __init__(self, input_nc, output_nc, feature_nc, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 197 |
+
super(ADAINEncoderBlock, self).__init__()
|
| 198 |
+
kwargs_down = {'kernel_size': 4, 'stride': 2, 'padding': 1}
|
| 199 |
+
kwargs_fine = {'kernel_size': 3, 'stride': 1, 'padding': 1}
|
| 200 |
+
|
| 201 |
+
self.conv_0 = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs_down), use_spect)
|
| 202 |
+
self.conv_1 = spectral_norm(nn.Conv2d(output_nc, output_nc, **kwargs_fine), use_spect)
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
self.norm_0 = ADAIN(input_nc, feature_nc)
|
| 206 |
+
self.norm_1 = ADAIN(output_nc, feature_nc)
|
| 207 |
+
self.actvn = nonlinearity
|
| 208 |
+
|
| 209 |
+
def forward(self, x, z):
|
| 210 |
+
x = self.conv_0(self.actvn(self.norm_0(x, z)))
|
| 211 |
+
x = self.conv_1(self.actvn(self.norm_1(x, z)))
|
| 212 |
+
return x
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
class ADAINDecoderBlock(nn.Module):
|
| 216 |
+
def __init__(self, input_nc, output_nc, hidden_nc, feature_nc, use_transpose=True, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 217 |
+
super(ADAINDecoderBlock, self).__init__()
|
| 218 |
+
# Attributes
|
| 219 |
+
self.actvn = nonlinearity
|
| 220 |
+
hidden_nc = min(input_nc, output_nc) if hidden_nc is None else hidden_nc
|
| 221 |
+
|
| 222 |
+
kwargs_fine = {'kernel_size':3, 'stride':1, 'padding':1}
|
| 223 |
+
if use_transpose:
|
| 224 |
+
kwargs_up = {'kernel_size':3, 'stride':2, 'padding':1, 'output_padding':1}
|
| 225 |
+
else:
|
| 226 |
+
kwargs_up = {'kernel_size':3, 'stride':1, 'padding':1}
|
| 227 |
+
|
| 228 |
+
# create conv layers
|
| 229 |
+
self.conv_0 = spectral_norm(nn.Conv2d(input_nc, hidden_nc, **kwargs_fine), use_spect)
|
| 230 |
+
if use_transpose:
|
| 231 |
+
self.conv_1 = spectral_norm(nn.ConvTranspose2d(hidden_nc, output_nc, **kwargs_up), use_spect)
|
| 232 |
+
self.conv_s = spectral_norm(nn.ConvTranspose2d(input_nc, output_nc, **kwargs_up), use_spect)
|
| 233 |
+
else:
|
| 234 |
+
self.conv_1 = nn.Sequential(spectral_norm(nn.Conv2d(hidden_nc, output_nc, **kwargs_up), use_spect),
|
| 235 |
+
nn.Upsample(scale_factor=2))
|
| 236 |
+
self.conv_s = nn.Sequential(spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs_up), use_spect),
|
| 237 |
+
nn.Upsample(scale_factor=2))
|
| 238 |
+
# define normalization layers
|
| 239 |
+
self.norm_0 = ADAIN(input_nc, feature_nc)
|
| 240 |
+
self.norm_1 = ADAIN(hidden_nc, feature_nc)
|
| 241 |
+
self.norm_s = ADAIN(input_nc, feature_nc)
|
| 242 |
+
|
| 243 |
+
def forward(self, x, z):
|
| 244 |
+
x_s = self.shortcut(x, z)
|
| 245 |
+
dx = self.conv_0(self.actvn(self.norm_0(x, z)))
|
| 246 |
+
dx = self.conv_1(self.actvn(self.norm_1(dx, z)))
|
| 247 |
+
out = x_s + dx
|
| 248 |
+
return out
|
| 249 |
+
|
| 250 |
+
def shortcut(self, x, z):
|
| 251 |
+
x_s = self.conv_s(self.actvn(self.norm_s(x, z)))
|
| 252 |
+
return x_s
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
class FineEncoder(nn.Module):
|
| 256 |
+
"""docstring for Encoder"""
|
| 257 |
+
def __init__(self, image_nc, ngf, img_f, layers, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 258 |
+
super(FineEncoder, self).__init__()
|
| 259 |
+
self.layers = layers
|
| 260 |
+
self.first = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect)
|
| 261 |
+
for i in range(layers):
|
| 262 |
+
in_channels = min(ngf*(2**i), img_f)
|
| 263 |
+
out_channels = min(ngf*(2**(i+1)), img_f)
|
| 264 |
+
model = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
|
| 265 |
+
setattr(self, 'down' + str(i), model)
|
| 266 |
+
self.output_nc = out_channels
|
| 267 |
+
|
| 268 |
+
def forward(self, x):
|
| 269 |
+
x = self.first(x)
|
| 270 |
+
out=[x]
|
| 271 |
+
for i in range(self.layers):
|
| 272 |
+
model = getattr(self, 'down'+str(i))
|
| 273 |
+
x = model(x)
|
| 274 |
+
out.append(x)
|
| 275 |
+
return out
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
class FineDecoder(nn.Module):
|
| 279 |
+
"""docstring for FineDecoder"""
|
| 280 |
+
def __init__(self, image_nc, feature_nc, ngf, img_f, layers, num_block, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 281 |
+
super(FineDecoder, self).__init__()
|
| 282 |
+
self.layers = layers
|
| 283 |
+
for i in range(layers)[::-1]:
|
| 284 |
+
in_channels = min(ngf*(2**(i+1)), img_f)
|
| 285 |
+
out_channels = min(ngf*(2**i), img_f)
|
| 286 |
+
up = UpBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
|
| 287 |
+
res = FineADAINResBlocks(num_block, in_channels, feature_nc, norm_layer, nonlinearity, use_spect)
|
| 288 |
+
jump = Jump(out_channels, norm_layer, nonlinearity, use_spect)
|
| 289 |
+
setattr(self, 'up' + str(i), up)
|
| 290 |
+
setattr(self, 'res' + str(i), res)
|
| 291 |
+
setattr(self, 'jump' + str(i), jump)
|
| 292 |
+
self.final = FinalBlock2d(out_channels, image_nc, use_spect, 'tanh')
|
| 293 |
+
self.output_nc = out_channels
|
| 294 |
+
|
| 295 |
+
def forward(self, x, z):
|
| 296 |
+
out = x.pop()
|
| 297 |
+
for i in range(self.layers)[::-1]:
|
| 298 |
+
res_model = getattr(self, 'res' + str(i))
|
| 299 |
+
up_model = getattr(self, 'up' + str(i))
|
| 300 |
+
jump_model = getattr(self, 'jump' + str(i))
|
| 301 |
+
out = res_model(out, z)
|
| 302 |
+
out = up_model(out)
|
| 303 |
+
out = jump_model(x.pop()) + out
|
| 304 |
+
out_image = self.final(out)
|
| 305 |
+
return out_image
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
class ADAINEncoder(nn.Module):
|
| 309 |
+
def __init__(self, image_nc, pose_nc, ngf, img_f, layers, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 310 |
+
super(ADAINEncoder, self).__init__()
|
| 311 |
+
self.layers = layers
|
| 312 |
+
self.input_layer = nn.Conv2d(image_nc, ngf, kernel_size=7, stride=1, padding=3)
|
| 313 |
+
for i in range(layers):
|
| 314 |
+
in_channels = min(ngf * (2**i), img_f)
|
| 315 |
+
out_channels = min(ngf *(2**(i+1)), img_f)
|
| 316 |
+
model = ADAINEncoderBlock(in_channels, out_channels, pose_nc, nonlinearity, use_spect)
|
| 317 |
+
setattr(self, 'encoder' + str(i), model)
|
| 318 |
+
self.output_nc = out_channels
|
| 319 |
+
|
| 320 |
+
def forward(self, x, z):
|
| 321 |
+
out = self.input_layer(x)
|
| 322 |
+
out_list = [out]
|
| 323 |
+
for i in range(self.layers):
|
| 324 |
+
model = getattr(self, 'encoder' + str(i))
|
| 325 |
+
out = model(out, z)
|
| 326 |
+
out_list.append(out)
|
| 327 |
+
return out_list
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
class ADAINDecoder(nn.Module):
|
| 331 |
+
"""docstring for ADAINDecoder"""
|
| 332 |
+
def __init__(self, pose_nc, ngf, img_f, encoder_layers, decoder_layers, skip_connect=True,
|
| 333 |
+
nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 334 |
+
|
| 335 |
+
super(ADAINDecoder, self).__init__()
|
| 336 |
+
self.encoder_layers = encoder_layers
|
| 337 |
+
self.decoder_layers = decoder_layers
|
| 338 |
+
self.skip_connect = skip_connect
|
| 339 |
+
use_transpose = True
|
| 340 |
+
for i in range(encoder_layers-decoder_layers, encoder_layers)[::-1]:
|
| 341 |
+
in_channels = min(ngf * (2**(i+1)), img_f)
|
| 342 |
+
in_channels = in_channels*2 if i != (encoder_layers-1) and self.skip_connect else in_channels
|
| 343 |
+
out_channels = min(ngf * (2**i), img_f)
|
| 344 |
+
model = ADAINDecoderBlock(in_channels, out_channels, out_channels, pose_nc, use_transpose, nonlinearity, use_spect)
|
| 345 |
+
setattr(self, 'decoder' + str(i), model)
|
| 346 |
+
self.output_nc = out_channels*2 if self.skip_connect else out_channels
|
| 347 |
+
|
| 348 |
+
def forward(self, x, z):
|
| 349 |
+
out = x.pop() if self.skip_connect else x
|
| 350 |
+
for i in range(self.encoder_layers-self.decoder_layers, self.encoder_layers)[::-1]:
|
| 351 |
+
model = getattr(self, 'decoder' + str(i))
|
| 352 |
+
out = model(out, z)
|
| 353 |
+
out = torch.cat([out, x.pop()], 1) if self.skip_connect else out
|
| 354 |
+
return out
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
class ADAINHourglass(nn.Module):
|
| 358 |
+
def __init__(self, image_nc, pose_nc, ngf, img_f, encoder_layers, decoder_layers, nonlinearity, use_spect):
|
| 359 |
+
super(ADAINHourglass, self).__init__()
|
| 360 |
+
self.encoder = ADAINEncoder(image_nc, pose_nc, ngf, img_f, encoder_layers, nonlinearity, use_spect)
|
| 361 |
+
self.decoder = ADAINDecoder(pose_nc, ngf, img_f, encoder_layers, decoder_layers, True, nonlinearity, use_spect)
|
| 362 |
+
self.output_nc = self.decoder.output_nc
|
| 363 |
+
|
| 364 |
+
def forward(self, x, z):
|
| 365 |
+
return self.decoder(self.encoder(x, z), z)
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
class FineADAINLama(nn.Module):
|
| 369 |
+
def __init__(self, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 370 |
+
super(FineADAINLama, self).__init__()
|
| 371 |
+
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
|
| 372 |
+
self.actvn = nonlinearity
|
| 373 |
+
ratio_gin = 0.75
|
| 374 |
+
ratio_gout = 0.75
|
| 375 |
+
self.ffc = FFC(input_nc, input_nc, 3,
|
| 376 |
+
ratio_gin, ratio_gout, 1, 1, 1,
|
| 377 |
+
1, False, False, padding_type='reflect')
|
| 378 |
+
global_channels = int(input_nc * ratio_gout)
|
| 379 |
+
self.bn_l = ADAIN(input_nc - global_channels, feature_nc)
|
| 380 |
+
self.bn_g = ADAIN(global_channels, feature_nc)
|
| 381 |
+
|
| 382 |
+
def forward(self, x, z):
|
| 383 |
+
x_l, x_g = self.ffc(x)
|
| 384 |
+
x_l = self.actvn(self.bn_l(x_l,z))
|
| 385 |
+
x_g = self.actvn(self.bn_g(x_g,z))
|
| 386 |
+
return x_l, x_g
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
class FFCResnetBlock(nn.Module):
|
| 390 |
+
def __init__(self, dim, feature_dim, padding_type='reflect', norm_layer=BatchNorm2d, activation_layer=nn.ReLU, dilation=1,
|
| 391 |
+
spatial_transform_kwargs=None, inline=False, **conv_kwargs):
|
| 392 |
+
super().__init__()
|
| 393 |
+
self.conv1 = FineADAINLama(dim, feature_dim, **conv_kwargs)
|
| 394 |
+
self.conv2 = FineADAINLama(dim, feature_dim, **conv_kwargs)
|
| 395 |
+
self.inline = True
|
| 396 |
+
|
| 397 |
+
def forward(self, x, z):
|
| 398 |
+
if self.inline:
|
| 399 |
+
x_l, x_g = x[:, :-self.conv1.ffc.global_in_num], x[:, -self.conv1.ffc.global_in_num:]
|
| 400 |
+
else:
|
| 401 |
+
x_l, x_g = x if type(x) is tuple else (x, 0)
|
| 402 |
+
|
| 403 |
+
id_l, id_g = x_l, x_g
|
| 404 |
+
x_l, x_g = self.conv1((x_l, x_g), z)
|
| 405 |
+
x_l, x_g = self.conv2((x_l, x_g), z)
|
| 406 |
+
|
| 407 |
+
x_l, x_g = id_l + x_l, id_g + x_g
|
| 408 |
+
out = x_l, x_g
|
| 409 |
+
if self.inline:
|
| 410 |
+
out = torch.cat(out, dim=1)
|
| 411 |
+
return out
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
class FFCADAINResBlocks(nn.Module):
|
| 415 |
+
def __init__(self, num_block, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 416 |
+
super(FFCADAINResBlocks, self).__init__()
|
| 417 |
+
self.num_block = num_block
|
| 418 |
+
for i in range(num_block):
|
| 419 |
+
model = FFCResnetBlock(input_nc, feature_nc, norm_layer, nonlinearity, use_spect)
|
| 420 |
+
setattr(self, 'res'+str(i), model)
|
| 421 |
+
|
| 422 |
+
def forward(self, x, z):
|
| 423 |
+
for i in range(self.num_block):
|
| 424 |
+
model = getattr(self, 'res'+str(i))
|
| 425 |
+
x = model(x, z)
|
| 426 |
+
return x
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
class Jump(nn.Module):
|
| 430 |
+
def __init__(self, input_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
| 431 |
+
super(Jump, self).__init__()
|
| 432 |
+
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
|
| 433 |
+
conv = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect)
|
| 434 |
+
if type(norm_layer) == type(None):
|
| 435 |
+
self.model = nn.Sequential(conv, nonlinearity)
|
| 436 |
+
else:
|
| 437 |
+
self.model = nn.Sequential(conv, norm_layer(input_nc), nonlinearity)
|
| 438 |
+
|
| 439 |
+
def forward(self, x):
|
| 440 |
+
out = self.model(x)
|
| 441 |
+
return out
|
| 442 |
+
|
| 443 |
+
|
| 444 |
+
class FinalBlock2d(nn.Module):
|
| 445 |
+
def __init__(self, input_nc, output_nc, use_spect=False, tanh_or_sigmoid='tanh'):
|
| 446 |
+
super(FinalBlock2d, self).__init__()
|
| 447 |
+
kwargs = {'kernel_size': 7, 'stride': 1, 'padding':3}
|
| 448 |
+
conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
|
| 449 |
+
if tanh_or_sigmoid == 'sigmoid':
|
| 450 |
+
out_nonlinearity = nn.Sigmoid()
|
| 451 |
+
else:
|
| 452 |
+
out_nonlinearity = nn.Tanh()
|
| 453 |
+
self.model = nn.Sequential(conv, out_nonlinearity)
|
| 454 |
+
|
| 455 |
+
def forward(self, x):
|
| 456 |
+
out = self.model(x)
|
| 457 |
+
return out
|
| 458 |
+
|
| 459 |
+
|
| 460 |
+
class ModulatedConv2d(nn.Module):
|
| 461 |
+
def __init__(self,
|
| 462 |
+
in_channels,
|
| 463 |
+
out_channels,
|
| 464 |
+
kernel_size,
|
| 465 |
+
num_style_feat,
|
| 466 |
+
demodulate=True,
|
| 467 |
+
sample_mode=None,
|
| 468 |
+
eps=1e-8):
|
| 469 |
+
super(ModulatedConv2d, self).__init__()
|
| 470 |
+
self.in_channels = in_channels
|
| 471 |
+
self.out_channels = out_channels
|
| 472 |
+
self.kernel_size = kernel_size
|
| 473 |
+
self.demodulate = demodulate
|
| 474 |
+
self.sample_mode = sample_mode
|
| 475 |
+
self.eps = eps
|
| 476 |
+
|
| 477 |
+
# modulation inside each modulated conv
|
| 478 |
+
self.modulation = nn.Linear(num_style_feat, in_channels, bias=True)
|
| 479 |
+
# initialization
|
| 480 |
+
default_init_weights(self.modulation, scale=1, bias_fill=1, a=0, mode='fan_in', nonlinearity='linear')
|
| 481 |
+
|
| 482 |
+
self.weight = nn.Parameter(
|
| 483 |
+
torch.randn(1, out_channels, in_channels, kernel_size, kernel_size) /
|
| 484 |
+
math.sqrt(in_channels * kernel_size**2))
|
| 485 |
+
self.padding = kernel_size // 2
|
| 486 |
+
|
| 487 |
+
def forward(self, x, style):
|
| 488 |
+
b, c, h, w = x.shape
|
| 489 |
+
style = self.modulation(style).view(b, 1, c, 1, 1)
|
| 490 |
+
weight = self.weight * style
|
| 491 |
+
|
| 492 |
+
if self.demodulate:
|
| 493 |
+
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
|
| 494 |
+
weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
|
| 495 |
+
|
| 496 |
+
weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size)
|
| 497 |
+
|
| 498 |
+
# upsample or downsample if necessary
|
| 499 |
+
if self.sample_mode == 'upsample':
|
| 500 |
+
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
|
| 501 |
+
elif self.sample_mode == 'downsample':
|
| 502 |
+
x = F.interpolate(x, scale_factor=0.5, mode='bilinear', align_corners=False)
|
| 503 |
+
|
| 504 |
+
b, c, h, w = x.shape
|
| 505 |
+
x = x.view(1, b * c, h, w)
|
| 506 |
+
out = F.conv2d(x, weight, padding=self.padding, groups=b)
|
| 507 |
+
out = out.view(b, self.out_channels, *out.shape[2:4])
|
| 508 |
+
return out
|
| 509 |
+
|
| 510 |
+
def __repr__(self):
|
| 511 |
+
return (f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, '
|
| 512 |
+
f'kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})')
|
| 513 |
+
|
| 514 |
+
|
| 515 |
+
class StyleConv(nn.Module):
|
| 516 |
+
def __init__(self, in_channels, out_channels, kernel_size, num_style_feat, demodulate=True, sample_mode=None):
|
| 517 |
+
super(StyleConv, self).__init__()
|
| 518 |
+
self.modulated_conv = ModulatedConv2d(
|
| 519 |
+
in_channels, out_channels, kernel_size, num_style_feat, demodulate=demodulate, sample_mode=sample_mode)
|
| 520 |
+
self.weight = nn.Parameter(torch.zeros(1)) # for noise injection
|
| 521 |
+
self.bias = nn.Parameter(torch.zeros(1, out_channels, 1, 1))
|
| 522 |
+
self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
| 523 |
+
|
| 524 |
+
def forward(self, x, style, noise=None):
|
| 525 |
+
# modulate
|
| 526 |
+
out = self.modulated_conv(x, style) * 2**0.5 # for conversion
|
| 527 |
+
# noise injection
|
| 528 |
+
if noise is None:
|
| 529 |
+
b, _, h, w = out.shape
|
| 530 |
+
noise = out.new_empty(b, 1, h, w).normal_()
|
| 531 |
+
out = out + self.weight * noise
|
| 532 |
+
# add bias
|
| 533 |
+
out = out + self.bias
|
| 534 |
+
# activation
|
| 535 |
+
out = self.activate(out)
|
| 536 |
+
return out
|
| 537 |
+
|
| 538 |
+
|
| 539 |
+
class ToRGB(nn.Module):
|
| 540 |
+
def __init__(self, in_channels, num_style_feat, upsample=True):
|
| 541 |
+
super(ToRGB, self).__init__()
|
| 542 |
+
self.upsample = upsample
|
| 543 |
+
self.modulated_conv = ModulatedConv2d(
|
| 544 |
+
in_channels, 3, kernel_size=1, num_style_feat=num_style_feat, demodulate=False, sample_mode=None)
|
| 545 |
+
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
|
| 546 |
+
|
| 547 |
+
def forward(self, x, style, skip=None):
|
| 548 |
+
out = self.modulated_conv(x, style)
|
| 549 |
+
out = out + self.bias
|
| 550 |
+
if skip is not None:
|
| 551 |
+
if self.upsample:
|
| 552 |
+
skip = F.interpolate(skip, scale_factor=2, mode='bilinear', align_corners=False)
|
| 553 |
+
out = out + skip
|
| 554 |
return out
|