diff --git "a/CNNforPneumoniaDetection.ipynb" "b/CNNforPneumoniaDetection.ipynb" new file mode 100644--- /dev/null +++ "b/CNNforPneumoniaDetection.ipynb" @@ -0,0 +1,7636 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "#Importing Libraries & Setup" + ], + "metadata": { + "id": "24b645bQrXOa" + } + }, + { + "cell_type": "markdown", + "source": [ + "**Description**: \n", + "This code snippet prepares the environment and imports the necessary dependencies for a Convolutional Neural Network (CNN)-based Pneumonia Prediction model. It begins by mounting Google Drive in the Colab environment to access datasets. The `archive.zip` file containing the dataset is then extracted to the specified location. Following this, essential libraries like NumPy, Pandas, OpenCV (`cv2`), Matplotlib, Seaborn, and Skimage are imported for data manipulation, visualization, and preprocessing. The Matplotlib style is set to 'ggplot' for a consistent plotting theme." + ], + "metadata": { + "id": "ElvgUd1Tsj33" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "3MUv1LxbMAsW", + "outputId": "ba99dc9a-cd61-4b16-9901-faa62ab6d2e1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mounted at /content/drive\n" + ] + } + ], + "source": [ + "from google.colab import drive\n", + "drive.mount('/content/drive')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "y2_4TZ2FMTtx", + "outputId": "21af6f4d-4b1b-4b1a-dcef-e928f7796927" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1;30;43mStreaming output truncated to the last 5000 lines.\u001b[0m\n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0435-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0435-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0437-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0437-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0437-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0438-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0439-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0439-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0439-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0440-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0441-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0442-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0444-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0445-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0446-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0447-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0448-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0449-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0450-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0451-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0452-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0453-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0453-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0455-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0456-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0457-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0458-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0459-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0460-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0461-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0463-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0464-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0465-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0466-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0467-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0467-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0467-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0469-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0471-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0472-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0473-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0474-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0475-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0476-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0477-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0478-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0479-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0480-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0481-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0482-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0483-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0484-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0485-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0486-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0487-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0488-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0489-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0490-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0491-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0491-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0491-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0492-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0493-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0494-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0495-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0496-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0497-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0497-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0497-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0499-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0499-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0499-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0500-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0501-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0501-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0501-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0502-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0503-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0504-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0505-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0505-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0505-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0506-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0507-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0508-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0509-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0509-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0509-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0510-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0511-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0511-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0511-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0512-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0513-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0514-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0515-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0516-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0517-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0517-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0519-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0519-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0519-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0520-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0521-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0522-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0523-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0523-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0523-0001-0003.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0523-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0524-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0525-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0525-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0525-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0526-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0527-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0528-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0529-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0530-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0531-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0531-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0532-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0533-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0533-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0533-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0534-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0535-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0536-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0537-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0538-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0539-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0539-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0539-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0540-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0541-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0542-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0543-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0543-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0544-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0545-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0545-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0545-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0546-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0547-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0548-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0549-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0549-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0549-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0551-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0551-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0551-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0552-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0553-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0553-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0553-0001-0003.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0553-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0554-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0555-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0555-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0555-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0556-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0557-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0559-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0560-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0561-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0562-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0563-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0564-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0565-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0566-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0568-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0569-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0570-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0571-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0574-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0575-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0577-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0578-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0579-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0580-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0581-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0582-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0583-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0584-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0586-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0588-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0590-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0591-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0592-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0593-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0595-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0596-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0598-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0599-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0600-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0601-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0602-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0604-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0605-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0606-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0607-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0608-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0608-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0608-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0609-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0612-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0612-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0612-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0613-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0614-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0615-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0616-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0617-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0618-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0618-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0618-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0619-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0620-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0620-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0620-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0621-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0622-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0622-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0622-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0623-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0624-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0624-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0625-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0626-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0626-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0627-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0628-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0629-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0629-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0629-0001-0003.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0629-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0630-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0631-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0631-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0631-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0632-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0633-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0634-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0635-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0636-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0637-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0640-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0640-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0640-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0641-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0642-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0643-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0644-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0644-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0644-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0645-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0646-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0647-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0648-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0649-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0650-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0650-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0650-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0651-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0652-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0652-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0654-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0655-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0656-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0656-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0656-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0657-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0658-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0659-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0660-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0660-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0660-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0661-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0662-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0663-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0664-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0665-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0666-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0666-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0666-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0667-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0668-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0669-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0670-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0671-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0672-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0673-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0674-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0675-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0676-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0677-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0678-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0679-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0680-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0681-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0682-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0683-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0684-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0685-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0686-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0687-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0688-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0689-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0691-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0692-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0693-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0694-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0695-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0696-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0697-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0698-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0700-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0701-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0702-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0703-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0704-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0705-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0706-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0707-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0709-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0710-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0711-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0712-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0713-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0714-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0715-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0716-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0717-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0718-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0719-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0721-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0722-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0724-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0727-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0728-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0729-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0730-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0732-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0733-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0734-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0735-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0736-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0737-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0738-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0739-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0740-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0741-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0742-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0746-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0747-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0748-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0750-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0751-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0752-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0753-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0754-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0755-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0757-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0761-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0764-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/IM-0766-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0383-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0384-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0385-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0386-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0388-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0389-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0390-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0391-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0392-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0393-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0394-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0395-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0395-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0395-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0396-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0397-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0399-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0401-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0402-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0403-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0404-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0406-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0407-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0408-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0409-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0410-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0412-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0413-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0414-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0415-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0416-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0416-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0416-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0417-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0418-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0419-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0421-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0423-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0424-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0425-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0427-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0428-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0429-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0433-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0435-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0437-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0439-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0440-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0441-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0443-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0445-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0447-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0448-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0449-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0450-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0451-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0452-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0453-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0454-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0455-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0456-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0458-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0460-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0462-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0463-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0464-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0465-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0466-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0468-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0472-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0473-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0474-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0475-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0476-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0478-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0479-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0480-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0481-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0482-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0485-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0486-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0487-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0488-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0489-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0490-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0491-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0493-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0496-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0497-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0499-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0500-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0501-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0502-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0503-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0506-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0507-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0508-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0509-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0511-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0512-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0513-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0515-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0516-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0517-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0518-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0520-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0521-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0522-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0523-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0525-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0526-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0528-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0529-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0530-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0531-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0533-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0535-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0535-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0536-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0537-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0539-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0540-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0541-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0543-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0545-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0547-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0550-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0551-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0552-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0553-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0554-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0555-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0555-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0555-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0557-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0558-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0559-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0561-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0563-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0564-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0566-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0567-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0568-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0569-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0571-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0572-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0573-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0575-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0576-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0577-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0578-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0579-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0580-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0582-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0583-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0585-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0587-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0587-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0587-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0588-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0589-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0592-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0594-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0595-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0596-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0599-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0600-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0601-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0602-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0603-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0604-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0609-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0611-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0616-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0617-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0618-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0619-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0620-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0621-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0622-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0623-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0626-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0627-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0629-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0630-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0633-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0634-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0635-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0636-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0637-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0640-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0641-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0642-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0643-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0645-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0647-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0648-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0649-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0650-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0651-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0651-0004.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0652-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0653-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0654-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0655-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0657-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0659-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0660-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0661-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0662-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0663-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0664-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0665-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0666-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0667-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0668-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0669-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0671-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0672-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0673-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0675-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0678-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0680-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0682-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0683-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0684-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0686-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0687-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0689-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0690-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0692-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0693-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0694-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0695-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0696-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0698-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0699-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0700-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0702-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0705-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0707-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0718-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0719-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0723-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0725-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0727-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0730-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0736-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0741-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0744-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0746-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0749-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0753-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0757-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0765-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0771-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0772-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0774-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0775-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0776-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0777-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0780-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0781-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0790-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0793-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0796-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0797-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0798-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0799-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0803-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0804-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0806-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0807-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0808-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0809-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0810-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0811-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0812-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0814-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0815-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0816-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0818-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0818-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0819-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0820-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0821-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0822-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0824-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0825-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0826-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0827-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0828-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0829-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0830-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0831-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0832-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0832-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0832-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0833-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0834-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0836-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0837-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0838-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0839-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0840-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0841-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0842-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0843-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0845-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0846-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0847-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0848-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0849-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0851-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0851-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0851-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0852-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0853-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0854-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0855-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0856-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0857-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0858-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0859-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0860-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0862-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0863-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0865-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0866-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0867-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0868-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0869-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0870-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0871-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0872-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0873-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0874-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0875-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0876-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0877-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0879-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0880-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0881-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0882-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0885-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0886-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0887-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0888-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0890-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0892-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0893-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0894-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0895-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0896-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0897-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0898-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0899-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0900-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0903-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0904-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0905-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0906-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0907-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0908-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0909-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0910-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0911-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0912-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0913-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0914-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0915-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0917-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0918-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0919-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0922-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0923-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0924-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0925-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0926-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0927-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0929-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0930-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0931-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0932-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0933-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0934-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0935-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0936-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0937-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0939-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0941-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0942-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0944-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0945-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0946-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0947-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0948-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0949-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0950-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0951-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0952-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0954-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0955-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0956-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0957-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0959-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0960-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0961-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0962-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0965-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0966-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0967-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0969-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0970-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0971-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0971-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0974-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0975-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0976-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0977-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0978-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0979-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0980-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0981-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0983-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0983-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0983-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0986-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0987-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0988-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0989-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0992-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0993-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0994-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0995-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0995-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0995-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0997-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0998-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-0999-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1002-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1004-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1005-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1006-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1008-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1010-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1011-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1014-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1015-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1016-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1017-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1018-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1019-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1020-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1020-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1020-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1022-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1023-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1024-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1025-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1026-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1027-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1028-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1030-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1033-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1035-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1037-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1038-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1039-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1040-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1041-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1043-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1044-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1045-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1046-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1047-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1048-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1049-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1050-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1051-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1052-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1053-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1054-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1055-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1056-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1058-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1059-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1060-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1062-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1064-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1067-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1067-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1073-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1084-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1086-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1088-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1089-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1090-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1091-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1093-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1094-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1094-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1094-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1096-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1096-0001-0003.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1096-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1098-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1100-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1102-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1102-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1102-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1103-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1104-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1105-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1106-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1108-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1109-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1110-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1111-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1112-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1113-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1114-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1116-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1116-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1116-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1117-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1118-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1120-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1122-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1123-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1124-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1125-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1126-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1127-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1128-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1128-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1128-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1130-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1131-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1132-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1134-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1135-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1136-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1138-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1141-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1142-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1142-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1142-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1144-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1145-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1147-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1148-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1149-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1150-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1151-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1152-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1152-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1152-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1153-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1154-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1154-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1154-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1155-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1156-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1157-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1158-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1160-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1161-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1162-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1163-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1164-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1167-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1168-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1169-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1170-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1171-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1173-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1174-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1175-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1176-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1177-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1178-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1179-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1180-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1181-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1182-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1183-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1184-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1185-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1187-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1188-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1189-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1190-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1191-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1192-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1194-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1196-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1197-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1198-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1200-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1201-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1202-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1203-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1204-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1205-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1206-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1209-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1214-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1218-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1219-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1220-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1221-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1222-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1223-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1224-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1225-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1226-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1227-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1228-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1231-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1232-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1234-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1236-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1237-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1240-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1241-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1242-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1243-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1244-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1245-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1247-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1250-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1252-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1253-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1254-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1256-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1257-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1258-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1258-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1258-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1260-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1261-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1262-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1264-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1266-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1266-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1266-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1267-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1269-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1269-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1269-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1270-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1271-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1272-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1273-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1274-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1275-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1276-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1277-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1277-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1277-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1278-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1279-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1280-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1281-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1282-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1285-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1286-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1287-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1288-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1289-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1290-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1291-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1292-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1293-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1294-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1294-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1294-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1295-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1296-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1300-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1301-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1302-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1303-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1304-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1305-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1306-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1307-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1308-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1310-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1311-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1314-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1315-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1316-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1317-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1318-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1319-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1320-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1321-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1322-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1323-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1326-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1327-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1328-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1329-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1330-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1332-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1333-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1334-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1335-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1336-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1337-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1338-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1341-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1342-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1343-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1344-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1345-0001-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1345-0001-0002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1345-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1346-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1347-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1348-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1349-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1350-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1351-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1356-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1357-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1360-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1362-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1365-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1371-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1376-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1379-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1385-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1396-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1400-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1401-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1406-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1412-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1419-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1422-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/NORMAL/NORMAL2-IM-1423-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1000_bacteria_2931.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1000_virus_1681.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1001_bacteria_2932.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1002_bacteria_2933.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1003_bacteria_2934.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1003_virus_1685.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1004_bacteria_2935.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1004_virus_1686.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1005_bacteria_2936.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1005_virus_1688.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1006_bacteria_2937.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1007_bacteria_2938.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1007_virus_1690.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1008_bacteria_2939.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1008_virus_1691.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1009_virus_1694.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person100_virus_184.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1010_bacteria_2941.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1010_virus_1695.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1011_bacteria_2942.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1012_bacteria_2943.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1014_bacteria_2945.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1015_virus_1701.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1015_virus_1702.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1016_bacteria_2947.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1016_virus_1704.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1017_bacteria_2948.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1018_bacteria_2949.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1018_virus_1706.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1019_bacteria_2950.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1019_virus_1707.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1019_virus_1708.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person101_virus_187.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person101_virus_188.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1020_bacteria_2951.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1020_virus_1710.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1021_virus_1711.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1022_bacteria_2953.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1022_virus_1712.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1023_bacteria_2954.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1023_virus_1714.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1024_bacteria_2955.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1024_virus_1716.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1026_bacteria_2957.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1026_virus_1718.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1028_bacteria_2959.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1028_bacteria_2960.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1029_bacteria_2961.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1029_virus_1721.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person102_virus_189.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1030_virus_1722.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1031_bacteria_2963.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1031_bacteria_2964.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1031_virus_1723.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1033_bacteria_2966.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1034_bacteria_2968.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1034_virus_1728.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1035_bacteria_2969.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1035_virus_1729.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1036_bacteria_2970.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1036_virus_1730.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1037_bacteria_2971.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1038_bacteria_2972.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1038_virus_1733.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1039_bacteria_2973.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person103_virus_190.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1040_bacteria_2974.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1040_virus_1735.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1041_bacteria_2975.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1041_virus_1736.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1042_virus_1737.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1043_bacteria_2977.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1043_virus_1738.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1044_bacteria_2978.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1044_virus_1740.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1045_bacteria_2979.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1045_virus_1741.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1046_bacteria_2980.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1046_virus_1742.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1048_bacteria_2982.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1048_virus_1744.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1049_bacteria_2983.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1049_virus_1746.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person104_virus_191.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1050_bacteria_2984.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1051_bacteria_2985.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1051_virus_1750.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1052_bacteria_2986.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1052_virus_1751.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1053_bacteria_2987.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1054_bacteria_2988.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1055_bacteria_2989.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1056_bacteria_2990.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1056_virus_1755.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1057_bacteria_2991.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1057_virus_1756.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1058_bacteria_2992.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1058_virus_1757.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1059_bacteria_2993.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1059_virus_1758.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person105_virus_192.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person105_virus_193.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1060_virus_1760.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1062_bacteria_2996.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1062_virus_1762.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1063_bacteria_2997.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1063_virus_1765.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1065_bacteria_2999.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1065_virus_1768.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1066_bacteria_3000.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1066_virus_1769.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1067_bacteria_3001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1067_virus_1770.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1068_bacteria_3002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1068_virus_1771.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1069_bacteria_3003.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1069_virus_1772.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person106_virus_194.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1070_virus_1773.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1071_bacteria_3005.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1071_virus_1774.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1072_bacteria_3006.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1072_bacteria_3007.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1072_virus_1775.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1073_bacteria_3008.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1073_bacteria_3011.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1073_virus_1776.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1074_bacteria_3012.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1074_bacteria_3014.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1075_bacteria_3015.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1076_bacteria_3016.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1077_bacteria_3017.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1077_virus_1787.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1078_bacteria_3018.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1078_virus_1788.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1079_bacteria_3019.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1079_virus_1789.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person107_virus_197.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1080_bacteria_3020.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1080_virus_1791.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1081_bacteria_3021.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1081_virus_1793.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1082_bacteria_3022.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1082_virus_1794.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1083_bacteria_3023.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1083_virus_1795.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1084_bacteria_3024.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1084_virus_1796.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1085_bacteria_3025.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1085_virus_1797.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1086_bacteria_3026.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1086_virus_1798.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1087_bacteria_3027.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1087_virus_1799.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1088_bacteria_3028.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1088_virus_1800.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1089_bacteria_3029.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1089_virus_1808.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person108_virus_199.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person108_virus_200.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person108_virus_201.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1090_virus_1809.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1091_bacteria_3031.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1091_virus_1810.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1092_bacteria_3032.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1092_virus_1811.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1093_bacteria_3033.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1094_virus_1814.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1095_virus_1815.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1096_bacteria_3037.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1096_virus_1816.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1097_bacteria_3038.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1097_virus_1817.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1098_bacteria_3039.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1098_virus_1818.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1099_bacteria_3040.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1099_virus_1819.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person109_virus_203.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person10_bacteria_43.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1100_bacteria_3041.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1100_virus_1820.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1101_bacteria_3042.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1102_bacteria_3043.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1102_virus_1822.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1103_bacteria_3044.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1103_virus_1825.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1104_virus_1826.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1105_bacteria_3046.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1106_virus_1829.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1107_bacteria_3048.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1107_virus_1831.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1107_virus_1832.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1108_bacteria_3049.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1108_virus_1833.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1109_bacteria_3050.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person110_virus_205.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person110_virus_206.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person110_virus_207.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person110_virus_208.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1110_bacteria_3051.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1110_virus_1835.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1111_bacteria_3052.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1111_virus_1836.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1112_bacteria_3053.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1112_virus_1837.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1113_virus_1838.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1114_bacteria_3055.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1115_bacteria_3056.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1115_virus_1840.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1116_virus_1841.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1118_bacteria_3059.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1119_virus_1844.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person111_virus_209.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person111_virus_210.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person111_virus_212.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1120_virus_1845.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1121_virus_1846.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1122_bacteria_3063.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1122_virus_1847.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1123_virus_1848.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1124_bacteria_3065.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1124_virus_1851.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1125_bacteria_3066.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1125_virus_1852.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1126_virus_1853.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1127_bacteria_3068.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1127_virus_1854.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1128_bacteria_3069.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1129_bacteria_3070.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1129_virus_1857.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person112_virus_213.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1130_bacteria_3072.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1130_virus_1860.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1131_bacteria_3073.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1132_virus_1863.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1133_bacteria_3075.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1133_virus_1865.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1134_bacteria_3076.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1135_bacteria_3077.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1136_bacteria_3078.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1137_virus_1876.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1138_bacteria_3080.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1138_virus_1877.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1138_virus_1879.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1139_bacteria_3081.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1139_bacteria_3082.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1139_virus_1882.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person113_virus_215.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person113_virus_216.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1140_bacteria_3083.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1140_virus_1885.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1141_bacteria_3084.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1141_bacteria_3085.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1141_virus_1886.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1141_virus_1890.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1142_bacteria_3086.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1142_virus_1892.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1143_virus_1896.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1143_virus_1897.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1144_bacteria_3089.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1145_bacteria_3090.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1145_virus_1902.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1145_virus_1905.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1145_virus_1906.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1146_bacteria_3091.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1147_virus_1917.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1147_virus_1919.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1147_virus_1920.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1149_bacteria_3094.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1149_virus_1924.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1149_virus_1925.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person114_virus_217.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1150_bacteria_3095.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1151_virus_1928.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1152_virus_1930.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1153_virus_1932.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1154_bacteria_3099.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1154_virus_1933.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1155_bacteria_3100.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1155_virus_1934.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1156_bacteria_3101.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1156_virus_1935.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1156_virus_1936.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1157_bacteria_3102.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1157_virus_1937.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1158_bacteria_3103.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1158_virus_1938.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1158_virus_1940.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1158_virus_1941.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1158_virus_1942.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1158_virus_1943.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1159_bacteria_3104.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1159_virus_1944.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1159_virus_1945.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1159_virus_1946.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person115_virus_218.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person115_virus_219.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1160_bacteria_3105.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1160_virus_1947.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1161_virus_1948.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1162_bacteria_3107.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1162_virus_1949.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1162_virus_1950.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1163_virus_1951.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1164_bacteria_3110.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1164_virus_1952.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1164_virus_1955.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1164_virus_1956.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1164_virus_1957.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1164_virus_1958.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1165_bacteria_3111.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1165_virus_1959.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1167_bacteria_3113.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1168_bacteria_3114.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1168_bacteria_3115.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1168_virus_1965.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1168_virus_1966.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1169_virus_1968.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person116_virus_221.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1170_bacteria_3117.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1170_virus_1969.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1170_virus_1970.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1171_bacteria_3118.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1172_bacteria_3119.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1172_virus_1977.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1173_virus_1978.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1174_virus_1980.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1175_bacteria_3122.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1175_virus_1981.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1176_bacteria_3123.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1176_bacteria_3124.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1176_virus_1996.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1176_virus_1997.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1176_virus_1998.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1177_bacteria_3125.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1177_virus_1999.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1177_virus_2000.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1177_virus_2001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1177_virus_2002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1178_bacteria_3126.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1178_virus_2004.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1179_bacteria_3127.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1179_virus_2006.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person117_virus_223.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1180_bacteria_3128.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1180_virus_2007.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1180_virus_2008.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1180_virus_2009.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1180_virus_2010.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1180_virus_2011.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1180_virus_2012.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1180_virus_2013.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1180_virus_2014.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1180_virus_2015.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1181_bacteria_3129.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1181_virus_2016.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1182_virus_2017.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1183_bacteria_3131.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1183_virus_2018.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1184_bacteria_3132.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1184_virus_2019.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1185_bacteria_3133.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1186_bacteria_3134.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1186_bacteria_3135.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1186_virus_2021.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1186_virus_2022.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1187_bacteria_3136.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1187_virus_2023.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1188_bacteria_3137.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1188_virus_2024.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person118_virus_224.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1190_virus_2031.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1191_virus_2032.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1192_bacteria_3141.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1193_virus_2034.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1194_bacteria_3143.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1195_bacteria_3144.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1196_bacteria_3146.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1197_bacteria_3147.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1197_virus_2039.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1198_bacteria_3148.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1199_bacteria_3149.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person119_virus_225.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person11_bacteria_45.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1200_virus_2042.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1201_bacteria_3151.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1202_bacteria_3152.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1202_bacteria_3153.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1202_virus_2045.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1203_bacteria_3154.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1203_bacteria_3155.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1204_bacteria_3156.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1205_bacteria_3157.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1206_bacteria_3158.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1206_virus_2051.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1207_bacteria_3159.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1208_bacteria_3160.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1209_bacteria_3161.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person120_virus_226.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1211_bacteria_3163.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1211_virus_2056.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1212_bacteria_3164.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1212_virus_2057.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1213_virus_2058.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1214_bacteria_3166.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1214_virus_2059.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1215_bacteria_3167.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1216_bacteria_3168.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1216_virus_2062.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1217_bacteria_3169.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1217_virus_2063.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1218_bacteria_3171.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1218_virus_2066.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1219_bacteria_3172.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1219_virus_2067.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1220_bacteria_3173.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1220_bacteria_3174.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1220_virus_2068.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1222_bacteria_3177.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1222_virus_2071.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1223_bacteria_3178.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1223_virus_2073.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1224_virus_2074.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1225_bacteria_3180.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1225_virus_2076.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1226_virus_2077.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1227_bacteria_3182.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1227_virus_2078.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1228_bacteria_3183.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1228_virus_2079.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1229_virus_2080.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person122_virus_229.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1230_bacteria_3185.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1230_virus_2081.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1231_bacteria_3186.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1231_virus_2088.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1232_virus_2089.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1233_bacteria_3188.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1233_virus_2090.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1234_bacteria_3189.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1234_bacteria_3190.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1234_virus_2093.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1235_bacteria_3191.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1235_virus_2095.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1236_bacteria_3192.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1236_virus_2096.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1237_bacteria_3193.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1237_virus_2097.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1238_bacteria_3194.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1238_virus_2098.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1239_bacteria_3195.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1239_virus_2099.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person123_virus_230.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1240_bacteria_3196.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1241_bacteria_3197.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1241_virus_2106.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1242_bacteria_3198.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1242_virus_2108.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1242_virus_2109.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1243_bacteria_3199.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1243_virus_2110.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1244_bacteria_3200.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1244_virus_2111.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1246_bacteria_3202.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1247_bacteria_3203.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1247_virus_2115.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1248_bacteria_3204.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1248_virus_2117.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1249_bacteria_3205.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1249_virus_2118.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person124_virus_231.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person124_virus_233.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person124_virus_234.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person124_virus_236.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person124_virus_237.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person124_virus_238.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person124_virus_239.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person124_virus_240.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person124_virus_242.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person124_virus_244.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person124_virus_245.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person124_virus_246.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person124_virus_247.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person124_virus_249.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person124_virus_250.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person124_virus_251.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1250_bacteria_3207.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1251_bacteria_3208.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1252_bacteria_3209.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1252_virus_2124.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1253_bacteria_3211.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1253_virus_2129.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1254_virus_2130.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1255_virus_2132.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1256_bacteria_3214.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1257_bacteria_3215.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1258_bacteria_3216.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1258_virus_2138.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1259_bacteria_3217.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1259_virus_2139.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person125_virus_254.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1260_bacteria_3218.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1260_virus_2140.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1261_bacteria_3219.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1261_virus_2145.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1261_virus_2147.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1261_virus_2148.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1262_bacteria_3220.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1263_bacteria_3221.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1264_bacteria_3222.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1264_virus_2155.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1265_bacteria_3223.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1265_virus_2156.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1266_bacteria_3224.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1266_bacteria_3225.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1266_virus_2158.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1267_bacteria_3226.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1267_virus_2160.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1268_bacteria_3227.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1268_bacteria_3228.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1268_virus_2161.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1269_bacteria_3229.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1269_virus_2162.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person126_virus_255.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1270_bacteria_3230.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1270_virus_2163.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1271_bacteria_3231.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1271_virus_2164.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1272_bacteria_3232.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1272_virus_2190.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1273_bacteria_3233.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1273_bacteria_3234.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1273_virus_2191.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1274_bacteria_3235.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1274_bacteria_3236.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1274_virus_2193.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1275_bacteria_3237.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1276_bacteria_3239.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1276_virus_2198.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1277_bacteria_3240.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1278_virus_2201.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1279_bacteria_3242.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1280_bacteria_3243.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1281_bacteria_3244.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1281_virus_2204.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1282_bacteria_3245.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1283_bacteria_3246.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1283_virus_2206.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1284_bacteria_3247.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1284_virus_2207.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1285_virus_2208.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1286_bacteria_3249.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1286_virus_2209.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1287_bacteria_3250.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1287_virus_2210.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1288_bacteria_3251.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1288_virus_2211.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1289_bacteria_3252.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person128_virus_261.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1290_bacteria_3253.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1290_virus_2215.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1290_virus_2216.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1291_virus_2217.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1292_bacteria_3255.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1292_virus_2218.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1293_virus_2219.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1294_bacteria_3257.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1294_virus_2221.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1294_virus_2222.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1295_bacteria_3258.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1295_virus_2223.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1296_virus_2224.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1297_bacteria_3260.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1298_bacteria_3261.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1298_virus_2226.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1298_virus_2228.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person12_bacteria_46.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person12_bacteria_47.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person12_bacteria_48.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1300_bacteria_3264.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1300_virus_2240.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1301_virus_2241.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1302_bacteria_3266.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1303_bacteria_3267.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1303_virus_2243.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1304_bacteria_3269.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1305_bacteria_3271.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1306_bacteria_3272.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1306_bacteria_3274.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1306_bacteria_3275.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1306_bacteria_3276.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1306_bacteria_3277.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1306_virus_2249.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1307_bacteria_3278.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1307_virus_2251.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1308_bacteria_3280.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1308_bacteria_3283.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1308_bacteria_3285.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1308_bacteria_3286.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1308_bacteria_3288.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1308_bacteria_3290.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1308_bacteria_3292.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1308_virus_2252.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1308_virus_2253.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1309_bacteria_3294.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1309_virus_2254.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person130_virus_263.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1310_bacteria_3295.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1310_bacteria_3297.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1310_bacteria_3300.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1310_bacteria_3301.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1310_bacteria_3302.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1310_bacteria_3304.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1310_virus_2255.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1311_bacteria_3312.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1311_virus_2257.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1311_virus_2259.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1312_bacteria_3313.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1312_bacteria_3314.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1312_bacteria_3316.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1312_bacteria_3317.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1312_bacteria_3318.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1312_bacteria_3319.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1312_virus_2261.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1313_bacteria_3320.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1313_virus_2264.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1314_virus_2266.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1314_virus_2268.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1314_virus_2269.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1315_bacteria_3322.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1315_virus_2270.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1316_bacteria_3326.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1316_virus_2271.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1317_bacteria_3332.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1317_virus_2273.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1318_bacteria_3334.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1318_bacteria_3335.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1318_virus_2274.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1319_virus_2276.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person131_virus_265.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1320_bacteria_3339.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1320_bacteria_3340.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1320_bacteria_3342.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1320_bacteria_3344.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1320_bacteria_3345.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1320_bacteria_3346.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1320_bacteria_3347.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1320_bacteria_3348.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1320_bacteria_3350.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1320_bacteria_3351.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1320_bacteria_3352.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1320_bacteria_3353.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1320_bacteria_3355.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1320_virus_2277.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1321_bacteria_3358.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1321_bacteria_3359.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1321_virus_2279.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1322_bacteria_3360.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1323_bacteria_3361.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1323_bacteria_3362.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1323_bacteria_3363.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1323_virus_2282.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1323_virus_2283.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1324_virus_2284.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1324_virus_2285.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1325_bacteria_3366.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1325_virus_2287.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1326_bacteria_3372.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1327_bacteria_3373.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1327_bacteria_3374.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1328_bacteria_3376.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1328_virus_2293.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1328_virus_2294.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1328_virus_2295.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1329_bacteria_3377.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person132_virus_266.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1331_bacteria_3380.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1331_virus_2299.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1332_virus_2300.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1333_bacteria_3383.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1333_bacteria_3384.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1333_bacteria_3385.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1333_bacteria_3386.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1333_virus_2301.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1336_virus_2306.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1337_virus_2307.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1338_bacteria_3394.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1338_bacteria_3395.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1338_bacteria_3397.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1338_virus_2308.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1339_bacteria_3399.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1339_bacteria_3402.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person133_virus_267.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1340_bacteria_3405.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1340_virus_2311.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1340_virus_2312.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1341_bacteria_3406.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1341_virus_2313.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1342_bacteria_3407.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1342_virus_2315.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1343_bacteria_3409.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1343_bacteria_3411.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1343_bacteria_3413.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1343_bacteria_3414.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1343_bacteria_3415.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1343_bacteria_3416.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1343_bacteria_3417.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1343_bacteria_3418.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1343_bacteria_3419.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1343_virus_2316.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1343_virus_2317.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1344_bacteria_3421.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1344_virus_2319.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1344_virus_2320.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1345_bacteria_3422.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1345_bacteria_3424.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1345_bacteria_3425.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1345_bacteria_3426.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1345_bacteria_3427.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1345_bacteria_3428.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1345_virus_2321.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1346_bacteria_3430.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1346_virus_2322.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1347_virus_2323.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1348_virus_2324.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1348_virus_2326.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1349_bacteria_3434.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1349_bacteria_3436.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1349_bacteria_3437.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1349_bacteria_3438.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1349_bacteria_3439.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person134_virus_268.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1350_virus_2329.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1351_bacteria_3441.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1351_virus_2330.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1352_bacteria_3442.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1352_bacteria_3443.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1352_bacteria_3444.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1352_bacteria_3445.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1353_bacteria_3446.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1353_virus_2333.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1354_bacteria_3448.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1355_bacteria_3449.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1355_bacteria_3452.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1355_virus_2336.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1356_virus_2337.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1357_virus_2338.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1358_bacteria_3463.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1358_bacteria_3465.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1358_virus_2339.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1359_virus_2340.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person135_virus_270.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person135_virus_271.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1360_virus_2341.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1361_bacteria_3476.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1361_bacteria_3477.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1361_virus_2342.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1361_virus_2344.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1362_virus_2345.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1363_bacteria_3483.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1363_bacteria_3484.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1363_virus_2346.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1365_bacteria_3489.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1365_virus_2348.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1366_bacteria_3490.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1366_virus_2349.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1367_virus_2351.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1368_virus_2352.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1368_virus_2353.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1368_virus_2354.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1369_virus_2355.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1369_virus_2356.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1371_virus_2361.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1371_virus_2362.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1372_bacteria_3498.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1372_bacteria_3499.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1372_bacteria_3500.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1372_bacteria_3501.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1372_bacteria_3502.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1372_bacteria_3503.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1374_bacteria_3506.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1374_bacteria_3507.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1374_virus_2365.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1375_bacteria_3509.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1375_bacteria_3510.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1375_virus_2366.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1376_bacteria_3511.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1376_virus_2367.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1377_bacteria_3512.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1377_virus_2369.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1378_bacteria_3513.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1379_bacteria_3514.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person137_virus_281.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1380_bacteria_3515.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1381_bacteria_3516.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1381_bacteria_3517.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1381_virus_2375.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1383_bacteria_3521.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1383_virus_2377.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1384_bacteria_3522.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1385_bacteria_3524.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1385_virus_2380.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1387_virus_2382.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1388_bacteria_3529.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1389_bacteria_3531.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1389_virus_2387.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person138_virus_282.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1390_bacteria_3534.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1390_bacteria_3535.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1391_bacteria_3536.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1391_bacteria_3537.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1392_bacteria_3538.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1393_virus_2396.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1394_virus_2397.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1395_bacteria_3544.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1395_virus_2398.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1396_bacteria_3545.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1396_virus_2399.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1397_virus_2400.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1398_bacteria_3548.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1398_virus_2401.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1399_bacteria_3549.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1399_virus_2402.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person139_virus_283.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person13_bacteria_49.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person13_bacteria_50.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1400_bacteria_3550.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1400_bacteria_3551.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1400_bacteria_3553.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1400_bacteria_3554.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1401_bacteria_3555.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1402_virus_2405.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1403_bacteria_3557.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1403_bacteria_3559.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1403_virus_2406.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1404_bacteria_3561.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1405_bacteria_3564.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1405_bacteria_3566.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1405_bacteria_3567.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1405_bacteria_3571.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1405_bacteria_3573.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1405_virus_2408.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1406_bacteria_3574.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1406_bacteria_3575.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1406_virus_2409.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1407_virus_2410.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1408_bacteria_3579.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1408_bacteria_3581.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1408_virus_2411.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1409_bacteria_3583.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1409_bacteria_3585.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1409_virus_2413.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person140_virus_284.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person140_virus_285.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1411_bacteria_3591.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1411_bacteria_3593.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1411_bacteria_3598.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1411_bacteria_3599.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1411_bacteria_3601.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1411_bacteria_3602.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1411_bacteria_3603.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1411_bacteria_3604.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1411_bacteria_3607.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1411_bacteria_3609.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1411_bacteria_3610.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1411_virus_2415.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1412_bacteria_3612.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1413_bacteria_3613.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1413_bacteria_3615.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1413_bacteria_3617.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1413_bacteria_3620.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1413_virus_2422.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1413_virus_2423.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1414_bacteria_3627.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1414_bacteria_3628.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1414_virus_2424.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1415_bacteria_3629.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1415_virus_2425.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1416_virus_2427.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1417_bacteria_3635.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1418_bacteria_3636.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1418_bacteria_3637.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1418_bacteria_3638.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1418_bacteria_3639.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1418_bacteria_3643.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1418_virus_2429.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1419_bacteria_3645.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person141_virus_287.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1420_bacteria_3647.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1420_virus_2431.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1422_bacteria_3649.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1422_virus_2434.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1423_bacteria_3650.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1424_bacteria_3651.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1424_virus_2437.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1425_virus_2438.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1426_bacteria_3667.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1426_bacteria_3668.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1426_virus_2439.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1427_virus_2441.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1428_virus_2442.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1429_bacteria_3688.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1429_bacteria_3690.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1429_bacteria_3691.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1429_virus_2443.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person142_virus_288.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1430_bacteria_3693.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1430_bacteria_3694.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1430_bacteria_3695.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1430_bacteria_3696.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1430_bacteria_3697.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1430_virus_2444.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1431_bacteria_3698.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1432_bacteria_3699.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1433_bacteria_3701.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1433_bacteria_3704.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1433_bacteria_3705.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1433_virus_2447.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1436_bacteria_3711.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1436_bacteria_3712.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1438_bacteria_3715.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1438_bacteria_3718.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1438_bacteria_3721.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1438_virus_2452.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1439_bacteria_3722.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1439_virus_2453.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person143_virus_289.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1440_bacteria_3723.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1441_bacteria_3724.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1441_virus_2454.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1441_virus_2457.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1442_bacteria_3726.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1444_bacteria_3732.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1445_bacteria_3734.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1445_bacteria_3735.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1446_bacteria_3737.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1446_bacteria_3739.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1446_bacteria_3740.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1447_bacteria_3741.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1448_virus_2468.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1449_bacteria_3743.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1449_bacteria_3745.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1449_bacteria_3746.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1449_bacteria_3747.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1449_virus_2474.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1449_virus_2476.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1450_bacteria_3753.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1451_virus_2479.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1451_virus_2480.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1451_virus_2482.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1452_virus_2484.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1453_bacteria_3770.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1453_bacteria_3771.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1453_bacteria_3772.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1453_virus_2485.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1454_bacteria_3774.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1454_bacteria_3778.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1454_bacteria_3779.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1454_bacteria_3780.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1454_bacteria_3781.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1454_bacteria_3782.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1454_virus_2486.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1455_bacteria_3784.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1455_virus_2487.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1455_virus_2488.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1455_virus_2489.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1455_virus_2490.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1455_virus_2492.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1455_virus_2496.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1457_virus_2498.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1458_virus_2501.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1458_virus_2502.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1458_virus_2503.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1459_bacteria_3796.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1459_bacteria_3797.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1459_virus_2506.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person145_virus_294.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person145_virus_295.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1460_bacteria_3801.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1460_bacteria_3805.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1460_virus_2507.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1460_virus_2509.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1461_virus_2510.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1462_virus_2512.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1463_bacteria_3808.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1463_bacteria_3809.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1463_bacteria_3811.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1463_virus_2516.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1465_virus_2530.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1465_virus_2531.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1465_virus_2532.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1465_virus_2537.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1466_virus_2541.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1466_virus_2542.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1466_virus_2543.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1467_virus_2544.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1468_bacteria_3822.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1468_virus_2545.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1468_virus_2546.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1469_bacteria_3824.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1469_bacteria_3827.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1469_virus_2547.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person146_virus_296.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1470_bacteria_3829.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1470_bacteria_3830.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1471_bacteria_3831.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1471_virus_2549.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1472_bacteria_3833.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1472_bacteria_3834.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1472_virus_2550.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1473_bacteria_3836.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1473_virus_2551.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1473_virus_2553.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1474_bacteria_3837.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1474_virus_2556.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1474_virus_2557.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1475_virus_2558.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1476_bacteria_3842.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1476_bacteria_3843.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1476_virus_2560.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1477_virus_2561.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1478_bacteria_3848.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person147_virus_297.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1480_bacteria_3858.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1480_bacteria_3859.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1480_virus_2566.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1481_bacteria_3862.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1481_bacteria_3863.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1481_bacteria_3864.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1481_bacteria_3865.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1481_bacteria_3866.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1481_bacteria_3867.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1481_bacteria_3868.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1481_virus_2567.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1482_bacteria_3870.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1482_bacteria_3874.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1482_virus_2569.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1482_virus_2570.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1482_virus_2571.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1482_virus_2572.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1482_virus_2573.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1483_bacteria_3876.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1483_virus_2574.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1484_bacteria_3878.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1484_virus_2576.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1484_virus_2577.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1486_bacteria_3881.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1486_bacteria_3883.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1486_bacteria_3884.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1486_bacteria_3885.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1486_virus_2580.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1488_bacteria_3887.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1488_virus_2585.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1488_virus_2587.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1488_virus_2589.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1488_virus_2592.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1488_virus_2593.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1489_bacteria_3889.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1489_virus_2594.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person148_virus_298.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1490_bacteria_3891.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1490_virus_2596.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1491_bacteria_3892.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1491_bacteria_3893.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1491_virus_2597.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1492_bacteria_3894.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1492_virus_2599.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1493_bacteria_3895.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1493_bacteria_3896.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1493_bacteria_3897.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1493_bacteria_3898.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1493_bacteria_3899.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1494_bacteria_3901.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1494_virus_2601.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1495_virus_2603.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1496_bacteria_3905.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1496_bacteria_3906.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1496_bacteria_3907.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1496_bacteria_3908.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1496_bacteria_3909.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1496_bacteria_3910.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1496_bacteria_3911.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1496_virus_2605.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1496_virus_2606.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1497_bacteria_3912.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1497_virus_2607.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1499_bacteria_3915.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1499_virus_2609.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person149_virus_299.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person14_bacteria_51.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1500_bacteria_3916.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1500_virus_2610.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1501_virus_2611.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1502_bacteria_3922.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1502_bacteria_3923.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1502_bacteria_3924.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1502_bacteria_3925.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1502_bacteria_3927.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1502_bacteria_3928.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1502_bacteria_3929.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1502_virus_2612.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1503_virus_2613.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1504_bacteria_3931.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1504_virus_2614.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1505_virus_2615.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1506_bacteria_3933.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1506_virus_2616.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1507_bacteria_3935.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1507_bacteria_3942.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1507_bacteria_3943.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1507_bacteria_3944.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1507_bacteria_3945.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1507_bacteria_3946.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1507_bacteria_3947.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1507_bacteria_3948.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1508_bacteria_3949.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1509_bacteria_3951.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1509_virus_2621.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1510_virus_2628.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1510_virus_2629.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1511_bacteria_3955.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1512_bacteria_3958.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1512_virus_2631.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1513_bacteria_3962.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1513_virus_2632.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1514_bacteria_3964.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1514_virus_2633.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1516_virus_2643.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1517_bacteria_3968.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1517_virus_2644.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1518_bacteria_3969.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1518_virus_2645.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1519_bacteria_3970.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1519_virus_2646.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person151_virus_301.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person151_virus_302.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1520_bacteria_3971.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1520_virus_2647.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1521_virus_2649.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1522_bacteria_3977.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1522_virus_2651.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1523_bacteria_3979.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1523_bacteria_3980.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1524_bacteria_3983.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1524_bacteria_3984.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1524_virus_2658.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1525_bacteria_3985.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1525_virus_2659.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1526_bacteria_3986.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1526_virus_2660.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1527_bacteria_3988.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1527_bacteria_3989.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1527_bacteria_3990.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1527_virus_2661.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1528_bacteria_3991.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1528_bacteria_3996.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1528_virus_2662.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1529_virus_2663.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person152_virus_303.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1530_bacteria_4000.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1530_virus_2664.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1531_bacteria_4003.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1531_virus_2666.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1532_virus_2667.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1534_virus_2670.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1535_bacteria_4015.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1535_bacteria_4016.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1535_bacteria_4017.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1535_virus_2672.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1536_bacteria_4018.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1536_virus_2673.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1537_bacteria_4019.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1537_bacteria_4020.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1537_virus_2674.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1538_bacteria_4021.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1539_bacteria_4022.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1539_virus_2678.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1539_virus_2679.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person153_virus_304.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1540_bacteria_4023.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1540_virus_2680.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1541_virus_2681.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1542_bacteria_4029.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1542_virus_2683.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1543_virus_2684.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1544_bacteria_4033.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1544_bacteria_4035.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1544_bacteria_4037.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1544_bacteria_4038.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1544_virus_2685.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1545_bacteria_4041.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1545_bacteria_4042.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1546_bacteria_4044.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1546_bacteria_4045.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1546_virus_2687.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1547_virus_2688.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1548_bacteria_4048.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1548_virus_2689.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1549_bacteria_4050.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1549_virus_2690.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person154_virus_305.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person154_virus_306.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1550_bacteria_4051.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1550_virus_2691.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1551_bacteria_4053.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1551_bacteria_4054.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1551_virus_2692.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1552_bacteria_4055.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1554_bacteria_4057.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1554_virus_2696.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1555_bacteria_4058.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1555_bacteria_4059.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1555_bacteria_4060.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1556_bacteria_4061.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1556_bacteria_4062.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1556_virus_2699.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1557_bacteria_4063.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1557_bacteria_4065.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1558_bacteria_4066.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1559_bacteria_4067.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person155_virus_307.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1561_bacteria_4077.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1562_bacteria_4078.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1562_bacteria_4081.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1562_bacteria_4087.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1562_bacteria_4089.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1563_bacteria_4092.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1564_bacteria_4094.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1564_virus_2719.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1565_bacteria_4095.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1566_bacteria_4099.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1567_bacteria_4100.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1567_virus_2722.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1568_virus_2723.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person156_virus_308.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1571_bacteria_4108.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1571_bacteria_4110.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1571_virus_2728.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1574_bacteria_4118.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1575_bacteria_4119.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1576_bacteria_4120.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1576_bacteria_4121.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1576_bacteria_4122.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1576_bacteria_4124.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1576_bacteria_4126.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1576_bacteria_4127.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1576_bacteria_4128.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1576_bacteria_4129.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1576_virus_2734.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1577_virus_2735.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1579_bacteria_4133.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person157_virus_311.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1580_virus_2739.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1581_bacteria_4135.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1581_virus_2741.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1582_bacteria_4136.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1582_bacteria_4137.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1582_bacteria_4140.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1582_bacteria_4142.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1582_bacteria_4143.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1583_bacteria_4144.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1584_bacteria_4146.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1584_bacteria_4148.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1585_bacteria_4149.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1585_bacteria_4151.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1585_bacteria_4155.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1588_virus_2762.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1589_bacteria_4171.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1589_bacteria_4172.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1589_virus_2763.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person158_virus_312.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1590_bacteria_4174.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1590_bacteria_4175.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1590_bacteria_4176.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1590_virus_2764.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1591_bacteria_4177.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1591_virus_2765.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1592_bacteria_4178.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1592_virus_2766.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1593_virus_2767.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1594_bacteria_4182.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1594_virus_2768.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1595_bacteria_4183.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1595_virus_2771.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1596_bacteria_4184.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1597_bacteria_4187.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1597_bacteria_4188.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1597_bacteria_4189.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1597_bacteria_4190.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1597_bacteria_4191.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1597_bacteria_4192.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1597_bacteria_4193.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1597_bacteria_4194.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1598_bacteria_4195.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1598_bacteria_4197.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1598_bacteria_4198.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1599_bacteria_4200.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1599_bacteria_4201.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1599_virus_2775.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1599_virus_2776.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person15_bacteria_52.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1600_bacteria_4202.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1600_virus_2777.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1601_bacteria_4209.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1601_bacteria_4212.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1602_bacteria_4218.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1602_virus_2780.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1603_virus_2781.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1604_virus_2782.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1605_bacteria_4226.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1607_bacteria_4232.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1607_virus_2785.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1608_bacteria_4235.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1609_bacteria_4236.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1609_bacteria_4237.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1609_bacteria_4239.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1609_virus_2790.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1609_virus_2791.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person160_virus_316.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1610_bacteria_4240.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1611_bacteria_4241.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1613_bacteria_4247.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1614_bacteria_4248.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1615_bacteria_4249.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1616_bacteria_4251.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1617_bacteria_4254.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1617_bacteria_4255.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1617_bacteria_4256.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1618_bacteria_4258.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1619_bacteria_4261.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1619_bacteria_4262.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1619_bacteria_4266.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1619_bacteria_4267.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1619_bacteria_4268.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1619_bacteria_4269.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1619_bacteria_4270.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1619_bacteria_4271.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person161_virus_317.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1620_bacteria_4272.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1625_bacteria_4290.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1626_bacteria_4291.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1628_bacteria_4293.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1628_bacteria_4294.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1628_bacteria_4295.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1628_bacteria_4296.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1628_bacteria_4297.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1628_bacteria_4298.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1629_bacteria_4299.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person162_virus_319.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person162_virus_320.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person162_virus_321.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person162_virus_322.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1630_bacteria_4303.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1630_bacteria_4304.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1634_bacteria_4326.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1634_bacteria_4331.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1634_bacteria_4334.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1635_bacteria_4335.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1636_bacteria_4337.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1636_bacteria_4338.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1637_bacteria_4339.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1638_bacteria_4340.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1638_bacteria_4341.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1638_bacteria_4342.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1639_bacteria_4343.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1639_bacteria_4344.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1639_bacteria_4345.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1639_bacteria_4347.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1640_bacteria_4348.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1641_bacteria_4350.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1642_bacteria_4352.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1642_bacteria_4353.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1643_bacteria_4354.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1644_bacteria_4356.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1644_bacteria_4357.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1644_bacteria_4358.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1644_bacteria_4360.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1644_bacteria_4361.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1644_bacteria_4362.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1645_bacteria_4363.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1646_bacteria_4368.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1647_bacteria_4372.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1648_bacteria_4373.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1648_bacteria_4375.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1648_bacteria_4376.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1649_bacteria_4377.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1649_bacteria_4378.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1649_bacteria_4379.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1651_bacteria_4381.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1652_bacteria_4383.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1657_bacteria_4398.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1657_bacteria_4399.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1657_bacteria_4400.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1658_bacteria_4402.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1660_bacteria_4404.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1661_bacteria_4406.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1663_bacteria_4411.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1663_bacteria_4412.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1665_bacteria_4415.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1666_bacteria_4416.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1667_bacteria_4417.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1667_bacteria_4418.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1668_bacteria_4420.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1668_bacteria_4421.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1669_bacteria_4422.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1669_bacteria_4423.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1669_bacteria_4424.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1670_bacteria_4425.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1670_bacteria_4426.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1670_bacteria_4427.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1670_bacteria_4428.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1670_bacteria_4429.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1670_bacteria_4430.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1670_bacteria_4431.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1671_bacteria_4432.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1673_bacteria_4434.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1674_bacteria_4437.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1676_bacteria_4441.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1677_bacteria_4443.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1677_bacteria_4444.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1678_bacteria_4446.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1679_bacteria_4448.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1679_bacteria_4449.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1679_bacteria_4450.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1679_bacteria_4452.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1679_bacteria_4453.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1680_bacteria_4455.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1682_bacteria_4459.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1683_bacteria_4460.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1684_bacteria_4461.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1684_bacteria_4462.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1684_bacteria_4463.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1685_bacteria_4465.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1686_bacteria_4466.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1687_bacteria_4468.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1689_bacteria_4472.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1689_bacteria_4473.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1689_bacteria_4474.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1690_bacteria_4475.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1691_bacteria_4479.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1691_bacteria_4481.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1693_bacteria_4485.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1695_bacteria_4492.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1696_bacteria_4495.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1697_bacteria_4496.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1698_bacteria_4497.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1699_bacteria_4498.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person16_bacteria_53.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person16_bacteria_54.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person16_bacteria_55.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1700_bacteria_4500.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1700_bacteria_4502.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1701_bacteria_4504.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1702_bacteria_4506.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1702_bacteria_4508.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1702_bacteria_4509.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1702_bacteria_4510.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1702_bacteria_4511.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1705_bacteria_4515.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1706_bacteria_4516.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1707_bacteria_4520.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1708_bacteria_4521.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1709_bacteria_4522.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1709_bacteria_4523.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1709_bacteria_4524.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1710_bacteria_4525.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1710_bacteria_4526.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1711_bacteria_4527.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1712_bacteria_4529.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1713_bacteria_4530.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1715_bacteria_4532.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1716_bacteria_4533.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1717_bacteria_4534.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1717_bacteria_4536.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1718_bacteria_4538.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1718_bacteria_4540.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1719_bacteria_4541.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1719_bacteria_4542.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1719_bacteria_4544.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1720_bacteria_4545.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1721_bacteria_4546.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1722_bacteria_4547.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1723_bacteria_4548.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1724_bacteria_4549.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1725_bacteria_4550.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1725_bacteria_4551.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1726_bacteria_4552.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1728_bacteria_4555.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1728_bacteria_4556.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1729_bacteria_4557.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1730_bacteria_4558.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1730_bacteria_4559.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1731_bacteria_4563.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1732_bacteria_4564.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1733_bacteria_4566.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1735_bacteria_4570.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1737_bacteria_4573.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1739_bacteria_4576.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1740_bacteria_4579.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1744_bacteria_4583.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1745_bacteria_4584.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1746_bacteria_4585.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1748_bacteria_4588.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1749_bacteria_4590.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1751_bacteria_4592.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1753_bacteria_4594.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1756_bacteria_4598.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1757_bacteria_4599.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1758_bacteria_4600.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1760_bacteria_4602.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1761_bacteria_4603.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1763_bacteria_4606.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1764_bacteria_4607.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1765_bacteria_4608.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1770_bacteria_4613.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1770_bacteria_4614.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1771_bacteria_4615.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1777_bacteria_4622.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1779_bacteria_4626.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1784_bacteria_4631.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1787_bacteria_4634.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1790_bacteria_4638.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1796_bacteria_4644.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1799_bacteria_4647.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person17_bacteria_56.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1803_bacteria_4651.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1803_bacteria_4652.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1810_bacteria_4664.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1812_bacteria_4667.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1814_bacteria_4669.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1816_bacteria_4673.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1816_bacteria_4674.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1817_bacteria_4675.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1818_bacteria_4676.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1819_bacteria_4677.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1823_bacteria_4682.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1830_bacteria_4693.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1835_bacteria_4699.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1838_bacteria_4703.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1839_bacteria_4705.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1841_bacteria_4708.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1843_bacteria_4710.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1847_bacteria_4716.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1848_bacteria_4719.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1850_bacteria_4721.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1851_bacteria_4722.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1852_bacteria_4724.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1855_bacteria_4727.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1857_bacteria_4729.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1858_bacteria_4730.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1859_bacteria_4731.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1860_bacteria_4732.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1863_bacteria_4735.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1864_bacteria_4736.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1865_bacteria_4737.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1865_bacteria_4739.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1866_bacteria_4740.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1867_bacteria_4741.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1868_bacteria_4743.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1869_bacteria_4745.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1872_bacteria_4750.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1872_bacteria_4751.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1875_bacteria_4756.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1876_bacteria_4760.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1877_bacteria_4761.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1879_bacteria_4764.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1880_bacteria_4765.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1881_bacteria_4767.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1883_bacteria_4769.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1884_bacteria_4771.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1885_bacteria_4772.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1886_bacteria_4773.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1888_bacteria_4775.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1893_bacteria_4781.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1896_bacteria_4788.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1897_bacteria_4789.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person18_bacteria_57.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1901_bacteria_4795.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1903_bacteria_4797.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1904_bacteria_4798.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1905_bacteria_4801.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1906_bacteria_4803.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1907_bacteria_4806.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1908_bacteria_4811.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1910_bacteria_4814.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1911_bacteria_4815.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1912_bacteria_4816.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1912_bacteria_4817.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1916_bacteria_4821.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1917_bacteria_4823.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1918_bacteria_4825.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1921_bacteria_4828.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1922_bacteria_4830.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1923_bacteria_4831.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1924_bacteria_4832.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1924_bacteria_4833.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1926_bacteria_4835.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1927_bacteria_4836.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1927_bacteria_4837.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1929_bacteria_4839.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1930_bacteria_4841.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1931_bacteria_4842.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1932_bacteria_4843.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1933_bacteria_4844.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1934_bacteria_4846.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1935_bacteria_4847.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1935_bacteria_4848.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1935_bacteria_4849.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1935_bacteria_4850.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1936_bacteria_4852.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1937_bacteria_4853.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1938_bacteria_4854.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1940_bacteria_4859.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1940_bacteria_4861.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1940_bacteria_4862.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1941_bacteria_4863.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1942_bacteria_4865.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1943_bacteria_4868.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1944_bacteria_4869.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1945_bacteria_4872.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person19_bacteria_58.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person19_bacteria_59.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person19_bacteria_60.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person19_bacteria_61.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person19_bacteria_62.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person19_bacteria_63.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1_bacteria_1.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person1_bacteria_2.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person20_bacteria_64.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person20_bacteria_66.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person20_bacteria_67.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person20_bacteria_69.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person20_bacteria_70.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person21_bacteria_72.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person21_bacteria_73.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person22_bacteria_74.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person22_bacteria_76.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person22_bacteria_77.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_100.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_101.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_102.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_103.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_104.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_105.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_106.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_107.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_78.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_79.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_80.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_81.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_82.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_83.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_84.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_85.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_86.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_87.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_88.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_89.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_90.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_91.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_92.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_93.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_94.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_95.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_96.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_97.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_98.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person23_bacteria_99.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person24_bacteria_108.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person24_bacteria_109.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person24_bacteria_110.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person24_bacteria_111.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person24_bacteria_112.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person253_bacteria_1152.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person253_bacteria_1153.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person253_bacteria_1154.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person253_bacteria_1155.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person253_bacteria_1156.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person253_bacteria_1157.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person255_bacteria_1160.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person255_bacteria_1161.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person255_bacteria_1162.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person255_bacteria_1165.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person255_bacteria_1175.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person255_bacteria_1182.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person255_bacteria_1188.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person255_virus_531.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person256_bacteria_1189.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person256_virus_537.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person257_bacteria_1191.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person257_bacteria_1193.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person257_bacteria_1194.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person257_bacteria_1195.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person257_bacteria_1196.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person257_bacteria_1197.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person257_bacteria_1199.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person257_bacteria_1200.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person257_virus_538.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person258_bacteria_1205.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person258_bacteria_1206.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person258_bacteria_1207.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person258_bacteria_1208.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person258_bacteria_1209.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person258_bacteria_1210.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person258_bacteria_1212.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person258_bacteria_1214.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person258_bacteria_1215.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person258_bacteria_1216.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person258_virus_539.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person259_bacteria_1217.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person259_bacteria_1219.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person259_bacteria_1220.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person259_virus_540.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person25_bacteria_113.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person25_bacteria_114.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person25_bacteria_115.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person25_bacteria_116.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person25_bacteria_117.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person25_bacteria_118.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person25_bacteria_119.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person25_bacteria_120.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person25_bacteria_121.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person260_bacteria_1222.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person260_bacteria_1223.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person260_bacteria_1224.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person260_virus_541.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person261_bacteria_1225.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person261_virus_543.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person262_bacteria_1226.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person262_virus_544.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person262_virus_545.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person263_bacteria_1227.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person263_virus_546.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person264_bacteria_1228.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person264_bacteria_1229.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person264_bacteria_1230.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person264_bacteria_1231.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person264_bacteria_1232.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person264_bacteria_1233.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person264_bacteria_1234.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person264_virus_547.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person265_bacteria_1235.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person265_bacteria_1236.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person265_virus_548.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person266_bacteria_1237.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person266_bacteria_1238.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person266_bacteria_1239.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person266_bacteria_1240.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person266_bacteria_1241.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person266_bacteria_1242.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person266_bacteria_1244.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person266_bacteria_1245.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person266_bacteria_1247.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person266_bacteria_1248.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person266_bacteria_1249.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person266_virus_549.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person267_bacteria_1250.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person267_bacteria_1251.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person267_bacteria_1252.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person267_bacteria_1253.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person267_virus_552.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person268_virus_553.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person269_virus_554.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person26_bacteria_122.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person26_bacteria_123.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person26_bacteria_124.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person26_bacteria_126.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person26_bacteria_127.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person26_bacteria_128.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person26_bacteria_129.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person26_bacteria_130.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person26_bacteria_131.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person26_bacteria_132.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person26_bacteria_133.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person270_virus_555.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person271_virus_556.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person272_virus_559.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person273_virus_561.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person273_virus_562.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person274_bacteria_1288.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person274_bacteria_1289.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person274_bacteria_1290.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person274_virus_563.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person275_bacteria_1291.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person275_bacteria_1293.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person275_bacteria_1294.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person275_virus_565.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person276_bacteria_1295.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person276_bacteria_1296.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person276_bacteria_1297.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person276_bacteria_1298.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person276_bacteria_1299.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person276_virus_569.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person277_bacteria_1300.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person277_bacteria_1301.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person277_bacteria_1302.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person277_bacteria_1303.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person277_bacteria_1304.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person277_bacteria_1305.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person277_bacteria_1306.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person277_bacteria_1307.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person277_virus_571.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person278_bacteria_1309.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person278_bacteria_1311.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person278_bacteria_1313.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person278_bacteria_1314.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person278_virus_572.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person278_virus_573.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person278_virus_574.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person278_virus_575.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person279_bacteria_1315.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person279_bacteria_1316.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person279_virus_576.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person27_bacteria_135.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person27_bacteria_136.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person27_bacteria_137.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person27_bacteria_138.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person280_bacteria_1318.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person280_bacteria_1320.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person280_bacteria_1321.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person280_bacteria_1322.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person280_virus_577.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person281_bacteria_1323.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person281_bacteria_1324.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person281_bacteria_1325.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person281_bacteria_1326.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person281_bacteria_1327.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person281_bacteria_1328.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person281_bacteria_1329.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person281_bacteria_1330.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person281_bacteria_1331.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person281_bacteria_1332.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person281_bacteria_1333.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person281_virus_578.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person282_virus_579.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person284_virus_582.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person286_virus_585.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person287_bacteria_1354.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person287_bacteria_1355.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person287_virus_586.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person288_virus_587.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person289_virus_593.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person28_bacteria_139.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person28_bacteria_141.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person28_bacteria_142.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person28_bacteria_143.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person290_bacteria_1372.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person290_virus_594.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person291_bacteria_1374.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person291_bacteria_1376.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person291_bacteria_1377.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person291_virus_596.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person292_bacteria_1378.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person292_virus_597.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person292_virus_598.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person292_virus_599.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person292_virus_600.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person292_virus_602.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person293_bacteria_1379.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person293_virus_604.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person293_virus_605.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person294_bacteria_1380.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person294_bacteria_1381.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person294_bacteria_1382.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person294_bacteria_1383.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person294_bacteria_1384.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person294_bacteria_1385.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person294_bacteria_1386.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person294_bacteria_1388.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person294_virus_606.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person294_virus_610.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person294_virus_611.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person295_bacteria_1389.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person295_bacteria_1390.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person295_virus_612.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person296_bacteria_1391.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person296_bacteria_1392.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person296_bacteria_1393.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person296_bacteria_1394.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person296_bacteria_1395.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person296_bacteria_1396.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person296_bacteria_1397.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person296_virus_613.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person297_bacteria_1400.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person297_bacteria_1404.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person297_virus_614.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person298_bacteria_1408.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person298_bacteria_1409.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person298_bacteria_1410.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person298_bacteria_1411.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person298_bacteria_1412.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person298_bacteria_1413.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person298_virus_617.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person298_virus_618.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person299_bacteria_1414.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person299_bacteria_1416.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person299_bacteria_1417.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person299_bacteria_1418.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person299_bacteria_1419.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person299_virus_620.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person29_bacteria_144.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person2_bacteria_3.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person2_bacteria_4.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person300_bacteria_1421.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person300_bacteria_1422.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person300_bacteria_1423.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person300_virus_621.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person301_bacteria_1424.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person301_bacteria_1427.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person301_bacteria_1428.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person301_bacteria_1429.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person301_virus_622.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person302_bacteria_1430.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person302_virus_623.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person303_bacteria_1431.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person303_virus_624.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person304_virus_625.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person305_bacteria_1435.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person305_bacteria_1436.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person305_bacteria_1437.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person305_virus_627.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person306_bacteria_1439.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person306_bacteria_1440.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person306_virus_628.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person307_bacteria_1441.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person307_bacteria_1442.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person307_virus_629.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person308_bacteria_1443.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person308_bacteria_1445.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person308_virus_630.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person309_bacteria_1447.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person309_bacteria_1449.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person309_virus_631.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person309_virus_632.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person30_bacteria_145.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person30_bacteria_146.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person30_bacteria_147.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person30_bacteria_148.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person30_bacteria_149.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person30_bacteria_150.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person30_bacteria_151.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person30_bacteria_152.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person30_bacteria_153.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person30_bacteria_154.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person30_bacteria_155.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person30_bacteria_156.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person30_bacteria_157.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person30_bacteria_158.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person310_bacteria_1450.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person310_bacteria_1451.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person310_virus_633.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person311_bacteria_1452.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person311_bacteria_1453.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person311_virus_634.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person312_bacteria_1454.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person312_bacteria_1455.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person312_bacteria_1456.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person312_virus_635.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person313_bacteria_1457.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person313_bacteria_1458.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person313_bacteria_1459.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person313_bacteria_1460.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person313_virus_637.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person314_bacteria_1461.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person314_bacteria_1462.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person314_virus_639.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person315_bacteria_1464.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person315_bacteria_1465.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person315_bacteria_1466.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person315_bacteria_1467.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person315_bacteria_1468.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person316_bacteria_1469.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person316_bacteria_1470.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person316_virus_641.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person317_bacteria_1471.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person317_bacteria_1473.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person317_virus_643.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person318_bacteria_1474.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person318_virus_644.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person319_bacteria_1475.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person319_bacteria_1476.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person319_bacteria_1477.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person319_bacteria_1478.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person319_bacteria_1479.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person319_bacteria_1480.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person319_virus_645.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person319_virus_646.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person31_bacteria_160.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person31_bacteria_161.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person31_bacteria_162.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person31_bacteria_163.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person31_bacteria_164.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person320_virus_647.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person321_bacteria_1483.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person321_bacteria_1484.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person321_bacteria_1485.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person321_bacteria_1486.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person321_bacteria_1487.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person321_bacteria_1488.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person321_bacteria_1489.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person321_virus_648.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person322_bacteria_1494.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person322_virus_655.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person323_virus_656.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person324_virus_658.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person325_bacteria_1497.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person325_bacteria_1498.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person325_bacteria_1500.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person325_bacteria_1501.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person325_bacteria_1502.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person325_virus_659.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person325_virus_660.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person325_virus_661.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person325_virus_664.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person325_virus_665.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person326_bacteria_1503.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person326_bacteria_1504.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person326_bacteria_1505.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person326_bacteria_1506.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person326_bacteria_1507.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person326_virus_666.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person326_virus_668.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person326_virus_670.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person326_virus_672.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person326_virus_673.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person326_virus_675.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person326_virus_677.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person327_bacteria_1508.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person327_bacteria_1509.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person327_virus_679.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person328_bacteria_1510.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person328_bacteria_1511.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person328_bacteria_1512.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person328_bacteria_1513.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person328_bacteria_1514.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person328_bacteria_1515.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person328_virus_681.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person329_virus_682.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person32_bacteria_165.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person32_bacteria_166.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person330_virus_683.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person331_bacteria_1526.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person331_bacteria_1527.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person331_bacteria_1528.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person331_bacteria_1529.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person331_bacteria_1530.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person331_virus_684.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person332_bacteria_1531.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person332_bacteria_1533.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person332_bacteria_1534.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person332_bacteria_1535.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person332_bacteria_1536.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person332_bacteria_1537.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person332_bacteria_1538.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person332_virus_685.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person333_bacteria_1539.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person333_bacteria_1540.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person333_virus_688.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person334_bacteria_1541.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person334_bacteria_1542.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person334_bacteria_1544.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person334_bacteria_1545.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person334_virus_689.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person335_virus_690.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person336_bacteria_1548.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person336_bacteria_1549.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person336_bacteria_1550.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person336_bacteria_1551.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person336_bacteria_1552.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person336_bacteria_1553.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person337_bacteria_1554.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person337_bacteria_1557.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person337_bacteria_1558.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person337_bacteria_1560.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person337_bacteria_1561.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person337_bacteria_1562.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person337_bacteria_1563.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person337_bacteria_1564.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person337_bacteria_1565.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person337_bacteria_1566.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person338_bacteria_1567.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person338_bacteria_1568.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person338_virus_694.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person339_bacteria_1572.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person339_bacteria_1573.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person339_bacteria_1574.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person339_virus_695.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person33_bacteria_169.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person33_bacteria_172.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person33_bacteria_173.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person33_bacteria_174.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person33_bacteria_175.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person340_bacteria_1575.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person340_virus_698.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person341_bacteria_1577.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person341_virus_699.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person342_virus_701.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person342_virus_702.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person343_bacteria_1583.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person343_bacteria_1584.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person343_virus_704.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person344_bacteria_1585.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person344_virus_705.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person346_bacteria_1590.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person346_virus_708.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person346_virus_709.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person347_bacteria_1594.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person347_bacteria_1595.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person347_bacteria_1597.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person347_bacteria_1599.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person348_bacteria_1601.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person348_bacteria_1602.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person348_bacteria_1603.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person348_bacteria_1604.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person348_virus_711.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person348_virus_714.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person348_virus_715.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person348_virus_716.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person348_virus_717.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person348_virus_719.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person348_virus_720.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person348_virus_721.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person348_virus_723.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person349_bacteria_1605.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person349_bacteria_1606.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person349_bacteria_1607.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person349_virus_724.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person34_bacteria_176.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person350_virus_725.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person351_bacteria_1617.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person351_bacteria_1619.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person351_bacteria_1620.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person351_bacteria_1621.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person351_bacteria_1622.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person351_bacteria_1623.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person351_bacteria_1624.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person351_virus_726.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person352_bacteria_1625.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person353_bacteria_1626.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person353_bacteria_1628.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person353_virus_728.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person354_bacteria_1632.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person354_bacteria_1633.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person354_bacteria_1634.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person354_bacteria_1635.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person354_virus_729.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person355_bacteria_1637.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person355_virus_730.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person355_virus_731.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person356_bacteria_1638.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person356_virus_733.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person357_bacteria_1639.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person357_bacteria_1640.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person357_virus_734.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person357_virus_735.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person357_virus_736.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person358_virus_737.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person359_bacteria_1642.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person359_bacteria_1643.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person359_bacteria_1644.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person359_bacteria_1645.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person359_bacteria_1646.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person359_virus_738.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person35_bacteria_178.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person35_bacteria_180.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person35_bacteria_181.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person360_bacteria_1647.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person360_virus_739.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person361_bacteria_1651.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person361_virus_740.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person362_bacteria_1652.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person362_virus_741.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person363_bacteria_1653.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person363_bacteria_1654.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person363_bacteria_1655.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person363_virus_742.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person364_bacteria_1656.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person364_bacteria_1657.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person364_bacteria_1658.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person364_bacteria_1659.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person364_bacteria_1660.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person364_virus_743.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person365_virus_745.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person366_bacteria_1664.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person366_virus_746.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person367_bacteria_1665.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person367_virus_747.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person368_bacteria_1666.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person368_bacteria_1667.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person368_bacteria_1668.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person368_bacteria_1672.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person368_bacteria_1678.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person368_virus_748.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person369_bacteria_1680.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person369_virus_750.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person36_bacteria_182.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person36_bacteria_183.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person36_bacteria_184.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person36_bacteria_185.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person370_bacteria_1687.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person370_bacteria_1688.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person370_bacteria_1689.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person370_bacteria_1690.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person370_bacteria_1691.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person370_bacteria_1692.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person370_virus_752.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person370_virus_753.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person371_bacteria_1694.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person371_bacteria_1695.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person371_bacteria_1696.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person371_bacteria_1698.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person371_bacteria_1699.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person371_bacteria_1700.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person371_bacteria_1701.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person371_bacteria_1702.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person371_bacteria_1703.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person371_virus_754.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person372_bacteria_1704.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person372_bacteria_1705.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person372_bacteria_1706.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person372_virus_755.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person373_bacteria_1707.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person373_bacteria_1708.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person373_bacteria_1709.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person373_virus_756.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person374_bacteria_1710.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person374_bacteria_1711.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person374_bacteria_1712.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person374_virus_757.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person375_bacteria_1713.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person375_virus_758.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person376_bacteria_1715.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person376_bacteria_1716.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person376_virus_759.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person377_bacteria_1717.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person377_bacteria_1718.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person377_virus_760.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person378_virus_761.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person379_bacteria_1721.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person379_bacteria_1722.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person379_virus_762.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person37_bacteria_186.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person37_bacteria_187.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person37_bacteria_188.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person37_bacteria_189.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person380_virus_763.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person381_bacteria_1730.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person381_bacteria_1731.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person382_bacteria_1737.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person382_bacteria_1738.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person382_bacteria_1739.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person382_bacteria_1740.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person382_bacteria_1741.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person382_bacteria_1742.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person382_bacteria_1745.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person382_bacteria_1746.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person383_bacteria_1747.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person383_bacteria_1748.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person383_bacteria_1749.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person383_bacteria_1750.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person383_bacteria_1751.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person383_bacteria_1752.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person383_bacteria_1753.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person383_bacteria_1754.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person383_virus_767.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person384_bacteria_1755.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person384_virus_769.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person385_bacteria_1765.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person385_bacteria_1766.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person385_virus_770.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person386_virus_771.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person387_bacteria_1769.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person387_bacteria_1770.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person387_bacteria_1772.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person387_virus_772.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person388_virus_775.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person388_virus_777.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person389_bacteria_1778.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person389_bacteria_1780.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person389_virus_778.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person38_bacteria_190.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person38_bacteria_191.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person38_bacteria_192.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person38_bacteria_193.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person38_bacteria_194.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person38_bacteria_195.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person38_bacteria_196.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person390_bacteria_1781.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person391_bacteria_1782.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person391_virus_781.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person392_bacteria_1783.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person392_bacteria_1784.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person392_bacteria_1785.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person392_bacteria_1786.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person392_bacteria_1787.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person392_virus_782.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person393_bacteria_1789.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person393_virus_784.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person394_bacteria_1791.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person394_bacteria_1792.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person394_virus_786.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person395_bacteria_1794.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person395_bacteria_1795.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person395_virus_788.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person396_bacteria_1796.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person396_virus_789.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person397_bacteria_1797.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person397_virus_790.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person398_bacteria_1799.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person398_bacteria_1801.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person399_bacteria_1804.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person399_bacteria_1805.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person399_bacteria_1806.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person399_virus_793.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person39_bacteria_198.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person39_bacteria_200.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person3_bacteria_10.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person3_bacteria_11.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person3_bacteria_12.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person3_bacteria_13.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person400_bacteria_1807.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person400_virus_794.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person401_bacteria_1808.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person401_virus_795.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person401_virus_797.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person401_virus_798.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person402_bacteria_1809.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person402_bacteria_1810.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person402_bacteria_1811.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person402_bacteria_1812.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person402_bacteria_1813.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person402_virus_799.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person402_virus_801.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person403_bacteria_1814.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person403_virus_803.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person405_bacteria_1817.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person405_virus_805.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person406_bacteria_1818.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person406_bacteria_1819.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person406_bacteria_1820.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person407_bacteria_1822.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person407_virus_811.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person407_virus_812.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person407_virus_814.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person408_bacteria_1823.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person408_virus_815.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person409_bacteria_1824.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person409_virus_816.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person409_virus_818.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person409_virus_820.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person40_bacteria_202.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person40_bacteria_203.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person40_bacteria_204.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person40_bacteria_205.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person410_bacteria_1825.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person410_virus_821.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person411_bacteria_1826.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person412_bacteria_1827.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person413_bacteria_1828.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person413_bacteria_1829.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person413_bacteria_1830.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person413_bacteria_1831.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person413_bacteria_1832.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person413_bacteria_1833.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person413_bacteria_1834.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person413_virus_844.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person414_bacteria_1835.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person414_virus_845.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person415_bacteria_1837.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person415_bacteria_1838.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person415_bacteria_1839.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person415_virus_847.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person416_bacteria_1840.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person416_virus_849.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person417_bacteria_1841.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person417_bacteria_1842.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person417_virus_850.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person418_bacteria_1843.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person418_virus_852.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person419_bacteria_1844.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person419_bacteria_1845.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person419_virus_855.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person419_virus_857.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person419_virus_859.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person419_virus_861.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person41_bacteria_206.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person41_bacteria_207.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person41_bacteria_208.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person41_bacteria_209.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person41_bacteria_210.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person41_bacteria_211.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person420_bacteria_1847.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person420_bacteria_1848.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person420_bacteria_1849.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person420_bacteria_1850.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person420_bacteria_1851.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person421_bacteria_1852.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person421_virus_866.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person422_bacteria_1853.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person422_virus_867.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person422_virus_868.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person423_bacteria_1854.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person423_bacteria_1855.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person423_bacteria_1856.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person423_bacteria_1857.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person423_bacteria_1858.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person423_virus_869.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person424_bacteria_1859.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person425_bacteria_1860.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person425_virus_871.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person426_bacteria_1861.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person426_bacteria_1862.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person426_bacteria_1863.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person426_virus_873.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person427_bacteria_1864.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person427_bacteria_1865.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person427_bacteria_1866.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person427_bacteria_1867.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person427_bacteria_1868.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person427_virus_875.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person428_bacteria_1869.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person428_virus_876.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person429_bacteria_1870.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person429_virus_877.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person430_bacteria_1871.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person430_virus_879.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person431_bacteria_1872.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person431_virus_880.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person432_virus_881.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person433_bacteria_1874.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person433_bacteria_1875.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person433_bacteria_1876.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person433_virus_882.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person434_bacteria_1877.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person434_virus_883.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person434_virus_884.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person435_bacteria_1879.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person435_virus_885.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person436_bacteria_1883.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person436_virus_886.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person437_bacteria_1884.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person437_bacteria_1885.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person437_bacteria_1886.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person437_bacteria_1887.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person437_bacteria_1888.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person437_virus_888.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person438_bacteria_1889.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person438_bacteria_1890.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person438_bacteria_1891.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person438_bacteria_1892.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person438_bacteria_1893.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person438_virus_889.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person439_bacteria_1895.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person439_virus_890.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person439_virus_891.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person43_bacteria_213.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person43_bacteria_216.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person440_bacteria_1897.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person440_bacteria_1898.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person440_virus_893.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person441_bacteria_1900.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person441_bacteria_1902.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person441_bacteria_1903.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person441_bacteria_1904.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person441_bacteria_1905.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person441_bacteria_1907.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person441_bacteria_1910.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person441_bacteria_1911.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person441_bacteria_1912.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person441_bacteria_1914.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person441_bacteria_1915.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person441_bacteria_1916.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person441_bacteria_1917.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person441_bacteria_1918.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person441_virus_894.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person441_virus_895.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person441_virus_896.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person441_virus_897.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person442_virus_898.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person442_virus_899.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person442_virus_900.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person442_virus_901.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person442_virus_902.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person442_virus_903.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person442_virus_904.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person442_virus_905.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person442_virus_906.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person443_bacteria_1923.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person443_bacteria_1924.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person443_bacteria_1926.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person443_virus_908.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person444_bacteria_1927.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person444_virus_911.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person445_bacteria_1928.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person445_bacteria_1929.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person445_bacteria_1930.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person445_virus_912.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person445_virus_913.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person445_virus_914.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person445_virus_915.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person445_virus_916.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person445_virus_917.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person445_virus_918.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person445_virus_919.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person446_bacteria_1931.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person446_virus_920.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person447_bacteria_1932.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person447_virus_921.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person447_virus_921_1.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person448_bacteria_1933.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person448_bacteria_1934.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person448_bacteria_1935.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person448_bacteria_1936.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person448_bacteria_1937.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person448_virus_922.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person449_bacteria_1938.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person449_bacteria_1939.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person449_bacteria_1940.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person44_bacteria_218.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person44_bacteria_219.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person450_bacteria_1941.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person450_virus_931.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person451_bacteria_1942.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person451_virus_932.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person452_bacteria_1943.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person453_virus_935.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person453_virus_936.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person454_bacteria_1945.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person454_virus_938.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person455_bacteria_1947.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person456_bacteria_1948.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person456_virus_943.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person457_bacteria_1949.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person457_virus_944.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person458_bacteria_1950.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person458_bacteria_1951.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person458_bacteria_1952.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person458_bacteria_1953.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person458_bacteria_1954.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person458_bacteria_1955.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person458_virus_945.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person459_bacteria_1956.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person459_bacteria_1957.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person459_virus_947.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person45_bacteria_220.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person45_bacteria_221.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person45_bacteria_222.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person460_bacteria_1958.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person460_virus_948.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person461_bacteria_1960.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person461_virus_949.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person461_virus_950.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person462_bacteria_1961.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person462_bacteria_1963.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person462_bacteria_1967.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person462_bacteria_1968.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person462_virus_951.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person463_bacteria_1971.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person463_virus_952.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person463_virus_953.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person464_bacteria_1974.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person464_bacteria_1975.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person464_virus_954.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person464_virus_956.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person465_bacteria_1976.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person465_bacteria_1977.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person465_bacteria_1979.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person465_bacteria_1980.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person465_bacteria_1981.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person465_bacteria_1982.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person465_virus_957.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person466_bacteria_1983.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person466_bacteria_1984.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person466_bacteria_1986.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person466_bacteria_1987.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person466_virus_960.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person467_bacteria_1988.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person467_bacteria_1989.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person467_virus_961.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person468_bacteria_1990.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person468_bacteria_1991.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person468_virus_963.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person469_bacteria_1992.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person469_bacteria_1993.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person469_bacteria_1994.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person469_bacteria_1995.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person469_virus_965.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person46_bacteria_224.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person46_bacteria_225.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person470_bacteria_1996.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person470_bacteria_1998.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person470_bacteria_1999.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person470_bacteria_2000.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person470_bacteria_2001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person470_bacteria_2002.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person470_bacteria_2003.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person470_virus_966.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person471_bacteria_2004.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person471_bacteria_2005.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person471_bacteria_2006.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person471_virus_967.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person471_virus_968.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person472_bacteria_2007.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person472_bacteria_2008.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person472_bacteria_2010.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person472_bacteria_2014.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person472_bacteria_2015.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person472_virus_969.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person473_bacteria_2018.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person474_virus_971.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person475_bacteria_2020.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person475_bacteria_2021.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person475_bacteria_2022.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person475_bacteria_2023.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person475_bacteria_2024.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person475_bacteria_2025.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person475_virus_972.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person476_bacteria_2026.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person476_virus_973.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person477_bacteria_2028.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person477_bacteria_2029.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person477_bacteria_2030.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person477_bacteria_2031.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person478_bacteria_2032.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person478_bacteria_2035.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person478_virus_975.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person479_virus_978.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person47_bacteria_229.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person480_bacteria_2038.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person480_bacteria_2039.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person480_bacteria_2040.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person480_virus_981.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person480_virus_982.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person481_bacteria_2041.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person481_bacteria_2042.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person481_virus_983.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person482_bacteria_2043.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person482_bacteria_2044.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person482_bacteria_2045.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person482_virus_984.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person483_bacteria_2046.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person483_virus_985.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person484_virus_986.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person485_bacteria_2049.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person485_virus_988.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person486_bacteria_2051.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person486_bacteria_2052.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person486_bacteria_2053.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person486_bacteria_2054.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person486_virus_990.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person487_bacteria_2055.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person487_bacteria_2056.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person487_bacteria_2057.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person487_bacteria_2058.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person487_bacteria_2059.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person487_bacteria_2060.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person487_virus_991.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person488_bacteria_2061.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person488_bacteria_2062.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person488_virus_992.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person489_bacteria_2063.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person489_bacteria_2064.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person489_bacteria_2065.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person489_bacteria_2066.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person489_bacteria_2067.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person489_virus_994.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person489_virus_995.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person48_bacteria_230.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person48_bacteria_231.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person48_bacteria_232.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person48_bacteria_233.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person490_bacteria_2068.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person490_bacteria_2069.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person490_bacteria_2070.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person490_virus_996.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person491_bacteria_2071.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person491_bacteria_2073.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person491_bacteria_2075.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person491_bacteria_2080.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person491_bacteria_2081.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person491_bacteria_2082.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person491_virus_997.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person492_bacteria_2083.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person492_bacteria_2084.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person492_bacteria_2085.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person492_virus_998.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person493_bacteria_2086.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person493_bacteria_2087.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person493_virus_999.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person494_bacteria_2088.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person494_bacteria_2089.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person494_bacteria_2090.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person494_virus_1000.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person495_bacteria_2094.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person495_virus_1001.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person496_bacteria_2095.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person496_virus_1003.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person497_virus_1005.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person498_bacteria_2100.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person498_bacteria_2101.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person498_bacteria_2102.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person498_virus_1007.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person499_bacteria_2103.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person499_bacteria_2104.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person499_virus_1008.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person49_bacteria_235.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person49_bacteria_236.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person49_bacteria_237.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person4_bacteria_14.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person500_bacteria_2105.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person500_bacteria_2106.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person500_bacteria_2107.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person500_bacteria_2108.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person500_bacteria_2109.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person500_bacteria_2110.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person500_bacteria_2111.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person500_virus_1009.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person501_bacteria_2112.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person501_bacteria_2113.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person501_bacteria_2114.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person501_bacteria_2115.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person501_bacteria_2116.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person501_virus_1010.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person502_bacteria_2117.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person502_bacteria_2118.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person502_bacteria_2119.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person502_bacteria_2120.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person502_bacteria_2121.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person502_bacteria_2122.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person502_bacteria_2123.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person502_virus_1011.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person502_virus_1012.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person503_bacteria_2125.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person503_bacteria_2126.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person503_virus_1013.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person504_bacteria_2127.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person504_bacteria_2129.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person504_bacteria_2130.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person504_bacteria_2132.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person504_bacteria_2133.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person505_bacteria_2135.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person505_virus_1017.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person506_bacteria_2136.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person506_bacteria_2138.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person506_virus_1018.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person507_bacteria_2139.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person507_bacteria_2140.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person507_bacteria_2141.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person507_virus_1019.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person508_bacteria_2142.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person508_bacteria_2143.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person508_bacteria_2144.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person508_virus_1020.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person508_virus_1021.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person509_bacteria_2145.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person509_bacteria_2146.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person509_virus_1024.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person509_virus_1025.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person50_bacteria_238.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person510_bacteria_2147.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person510_bacteria_2148.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person510_bacteria_2149.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person510_bacteria_2150.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person510_virus_1026.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person511_bacteria_2152.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person511_bacteria_2153.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person511_virus_1027.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person512_bacteria_2154.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person512_bacteria_2155.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person512_virus_1029.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person513_virus_1030.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person514_bacteria_2184.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person514_virus_1031.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person515_bacteria_2185.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person515_bacteria_2186.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person515_bacteria_2187.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person515_bacteria_2188.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person515_bacteria_2189.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person515_bacteria_2190.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person515_virus_1032.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person516_bacteria_2191.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person516_bacteria_2192.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person516_virus_1033.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person517_bacteria_2196.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person517_virus_1034.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person517_virus_1035.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person518_bacteria_2197.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person518_bacteria_2198.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person518_bacteria_2199.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person518_bacteria_2200.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person518_virus_1036.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person519_virus_1038.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person51_bacteria_239.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person51_bacteria_240.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person51_bacteria_241.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person51_bacteria_242.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person51_bacteria_243.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person51_bacteria_244.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person51_bacteria_245.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person51_bacteria_246.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person51_bacteria_247.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person51_bacteria_248.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person520_bacteria_2203.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person520_bacteria_2204.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person520_bacteria_2205.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person520_virus_1039.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person521_virus_1040.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person522_bacteria_2210.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person522_bacteria_2211.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person522_virus_1041.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person523_virus_1043.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person524_virus_1045.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person525_bacteria_2216.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person525_bacteria_2217.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person525_bacteria_2218.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person525_bacteria_2220.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person525_virus_1046.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person526_bacteria_2221.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person527_bacteria_2225.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person527_bacteria_2226.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person527_virus_1048.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person528_bacteria_2227.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person528_virus_1049.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person529_bacteria_2228.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person529_bacteria_2229.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person529_bacteria_2230.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person529_virus_1050.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person52_bacteria_249.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person52_bacteria_251.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person530_bacteria_2231.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person530_bacteria_2233.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person530_virus_1052.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person531_bacteria_2235.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person531_bacteria_2236.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person531_bacteria_2237.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person531_bacteria_2238.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person531_bacteria_2239.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person531_bacteria_2240.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person531_bacteria_2241.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person531_bacteria_2242.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person531_virus_1053.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person532_virus_1054.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person533_bacteria_2245.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person533_bacteria_2250.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person533_virus_1055.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person534_bacteria_2251.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person534_bacteria_2252.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person534_bacteria_2253.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person534_bacteria_2254.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person534_virus_1061.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person535_bacteria_2255.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person535_bacteria_2256.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person535_virus_1062.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person536_bacteria_2257.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person536_bacteria_2258.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person536_bacteria_2259.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person536_bacteria_2260.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person536_virus_1064.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person536_virus_1065.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person537_bacteria_2261.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person537_bacteria_2262.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person537_bacteria_2263.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person537_bacteria_2264.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person537_bacteria_2265.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person537_bacteria_2266.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person537_virus_1067.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person538_bacteria_2268.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person538_virus_1068.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person539_bacteria_2269.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person539_bacteria_2270.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person539_virus_1069.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person53_bacteria_252.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person53_bacteria_253.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person53_bacteria_254.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person53_bacteria_255.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person540_bacteria_2271.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person540_bacteria_2272.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person540_bacteria_2273.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person540_virus_1070.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person541_bacteria_2274.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person541_bacteria_2275.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person541_virus_1071.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person542_bacteria_2276.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person542_virus_1072.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person543_bacteria_2279.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person543_bacteria_2280.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person543_bacteria_2281.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person543_bacteria_2282.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person543_bacteria_2283.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person543_bacteria_2284.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person543_virus_1073.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person544_bacteria_2286.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person544_virus_1074.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person544_virus_1075.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person544_virus_1076.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person544_virus_1078.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person544_virus_1079.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person544_virus_1080.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person545_bacteria_2287.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person545_bacteria_2288.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person545_bacteria_2289.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person545_bacteria_2290.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person545_virus_1081.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person546_virus_1085.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person547_bacteria_2292.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person547_bacteria_2294.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person547_bacteria_2296.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person547_virus_1086.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person548_bacteria_2297.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person548_bacteria_2298.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person548_bacteria_2299.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person548_bacteria_2300.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person548_bacteria_2301.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person548_bacteria_2302.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person548_virus_1088.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person549_bacteria_2303.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person549_bacteria_2304.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person549_bacteria_2305.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person549_bacteria_2306.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person549_bacteria_2307.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person549_virus_1089.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person54_bacteria_257.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person54_bacteria_258.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person550_bacteria_2308.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person550_bacteria_2309.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person550_virus_1090.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person551_bacteria_2310.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person551_bacteria_2311.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person551_virus_1091.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person552_bacteria_2313.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person552_bacteria_2315.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person552_virus_1092.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person553_bacteria_2316.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person553_bacteria_2317.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person553_virus_1093.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person554_bacteria_2320.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person554_bacteria_2321.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person554_bacteria_2322.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person554_bacteria_2323.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person554_virus_1094.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person555_bacteria_2325.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person556_bacteria_2326.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person556_virus_1096.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person557_bacteria_2327.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person557_virus_1097.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person558_bacteria_2328.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person558_virus_1098.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person559_bacteria_2329.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person559_virus_1099.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person55_bacteria_260.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person55_bacteria_261.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person55_bacteria_262.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person55_bacteria_263.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person55_bacteria_264.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person55_bacteria_265.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person55_bacteria_266.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person560_bacteria_2330.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person561_bacteria_2331.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person562_bacteria_2332.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person562_virus_1102.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person563_bacteria_2333.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person563_bacteria_2334.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person563_bacteria_2335.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person563_bacteria_2336.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person563_bacteria_2337.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person563_bacteria_2338.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person563_bacteria_2339.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person563_bacteria_2340.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person563_virus_1103.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person564_bacteria_2342.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person564_bacteria_2343.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person564_bacteria_2344.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person564_bacteria_2345.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person564_bacteria_2346.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person564_bacteria_2347.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person564_virus_1104.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person565_bacteria_2348.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person565_virus_1105.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person566_bacteria_2351.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person566_virus_1106.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person567_bacteria_2352.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person567_bacteria_2353.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person567_bacteria_2354.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person567_virus_1107.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person568_bacteria_2358.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person568_bacteria_2359.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person569_bacteria_2360.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person569_bacteria_2362.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person569_bacteria_2363.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person569_bacteria_2364.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person569_virus_1110.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person56_bacteria_267.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person56_bacteria_268.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person56_bacteria_269.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person570_bacteria_2365.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person570_virus_1112.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person571_bacteria_2367.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person571_virus_1114.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person572_bacteria_2368.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person573_bacteria_2369.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person573_virus_1116.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person574_bacteria_2370.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person574_bacteria_2371.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person574_bacteria_2372.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person574_bacteria_2373.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person574_virus_1118.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person575_bacteria_2374.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person575_virus_1119.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person576_bacteria_2375.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person576_bacteria_2376.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person576_virus_1120.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person577_bacteria_2378.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person577_virus_1121.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person578_bacteria_2379.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person578_virus_1122.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person579_bacteria_2381.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person579_bacteria_2382.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person579_bacteria_2383.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person579_bacteria_2384.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person579_bacteria_2386.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person579_virus_1123.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person57_bacteria_270.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person57_bacteria_271.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person580_bacteria_2387.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person580_bacteria_2388.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person580_bacteria_2389.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person581_bacteria_2390.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person581_bacteria_2392.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person581_bacteria_2393.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person581_bacteria_2394.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person581_bacteria_2395.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person581_bacteria_2400.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person581_virus_1125.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person582_bacteria_2403.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person582_bacteria_2404.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person582_bacteria_2405.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person583_bacteria_2406.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person583_bacteria_2408.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person583_bacteria_2409.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person583_virus_1127.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person584_virus_1128.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person585_bacteria_2411.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person585_bacteria_2412.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person585_bacteria_2413.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person585_bacteria_2414.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person585_bacteria_2415.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person585_bacteria_2416.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person585_virus_1129.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person586_bacteria_2417.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person586_bacteria_2418.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person586_bacteria_2420.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person586_virus_1130.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person587_bacteria_2421.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person588_bacteria_2422.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person588_bacteria_2423.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person588_virus_1134.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person588_virus_1135.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person589_bacteria_2424.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person589_bacteria_2425.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person58_bacteria_272.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person58_bacteria_273.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person58_bacteria_274.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person58_bacteria_275.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person58_bacteria_276.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person58_bacteria_277.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person58_bacteria_278.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person590_bacteria_2428.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person590_virus_1138.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person591_bacteria_2429.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person591_virus_1139.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person592_bacteria_2431.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person592_bacteria_2434.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person592_virus_1141.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person593_bacteria_2435.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person593_virus_1142.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person594_bacteria_2436.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person594_virus_1145.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person595_bacteria_2438.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person595_virus_1147.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person596_bacteria_2440.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person596_bacteria_2441.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person596_bacteria_2443.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person596_bacteria_2444.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person596_bacteria_2445.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person596_bacteria_2446.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person596_bacteria_2447.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person596_bacteria_2449.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person596_virus_1149.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person597_bacteria_2450.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person597_bacteria_2451.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person597_virus_1150.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person598_bacteria_2453.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person598_bacteria_2454.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person598_virus_1151.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person598_virus_1153.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person598_virus_1154.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person599_bacteria_2455.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person599_virus_1155.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person59_bacteria_279.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person59_bacteria_280.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person59_bacteria_281.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person59_bacteria_282.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person59_bacteria_283.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person59_bacteria_284.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person5_bacteria_15.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person5_bacteria_16.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person5_bacteria_17.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person5_bacteria_19.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person600_bacteria_2456.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person600_bacteria_2457.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person600_bacteria_2458.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person600_virus_1156.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person601_bacteria_2459.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person602_bacteria_2460.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person603_bacteria_2461.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person603_virus_1164.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person604_bacteria_2462.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person604_bacteria_2463.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person604_virus_1165.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person605_bacteria_2464.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person605_bacteria_2465.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person605_bacteria_2466.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person605_bacteria_2467.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person605_bacteria_2468.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person605_virus_1166.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person605_virus_1169.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person606_bacteria_2469.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person607_bacteria_2470.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person607_virus_1173.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person608_bacteria_2471.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person608_bacteria_2472.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person608_bacteria_2473.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person608_virus_1175.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person609_bacteria_2474.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person609_virus_1176.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person60_bacteria_285.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person60_bacteria_286.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person60_bacteria_287.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person610_bacteria_2475.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person610_virus_1177.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person611_bacteria_2476.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person612_bacteria_2477.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person612_bacteria_2478.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person612_virus_1179.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person613_bacteria_2479.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person613_virus_1181.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person614_bacteria_2480.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person614_bacteria_2481.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person614_bacteria_2483.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person614_virus_1183.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person615_virus_1184.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person616_bacteria_2487.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person616_virus_1186.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person617_bacteria_2488.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person617_virus_1187.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person618_bacteria_2489.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person618_virus_1189.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person619_bacteria_2490.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person619_bacteria_2491.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person619_virus_1190.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person61_bacteria_288.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person61_bacteria_289.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person61_bacteria_290.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person61_bacteria_291.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person61_bacteria_292.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person61_bacteria_293.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person61_bacteria_294.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person61_bacteria_295.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person61_bacteria_296.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person61_bacteria_297.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person620_bacteria_2492.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person620_virus_1191.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person620_virus_1192.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person621_virus_1194.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person621_virus_1195.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person622_bacteria_2494.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person622_virus_1196.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person623_bacteria_2495.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person623_bacteria_2496.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person623_virus_1197.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person624_bacteria_2497.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person624_virus_1198.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person625_bacteria_2499.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person625_bacteria_2500.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person625_virus_1199.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person626_bacteria_2502.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person626_virus_1202.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person627_virus_1204.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person628_bacteria_2505.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person628_virus_1206.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person629_bacteria_2506.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person629_bacteria_2507.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person629_bacteria_2508.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person629_bacteria_2509.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person629_bacteria_2510.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person629_virus_1207.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person62_bacteria_298.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person62_bacteria_299.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person62_bacteria_300.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person62_bacteria_301.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person62_bacteria_302.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person62_bacteria_303.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person630_bacteria_2512.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person630_bacteria_2513.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person630_bacteria_2514.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person630_bacteria_2515.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person630_bacteria_2516.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person630_virus_1209.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person632_bacteria_2520.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person632_bacteria_2521.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person632_virus_1211.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person633_bacteria_2522.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person633_virus_1213.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person634_bacteria_2525.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person635_bacteria_2526.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person636_bacteria_2527.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person636_virus_1217.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person637_bacteria_2528.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person637_bacteria_2529.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person637_virus_1218.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person639_virus_1220.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person63_bacteria_306.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person640_bacteria_2532.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person640_virus_1221.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person641_bacteria_2533.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person641_virus_1222.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person642_virus_1223.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person643_bacteria_2534.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person644_bacteria_2536.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person644_virus_1225.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person645_bacteria_2537.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person645_virus_1226.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person646_bacteria_2538.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person646_virus_1227.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person647_bacteria_2539.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person647_virus_1228.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person647_virus_1229.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person648_bacteria_2540.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person648_virus_1230.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person649_bacteria_2541.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person649_virus_1231.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person64_bacteria_310.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person64_bacteria_312.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person64_bacteria_316.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person64_bacteria_317.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person64_bacteria_318.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person64_bacteria_319.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person64_bacteria_320.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person650_bacteria_2542.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person650_virus_1232.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person651_bacteria_2543.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person652_bacteria_2544.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person652_virus_1234.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person653_bacteria_2545.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person653_virus_1235.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person654_bacteria_2546.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person655_bacteria_2547.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person656_bacteria_2548.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person656_virus_1238.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person657_bacteria_2549.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person657_virus_1240.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person658_bacteria_2550.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person658_virus_1241.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person659_bacteria_2551.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person659_virus_1243.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person65_bacteria_322.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person660_bacteria_2552.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person660_virus_1244.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person661_bacteria_2553.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person661_virus_1245.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person662_bacteria_2554.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person662_virus_1246.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person663_bacteria_2555.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person663_virus_1247.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person663_virus_1248.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person664_virus_1249.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person665_bacteria_2557.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person665_virus_1250.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person666_bacteria_2558.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person666_virus_1251.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person667_virus_1252.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person667_virus_1253.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person669_bacteria_2561.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person669_bacteria_2562.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person669_virus_1255.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person66_bacteria_323.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person66_bacteria_324.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person66_bacteria_325.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person66_bacteria_326.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person670_bacteria_2563.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person670_virus_1256.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person670_virus_1259.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person671_bacteria_2564.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person671_virus_1260.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person672_bacteria_2565.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person672_virus_1261.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person673_bacteria_2566.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person673_virus_1263.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person674_bacteria_2568.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person675_bacteria_2569.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person677_bacteria_2571.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person677_virus_1268.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person678_bacteria_2572.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person679_virus_1270.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person67_bacteria_328.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person67_bacteria_329.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person67_bacteria_330.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person67_bacteria_331.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person67_bacteria_332.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person67_bacteria_333.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person67_bacteria_334.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person680_bacteria_2575.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person681_bacteria_2576.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person681_virus_1272.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person682_virus_1273.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person683_bacteria_2578.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person684_bacteria_2580.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person684_virus_1275.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person685_bacteria_2581.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person687_bacteria_2583.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person688_bacteria_2584.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person688_virus_1281.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person688_virus_1282.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person689_bacteria_2585.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person689_bacteria_2586.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person68_bacteria_335.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person68_bacteria_336.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person68_bacteria_337.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person690_bacteria_2587.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person691_bacteria_2588.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person692_bacteria_2589.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person692_virus_1286.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person693_bacteria_2590.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person696_bacteria_2594.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person698_virus_1294.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person699_bacteria_2598.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person699_virus_1295.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person69_bacteria_338.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person6_bacteria_22.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person700_bacteria_2599.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person701_bacteria_2600.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person701_virus_1297.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person702_bacteria_2601.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person702_virus_1299.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person703_bacteria_2602.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person703_virus_1300.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person704_bacteria_2603.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person704_virus_1301.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person705_virus_1302.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person705_virus_1303.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person706_virus_1304.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person707_bacteria_2606.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person707_virus_1305.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person709_bacteria_2608.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person70_bacteria_341.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person70_bacteria_342.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person70_bacteria_343.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person70_bacteria_344.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person70_bacteria_345.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person70_bacteria_346.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person710_bacteria_2611.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person710_virus_1308.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person711_bacteria_2612.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person711_virus_1309.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person712_bacteria_2613.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person712_virus_1310.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person713_bacteria_2614.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person714_bacteria_2615.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person716_bacteria_2617.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person716_virus_1314.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person717_bacteria_2618.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person718_bacteria_2620.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person718_virus_1316.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person719_bacteria_2621.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person719_virus_1338.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person71_bacteria_347.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person71_bacteria_348.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person71_bacteria_349.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person71_bacteria_350.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person71_bacteria_351.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person720_bacteria_2622.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person720_virus_1339.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person721_bacteria_2623.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person721_virus_1340.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person722_virus_1341.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person723_bacteria_2625.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person723_virus_1342.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person724_bacteria_2626.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person724_virus_1343.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person724_virus_1344.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person725_bacteria_2627.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person726_bacteria_2628.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person727_bacteria_2629.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person727_virus_1347.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person728_bacteria_2630.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person72_bacteria_352.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person72_bacteria_353.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person72_bacteria_354.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person730_bacteria_2632.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person730_virus_1351.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person731_bacteria_2633.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person731_virus_1352.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person732_bacteria_2634.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person732_virus_1353.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person733_bacteria_2635.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person734_bacteria_2637.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person734_virus_1355.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person735_bacteria_2638.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person735_virus_1356.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person736_bacteria_2639.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person736_virus_1358.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person737_bacteria_2640.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person738_bacteria_2641.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person738_virus_1360.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person739_bacteria_2642.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person739_virus_1361.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person73_bacteria_355.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person73_bacteria_356.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person73_bacteria_357.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person73_bacteria_358.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person73_bacteria_359.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person73_bacteria_360.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person740_bacteria_2643.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person740_virus_1362.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person740_virus_1363.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person741_bacteria_2644.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person741_virus_1364.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person742_virus_1365.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person743_bacteria_2646.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person743_virus_1366.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person744_bacteria_2647.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person744_virus_1367.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person745_bacteria_2648.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person745_virus_1368.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person746_bacteria_2649.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person746_virus_1369.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person747_bacteria_2650.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person747_virus_1370.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person747_virus_1372.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person748_virus_1373.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person749_bacteria_2652.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person749_virus_1374.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person74_bacteria_361.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person74_bacteria_362.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person74_bacteria_363.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person750_bacteria_2653.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person751_bacteria_2654.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person752_virus_1377.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person753_bacteria_2656.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person753_virus_1378.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person754_virus_1379.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person755_bacteria_2659.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person755_virus_1380.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person755_virus_1382.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person756_bacteria_2660.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person757_bacteria_2661.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person757_virus_1385.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person758_bacteria_2662.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person759_bacteria_2663.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person759_virus_1387.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person75_bacteria_364.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person75_bacteria_365.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person75_bacteria_366.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person75_bacteria_367.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person75_bacteria_368.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person75_bacteria_369.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person760_bacteria_2664.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person760_virus_1388.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person761_bacteria_2665.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person761_virus_1389.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person762_virus_1390.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person763_bacteria_2667.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person763_virus_1391.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person764_bacteria_2668.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person764_virus_1392.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person765_bacteria_2669.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person765_virus_1393.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person766_bacteria_2670.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person767_bacteria_2671.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person768_bacteria_2672.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person768_virus_1396.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person769_bacteria_2673.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person76_bacteria_370.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person76_bacteria_371.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person76_bacteria_372.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person770_bacteria_2674.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person770_virus_1398.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person771_bacteria_2675.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person771_virus_1399.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person772_virus_1401.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person773_virus_1402.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person774_bacteria_2678.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person774_virus_1403.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person775_bacteria_2679.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person775_virus_1404.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person776_bacteria_2680.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person776_virus_1405.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person778_bacteria_2682.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person778_virus_1408.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person779_bacteria_2683.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person779_virus_1409.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person779_virus_1410.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person77_bacteria_374.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person77_bacteria_375.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person77_bacteria_376.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person77_bacteria_377.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person780_bacteria_2684.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person780_virus_1411.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person781_virus_1412.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person782_bacteria_2686.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person783_bacteria_2687.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person783_virus_1414.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person785_bacteria_2689.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person786_bacteria_2690.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person787_bacteria_2691.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person788_virus_1419.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person789_bacteria_2694.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person789_virus_1420.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person790_virus_1421.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person791_virus_1422.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person793_virus_1424.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person794_bacteria_2700.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person795_virus_1427.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person796_bacteria_2702.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person796_virus_1428.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person797_virus_1429.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person798_virus_1430.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person799_bacteria_2705.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person799_virus_1431.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person7_bacteria_24.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person7_bacteria_25.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person7_bacteria_28.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person7_bacteria_29.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person800_bacteria_2706.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person801_virus_1434.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person802_bacteria_2708.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person803_bacteria_2710.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person803_virus_1436.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person804_bacteria_2711.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person805_bacteria_2712.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person806_virus_1439.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person806_virus_1440.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person807_virus_1441.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person808_bacteria_2716.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person808_virus_1442.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person809_bacteria_2717.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person809_bacteria_2718.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person80_virus_150.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person810_bacteria_2719.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person810_virus_1445.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person810_virus_1446.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person811_bacteria_2721.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person811_virus_1447.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person813_bacteria_2723.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person813_bacteria_2724.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person813_virus_1449.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person814_bacteria_2725.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person815_bacteria_2726.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person816_bacteria_2727.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person817_bacteria_2728.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person818_bacteria_2729.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person819_bacteria_2730.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person819_virus_1455.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person81_virus_152.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person81_virus_153.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person820_bacteria_2731.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person820_virus_1456.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person823_virus_1459.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person825_bacteria_2736.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person826_bacteria_2737.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person826_virus_1462.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person827_bacteria_2738.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person829_bacteria_2740.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person82_virus_154.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person82_virus_155.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person830_bacteria_2741.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person830_virus_1466.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person831_bacteria_2742.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person832_bacteria_2743.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person832_virus_1468.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person833_virus_1469.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person834_bacteria_2747.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person834_bacteria_2748.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person835_bacteria_2749.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person835_bacteria_2750.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person835_virus_1472.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person836_bacteria_2752.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person836_virus_1473.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person837_bacteria_2753.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person837_bacteria_2754.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person837_virus_1475.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person838_virus_1476.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person839_bacteria_2757.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person83_virus_156.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person840_bacteria_2758.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person840_bacteria_2759.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person841_bacteria_2760.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person841_bacteria_2761.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person841_virus_1481.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person842_bacteria_2762.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person842_virus_1483.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person843_bacteria_2763.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person843_virus_1485.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person844_virus_1487.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person845_virus_1489.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person846_bacteria_2766.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person846_virus_1491.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person847_bacteria_2767.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person847_virus_1492.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person848_bacteria_2769.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person848_virus_1493.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person849_bacteria_2770.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person849_virus_1494.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person84_virus_157.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person850_bacteria_2771.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person851_virus_1496.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person852_virus_1497.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person853_bacteria_2774.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person853_bacteria_2775.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person853_virus_1498.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person854_bacteria_2776.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person855_bacteria_2777.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person855_virus_1500.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person858_bacteria_2780.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person859_virus_1504.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person860_virus_1505.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person861_virus_1506.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person862_bacteria_2784.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person862_virus_1507.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person863_bacteria_2785.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person863_virus_1508.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person864_virus_1509.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person866_bacteria_2788.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person866_virus_1511.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person867_bacteria_2789.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person867_virus_1512.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person868_virus_1513.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person868_virus_1514.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person86_virus_159.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person870_bacteria_2792.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person870_virus_1516.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person871_bacteria_2793.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person871_virus_1517.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person872_bacteria_2795.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person873_bacteria_2796.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person874_bacteria_2797.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person875_bacteria_2798.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person876_bacteria_2799.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person877_bacteria_2800.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person877_virus_1525.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person878_bacteria_2801.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person878_virus_1526.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person87_virus_160.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person880_bacteria_2804.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person880_virus_1529.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person881_bacteria_2805.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person881_virus_1531.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person882_bacteria_2806.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person883_bacteria_2807.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person883_virus_1533.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person884_bacteria_2808.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person884_virus_1534.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person885_bacteria_2809.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person886_bacteria_2810.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person886_virus_1536.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person887_bacteria_2811.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person888_bacteria_2812.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person888_virus_1538.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person889_bacteria_2813.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person88_virus_161.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person88_virus_163.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person88_virus_164.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person88_virus_165.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person88_virus_166.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person88_virus_167.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person890_bacteria_2814.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person890_virus_1540.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person891_virus_1541.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person892_bacteria_2817.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person893_bacteria_2818.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person894_bacteria_2819.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person894_virus_1546.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person895_bacteria_2820.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person895_virus_1547.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person896_bacteria_2821.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person896_virus_1548.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person897_bacteria_2822.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person898_bacteria_2823.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person898_virus_1552.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person899_virus_1553.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person89_virus_168.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person8_bacteria_37.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person900_virus_1554.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person901_virus_1555.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person902_bacteria_2827.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person903_bacteria_2828.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person904_bacteria_2829.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person905_bacteria_2830.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person905_virus_1561.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person906_bacteria_2831.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person906_virus_1562.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person907_bacteria_2832.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person907_virus_1563.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person908_virus_1564.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person909_bacteria_2834.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person909_virus_1565.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person90_virus_169.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person90_virus_170.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person911_bacteria_2836.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person911_virus_1567.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person912_bacteria_2837.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person913_bacteria_2838.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person913_virus_1570.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person914_bacteria_2839.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person914_virus_1571.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person915_virus_1572.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person916_bacteria_2841.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person917_bacteria_2842.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person918_bacteria_2843.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person918_virus_1575.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person919_bacteria_2844.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person919_virus_1576.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person920_bacteria_2845.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person920_virus_1577.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person921_bacteria_2846.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person921_virus_1578.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person922_bacteria_2847.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person923_bacteria_2848.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person924_bacteria_2849.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person924_virus_1581.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person925_bacteria_2850.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person925_virus_1582.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person926_virus_1583.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person927_bacteria_2852.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person927_virus_1584.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person928_virus_1586.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person929_bacteria_2854.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person929_virus_1588.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person929_virus_1589.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person92_virus_174.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person930_bacteria_2855.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person931_bacteria_2856.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person931_virus_1592.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person932_virus_1593.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person933_bacteria_2858.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person933_virus_1594.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person934_bacteria_2859.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person934_virus_1595.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person935_virus_1597.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person936_bacteria_2861.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person936_virus_1598.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person937_bacteria_2862.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person937_virus_1599.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person938_bacteria_2863.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person938_virus_1600.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person939_bacteria_2864.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person93_virus_175.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person940_bacteria_2865.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person940_virus_1602.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person940_virus_1604.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person940_virus_1605.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person940_virus_1607.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person940_virus_1609.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person941_virus_1610.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person942_bacteria_2867.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person942_virus_1611.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person943_bacteria_2868.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person944_bacteria_2869.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person945_bacteria_2870.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person945_virus_1616.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person946_bacteria_2871.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person947_bacteria_2872.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person947_virus_1618.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person949_bacteria_2874.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person949_virus_1620.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person94_virus_176.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person950_virus_1621.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person951_bacteria_2876.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person951_virus_1622.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person952_bacteria_2877.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person952_virus_1623.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person953_bacteria_2878.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person954_bacteria_2879.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person954_virus_1626.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person955_bacteria_2880.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person955_virus_1627.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person956_bacteria_2881.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person956_virus_1628.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person957_bacteria_2882.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person957_virus_1629.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person958_bacteria_2883.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person958_virus_1630.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person959_bacteria_2884.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person95_virus_177.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person960_bacteria_2885.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person960_virus_1633.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person961_bacteria_2886.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person961_virus_1634.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person962_bacteria_2887.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person962_virus_1635.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person963_bacteria_2888.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person963_virus_1636.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person964_bacteria_2889.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person964_virus_1637.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person965_bacteria_2890.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person965_virus_1638.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person966_bacteria_2891.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person966_virus_1639.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person967_bacteria_2892.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person967_virus_1640.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person968_bacteria_2893.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person968_virus_1642.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person969_bacteria_2894.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person969_virus_1643.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person96_virus_178.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person96_virus_179.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person970_bacteria_2895.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person970_virus_1644.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person971_bacteria_2896.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person972_bacteria_2897.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person972_virus_1646.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person973_virus_1647.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person974_bacteria_2899.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person974_virus_1649.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person975_virus_1650.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person976_bacteria_2901.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person976_virus_1651.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person977_bacteria_2902.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person977_virus_1652.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person978_bacteria_2904.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person978_virus_1653.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person979_bacteria_2905.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person979_virus_1654.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person97_virus_180.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person97_virus_181.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person980_bacteria_2906.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person980_virus_1655.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person981_bacteria_2907.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person981_bacteria_2908.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person981_virus_1657.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person982_bacteria_2909.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person982_virus_1658.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person983_bacteria_2910.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person983_virus_1660.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person984_bacteria_2911.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person985_bacteria_2912.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person986_bacteria_2913.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person987_bacteria_2914.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person988_bacteria_2915.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person988_virus_1666.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person989_virus_1667.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person98_virus_182.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person990_bacteria_2917.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person991_bacteria_2918.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person991_virus_1669.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person992_bacteria_2919.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person992_bacteria_2920.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person992_virus_1670.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person993_bacteria_2921.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person993_virus_1671.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person994_bacteria_2922.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person994_virus_1672.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person995_bacteria_2923.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person995_virus_1676.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person996_bacteria_2924.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person996_virus_1677.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person997_bacteria_2926.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person997_virus_1678.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person998_bacteria_2927.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person998_bacteria_2928.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person99_virus_183.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person9_bacteria_38.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person9_bacteria_39.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person9_bacteria_40.jpeg \n", + " inflating: /content/dataset/chest_xray/train/PNEUMONIA/person9_bacteria_41.jpeg \n", + " inflating: /content/dataset/chest_xray/val/NORMAL/NORMAL2-IM-1427-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/val/NORMAL/NORMAL2-IM-1430-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/val/NORMAL/NORMAL2-IM-1431-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/val/NORMAL/NORMAL2-IM-1436-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/val/NORMAL/NORMAL2-IM-1437-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/val/NORMAL/NORMAL2-IM-1438-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/val/NORMAL/NORMAL2-IM-1440-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/val/NORMAL/NORMAL2-IM-1442-0001.jpeg \n", + " inflating: /content/dataset/chest_xray/val/PNEUMONIA/person1946_bacteria_4874.jpeg \n", + " inflating: /content/dataset/chest_xray/val/PNEUMONIA/person1946_bacteria_4875.jpeg \n", + " inflating: /content/dataset/chest_xray/val/PNEUMONIA/person1947_bacteria_4876.jpeg \n", + " inflating: /content/dataset/chest_xray/val/PNEUMONIA/person1949_bacteria_4880.jpeg \n", + " inflating: /content/dataset/chest_xray/val/PNEUMONIA/person1950_bacteria_4881.jpeg \n", + " inflating: /content/dataset/chest_xray/val/PNEUMONIA/person1951_bacteria_4882.jpeg \n", + " inflating: /content/dataset/chest_xray/val/PNEUMONIA/person1952_bacteria_4883.jpeg \n", + " inflating: /content/dataset/chest_xray/val/PNEUMONIA/person1954_bacteria_4886.jpeg \n" + ] + } + ], + "source": [ + "!unzip /content/drive/MyDrive/archive.zip -d /content/dataset/" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "5wK25f7GNL5M" + }, + "outputs": [], + "source": [ + "import os, shutil\n", + "import random\n", + "import numpy as np\n", + "import pandas as pd\n", + "import cv2\n", + "import skimage\n", + "import matplotlib.pyplot as plt\n", + "import skimage.segmentation\n", + "import seaborn as sns\n", + "%matplotlib inline\n", + "plt.style.use('ggplot')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zvWVjnSuNAfa" + }, + "source": [ + "1. **Class Labels and Image Size**: \n", + " - Defines labels `['PNEUMONIA', 'NORMAL']` and sets image size to `128x128`.\n", + "\n", + "2. **Function `get_data`**: \n", + " - Loads, resizes, and labels images from a directory. \n", + " - Converts images to grayscale and handles errors during loading. \n", + " - Outputs a NumPy array of images with corresponding labels.\n", + "\n", + "3. **Dataset Preparation**: \n", + " - Creates training, testing, and validation datasets by calling `get_data` on respective directories.\n", + "\n", + "4. **Additional Variables**: \n", + " - Lists Pneumonia files and stores the Pneumonia directory path for later use." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "WBZDYkL2MyOO" + }, + "outputs": [], + "source": [ + "labels = ['PNEUMONIA', 'NORMAL'] # Class labels\n", + "img_size = 128 # Target size for resizing images\n", + "\n", + "def get_data(data_dir):\n", + " \"\"\"\n", + " Prepares the dataset by loading, resizing, and labeling images.\n", + "\n", + " Parameters:\n", + " data_dir (str): Path to the directory containing image folders.\n", + "\n", + " Returns:\n", + " np.array: A NumPy array containing resized images and their corresponding labels.\n", + " \"\"\"\n", + " data = []\n", + " for label in labels:\n", + " path = os.path.join(data_dir, label) # Path to the label folder\n", + " class_num = labels.index(label) # Assign label index (0 or 1)\n", + "\n", + " for img in os.listdir(path):\n", + " try:\n", + " # Load image in grayscale\n", + " img_arr = cv2.imread(os.path.join(path, img), cv2.IMREAD_GRAYSCALE)\n", + " if img_arr is None:\n", + " continue # Skip if image loading fails\n", + "\n", + " # Resize image\n", + " resized_arr = cv2.resize(img_arr, (img_size, img_size))\n", + "\n", + " # Append image and label to the dataset\n", + " data.append([resized_arr, class_num])\n", + " except Exception as e:\n", + " # Log the error for debugging purposes\n", + " print(f\"Error loading image {img}: {e}\")\n", + "\n", + " return np.array(data, dtype=object) # Use dtype=object for mixed types (arrays + integers)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "joXCAtzINb2M" + }, + "outputs": [], + "source": [ + "train = get_data(\"/content/dataset/chest_xray/chest_xray/train\")\n", + "test = get_data(\"/content/dataset/chest_xray/chest_xray/test\")\n", + "val = get_data(\"/content/dataset/chest_xray/chest_xray/val\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "UYtjlZ96NiqK" + }, + "outputs": [], + "source": [ + "pneumonia = os.listdir(\"/content/dataset/chest_xray/train/PNEUMONIA\")\n", + "pneumonia_dir = \"/content/dataset/chest_xray/train/PNEUMONIA\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ffOmGfZBODzO" + }, + "source": [ + "# Visualizing 6 random pneumonia X-ray images" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 344 + }, + "id": "aewEDdUwN5bV", + "outputId": "58531bfe-08ce-439c-bf3b-3a6a160d3aae" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB0EAAAKVCAYAAAC5/JPWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZRsWVXnvyMiMyMjMvO9eq8mirGgQAabQSgBwRFFWW0X2o22gNgCijJJA07wY7FEVBrolkZobXEAWSq0EwpOLUIDNkijyNwUDSWFUEBBFVWvXmZG5BDD74+3Pic+d+fNsqoAq97j7LVyZWbEveeeYZ+9v/u7zzm3M5/P51GlSpUqVapUqVKlSpUqVapUqVKlSpUqVapUqVKlSpUqZ4h0b+4KVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpcqXUmoStEqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKmeU1CRolSpVqlSpUqVKlSpVqlSpUqVKlSpVqlSpUqVKlSpVziipSdAqVapUqVKlSpUqVapUqVKlSpUqVapUqVKlSpUqVaqcUVKToFWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVDmjpCZBq1SpUqVKlSpVqlSpUqVKlSpVqlSpUqVKlSpVqlSpckZJTYJWqVKlSpUqVapUqVKlSpUqVapUqVKlSpUqVapUqVLljJKaBK1SpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpcoZJTUJWqVKlSpVqlSpUqVKlSpVqlSpUqVKlSpVqlSpUqVKlTNKahK0SpUqX3HS6XTim7/5m2/ualSpUqVKlSpVqlQ5zaXiyipVqlSpUqVKlSpfrFRMWaXKl09qErRKlZtROp1O46fX68U555wTD3nIQ+I1r3nNzV29KjdBrrzyyjj33HNjfX09LrvsstZr/uAP/iA6nU583dd9XUyn03/hGlapUqVKlSpVzkSpuPLMk4orq1SpUqVKlSr/0lIx5ZknFVNW+UqXznw+n9/clahS5StVOp1ORET8zM/8TERE7O/vx0c+8pF4/etfH9PpNJ7xjGfES17ykpuzimekfOQjH4nhcBi3v/3tvyzlv+51r4tHPOIR8cAHPjDe/va3R6/XK999+tOfjnve856xv78f73vf++Kiiy76stShSpUqVapUqfKVJRVX3jxScWWVKlWqVKlS5UySiilvHqmYskqVL5/UJGiVKjejACzyNHzzm98cD33oQyMi4uMf/3hceOGF/9JVq/JFymMf+9h49atfHc9//vPjuc99bkScGudv//Zvjze96U3xa7/2a/GEJzzhZq5llSpVqlSpUuVMkYorz1ypuLJKlSpVqlSp8i8lFVOeuVIxZZWvVKnH4VapcguUb/3Wb4273e1uMZ/P4+///u8jIuJ5z3tedDqdeOtb3xp/+Id/GPe///1jOBzG8ePH45GPfGR8+tOfbi3rmmuuiWc/+9lx97vfPQaDQRw9ejS+9Vu/Nd74xjceuNbPyPKJT3wiOp1OPPaxj218/tjHPjY6nU5cfvnl8d/+23+Le9zjHrG6uhoXXnhhvOAFLyig6Q/+4A/i/ve/f6ytrcV5550XT33qU2M8HrfW+c1vfnM87GEPi+PHj0e/34+v+qqvimc961lx3XXXHbj2m7/5m6PT6cRkMokXvOAFcZe73CX6/X7c7na3i5/+6Z+Ovb29A/e0nbP/mc98Jp7//OfHgx/84LjVrW4VKysrcetb3zoe/ehHx4c//OHWel6fvOxlL4s73OEO8fznPz/e/e53l8/e9KY3xSWXXHKjQAVt3Nvbi+c///lx17veNfr9fhmL6667Lv7zf/7P8ZCHPCRue9vbxsrKSpx77rnx8Ic/PN75znc2yrr22mtjOBzGRRdddADQIpdcckl0Op1S7ypVqlSpUqXK6SsVV1Zc2dbGiiurVKlSpUqVKjdGKqasmLKtjRVTVjkdpCZBq1S5hQpGnxVYyK/8yq/EYx7zmLjwwgvjKU95Svyrf/Wv4vd+7/fi277t22J3d7dx7T/90z/F/e53v3jhC18Y5557bjzxiU+M7/u+74tLL700Hvawh8Wv//qvf8nq+xM/8RPxMz/zM3H/+98/nvjEJ0a3243nPOc58bM/+7Pxspe9LH7wB38w7nznO8cTn/jEuNWtbhW//Mu/HM985jMPlPOKV7wiHvrQh8Y73vGO+O7v/u54xjOeEcePH48XvehF8aAHPShOnDjR+vxHP/rR8fKXvzy+4Ru+IZ70pCfFYDCIF7/4xfGjP/qjN6j+f/M3fxMvfOEL46yzzopHPOIR8YxnPCMe+MAHFhD3/ve//0b1x5EjR+LVr351zGazeMxjHhPvfve741nPelacd9558Ru/8Rs3qizkEY94RPzKr/xKPOhBD4qnP/3pcc973jMiIi699NJ4znOeE91uN77zO78znvnMZ8ZDH/rQ+F//63/FN37jN8b//J//s5Rx7NixeOQjHxkf//jH401vetOBZ3zqU5+Kv/zLv4z73e9+cfHFF9+kelapUqVKlSpVbllScWXFlVkqrqxSpUqVKlWq3FipmLJiyiwVU1Y5LWRepUqVm00iYt42Df/6r/963ul05p1OZ/6JT3xiPp/P5z/zMz8zj4j5xsbG/AMf+EDj+kc96lHziJj/3u/9XuPzb/qmb5p3Op35a1/72sbn11577fze9773fHV1dX7llVeWz3nGW97ylgN1uvzyy+cRMf/BH/zBxuc/+IM/OI+I+R3ucIf5FVdc0XjG2WefPR8Oh/Nzzjln/uEPf7h8t7OzM7/73e8+X1lZmX/uc58rn3/iE5+Yr6yszDc2NuaXXnpp4zlPetKT5hExf8ITnnCgjRExv+997zv/whe+UD7f2tqaX3TRRfNutzv/7Gc/27gnIubf9E3f1Pjsc5/73PzkyZMH2v2+971vvra2Nn/Ywx524LsbIj/xEz8xj4h5v9+fR8T8DW94w40ugzbe8573nF911VUHvj9x4kTr55/61KfmF1xwwfxud7tb4/O///u/n0fE/BGPeMSBe9CBX/u1X7vR9axSpUqVKlWq3HxScWXFlTdEKq6sUqVKlSpVqlyfVExZMeUNkYopq5xOUneCVqlyC5DnPe958bznPS+e85znxPd8z/fEwx72sJjP5/H0pz897nCHOzSufdrTnlZW1SAcV/B3f/d35bP3v//98ba3vS0e8YhHxCMf+cjG9WeddVb87M/+bOzs7MQf/dEffUna8NznPjduc5vbNJ7x8Ic/PEajUTzpSU+Ku9/97uW7fr8f3/d93xd7e3tx6aWXls9/53d+J/b29uKpT31q3O1ud2uU/wu/8AuxsbERv/3bv31gFVlExIte9KI4fvx4+X9tbS2+//u/P2az2Q06KuG8886LjY2NA5/f+973joc85CHxlre8Jfb39//ZcrI873nPi+FwGLu7u/F93/d9cckll9zoMpCf+7mfi3POOefA50ePHm39/La3vW18z/d8T3zkIx+JT37yk+Xziy++OC6++OJ4/etfH1deeWX5fDqdxm/+5m/GxsZGPOpRj7rJ9axSpUqVKlWq3HxSceUpqbjy+qXiyipVqlSpUqXK9UnFlKekYsrrl4opq5wOsnRzV6BKlSoRP/uzPxsRp46TOOuss+IbvuEb4od+6IfiMY95zIFr27b93+52t4uIU2eoI5yvft1118Xznve8A/dcddVVERENx/7FSFu9bn3rW0dExP3ud78D3wFCrrjiivLZe97znoiIeMhDHnLg+mPHjsXXfM3XxN/8zd/ERz7ykbj3ve/9zz6/rV+uT/78z/88fvVXfzXe/e53x9VXXx2TyaTx/dVXXx0XXHDBDSoLefGLXxyj0SgiIt761rfG1VdffQAEvPSlLz1wdMZ3f/d3x33uc5/GZ/e///0Pfc473vGO+KVf+qV45zvfGZ///OcPvF/g05/+dNz+9rcv/z/5yU+Oxz/+8fHKV74y/r//7/+LiIi/+Iu/iCuuuCKe9KQnxfr6+o1qZ5UqVapUqVLlliEVV56SiisXUnFllSpVqlSpUuXGSsWUp6RiyoVUTFnldJWaBK1S5RYg80Ne+twmZ5111oHPlpZOTeXpdFo++8IXvhAREX/9138df/3Xf31oeVtbWzf42dcnR48ePbRe1/edVyzxMvHDnDeft521f0P75TD5pV/6pXj6058ex44di4c+9KFx+9vfPobDYXQ6nfiTP/mTeP/739+6quv65F3vele84AUviDve8Y7xAz/wA/H85z8/nvjEJ8Yf/uEfNq576UtfGv/0T//U+OzCCy88ACxudatbtT7nj//4j+N7vud7YnV1NR760IfGRRddFGtra9HtduOtb31rvO1tbztQ90c+8pHx4z/+4/Hrv/7r8axnPSu63W782q/9WkTEDX43QZUqVapUqVLllicVV56SiisXUnFllSpVqlSpUuXGSsWUp6RiyoVUTFnldJWaBK1S5QwVnPkv/dIvxdOe9rQbdE+3e+qE7LyqKKLdmX+phTpfeeWV8dVf/dUHvv/sZz/buO5LJZPJJJ73vOfFrW51q3jPe95zANiwUu3GyPb2dvzAD/xAzGaz+O3f/u34uq/7unjLW94Sf/RHfxS/8zu/01g594lPfOIGlZlfPI8897nPjZWVlXj3u9/dOMoj4hRIeNvb3nbgnsFgEI997GPjv/7X/xpvfOMb46u/+qvjL//yL+MBD3jAgZVrVapUqVKlSpWvbKm48oZLxZUVV1apUqVKlSpV2qViyhsuFVNWTFnlSyf1naBVqpyh8sAHPjAiIv73//7fN/ieY8eORUTEpz71qQPf3ZCz6r9Y+Zqv+ZqIOHUUQ5YTJ07E+973vlhdXT3gPL9Yufrqq+PEiRPxoAc96ACo2NraKkdf3Bj58R//8fjYxz4WP/VTPxUPfvCDo9vtxqtf/epYX1+PH/uxH2scrfHFymWXXRb3uMc9DvTLbDaLt7/97Yfe96QnPSk6nU684hWviN/8zd+M6XRaV1ZVqVKlSpUqVQ5IxZU3XCqurLiySpUqVapUqdIuFVPecKmYsmLKKl86qUnQKlXOULn44ovjG77hG+J1r3tdvPKVr2y95oMf/GB8/vOfL/9zjvurXvWqxgqrT33qU/H85z//y1vhiHjMYx4Ty8vL8fKXvzwuu+yyxnfPfe5z4+TJk/GYxzwm+v3+l/S55513XgyHw/iHf/iHxpEb+/v78R//43+Mq6+++kaV9xd/8Rfxile8Iu5zn/uUdyhERNzxjneMl7zkJXHixIl4/OMff6OOFrk+ufDCC+NjH/tYfOYznymfzefzeN7znhcf/vCHD73vLne5S3zrt35r/Nmf/Vn86q/+apx11lkHXkxfpUqVKlWqVKlSceUNl4orK66sUqVKlSpVqrRLxZQ3XCqmrJiyypdO6nG4VaqcwfKa17wmHvKQh8QP/dAPxcte9rJ4wAMeEGeddVZcccUV8YEPfCA+9KEPxTvf+c4477zzIiLiAQ94QHzjN35j/M3f/E3c//73j4c85CHxuc99Lv70T/80vuM7vqN11dWXUi688MJ46UtfGk95ylPivve9b/z7f//v49xzz423ve1t8c53vjPudre7xYte9KIv+XO73W487WlPixe+8IVxz3veM77ru74r9vb24i1veUtcc8018S3f8i3xlre85QaVdfXVV8fjH//4WF1djd/5nd+JlZWVxvdPeMIT4vWvf338+Z//efzyL/9yPPWpT/2i6/+MZzwjnvjEJ8bXfM3XxCMe8YhYXl6Od7zjHfHhD384LrnkkvjTP/3TQ+998pOfHG9605vic5/7XPzYj/1YDAaDL7o+VapUqVKlSpUzTyquvGFScWXFlVWqVKlSpUqVw6ViyhsmFVNWTFnlSyd1J2iVKmew3Pa2t41/+Id/iF/4hV+IXq8Xv/u7vxsve9nL4m//9m/j9re/fbziFa+Ie97zno17Xv/618cP//APxxVXXBEvf/nL473vfW+8+MUv/rI49DZ58pOfHH/1V38VD3zgA+OP/uiP4iUveUl8/vOfj5/8yZ+Md77znXH8+PEvy3N/7ud+Ln7xF38xBoNBvOIVr4jXve51cfHFF8ff/d3fxe1vf/sbXM6P/MiPxOc+97l4wQte0PqugIiI3/iN34izzz47fvqnfzo++tGPftF1/9Ef/dF41ateFRdccEG8+tWvjt/93d+N293udvGud70r7nvf+17vvQ9/+MPjnHPOKeVUqVKlSpUqVaq0ScWVN1wqrqy4skqVKlWqVKnSLhVT3nCpmLJiyipfGunMv1R7nKtUqVKlymknH//4x+POd75zPPjBD75R72SoUqVKlSpVqlSpUsVScWWVKlWqVKlSpUqVL1YqpqzypZa6E7RKlSpVvoLlv/yX/xLz+fxLctRFlSpVqlSpUqVKla9cqbiySpUqVapUqVKlyhcrFVNW+VJL3QlapUqVKl9h8slPfjJe85rXxMc+9rF41ateFfe6173iPe95T3S7dV1MlSpVqlSpUqVKlRsuFVdWqVKlSpUqVapU+WKlYsoqX06pSdAqVapU+QqTt771rfEt3/ItMRwO4+u//uvjv//3/x53utOdbu5qValSpUqVKlWqVDnNpOLKKlWqVKlSpUqVKl+sVExZ5cspNQlapUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVM0rqfuIqVapUqVKlSpUqVapUqVKlSpUqVapUqVKlSpUqVaqcUVKToFWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVDmjpCZBq1SpUqVKlSpVqlSpUqVKlSpVqlSpUqVKlSpVqlSpckbJ0s1dgZsiD33oQ2M4HMbq6mp0u92Yz+exs7MTe3t7ERGxv78f3W43+v1+dDqdmM/n0el0otfrRb/fj6WlpZhOpxER5ZrZbBZ7e3vR6/UiIhplTyaTmE6n0e12o9PpRETEdDqNXq8X3W43dnZ2YmVlpXHNbDaLfr8fs9ksdnZ2YjqdxurqankOz42ImM/n5Wd/f7+0czabxWw2i6WlpZjP57G8vByz2Sy2t7djd3c35vN5LC0tRa/XK22cz+cxm81K+yif9lNv6ur+ms1mERHR6/Ua1/D50tJSox+Xl5djaWkpVlZWSn9PJpNSB+q8uroavV4vBoNBHD16NNbX16Pf78d0Oo2dnZ3Y398vbex0OrG8vBzj8bj0wd7eXunXXq8Xy8vL0el0Ynt7u7R1MpmU6yOi9PnKykoZ016vF7PZrJRxwQUXxPr6euzt7ZW+5n50o9vtln5YXV2NpaWlWF5ejvl8Hnt7e7G/vx/T6bS0eX9/P2azWXQ6ncZYMtbuc4/BdDotYz2ZTGIymcTy8nIMh8PyOfVDr3idb6fTiel0WtrhOu3u7jb0gfusL5RB3/N7ZWWl9Dm6Pp/Po9vtxtLSUplLe3t7sbS0MCXT6TSWl5fL9ZTNc1dWVkr59O9kMomlpaXY39+P5eXlRt+5DNpCf2XhGegL83cymcTu7m70+/1SB/TBeuN5SJvRGWRpaamMG+1lLK3HS0tLZdyoA/OEPqeu4/E45vN59Hq9xrgwXrSXunmOtbWdeq+srDTGH73odDqlj5j/2JHZbFbaQjmTyaTUzXrsuqIntJN+oQ/QU6Tb7cby8nKxNdZL7Br1ZHwo2z/MFcoejUaxt7dXbKTnp+tGnWgr84v28FzXjb7yNZRtHeU39aYs6jOZTBr6y9j3er3Y39+PlZWVoj+9Xq/MY/cN7aNdlMucZbyzML+pn20H48t3jI19AH1A+eg2tp8+Racmk0nxzdPp9MC8xF75OdTDOktb8Ql7e3vlOl9PnfEJERGXXnrpgX6oUuWWJueff37Dxi4vLxe8wXw0djx69Gi84Q1viLPPPjve8573xH/4D/8hjh07Vmz7zs5ORET8+I//ePzbf/tvYz6fxy/8wi/E+9///jj33HOj3+/H7u5uRESsra01bCnPYb4yR7mGsvlufX29+PTsfyaTScF6tlH4nIzv7HdXVlYiYjHH8UVgIZ6PDY9Y+E2+t63Fr9tOYdtpK9dg0+xHjbPx5+Af21v+pq7dbrfxDHzIyspKwfKuo21atsv8jZ2nD+nriCg4g/tpl8W+jDbj941PrAP2vegHtj7jaLeV+nGv2xWxwOz4AcYQnSBOQGeM59E723yuMa5oG1/Gajwel2v4HJ00PjYudN85frJ+2EdlfOe+pTz6Bv9Pme57zzvPS8Y/P994mvlHGfbZ/X4/1tbWDsTOjiuNp1wmbcxjAPamfrTT5VrvPS7WD/5HPx3zcd3e3l4jbgVf0E7bG+aCbQ14xc9lTriPs72g3cR/jvvRZzAp/ef5gY2jrru7uwWngrmM4Wmr5xR18zO5Fp2IiIIbjdX53riJPnO7qR/1cFx5n/vcJ9773vfGxRdfHO9617vi4osvjt3d3fjgBz8YGxsbcY973CMe8IAHxO///u/HYDCIzc3N+Hf/7t/FYDCIz3/+8/HWt741ZrNZHD9+PL7927893vrWt8bHP/7xeOxjHxuf/vSn4w//8A9LnaxjVapU+fLKox/96AaewQZjt2zXbdvgCOfzeayursaRI0didXU1hsNhsUE7OzuNeB/bhV2CY8T+mA9wDIhdhTPDjo7H41heXm7YS8o1t7a5uVkwqmVvb6/wYuYn7Iv5e3V1Nfr9fuE3jeX7/X7xb1tbW3HNNdfEaDQqdadvKQt+c21trfF82gAmob/wR/gi2gt2YEwiFpwaf+PfjAXMXUQsfBNjhR4wvh57cAd8Kf1P+fYdlHH06NESg7jfMoZE8Jv0O88zVnZfWU9dhnl7c8+rq6tFf83h4dvdn+bT7D89D8ARxEKz2ax8zj20nbGAc86Y3DkLrs34fXl5ubQz86dw19xPTMd8Bnd0Op2iR+YarSseH3go4wtjW8/tzA9Op9OCn6gTuIf+Zd6am6Q+1iePATkPzwPwaLfbLfy1dcE64u+M/+lrYyJz5/xPndGVlZWVWF9fj3PPPTeGw2GcOHEiRqNRY854Xk8mk9ja2jpgTxxXOhbJPOZsNisxvnE3fcFYra+vx2AwiOXl5djd3Y21tbWCYRn/fr9fOHrHM8QLOU/mnAbjQL/M5/NSDrpP+egCYwZ2xmZ6vNHryWQSr3nNa+LGymmZBF1fXz8Q2O3u7sbOzk5R0pwQQFAsDDOTKyIaATYJUTs5E7ok9qxIKIVJHupgA85zHejxY1KD77KDaSN+ERtjJwBcfibGnSSkrfSHQQNKimODqOeeHFC7TLfBBg4DgjHu9/sxHo9jZWUl9vb2inFG0RlDt43nYxBM9kAamkjvdrsxHA6L46cOGGQAV6fTKU4Ih0hbMExbW1uF3MJ42+DnhM1hxJaNpBM1m5ubERGlDYj1wXoBMPW1JkbaEjAmrgBrGDR0IDsdAA3zwHOMa0xU0Z/MD8TkJ8bO+uM2Qjzg4CFUTax57jvJk4kDj09+huesHQnC/PZ42sm6/ganBo7c62ScCUqTQya0c+LHf1sPDJbQBxO4BjQmhbmfee3kl4VrscG0xX/Thp2dnQPEIX3ke7Dduf7UG8AYsQgaPNeYl7YTBlL0K/OLNvn+3IcOsDxPDTQYP//dJvRVBik8z7qKPnuu5DpZx92H/p92ut+z/3GdTWxbP/y8lZWV4g8AQIiJToMfgzXrgeua/V/2Ge47Jy+yGAznoKdKlVuyZNxnW2CSiADiMEHvWTD1lre8Jb7ru74rut1uXHjhhfGhD32oQeTj8+3j2wgDBBKAutjfub5OMtmX4pPywpocrBrL+pqIaJTvehO0ekFaTv7ZDnEN/sV4kOSIbb7b54AVMR4y/uY714HP3N6MoSnHGNJjhO20PzXuMib295STMapxfFu70QX7u4x9sx+1v3Nbs265DPeXcQb65j6xfri/ucdi/0kfMs60KfsoL0iiDBYn0Pf2Z07I09fGIZ7PlGdsgc5yXW4nxAYJxhzvWi/cj7Yr6IjjkPF4XEibfr9/YBGpx959mPuJmIP4irZbPzKecTltft06Y3zpdrgt1nl0xTownZ5amOzrbctsH9AJFn1ynfEhY8iCMveZsXxElNgFnSM56v6lTOyRcTGJA7gM5kdOsPIMk47UwfbesaHnAfd4zNwe48j3vve9MZ1O4+/+7u+i1+vFu9/97nLdyZMn453vfGf87d/+bWP+/uqv/mp5JuV95jOfiQ9+8IOlL1760pc2xuYwfF2lSpUvjxjnEdctLy8XX2FbGbFIrCFe3OakGbF4to/mhSKaXBm8lP0d3CHJB2zk3t5eWWS2sbFRMBv8Hf4Dfm9zczNOnDhRnuU6RUQjWZjxKviAupkXAI/SLyT8rrnmmrjuuutKP+b42X1re065jIO5L/OAXJv70Rgy877ganwefWE+2ziUMXScbgyB3/KCxJWVlZLk6HQ6sba2FoPBoKFzxkLUL2N26gMfATftjU72XXnxt7ku8/Te+IRu7O3tlc0K+GvrnxNo3ljQ5vvpW8dH9CPzqtPpxGg0KjFcxnKMgTkb2p/7j7aCF51cRM/MC3msHWfSRuYUnzHm9LFjVJ7vRfI5gWWMRZmU5fEBIzveMa9GPRh395PnAZzVbDYrG96M+42trDte/ODyiWfJK9E2PgOLrq2txdlnnx3r6+vR7Xbjuuuui+3t7ZjP52WxRZ6fjIFxmXnSzJu5HQh6mO3S8vJy9Pv9Up88/ktLSzEYDMpijd3d3WKnzCs6PjIvubS0VLAqbXOiNON484pO+iKDwSCm02lJGjNPvxg5LZOgEc1Ey/7+fmNXDB1uojtnva3EOCevQMlkNkaTHZBra2tlxUheDcVE9oAyeb2L7LCAPZPj/LaRg4SiTZ40fObvcvBg5+agyUbIDhRH4uSng/i8A64tmYAhzIlCxqTT6ZQAMyeDc195Ra7JBxt2dhzaQfd6p3akHjlypDgr7vPO1ogohodymPy7u7vFeO3s7MTW1lbRH5MU1Nsrp9oIgGzwqI/7x6u86COAF3WNiOKc0V90G4dsQ5RXZzMXuIb2AChcR4CA9SMbwCwGSfS9nYv7zgDCxjuTb20g2bqPzmHY6Q+ebcDq+uVxymIiNKK5c8NjanDjBCh6mgGiATY6lYnFTIiYuMnzuM2GeU5FLHZ4e84ijKnLYA6YGDUgNjmNU3V9cYJ2ougc+secyUSpbR1lWofZcUjdKd+23QEEz8iJ+YiDhBKfGYgbiKJnrrP7rW1OmKS2PaIPsTm2LbTFc80+xjs1KSv3JSSc9YeFJ6waQ1f39vZKIhvwmO2754JBbcRi0Q/Pte/2uLaJdbYtodAGgHxNBoNVqtySxbbdSSfjyowdPHcICvGN0+m0saiLZ/ikE5NRtuWZYKd84wvmp4kY+y7sKiufc4LDAV0OjDJeou20y7aBZIZxPZ/xHGMV2pF9n30v5Zno8UK47DM9XuCMHJw6SKUMgl8/N2MOj43xnNtHeV5wZN/isbHvdr3d/xHNZKoTp8YcOe7I8UsbNvFiHePKthiFetje24fQFsY792HWoVxnj7sXUTmm4flOSBrzeX5lkoLPTLLZf3sMPPfxv3mcd3d3G9jdfeX6tvWjCVXrvIVTFiCQHQOZAMpzJmIRM6AnlGM8mGPONnx9fZ/lZ4Olc3I962lEExO67uAs+t7PMNGZCTYvLES8eCIvrnO8YiLWpwtBejq52+12iw01j0Ac577wGLN41qdt2AZmu5hjuDyXbQ9si+h/2pcXgnu+Ms+ov3GjCV7a4jpnXqZKlSpffrEd8qIFx8FeOI2Nyomz7IuMlyaTSeHecmKHODTiIN9pPEu9zCNC8LPRYm1trdhd/NPq6mrM56cSpZPJJEajUQNT2d7TJmM8t9/JSNv+vOh4aWkpbn3rW8dZZ50Vm5ubcfLkycJRzWazssuR/sM+2qfhN8BUPJdEFHaZuN07a80tcU+bf2Y8aAs4KGKx2CuXxfjBRTihYQ6cJAs7Od1/xkA825ifk+o8BnBTbIgyT8T48QzrGJ8Zu6GX6B3P293dLf3rzVLWE+sAOtrr9WI8HpdTHrjGu0CNQ3Z3d0tyzZjQCVe3izE0ljfeh1+iT5hr1NfJuhwrXZ/PtU3geuNPxpm2MQ99r+NZ53BoW8Yi9JdjCO4z/rEOUw/a5r4zLqEdzD+e4VOOzIt6Q5xjWfo14lTS9ayzzopjx46VEzO3trYa2M3Y1LZjNjuVqCUBb8xm/fIpdbk/PY/hWPv9fgyHw2Ifab9j6f39/RiNRjEcDhuL5LAfnM5j3tIxDH2Oj0BvmTe2JRkvk2g392kd9yIK84o3Vk7LJCjENwpBhzJpVlZWyrbaiOYRVSQicA55haifgXiCMSG3t7eL8aI8jBJKkVfT5CSrjznLyp+JBdrsHYMO9mx0PHnajJeDlhxE5+fmCefVTtTVx5cxBt5lxf8AFR/n6UnKJOBICQw1Rpi6Efi5nf4bI+XVEzZOw+Gw6IfJLTviDGq63VNHWFx33XUlAbS7uxubm5tlpXPeFcfzTJz42E76h2N3WdVlJ4Ru7O7uHgAf9IWNh4NyOz2vvkOGw2FZQGAQgzG1k6DPMIRZdz3WDpK9WoryXXd0in6j3OzwEPqEe9FFnuukMXUyKUgfmmTwfa477cpAnrrbMTshbd328w22PB5epZX1hs+9Ms2S53om4ijf5DV97d/ubz/DCxfy83KAYD0w2eM5nglCXzefL45v9pHmgAbqw1zh+eyO9UKTvFjE4N6Elsc1Ez6eBw4As46jW5TvVW62v/6be3Dktq8EFegUSQwkj6H7k/nlfsc+A9q9cs4kVrfbjcFgUGwjxBmr27J98FxwgtJ+0PPDOxrQIwM2Sybh/Psw23DY53kXc5Uqt1SxfntetBFI+RoLc9C+y/48J+nwDdgfAlbqxJy1zYyIA7bGNsD4fGdnp5HowbYZS+YAEuxnfGs7gJ31SmFIpLwLwTaZdlM/43fKd38ZlyD2syY7PF4ZS+f7uc/tdlzjQNb1sd10eRkDOBZxcsEr9+3/wM45vuD51r+2OnjMPVbWD5OIxg6ZJM24IQfx1l3Gl/jIJwB4oZX9pWMFf+d+4f+VlZVCDKCvbaQueu240LjTcQFtdxkuyzEDbZlMTh2j5sUFxlAmqzJR47KJ0cBNbr91djqdlnnLIij6133MHDc+xcYYZ+fyPc7WK9uAvDjN9czJsUyWMga2GV6kRr3oK2PKPI/53Ism+TyTxtTJ84vP2IVhUmg2m5UEZ0SU4xu5ht2llM+ccCLRsT7toH+82wqbaxzrhEbG85lQM0nFd44BPV9to30tfWJs6LpnMszzJtucKlWq/MtIttOZP4EfBX+Zg+Ae7CUckheiGcdFNBN89i/EoPP5YqcZ3Br1xNYPBoOGPVlZWYmTJ0/GeDwuHOF0euoo/KWlpRiPx7G+vh7z+TxGo1Gxnba7xMTm2eDwEPs9c0CUZSx95MiRGA6HsbGxEV/4whfKtdmX4ROMe+jLXLbtMP2CHzLfRb/7XuNqL8Sxn2O3ohMxiDEPz8b3GDetra3FcDg8cD/PBGegA3CU+FjHEuic/bPxSOZxckyEfs5mi1d42E85eWz/Z96U/qUNxt+ZJ6JPrO/Mn7zb1/7UGyr8/Igouk6ZzCvz4/a7cM3MGcphQQD1JQ4jz+I4JOs5yTGXZ53q9U5tQprP541FDWAVx60Rzc1reREXbeHkDXPN5nxpX+aBsu5Sf8d78GeOHTzGzJGIaLymjutXV1fj6NGj5RjwiCgbDZwM5jnMF9cfLpDxpl88DtxD/xibe17O54tXxGxsbBRO33ZqPB7H6upqqRs65qQlHCLXeZe7czbs+KaN2G7nMTLmo10+9dD40ePlcbmpclqyg5DHEdHYuUenoMgmNzAKnkgEdzYWDqYQExUoPoYtYhFU2iBynScmWX+Mnh1cJlEsXt1JvduudUCYJwZGFGPiFTb0ldvf9gwHhvQnY8DndtQovJ1DTh7ZmEcs3o/E8z1xnCTMOxTc7whtdbDFtdSRFWMAH35MtNjwOOi30fc76ghMffQCfUcQTH+hyxlAGlR6rKg/zjKTNhgo+pCxIaGRnQzJItpgw2kCgUQpO4G9Zd06Yx0xmUGZTtjQr71er7wvFz1zu2zo8qokA2wbfhNylIuxpV1tCeksBqJtoMTBOkDJfYvTMFHj+e854h2rGbQZsLguXtnl/qYf6WPrAs820ZjJHx9fZgCHmJT25yb3sLXc73Jc3wy+AVz059raWrHrPNOLBUxw+zP0inGlTbTVdXTZmdBxn+WdQ04A0i85MPH8zLpqUO0ktUlcj1cGoTnBbpDsvnEiHZBn0s+2z/bBO2v53HrMPZnotJ3kc787wc/LupR9GM9GMpGaxePjtlSpcksXzwv7poho2APmYBYHQsyBlZWV+I7v+I6IOLUj80//9E9jY2OjlNPpLI7DpQ4Ri4UgFpJQDhQjmovesIcsaMGO55XztlMOOL3gwrjH+LIN02JLM4lE/Wzfsh+3T864Ht9pvxXRfA8i7THGwtdlvO+kr4kixs8YxmNyWN25z5jB4sV9HqtM2GSCzvFGJhDoc55n3+R3MFrH6Ku2uIVg2DFJ9sOOO1ikk3Em5eSA2uPhz+1LclyCjnP6D3U3aZjLz8Iz7Xc9nvajXG+fxWprcIZ9qOuNLqHneUzBFsQlHhsv1qXfs7/lXhZjOjbge2MnxoC6ccqEiWyLbQDjwxh6/ngXUsQiNnY93Oe5TC8K8NzrdDoxGAwaMUnGI20xiXWI64gZ2zBujgf9ue2b201fLi8vl9N3HDO3jZOTrm0xkO2K41FzGG4Tn5mIbsO1tklZTMZm8WduV1t8lv1ilSpV/mXEeCb7a/tkx3T4bGPS7D/m8wWXRpxtbsM8qvlFODJvaoDXWV1dLafWYVPG43E5Brfb7ZaNGRyviK3b2NiI0WhUuAbbJ/sft43f+B38S8ZITuyAp6fTaXkn397eXmxtbTWSsObPwIjeuWl/43qaO2bcnGDhe/rRuNR4xmNtPsp+kfHxj5NyEQt/B69jXtgJbWIMb/zpdrslgYbe4NPpz4xT7W/BbTzPvtB9SR+5LxyfMK6DwaD0PfgM30tbHfPYz8PzmtNjHrie7jNjQnNOEVHe5Uifc4IHPhvfTjm9Xq8k7rnG3F8bF0j/8AxiGcaIfjVP6/kKPz6bnXrP7Xw+L+/jNKeE7nkjC2Pi9hCD0Feev/lVFeYd6VNzn3yGHjg5F7FIGHvu5807jhdZOLm+vh7D4TC63cWJavCb8H88BxtCf9nueaej8TD5AdsixwgZH/M3mx0YL/O94Ff6cGNjI3Z3d8tmFMdRjo39mgjnkxwve8co/cA8p53olm2B5zvjmxfK5bjyhsppmQRlwjLRvfI2n0HNZ0wsHBAkO/9zBCOGz7uP2AbNYFlJnUjx+wYdDDB4fg8SAQqT3kGqEzieoDgq2kNZJv2zE8So5s/dF/RpNhbcQ33cDw6uXTb/U59sPJjwTEiC6t3d3Th69GiZ2HzOxDIZ72CdsUDypItoJrKoD6traRuTkbo5geMJTt+xWgi9WV5eLobN5JUnKnXyao2IaKycs5Ohrvv7+42jHzLoYLdbt9uN8XhcxjYTPTzHhKcBwurqanGUnhscLcFKFgyv9dzHyxqkmfDwGORV8tmx4xw9jwy+3b+eL9YJ64JBBM6bcbX+2sGY9PAzTGoY4OZ6MgbUl3EBcPMc2kQAYVLUpBYkkpPx3IejpX05WMCWYD8M1qyfGWRQbxNTuf0WEzSeTwhzz/aO/vMuGNrGD0m74XAYg8EgBoNBmXf0Nceg5JVNR44ciaWlpThx4kQrQdhGujohSfkZnFBH96H1EhDhRKT7mHnE4hjbXfoB4pPjbGyjEcAUf5tIw48xt7xrH2BM2/MiEeuP5zpzh3rRj7ZD2Ev3rQMejuSgL3ku99gmeJ7kMfF8c3/ksahS5XQQ+2VjLQd4DmYsnqPMt6WlpXjQgx4U3/It3xKdTife+MY3xjXXXBPHjh1rBF8m/+07bcdtI42bI5okB98T9GGTwB32kzzH5WADnKwwWU9bjcccCBvDOVjKfczf+HfwizE35Rtjcr/JJPc5ft62ivtclp9l7E5dsq/herAg42ssz732I9dnH22fjUlY4WvSwH1Mez2eeVzx8zzTz7X/NWlkPbcNN4bhuR4TdC4nsRwXeVxdLpjKfUcg71c1QJrmhLj9nAmcjF/9XP+2LvszjmLLCX/a58SqyUbXK+uR6+Mjia2vuU18nzFJW5zYNt72v3m+eSGB+8nPNoa1nlnPbZvcv21igjeTuHlO+Huuz6SL4xqwHZ/TJ+4Hl5eF15l4x6bHI2M/t9eEsRc/mjwz6WnSzGNP3XM/O55CDmtHlSpVzhyxv8641OKNEdk2mFczkW2CPSIaJx/Z5xMr81yT/6PRqMG3wBVA9JtXIA4mZh0Oh4VfcIzLohj7L/tXc3V8R0xtDGp8i30nQev+JZ7mJEOOyR2NRmUXXsTi9DjbZ/rS9t541j7aMb0TtfgEj6U5L/vJiOaGBnwqzzIXD16ivryD0FyQ+U1zGJSbsTE+MvMl3gBivY1YHDdL3amv+zXvPqXtjj3Mp/d6vfIe9YjFsc6023gSv+tkjsfeY2f+xbyJF5XzigK4WXPbxpDwauQfvDnD5WVsyn2Zq6RujIfvz3jMvGFeAHjkyJGS6G8r0+NjW+K4gjlEEs8JVTAXZVMnJ9WdtPXYHrahxbhveXk5hsNh9HqnNlsQG/CDTsMTemy53/PM48xPxs/c7wUO7jNz43DJ1kn6nwUIcHWuF7bFGyrAovTP8vJyjMfjmE6npSz0DTvGsx3D+ohbH9ntOMT41bYbW2w7Yx29qTzfaZkEZTeaV304qeKANq+esBJHLM7CNkFDcsROEYfZ7/cbwSpiR2eFjlgE5zh3EnD9fr+sNsplrK6uxrXXXtuYeCbnMxixkzEhk4OW7MBx2nznYBBxQGxiIJNDOYFkB0k9bVyog3c6MnE4fslBN31posQ7GT1xHdD6+Eb0xgEp5ZuAcyKJNmGY3NZerxfD4bC0mSQMdeVej4sDeusmz6AdGB9AEQ7Pzg/DgqFD19oSBNaRiEXS3kAiAxs7cB/r0EbuMDZONmZiwte6/23YGAODt6yL7tfcrlw3/85lomN25LYTdjIu359Z39BnA2PvGkdsK/yb+c3OWI4vnc/nB97hattkncoEYh4LO0/PK9rt+YE+uW15Xlgf/DnftX1v0i0TwB7jbrdb2o194Az+vCuKOYEes2o+4pRj93ucbf+so1mnsz1wv9h+WgeZOw74HIR5YYSduOeaQTrPNHmXgaJ10yv50B/sJDrVRqRRT3THiQ/qYHKQsrCfBiwZgNqneOeBj433c3JwjWRC27rmcUUOIw2rVLkliskl22/7JEiCPEfOO++8+JEf+ZHGiuC73/3uca973StWV1fjAx/4QLzkJS+JW93qVo3gxuUwl7xC13gX+08Q42A3YrFAaTKZFGIKG0V59j9uM39jD01GUIZ9m0k44wjjW/uVHMw7FsBO2O/nY7+znTVJRJ14tn2A4xD+zvicv7nO5IftsZO+xmo+atw2z9e4b2gz99imR7Tv2mJsPI6+JmMnJwTxBW12PT/TY2P/ZkxhH+DdFhHRwAWZmKEMcI39K/rD4lr3Ua/XK0fzG78i2fe1jZ19K3W1X6V+GcfT5hw3UL+Md9viU5OfXtnvpL13nLo+meRqS5hZh/iMa9AXJwdNRrmsHFP7c2NDPxvJupOT5IhJMOPAiIOLQCDRvRDBcaDxEXUy/qHPPWfz0bY8l3kMhgXvZnKPunkeUh66R7zAs6lXLqdNj90GbHmbPch9nsejSpUqZ4acf/755ahWc3DE3SRojLmMLbFv2E/4UD7L8SY+icW/Xty8trZW7CnJFWw9mDMftUrMCXfJTi/8kpO2TmLBLebdoLSf/uB++1CuMz7BJ+RkBbyyObeIU6+sGo1GJVnkxUc8H7ts3sa7/iKa+MIcct4BmfkHynG72/gK84j0s/0qOrC8vBxra2vldBLqbdxPHb2bj/EwXwdWyseq2k85gWYMTF/76FcvKuR6+3ZwJX3GfZ4PXpRInObjVI3piLEiohHr0BZ0n//Nw5EsHw6HjUWRxnlbW1uNxXjm7NFFnpljGL6jLPTcHDD6YVxtvO75zv+OR5gLfk8qdcmcIziEeev40HjGfKaxcj5tJ3PVxHq+3rFWRBT8z6IJfqwX6KgxNfPWekei0Tsf0Qn0mO9yrHMYR9br9Rrcn/F43nSU2+VFFoxVxCn7w0K5iMUraqg/dRkMBrG/vx/b29sHMC91M363//Ccpt5556tzXthkj/d8Po/zzz8/boqclklQjDeOF8GRdDqdkjhikjgT7WCbDrZDcWCA4WawOPe5bYt53vlD+b1eLy644IK43/3uV4j5fr8fW1tb0ev14rLLLovLLrusBImz2SxOnjxZJpSJeBsoK42JghzY2DlxnVfSUM9MCrUFlRhfEy2UZaXPZZkIw6Db0Tq53O12C6CiPB+TSx/kVfu5DTlA83V2tjl4dSDvRKaJAif6IiLW19djfX09dnZ2ivOxbuYk1GEBpQNujjLC6WFkMcbox3A4jNXV1cZOwd3d3bLqzMdMUK5JAp7HjlO3zQSSAa6PPbGD9nXuOzthG0Ke423yuU+s264P9+b5ZpCUnXwu12DY+urrsi65fSZ0XBa67T608Dn1mM/nh44hjtGANPeL+zoTK5mcM1jx4hDGwGTKYUGCCRXf4znK59QrJ7sAJgYxmRg2uIyIApZYgTWZTBr6DHhZX1+PlZWVGI/Hxe6vr6+X+vuYEgcIiOeHx9Ntcv+ajMcmm+ziO1/rvvGKTY+lbT99wPX4Jferk+sm8vx8xHOtbZ6gEwAPl4Hu7+zsNI7aRnetW04K0OceA+usJY+Hx8uJFPtB6lgTn1VOdzEZkm2F9R05//zz4ylPeUrj2vl8HldffXW86lWvite85jVlBTrf2TaBDcBHDjTz+2CwcwQr9jHz+bz4LttI/Jixookf+zSTXBEHE2VOCGL7WBVsW2N76350H+U+9vOxd/goX5PxscujzLyCGJyArfbuTj/bwbTrnG22F9Echv1NrNk2GssYnxJMox88wz7FK+YdU/B31hVjhYx9nRy1z82+IetJxmwZ23v+WLw4x+PlfnZyzAsP7ZOtM24vz7bfc9947vlZtImdLCaPrFvGwMaxns++xwu2jMWNQbkHEsWJPOuX57n1MT+XPkFHTTjZbvk+k2MW24S8OyHrg683AWpxLOT+pyzHhOhKHkP/b8KLMtw3/N9mc4l1XS++o/ycmER3c4xD30G8Id4Vmvufz9riYPuYHFO7L/N8znOkSpUqp7d8+tOfbmzisDhRRHIzYrHAHLuE/8SX2q5hX4wpzDkQf66vrzd8IFgFWzsYDMoGCmwTC0v87kDzYvP5vCQbvVCH+mDrI5o2NGMxY2Rzbrb7/h8eEd5lOByWZ/D82WxW3im4v79fTrtyMs0xu3ehZpvs+Ji6wFnlvs8xeeY33D+MOz6ez+xTut1u4WBYSGZ/BiZBR3LSCIE3gBdj51nGkIdxCvbJru+RI0fKqVY+vTDHBPbvtBPejpOw3JcR0TjJbzgcNvBe5jHNZzqpybzzOCwtLZUNAZlzpJyMuzz2mTe1XvJ8JxNdb/dvHmuupZ/N80UsjszFjmAvfJKY4wXz1Pmkl/w9z3EMSD2oK5yY8b/xOmO7srJSjhnmb29wsU75h7JYhOaxIWfFGLDZhWSwMT+n8VhPcnuos/GeuTHjU4QjwLkGm8Iz4Xv7/X6xNXCMPt0xL8SmPdSf6423aQ9zzbabWMGxKJif8YTTtc3CFn72s5+NmyKnZRIUITlEJ5okjohGNpkOdCebFGhbrUxA6smGI3XQ5uMbbNT4v9vtxoUXXhjf9m3f1lAaVoKMRqPyrsjf//3fj8svv7xBKDtJ4LbzfBsmB4wYR4uD9hzM2/nmgMyBM31sY2USxgbIgX7E4gimvb29MmGYdGT4bcwMPnIw6SQhzsuGGGE1Lw50b2+vjBmgAUNu42EDkx0UBtQrOVZXV8vLhknOkMwajUZFHx08M8m9wss6zN/oZ8Sp1W559yyJUc76xli3rYxhLN1267wJIfraiwEyoPJ8IGliUi/rX54j7vO8qhkxmLZOU7c8ZpmYNFljh2QShOdkMOi6WvcpL4PKrIOeR5mo8XMAkugIOuRVStbVbHPc7sPICfcJRKdBA7pCPZhXlI89NBh0e9o+N/gxgcMxsDmocgBjG+vEnxdJkOSjzwAVS0tL5b0N6JUBuImjiMVRJpmoMkCi3AyYsCUmkAyE3bY2B58TyhHN93vSj+4D9NDJUI+9dcL9srq6WpId2Rbl4MlzC9s5mUzKytzD3lXgoA+hj3xsnOep/UZbAGMw5X6yrua5l9tTpcotXaz/1vV8WokD3tlsFuPxOC677LIyp+5617vG8vJyfOQjH4k3vOENceTIkVhZWYkTJ07E6upqCch5n5JJoYjmKxJsb/guYoGxd3d3iw3jx7gYO8biNdpk3OigyoG1j7GiLOM++sm+28SASQDbnIwRss+y/Xaw3IYRjWl4vn0WeMxJUdffSUX3l/04bbR/MMGAH8N/G3sbt7XZa/7PeIC2MBbZvvozk0RO1BvTeIEMZbsfqH/bM+gHX5vxh/Gj4w6Pl8fI/s39AGkFYcvY5ASZ22wdMiHVRhqZvOQe8Adkqucd99nHZYzn+hkjZl3P/pJrGDMfZW8bQxnGiTk+y7F1roeJRY8Rz2JcMgbI9eE+7vVY0P/WB9sfJzOzLXB/WH98WtLS0lLhASjT8boxFThrZ2en1KHX6xWCzLaG8j2XmeMkSlnA4jiCfphMJuWkExNfJrrdJsdb2Qa47Byv5flyfZ9VqVLl9BewJ3bIyRXsu3dv8TnX+FVM8Kj4VWOhfGoWmHI+n5eEgTlGfA2xKLvjfGIDpDmn7w2Hw9jZ2YmdnZ3C0YEzc0zqjSnGoNhGx/PGEhEL/5yTTU4UmjOaz+cH+oX76buVlZVYW1tr8NXmPfBNxkgWY0FjfeqWv6eNbpP7IeMdJ4jsS5aWlspmDWN7yvfibfAXZcL1mkeNiHJCmHGmMbQ5lYzDwApwbLu7u7G+vl6O8iRZa7zh2MdcROY7wU/Gedvb241jRukf30M9+Y6+Zm5k7s8L8/nO3Kb1DP1gzHIfWNcc+9jnuz+Zq4fhAOMo86uuK397LoCLMtfD2PoZTqQyb3zKCTsYzTXlhKX7utfrlRPjiN38btW84M9luJ3UgQUhXLO3t1c2uRAfm98jAUn7ZrPF5iAEzj4nR9Edx8OU4bwGcabzH7TN7fK4Oi6YTCZx/PjxEvdjk+kDbGsb/4duOo6xfZ/NTiVNWcSScy7ofsasPiXwpshpmwRFOZx0cIYdsXGIaK4SJVnkzvbg5ZUYJMNM1qyursZgMCjntiMGApTPs5/97GfHtdde2wjuL7roonjmM58ZT3/60+OpT33qgQC5jcy1oW0j7u3MTBbkgDAHpvk5BimZtGgjAfx/XjWBgYK0t+Oyo8K4mXTgO4y164nB8Ni5TSYlRqNRMaCeSB43B+ZegeKg3cYVQwCRSGJyNpuVABhdG4/HjTY48GUVkoGMDQHP9vfb29tFp5eWluLYsWOxsbERw+Gw1B1ixQGw9ej6JO/g5Fl26CSwISxNhNiRei76iBIngU2E0mZL1tVMhB4G1OwcaTf9T509JhmMtwFa6xbX2ajnOWzJOm/wYeLI7cjj4LnkOrWJ9XQ6nRa9NNDLBBQ65ZVGXunXVh/3EcGJ+45n4rTcfz4+xLuu7dBZNTWfz2MwGJRrrQcGODyHsk+cOFHax3hBTOVjXR3ozefN99R5ztN/1h/6jblKeU6yZz1Dnw1UaAf15QiXHKDQrwAl70xmDu/t7ZXAz6SpgXMGVjs7OyX4oN7oDjbe9rLX6x2wpwYv3nFsvcqA2m33WOCLc9utc5Tn/6tUOd2kjYRmbjOnmb8f+9jH4nu/93vjrLPOim63Gz/1Uz8Vj3jEI+KBD3xg/PzP/3z84i/+Ypw8ebKQ8hHR2N3GojzbAHy88SfzD/zGNVxnbAjBgU3P9sV404kT+037GfARvoDAybjGxAAnaGDrbCNzPbjfnzvIPYxYchn4Bk4Goe0ZN1NPfttP5SQMGC5jXv6mbXkBmX2yr7c+5e/wA8ZSrrMxBP3joBmMy2c5ieayXH+PO3V0HzjW8ffoR07S5nblPvO1HlfHOMyF2WxxqkMmKPPczOQNY2eMl/Xd+CYTUG57mx+j32h/fk6OHz3HTITxk3UcbOVYLi9ERGesG/zdht3pnxwvuh7e0WId8Ngyf0zc5ja11Y3+cHzvZ+e6HkYMGnejWxmHYqPZ+eQj3ZgnXrCRdZy4NuMuBN2nT435rO/Gi9SbvjUJatLYsUlEM+ZzrFSlSpUzW7AdTjzwuU8hyNyNsUBEcxGwF+ZCfDvGs30lybS8vBy7u7uFbyLpR1ze7XZjMBg0uD7qhw32xgX8PL9z0ie3x4J9Nk5p8635WjYsmM80x+bFK9TdHI0ThPk0JfgGvzoJMQ6hTpzWYr/tMWCsc5KzjVtG3GckcAeDQdmB5sX+xiPmeukPkpRbW1uNBJIxgDEU9eb5fu+g8b/HkE0rm5ubpZ/oKzbq2N+h04692vQ2YwPyE9Pp4gRL/KnnCWWRiINLMkfGZx67iGhw4E7iegwtmXem7xFjEs9vYxyLOSXnZjK+8tzI3BOJUMaaMQNHtcWLPimSejCv0AOex2ICTgvldCTyOtTduNu4jD4yX+o5arxM/+zu7sZ4PG5wxsbH2VbAcVImc8Z9b312stQ4Df12PoXdw+YqvXDE9hQbmuNWNlLwPMYu1zfbWOP5iGjwCOgvm9bY5GZelc/NNziGuClyWiZBTSIbqHtVQe4Qv1sP4wApTODCfSYUptNpOVueSRWxIBDYls+zc+IiYqHUJMXe/va3x13vetdG0PrRj340Xvva18b3f//3x9Of/vT4yZ/8ydjY2GgE0yZwMoFhoxGx2MrO8z3BTHKgoHZAtM8rcbLR5x4TXwRgPM/ED/VxMtpJBBJ/EQvjz4oCJhvnUQN+PM55J5UNqPuJST4ej8ukpw42JJS7s7PTeIeeiXUH3ybWnBTwEbYYal64vru7G9vb22UFODtC84oTEyJ2SjzDujCdTuPKK6+MEydOlLP3vQuBvmkz7CZaGBM78kxS5j4FmDpB5XtNZJi08rneBlfUiXudRLOeQpgYTBhYOSliEMPznBS1frpvnMDymHiOeL55TDJhBjB0H/LjJLITSXayHis+N5Dh3nx+vJP5EVGSbNnRZP1DHzwHDIDd5ybqaN/KykrjzHn0cT6fN14ezm8Th9mmRSxATCanPHZ+Pwn147r19fUG0cY1HHth4tbjaYBDWRy32+12y0kDrrf7xkS3gxf0Gd3iWlay0cZsgwALHg/GCp2lXwGBrHps81WeVxw5w65PbKCBjeem9SPbI+u39Qq752MsPScyYPfnOTg0GMcGV5Kuyukqmeh3EJIJA+NIcGav14vXve51cZ/73Ccuuuii+Nqv/dq4z33uE29/+9vLtbyPfjAYlGSlyS77bPCnVyybdHFy0+9d5zd1g8DB1tkP8izmrm2N20u5TnwYuyNeiMb/+B2TCLY59pfZz7n/PU45uF9bW4uzzjqrHJ+UcZNxEP4ev5MxuN+57Pss1g3bYPrXpFTurxxA4r/sy/Fbfk5b2zO2M2FF24zRaI/9a8TB48w8FmAkky15XLxzM/eXiQT7MPqgjdDK88/+L5fv8c2LB6hfxoaO6dqSS7TN+pj9KTttGENwVY793F+OJTxHTfBA3Jm0ycnYjCGynhonWA8R403bNi88bXtGfj7PYQz8vjPHwyZyTby7v9zH2SZFREOHM9HsRaDERo6hjXUdS3vOYePQZb8mAx3KOMtYK+tinrOZvHT/5gUVthvuv4xHq1SpcmaK/Tn22fwB39k2OGEBLs3Jr4jmIjcW4mE3SaDhI33ySMSCRGeHpPkkcFNefOvFPJyGEtF8bRdlG/tmLOgEiGNOH6fqhYq7u7sN7hl7T39QLyfh2hJd9r+One0LPC4839dQvt9hap6Ma42XHBfYb7YlxMyBdDqdkgAFp3gsMm/BZ5PJJLa3t2N7e/vATkbzh/SPk3f0LX46b9bIfp5r4Ebgno8dO9aIYSwZo5mzoY/QR3gU+8yMcSIW3Ba+38lJfvM3fLLbgZ7mhXoctQz+5oc562NP0Q33r7GQdzBGLHirzN/Qr4fFGxnT+XWGJACNs73Ay3XrdDplXhnnuJ70JQk8n6ZmTOwYDOzUhvXBUN4p3sbH59P2iDv53gvrGJv8Xk9jMXOaxBgkEbGt1hNiS+5x4rfX65UFJdTBesNcMM+2srIS+/v75b3M8/k8tre3y8me8/liRybjz/0cXQ1vafzrOWDe1Dt9bf9z/sL4/sbKaZsEjWhucSdYcMLECs5nOFQcrgMHKy8JBJPFa2tr5R6U1MYVgicfEWgjErEABA4WZ7NZvOtd74rv/d7vjVvf+tbxwAc+MD7wgQ80QAWTgsA0B4c8L2LhFDORbCOBwudrXGb++/qemXdLMlYAGgd+tMnHU6L4OdFnQ2ODZHLC5drJZRKCH87/9+T29Rgvb8+nLplcQU/s8NAbEoJch3HGKPf7/djc3CxHHhm0tfW1nZeTAR7b+XxeEhfMidXV1WL4cDgAVQxITsCZIGkjVPzMDIa9EioH0vmY6sOMvXdrZKCZ9dPj3Ab6uNbzPDvN3CbfmwEwNoc6IZngOkzoL9ptgsX1zaCBvspj4SQZDqdtsUQWg5x8jUmUtvuxfwYLua8omxV1ble2vQAsACO66vlP+2zf2tpAHWzjmG9c6x3Zvt99ajDHykyABtfgoF0vJ6hZ0eTAgXHxc91nCODGdpHkbV7owTPcnw5cIk75KRb1GAQDVnm3xXg8Lu8JYP63JSUduFlvsg7RPgdKtM0rwRiPtmS69T3P5SzUNwdHVarckuWSSy6J97///fGZz3zmgN2PWKzmzdgNu4FP2tvbi09+8pPxwhe+MF7+8pfHYDCIpz71qdHtduPtb397eY8yZBLvH/HilIjmuziN43zkD/iJ50c0sQjz0MeWezGIV+nmxCY+EvudbSvl8Tc2stPpNBZyZR/pHa85TshBO/2b8aRxILZsdXU11tfXYzAYlD6xjyRwxaY7APQiQe+2sm11H1kvTEqYBLFtN4aiLsZ2Lt+/83OchHKSlWd74RJ91vbOd/tv+h0iwPjT9p7yud9l8Z3fX23/YEIm1yEn6KwPud/bkk3+3/FnTn67HPeXFxq5HOp9ffiUMfQiTo4G7HYXR8tRB5OwHjfjReYbz/IxhSZiMhbLyTUn/ixemW47ZuKEv00K5TFxfbMuO97OeJDv8gp17IZ3Xuf68Vw/2+SnCVPK5oc2W9/AdG6TCa6M5xhn9wP3O1bNr+7hO+oGjuRvz10WxJjYM4Fr/WuLK67v85sijNPtb3/7uO997/slK7dKlSr/vBgbZqyED+A3/heCPaKJC0xssyuSz82JRDTtJ9jF74AkJvcrYeBoWfBrnivilN3i5D4Wqu3s7DR2HyLGv06Q2I7SP3xuXpG/qSdtyNjHZZNoME5x+XAkSMa+TjxkvghuyLtlkYwp+Tv/8Cyu4bexlfkQnzaTcTCfmQODv+Q1cWAR80D2PcYqmd+z7jp2ot2ODeyXeRbxkcfb+p85I2ND8KYxmI9rpW+Mx/wcYzTqnnFwfj55C653ncfjcZkTxHJe7A5OJ37IPCl9vbW1VZKwxH6O/7z4LHPHOdbgGVy3tLRUErbj8bgxJxhDfvgMTs9t9vjTl9ZVPnMM5EVyjindh+538+bG+3zOiWuMMXbOeJ56wXlSDs9nvma+L0vOB2ATs8zn88Z7dD3vOGWk0+mURCV6Ah/gjSP9fj92d3djOBzG5uZm2VVumz4ej0viEw6A2JvTqBwD0Bf0Jc/r9/sH8nXYOo/RTZHTmh3MxxcwgZHcsQ6CUFwUmwnhM5wh72186XySZhHtR/7ZCWVS14YMktwKu7y8HKPRqDhmDDxOKysNz8vtNsGenZ1JJCaQg3T+NyGSFc0rGmgf9fUqoByAedUqZ0p79Qn3GnDZMHjXkYN7J8joG7/DwEZ4Pp83ErMkyFmJ4aMXDMDaDCQO3SuxDZ4oH6DHMzFWx44dK2XwngLfR0KL5zkwZZWxySivgGJMNjc3y+qmXq9XiLpMKGFwM5mATllPTOwwFjhCyADGxWDWupwTNx4j62cmRRkPnIQBp9uT51yee65PBlZtxIsdYgYZ1rMs/iyTHrSD/spjksk294+BSg5KPH+uTwxyPAZtbfB1jJ3L8Q4d+q0tGZt1ATH563mWwWvEKT1nDpv4NCFJHUyS4YxJ+BmEZfvt/jWhzP+8MB3CKR+HxuIcz2mXxXXWaR+vixBE2Y54p7DraDvOvfQXgMJziXpjf8bjcQHILNjgfidgPX+QNsLMY5bntMcIsf9lXHwvepgDVLc7z4MqVU4Heec73xknT55s2HzbiYjFax8iFuQ1wrzCDn/605+O3/qt34rHP/7xMRwO40lPelK8973vLQS7ySIv7CBAiWgeNxoRBVc58PO76ozNmH95dahXejo55aDP9gl7ZXF9WOXq77B7Dsp5vrFMJjWod0T7kWgeGwT/xLFfDtaNhU1s4Of8juSMM7wQyH4j15m+d8LVz7NNJU5qw3JtZEVbjOG+yX7HY2V9wAd7jOzjsr3G12QfkjEXfeyxpTzu94k11Asx4ZAxb8aKPO8wHfC4OrbgWuM3jxmEyWFJYsR+LftPsA91hUAEp3k3b34Gf2fsBObKC39z3TJWoV9NbLqP/KyMZfm+bWGb621xuRnHe9V/voZEcbZxvt7xJX87xmVOUedsn9vGy7au2z21eGJnZ6cxRl4IgA5HNGM0EqLG/7YjxoC0x7F6xAJvcXpKxnO57/k8SyYLv5RCv1999dXxD//wD1/SsqtUqXL94gUhxiwRC0wREWW3Dtgg47zRaFTeu4ed8IJn4yT7AHAu8SuxITvAzJ3wvk9ic8eR4BQWqUU0fQ2LkRBzLdhy94MX1bjNxnnmYujHzGXQl7bJ+X2G9ImP/s0nRGW+jecbx/o0M34bM7lt9tsZK2TsbFzq69u4ODgY43Lqwq5EXmWRuWBzD9wDN+EkjX2n4w6+Mx/rfvHOOifH7cOpAz7ZG7MQ9z86xqJP42bnBzLvQ19aj3KMYBw1Go0aOsvnm5ubsbW11Uh2wklZdzzveLYXu6Gb8/m83L+/v1/eecrOQ+alsblf7+S4xVwr93Q6i2Ofmcd58QB9Qv9b/7LeGs8jbjP1yxjGMW1evGZuHl1CN/yuYfSGPsUmWlcox3XkGZ4fxnwZK9vGORfiNlqHfVIgz57NZiUJzU5Q+E3sDe2OiBgOh6Vu5LHAwpSNXjBnbc/A0tSx2+023p3r0/VsE42v6dO8WPiGymmZBHWw6MDEgbwDbhTD54NHLM4850zo7ORMeLcNXkRztUa/328krFBo73zLgRWTwwZoOp3Gpz/96RiPx3HuuecWpXJATRk5QKZONoye+Jl451rf68mVg+YcbLqfXZ63UfPcfAyBz+BuC/a432Q7Ds8JbBttnmVCwKuWcpDc6XQaxtyTkTpnAsq6lgNEkh5etWEDmq83QKMdeeeSSbSIKKvdKM8kSwZWs9ms7AhljDDarPDwO7M6nU55eXkec5fvFRn0LcDJRJ2vp6wMjDJYbgug25y1v/O4IW3jnYm27GDy/3bUmfCiz9r0PRNqrrPnpVcSGcxn0s0AkLpZ521XIhbverPdaCMnHGBkJ3LYfDGJ7O9xYIAAzxPXjbL5DAfnQMAEOLqf24gum4QyYKXvfC3PZnELfe8xZRydYKAPDbBtHwFs2Y4TFBKY5VWmfjb1BZj7uBPKxfbZl7mNXO9Axz7DRwnT/p2dnTh58mT53yApi8fa9se7ZhmzPLZ5kZCDz0yW+xqPCZ9n3XI/uL2uc5Uqt3S56qqrir7m+YcddHLxMGHRxHg8jj/5kz+Jfr8fj3vc42JjYyN++qd/Ol7ykpfEVVddVWxnfl8S89uJHcihfOyUA1NjcAR75ADNmIy5nJ9pX2bffpiPt/+wHTWGzH6rrR9pHwkU6uIEWyZk8rsiM6amD7nXeNLJZ763b+ezjAOzX3W/ZAxjf8uutbaxpFz6yv7U40j96U/3i5PaJqH4zKv6ea59l209fZzF48o91MdzxP4qJ48zBs14Kvv+TKhwnWNOk2JOhkUsSIeM1336S44Nsi7wLOuuCSvuM54ypvWOmNyf7i/HpiadjaEdJ+a4xnPd/2cS9bD7/Tltyfqd+8f20W3KfzM+3W638foD74bM/X19+mnclAlDMFvbUYy0DT3JRBXPAKO2xSqOUakvv/msrY2UzSJanu/2GsP55+YQ6ri1tRVbW1s3Sx2qVKnSxAcRTbxiLsFcDj5/Pp+XnWhwBeCF0Wh0gFugLJ7nhb/erYZfhXtglyn1y5woOIT3Qc7n87JJADuIfXWcbRuN/wBXeCNE5iNYUNzpdErCiKQQ9YJnZNGeT5UDz+IHbO/tZ42RjUsQ6pSTOXmx2Ww2K+PEddQ1L8o0FvGzjMEzV+j7jNvwn96JBldBgtrvCjRvsrq62ni1mDm6iDhQv8xtMa6TyaS8yssL+B0X5TjH91tPwQR5wVQ+cc+8X8ao9BvXepy5xpu80D/Gajwex7XXXhudzmLxql9PdVh/WF88bjlPwrN3d3djNBrF8vJyDAaDcuxq1jnHLebZyNGQ/G7LszCeGd/CsxnHWA9df8Q4Nl9Dv3MSZObfPUaOf9hVi+5igxBzmO5/bKUTreg5c8Lj4VyLbSz9xg5m97nHLG928qsiaZtfJePreI0O2JXxnkwmjaPAqTs650Wtjo2s9+Dlzc3NxpizacV2xpsebRNvrJyWSdCIhTLZeOAYvQKVAaEzfQQMhEDE4qgkjiVFWAnCxLODJINNkGMHlN8DkoUgKGIx8e53v/tFr9eL//f//l+85S1via/92q8tK/QJdiiX+zypLDlIp178WIEc2Nuh5SAyYkFIRRwkdXDg7p+8ehbxtnkbl9lsVlZouU0ma+wADQJms8XKHhwfiYRMLrif0At2YCwvLxfj7TE0UEHv7KgwmLSbfgYM8IJhB8TeAQsh4tUONtz0Datt6H/vgMzJHicMeCaOxy9ABmhRP8rgmGfqZnDqsefZHA3q3RCIxyl/zrx0AsySCZBs9NC/wwge7sugxQRLJsX8LOtQXiXlcXI5GVDk9thuUT56ayeSCWZ03HPVQUlEFJvlNnheW3K76BPGNv82oUiZ6CzODsfntmXiKi9KYTwyQcaPASgrk9AlO26veuTIWwMVvucM+83NzcbCC6538s7HmDjRn4MN7jeRzrXD4bAEaCakcmKV4z1YVWX9yWNsXcrtZB6ZOOV62rW7u1sStLSfMqifQUqv1zzuHfERbdZlj5vBbxuxnYH99QllZFvu79v+rlLlliyeazlIwI54h6NXMkc0MZ4DoL/8y7+Mr/3ar4173etecc973jOe8YxnxHOf+9zyPQJZZULHNtrkPWKiCBvRhh0zoZJX0dNOr06NiEZgxv0ZG7n+Doyy3bEPdXm0w76E/+0T8vNtjykXDAVe8k5P+1L60YlF477sN4lraIPbZRzgNkQssICvI+jOvsHtc8LM+pTxlPvFupsxopM1uTy+dz/wDJefyzRpin4SB7ovjctymXyX9ST7dGOsNpIFn27f6T5tS67l+rj/XRfucezKXAEr8uMdKfSJ6+wxy8QLkusDVnM8ZN1xPTPONKagn12HjA/8XMR9BC6mLtgfY7LD2sF4ojtgOUjqiCjEzu7ubuN4OMdEbl/bbhDPV+qGPQAr+f1k3qHhd6OBO2lbxoMeO/qwDVfyeRtRZAIVHEhZnoeH4SiP9/Vd98XKl7PsKlWqHC7YmcNOxmD++0SmiIN8IfaZ+N040riInYDmQ4iHfT0/LOxlB2jGW1yTN2Jw5Ob6+noh2VkgjR+grTlRkjmQ7O/xy21H23JEJL6oLWFJvY2/8/PoU3APfYh/9K5G+zHjA643j2BfnuN2/FHmpiiT5xiTug20zQsIeQ79AD8cESUp6ZP6+DE3Az7jOE7jwr29vcZr5Lygy3wrcY/5bHyjdd1jkXGKx5J+Qv+NI/KicyfMDluQ58/hbvnc+MnjSNLKcYTHKvNC9FleXJbngfUv42WOMiYxBqflZBx9yjs6WbhrHEdyE16RfvDmBePLjJc9J2hT3vRDGcxn4zaXkV9VZx2KOJW0NN/o/BA65M0CFu8CJblIHYzhjNtzbOJXzDjeyPGE8XPmmPNJlXzmXbLz+bxxTDW60+kskqttfWPf4Tii0+k0TtJj/jNfSeiiR7anjn1uqpyWSdBv+qZvitFoFB/84AdLoIKTM1nLag4mUMTCcTHZvDrJiVMHlayIYVBR5M3NzcYKB4568ItmebYVy44Vh3Kve90rHvSgB8XHP/7xeNzjHhe3ve1ti6OMaK4o8YSNaO40c4KCHTrZGSE2fn4GfZONQMRCmXnHX17t4yDPQTJJh/F4XAyRr+EzJ0px1n6RbnZAXkHh4N/Omz6ivvxv5+XjKnd3d2NzczN6vV5JOnKfk+F+1nQ6bRzty/PtnJaXl8u53yZM2KmJEWgjLaijt3/THictnEh0EsKJXAMt+pk6+N1gjIuJLdcpk35cDxilz3Kym35Dt0iqGLTl1S5tCWNAi/WZMfTY4KT9rgWDE48VRjZLJkcBjLTNjtb1cZ+77zKZSfudiKavDEBsW6hLTsSi3wZ47rdsPwzy6IecwG4LfHIiy6t+qFsmLQ3O3N+0Ez0GLNo2ZNvpOlIuc2Rpaakxljhs9Gg2m8Xq6mqsra2V1U2eF15lOp/PGysMcdhc5zmHvruvPG4kQ0lA+p3D2BD3XW4fc5Pn2Kb72pyktV7MZrPyfgiOXff8MkBzMt72N+uZ68E16L7nunUxB3I8yzujKTuD/KyzuW58//Vf//WxsbERVaqcDmK81Gan81z2vDRZwXzDP29ubsaLX/zieNGLXhS3vvWt4853vnM89KEPjTe+8Y2NecrzIZUiDr4jBTEBYqzJbxNguS3GlAgkVfYRbov9j22b8aTtnm2H/YiDStrg/qeOJtN4ZsYCFgd/Joa4FvvmelMfP5tyfWwVi9bwS+CPnDx0gtdHgWbbnceA/vDrN6yXJoToT77LfeAA3jjAfWrdiIgG5nPs4DqgZ9zn+UJ/eBEi32e/4z7IBBy40rpkvaMu2d/QZ070+hqTD77H99EnrhfX5XiH+eF+MAmXx8XxxerqasO/encwY22MmjFO1tf8fNfN+sm19tc5LnZiL9sI7ne7KT/vGPcz3S+Mi7/PSd5cH8f+/ow+s70E29EO7IV3CNB2diKxc9g2wgu2rTeODyIWZKr7y2OfiVL7EOwZ5fCsPGaHLVqzz8j25YZ+dkPkiyG5qlSp8sUJ8xYfgN/ygjz7TOzPZDJp8LIRzVjciRhsk8lyY77MR+IPuZYddvC1JuZt37HDeYGXfY59d+aLqKPxhP1MXgzD97u7u4VPpH5eeAIGMDdJv9B2nzjlmNsLyqmLrzOeoC89tpmT8uf2eRb3vf0TOJv2mF/jGtcV3+iF6OaD7L/4H17c/L25A8pxXQeDQeF3KS/rX8arCPWx/26Lx4yJqJuPNQa7MV4kCdFBY1/uaTuRy/XwuJgjcmzIWDiR6NiEhZLWY65zX1jXaavH1nOq0zm1yAAdGAwGpS3gdG++sRhH0g+5/eaUfC1ivXZOg+ebQzS+95wGF5s39kK0Xm/xbkt+W0+NN82rm7Py3Pb7Os2Fe07Qz7ZRmat1jJhtnTEz7ad/vZuWPjOX3+12y472nZ2d8pzBYFDKBTuDZ83dUTdi/ZzI9ul3nU6nLF5AfDITNjXi4Pt5b4yclknQv/iLv4hutxvD4TAmk0k5w3gymZSVQE4eZoLWR3PZKRAgejUCwQ0/PKfT6RTCmkFjUtuRMTH9/Be/+MWxtrZWJu/S0lIcP348rrzyynjc4x4XKysrccEFFxzY/eit+W2CIXHwnh059bdQXt5h5oDSjthiMiQHrkwoTxqeQ9/n4NlGGiOH4cn1RRzgmnjx9XZOjImfaYDjpDkGwEf3MlFxIuhUJgDQKz7L51lj7ExOODHnxKgdgZNJbbsNsmNkJQflAkqpH7qP0XUy2o7WbXFiOI871/jF1hGLnRVtwphxPXrFWOQko+eWDb7H2fdQx1xn64RBGE7dzieTpn4Wbc7A3LbHYNt64PrkOlk8f10vt93lue+cFDNx4WR32xEU9Eubk7FucI37Ofe9gQG/c39hRxnXTOy77m3z2quaTDZ7LGkX72CivtSPezzerC4E1BmoGMATdOF/fDyJQU2v1ytHhiDT6an32uH0be+9ghNC0j7GOpXJ12yLsDWcKmCQbX/pgMhjYMDpH+73WGV9sU60+ZIM6tpIPT73HPb/2KfJZBL/9//+30NtTpUqtzRhLtmmGYeZHPB1zG37wrwo4gtf+EK89rWvjSc/+cmxtrYWT3jCE+JTn/pUfOQjH4mIaBzPBeby87ygxL4HW4td8xwH++X60za3GxyWsSCYhbIdnOfP6AvbxTbSwjbLfWk8GtH0tRkPe6xcD5IXxmnGK3k1vsfRY8biHI5RzzZzPp8XG54TlnzGyQiuq4kO/s/+1CuCEQegHnf7Sb7PPiI/N5/4kckL+iL7F9oGZjBBQLDPimvjDepk4svjjw5kvJd1In+e9YE6moiwUA+TN6579t3cn/Uyj02eD4jxqv06K7n944S8+ybPL+Mq1zHPZ/dx2xhSfsaV9KnjHfdzbh+/6T/q3LZwyveBiV03Jyzn88UxXH4WdaDuXkDmcTAx7HfXO1lqHMm9bYvJ3PfMTy+KoDzHrhGLhQV8n+1fJuOyTXNc5LG9vt9VqlQ5s4T3vdmmRRzEYOYJwX7YJNtW7xCbTqfl3Z3ZnmN/SCBGLLgx8Co+dHd3N7a2tkpM28aHEJuDG4y3MmdGvB8RDVyKX3FiBf/sBW8knpyUyu9wdjuMA+1jnIDBTjt5YZ/hEw2y7zeWyfyXx9IxtzGJY2za6L7heeYGaQt1z5gDgVMxNsiJG/oZcf3g6dGFjCvtx3Z2dsric/qSE+yolxNYEVE2iRgnUgffRzKRuvlIU/6nPu6njI35HxzODjtjR8d5jiVyDIFusXjf40E57tvcfy7TdfX/1l/zPObFe71erK2tlfrmmMD2w4sdWexvHGK9tE5nftbPgeP0SYzogOuJLqKXbfECf7MJz/bBHJ/1MXPCxmZ8ziaLjM/of9sI7kHXqBs2AfvCNdgf4mmut81FT8fjcQyHw4JZ6VM2eu3s7JR2kdC0jvA9feVd3T4RhRh1f3+/5As8T71Yhvlm3TZPkeOhGyqnZRK01+uV40pXV1cbu4YYLCdsMkngYNCEiYMvK17EQln43Kt5cPI2OA48OHKQe+91r3s1JsZ0Oo2//du/jcc97nFxhzvcIc4+++zodDrlKF6cXdtqzCw2kvSVA1IHuW3klPvJf7ufsoOww+50OmV1qx2izyi38fEqBa8OwmhxBjzSRtogOBD+zvVysI5+AMjayP1Op1MCzYiIwWBQjrSMWOxc2NnZKQnxiOYRIAYpXglMXbyyP/c1BoEVbnk7edaJTDq4DAObDIjof8+fvBKYcp3QwrACQpzYojzPMSecss5lJ5x1zEG6k1SZuMo6kUFL1jUb1dxugwqv2uI6O7vDyK1MDLYBOfc9cyI7u0yOGFi4DS43J/ddpp0bc4a6m/h1f+fx73a7ZeenQfV8vlghz2ceH4+vdTKTPsxJVkdxLWO4tLTU2PXBuOJgp9NpSTJme2N9yjprcGkQyA+7c3xcmm2X+57PvdqTukcs3tFF/zlp6meblKb//N4R2sIRO7ZhPj6CIzt8ggKf5zHI+pTnSp6L1s3DxGDGY+YxagN69r+2E1kn6VN8wVVXXXVoXapUuaWJ547nG3YEzII9GI/H8YQnPCFGo1GMRqPG4gjbMa5/61vfGh/84Adjc3MzZrNZfO5zn4vjx48XO+Ld7twXcWqODofDBsbNGAI7DG6lPcYFuT4O5jN29jtJ+D4H6pRvDJDxgP0wZbX1eRt2cVlcawxtn2+skPEGz7Wvo02z2eLVERGL3Z/j8bi8p8r6cH3P55keG/yz8Z1jmYwB7fvpW3yav0cXfK37PGPw7GszPvdzHcOAxRDjLpfL73wkfo4BaVMW+oprIBTsd11mJgtNpLrNJlroZ/crbaJPXK7H+zASMuvHYYRAjjl99JTr6/7gHuMSl+XrPTfoM/tzYwb3X8aX2BLjStuHjPGpJ2OeYxZfZ5thPczPAWNRBgkAcBntzwlhnoNOWPeM8Uzs8L1jDP6mzvR9jhvdb238gPUsj1WOeSnH13sBp8lAx5n/HOarUqXK6S3YEXAhvpLP80lSEc3FLOZS7O85Wc6JIu7zznjjGBPolMUJUJPJpBD1nU6n8e454zgwNHwBPJ95LdtBk+20N2MQ95NxrpMB2HonWkgC5AXe4HEfb2msQRvhbGgjbeK362gfbfwZsfCP3e7iHfcZV2aukPo4oWPOxfg3l0Pd/Yo32mI8yP/0v/E+9xg35c1DTgp2u93Y2NiI6XQaW1tbjVcTcXoDbedZjr1cT+sU13tMqGPGsq6/F0TBo2ZMbEzEs83N209nP0+70SPHKOZsclnGfjlHYDyDjpCoZH6trKyUzWh516cXU9J2Y8WMd8B2tMO4OWNU6uBTiXwaTsQiqWquznpge8X4OZ/EOGAzrNeUyd85/nM/Gt/zXOaSjws3X+oEJ+2jTY5f+M5jZJ1jHLl/aWmpnNKJvjHvIqKxqWM0GhWcSmLfbaYfPbae67YV2GBe+0gb4NfJtcAF5AWCOS6/KXJaJkE5stPOio5mYGwMUGQH5jnAxvAb9GeDYGMzm83KahIn0iKiYUC51sbvkksuiZMnT8ZsNovnPOc58Z3f+Z1x9OjRuMc97hHD4bAYHdrpBGsOABGU0AY5B58OknIQmQNuSzb8/G3iC/GOAIwfbfeLbaknSm6HhjFgxyLj0hbYu+02dCZjsjHnGUw+GwjaTgLDK3y3trZie3u7rGADQHAtQtJmMBg0Ei4YFoMPO1nGz44bfcKQWew47EydhPW44Ew8vnzmsklstemZn537mjZ6FZ5JCQfYGF+DKYy8V7oxXtlBOXHkvjNJYsBnB069THi4rdnZZvKC8rjWjo/6ci96zGpyyDA/v43k4l70I5OAmbwwwM3kYia3AFvMr6yTHo9M7OXxt730nMvtyu99sN66Lyhje3s7Tp48eYBQ7nSaq5jy4oCckDZ56YAm4tQ8BfzYBmSCjHoCGvKOGMBzRBx4jye6zopX6/J8Pi8rN91X1nkHJFlvMrihT7Kt5Pr9/f3y/k8DVuucfYV95WEEmOeAy6Sfs81q01cHLZnAzffnOdIGfKgH9sLlV6lySxfjMbCAbZcJ9G63G5/4xCeK7Thy5EgpI2KxyIKAstPpxBe+8IUyZ88999wSgHjHP34BPDGZTMpCp4yN7WM6nU551zL1p97YKPvpiGjYHIuD9OzXM7EQ0VzYlHFQxiMZy/I7YwH7DupkO8d3fJ5PrXDwmuuPGEdPJpMYj8flnTrgBfeD/RR1yH1Bf5i443snZ5zIcV+5T11extQZa2Vb7jq34ZOs7+Ae4+68YtpkAxjAuuaEcvYlfi6fmUC0WD/9v/XCuukxyuOFDjjZZh2kTW2vYnB9PPd9L3aC/rXOIJn0sm/MWDfXzaSQ4wVj09xu4yjrCAQK/Wfc7Dpgd4wjXD+Pv69xjG5dbxvHjBUzLuE394Dld3Z2CnmbF2555TzHgnncHStkfO13LOUTZRgzk7Nt+Ad9NtkJoZ77uC3Wt167zm2S50iVKlXOPIFzsf90LGqfznVOKkY037FuYnw6ncZ4PG49AYpnm4sYjUZx5MiRwsE6hoZU5whcfOp8Pi+vvrFPASvaZ/AsEhG0JaKJEY1fzPPxmTEfn2Hj4RadXOX59j3wCVxj3G+84r6k3vh2J7DbuDjud1uMC+xPcrsjmu/CzvggYy77FsYzJ0TyBiNfy9i4vdTFPtJ4NmNy2njs2LGS/ByNRrGyshKj0ajBPc5ms8YpgH6O+zFz0xmrGZu2xRnmMMGC9v8W4xjGJ2MK1xfJi+YoO+crKNvYHqHc/OpBdMw64udTBovtnfDK+Im5Q535jjkOZ+g2GG9xT94Nzv+UbdyXcbef6zjHmCvjr6znHlPrckQUvYNr9zyDY/RnjrP9PI8f/2e+OPOb5GGcQ/MCEzhrhPyTE8GMKXZ7Op2We6yHOe6PiIZddZ6l01m8N9ULI8zj4Yewh47dDsOo/5ycluygiXMM5mAwaCRJciIIp+FjR72LKK/KtLPAAG9tbRWF8JZlEzQmgWxMMcR7e3sxGo3iNre5Tcxms/j93//9OH78eNz//vePF7zgBfGyl70sTpw4ESsrK+UoVjvBNqOIWOmYvD5mJxPMEQcToCasvBLAJBCTB0No4oy+5jcT18SYk35eFUQdDIIMCDB02cjnBAj/M079fr+VpPDk539+HxbUzefz8l5PH3HZ7XbLy5+5zsDFBJ2T2ogdt8cER+qVEl55RT0YA8hK1zeTEz4GEz3hGh/Ry3zxKgyXRcITXbHBNzGTyS4H8m6vQTD9iIFEn2wwM6lhMGLiD+MasTiWivq1EXLYkUxA5N14nhNZ732vdR374/cNcQ/txgnQTju0tkSr25tJP/cB/YCu+ggIxp5x9WohgyH3NXbY9ob5h16g+xBB+QivrK/018mTJ+O6665rPNO2Pjs8z0GDOk4KMFAwsUV/0x6PlXXANsPPsX1Fnzw2fGZwZvFKVe/oNGih/gaX2Bd01WPs8adcdopxhISDRfzo1tZWudflGFS5P6x7nkOeHw548nhlPXXAlNuRwbT1xf2ffWRNgFY5ncRzJgfL2BMvcnMA3Ol0yqkRDvTsn7jPZJVJGfvliMVJFpTN/DROjFgQJJAYtsFc5/uwo9xjDMIzqLfL9kIxB5d87v4jMDOWysSD8YptTJsdcr0cENvWW6iXy28jJrDtnC6wvb3dWIiWiUP74oyBsg3mM5NFrruJKPuZnCAz7qN8ys51ycQA9cbnmICznru/u91uWWHMj/XI+hxxcPGR51D+yRg761qbL8+64z7hf/dJ1gWX5T7KGDLjGv+fsQhCLJDj3TadcRySMb3no/Xfc4Q+z8lxtzfHWplMAudzLdc7Bvecdf9k3eJ3Hgv3QcYO7lPHOtilvBg6l+nvwY7epen73L8mTJ2c9XiYmDO2zIlv4kVjeOy+xw2s20Yc++8cc7tuxErZNx0WI1epUuXMEicH7SuN4yzmSSJOxbkcWWouhIUuGUfCnW1ubpZFxJ1Op7ExAj4VrDIYDA7YW8toNCr1wobju6gXdWjb4YU9pmz3RfaTXqTiJKGP9rQfpK+MyfifzTCI/bh9nJNY5mL43kfGGs8Yn1JX2mpeMj8TvwCX5dNd/Ew+83iYv3Tb7avc391ut4yv6+C+57lebMZ18B7G9sQo6BS+v+20G/dxXlDkOIi6RyxegUQfsREiJwoR5wuMh42P7YeNnTzfrHvwssZttMExmt9Vm/XXuICNTRnDed77x/wffTEej2MwGDSOt3YbDuPB6Rfmj/GuOXHHLeb0zVNlnWzD7NzPfMm8uF9Fgp7DifvViPD31ksvOEZvPH7mnM0Rum9srxgv2wnHScwt4nPvPIWXnUwmsbGxcSBm8M5ZP4OcBHMLu0wcS73G43Ejce2d3aurqyXOc3/zt7kO9Nm42LbmpsppzxCyTZeEoZW71+sVwzObzcpRgSgak8VkCROXY1gh7Xd2dg4kiPyDA7HxZhBNxDCBcNybm5vxf/7P/4n73Oc+cc973jOe9rSnxS//8i/HiRMnikKROW8jZRzoOmDLATwOwAkIr6DNAb4DZCek+D6/owmnTjmrq6uNLd28g4ZJZwXPSR4bCp5r8JSTZPQLk8tlMsaAGAySk2k8y0bBDphn2xDQ/5Sxs7NTAnwbQDsf999stjjT2oDHdbHRIIlEAob2m8C0blM3r6bO7x31C+TtAGazWUNnR6NR6WMn8XiXgYkB+gndog3oyd7eXuNa5hsGGuBkwow69Xq9xjsU0VsnyZmDdqB2NNTZq24yGUEfZsKCz/Pzfa3PMHcy0YAxkz0808adMl1PE0m2VxHROG7bY2WQ47rmvs3Oty1JbGLIAMh1w7l79RDnw2P3KN/15DNslOevQRjleByYo+ws9+7y7e3tootLS0uxurpaEpgGgf5t4MUzbRvcX93uqd1X2OpM8qL3tMm+B/BkciwTmV4YQF+jV/RPDp7oG2wCC2+wKdzrPsRWu28N6G1vHUhkctf1Z8xczvWBFSc4TLDZZ7j8PL8d2NkvfDEAqUqVm0MciFh/wQL2zxHtp3WwwMQBv+1MxkjGjca4Tn6a9GGhCL4a32xs5+AGW4qNcnLEOBMBv3uxFuURbEYs/FG2Wy7b9ifjJNsoB5u2c9nu0KZs7zIJgQ82Lsn9Qp/5mHLag72nTtm32B5zDePUtgAETOHkB/abQJi+X1lZafQ97aO+1NF9ZB1y+flv96Xvd/xE8I1AmpqQ9f32f5SV/ZMJpDye9JnHFHxoMjG33892P/mIO9rfpjPI9Y0ZsQ9zjrpYR6kn0nYijDEfdXPcgRif00foo+dztk8Zd7tufE9/GRe0tdk4mDp7DGzXXI7JHy+YtC61kZbGRR5fX8N9vV6vvAIlk/hct7KyUhalYAsO6ztiR78GwXPNWIbxp0w4Dtro+N7zyaRc5gj8c5jOeAzzPMjzukqVKmeOZBuBb8W228ZgR83zsKjL8ax3xRnbmcs1zsT/HzlypNhR7uHdndQlJ/nwxeBh+5RO59QR+rxOImIRO1NH+21zxxFNTJF5WOOU1dXV8nxzHbbt+HiXQRuML4zJzT/R7+Z5sk03b238BiawzGazwm06YezFVHCStM87J83/ZXzvfrEvghPy/+beMgY2H2w8Y56mzb/hN+GyKZP3gNu3tSXWMrdhLNiGTekD6pQ5Nr439sonYWTsTz8bd7jeHn/3F68TBOevrq4e0BHq4L71vHKd/LcxL+NAe5mHcH4+1c2LcK337l/z8J534EDrkbk4bAAYm88c27Vhd9snrs1xDIs04Cqp/87OTozH48a7WK3Pzg943uZ8jm2FE595nKiLx8Rxi2Pnvb29ogM8m9jKpxZ6EQNcJd8Rf/M/c2prayt2d3djOByWsUbv8q5l3s+LTWWnMPpt/Er5xrh+fv7shsppmQTtdruxvr5eDIaDRz7jrHlPqLbjsfwCXI65gbhnByaGiGfkCc6g2hhYuZlMvhdn3el04u1vf3v0er34oR/6objXve5VElcmtDMhZqPO9wYl7is7yGzUsgHjdxv5Q50BCCZofGSQkw4uF8XOhp0+MkixAbKR4DomrAPKHOhiNCmfJIWTgUwo/vdnJlH4zoGxDSTl+9g5kpVeNYPOmBDxOJgko942POisnbkdP99joEzsGJQ5CWzixyQDhtxj6uCbpCLAN8+tHOSzIMAgxVv/25yqdQ+doz9IuHnM28itrL85uZfrS308V3KCyk6Rew12DGqou0GZ363k9npc0LXD7EduaybqTBIbBGWyJK+qYp5GNBNLBg0ZOPAOM88zJ4LzfHedDXL9bkrX0+OUgSN2Znd3t+z8xOFiyznCend3t8xLSDTIe95f4JWb6LXtKrpPGTmY46iLrLuML+1D9wHcBr62O226FLFIEOegwGDa40JdMqGdwTnjznNykJXJUWwKQj/kMc62xfVxQOvA0XOqTe9cB5eXdb1KldNBsp3OAaVtmwMU76i37zIGBXd5cQ7BGL4GX2BCxHOYQMz1ywuJ7NPafLl3GdJm+wsHzLa79oEmAuwf7KdpM3aefrIPy+RIxsQORo0JqXdb+/zqCmNKxoO+9liMx+PyigxjC/tlxt52NAfM1MWrrD2W7i/GIscziINTj2vGyNYT42JjVHwaepntN2NkrABG8viiK34edTBmsC5m+5/Hm/tzXzMvmG95HKhXm3/J40KdPHdcXkTzXVmWrKuO6TzvrNvGVJlUNZHT6SxeL0C/gpuM31wXzz/jr4xBPW55VyP1zpgm6yHPyPV3/Gks4vjMdstxFHGL9cZjgm30Yg6TW+436sPiu9lsVuKztjnqE6FyQhkd8Hj6lA/3MfV0m6gLR/ait1zPu5qN2XKC1XPY5baNkcc7E4NVqlQ5swQbdJvb3CYe9rCHNfxS9lmf/OQnY3NzM/7xH/+x2B12/pjHiogSc/f7/dje3i4njxFbk5TCDm9ubsaRI0eKfxsMBo1NK/gAFqAYj2GDjUcyv+Hdj/YNOUFlTsIYExtqvIfdxdZ7EftsNis7XXmObTJ22q/uMQdpnsoJm4gF1sl4xMkTx8j4FPqI1zIY51Gu/Tvj6o0vJESNHzMeylgiYrEYi6RL5t6433X24reM/RgL+iCX49MTaNvKykrraTqMReZQ5/N5Y2OI/3Z/uX3dbrfB5VIHn8jiNnncIw7iReND+oW6gQu8G7HXO7WphFfwGVcjjkO8gMrf2/cbCxiH8h0b0ZiT3qnqfAH3otde/GtuyhiERZy0kVfdURY4NycTaR/94+OpwWHGkJRPbET57PakLx132Z4Y62VsbV1wPxObU+/Mc1E+eC7rQUSUJCPl5fi61+uV94J68Uq/3y+n79Emcwi8+i8iiv3FFsI9DgaDMkem02lsb283dNn6Zx1wfzoH4+uI6/MCjhsqp2USdDgcloZHNN+lQUeRcPHOKyeGuJ9dMiRACWRwwExOb/V3Z3sSRTRX7vj6tiDPAeTb3va2iIh48pOfHP/pP/2neMELXhCXXnpp2cmUAw0bPge82Zh7QtrRtJXh+tM2jCyOwCs4MPR+JkaBfqQvro8sot5W8jZDy6TNLwGmLQYnvtfXcg2T1c6ZSYezoY4mfhw00qc+zpM+nM/nZQUV3wNi8o64TLo56WAH7JVG/E99LRlQOMloQ2YD7ft8RAkO3brhcvJCA/rkMGNuHWHMTWwwVtkR5yMurJeum50C//v7nHAxAPI4eAcHz7RQh8P63WRCNs48HydAUt66wLNtWzK48XNNzLXV12DYgAznT79bz3kOq/wYr729vZK4297ebsz1fES0E/D02WGEikmj3Ie5LQbTgB3mmYEK5TiwabNlvMR9fX091tbWin1DfGoAusJv77Klf3ie59nq6mpjYY0XBdjW+tgU+hFbmRcbMPbeHUCf7e/vlx2gjLUDMksmck0OGqxlH0K51knbJ+qDXuHLGMdcB48tz/PvNqItB1ZZ2kjqKlVuiZJ9rMn5iIW9xvfnuZx9Uk48ca2vY17a1rg8Ap1ut1sWjBgngRHsW0wK2V9jg6i7sZXJo+zPjRGosxeI8Bl9Z5xk4t9tx8bxTD7jf+P3jINNftkX2GYaAzmoN3ExmUxiZ2cnRqPRAUIrExzYett5X8MzCZZzgtOS4wQTNL7HgXf+zjjYMYSxNOXzeU5O8eP+8eI8FhVmgsS6nWMs64rnUa6L/XhOGnNNxunWM/ed+yXjecpC3OZ8jX/Qb+MY66x9dB5L3+cYi9jJ893xlBOAbYSXE9W+Pi/0NGbNfW9dcX+2zWNj59xetztj5Eww5biQeZjjFuuzY07HkV6k5kUC9AdYDR3kOfmdd1yPnrn9Trrb7jAXraOeD5xcRXshu9B14lnrcO5/2+Osx5nwrFKlypkvtknnnXde/Ot//a9buR37vul0Gpdffnm88Y1vjA996EOxs7NTuNvst5aWlhqv/zKuGo1GB2I4MKpj++l0sXMJ3gvMQXnwwUtLSw3CnjqYFzgMN3vRUm57xAIbwxtTFr+Np423sePU3XgRLoKy82I+xsgLnoybKT/7PQRfBA/OJiDbf2Mn+7WVlZVYX19vJJFcXqfTKSdwZf4JMU9tzghB91x+3i3qBV/2f9lXerdv5iZcD/dZxtEZC6K36ApYhX401swL7rgWnQCLgn+9OJVnOn+QF9aZh2Ls0B/0r9/vR7/fL/y9TzrLfDjxnbkvc8A5Nmvrp8N4HccD1gU+cxyX+TjGCczDK5989Ky5VvQQXez3+8UWMJfpE3JD6IX5LRL8xlT7+/tlw8Hq6mqDc8/Y0tiZ9vI5/W9xnGuOl7pYN6mT82HYG+yheWdvlCFZaZ6RuN65MV5tOBqNYn19vbHDHf1lMyF9yk59bAZcqG1yXrzo/Een02nYJG9mOoz3u6FyWiZBCY68fZeEHOJjSZ1g2Nvbi/F4HNvb2zEajRrH3EYcDOBtMHGSmQiww/ZKTtfX4IC/GXwG/G1ve1v8m3/zb+J2t7tdPPvZz44XvvCF8YEPfKAougmhbFxMmGeDbQOZ68aEy6STjU/+OyLKxMfAeoJiOBCMqI/nBKh4ZZQDe9clIsouLurPeDDGBgttZBMJG1aKeMUI7WMHl1eAc69XQ2GwTNDYqGSyh9VRfpco7ST4teMEFOWAmb60kzYBhYOnf/g+O7g2YoxxcRLMCat8D30OyKF9rAghwYNzsd5OJpPGjj3aYKdhx2GdyQ4A4829OVnj52bCyg7Hc4Qx9D3MU6/+yavxPD8YzyyQKJTP/96lk+eUAbTH0D/eJZ0DjDx21nnmpvUtIsoOX++gGY/HBRyYCLIOM1c97thqPz9Lm131eHsMsz1Dcj2w43mnAw6Z/xmHnZ2d2N7eLkBpOBzGkSNHot/vl/7y+fUeN5w/fcvcIFmMntp+eCxoKzbEQQYBVSbAGDv0BruBveIoDvdd9gPYSif7M9GVg1XrdtZ7l2Fiz34mz1W+t5+x5M+zDbAeGFB/seCoSpV/acHvGsvZjhubmih3oIzdZv7h18FgxkQ5SZHnNfgGO0rw4mDL9/vdMgSYzEfvsLdfjVjY++xTTST5WsTkAn9nMgh7Y6xu4j/XK2Nirvdv6plxcRv2xT77mQ6et7e3DyQbPC4mutr0oQ17UG/7YX57gZBxVtsCRJ8E4j6xDe50mklE+23/diKJfm7z5cahjKPrlIkYdMwLAmlXW78b1/E860n2zW5X1rHDEkbGKfjvfE2e34ixX/bbridiPcztzbYA/aRvTHiBW9AlL1L1ePsVGx5v4yHaZ99tPcv43v3ixVOeu14cYF1wvOo4lL5yLG+Sj3Y6do9YHDXocXHZJmGwu71eL4bDYSHOeD0FHEWO6Xied41SF+Jc26KdnZ0DmIlxNSFk3bJtckzrPrA/sa4bk1rfsq5mXaxSpcqZJ+edd15ceeWVB5J68ALGHN3uqfc39nq9uOiii+IJT3hC/Nmf/Vm88Y1vjNFoFBsbGw075qQj+JfXy5hbYbfh0tJSjMfj8o5L7iMJ6jidWNqLb/Evxg3UncVoSL43YhF3+7h+bLHxlk8KyDgZPwwn6iQLGMTvXySpBedJ35g3MW61P7T/zAt/SCqSSBqPxw1flzGleQD6cjgcNvidzCl0Op1GghA/5uM/fR91gyeFb4I7jYjGrjt8lLlg+gF98kJ3Lwjz4nHzctnftcUJ1gkfa0xcRWLOcRbl0efGT+ga4+KFZei9ca8XbrrecIqMk/FqxCLRZ/zGd86hZC7FuY2MszO25jv00jo6m83K3EWH/CzEGN1xJBhmd3c3RqNRbG5uFm4984TWc8Zka2ur7DwnIUrc6kWC5japJ3NxNpsVfi/nkBz3GttlnGrOHRtAG82Zti0MyfGY4yr6uS3utc77iHDvSM5J+slkUhY/2y6srq4WXsCxF/qAPfR8NweaF66al/Cc4DNvSLN+8f/5558fN0VOyyRoNkhMXAxyxOJIUDpvZ2cntra2YmtrK3Z2dgo5nR1XxMIJefIgNgRWYr6LOEj42mggBEpeARUR8aIXvSie9axnxZ3udKd45jOfGS9+8YvjIx/5SKmfjUxWOn+WxUmXvIIJhXNA6eQS95vQQJnbVjPYCHjHQD7Oizrv7e2V7ykzB2JMPNq/vLxcEhUkKTKZT3/hQHGsfseqnUNElAmN3nBe/fb2dmMieiWX+y4HoDZ43JcTsRCXtKHb7RYQx5g6cUX9bAjtZDBuXnls0s7AiLF0Qox20q/eQm+H1+ksdtQC+ABVBOasZKJdfkcOdbFjsT5b90wsmogy0LWeZx1zOw1EDAwp032b57XJokyUmPyzY8fxQJAwZgYzmYxpI37t1Kxvh5F73uVqAgrJR33Rly4TYAyp4zlP/VhRhUNEl2wnc3I6g8IMXGxb83ibxOJe2pt1p9M5tYLIu6cMDLje59ZPp6eOJ9za2irtO3LkSKyvr8fy8nLxH9QF+wVQ4Ijb+XxeVuNZbJfc3gy8vUIVvciJAxNytAsize9GtV7YP7lv3R8GGgbKOWni9iDolOfaYSSa7yGQzAS72+DyDPyy7cgLWapUOR3EmCfb9jyn8pGOGatBCPA32A+/7cUvlOMFFQ7c1tfXy5E2Jv5ZjOZgx2QT7x0xEeAEBP7EhEkmdnLQbzxoUsV2HeG5xrM5OLc/ch147mFJNGO9bAtzTGHcDX7z6lrjFS+GMtZAuMZkg+2c2+KFPh5nf0YZ7m/6lDjFi9bcVi9Oy/XkGYh9lDFExjH+3+3hXpdLX/l51N3HsLWNkXWI+mVCKfsW65GTddnXWcfdRmNI+/zcFxELYjVjJP+Nv6TsTEYYg/t9qiZfjBPpU/TOCx5MhOVkoOeor6df3a7swz12JrryOOVxsC3JMXFOxrrvcj08rhnvuH6OIU20tvEHxJltJDntYaxsb5gXXlhLDOGEacZV1gn3FTrIuFnnwKauS1tfZR3N86JKlSpntnzqU58q/sO+7lOf+lQ8+9nPbrxq7OjRo3HHO94xvvu7vztue9vbRq/Xi2//9m+Pyy67LP7xH/8xlpeXy44jkjVwtMPhsCQ4fCJJv9+PtbW1YhM5thG7TaLLvj+i+foIn3AWseDK8IVe4Gy/Yt9ImYg5uYiFD/AJeT4lxT4L7Gx8alyA/yBBaU7bJ8BkjsccNc8Ho+OvOTqYBE7GGfAuGXcaz9BGL4CjLrSL++mDyeTUySfm0XgmfKiTeD7iFL+a4xzaRTtIaOWdoiRUV1dXC5fT7/cbSXBjI/Mj9MfKykoMh8PCDXnji/XFeDOiuWOUvqLNjL05HjgMC7pKm9Ft88Bti/7MGZHwQ2hb5lgz3jMuM27z3DGGQnJ8YFzH/zmWcpzlZ4BFyd1sbW3Ftdde2ziC2TgGnIWuWBfg8La2tsr8IDGKblg/4fngceFE4QEzP8ncYYxsL3LdjKkdu7r/Wfhgvbet4FnoPHkl9Ahb6cWQPIM2Ob6HL4hY8AzkQiKiLHxxPzme6Pf7sbW1dWCBndtr++AjiJ0oRY8dK5v/ND/8mc98Jm6KnJZJUCe6MMT8H7EgBU6ePBm7u7uxvb0dm5ubZZVLRPMoQcQDZQfgpEJOVuXgPwdjlHnllVfG//gf/yN2d3fj5MmTcfbZZ5cyfe9nPvOZ+Pmf//m45JJLYnNzM973vvc1XnRtpXeAYsPEb+rr9mWyCacIgY+QEPMzqAcBHqCBa51MQmx4CASpixWaz1hR4ZUYNoIREUeOHIm1tbUYDocNZ8tKjogoDo+VOPP5qcQAK2rpdycp7LwwPPTFxsZGg8SxY7YDtDMnoWpS0slTJ7roBxLi/M8YkOjzKgmAnZ2LnS9tMHC1AeG3+zaDBie00Hu/m8BAjLHAWTu57aMZGA8fSWCCMgfhTtYBeJ1M9Hcm8+xEmAt+Vl7tY0e8u7tbwJTnvYFmTtaY5MpJaOppw28CjTr7yGR0z+Oadc3lmVT2PHYSOuuAHT3PIOFpHY9YJFWxQV5AwvhnAAZwMbljG+bnMhf4LDtCg22uQ9cy2ONZ1C0DUttSj6P1bm9vL6699tryjqXJZBLnnHNO0WcHEi4fv+TjJpi3WVe8+syg1wFUXonKWNBG9+Xu7m5sbW2VJGzua/slr4K0oG8OtFzv7EMR/KAXsdDfmbD0/66LgwV00PbdJDXixUwGY/YjVaqcDmL/mxMEzAeTPX6HscV+xfjL9tHzzbjEC9G4hmdiYyEQvLPUiQN+HEjZDuBj24JCyjLZZjHOy4SIcRv9YL/lBGPGntnWUb59nEky+20nf3hutnf0HaQWq/nz8zNOp8/8jIy9bMfxu8ZoYIqsV36Gdca+mTobb+QFMY6HqG9bP0VEo98zadDpdAr2wZbTl+5bkw5ZT6bTxbF4GWPZ7/CMjDXtF+1bTN7kvnO54EtwpXE+eN26ZDzi9rhNxsVtMZ/b6fa4DBYguh7W8YwRTeJ4nhIvch99lMfH9cgkoXGEr8ntw4dnojBjKeqI78+Em+tisS64LvlaX9dWnnWj1+vF+vp6meOQdOiWMTf3ZdtjPGTd9zgzN7mfetGvPmmHfjLfwFhZhzJ/ke0BfeE57HpXrFWlypknOa43R8SCOvzl1VdfHddee218/OMfj2c84xlxpzvdKTY2NuLBD35wXHbZZeUVX0jGPeAjn4gQEQ0SnGfBN7FY2TbT/IR9CJyIeSXvJLNNzxiaeuIPjIW4jvg/Y82MjbvdbqONbdjfHNbOzk6Mx+OSyIKfoj5O5hnv4gfgQ0l85t1l9GVE89hfhGt5VZD9nf0t7TQ3QXtIcuKL8E8kMXOSw2NvvsY+PifeWPRu/tb9Ox6Po9vtxtraWiMxbCxmXIj4lSC8I5F6027Gy3PG+NZYFJ2gP3xkbcYXGSNzP3VwHGgcAD9G+eiiXx3l8q3rjF+OjbiG38xD153f9C066HjB7TH2pl7GougvGxS4jiS2444cM2Qe7DC+Ht0Zj8clvmVuz+eLjQUcF80zjDPpZ9oHd2w99Zi63szhHFPZfngBK+NoftZ9z3W8b5jcgsecBa6rq6sREcWWu4+8KMCxtOvFzmz6jFzb6upqsa155zxt8WKWHGvN5/PY3t4uiw5IOrsPPKduipy2SVAIWhtAVlePRqNy3C1blr0jsY1YQdqCpDZyxKR2NiCefCj5Bz/4wXj7298e3W43zj///DLobQHt5z//+XjJS15SFJHV9DlYsWHMwVwOtFz/DGTaDH523Hxm8OPVTw6g7Lz4P2LxTkyv0M4khAkg12M+P5W0Wl1djePHj8dwOCwJcE8s+oqzwT3+PsLXJBWfO0HDs7e3txtGysYBPTQ5GNEELtQN50+d7XANWgAErPqgnnYiThpkHcqrmryimLHme4+Nk5AmJDKB5SR21vFO59TLob0zMxM9JlgBWnZC1AXjnomcvOqf8WsjfjqdTgHI/J/1mXZb/+2g3bbD5n5O/ptQ8v2uO+W4LXaQzD0TT567PNtAnmvyMS/okfvMoBTga0LbAIb73UeeC4jrZx3iWv7O4vEggMir3ttIQ+rh9mXbg85B4tJm91OuP3OZs+153tbWVuzu7sYFF1wQ6+vrxQYYtBjAAz4AT17BeRi49fzkM89pA3pfSztYQetAwQlT94uf6aSH7V0GVJmwc99lUjPrah6b7LeYiwbU7h/3setgn2Hin+dVYq7K6ShOPtheMJ8dAFnfvSCApGle0evEnucHWIljuLh2aWmp2GUnJljoFRHlnT/UOa+m7XQ6jWSqg18nZnIQjg20P8wr+mlHxl30o/0k9/AbTIJtziSIfQ52Lu+4m8/nBxKzEQs/jh/CF3inrTGJfbrrmX2VCTvqRD1NLrXhcPtb44bDfDNYwLsrbFuNFdt8NPcwFi7b/tsLVqwb1NMrx93PxllOyrWdPOO25/FxHxr3OODvdBarn91+l2Edcj3ZjZF1BHHf5LiIumbswH0mopiPfJYxUo457ddznJk/cz9nktOxIdd6nlifMhZsi4Nd34wlc5xm/MHvTEZmzMOYRERjMaxtE2MPQew4iTLBk+gEtrPf7zcIaOwl45X7lDZ5960TmRbsiesAF+JxpX/akqWIy8nYOeM4j1XGc/+cWK+qVKly+kgbT5K/tw+IiLjmmmvizW9+c9zpTneKTqcTF154YeGitra2YmNjo9wD/mNXkhN/4AC/NsCxqfk3fAT+wEkgcB52Fgzp19bYf0U0Fwj5s4gmH8ozwAt5c4IXcFucrHG7jHWyHSeJya5G3kFIPXPMPZlMYmtrK7a3t0sSwdjFfjPH/rQXP4Bv47vMxfskMeNNxodkdafTifF4HCdOnChjjM90P+XEmPnbfFrb8vJyedURfA/l4UfZxDMajSIiSjIzc2z0CVymfTXx0XQ6bewKddxFG4xB885Oc6j0l/10xsxORBmLs4PRGyCMHzxX0H/qig74pDTG3DjFPDbfmSd1PX0/nzOPMo/uucg1xkLT6eId6+PxuCTbGBtiUl7bwXyi7mBUY0jHjhkbEqPxaiyPFTpCjGzds93Jm88yr0U9HIs4dmBcKRd7mMfXyUPnSKgnp4csLS01XrHgMug3doFSX06CtO7aXvB8MDHJVOo7my2OPHb+wjFDzqdQJ3Su2+2WDYzua9tpx+Q3FVeelklQG24SKGyzdwLUO7z+ueRnJlvzZw6IHOQ5SMpKFtFMyhw7diz29vbKu0McpDkgnEwmcfbZZ5fdaJRjh5gdXQ4wcsCfiZwc+GYiJBsugw1+dnd3YzAYtDo+B2QYXcgCG1XEIMpH/5hsWFtbi+PHj8fx48cb7YpovqzYKygwAExsCKKVlZUDhJSPG2gbP/qFckya+Yx1HMTe3l5x+N51yDjZWDupzP3+jHbyncclgxULY5UJgawr/M/zIDkwxG0r4al7r9crK0DySmPrtZMyOSlrcMr/WZfzPMvEk4V6YLy9CsV1ygQYP4AfHIsdhx3VYYSId4G63r6O8XWAYeCIDngM3W7bnjbAnIMEz1/0nKAjE7j+7XlN2YxlG6lpu0J/e35n4OE6ew46oUhAhF5afw5zfp5jgCd0mrpZz1x3k+IOqk6cOBErKytx7NixGAwGpY5+GXt+pyw6QZkmQnPA1WZvuM8625agzIGgQax1i75z4sD6QkCB3bYumoj1eFoHsx/wnHMSx8DUz8r6xN9tBLiD0JwYcHBTpcrpIG2+3EFn285m7AgBMbbZ2HB3d7fYs0z8O9FEwBKxwKWsOmc+smrUR9hQh7zQh3vy6lgfTdbpdBoJXR/fSX3tSxyE8b2fy5z3ccG+x/1M+/mMvs6ERfbPiPvZWNT9G7FYnIK/py0OBMEN1M3vvMp20cEiPsZJGuqc25rLaIsTDrvHdt7lt9l9f+/7cwxj2+wFdvl7P9fxg8fMGMeLGt0uB9jZR7ofcgznetGWiGjEACYKPBdMjJpMyTGbn+d+ygt9fQ3zFR32yTNt4+jTPexz3V52FXhlefahtkUZxzkO8iLHTPLkmDTjCvddHvdsH/k+30s9GWf6y/YIzOOErWNffhw/2nbxbNpkLMJrWzyeFu/IcXtth7Bv1u8830wWG7MyrsZcni/WkWw3cp8b4+XrqlSpcuYK9scnelnMG/meT37ykwWb8g45bO3W1lasr6+X8sCG9pv4cewrvgQOYDKZlN1GEYv38YH/sNfmCexTODmJ+5zIYDcqvoIdhtlu4kfx7/hiY8KIZiLO95snNafShsGcGAHveQcWvopyRqNRSR5l39nGg5kbMabPJ85QX16Zlf1l5hT4DN71mmuuiZMnT8ZoNGpgqY2NjVKOT34y3wl/4UReRJRENvWaTqcxGo1Kggd+CZ/m5CvjZV3Mz83+FW6+3++XxI85CPoJDrFtlxvtRofch+hUp9MpiTfqxqJUdqUyV9Alxs2xgvXKeJdn+lVtCJyPeX9/b76o7QhZnt2GOxx3URb/e0c4PL0xHGUwH9nIYX3z/PHYZk46ovkqLfTDsZpjn93d3cLB56OF3W95kxTxp/XD/YPOt+FQxxOOIYzjHTfZDjvBbL6Na/Pu7xwPOleFvXFs4rlKQpTvzPezIGFvb6/YZhYT+Hn09d7eXpw4caJ87yQwz/WixJvK852WSVAT5Zubm413fXqC5tXTOUN/mJhosUHMBEgmWm1w+J57mKwk5SA4GDh+O2jzKhQHRrnsiINBoSevJ3V2zDY8NhyeKG3GkwnuoCgTOpnUx0BSvxwwOki2o+C+s846K84666yy+oO6ASwgGmxk5/N5OTaXYy3zahJWgvmZeVUtfZONOn+zsgjAZLKS/9GrlZWVGI/HjXfGjMfjRj9gbDwGJjttzLLxMDGBsbaD9Gdt42v98RyyA0ef5vN5ebctzj6vtkNfDP6clDaRxPc5IcLzrSeHkVNtZJ13XrQ5Xf63Prs/3J929Da+nj/Yp5wYzmQIumWC0Ekul5PJP/+2vmZy0WIwQ3luX8QioMllmDj0830d4+7xbAOF7t/892G2Idsvl4tdRdDhDNiyLbW+IG1kvROYo9EoVldXy3Eq2HJArOcnc8H6lVfXmRRHr/J4ty0K8FgA6gkEDGb8XNsJ6pV9gvXc4N/f5/HMJB7AjOsdgPJMzzX0PBO4mXDLRHr2VzcVCFWpcksU+zoCA7+fMaK5EzJiYZONdU0kef5gr/DHfOb5ZJyKXWDhTNtuO3AYGJFncK3tDs/KczrbJD8b32j7l4NB7LaJBidDOUrMyR/3uZ/tZ5hcsC2nTTmowy4bL7ruXGesZpxkPGl/hUyn02LznbTKYoye8Q/Poo/5Lve/sYUDbfvt/Oxsj+kz/jZ2Rzfcn36myb2MFzIpkPFfbnMbhvEYO8DO+NeY+J8jlowbM2bLY+DPsr/P+ug4yuVAzlHP3IdcQ7+5n+hbH40NOeb+d4ybsbfraV3L+uu6t+EJYzX3o5/FGPl+S46daCuYzbYHMfZsI0Ehnq0/1Jtx5tncNxwOo9M5dToR9oGdKhCH4M2IaOAtx9GZyPe1jDflWvfbdMD9k2Mqxtdzwv14mF5WqVLlzBSOIzW+QbzgKOLgLjAkL9qazU4lVY8ePVpsGwkG80ydTie2trbKjkfsrsumXtzjhKYXwcCrUgZJuByTR0ThDP0ZfBW2HXsP72i/mbEhgi8yho9oJlXtzzP2mc/nhXOYTqexvb1dTmAzfoMzAbO6P/MCLZ5Pn3Edu+28KYB6EodwL6fcGX/R1k7n1K6za6+9Nq699tqyScn+nqRHt9s8ctaLssxrGM+gU9584PGOaJ6cAyfn9yza7/JM+sbJedrk/sZnui7o4Xy+SIJ6jjAO3qgB1vfcciIf7MJcyDs4qYdPHAS/WVfpQ8rg1ESeybzh2cYT6AYblXq9xavPPF70Ee+SNKY19qfeYE+/wi0fkUxbffw2yWDiVyfKnLxzYtDJRsbCXJuxDnMZXMw4GJvleWq8T73dd3l++xUufObYImMvxo6+NJZFB1y3ttik0+mURQw7OzuxtrbWiNEzLvQOfcam3++XTWbUIy+gRA+YR44DGD8+p+28iix/bp1hDtNPfof0jZHTMgm6t7cXm5ubcfLkydje3j5wxGlbsgMjHXEwMEesMG2OIYN+B1l2vFZIlIjghEScV39aqCtt8tGiVnITTtTBqw7shOib3G4HwxhGE0ue6K6fg0Tv6vPzbXC4z0kMB9F8Z/IewzObnXr/zNlnnx3Hjx8vR1QyyWhT3mlgsMMqNCYuyQKOlMCY21AyhhhhB91c50SVyYicQAWM5JUhJnQow0G2yTbKJYGLnnl1RcQCuGUyyGQOY551nHp67O0YTAh4XOnT+XweGxsbxZHhwO0QbJzdV5AtXLu/v9/Yaed783zNZIr1nbZY9zOZ5zlkAsxzxE7ByTXbG7fL9fMqJSQ7OUCxSR3a67Ey2DGAyE41zzG33X3O3MkOxsADYfzdhxb3P3Vqs5cmpPK40EaeD7g3oU4/YwPQTTtsl5sT1vn9tw7YqCOOPCcoV1dX4+jRozGZTGJzc7O8kwCb6ISBFz74/cmZsMvBhX0VgM/H+XocEPoKvbCtysLcbCMXaavJSxODua4ed9vEDKDc/9YFdM5+JweGeT65D213GT+TeB7/KlVON8mBTESUBVtO7Nk/MK+zT+edScwpYy/7M9uhtqQY19tvGLdhpx3QZ1zk6yIWJFtEc0FEtgfuF347sPRPtmu2PfSL22Y7ZduY/Zi/x1+32Rj61vYx18lj7H6n3caWud0RiySoA/Y2zG5CjrobM2S/nZ/nfsrPymSU28Fv+1q3B31w8G3fZj/Bb+MhE09t4+i6WZddvgmeiCi7TNrwJljEsSXP8U5P19ltyLEp7beYwOO5njc8z7s6+Yw4gD41KQkZ4Wc7cZ2Tou4P18O2wvMvC+00kWxCifJyItf3gjuMDfJcadP7Noxl/GDddzwLXs+LQIkTEcfGHhPbVXSOPuh0Tr1ehXFgtwqLSBlPx0jGXHmXBvVjl4jxl/vTc8J1zYRs1rXcX46ZPD7ZZuSxrFKlyuktmVPJ+AqblXnECy64oPjdyy+/vBDpxKC9Xi9OnDhRdgAi3W63YELbY/wa10wmk3LUOPWMOGWf2T3mk+q8+cQxNWK87Ht4hu0rfGXmDvFpxnvYcew8MSp9ZWxE/5r7deKVfuBZPAM+M8fe9ieOJfhsNps1EoT0bcSpXY7gfBJQXiBkHaD9YDlj3u3t7fjsZz8b11xzTalP1qHJZFISKixihN8Em/B6IsaaOMi7QjMGcHI84mAy1PcRl7h+5mKNT2kfJz346GYvIuKe4XBYnmGez9iI51sXOXmHOvBOWPAo9aTPwKjog+dVHuNOp1P4cDAB492WADU37UVZxuOz2ayc2ra6ulp4avcLug72QhzPeq4PBoMGh2YOcHV1tWCpzPvRp7SFcTOvTdvacLvnchu2QleNAw/DPsatjh8dz7gvqQdzwnVn/rn/zd1T55x4zrgXO0PfOhmLPmNLHcdhlyeTSWM3LM/wSSlLS0uxs7NzQL/7/X753H2+t7dX7ITL9ZjYDlqnboqclknQT37yk2X3noOFw8hOBs8Ohs8Rd2BODvk6nKInPWRPDjQYRB9p66MIbVwNMLKB9MTnmS7TQW0mACgvg5c86dw3Nq4ovBNDBKUGBia7HFCxSoz7mPR5xTz1oD0Ee9PptByDy4oBDDZBqZMjo9GosXrGk4TkqZ01dcfo2wlHnJqo7NJ0kjUnCW08nCSzofLYZgC0vr5eDAuJRB+xaWNMoIwDQ5cwhCSMKNsvxEboF+uA9ZFrIhYJVgwvK3/QFwNB2u1VMxg29MVG2iv//FzvKM0GjnFtm++U4yQ9Btlg02Piv/OxsLYdngveAZOdFvag2+2Wl7CTaAdwMiZOatou5HnJ+HpVHrpm4svOwXPRemS943kGKE7qUec2ctXjaOfk+exxcf+ZhKG+6DV9hM7b1lnvmIfMiUyQ2UZTX56LLjLetkXYGMCyV+ANBoMYDoclSPPYcL/nlAkvjonI/sS6beLL70hxYObxb+tH6w56wIpBVj4uLS01jlrhuTkQc592Op1ypJHt4OrqamtA6aDN88/gyCCNeeJ2WNpI5QwEbdeyHatS5ZYunh+2ZTlYdvICf2TsFxENf8vcYu7YjxvDRjRPArAvNsHvBTuQWtmu28/kAAqbTln5tQ+UDcER0Tx6x/1iv0nfmZSjDl48RtuwIS4rYwLj8Ozr7Yv4zuOX8bb9YybJTNYZE2XyCz/uozSz77ftcwBPnRj/trgnj4PbkOMh141+5zrb5usLVPE52Y+5/zxm6KjxX9uuityejE/8XX6m9Z2x8GIsrnfbjfmNOcFTGUPl8XWskokLxzLgbFbve7FT3s2d7QnzgZ3QHGPGHGQxKbrI/KSeeaGX9SAnQ10H+sTznzEjnjP2sDAu1kG3lbZ7rmfyzrG8F2nkGNs6mcefsmibyTrjdrfD+NR4ejabFZI/6+lhGNZxlqXX6xVegTrm5Lb1HP+R+YbD4n3q7Pq5L1x2/jxLtq9VqlS55Qs26zAfalzG3F5ZWYmv//qvL5/9/d//feP0kIiFbTpx4kT0er0YDAbF9vg67BSxMLE5yR7HxcZ5+EbzGvP5PMbjcQNDsiMKDoKYnc0T2ET7F2NO23D6w0J7qKcxK/WAi8g+yZjLz/dJJvmkM/wT48WPfTl966Sf4wN8tK8xp2HO03XLWGc8Hse1114b11133YHToYyfGVuSMvv7+3H06NHSZ+awqefy8nIjWYPuGItnjOx255PrjEUdO2UexG0Gz3jXInrEuHs3pMcoj7t5G/t57uHVJG0xi5OfxDXEddQp6y5xBOOF3uQde56r1h1wL+104m06PXUcMVwZdYfHx06wyMF1AocyBhERw+GwMV/MBbJQgc88B3Mc6fqDyeC0zCV5LjJ3IprHzWY7yDzJ42YuzfiLsvI1zA2/rq+NM3NdeZ71n/o7FsNOsviOemxvb8fS0lKsra1FxMFd4vP5YlMYG5SYQ+RN4ALpKzCu+4l5QHzunMjOzk6cOHGi0T7j0xx7oC/Wpxsrp2US1OeIO7i5IWJj1kbs28FkYG/lR0Ec6FnBHXh4lZDr0WaYc9DatsLF7XCA6AnnoDqiGfjwHCaV+8NiQx3RJG3sSHKyxKtEcmCW+zk/z593u91YW1uLtbW1A99RBkcDeOUL5ABOdTweN1aCzGaz8tJjEztOljA2vFDYn5mgok4+DsCAzEbbiU8cA4YAIwwZQXIwtxcg6DPoKdv9mEGrxyjrGw7SRs86CMhkPIfDYWNOGHCyYtrjj1HOiUT6k52j1l3GKa/Ayi+6x+llgOo25t3UnismnNx/Bshuu8fC5IedqoEEZWTHZ+ducM71Hhu3L+sq1+cz8a0HLpOxpX/53/U1sWPdMini+rrPXX7uUwN65ky2a078ZZLGfe/+cVtsg7yjI88Frs1Hv/EcE/MrKysxHA7jrLPOKu9foJ0mia0rPg4CO0pi1/2FrTBRbdDpgI42M9YseLAOWVd8j39DmrFAwGOX/Wib73FwSn08X/Lz7F8yUZ3nFrqTfTJ9aNuQr7XfdVva9LFKlVuioOdO+qD3DsqN73x8ku0X4nv43sdn2c4SSLts5pePh7I9tV0nQMf25AV9YOs8v22TeVbGu8aq4A37amyxr8vBpcuLaPq63Ee2766r+yAnm9rK8HhSd9tEk0puX647P9PptCRA23CJsXzuk4yDvFiurZ+MA91v9i2UlW1zG0aw/Xeiu01/HfRmDOWxy3V1XJb1NftEPrffNRHm48x6vcXJK236ZOyciaIcb2ZCjDjPhC195HrynQlh4wEWZpnc80p1xgrsAE5aWVkphBUxVbe7eP+vfa13k3rsvSgOHaHOHoeMfyE9vZAg66J12jiG8hw/tV1r8TxiFwf1pi0eS+5xTGFyOdfP49rtdgtpb3KdOAYdc6xAf+WEdl4oQN96HrFTxrrOeFsct+R4iLa1JaQ9z6tUqfKVIfgLcwBt8RW2YWVlJR71qEfFve51r5jP5/HRj3403vGOd8TGxkbjXi/U3d3djfF4HKurqzEYDApu4ho4AziCHEtiazudU5sDVldXG1xDr9eLra2tkmTB5udd9E5sGScR57rd9hW2t+BV7LCxinf6Oa7NMbYXDRlLcJ0XXdFPPBNfYfudsZYxoTF8Xuzl2J02mvPjf/ef+R3vMrRfx2/b93lzzHQ6jWuvvTYiItbX10t9nbR1H9AnxuM5RqDfwU/0MzsVs0/1u1CNaT0m9MVwOGycIIK+mMfJ9aastjgGvEDfsmjN42nuxlic661nnqvmXrk3c1fmx4zdjf3Axm4X5cBv0zaOreXYVfTHHFTGVFzno3fBRpnTA1flsaG+JNJtT8wtoT+5X43dabfH3f/zbLclYyh4KuuR24HugYnRIedijEsp3wsNc9ITbAvXTlKaeYrtJJk5GAwaGze4Dj1m4QHYkvaMRqMGhs541Rxnjuuuu+662NnZabx+g2tsJ/yqG+uB/cGNkdMyCWoFv7GSDaJJU5wJyp2V1wGLs9MMJEbACpoTWbkueVWnJ2ZO7FgyOUJ5bWQD5dKGTJRExAEyhGf4+Xb6XiHj43Ddh16B43qj1C7X5AT1Wl5ejvX19eIASXICMFg5RrJiPB7HaDQqOz6n08XxsZAFAIWcgMmGzisVvAIkIg6ct+6t326j9YE2Q0rkRCpOj119EdFwDtPptDhqVhYZkNIGB/isEqcdmZCwY6Q+/X6/OAobt0wSWccwYvQpK+jybhHKcVLUoCqTeZ4PfpZBFNfkucoYOrj3PSbb7PCoF+I+bSME7GwglHxWu+cmfcz8MCnmfs5zxSvW8/ymLM8nr4pB5wAqnve2NdxnJ+V65P8ZB9uQ3D+eX5k0zXYv97XJZ+aE35+UQQZ22TbTRKYJHcA8fYvt6/f75TNWQUII8vl0Oo2tra1C9tvOZSLMJLnnewaTmVxFL3HwAEgHjIhPFgAs8hzPcy9yIMDLpG/WP4PDnAyIaK6oy2NuG4j42rZn2lf4eZ6buWzPCY+R76tS5XSRjOvsLyKau54imq8TwNaZjMmJiJzU9EIRgqiMybzzO6L5fhMH2k5k2nZ4rpokyTib/52UMvHv8rjeuMH2oS3xYnzmPvV1fE+7eV72O64Hf2eixXXyuLmNtAt/4nJsv+hPkp+MmWMPl2fMk//2eFBHExnGGMbzlmz3TQD4+5y4cZsyZs54graY2DKecr8Yx9j3+7o2rOJ4xG0yjnBM6H6inZkEoey8QyXHV/QPukEdiClyP9Mu5gWYjd9OeDtOy4ktryY3IQOOms/nhSDkRAy/fwob4/kRsSBVPa+yLbGOeB55hxBkC+Nv8sQ+35iLvxl3E4vWa55nXG39cn/TTs9/2yXbLvQEUjETcYwv8wlcyTuet7a2DhBiXkjtOQIeNpHKmFGGSfQ2yXroPjIR53FGsh2sUqXKmS2HcZhnnXVWXHLJJSV2ns/ncetb3zrufOc7x21uc5uIiPj4xz8eL3zhC8tmBmNJx3jYvPF4HFtbW7G0tBTD4bBgJk6VMx9AvdgR6MU/2MP9/f3Y3NyMiEXiCC4h4uDJQmtra6UuXMeiFePciIXPi1icCoh/wH/YH8EvwTnYlpr78LXGGLQhonnErmNt4z/aZ47A5XghkTGOE6B+Hr6YhVBgG5+OOJlMYmdnp4wDPiXvgPXOSfoo+8/9/f3Y2tpqnMzHWBm3mU+iHcRETtSaB0JXqAcYh+93d3cL52qeD30Fd5lLot/xwXCw5s+5hlP8zMV4ISp6jw55gal9teeCYx2u9XHSmUd0fTqdU6eCsZCKOWDsxv+Mj58LlrTuGXOxQWY8HsfGxkbZcTifz8vJh9SZ8bH+EOdyjce/0+mUpJ03Nni8jPs8V63nxnc+bca2wlym5+M/J56jxpt87voYj7nunsfOzRDHZ/4TTI+Oo/OOOXhNDrK7u1uSpFzP6+5y8pZ2TafTsmiEObW+vt7oQ8aPfqRto9Eotre3G5xfW195kYcl5yNurJyWSVCvZrmxYLyN0PBnGOu2wcgJPQwFk9XJUSaNA3f+RyCXsthQeyKbyHB5NvJcx/8mhd1O/j+sj/jOxBX/26nnZJjLMKlhhc7PZyI7qMQJDAaDEpiTzMRJs1qMwHBnZ6ckQmkzxz9GLM7M92oaHJnLdeCb3wVgJ+kA3EbZTt1HHTCBMQwYH483BqptUmciz2Nl8pOVEvzPUR9+XwBi3bFzRbfzeDEfnGAxuCDZbKLPYASQheFkDAwWPTY2/HZQdgwmh+zIrHue81koMwf3eZ65zSbf6L+sT9Z5rslzCX1hvPOc4D4T2SYcc5LaZFjWHeqeHSx1ycSswQxlZHuS9YT2ZcDohB79gIP15547dtgmkdHvtrGwTTK48MID+pT57mCAunsnBjaAQI++ZxeB+zEndw1IDRxcd9uA+bx5fDWfmagzEPVxE+77bNvbQBfjzAo65m1bO6yD1gUHfdZbA1cHcdYZ94/7w8GV50HuO/92G/Nq10rWVTldxH6x7TQJ+9+M0yIOHhNqUsG2JtsiCzYeW2QiptPplF1iTnrg47GLtCMHjF5QZntr+0s7CeBJGtivuO4ZK9lXO5nkANaJFZeX7YkTky7Xz3b/uo18b1vrPsYHekGNfRRiXw9ZgJ3z8x3L+Bmue05g50S165j9uv82brRuGhN5rPjOY59xpvGaicI8xg7+jXv8LNpqnWq7P+MfEwwmWL1T13pin+s5gh5kosn1NhajDSasPBYQglwzmUzKgk+IH+7xyRJg6zwPIRw5mgxCyzbF9VpaWiqkIKRdPu0Cm5DHPONBno9wHf0BaWOCizIzhuH56I+xn4kWi+ee+9d2jtjNuNLYO7fd4089jOd8cg9Ycj6fN07OIVby/DehlZORjFHGvdZzsLP1OccV2HvbGV+bsbyf2xZn+LPDYq4qVaqcPuJFQo4NzznnnHj84x/fsLfErXt7e/Gud70rfuu3fisiorHr3vyI+QpsK7bw5MmTxTeBAzkpze9GxM45KZYX92DjnAThud6BSGLHGNWLsegH202EcuENnLQDD9gf5jjfftAY+DAfZv9o/0vZ/s5/873xiRc6GceYb7JfRLhnf3+/JNCcZHG/54U79l3uU8aOcq+77ro4cuRIzOeLV/v4VR7ma+CHzOnjF53UAte4faPRqLzuKCLKzrbMH+bYK8dkflcn76Y1ZwWn4+eDCzJX5WQ69xlPMwb0OziO/72wlc/hxa1XXAuWZEzQqbzwK28gYe44UQkXmmPNzc3NGI1G5Z2hbFYyv0VsRB/5hMH5fB7D4bCc/Gj9N5bJ8XIbZrHe0cc80/PDCys9/oj5Xea055jxqOejdYpneQOUr0Wvbbt4hj8nKckc8YJGxsLvuOd59Pt4PI7Nzc1StnMj3qjl/vOCAOy/d226bcy/nZ2dRo7GcThz1njUHKjxuu3yjZXTMgmK5CAky2FEcMRiYjsYMimQjRqdzMRyojSiGXw7OHcQ7npwjwNUX58JCwd/VjTu8++Ig+de56Ax/9iZIt49hpHwqhgcIqulfKyEJ3vum5xIyWADY7O0tFRW4mD4+/1+maiz2SL5yQoTJ00w9oAIgMloNGr0i4kFH31gZ2TiIicasqGiXTmx5hXUHnMMd9vKXY+9t8Zbj/jeCQkIMwCDj3ugXBxU3nFqwxKxAKnsuOUoPdrJM2kr15vMok/RE68KcwKGa7IuWn9os8E4dWU+AaAQE8rZcWfJ4M+khx0dfWPH53ngurk/EJLy9JfnoOdEJjZIZls3AZt5pY6PGTZZZ1vWRnLwtwE413sVVdZ5/+92G1jbDrWNMc8yqKcudoyeVwbZzBP0leCJcpkHPN9HgqCDTrx6rP3eBXTNq0EpJ9vmbrfbqEMGMCRa6UPakZOS1KXbXbyTlL5hrjHWmfhyO0yUG0Rkv5aDvBxYuexMPhrUGcS5X9qAJL9tgzwHXBcHcEg+rq+ScFVOF8EG2d+3kRkZV1rHM5FuTOaAIiIOHDPkxWP9fr+R3KRe29vbMRwOo9PplGNx/J4a7JlXhxtH2h/Z1zOHc52Mhd3OXHbuh+xnDtu1mgNbB66UYzt+mLjP2xIOHkf7OifeMrY3gTCbzRrvz3FbKc8kz2GY3/9nvE5Zbb7cuME+w3rjMbPfpwzvYGWseWaOA+y/7Lvs/6mn/TV9AYZ3PxgfmuBwfxgnuz0mRbjf9bAuG1vZh1lHTdxaH/y9CQt2SJL8HI1GMRqNYnNzszF2vLscUpOEm/uUOvM6CUjg+XzeiLXct369CGXkHTXup7Y5SZ9ar9pIV2Ii4jeXk7EVnzlG8xy3TnOfsctsNivviKNPjIPAbiSMveLesY/jfurreZpJWdoOrj0M85mssi6ZbHPc5YUN1rO2PmzD4222z7bDZdwQbJXtSJUqVU4vgf/w4o+IxeKRiGY8Np/P481vfnP89m//dmxsbJQyIppH4Po+201sZMRiMcf+/n55bx32nePFzVUSZ2d/yk4lnmmMneNh8xu87xF8aiwKX2nMgY2nfzqdToNvtt10GXlRjn0HvoTvEHyQ73Wyhmdm3O0+iFgs9DKOsa02TvYpNHCao9GoLPTJuNB8btaXHI9wnXFhRJSjkrmHTTJtfJ5xoxONlOd+pW/sd/2KLS+Cz5wKfer22K/TFmMDeCO4JHSY+phzznxZ5kxcj/w3MRgJWDglLzjwM6yrtBtdMQfE9+536xXPpf080/dy/XXXXRdXXXVVrK6uxsbGRiPBSqKt2+3G+vp6GSfmGmUy76kP7141/nTd27ALdaWPjJ/QFcdv6EFehOo5i16DoenfHJ9aF/Oc8XhYt6k7sQp21YuTIxYxA/E0dpG2MXfdBhLSXLO1tVV2LA8Gg/LOZnPBGXuTgPWuz4jFhhIwPePkPjNOtd7P54sTbugbbEnb4sAbI6d1EtTgmv8d5EUcDJ5R+Cw2PJD8mUiIaCYnHPxbMiGcgwrXNSIaysIPdY44eBSFE5E52ESR/cxMoDtZacediY9cT8RGsS15RRnUg751MMcqBcrPR132er2ySoT+4ZgKHCJjykQnETqZnDrbmtUPHO3EfUw6zru2UR+PxxER5VhYkq7UC4PiALTT6RRiwE6EMeFegmucvPWDtrNSgx/e04NDMegxaDQ5ZL3hWAr6o9frFYIEUgPj5BUeJqMYc5Ik/A9R4WQyY2ZgZj0FTLYF+Ij12IE8YMSkk0ksxjKDVCftbagzaM7z3M/hXn7neQ845D7PexNnLstkkp+ZAwSviM+g2ERRBtiZhHKbnEC1bfT4G0S73flIOL7zsdiMA8ROBgcRzV16HmvKYK5lsGJQ5TZTPwc/XsXmZCXz2oslANXYpZw8QNexAxERg8GgtCWimYDwXHVgxdzKR+mwOMCEMgQm9/G55x12zItFPC8AMAYVbguSgzEDfuuMjznnexPbHN3rRR22VZ5XOdBFrwFJfOcfB1YGpD6RwfVvszFVqtwSxdjJRAxzBtsBgWMfm0kP5rN9n30rc9g+HruwtrbWINh5BnNye3u7JAay7/AiGRNNYKq80jkTGdTVNsMJYRM5XH8YQUBf0ifZXjnpaH/p/s7JI49VTuAYe2Ssn39YnOMdeMbLtn8R0XhHjD/3SnFj1dyn/G8s40A6Y//cv+5byrA4CeOy6QsTjrTNr19weQ6uuR+f4tMzPFb0tcux7lqfHdcZ3+BHvNo+r0Q3LvZzrLcZgxkvetGbyYTcl/R1RJTkG4s4we7b29uFdGLeEQP1+/3Y3NyMfr9f3vHD2EEW5bjX76DyO4DoI+Is+oaV+nnBAn3iee6YJY+Rx434lHL9niCem4l3+jwnvW0HrJuZFwDTGS+CI5jTeZE0ts165nmLmPjNeNZlmlTMO/ix9V5EZkyY9Z2yTHpa361veYdTvpb2O2bynLPkGKRKlSpnhnBcpW3DFVdcET/3cz9XcN2RI0fix37sx+LWt751PPjBD46PfvSjcemllzZ4DOwMdtH+JaJ5GlobzsAWdbvdwm8NBoPiv3kOuzDhvvBlS0tL5ehcklCZG+akOfg68MDW1lZ5bx73GB+28RGOs43tcsxLn0Qs7Cj8gXdLZXzYZruNaalj9k3mQnj3t+83x+w6GQPBUZKgROhryqPetNm8Z05uwUEYg8FzmWejPnnhEKdjmS/NPg+sYL8GPrDfJ5njRLg5CMcj9vOU4VPvsm7kcXLfG5e23ev2OQZ0bGhOejKZFF7LuI8+c8zCuLneLsd8r3HAfD4vmzqMx53EAkvv7e2VY69PnjwZm5ubce6555bd4vQhcSYJPs99nkl9HNe677LNchzTFi/6f8d3PN8cLnXIiWJfj+T4yJjR+oveIMx92jkcDssJmcZajomxhfCJ6AonCZm7Zx4zLujQ9vZ2g0/k2NqlpVOv48uLTSiTPmEeOg/hBCb9mHGq7RocsDE9/ZTtXx7DGyqndRLUkh3lYcrtzzAgNgh8n4NcyswBhRNomSyxgTOJ00by5Po7kG5zXP6bctuSpiZ+ULx87BF1yOKkBv3kZ9iIOjliQcFzXTJBZMcL2YBzJvEGAQAJP51OyxEMDth5Js7A5N5gMCjvDHUSxMkHTyiDD485E9+7F7iWIw3axhK9QvdsnFmNRXn7+/sxGAyKMcmJNdcBst8gw0YZogSjQh39XBLTJF4zMWIhWWRDZiBAEsvJkgxGuMdGnLlhx9sGGGwYM/mUEy7WfwTd5fnZOWU95tgVE3gW6zh1aSM+rA8m8yxttiwHCtzv9yfZrmVisA0A+KgSE4qW3F5sGW01GMiAzte02QV03OKVY7Yd1rMMROwgM5gwgOH/iDjwbPTZR6AB5vy+NoMC2zDmEeDFO3x5Lj7C74z1ex98FAl91/YeDScXIdGdGLT/yX3veqNDnmeI34XifqO9+W/bMs85B3ceSwdYeTcQ5WVgY1tC2/yeZAeXPK+ScVVON8Gu2T86UMp6bv8Q0TwyBuF6bCTYicSIk4EO7h2UYV8gBSiHcrHd7AC13bW47thx+xnICSc+qKNXk9snIDkAtR/gvpyAbcM2Ec1V1cZSfhbSZm9NlOTvjPtyvd0fxtzYffyMCTiX6RXfjjN4DnrFvcYPh42X9dL3ZAIn22f60e0GN+YEG+MFJjKGN4bM/s06mOvgRT3GlBk/0B/MMdfZ5IWfnXXAbfDpM+gy7ffKZe73GPi54BSwwWg0iq2trcYqbyeb3SccNcXJIZB4vd6pnRvz+eJoubz7NRO71J26cg2JQ99j3AKJ6/7N5RnD+0h+Yyonf91Gxw7+2xjNczdjBS/Ssw57TIy1GA8WjHrRap7T3Ou4xAlP6rO6utrYiepnWj/zUcnd7iIJ0DZf2+IVyncsbr0+DCv6Xs8zS5ttrPirSpXTX9p8b8SpOPeqq64qfmRzczN+7/d+L37kR34kjh49Go985CPjJS95SXzhC18oNtn21n4GMUdkzGO/6MQHvtGJvIiI8Xgc6+vr0e/3C/8FFxaxeOdgv98v3B2nzw2Hw8YOU/wjR0XySgJzS/Z5mZewPW/j8HydcXjmo+z7zOtQBnGCF+4YJ9vHdDqdwq+6vo7ZGSME/xkRxfew6Mr30TbjTzCAFzhbv7jGOB284usZC7gL/LlPw7K+GE8YT3vc+Nvf0U9gUuMVJ9cyBqRexnTWBfAYmBI85dN0cnyS/zc+dh3MexjLG3N6IZfbxj3OVTjRZpxGHTMfy/gSWxI3enyn02lsbW3F9vZ2qTMJt/POOy/W1tZieXm5cPu8H9hcIu0GF/H8wWBQdhuaD/TYGA9SH8eTnpeZh/KiwbY4AIzH9dnWOQ7P/Zm5OfSLNsDZs9Eo48Vut1tsG88CP7OoY2dnJzY3N8tGMQu6P51OY3t7uxwFzRyjH5j329vbDc4ut4VkK3phXWVRn+0eNs28o/vW+R1j88N49BsqZ0wSFLm+jvAgIVYmlLUtIEJygONgmudnZ2bH1xY8U1YWOz6e5ZUlrlN2hO4P+sSrTnOftZFWDiwBIzlh3BasuSyPRyaf/JnJHNrpto7H48ZLj22MDNBYLY+TIoD2ZMs72SAIbGAh5026MYbsdIJUcD2Y/Jkk4sdBvFdOUA87uYgo59MbGPncfb+fBzEJSX97NTvJM/qchAdJYoCej9PlqAvGzgSWwVrEYhW/V/kZ2NjYIZmczMF4mz5Z/z1umVAzsUX5maCzIc5g0c/PhK3rwxylHl4RxWfMQZJkrksbWeH/28hOEuTcT/0MbK5P3PbD+tagy2MDgGuznZmIceKOMrjGgVG+zuCJ/9H73E+MJTpuUtO7OHZ2dgrApm3uU7cRWV1dPfB+YK4ZjUYNe2Y9YBWWCfF8LAy/M0g3sMyraDudTuOoE+xT1lkHZR7TbMexRYxLnieHEV9c48CPMTcQz0EcdTbY83hmPxGxeG+L7afLb0sEVxKuyukkDgY8VzyfvOo032vb3BbI2XfZjvm9KnzGKmgCd97vQRBDWVw3mUxiOBw2AjxWza+urhaCgvsdjGOvqOt8Pm8sKsn2z23kXhMTlJsDSfcLAav7O+LgoiPbmIxbfL2xtcevDV/jm7woxmW4zvRXp9Mp78HySmHaYpzKeLgvTIZZJ+h390m23fYjmUSw78966/vxt/hZjqczcYD+M87YdC+84tmIcTvPdVLOY2vyhOdmn25fmH1Im08xxvXCNGMKxw/G6hkf2/eDEVkRv7W1FVtbW6V8yF+3x/Nhd3e3nBLBKS0sdrQtIbk3GAwaR7OavHPfO0ltXcYnOznKuDvW8Bw3gZYxLs/3/RwFzPzICypdX/TasZnrCmnqWC1iESsZo/Adti6TZtYP+ttzgL7x2HOt37FmvbS9g+BifoCV81xwOzMezNiO623PrEuWNh7kMGx1fd9VqVLl9BNskXGFfap954c+9KH44z/+43jUox4V559/fjz+8Y+Pl770pTEajRp8F/bbOIzyMqfB315kh8Crdbvd8j76iMXpYfnEJS8cpu5ra2vR7XZLAgYsZlvc6XTKs9fX1xsYdjabFY7MSQ6+M+9InTOn1RZ344O8k9WYy+9JzBws5bhM22UvIKZvjCuzbwY7wEF2OovEo3kvOJi2pHC/34/xeFz8DP03HA5LX/Mc8AkC7nWyG50wrkJPzZlGxAEcY/6J39Y32sf3nB4WcfBUC4+rF4eCo9wW+gRf3u/3G3yRxy4vmGM8fSQ/dc+cCXX3fKWuxkS5XjleMU5zX3GP9Z97mHv5Xbvz+bzs/mRnOWOyv78fV111VYzH4zhy5Eg5rYSFfB53+CtwpnfFbmxsFFzHeDiGsaCHzM0cW5uD8zhY/7g/z9881z232nj/HF/RJmxa22a0XEfjVtpqnnNlZSWOHTtWFi44lifuueaaa8pYOk6YTCblFTnon+cXYpvmHIptMGXztzelOfbyXOFe7mHjGXXzXLkxcsYlQQ8TB8I2Hg5m+A7JQN5kSQ7wI5oBdlvw4XLbnpOvo965DTynjVyhHjmo5HO3sa3sTBjwXQ6MXG4mGiw5mKQf+S6T2QYRrObAqRokkQhsIxj4yYliAnxWU/C/iQoTEZ7gdtgYAI9fPsMeQOEx5dkYZRyknbgduYkRG0GODOBanm3H7GQB+kYQncffxJnHbHl5OdbW1iKi+eJ4HBniVXhOQGDoSEZzr4U6YJD5jL4yEZUJqKynBmHuC65tS0xTv0y+uB/aJJeR5ybCXHTd0JdMlOR2tbUTx5F3Meb51+bII5rOF50+jLDIRKg/y0DAdXVbMzFFGW020X1lYODnGKTwfQambpPLWlpaKuDaQNj6yjuGWTnF/PE7QD03DSSyHjogsW0xKHIiGTDMMSbuF5OS1J3VcrTbgLXNtjPm9L/9nsFittMGyibYMshzmXm8sy+yzc4BgnUDYOTPPI4GaG1kap6PVarcksXgP+NM+yXrt0mMiMXpFLyXEyKIYBGiwUG157JtjuuBjcHG2tdj22yjjSeyXQAbeaGan02Qmxd3eGFVToAY0zuR5+SbSTf3mTGs+/aw4Dfi4LHk9jVOEGWigv99X17t7n7H3uVVtdhF9z2rsF0P+sH9aN9scoB+RaeM+90O76605NgHoY34VTCMSbxMuGQfmm25x4m6WM+MJ7L/gwzNiVLPi4w78/jwbM8L/LTv8Y/9Hm1ljPI7z1lMCWnEKTg5riG2YX67PvhGEqckPL2IFJuQ8aAXuOXEMH2Z55GToegI9qbXW7yb3e9Ht53LuzJMMnlc6QfsX8YcWTet/x4r6sLYgsnRVfenyzWhzXW2VVl/vECLuWHstbKy0lh5T52JNYmFHQO7XsaftkW+/rA+8XhSN2O6HHs55qnYqkqVM1/MT7VxlPh3bOqb3/zmOPvss+NhD3tY3OUud4lHPepR8cpXvrLh82w/jOX43hgTW2ecZ5nNZmWjxOrqatkttbOzE0ePHi18ErYZnzSfz8tx8Rx/C1dmbuAwjmE2mxUcwakq7JTimswF0gaXGbHYaEJ7IhYnSpnndazvmDhvcDEOyzwVieDcn5nzAXPy20fTUz/qa1/jRdbG7pzut7u7WzAtP9TPyTvjUGL9vb29crw/9eR1RtSHvnTbnITKcQrlOyZi7DkFjvvyAsTMuWQewr40zxfmDHjD40S7/ZvyubfNL7sOEYtkqHXWn7XVmznIPKUOPhEo96VxS57P6PtkMik7ESOaO8G577rrrovpdBpHjx498F56MCTzinlg/en3+7G2ttZI9NHn3oDg2CDHHojnru0A12WO3zqfy8rxDLrO9da/6XTxzljH99TdsaNjWOs192HnvCt1dXU1hsNhbG5uxsmTJ0vss7W1VRYpOI6g7n5Xq/lOPqN//CzHK5mnRIzfMy/o5zhnkpOvNxWLnjFJ0Jx8yQA/d7i/Z2BsANqMiR0Yn9lx2TDZsDBhDzOKFtclk/0Ri6OZ8qRxwGLJRgyhDpnAyYbafUt73YZc95ykoF/8v+vg1eB+Lu/3tLG20jsIzr8zeMljiMO0DiwtLTWSoll3clCZHSr3m+TAcPj5EJN5ckOC5J2+Ph4KXTNJNZvNSgLS5Zjs9HhhPACEEc2VKDyTcTZh4hXZKysrJVnDsVzUC7DctsMBnczJN+tGNoYmF/JOgAwu7NAoy0G+dZbyPFa004bfc966YBLDBj8TgVlnvEvR5eW6+bfLgUA0iMogxyCZurqeGbjl+ZztYkSUnUB8z2q/TPhlO5rtSi6f711nyDvrShtZQ39Qj263G8PhsEFGZpvthLxtdq/XKzYH3SeJ4CAqL1pghWCeMx5fynCiwu3KY28i1PaX76ybmRTPeto2Hl7IwWde2cozTWS6fIvnkQOhNpLNdsaENfPGfshz3YTsyspKCYBGo1GjDpmMvamrw6pUubnEWCVisTMpoklSMMd8JGXGtIhJf/tG+9icDPJqYwISB+XMOSdQEAe22MGMQ/JKccSBdiaOsk8yhrLtAtNZXIbFRIDLyWNiHG0bZntrzGu/6+f7M+MXt4/vONrLBIQTYSQS7TO9C5E6+djULA4u6Qv3h/1zG8Zq66c8bhlrYMfRXwQf5DjAcQp9m8fV42ZSK9c7j7t9TMYV9pv+/LDvnIymHo5FjGu9w2A+X7w/h2QluzjH43Fsbm7G1tbWgTExNmXMwSvGGcwv18dH6PvYP1adOz5E79y/TqJ6PoERvGAMHYbA2tvbK2So8YXFxI7nB++G8tG4h8XS9K111klbYxPiZGwtumkb6bntY96MOYxd8kIv9NT9yrxmAZxjNO7zAjjrtfXGiz5zrErdckwLpsqxqjG8xZxAlSpVvnLkjne8Y3z2s5+NiIM8nv2YOYo//uM/josuuijuete7xgMe8IC4/PLL401velMj5rWNybEfz7Ftb0tAtdVjPj+V3MSGkqgEq66vrxfejCRoxGL3nY9TzSfCYSeNF/BFy8vLMRwOix83pnI9MyZxmzMfl+83Bs9HABvH5P7Fv5FYMg+SfQB9TT+wIMtjQkLEdcp8j8cRbsan8/kadpfCRTAW7qPJZFKO+SfZzcaQ2WxWdqrh38wfWs+8ONGcsfttPp83OE+uzTrQxqVljG+OhPvof5KsfqZ1gjLMVTtWcD3oT+6lH7N/h1vj2bTBfJv7zO13XVhoYOzh+nqXIRsMOPqf+uVFqsvLy+V1DRsbG3H06NEDPG3eiUsdiRvhh/y6gDY+DPHnWX/zvPL1bTFTfobnK21sw3JgcOY1PJ15N+Nk4+zMkVOO40LHqb1er2zy6Pf7sb29HZ///OfLq/Cyvlgco2bumr7mOdZL86a2P557tMv95HLNYzhunc/ncdvb3jZuipyWSVArI5InBNe1ER4okgM5k+EOFigT5cK4WTnaCANPCJTOg5tXU2CA8kTLBERWQNfP4onsI1tzEimvKnawlfuaejiB1uksViGT3PPzfB+K7xW8uV70AZOfXZs52OV73s9CX/C+T+oHkWdHPJ/PiyH2OJpIsSM2eW9n3+v1SsLQOsBYmsghUUJ/sfrY29vdX9SFY+RMbKFfAAIH1BGLc/vzbtccgPOsrL+MK/1O3ex8+Z7+hIwz4ORdo/Qh5aInBl9Zp+1kIqKsYnc9PX8tXoViQg3yx3NzZ2enkShmTA18nExh9VoeL+rrdyk6EcPzAXz0IX1G8jgTEU5wMW9swwyeDd7tbDIgs+Ows6MN2X7xGbYiO7GsHway9BtkHH2GnriOthXYE/ejddzj6+/pWwNMjoRj3KgP/WsAwXHQ1Nu6ZKdrf0BbOJLHILbb7ZbEqutN/zAmh9mf8Xhc2g2JR1BCe528ZL4CcnPAZV9knaAvr2+FLtdmQAj4RP9z+/wM6xVt5tmexwaH6Bo2rd/vlxWhrgd2xAGUx69KlVu63PGOd4wTJ07E1tZWY+4yF8ANxnte0BWxOHEiIkrCAVvvRVa2Nw7kmEf2nREL2+LdWvbf2B3sEnVmvvIsbLqf70DWx+5CtmSiwf2Sg8M83zMZ4Ta53fZ1xn32n8YyXrgBpnKAZvIK/+T+dZ8YqxtLgDewY7bLYE/G2ZjKCRjjlDaf43tY1JOP27Ivoc65b3K5bhd/u+/537jO2AiCJmME7nUclbGaySm+91hAkvgzkwcZU2adcr86PsiLGzMJ4XuNbcH3k8mkkdje39+P7e3tsnDTfepxoJ8y9vAOcJOCPJeFVmB1L9ijLLffemz9oS/9v/sIHaJNOzs7sbOzE4PBoBzTe9giPsfwxESUn/XMz6MujC11p58do1lXcjuYq07MetGX62vsRHmel8Sqxlz5vfDU3XGHdcx2mPjX49qmp7aBGctRZraN9jt5PuS+/nIL9T969Gicc845/2LPrVKlSsQVV1zRiO8t9sXe1LC9vR2vfOUr4+lPf3pccMEF8chHPjI+//nPx4c//OFGbGhsh+0xv2KsmLkMY2Tq4HcEkhxjl+fRo0cjImIwGDTewchzbH87nU5JGJo/jFgsBMK+c/QndnswGJQTGHKyw5xaW2LFYj/rJIpxuzmFw+JsOAoW22Sf7TLxW/j/0WgUo9GotM+cgLnI7IPwr5QHzsP3jkajcpwlPIZxi3XBsYB9vnG6fTh+1fppnGsxN5l5Zr5vG0MneHluxiHghMz/eJEY+kufZ14/t81JNPtn81TGGD6pgt8eI+qR8Q/30RbjauphXjMvgM+YfDKZlFdHeYGc55Zx/mRy6jUQ3e6pY6pdn8yHuUz6l/m/t7fX2MHI93l+mHulPU7qeW56ztGPbjOfGytTDvfPZrMDu1ppk2MIxpdFhDwPjtT4zLuneT5intAbO9bX16PX65Vjh0+ePNmwgwj20THZYRjR+sBzrZOdTqcs4LPettl0dIw5ZD7cWP6KK66ImyKnZRK0TWwkIprZanco4sFwRvqwsrNxOyw4MLmby8sGLRu3THjZmGXnaGl7zvV9zzV2lL4nB9lI3v1oo0l9aVdevUQdfK68yflcL7ffEw5jOh6PGysFTPCYTPC7rHKdvbLZhJ4dlMvPBJCdkQ0/9c+7kNC1HKiTCLUz9zgCCpwIsy7bQJhM43n0tVcss3PV+uxkkN/HlUlXtwfHDdhkhQkkk/XX/WoASUCPMbMjtn64zdYdE5j5Mxtig6JMVPkZ2TFSd8/5Np31eJm0cDk822DPdcrPdHLIDtdtcB24zvptXcrEqMulzp5XJk3pJ/dF7j/63CSPgTBlcb+BjQk7r5LPOytzUOK2WTwHuQfH30Z0MiaQbOx0NcHlQMH6AAntHVn0i3fqWD/cB4jfTcwzATrUEUDEvVl3/Jw8vhGLI32weyYcrSuup/vWPhZ9zEFi/jvriZ+Bntk+ZYKSBGiuew5arBu5DlWq3NLlLne5S1x66aWxvb3dsLkmQAgqjT1sMx2AEISBnQi8jKmwUZ4rvDPcQZUxrY+g5PnGP9SNQK3bXRzH7yQqAZIxp222F0yxKxBiyjbZAVrEwd2B2Udho7NvzTjHZJP9fsa9+V73ha+3rcKWOU7hGeDkiAX5YLLISU8THFzvgNI4xM+KaL7aIQf0+Eq3jWfgi60z7iMTRx4DfH32F7bzJnV8zFXGxtmHWGfob/TPZAk+mvvzgkBjjBwXZd/nv00O5cVD/G38x7hwvWMbfm9vb5c6ezElZC/kIkSP55HnvDE3SVa/F83z2DHaZHLqPb9tOu0+tO/2+KDT1mHPVycjOaKPhQCcMEP96QcvCqP/3M8ZYzBGPtYOPUQv+B+8R3uNJ4ybjdGN7awjxmIRzdOLiMs8h/r9fnnPuxe+Mof4n1jPcWvGso5zHRfzHbru39nX5PJ8bf6+rX/arvG4HPZ9m9CWc845J+5973vf4PuqVKnyxcv29nYcOXLkAKkfscBWbZzZFVdcEb/7u78bT3nKU6Lf78cP//APx0tf+tL45Cc/Wa7xSRAIWNfxsW1+jvtzrAnvd+TIkTjrrLPKbk/eWe8F6k4++bSuiMWCPey1F/n5lDovCI9YcGzYTPy3cWDGZRnf8FnmmniWcYt9jvGocVC/32+cDGE8a7+Nj93b24vt7e2ym879nHkeJ4sYKxKR9B0JYS/yIi7A7xF30Hc8g4Va6ASLwPFv+f3yOaFrH85vcxKMJz4bvNCGZ7ifvrLfMydkfMJ1bLKwHjvGoO/axpIxA3c5jvCccxzhOMV8r8v3YjePIXXKmIc+87t53WbzyBFRxhc8S328+BGhnmBAFumxcShiEQ85LvXzI6IcjWy+b3d39wAeaosjPA7m4XKc5rgkc1DGjtiL/BwveHXdc+yQ22a7l+N2b1TKuJX+8sIM/p9MJnH06NEYDAZx8uTJuPrqq+PkyZMNjOz57nKNCbO9cizktrkN1i3H5bTf+N+fETswx9r8yA2RMyYJimDEPGgmSnLiwIFCmxJ7gLPC84w28T1thtgOyPWxMjnwy3X2/35m/jw7O5wEfWJC4rD+bFtl72fxgmNPLCTfS/uc1HDftE10E3YE+zhNrjHBgiHmWbxPxZMLI+6+IEC384loHkHcRmpYv/wuAScdIGOor58BEUhfmYTieZl88UuoXR/0H5KM/7vdbgGCJrZoU07Q+BzxDBw8lnzuVYJ2LDmJZ2LK884kDdcCQG040R36Ijsyz1230fV1Pe1wDIryOGdbYF32tfS1ddh2xaSX22Rgn8mBw0gHtzFLdqC0OzsY2pLnNb+tF9iitvmayU6PfZuN8nwyCGMOsoAhrxh1fdFb6oi+e2dvxGJBQCar3Q8Qo3b4tg+0z8DVoGU8HkdElCMmnKi2nraNuW2+65WDJfcfQZVX+QGGPRYZ9KF/kGpZVy3+rk13sv84LBnAd1nX3A8Z2GcQPxwODzzPc9rBWAaX1+ffqlS5Jclf/dVflfmbfSd2xfMRG2KiCFsQsXhnDwLR4Hlp4sD21tjWPsS2FX9MfQhg8d227balxub87d152YbgE3iej3FivufEZpt94O9sy5yws/3IWNvEBvfRj5mgy1jXSSMHvu5P6gBWdB2NfUkg5SQa9YIwMpGWbbUXM7keTnyDTY3nuM99Y3+YST2e6cUyGU8bNzqGy8k8vqdeXthmXQTfU5fDEjv5/+yrjRWdsLOOuk1eDZ91zLFoTu5lH+vyjHvRcZ8cYqyPT/dc8KsqIIX8PtZsZ6iTT9tZWVkpSUr7/5xAzjEPuuhnGD/y2pOIU0lAjim0zmVMQB8Oh8OYTqextbV1YGU6cUbuf8QxmPGqxwBM6JNE2Lli/WTuWSeInTLRbVIa4pb/+TGZY1yTcYyvO4zkzbi+zQ4yJvl+X+dYJ8/TfwnBXl1++eVx+eWX/4s8s0qVKgsBc2R8Zp7IhD8x6Ac/+MF405veFN/5nd8Zx44di0c/+tHxK7/yK3HixIkSr2OvzFeRIItoxrH48hw/28cMBoM4duxYHD9+PI4ePVpONsiJDp9G5wSmN07khBj1sRjLuF7dbvcAljM+xAbb/+dy8e05OXNY7J7xZF4Ilv2Ur6M/dnZ2YnNzs5w2kk/jMBYyNvECNPtjvzKr0+k0XrlFf29vbzc4HWNqny5DMtcbPCjLz/X/SMbp1l+O0qVujBs8S44VMp60L+UZxsp5AaFxuXWrrTzrd45bKKuNP8ycdxs/70Wp5mdcz/xs6suz/J5Y+gr8t7OzU47C9RyjX9q4f/OPYFGfeui+pJ7WR74zrwxW9mIN4yLnh4wBaSf1dV9SftarrBv5M4+DOauc0/Acop7MB+rE/ASvmiswJ2es73k2nU4bJ2geP348jhw5EidOnIjPfvazsb29fYAnt6217tk2U3dwrnfo5wXLjjusx87l8Xt3d7f0Hfd5TtxYOWOSoB4Af8bvNqfFb6+o9Hee6Icpd5vkoDfi4A6sNmPNNXl1biZK3F4/sy3I9/OYOPlYpTbny/dtbbATsDHxpLSDMfmVgYD7u82xUzYBH++CIYgnSKeuBPYmEPxsv5vPAR/f+8iHDExyQgPDy2pp93c21HmyZhCZg0l00uIjPE1k5rE3UYcjH4/HMR6P4+TJk40V1+4rGzjuI/DPc8NGLhNbJGG94r4t+QEAcpIZh0KZgBJAEPWjDrQ3O387AQMN6pt3ynA9CSI7JK7L881i/c+25LAkUQY0ToLzve1AJtasR23AFqH9uQykbSW9wSdl+v0Ith22CZ4fnkfZqbXpUV4lxI6XvOILW2bC0brrvqUNBtVtdtQgwYspbD/QQQIq6yG2aHt7O8bjcTkqGpCebZttp+eeAS9lj8fj1n5vs/95F5CBHNd5/rlPr88PeKw97xxMZMn+h+vz/W6Pv0fn2AGabaT7w/2LTfliwVGVKjeHHBYct/l4MIbtkW2BV7g7sMJWYvewQ56P+EILc8x2g8+pEytu8+61iObKUPyBcUBEE3dTjjEJttDYIuLgAkj/dr86URPRPO0AacOm1N82Mv9tW+m+Md5323iG22T7ZcxCEpRxdBLUZVB+G2Zw+7xQ0BjNdt3Ehp/hdlNffGSOkzJ+th5lnUb8jm98mOeFE+a5jLZ+z4G17zVeoT3G+PbN+TOTMvZfTkK6DtYpk33eFekdg8QX9AXJTD436ZFjNYgpY1faS5Lc5K53rjh26Xa7hTzi/aFZb9HdPBd4LnPXOsL/HNNHXWiLFzqYaKL8bvfUMWmz2SxGo1EhVnIbMubL8RtjYzuQsWqbPlv/fSKHMUmOSzOGyfaTPiTGoxwvcDDhaxvhazJmpn0ek4y9rw/L5fpSr39JqViuSpWbR+DOfFwngh/K8a4TCW94wxvi/PPPj4svvji+6qu+Kh7+8IfHa1/72mJzfDSi7SS+JyIamwjwtfar8/k81tbW4tixY413fmJ72T3IblDHmTzLiwCxxfAQ9u8ZC+RkHHiJBOTe3l6srq4WG22fnSXH78ZTbadWRDQxhcU+277GuJDkJ1hia2srtre3YzKZNDabIOAWY0Z8INwyOIXF7NTRGN+40W3jeT4BC/EGCu4D57AAHcnJFW/U8HPAMY5FMifHa0WMjfNuVXOZPNvxFa8lMZaz7nGdMQz1s564bGNL2u6NK4wFmI//88JMsJfjQ5dLvf0qk7xBwXh4Nju12G5nZyfm83l5zRQJUeMi672fa1syny/ef86CPJ/m4XiVHb3mjNx+yuFzxjlzY5mzyvFCxvZtcaHxXJ6beZFx5r8coznep72OOcxdMveM2113FkF2OqcWO1x77bUlGT4ejwvnura2Fne+853j6quvjquvvrokSh1P2jZZd9BD7I7jceaE+zHbhcN4SOu2N1C1LRK8oXLGJEGzEmJ06FwnRHxPJmr9GzHJfkMkOyiXQfn8mNzGqDCoh0lb8O5APdeFtubVF22rutr6wUGXjbOfibNjlY6/d9Brw+uykJwwsNPa399vnCPvJKgJHZ7v1SmuT8SCZLHRgIjwzjEHkRB8bdvw257B/3zmHVltwaadZk7oQGpkMjCiSaZ4vBH0yQYDotJHGhwWpJvMyUkLDBjb8n1kpR2EAYgdnJ0348FnTkiiX5SVV8Vl4iETuu4PAyiTd9Q7j6VBj8fdz0NMKPtZ7kMT0lzjvqXOBmMZ8LaB5yy2Mw5K2oCl+yqDpU6ncyCpTfm2Q0he5UPbrIP0qXXIcy7iFAgeDoflZd3cm9vDOOzu7hZ99ljxk3WOsYiIAtawT7yPNLfBAYMBE4sKEAdK6HIOHKgX9sZHslE2oAMAbqIr+y7GKx+J4ev5YeGIkxJtQK7NZ2VClX5p0y2PWZs+Y3PyfMUGQpDSdxb7OwN3xLpcpcrpIDmwykFX2+rcnADhWt4nHhHlOKlMMDn4yJiZz6mX/ahtRT6OiRW7Jg2wvbnu2D9/R/nMXyd6XY79B/fkINZJJPrGCSpfa3uW/SaSyY82yWOR4wzXFR/kUwciFvGK+88BKEEs9j5isVOU4BaywffYJhKktuExkyTc7/qhk/ZrPmbVOyy43rrpvvK4eCwdXDtOon70gctx3fwc60Db+Lrt9Ifb6ufmeBH5/9l7lx7Zkiwte7nH1S8RJzKzqpAaBkgw+EaAhMSYAWN+CT+DP8GMOXMkRkx7QosJUgupRU+gu6mqPHki/BYXd/8Gocf82W+Yn8w8VcCJLDcpFBHue9u2y7K13vWuZbYhEpyU6cCg5dvzkm3Hz3B2Nj6Kr+M5FxcXjdh10mBVtV2MmbTl/ngnQNr4nBt8Ld5NjFyk7w3xyXebzWag03iOd13Tz/V63WSI9e9xMD64uLioyWQyeB2Ix5X59M5Uxo3+eJeH59ZBVH/nfprINP4x7gcfGe/bD72+vm67YY29U1ZS7/hIweQmEnMdI/F4lv9Ouff8WP5649Ebpz9WcR9O5VRO5f9ewbd8eXmp//7f/3v923/7b6uq6tOnT42Yrxom0qDfwQj//t//+/rzP//z2u12LVk4E4op5sCMTbgucdzV1VV9++23NZ/Pm+5cLpd1dXVV6/W6xuNxTafTxlViDxLrWi+bGwJrJFdLXb3AWdZprOsEm14ynnk3xtW+btoaP4/vzs/PazKZDHAbc+kgDdhzu93W/f19wx2cMEHbjc2TNzTPQTHnw//YVewZfcvjTr1Bg2As2BXfJvttzolxQYY8dzyz6u1OxuRKkAHPl59DnzxOzI/tfPISzLu5KPt4PbubGDllzXEA1pzxtH03cKMxpRMc3QYwBvU5OSv58Vy37KplXHhV2m63aye92Y8j8O32kvAIBrTfaZ4Y3WNumHHLteb3S/o6ywS/waC55jwvjj+Y5zN2y4I+c6DWXLFlyv4Yetj40kmC3lXK9d5JjY/w+PjY3rnKvLIWuW48Hredoev1un73u9/VDz/8MMCJbjN9cKwDGfCcYDPs2zE/Of4eW36QQWPkLy2/mCConY6qIcGTxDqTx+eZ/WMiwvX3HNb8n2tdXzoWJj9oRzoiCLRJKBMPdtxNtOSY2KAieLSn16d0gDHwkDC5ixRlaeGlHmeN8Rw+S6PqoAHtNam92Wzae0AdCGCxZ4aAjQB12GB4oZlshMi5ubkZOP7c76NkfczUarVqdZucoO2ABhY+c25l6l1vPNtygTLBKBiMuXCc1Ha7baQYmTNuY0+WfXQHREe+fBngZHBqg0nx/GGc0ugjYzyHz1HA1AnYZNztyCOz9NVGEDCXBt9tZl1kJht1ef0w93zWI4wsLyZTkkw1SDNQRib5f7vdNlDOZybk0AesLd/vftjQEGhjbBhHxs67ubOfjJ3ll/Vmw8y8J0HGOvIacF9Zc4w5c+v54XMA1Xq9bjuOkFeTftgD+mJAbrDGuPLb2WYGmeyOxiG4vLwc7JZh/pG5x8fHdoyD+5zEJH/3HCYTau4Xc4A+ot0G4AZ01j9V1QCR15LBfGZtWWdaHvycDLbQDvfF9sx1Mj7X19fN2TEAqqqWXWsAhmz7CFASR07lVN5DSQIksV1iLGMeH4nDZ17PdkRM9lQd3gHKfbZPSS4kFuC37USuad9Pvdvttq6vr5sNzizv6XRaFxcXLRsd3Ze41raJz03QJD6xrrXD3XOGe4krPcyVyUE5n1VDZxZnlVM5jHX8POaD90Qyb4wbO0NJENxsNm1sSXTDJhAE5f/xeFzL5bK1jXbwnUkGML6DMYyd/SVjIduEJDscpLEc51qwDKXN8Nj6mYyT+5KkBdfmfNEPnmMfhXvcDj7jx/jedovneLyMdY1F7dswRqxldhMYU4FfKGBFruca6kriJdc3cwwuTt8V2XOf0z/12FUdfBtwoskcxoJxA5OSUOl25XyQbDGZTKqqmsxbd1K//QJj2cQ7/t5BfvSBx4L+0j77Cjy/J/8miewbbzabwa7SXtIba5I+gWs93rTd91lvWv+5P4mzco1lPSlD+fcfq2R7T+VUTuX/XkF/vby81F//9V/Xb3/728YXwRPZ58dXxw7v9/t6eHiov/iLv2h6azKZNFtN8pAL+tO60tgR23Bzc1O/+tWv6uzs7M2pScaXm82mZrPZm00dVdUSeyg8C1zsY+Cr6g0XxT3GzbYXmehrm5IcbyY8YSu5hrH5HG4iMcocE/djp0jcHo1e37l5f3/fAo6ZQGeMAA4EU1YNX6tB/5jb5COQCZ4BFsY+Ohnc8+F5gIs2n+8ESSfwmQcxZ+LPzs4Op+vRR3bQ2m7DJ9BOY3Vj4ixgDAdkjX2NTcwDWS487+aPcl0Y/6bvZdyUfHgmmBkTJLZIvJA7nMfjcT08PLR++N2VfA9XZ38KmWDdTKfTxvHRJq7PzUDgJo+/eer0CXo7QhPfMEeJgbwm0ud0f4y9vDb8ffJiXtc9Pybn1Pyxk0byHcToY3Th4+NjLRaLNnbgz8lk0nSQNx+dnZ3V3/t7f69ms1n9/ve/b6evZD+MTT1m/u2+eTzMTVAX8oyM8b2DtV4jP7f8YoKgztqpepupXvXW2a16C6qt+K0sTQak8ckJtvIx8W6FaePeI4ldekqVQvsctHC7DET4DIGmr3aKews+Hc8cyyQD0nCmkvDn6ajlgvCuOd6FZEfNWQJ5VjQLiLpSkdBOO+RWIChp3wPhgGLnWSbeGW8bIuq2DPAZjjz1k3kyHo/bjjS//482o6hMuqSM0b7JZFLr9bq9ZHq32zWChPFH0QA0fIZ/yrtf7s340lcMmXfNVVXbJYDS5jv65vcWONvI64s5s6w5uMr4m5xlXHqEqe/xWk3gx7NMmKSzn7qDeXc9PTBhgGjDkWS0158BlI2154K/HQDOozIcSGUcuM/yzJxbLybZZb2Xaz+BlP9OvWwyyWSer/NOEwy8g5Dcl4kYznbjWfk8nDLfRzstl7SLeizbk8mkBfHQwwTuPI4mxzxO1kHMj0En7bFzlYFayzDfJaFNPYDFlIve3KTMOajg6/3MnO+0MekA4YQkwKuqgR51f+0MWf+4X6dyKl9zyXWUTlo6zWkDwDnIPfexnquG+AQdkzavl+lJO9IGohcJmnid2v4kJjRm8PN9XH8GKYxd6Re/e45g6hmcOtt+nmtckI6us5l9LeOTREjWT718jj1I+4veckCaQKfrr6r2np3NZtMwIsksnnswhjEJJ6qQ7U8SD5iXdjlJ5+LiotnhdMY9f7ZhFOMwX9v7PwN8afewJz37xPfb7ba11T6PsVaSYZTEdfl5ftdzvrNttnleq8ayliW/7mM0Orwz0n4Ff5P0hf/DWvOJNpn0aHKQdebjq5KIYO7xWYwpwSG5PmyTPSY8m90f+FHb7bbtFMDXsX/Hs/w3uIf3gzpB0ng0ZceYJfUPuJF1ZF/F/TIWZiy8jmkj691tSl/Ga94Jj9ST76hLn8N+TMoj3IVJJ/veyJV96/Rv/Lnn41RO5VR++cV+JiT69fV1+79quHtzNDokf1cNgzDmbcBq+Mb22/OozNS53v1ZVY2Tgk8j0AF2Mddm3tN+ItfQH2NN+9LJ5bmftNP8Fu23b1p1wGYei+Sue7o4fWg///z8fHAim096oP0+eWS5XNbDw8PgVWG5MQifwjgOTGHOhOeYa+gFSkl0cj3Mg5PyGV8f6eskKmwzY0PQejKZDGxkciOu24mXThTEr+GaHs/o+XDSN+NlW5/8I9xgDyP5N2OeASZkx2sk+UXLKv/7mbTZ/iR9SK4V2fQaSZz28vLS1nJyTx4Lb/aBQ1ssFoO2McfGuowhPBwYEp7N/KkDgBl4JICKv5Q+m31Brxtfm//3ZI0xdpKxMTxzavzP/9ZDltueP8n8m2vzTmvuw58kYdaYnwQSNpvhL3HCnv2L3/zmN7VYLOq3v/3tIA6SeJt2mWfw/Po6+8vmZ1POSfjO676U53uXQVALQk64F0HVwalk4L0Yq94GMBFOX49A/JhznEbJi8AEPfVn0NKkNEYhyRn3y470seJAhcfGWR+9vrBQHaTkWi96FibKz/31OFgZ2RF2f6z8Tb5wzJcDBigvZyLYGNnp41lJklUdCANIB2Rjs9kMjmmjj8iPwQpjAWnBuGLk3V8AHsUL2scdpXKgzSjYNHbIiwELn9tJthPLj4/jZP78zlGTRoAsk3L+jnaahPRxJ7THQU8CzZb//D/74WJlSD+8G/MYYel7e79tGJ2dZkOX4DSPg+FejyNjnLoox9ltNBjKtZJkKwSr30GAITIBYgNCX2zYuc+ZZSYf3d+UtWPA3UDRz7RhdPCPHTAmoJLcxiGCBEuw6mw+CCkcE9qV/bDD4n4l4DGBx/o0kCGYd3Fx0fQYWVjWJ6yrBJs+FsZrzc4nxcDLY8UYbLfbwft9vW7snCaAoS4HPV2sO2yb/f2xAKblnWczZpDYjDE6KZ3SJOWc0IINPZVTeQ+lh0erhkFD622uTbIkdZf1DMXr2Mfl8Dzq9nMSR/KsJAewN6vVqgXYrI+Mj3g+gRa/rxz8YEfe2MJ2JG1K1RBXGpe6nz3iwWNgneXP6YfHnb+zniSeTJD4HtpmUoF+8DnvbTEuxvaZqKQ+HF/q4RgkMAy4bTKZ1HQ6bdeB6S0/YEu337qXNu/3+8HOCgd/GLecB7fFJJqvQ756z+Y5tiU8i+fTNsuqx53n9+xYD3f0/vacp01N4oK5c3AW/GpylvmEqKQOMAhzhY134M3FeoA++kg/1ikJi8xJkjMmsfFhGGvjBOOF3W73RiaqDusLW0/bMqmCz00GsqbPzs7aO9dMulbVAEP5lJ5c1yaZLO+53j1HJmPxfRhf6kvfN+UUvMN74wgG0F+IxiysS8t7EujIvNuS7XWA3OvU+sl2qLfuTuVUTuWXW+xzojvRG+hL/kYPm+vMgIH9Se4z52c/Hhtjvmo8Htd3333XAi7wSVU1wCZPT081mUzaMz5+/Fh3d3eDa/mN/w4/4KSU1L/JGyQGMl9hzsD8p3GIE97pr3VycnjmS6gXDOfNDVxvmw/ftt1u6+HhoRaLRbM5YA3GGdtK/+BvaA/jQhAK+2rO1Xyl+R7qJrmKPvM3clB1SPirqsF7yY0JkE8+M79gzGSuo+oQPCdp3ccAI39OUkJGnJTEHILRc+6QkcfHxwEe5Tpzwj2u09cmB9LD1uB8sIN5WPs5iU9znBxY4n9+uz2WQ/wQsGrqBwdQuf/l5aXm83ntdruWuMB80H/6hpzSBmQEX4W20w/Whn0J5G80GrVXYbmfvbXrNnueja16PrbbmP4fnzFH6dvTB/+mHWBHP9f99zwjr6vVqr7//vsBLmROkE36xzpMDpv1cnl5WXd3d/Xx48dBQN/YPPlCY/Ycc/uZ4GjkyYFWrzvL159cELSquoJbdQhcWng9WFXD6HoaMTsyvWeauLCw+rf/zuBFtp32WoBRLBlQcLFyIThDvTYESeCkwrTRdpt6Y85z3X/ug8hPIsH3ZiDPhBrX+fPd7jUI6l2eJki8EOwg21hX1cBRp2DYULzOviUbAkVjR5zibDWUjucYGaRtNl52Xnm+g1k+8pL5Zbwx9g7EOWvGz/I8ObvZbaD9zlY24WHHmjG3MXUdJut4rrPtuB7j5vd8YqRNApiYyjbY+KbByswmxitl2O82Yhy9q9fGkj7m9/7O68tywDPd/pQPH7mSffRcWXfYkUAWGOs0KpBl1kGZMODSA6/Zj8yI9A5D6xkban7IFkvdiI7ge8C1STPk2YDMOtDAhGKgnEeZWA6QfQKrGF4+s51BtnI+0FvL5bJ2u9edoQSmZ7NZ25UNoW1ZcF2stTTy9MNznUdTeD3aLtjeeK58rwk2+otOYqd3glvbQPcjbVde53XDmvQOWwr6gblA1t0POzzeFXIqp/KeinVs1cFWs+acEMZ69lq1E49uydMAWGtVQ73lYh1kx5i/HaQzvqk6jhn9OfaNnfPGE+6/MWMSSFxnBzKdyCQREvcnecG9/nHfso+2YdRLG9Fnxiupvzw+zJ9tM47ger0evLOJa8GhDpj4SPn1et0Siny9/Qx2ydLW8/PzdhwVeA1838P0PVzBLkUn+qVNsg0wLk6bRJsT79Au5j5tn+uyLNF/4x/v2uD7nq9DuxNjf87WUdw2sAjj48zsqoPf4vcigcsnk0k9Pj62xIHLy8v27k3v2qDPFI/Rfn/YQcquzP3+EMDe7w+7K3iuMaQDf67XaxX5cIDUz/cP/TfWSRvutZX42a+E8BybcPNvrxPLpndfI+Ouk+fT58SAPf8eP4g1aYzvNoK1ja1YU4wpGMx60WNGm1J/orvdh5wDj3Hv85y7Y7rxVE7lVH4Zxf6e/XP0JoE1/Pp8jYlPDjNONZ/U89f5DfENVrm9vR34fk6GASdwrONu9/q6nOl0Wo+Pj/X999/X3d1de3+od7Oh17yhwzqUNvnkJOynMSC/zaMZNydPlPYtcYavN/4yziVxmACDfQbaBB57enqqh4eHdoqIAyI+Vct8Xu89isnBmYegXQQN4Wzsw8N9gG25f7VatUAa13PSycXFRc1ms7q9va35fD5oIxgTzGyZgSuhmJeven1tmefH3FBy48aruU48L+ZRGI/EBlWHQGxuXuFvj6exqPlBc1q73a7huclkMjjtw3g45TExXPaHufB6SCy0Xq/fHBNtTJb+FOuIeUOOWYOeI56NTvGJR8iXTymhjYnNwYvIgHG/1zt/+2S4PPUj5cnz7DUIB238m75J+rFeX6wly7ivs7yYW/MGiIeHh/aMp6enNsbIy2g0qk+fPr3x8+xvOpFwNpvV8/Nz/fDDD20Nunh98FzrJ8fh0N2WcZ8GgL1JLoD5/VIM+i6DoL3SI73tTDJYCIYNUgbM0sm3c2bB9vOOEa12Pl3fbrcbBPb8OW2g9J5Bm1gYuQCTTPJ9XuheLFaGbn+vbyY8UODO1krj40Wf7UQxkw3jwBtbt53l7iMpq95uj2Y8uL7X/6rDezEhP1ySlLATb/DCtR4XxswGx0cOpZNMFjeggL+t9KpeM6Aw1Pn+R8u5lbgdavrP/X7PpoNZJgNSuaCUbaQZJ7/Y3KRSVbVsZ/4GGFYNj82jTkAm7advJhAInFKH16X7yv/5ztCqA4ClPd79a6I0ZZdnQjix1mwoGZckEpgb6vNvss5cl0FZZmalzqMvrBdkkrE7Pz+8M9GyTLFMWUf0jDb3mthNUGydSx1enzgfHmsC4+x0YZ4SNE0mk4EDAwkI2OVZ3lHh8fH4OgiaMu4xZhxZn5CPzuSiXmfLjkaHYx4BeJDTHEXjOXdWJODETuix96cYxDLHVTVYhwaoyJQdJeqzTFju7HweszPcb5LZuthAZ7s97HilTjtKBnh2oBknzwc6gOzfXttO5VS+1pK63PjMjmjiN5xd7KMdavQq5JVtIuvDx0Bxj/W9d6axBr1WsRfoTr/fG0yTyTz05fr6epDdTVvdhzxSy/2iLcbDnxvfxB3WH3xu3Gud6LGzXaRv2ENjqUyC9JxmsMfk0svL67FzJMxgD+mrM5zdF584AMmVdtSkn49qN44Cg9En2pvvn6Q/JnCYK2MQy0kPs9jOmkS0r5aYhGvtuyQ5ZXyTO6aTGEnfz8+wf0ZJ3Mff7k/2mWeAg/xeV2NKSEHjSzA29o31wJq7vr5+E9TlWHnLG9jLQXiwCmsRmfbpJowB65s2grNyjPy/T7pgLLyTBnlxVrlteupC41BjPUhdz5Fxrucnsb4z0C27Xpf2A/Bbr66uBpjb852nUZi0Yp1zHz4eu6mqhv6l9Z/nPxN8M/Eyx4H+ZB97Mu7ie5N0+lIS6lRO5VS+7sIOUOtofG90GP4w3+/3+8ZlJWasGvIzDkAmkW57/vz8XLPZrKbT6UAXGlPyHGwXBRyz2+3q/v6+JRJZF3Pd+fl52xmFPbbPjP3Gd7XtoJh/NI/AjzcSmCPCnvpZ1JH+LP/zDlB4vbRPxhCbzaY+ffrUThGhzXBfPTxsXGW75sR9bJADK8aO1EFy+GKxaCdiPT091Xq9bnWCYTmRgoItBRubf7KN3u/3Desaw+DDnJ2dtZOmjCudVFb19ghU+sW4Ius8FzlODGO5SM6vhw9sg5GB3u5q8JvXjLGA59Q76ODDjK/M+zFW3OM6M5DMM/ErzN8YuxlTHeOcmBewbHJwtDu500w2wF9F71gnpH+Ibwon6FhGJq1aB1Qd/GbPvXGrfXbmNvUAfee313xPDzB+TuxDBhw7Acvz3cPDQ+P+HPAn2YB57I2t/UswKtw5gWcSMCnIg0smlTAmGRMxN8y80A7WNPrF331JeZdBUE+4M9lN9LKgGCwPmIW0ahjRtyHMQUUQ7ewxgT3yykS0DaIVD8WZ03aeETwWNM+z80J7c4HlgkSQUX7cYyXEZyY3nP2bzjxOJ58BltIguV476W5jTymwNZ6gCGPOcbWZiUJbrWRpI/Wa5HIGDguWcUJReGcSfaUNKB3kkrmw0rIDnhm+BkOr1aqN2cvLS00mkyYfKLyrq6tarVYNcFreaEM6sm4X64Xzv03WWNEbDFk5sS78UnXGDEBsQwHo4B0FXhcoXP5GsbsvfMbnCXx9/AVzahnLYBGymf1OIJey7gA46y91QRI6/u0gs2UEWaM/1iUmlrjH8mMiw/2nmOTyOLlO7uO7HsHEOHjdEDT0bs7ebvQknmg7+trj5evYtYJcAAJtpKnDGUqsW8/H9fX14P1ySSqRZcicW1cDiAHnyBTkPWNkchU54ZgeArPWB2S78fP4+NicE88vhJ7bbEDCmjBgY4489rYBdmi8ljILy7bByQbIlkGUEy08tuiAXkIKffS7RAgUp+PXI+Bpt/tnXW47dCqn8t6K9QX/OwhR9TaL1uvACVzezeW6KbZPPTxoXWFcYB1MIgPviqIOMrhns1nTg+fn5+34VZNIiQmNm5JkwsnyGjdZcKw4+7TnhPaIK2yz+4VN9DW0jyOAsQe2sUmIZHD4+fm5OZkkAGKnHKTxZx6P1WrVgqD8vd1uG4bFOTaZgL2irVXDY6HQp2A/O/+2HdxnZ9yYx7aHthjHJNHIGKdjzjXGtiZxPJ/pE/ne9Jl8j9eAZc6BZ+NlnzBhWcv+OjGLYlz6+PjYgmDMlTFX2sb0bSAHTXiZ6KyqQWAU+XP78TchmzPgTjt8bKCxYxJstI12ZzDa7fWOhlwzJs5SVtiRZDKL78wBuB7GlWcYXyYWxBc0PjP2pe2JcyjG+n5nnRMfkWNIOObLuy/cB8bUa83PT1K7589RUtb9WfpDp3Iqp/KnU9DfxpToQTAYOM8+dh5vbl1tvWSckEEIX0+ienIaxljgGGwTSdWPj48DPc/upaqDPjYfYftrzhVftOqgj53EbL6UsfN36ZtXDXcQpo61zbNux2bAT/pdmolDadNisWjvgwdvmVt23YlvKQ722K46QMk40f7NZtOCnvyYFzH/gg310fnm9Cw3ThwjmOVkPGPIqsOGGWRoMpkMOFz7GQ4yGlfmJgzalIlHtNNYJeWgZ0/tzzAnxv2sB+bNCf2WN57r10vldcb47mcPY7hOc11uA/xL4o7Eqd6tbQ4I2bM/kjgffsdjy/gTL8BPQfbtHyQXy3gyt07I6PHo/jsxse/z3BrXeeztG1hO2PxgH9K+hueDsTW/jr/H2C2Xy8G656hk+sLnTgDwzlWCnF6fbgMcJu23L88zkrf3OCCnnkuSIIzJqdt+hn++pLzbIGgSNun0VA0VRwYkeoHLfEbV291W6STYkfWzKfyfgdDcLo7yYNEnaU77bfR7bbGjgrJ1+9ym7G+CgN548z9Ch0PrhemFaoOchIeVFf3y+6A2m007ioCMII7G7TmDSdjZmUUxMCb00+Oa78a0YuY4MpSwHep01lEUOOUGehlApG1e5BhgtxeyIp1WjA/ZMzY8zBX1mbz0Z5ZdCIF05Jk3jmHyM3kWcsCRasi93wnqMbVCBaTRL3YmICsOptB+/qZOj2M6+rQZY+E+m/gzmEmQYvnKurmXeg0eGGuvHwdVHZhiXQHAHGCy3kqiLwG2DbnrpjhBxNcl6ZNZalmP5cX98HgbgNJ/drYwPhTv+OZ5lgP6iXzl2Nn54HmQwATYPPc838E1r20AO+uP/k4mk8E6OiYvtIe28TkySIB2v9/XYrGo7XbbwArPM9iznrNjSb15/KDljL7tdrsGMEw8504OA3XLnPW45SsdKY8lcpZry4DI80KfbS/cvp6doj7vdLYcnMqpfO3Fet36xWveGLbqbUalMSlkTtXBTlBXBi9c8n/wCvjFO9W9TmkbepZdoJvNpu3cxzlN22L7kxmwtvvpZKZdtF2j3y7YNRNp1ilZp8fWNhe86vvAfGAhEwVuP3Vm25+fnxtZRDa8nT10HM4++M/vdFoulw0nQ/yhZ3kmjn8SisYczAXJPOx2o8+ZTe6TVSzL9h+MzTxXJsIs/8yLA9tJBqRDblzes8kef+oxcWS5MaZ33yjeSUE/Ep8lMYJMeFdCVTWfp+oVV93e3jYCiznxe5aw7fafjtl05h5CmB01rG36Da6x75IJsGBu4xiTQPzvhIcebjUWyDFmjLzuLGvpj6bPyVwzPpYlr2lfZ1xr/Mn/PTl220m2tY6ybEDe4eu4v6y98/Pzms/n7fvlcjmomzWe+CcTghlfY2v3z3X01oaLdd7PLemL/djnp3Iqp/L1FfQwWAHbYD8fHZq22vdXHfwxJ37wm+BlBgR2u8Prb8BTYBYf3Z52Gh6Edk2n0+YjLhaL2u0OibfJlZrXNPajf4mj6ZP1qG1S4qK0RdgX43nrc+ozV3N9fV3T6XTASVIP/drvD0HI1Wo1sBmMkXU7dSUnaZ/DHGn21UGs+/v7QfDFyXvulwPrtM9zZz4APiY5B3MKHl9kKrElO1B9LKqDv8yB63TgyhjMnIl3gdIPYzzzIV4bDh4m/265gat2MNDrx36G8QhtSM4KXOGESuaTYDXXckpIyq3lwrtukZPNZtOS+Xp6g/XmwLfrd6IsmM5zxHe06/HxsSaTySBpw/NHPYwXaxpZ8fG4zK/nxmvZ69JtSLnkx68yoO/GwsiJv+c72ous2l9BJ+73+7bpiL49PDy0nZspW+zG5m/rKtqW2BE+1a/ywq/IdeL7Evtadlnv+KjoCe9gTt+Z75IL/DnlXQZBTTB4QWXg0IvECyUNWzpP6ThTXwaM/B2Tcyy4mk67AYOFmvpt7Bw4oi/0lWsctXdf+NugIhel28jz+f+YQ+96Tcxn+7P/Dnqh+DmzHFImI/o8g2MUNpvNIABr8gBHMheOlYzHnDFl/MhM4fMkTGzETJz5aAX31wvd82BliQHgcxQJQMGKGgOIEkCGDNiSFKqqwXh4Hg0q/X2CCQyWd8vSVkg/fqiDdrmfgGcrOhsaZ/gY7DI/SUIxTqlwU7my7jFwniOMKmAoDY/HNQ1SXuM1wVj5WDnaw5pmDdJ2nuFMeWTX+qo3T16rlqc0ng4yZqCLuUqgA0Bi3gyuHGRi7I6BJPrqY4i5Jn8sYwaOjC/XEfRifk3m8juD74yF+5PFgNL96AG4BMkEapGLY9l4Dw8PdXb2unvqw4cPdXV1Vd9//339/ve/b4RzBgkZh9TnVcOdzJkp6DFjTC1LBig8y4Da68mfJblrXZsBbetDJwLRJxOe3JOFNjN/tpvoaJOFaU9O5VS+1uI1TUHWwToOKDhZJrMrWScOiub6RLdjL9BTzrymXTiiGRThe+tn4w7ax25QdLFJLfQTzrMdq9FoVNfX17Vard5gSo+X/QCPJbo9E0J8bBfXo0N4tgkpSs9eMj/ofOMD103x7jzmjh+OsKU/PgLXut+kEvdwfO5isRiQWeBGEgmxAVXDnZv8zzxznNLz83OtVqv2DhjPEb+N4xh3Jx0leci49uyIk15oZyZ2Ma6eC64HI3i+j/l1+b9JIpOBtuXGEP6M9dXzKS1DHId/fX3dSFnml3HjnsvLy0Hmdq9+J5gZpzJeJq2tH87Ozhrx4frsw1mWwQj2oel3vpqCepzRbnzKs8BnxrwmhtwXr3M/35jRfaTtmQhlXGdczhgwxl4LfE87LRcOAvvzfK4xCnjSMmTiznoUn9dzkGvImJt+OJnBuM7XeJz/T2Ml2wu341RO5VS+7mL9Bk70CRFVNdjZjj6xzu5xmVVDXtH8XdXwZCPzUPBgnMg2nU7bdT4qFW7O3BS6dbPZ1O9+97v6sz/7szfYmk0F5khs340vjKvMv1TVG3vk7+mLE9N4vu2d7TN1nZ+/nrBmTE//2B26378m0jw8PLxJuMOG2b7SXvCdfX3bUXPwYBmu5xQTAp/wD8aytNNtoiS2xlbyLAcsze8ar9rOJJ9hzGpcm0Fw/+3xN5eWPCljR3HgMXlZ+mMsRV+N/zxePtrYfos5ELCosZDXkrlev2LDPD79IinTp2yaE/IJf+4z/gbzcXFx0d4V6jXiOU6O17xh8pr2b/298S/B3bOzs3YKkXkm99PfMTfe8MOz0h9MPOOxRkcYS7q9fh48n/lwr0evCfSrfRLahU9Lf3I3pefQPgN9sf/h2AP60D4fMZeqg49tH8ObPiwfXrf+jvFhLROcdbGv7LWfftzPKe8yCIoSZMDSsXUUuertlm4rIys+Fyu1NMYuFnie3ctw8kJKZZiOAO214U+CqTfpXmxuk9uchIOdXD/D7TPgsEG08NoYZPtMUKBIptNpTSaTurm5GQTwRqNRPT4+NiLDWV7j8biRTN5+f3FxUdfX14MsaS8UyCFIPBYX7eLa5XI5MMoOllJvj3R3WxxEM1nFZz15cxY+CsIOL3MLIXJ1dfWGiLSB99wx11YmGJNe4Mc7O1w3baBNKELkwTLDbrmXl9d3HvIZx4qYbDQZQ1sZa95vZJLUhJsNEL+535k0jBP1+3kmzphbgElvLN1/98FrPgGz253GkHs81pDd6BKTldlfrzvmw2vYu2dxVpKktSHh7/V63f72cRvoDeTJZI7XCGNPuz3+Dn6zPvkM+eC57HgxOGN9ux+WC2QVg2knhp0QnnvmP+Wda+gDupD1tNsdzsf3uqdfOFGAocwQPDs7a8cVQoheXV3Vt99+W6PRqD5+/NjmxePrObNt8rjaWTCQeXl5GewWMXHWsxdJrHkNpNOa6yzXKXrHiRQJglxv1mGyLm0Uck9A/FRO5T2XtOVJ2DuAl0fbVL19t4htRFW9ud5ECnqCNvhd3Q5y8RzrUWzb4+PjILsebAOGsy6zzgWLpSNs0iV1Ec/kPuNg27kkfbjX/e4RVlznZ6GTqw7EhAk+46fUca4XEobj3xkD+ohtwH7YXm023h3UCAABAABJREFUm/Y9dmS5XA4yu8HH/M+c0P6ebXawGDxFXbZ11tW0iYAW9jjfw+5AU/o2/t7jbNtPO3N9ZCKg59MERfpv/j8J2d5zucfH/NmH6gW90p6aPLM9pF/GiKwVduF6PRlP2L81huSZlke/J4q1DbZhZwTjx2/vYKRuj4+xLW0wtjeJRfuMC5BFB/9MJubazzkBD5kQManoz3u+s31u2szzev6z59H+VGIWyHHLVNVwJ6ZxHJj/6uqqvW8VPDcej9uRY4xfYqleEDPl3mNm38162GvHc5B+/efIp9R9OX5/CHF1KqdyKv93C3oEPOBTIayPOTnCuj8Td+wDG7cZf1n3YnOxRWAL4zBOjgOL+VhceLW0XwQJFotF/epXv2ptxhazQQPbwr1gMdqY/Kh1rPkH20BzFLY53NfzwylwqOAD46jJZNI4wk+fPg0CwoxZ/hiP9Z7nefD8VB1e38A4Mv+0h3rpK7LgQCt9cnuwb26Xdwsml8YJdIwx9bv9xhTIG+0niF5VAzkxZ2vsSxtyJzI4wqd45RqyXOR42yfp4Sfzjz3OnjkxxvC8Ib8EqrMk38r9BNPMRzkRwHiEthIk5Z21jDe7ec1LWQd4MxLz4XmAX2O8k89nLa7X6xZQns/ng+RNdJnH1m2nzxmwM07q+cI9HtaxKq8Hr/eqw+5sMLH97fQduCaxK6/SoM2LxaLNC+vfSRiXl5f18PDQArH2xeDv7StyOok5CXSr58Bz5cL17pt1mE/dtG/q/z3v9iO/pLzLIChH9jAZXhwMTNUw25P/03ni86rPH/diJ5IJ/BxBQr2eZNpnIt4kT+5kpU6TTNThZ1O3F5Dr5jMDDF9n4+PPDVbS4fV4o4gzwJTPo5+z2axubm7aeezUawILhYuyrjocawnQok0ZhGKRY3DPzs4GLwhmVwHtZNExNw5gVNUAQGEYIL6sCOzMAtIcAGGOnMXBvSxmsvWdQWLl7HF0gNCG1aSPiSnLJvOUR4Va0SNDBAdNlFr2vAX+6uqqptPpIHjDuBLQ4j1gzn7pERTMlwncY2SW14Z3k1IwbDYWnl+TLCblPJZeEyaWTIC6zR4vAyc+y/nwOkuQZfCRxqBHTJjQ47oM3lverSMd5MvkEWTBhtg6KgllFwcRrTOdWe+diAaV2TZ0BM92m3pjQt8JKBvAURclHTgbYtps0p53W/hYOdY/wc3c5XBxcdESA9B1OHEXFxf17bff1na7rfv7+wH4tI42kWQ9u91um86EOIPgpE1JWPJ5b84S6KWO+BzBbPnjs6pq75VL4Ox1lqSwZcDyYdlLvcm7707lVH5JxVi06pDEkOuJQhZnL5GP+vhte2CMk7rfBIMDGBRwyuXlZU0mk8H77m1zEzfZsbKuSZIkxyKTzxgHH7FkYi3t5DE/wHrSDjS2mYx7J11lfcbFVYckneVyWcvlsjmb9I8+WS/TH5NOLy+H9zw9Pz/Xer1uRKAJirOzswFGMW7uOY+MJfc40Y/+0g/bfzuyOU/MkYNsJtLslxiD2K4lrmFOkBX6DYYyHvAPz7FvlQ62sZnbYJ8zSYksuT65D4KW9QRuzWPb7BNxRDKvArBcT6fT2mw2bX48vmdnZy1Rgvf1IiP4HPZrGHu/XoP+m0T0muN5bnPV4RhtfCfba2MiMImJ0x7u8rMz0dU40UFVy82xNZ6+rXEP/eQ7E3LGYC6uC1zInBuvoFN5fmJxnsfnEJjIizF6zydw8AF/hPFxImHi/B5+7/XzVE7lVH75pWcjsRFVw40Q+/2+JdOg15xUUjV8vQn1wWVZB1oXYo92u+FJUugv2xFzgw6uEBQ1FiZ4N5/Paz6fNzuNLYVL9Ct44LJyo40DIGkbzIc6+MfzGJ8MaDEOxs63t7dvsLkDo09PT/Xp06fB0cLYgsRRxkC0w7vS7JNj98AqJOUYj9pOUqdf7WB5MqaGhyEw47kFs1QNX3Nj27bfvwZ1jH+w4/n6MQoYN2Xb3HBy5ubhPLeeJ2TUyWJ8b36cYixqfhD5tYz4euMx+038GG/RFrgg8BEy7HWCnPf4Xo+j1z3zRPCMa8z7T6fTwWup2B2KLvGzwVn8WH7Bw/DI9N/jBufseAknEaXPY3k0584at26z/2hZ5PPz8/PBrnDjcI8hc5RyaV8+A/D8xo9Kf9H+CLjYgU/PNfJt3yVxr2MDVa+JJpYz43b6kYmglnP7AMyj5dXY02OHLnEiheewh1d/anmXQdB//a//dX369Kn+03/6Ty0z2RH7qrcBhhQ8lGWSujYKVpYIphWvyXsrhKqDAuG7JGIdHLFDdizQkwrSC9+K3Nen8aM+lEca6szsdjttEL1QDFwANvygxDBuZ2ev29K//fbbQVCyqhrY2O12LaudHaFkxPLM9XrdFlMS985sMcmAMctgc1W1zAkCIShlHGjvxDNw8bx7iznzjjFmwVvJprLJubi+vh4s+twta0Vh5dkjdhxEceaYSVPmzqDDmSjUbTkzYCNYjVHieupkbAAzPJst9X4ZM2vK69U7D3zkqfvhdUxdXnf0y8bCRoZ5RfEytnyWRoox8zgw5l6nJvisrJ1xyHcec+SW7wzyPcfetZMAz8AkM3iYD4MyryW3xTs/+U0/k0RhbE38MVaMn8c454DizHo7NSbvbHS9w4FxcAKFASMEWvYjwRGy5CMVGTPrZOtGAAo7bzzfvEfXwH673bZdPdvttmWffvvtt3V+fl4fP35s7y9BJ1kO3B+3gzZDpPvIPffNY8z9fkYW99fyZ53mIy+4/uLiohG1JuiZT8uhHSPamZljGRTBUWa+np+f65/9s39W0+m0K1+ncipfW7GTlZ/Z7lp3oV+NybxuWTdgMjtY6InUj9RlHVx1yJCueptsl+3mmZPJpOm03e41gY1jvIzR07aZqKk6JJCBZ61vbMe4x/VYL3ocjefc79Q9fG8s4NcAmPjyuHOP5wNdvFqtGtalLQ7oefztCHLkLWOZx0yx+5KTN7j3/Py8NpvNG5vrnQmZ4Q1uJ4BtXJl4wXOGDUkCzfaBsbFv5bmjTo+JbZSf7fk2FjH5hTy6GA/RTteRz+I75N3znfaSOr1+XQ/PxcdgVwqyBHbw2gBPZxKuA5wmYSCO7ccRuEderq6uarVaNR8MPwHbbn+Ud/wabyZOp33IlefM7aZNzEkmTiZZgr5IzON1meOb409bc/xph321xKjGh77Xz8620wbvwEm8jPxfXl623RIm4hmbJKrATvyNnjEJxfPZGWV81ws65BpLXfylRNOpnMqpvN9izGTbB66wr4uuIgiEfsQ/dTDAHCXPSY7NOp7gBwklVQfOFD1I4iu6EB7OSf48F724Wq3q/v6+7aLs4R0K/r25gu12W1dXV+1oedsb+uUEKMbSvBLFuCL17eXlZd3c3AySleDZaPfT01N9/PixjZk3GiT3Z1vFvDpxJq8leObglYPh5oK9UYVgCny959XjDOYEZ9hnMS7Md9kjM5vNpq6vrwdH89vHcPIl7YWbyCAXhUR2t3O3273hdsy3mQMzVwQ+MMeXz/O1tLV3jDT8nG2+66M99n3AmqwXxjdxfMoueMScqvtsvId8w1/Ca3369Kmurq7aq5/u7u5qPp833Ov2s8ucuo1fLZckBXozAXPm3bB8tt1uazabNX4917flMLE9a8jjYmxkeTKmNXZiPjy/biP9N99veeU7y4/5O28Gq6q2OSM5WG8QQ2caB6K7ef7Z2Vl7FWH2ueqw89gFf9b9tX5Jn3u3O+wCZf7MU/O3+W76mu35OeVdBkH/3b/7d/Xy8lK/+tWvajKZvDnW0wqf//k7I8o9kjcVrh2XHkHlAjDI5/ecaz+L6x0ssZLMRcLfdlDTkU/A0lso1GEhSgNOH5LkcR30hc9sSDHUd3d3dXd31957kueM4/ibvEGJIPzsmMqx5VpnbWSbPYYmAXg240IAA5Dk48XoF4qIfvvIMRNXEHfOZDGxA/hwAMBK1EEaxtPf5bwbEKSSwLg4cOXdaymLBki5JhxgZgwsGwYb/py+WAH7O8bMxE/Km0GNjQj1mqQyUcEY57pyn6oOhIPHwvJNHcyDgZoTMnLckvzolVxfPDeDuZZlZCvl3IY7ydU0Iv7MMpXtyOv8GT89nWo5SfLF7fL7JVgHZBtCFPEeLUhg687U+ePxuAFYH99jQpb2OVGBPiFPVQe9wN+AChOGV1dXjXhl95Mz2ZxZSPu8U8DkF5mdAAPvEqGNnisDJ+tO2z/fy3VeT3xmXWIZsxxaTzgwgrxn4IB16LHulbRrllF/TzvdlqoDGb3dbus//sf/WOfn5/Vv/s2/6T7rVE7lays9hyy/t4NdNXxvkteC3y2TO5gy8Ek96F+/z9G6r7cu0QHGJrymII+/5Vrr63T0rIsYAwcck5hKAiN1lnEw9xoruhyzaxQwqt916CAc7QHfOFC03W4HwU/v9PQRQNbZDpIxN5vNpiWeEahkPI17nYC12x2OTmacHh8f3xzbRUIO/eAkAeyRsYx9jdTLnjsnDzH2zKeJOvrrBLG0X4mfHWzzM5i/nEvbftsh44j0vyxXPube9tfEBO2zXFveqdO7+RwErao2L8vlsvUTmfO6ob3j8bjhBdtg1qI/827c8XjcSCRjTffBeIMx81G66I39fj+Qp0xsoi6PDeNjbMRxaRxlSPvziG3LtpNB8HMtO6kfTM7wmXUA/x/DPTw3x8p18HmeJkT91mf0iURSiHiTxg7Q2gY4qc/tTH/E/q51RRK4riO5gNSHp3Iqp/LLLv/yX/7L+pu/+Zv6H//jfwxse9XQBlkvofPNYWUSve2YsSxY0zoKvbvf72u1WrVgoE9to2AHnVRvu+iALL/X63Wt1+vGL9BOODMHf7yrKv1V+5/GH06QMbbp+fIu6N6rq6v27kqPIQlQbOZYLpftOweX+CyD0MwRJW0YPAv2HQ7Wu2D9t+2VX9WBTSaQwnPhdWgLbTNOpX5jC3NATqQGUyWXZqxqDAE+9fdcD94zb2Rsb47PG2GSl2Zczcn7GYyPC9c5ka/3fdbjftNO4xQK7b+4uBhsHjKvk8eS5nPADE52AE/iQ4AVef56va6np6d6eHio+XxeNzc3dXt7O/C1jEXMC3tNIT/gHm9K47203Jtz8vLyUtPpdLBZi7ZaRtxX6uN//BbGuSdrPT6XdZB4k2fCGaL7PAacnmk9Yl+MpI6qIbdnrEmC5MXFRa1Wq4H/Yv2FXqRO1jyY0psszE9an1n3Vw1f0WgMyrpJztWcAfEVyyh//6N/9I/q17/+9Zux/inlXQZB5/N5XV9fN+c8lQwDmYbUfzPoKF8PaBLzCDOTSnG9VQcnzvdyf9Xb4IUDaS5Wikn+9pSdnTkr5lSQ/O9gkI1pGj9KOkx8n4SLjzvjOhTVbDarb775pmaz2cA4m3BjEXKcKplDKE3eneTx8fwbhNnoO0BlJznHt/c/c45yyoCDHUuDGM851wEAfAyUDT/PJ/DqTOBslwOUfo4VjucYwglFiyJjZ4UDfwYEbic/BhAmeHge32Vw2yDBBMZ+vx9knnguuMa7zTJYmQEty7ADMceAHu1GlhkzgxvmFoNjkAuBlDJIvd4BaZKp196fU5jrBFJJ0qQ+41mMTwKcXn0GnSZOkmTK36kjs5/ZXs9H1YHcZv1xtKzBjbOa8jm9He+5bgx20MnWlSaI7DSZkKOt6Da/CyoDiF4j1MP12+1hxy7fTyaT5jiY0MrfGSAAyNrp6I23dUTq0JQRBxsS5LlO1rnlhPt9zbGSdpb6DOpzzhkHAPFut6vf/OY3Xd1wKqfyHkrawaoa2CCv195OTsieqoO+QQ9k8k7VwdlgbTrj2g59VTU9h410Vvj19XXd3d213WXWqxA1kFi0M8kudK/bDxlhosIYls/431g4ibTUC8a23J8YLO2Q7STX505ZxhVHEjzrd9g7gc8Jb9z7+PjYHFbaxGd24K2fbR+8wxA/BZxJnVdXVzWZTAb9AYdvt9s2lx7HqqE/4aB72vnEXMbili3sHJgxS9om/5/JhMauaddYM8ZIacNMNDDuvofPmTfGI4lc42onKdpHc0IXmNYBKhNAkL8mlZEj/KaqGvhkJj9NTO33+8HOF2eOc1pS4nuTFoyjkyAsQx4T2np9fd36hAxWHXauUOd2u21JbJYn5tlkjX1v4zvazfMYUxNjnrvPFa93rrfMeG7dDsYPnMduXQfOjZPgJXwiUBL46FxjS7fP5LvnJHVW+uy98jmsdiqnciq/7PKf//N/HvAg9v0zAc72PPUueNOcQtXb15+g5+CKksO4v79vSUHWW+APc0PoS3NjPNu7PsFJ7qN5BmyjdWb6nw6O0i/aj76nj96BZzuRn1W92gMHQM1NXl9ft1fEOTjpPrjftsvJ6VVVF5eCX7HXDkYkrk6+xcmG2XfaRYCaerH54BnsJTtEXTIpCtkx3jNeQV6Y9xzr3t8OsmGzvaPS7UjswfpIvqQ3z1WHU/GMbSmJJf1cOF3udWKW+ZjE58bHmaxlvAtuYSzcfurnOgcMWYvsyKa99/f39fDwUJ8+faqbm5u6u7urm5ub5qP0/CF8Fuab8WGM3adci/v9vskwc8HxvLSf/jAGJBj0ElUpjnX4+R576nVfqMc6IWXPwVAfS8v9lkG/Xo4+8Dc+HLEWb+yivebW2IxiOfJaQe8Sl/GzjKerDr498uvnWEb8m2utf9JfR39st9v6q7/6q/rLv/zL+pLyLoOg5+fntVgsugHJVN5Z7Gx4MfBZKqRe8YQy6algKSafrdCScMm6M8BGXUli8322nQXI9+nEpHHojZNJZhtf9w3FCanC51WH7J3pdFq3t7c1mUyaknT7+Pv8/LwddXtxcVGz2WzwzqX1el2bzaYtuvV6XYvFopbLZVskBjyMg9/FwqIx8e+AHcrBZEGSAJAEDohQrBAZC/fVWT0Gh24zipZxQBH5hePUbQPmObE8MC/8RulbqbCDFTm2vOYREgaslkH3IdcB9+52u3Ykm41KyqSDe7lODbY9js6UdpuYW887z0vSw6SJFbXJDv4HRPv7BB42SL0jFbL0PjdJYXnys1z8jNQVnvMeseWS6916IglD6uvpQNfVM/TWv54n5gf5Q88AxLmfOr2ziXlkvTgJwIEBt4P6OTbMOy9MDub4eWyRATtVXGcwibx++PChzs/P2+54srgYa3aaTiaTdgxQb91jgxhrO5/oW4+3bVGuX8977qaAHPX9HnPmwgFXz5M/p46UI/qQ/3M//7u9ruPs7OxNBuqpnMp7K7Z/xiA9PEjxsVReLzj8diwzkYt17iQo29eq4btE+A2mMb7g+FtjJOssE1y0M7NjrV+T0O+RRj07mIQBJW2nAzRZuM47QLkv58T2zbbs8fGxJW3aAfX4osMIJONgQirw3tDLy8v2DlAHabE3+/2+JpNJrdfrhqM9Z+hpXgnieaefxklVh6PmjdFsZxhn+0RJkCV5miQBfacuj4ntCG3lf9plUstz+znckT5Vyrv9E57Lj3FKb326fVyXWNc+EDjSZAn9xxd7eXlpBPB0Oh0E8xg3MMLZ2Vk9PDwMZIQxHo1GLZBvvELgOd8VhGybMLUdZy37mMLEGZaf1Wo1wOr8TZCQoDxyiw5hHDzWxm4eV8YG0oekNONy9y999V7J79B71mmuw7LjMej5CGdnrzutwS/spCdZ1b6ZE0qraqBnjbXtBzq5xTKaBFePK3D/T+VUTuVPq9jO2ybbzzTWwm+0nw42tT2A40r7TnHADHzhIBRtIKkGvU8b8H1zR5KxHK9owXZiM2gndsevGTBe5YhX7JgDr7QfzJABE/pr25X6++zsdROJk+voB0eB0j74A+NL63+ekb6xMUQGPklSMo/AfGCXRqPDKXPJoTFWj4+PLTnL+Mw2/fz8fIBt4T9oo/FXclDMcb5XHftp3g7baV6jhwfMyVomjMu8LrDBzH2+TiTxn30t85G+x9iBYp/Q+If1SPFzM0HQXDkya7+IcWJcmYseH5TcoAN7jJExstvGezvxc+7u7gY8r+XX6864vRfE9/t8PW77/b69s5T1jEzlOmEeCIbu9/vBTkv3OefNcpk6reeX4ns5AbLqwK/5FYLm0cC1DsImL8B8e67cN77LzUhXV1ct2AnfPR6P25w9PDzUarV6gydTh1kGj+kk328f2f4i9XCdPzuG2X+svMsgKM4S5IKj61XDgGgOsEG+dxClkKZCyqAlE+0glR17TzLPMhGUE8bzTNDbKLrvFnATIJkJ4XtzUdiJZAxSkNyXzzmF1OcxYpFfXl7W7e1t3d7eDsYcQQeMGAj5XGj6hdLCOWbsLy4uajKZNAAAoGHxOcMAJ5X2JtlRdVDIFObMBiT7j4GwYubeHDvGEzLMski7eT7j53dhMS/8ABAsv2n4nCGEY82L65l73gvUC4ilLFnh57rw39TNGKY8myDyM3pyyGcck5XXuk5n4jMHACHLagJQz5nJuSTzuB/Z5ZkcKZFrwqDVREaWXGPHFDv6ju9taBgrA9rUH0lMuc29MaVYnlMPGRSlk2Td4GsM4rxO3S8Ckc4uw7FImXKgj984NIC1lBPaxrGAOE7X19eDXRQYa+aYthk40TYK7Vwul81ZqTqAmufn51osFjUavRKSVVXL5XLwLgOeD6AzeN7tDgFdZBm5sL6zzuNa2w3PUwIOO5Y8L20c45m2opfx1SO1Xfjc4Mjy4Lmgzymn6Gv351RO5T0Ur3nLvXVt2gVjBq8NdCTkEzrOpIPXtfVmz9Y7Y340OpD/6Dne94Kuqqqmv6mDuiGO2N3Jc13s8LHzDWyIfsy17TrSieb5GQBNW8q4uU4IAJxAxth6KZ07xpX32lsfgwPQT2A15m+7fT02d7lctvd/gn08Lz2cVHV47xSYzol+xsWbzWaQ3AOORodyygUBMjva7jP99U5Af5/Yz4lpJqcyYGQdTh1pBz3mdvJNIpiYMX6xD+AEG9aDbVgGXj3uVYcAfZJwlCQljEEtz8bEfMexx8/Pz23tOHhJnfz98nI4ig4dMBqNGo4Cu0LsII8cEcZaM76ECOIzBxYdTPW8ZOKayVdjUBNajCXf2zeirVxj38zPt6xB3pAp73dQgaMcZDSO8o91cT6HvnKtCWjzA7THestrwoED5oAEuPPz80Yip9/uz6zvEt8hI27LMY4gZffYdy7pN/T8iM9dfyqncipfZzF+8qtlqoYnjuDnJlZBt6W+tc5CNybGBc9WHd6T7hMEHISlHpJpXL9PNrCdrxoGdJLLdfKaAxhnZ2cDHs14muKAkG21fxhbcIbbRAA0xwT7zfgbc9L+DIh5J5n5R/AHfdxsNs2+Mx9wsiRJ0W/btqpXTLndbhtWTttHMLmqBjaS9rkP+/3hlArs+H6/b76MAzbMF3iBsfE401fXaVkC33g+HHTivevclzjPfhNznkloyZGYx7CPZPySOIQ5T07Oc2aOhussJ1xv+XH7kQ/Gk7VaddhQw9riOydaeucsbQfH5Y5VEtXu7+9rvV7X5eVl3d3dteQGB2nBWo77eB1bf8DRIVPm8dA/Nzc37ZhZjxX9wPdBrzFullvPa3Jb1lEeO64xh26+nDWMjiFJgyRHinGd5ca7ef1j+YLnJJDptW3sTiwCuXh6eqrvv/++cbLuG/Pc088eV/uco9FoEPNJPUw/vU6OffZzy7sMgtrZTSVe1c+coHhBOoOTYge06kCkeKBtqJyNRP1Wkp5Inomw21hmlkZOaBLMqVQpvt8GIgk0O/mppFEU+f4V7xT0eNp4+bPxeFyTyaTtAkU5M1fs8oQ022w2tVgs2g5PHHYWIkSAM8MywwSlasXt+TKRUVWNUBiPx+3YyHT4HJR05o4Vvudos9kMstI97oyV32Vgw5ayxK4xy61lwMbLWU6MDbLo3atVNSC0aIOPNCF4ZBnz2FhJW4kzvwZ8XF81fIcrRspzZSfdCo56GPc8eivH2kSGDWQac5MIJtmsQzznzvgDUHstWB4goJBh3+t1b5Iv20J/0kDb4DlgRpt5rmWZepLcSXBuItZZQtYnXIuxy7mjL5Zvj5WPrTGQtt5iHE3+ORDGPAGg3B+Tl5lgwHPY0YM80Ua/d9Rn39MvwCdjgLNFQgxzakLMZCaJDX4H2G73mtAwnU7bjnfGjeAs63G327VjYTyf2+12ACh4d7J1e9oXSEy+8/q3PFB6NrWnK7kOsNmrx7aAcSVgYiBVVS0Q7j7wPDszu92uVqvVwJk6lVN5LyUJ4XSo8nvbUxxD4y//cH1VNVI9MWImgFl/pP5HX9g+TafTmk6ng6QN2o8jC+7BDvrdmkmooJNxwtLRd+DDPkBiByfn2LE13u/Zf/p4eXk5eL9zOl++34EWvy8lbYF37jsQx2sfOO42M9Zt4+hz2nkCXehA8NLz83Mbf/slPnGFoFnaF3YO2pG2TGZgMOfe8+j+WM7SdhobZFKNcWTiCOaROgkgE3i3rDEvtiv2Gfgh2Of+J35nHBJXeXx6Ms4aso1bLBaDBDC3gzVs202Cg9cnWOXp6WmAV+0rmyz1cXO0xXNiDIUOQe/49ApkCAzaS+J0oDTlhiCu8S0kpeXdhJX7ZV+dMWPdkujGrp/caZoynTKWvrjl299lUNi62/OA/FA/WJI1zMk5FGTC68NtTdmyLuN/24P0K3s2qDfGWZDjnt/bu8865FRO5VTeR2Hd2t801wLfZNtkMj6DnlVvX0tjP506qt6+2syBUYJeFPgx2ut37ZmT4uhH6n5+fq7Hx8fBMey2A25TYkx++/hJ60PahV5MjM3zqNPJa7Yt19fXAw7FeMmJdskJ0X6/HgFbXnXw17G/uXsMW23+er/ft+QcbLfxFFwittbzRxv4rqoGidtVrzhkMpm0E03gW7yxyLJn3pOkrh4HZl6PH15XZj7ZO119r+ek54ccs4WJM7nWSVT0ibXAPRkQRSbTlpoj9PgYH3v9URJbuz77GIy920AQFBxlrGxOmM/438lsyCYyN5vNajabtfExlvD9tMOctgucOwF6+rpcLpu8zefzQfIuOol+kQjrdUabuS55b/Oq+NtOzqWuHg6mPsbR9TJH3Of+e33h567X66YD9vvDbtbb29t2+qblwvGt5NoJVq9Wq8EY45vb105Owby8A53oCXSKExK5L5/lz/8QHPkug6AoUjsqTGqP8HHJgIEzFpIIyZ0+VszOQuC5VkaQNFYqvsZKoGq4YH5OsTNJcf/srHnx0JYMgPYKCtSK1k6fMz5MMFxeXtZ8Pq+rq6sm1CiOyWQyIF6enp5qsVi0xYWy8tGwBioQTYwbCp5AA4aKMfb7lGgf2R12ymezWVOiKBVILBM3SdhwFKezpe2k5jifnZ01IJNKgudmoMjgCRmkJAljg1l1CGpyhJbffeDANm20AXMx0WjF66PZTBR4bA0SncRgIOw+eP2Y9DBp6vtYtzYolg0rymNK04beazXXDvPvugBMjAPjj0E1sE9iIMfZJde4x8Pt7YEu99PykHPKvPheA8HevRhJxtbX8ztJGRtFX4dugLjN90TlXO92h0AgO5tTh5r05J7cAeD+WX6qqpFkBqPUUzXMemK92OFzEoGft1qtajQ6vJAeJ+Tm5qbtpDo7OxvsKGEHNySgwRVtMgDKLCrLoAlJ+s79lgGcCttAywpz4EC+5yvHwfKY5BtrDFmHKKdtzG8PAFpHWq5yjE7lVN5zSSfXzp9tkdcxNil3YGVA03gW+2S9h663PhiPx4OM7G+++aa9YwWdhT5PUgHn7PHxsWazWXvvCms5nWz07PX1dXvvkdtpTM34GF/bdoJFemNnYqrqQGhdX1+/CXTkGFa96szNZtMy6bFjdvDon51m8Cyve+CkDp7JeIC1PGeJyfb7fctank6nb3A7+MnE1nQ6bYk/+/3rjkD0KbaN3XSJY5lfy1hih9yVawxlm+Afrvf3dvqNp4yrsh3YPM954jDjAtqW/l0SErQBmbJtdIDbjrwxpfsMAYfcUFhH8/m84RE/35h6Op02v4l3xXIcLvPGrmS/b5X542hAEq4YX/vbxgq03WTIfr8f7Fo0ZqePxkn2DXluEpvgFeSAe4xlSGizTkjSyBiaMYHshcQ1zsV/sY/G2jVu6uHmTE7jb+rne5N2rEnGy7jr6uqqHh8f287sXEvMBfLO5ya3TEDl2sox63EGSbSeyqmcyp9GQQd4/Zv8R0/bboAj/A5H2z7qSJ61R3znffiV3IvNcLKs/VzuR587IGNMiN/NDjT6Dv5xkGu9Xtf5+XlLUMImOFnZY+dC20hMyzbyt989Dx4BV1fVgCchCIFt9FjRT2NR7CtBX4IPBLediA03YwxVdXiNFvNmnGXMu9/vW7A5gx/swtvtdi0gYx5xvV43zriqWsDW7QFvwaWYR3JQk3HGRmfSk+20sWbV26RQr4eeXbR8uU7jT/sSyTtmSQ6uZ7/pm/li8JoD8o6f+H/HDSyr7kfyNYwzsmd/04G8/X7fMJfH0/XAfSF/1Esw2/X61XLGOowV8+K2gkO5Fn/q/v6+drtd3dzctLVln8WYl93AvNIhn+f5yjnKxEp0aHKclhfLjI+kduzFO2s9nz71xPdNJpOmO8xror92u117z7Dbznyy5inmwFP2kAevhwy6fm4HaMopn5mfSO7355R3GQS1A1rVzzCsenvsDPe6ePKsLPnbCq+qBsrWSsOLwBPJdz3CxAJr0uWnFGeeZIDSATCUK8bbz06n0QvRTi/9dvAvlSLPZcFCxPAyb4ir/X7fgn9V1XZ3bjabWi6XtdlsBu/MM+kDOUT//PJlFLGJAQMdE+kohouLi7q5uWm7ERIsVNUge4y2sNDpz3a7bcEJlAjKChLD457K2o65DaAVBiQB3wNUUunb2JvU4zdBIcCedyhYMbke18ePZZbvUH4QnQAXK32TlcguStLyhHFIgsFBLcYkx9Rj6Gf1iCeDmCQCbARTD7AGub5HMhtkmkhyW36MVEhy22uc38cMAIAjEz8oKWfU5T6lEe7JbRJ7Bn0QO+go61Sew7MNkLzTJ0knnsnYmMTrETUmkN1+np86F7m0c2JiFN1r8M1YMW6MOQ4gO3Bob9XhPX0Otq7X6/YuZMAgWamQ0M7coi8UwK5lk76zfuwYZhKGHVg7AAZmXv8m4S1flkna53Hz2uN6zxVrBkfEAN4yZ6KW/iV5fSLuTuWXUIxVkf0ktW3j+O2gHrbfpD7FZLp3Q0JugX3Qy5ANYB6cJydB2R6ix22TWbvsHO05f84MJ0CADuQaip01rvf4WW/589RdBEk4csyBN/rrdkJArdfrWq/XDcMaXzHe2DRsIg41gdCqaniUXWv0zYRGJvJAMtg2gD3Pzs7qw4cPDQuCUZOAsY2AMIR8svNqAsIB1R6u8ufG2U5gMXlHH9021+fXDtiW9XySJBQcELXsJHmQwV4HttL2mggxtqQ+r8W8xlgj22nfzTswwP7b7bYRhHd3d3V29np88XK5bHLJOyX3+8MR1H6mSQv6RSCVPjDejLnnDn/NOIoxtq7xrhT3D1uPHBHwM4YEN/lUEsaJE3U8r8ZoiXl9n+Xp/Pz1lStO6nOhfegj+sl39peTqKEdmQjgV6844Qxf8vz89V3xkIE83/rOJDryxTgmR+ExNd/gIG3qQuu3xGynciqn8qdRbH/hiGw/zUOiW19eXtprrDj9CFyFfrI/aT6nqt4ELNwWdD1HrlYdMFAm94CXcqcd9Savaa7Dtso7Ro096H/iUOtibFYmyIOlKObf/BqsfAUY16Zfb5uEHsduMkfmDh28IhCafJDHloAv4+MTuKifALKDYeYqjdWwi9SdfIx3d1KYS+pl/rGRYMyXl5cmHwTHzYcmH8H/fqVaz6Z7nvxjzsPYNX2R5M3MpSVfQb32lzy/Pa7Wsm2fh7G1X8bfyI/b5h2GnjM/D45qvV63Z/s0Ex+ryhzhC4JPfR39Qx7dtsvLy5pMJm+SLVzgjGgLxesB3AkGpi0PDw/18vJSd3d3g2OzzffzPN7d/vDwMMBZ+GTmB60TPf/p6zLmyJt3mia+NB9Jn7wOWZvG98gt7Uv/0ToJ3YvO9ml/xGwo7i/9suwxn64fvWY+wZsMGRc/h7r9jJTxLynvMgjq0uu4SSErMD6rGgZIMXIYrWP1pwNg4UIAU1li+LJ9PPNLSwbrsm1eIF7MCD/tsvLOQEbVUHgxuDa8flm0lep4PG4Ky9dzD4LPYl8ul+19eAQpeReSM/+53oFSj4EDIhSCcQYDtPn+/r7NRZINvHDcmcyZuU5fmX8HpHvZU8ids6eYJxMHKDBkkl1nzpTB2FPol0kLCjtcLR/sFkiFVlWDHRwJiKpqYDB5NgDNcmaQaYDJGHsNJWmRWTYoT8trAlramvdiGNLYZGANIGdgwn1cQ9tMSqSy5zoTmwlYTJYlWUNxhs8xIuLYvb6OvtrQcG+SOMiryeReYRyT6LN+y0A21/A79bf1qOshQJqgDIKINc/cJxBx/3Id0Jfsb16H7PlYC4MCy7XBCfLpY3fdDsYaAL7fH87q99GF6CTvejCIyWQTO4c4AOhA5i2J4FyfGUQ3IKS+BDApC+4nz7Pc55z7HYF2IhL02vbyf2bh2jE8lVP52ovXA/9XDZ1e/k/8gaPo9UUdTjSyU853xpJOvGG9co+JJQIQDkRwFC7r0M67Mel+f8haJ9hoO2EnHIKEk0PsVFvXeEdBEgPGXowNNsUYxWN8dXXVstRTX/nv0Wg02MUJmePs1t1u1zAr96adwgY5+Yi2Ux96HjIB22dyh4A1Wc3YQGcNc8Smd1I4ccdOMW2DHOL7vI+xta0AO/Nc+wjImhPGPBa8ExGywjiafhmbZlKAcSPjbbmw7ffOTcuXMbnl2P3zOrEMJ/ngte01ThIU1yED9JUkTa9RkwTIAWsRItC7qT1u2P5MTMDf4npjf2d+s46MqZGDJKDps09Gqnolkfb7Q2DWxFgmbZk4AbebLEeXoB9oa/rzrI3UEegfXsOyWCzauqIv+LnMB/V5rukD31nfIPcmXvGPjP+4Bl9vu922rH3WrfUea8g4N+fIpK+JNK9Z+mJiLEsPs3lsfc2xktf91PtO5VRO5f9tsa3N9Zp6zngK35cdXT6aPflDvx7Gut9toHCKG/eSWIZ+s60z9uWZueOLerbbbXtXun1161QT+NyX2Mx2M3EwfUv+mDqx4dhGxtTBFI+Fcaz5KrhCbGQm5XEsvLEZ7XXbzAWA/z1v2GzzqMZklgd4EArciX/MTcJf4KdQhzmW3AiE3+/XICTPaFll/swJwmXyw3WU9DGMbT029NXj6e8TK7k+X+tnGHemLKTv4GB/z84io9yTnK+f4+Qyfpyg6oSqqmpJlA44Jgb2iTfMG3zVdvt6qgnr+PHxsSaTSdthbs4q/V6PRW6kwL/IBE5ONfnw4UML0ILHGStwNZz6YrEYrGXPqeMQvbl0XMb6knvpV/IAWUiGs15Cd7oOJ1uCj19eXpo/SH8ZD/CusSLtSL409VxVDfwqy3kvaZa4iNudayLbcWxsf055l0FQLzILHp8xAVY+NlbU4f9dUrn5+gQAVh52Qlh8qfjScf+x5x4rDi72nBYr2Z4RsIPXC0RwHQ64+5AL04QIQs4RYizqJFsIDEGgbzabWq/XLWj09PTUFBKBDhNxjDXZtFYoGQSoOigvZ6DsdrtaLBa12+0awYPxtYPvulnI2R8ME+NBBpKV3Gg0enNsZ4I4j6n7yfjTbo8fu8Top4+kY9wMbJyBT702lpYfl56St3H0fSYqzs/PGzHqHcW9Z/nzqgNJZrmGqKK/BsCWdwNB6wvLv8k+6s93fRpEuC2MAX/3DHFPFn+OwuZar/WfGtSxkfqc3gE4e/4hGTkezVlsGECTpAYjOAK+nr8N0JjH8XjcdhRwnX8Dopz8wDrHmJoINtAB/DN+OEa+z/LG8a4GAp4r2xQ+h6wy0W7HywQuTpgdCetXkg/Y9c66hgBkvOgr8+aEEPrjNWDSmL4ZMPm3yTkTk4yHnS3anDLpOntg3Q6zX/SegQP+tkykHLs/7CqzrJ2CoKfy3spPsRGpJ6tqQAY4cEadrAXv8raD2CNBMpjDGuX4VPQX6y1JGJ7Bb8gl2srOM3Yc4ggZK6FP0d84zrm2+R+cYdxr3ehgBuNiuwZ+tW6mj95xBnZcLpctGcbYzIFPB9LQjw5sWs9hM6oOGMWJNpPJZGDjCIBzZDr3YTPJqrZT7nkHVzI2VdWOAKYv2+22ZXzPZrOG6yxvxoXYK77v7dpgzG2r7E+l7WCMsA95AofxusezR/7YrnGPg/eWHT/Dsm5CgbFjjnsJOHb4kQmSnSAibDMtS8vlckDY8d1ut2vv/Pnw4cNgd2COn4+odVCTXSDIHoF01jpBRvAgY58ki30Dv7PUiVLsQjZR6qREv9qGHQGQwk5A825O5tH4HD3DPd6VYEIYf40g6sXFRT08PAx8S8tXFubLyWIOPlOcKEabvWa8hmgr40L7Ica8Q8b4ifakvJl7qDrwB/ZhLJc90q3Hmfi7JGJ9D5+5jt6aPJVTOZWvsyQH2vPxUl9ii4xhnHRvXAAfkFgCm4Dfme3BXpn3dfDP9YLp9vt9Sy6hrtTteUytsbRtATgF3OXjdjMBnraZE+rZTvR9BuJo67FkOp5De/mOcc/NI05oti2nbnBC2pvkKR2UNK7wiV7pG2DLSO72ccOeZ67FdoMfzElge3m23x2eNs0BR9vF9F/sBzkgTh2u03NMyXE0V2ZOz1gy7a6xmutP22lcmpjVfkdP3hK/eSz9vccFOeXUG4p9Fnw4J/CZKzcGMLZn3dIXn6RneXQCbtaVsmY/gTHhOh/TDEbe7V6Pxr25uWnXwxtarvDDVqvVQI7sz3BtD0d6vfvHGI7iBDv7F4y5d8HCeToRkkRYvjM+NodHOx1U9efeVOLPqw7JgF6LngfjTfqU+gz5SRzbK9ZXX4on32UQ1I5ldtwDkruerHxSyBDEqoNh4fOqgwA6GMEzrLCcbWnCwQqExc2izgm38ac9STRYSeAs8gwHIz1OgAErZ+rg+3T0jx3V4EAf4+RgEo49iwwH2plEVYcsaO+MdOAPI8o91G+A4QxcMmWdWUtQxkcyMJc2DhmYQ/E6qMb4eJen+4PCz/mz447yshwbcADqrNBQuJnt68BQHifBccRcZ6XlYA0GwAWyI8kenm9gxhxzvUmBPILEWfXMt41EAgdkoOoAbhlvgzxk3EbEx0/5+DevCxM5XkuslZSJXKdut0lU5j4z4JA5B2zdf7fPRq0HfPnbJBBjnvOdxt8/Ji7pBwDGAMpkrttnfUh/TB73nCXrVT6bTCb1+PjYdjKPRqMWYKQuglxcw7vkkGP6TIDU68nvdbPhhhDyevc7orzjGiMPOLM+pAA2kBG/w8rJCn7JunUI44i8JLF3eXnZCDp0oucy9XuP2PJv+mX75L9T5nNXbq8+/rc8Wwb43vNlh5cxsXz1SG2DXNtkr6UeoDyVU3kPpQfsvaasx+xsoF/QI+g47LHfOYld9RrLgIR3sFdVCxYQdHNSEmSQCQg7h7YDfGfM5KCAHfLNZtNILPCGx8k6wU6X13/PAbV+Aus5AMp9JkR8hNf9/f0AgzmzHT1mzENfCTRZ54ITqvrvOsdOEaA6Pz9v4w9xhv1aLpcDm2DMifNPPyxH2KXHx8cWVOslB/WIGMYziTv3gbG2DJ+fnzf7Dz7iWWAxExC9Ojx/lguPKfbXBVwKdu5l2Tvo6sAussVcIAMmCjy+PVLJY3V2dtYIFfwnSEbXmUl+VdUSR7HRfr2ACRPmBB3g3aCM/cPDQ6ufMSMpCwKKtuGLZYKgySjLOFhoOp0ObHZVDYLx9t+ok/lBJtE3JtIzicOyQHvzGF/G6/Lysubz+Ruih/urDgllfJYcgP0L+pHzbbk3wWy87Xfde7dqz7c07rd/1+MAvHbsG1BX6oOU4eyjxyjx2amcyqm8/5I6oWr4Sq3kQcxzYBeN7Rx4I0ELnsa8DfjVHKXfwZl6xv4yNjtPdLMvj/63zkwOzvoW28pnPt6TxB7zA05IMs5I3OLgEPaNJEOuMwfEeBnPeUywS/BkJMLBtfJ8vzuTeqnDHITHzDy6/e9jfvd4PB70xUEfJ+xVDTcSYYvAXdPpdHDSE+NBv3wM62w2q6pq/gk223yO7VsvSGVMlljLc2JbaP6VMUibaJnzeHONk6Oow9ckrrFsGhM7eJ3tNRdjm24+lfuzjcgACWq5pj1H8/m89cG7jm9ubgbzzN9OnBuNRo3nwlfyPZwONJlMBickWk+lT0L7PYfMsbngl5eX5j/RB9akT+M4Ozur+XxeVdUSRL0Gjs0ZY4g/4SC/j+gF2yHryFbyXT05BN/at/Zpecy7Y0Jum30bnmme0ry5d3Z6/lIuzQdbnrw+Mj7HOnCb+dzy+6XlXQZBKT+l414MnqDMNHHBCHLdMSLVk+F7Hfjg/iRsTJRT0rAjZAYFXtTpvGRgyorcC9NttoKwgrRhSGLKhgEyh3FlUc3n88GRRZvNpoEdFg3OKIEPjDFHOqL0GH+CmbmLy+PBIgU4YeRt3PibHaiWCysfB3ncb8bPCpvn2lH2HOBkG9h5dyuyQ6G/liNAleXGY2xyBUXtIKRJLGSbIBLEqBXifr8fHLdmZ97AwLKEMUHuPO65bvy/QWGSCL7OCthj5Xr8f09HGJQAYgFJCWL48fscrVNMulgGAYVuS9aZfe2NURIRjHOuVesN6vFOl2NOg/tB3Z7nDI5bpqveGqy8LuvMfvXqRd69ewi9whE4kG6sBUg+B+LRHRBIAAAK+ga5TSBK/Qb8/I3ucVA15ZZr2clAu6mTQC3yBrnoXVroJnQNbSOZIufKOq4314yvj52wvvd69Zqk2MG1A2w5sj5wvZ+z15mtZh1HfehynmOA7iAOY5q7WE/lVN5jObZuUt+AQbxz3+vZzi3FxEHiQz/X90AioHOfnp5aRmxVtfd1Xl9fN91n+wLBBEbgewdocH6NQcEo6OVjx/mbCKh6e+wvOsF2C30PYQNpY10HQce9j4+PtVqtGiblOFF0K5gP3Q9Z4+Qv+oUtgFgAl5mYYMzQkRcXF+1dkFWvGHuxWNTV1VV7V5LxLu9nd8AqSR6PXdqpqgOmYOwdWM0xReYYB/srfpYTTq2rTRwkfkjfyZne9g9cbxIRyLt33dmmpBx5rtxfrvfc05Z09DNpKf0tk3tgBfwhE6rUw7Gyu92uHZ/nNTOZTOrjx49tJyfPNHnLEYUQxt5pQaB0v98Pjrl20lT6C2TWO4kQeeV/sHEG19mpap9vNBq1Y7A9d/bFcq0QTCagbznweuNe/mbt397etn56rJA15s8kZ09mWa/0ybLC31xrIhxZnE6n7V2l3gWfHEUmW/yYD+SEgsSM7kNew2dus/vr9e0++75TOZVTeV/lmB5B1/a4CftzyU1Yb9pXr3rFfuh2bAZcoLGt/URjQLCPuSx42c1m0xJmvKPRgbHU5+aEzBlgc2hL1cGPddKhv7OP7THEVqD7seU5Zj1OzfqV70nygd8kadz4jHE11wCe8+44bA+YFnuTxclE2GtsJOPg+2xH/Y5H4wbGMO2dMRq4yKfvTSaTAVcC/mNuHChnLCzPPId5MQfKnCT+oZ6e3TN2db2un+fb5rqd1J3yYzn1XBA8NK9p/wjsY/7eGNZYwFwm2GGxWLT2m+80f2au0FwRWJHXF9AHJ4nal2UswK6WA9rEJgePe64z65meLrIP8Pz8PAiEmicmlsF4TqfTqnr1fY3pe/iK57HW85V5xrLcb7xtGSbInTGRlBf7H+Px6w5edJ7l2nEpj7Wxnv1F+xJuP8+0bvE64/vEof4u15DX0R8rAFr1joOgCaxTKfBdGggTtr4ud+/ggPraHGxPSDr/GYjsBR2zzuwD9UPqmnDPZ5lA6LWXdno3gBU4i9v3evwQcjtb/s7OHOeAE7CA/LEitSOMscXQkU2fBsp9RwHQL+o0weVxz/nhOjJMXDDiEEC0zWNi5WZjRcYVW/VHo9EABJp8YieF+8mzDJZy7vgMsOIxoS3MyXa7bbs6bRDdH7/vFMXMPPQyUajXc1M13ArP9c6Mo229deR5SRl3Qdlbvpl3A8lUwm57L2jq55n4tPHtgRiDOgepqDfBIuPlcXLf8x7LQI6bx8oyicz6uDDGKY0Kf5uUMbBx351lnvrLcttL7kj9l23wnDOH1McPnwPocUYMvAB7nmtINN5bl8fxUD+ZXhQCkiQseJ1712iOC/31Dizkz7rcAMdJG6ljWEfoSieCGBz0HBPrR5NUvd1fOQ/ur8Eb/fOc5jrgfkqvbS6+J3faeN25DVWHjDjqR+ZZAz19cyqn8rUW60OTHqlbKA50OSnCn1nXWI+xZki+APOmQ20sgt7AvmAfOPbIQSzrLjti6Dk7vMYLPNN6kwBFtsc6rUfeOzhmxz6dMvpzdXXVdlaaMMAecoTX8/Nz3d/fD7LQ0cmMCwEY7AeBXc+F24VurzocZ2T7hm375ptvmpzQTk5ZwZbYmTcGJfGNV0+Mx+O6vb1t8+5jUQmCMRd5rLtlxLJ7zDmlHz4NxfNGf5kXrwXLBnV5btInslwcwxjMp9cac2ZMmLJDW+0vYQ/t1PvH7cX5p018jt1D3vGPTOhyPZiD5CgIzdVqNViHyCLXc4qEfY2qGrxrl36CRXLe3T77pF5v+BHIr9cc7fFpMw6G+ihozzfzlvjOWAjCdjKZDHbmMr7GD/YRLMsczUfWP1giCRxKr49chz9s3Gmii8J4efzPzs7aTgfIOPw41i/P9RpAFq0j83m0m3Z67Viu+Sz/9prKde/PPBZ/SMk1fiqncir/94rXnvkEvjOnYvxZNTyuFpzItU5Cdt1gE3S36+I6MJM5CvSegwbYIfCtgyXmWPMofNs+4x36i542tuJ7J8LRH/pgHG+bDrZ2kI767AOk70396Prt9vXofB8jat4Me+AgpX2HquGJet49xnfmi2ezWeNXPK5gEnNoVcPEea5JXoZ5JUjmExCMAYwD1ut1kwvLlbkZxpkCDgJbWwZs1zzWzDVzZPyRXGLybL3gmK81Pk0eyNdmLCNtI2POmBpbun5jS/fBwWdzZGChxWIxSKrjXmSE+Yer82kXlmfjAnAx82Uf1X3h75eXl8E74L2+fZIibTE/6Tk1tgcjI+/IEq/N87tCvTN1NBq1k00c53AAmDlDJh0ARV/wXOTI/vt4PB68zsI60eOUHFliUtpQVS1pNl9F6CCrX19T9foqFtYt42dfM+UhfXDmmn7kZqEMgOb6SN8q6/655V0GQVM5eVJ7xYEwK2PqcECIhdcz+lYIVhY+lvXHgLoVsictCRyuPeZgIGzOcOGeXhtcjw2y70/ii98AAQw0P9l+rsFAsqichWSD7HfgMI5Jrrge5oDvCaxm0MVgIcl3j5+DHM6cQGHSFxY8faAN7rN3XtLu9Xr9ZswcQOIzngMpw/20FcOz3+/bjlnqMvijjT42guMHGCu/w4k202eCRM6MZz0QTLUyTAIqgZvJEjLSDB7c9l59vZIyagBnEGjjRh9TR5gMSeNr3ZKkgEG7+23CEgBKcR1JsPXGIkFAGpccCz43oMlxc0DJazf/7t2fYIfrLAteh9ZX9Mdt6REt/BiwMpfWURjWzH7y/fzO3dyea4qTB0zIeT6ravA8k2gG2vzOgHAGpS3zBgSeZ483/cjkgwQEx5xVO4pOCDARz3r1/VxLyefasXCyBLKYa7C3tu04QVqSQONM1ZxfAhIGdhzX57nKJJdTOZWvuSDjlvte8drq6YyqQ7Y1Og/cwPpMsqmqBgmA1MF33mXtDGvq9hrl2swmvb6+Hhw3VnVwgHmuX8MAhqo64C/66LHyWDiw6nG1Y2kigbb7WCI/G91ycXFRq9WqvQvHyRcmXay7np6empOJwzcajVo2MePg0ybSjpDlPplM2i7Rh4eHNldgZEgr5scOJU43u/Wqqu3WRQ6wA7aJjBc48vLyspbL5QDXIhsmFxKTZZKcyUDbtfyMsU07whzaJvX+NsHIkadkQft5jHmuL2NMP9/EoW2tyc1jOMt+JnibtjDW4ByCcexwsSxzP58jr8ZmJFqm7+oschNF/HZQjsC6fS8HWN0mCFH0DjYYP5Jd1pDifi4FosWfMT5OuDNBnfPhHax+Fn6Wjx1Lovjq6qqm02k9Pz83H9Y4FDzGmHjdMz7Grsb16dODr1jHyBlHFacPaYxs0oziYDOymHrY2DbJ1CSTep99rnwpGfVjJTmTUzmVU/l6CjbEfiO6x8m/DiDaLvG9/XRzIOhTc5+2w9wHp8fR6rSranhShBNPzOk4uIWedDK/udNMTqJvaWvAe+a3XDd4N4PBiWfs//IsYxQCM7vdbnCqQnIW8HjgDvz39O8pHrfLy8uaTqc1Hh/elcl8VNXgXazGQ8Zk5rvgh7FpPsXEz+DIU06X+fDhw8DfAPdi+80Pm3PzfFEvbbL8moNFhpLHSr6GPh7jvjyPWXp8X9pey1lPXvLv5JQSqyaW8P3m2JjDquG64F7GmoD1YrFomNHP4H/zo36fr/0z88esZ3wXxni1WrUTbpL7tN/I/8e4LvsKfEe7WFsk7c3n8yZrHs/xeFyz2ayWy+WbV6+Zv2QsHH+oOuxgdzKg/QGwfr5n17KX3C1z6FPUkDGex9yNx+N2ilDqCsbOuN/YP+MsLrYLPb2Vcsc6sBzbn7If4/Kl2PBdBkFdeoT95743UcIks9ActfbxO1ZodmAcEEO5eaF5wkwk2zGxgfYkW7jzh2LSJYXm2H2pfPP5eb+zlk0isHgdgHCQb7fb1XK5HAAYDC+GisAYhtDv/2Qc7PA62yHJLQegrZyOOXCp/O2k5hZtDDHX2IgYFCU4oX6DKhNs9NnXsYOUHz6rqmY46J/lhzZaWdmBpu1WnJBpKECDUGfPQQDybgWyo9OYG0R4PCANqqoBGcbR43xMzl28/hxsYT6Qk2yHx8l1J3hwUMvKvydzyKLvB9izM4Rnen0yd0lA8B31em35mh65Rv0GSBnss5y7eJ7Sacj7KQZFveJ1wN8JxtOQew16PQNSDaYz0zLH1BlRJvz4rBcQR88AtAzg/Xw7CoAlj+12ux0Atd1u1+ozacf3XrvOvPIcW4/m+Nqm9eSD8UQOTc7RF/fLfXXAoafvuDZtD/f0Ps8CSVpVg7VsvW8i1mvUgReITtppQH0qp/Ieyr/6V/+q/vIv/7L+1//6X29soXFh1VBvW8+yLjM7NHfSQT44icM61u8U5DrXy9+syaohBrBet5NZdSD47SRbNxGksG5zW/xup7SlPDsdXZ6f5L+dUgdweC56hmATth0s4x1zZNJic+i/fQHjafAXOg4nFKd3NBrVfD5v7z1kTLDt2+22vQcyA5Le7T+dTlumMjgP+fERTj69hP7Yzvk5aR8g4cCsyCY4NPGeSTNj0B5hRttst8C2KVuWT+7zqyicCGA8afuXcpQ2n7rTNzR+8zzb4bdf6UAvWAaChd29JIDa3hpT2f4ul8sWqGZsqRMb679pH/U6WO3fzC1JRiZnTFqhSy4uLmq5XDYdQ/uoy68pYS4J9F9fX9dkMmn2P3EkMlFVDRMg8+gJ2sp6G41G7chudBvj7ECoyaaLi4uaz+ct2cFY1XPY0zOJz62P0IfGv/gxSVDia0+n0/ZO5JeX16O3z8/PG9HNPVk/P+gSy7vJNuuoYzjtx0ri+GO+95cU1to/+Af/oP6//+//+6PUeSqncio/rfTsY9WQfE+7XTVMeM4EXgecMomEwj1pm+AErPvso45Gh3frYSN4HkfiOgkP3s+/XZf1pkl4Psd/d+DRgQWCEbYhYE7zHeBgj222wXgDfhbcCTcIVuT0EY819o7kNydq24byeXLitg/YS+ZtMpkM8HDaVP7f7/dtRx1jnhyusR3Jf4w5CX6MO7iUepg7TnSwv8A40i/abxlKXgX5NZ/LM3qJnj0ZtuwnR2osmfxkfmb86bYZY1pWXbc5KcYsuXXqNU/LnPLeeY7on06nzTcBr/j0Cnwh5t/tZI05sdaYH1mkLch2HofL5hww3Xg8rtVq1Xw2v7rDc5d8rE9KZLz82W63ayetcIojr0AxHzybzdpYeR17DpBtjwdttM+B/2TODv/UXCYyaC7Y42wZSLzKtU9PT+20JbeZeIhx3dXVVf3www9v8J1xevrZ/t58ePoGjjmZbzQn6HYnz/hzy7sMglqYPFkuPWfFThXFZC/ZBn73iR1VFqydCy9U/yDMVuRWhkk80WY/i4XghVs1JLVzgVlpWHGmE5RCjoFC6FAwJh0S4HgxsrARfJ+3zzUOBpJJj7LDiJso8rZsFo2zhvx+Gj6zsmUh2RB467iPgYU0oDCv+W6l3s43j5sVquUPhYU82bAZbHGOv40k8nh5edmUFIYJRepMOwwD9yNv9B8HH6PAC52RKRMy3k2Ak87ReawbvxsVgJokgf/3ukq5tRLluZY/7mWsAUKMtQM7VsY5B0nKORPOSpa58bxjiL0GKT0y2KAag5IZWgZZbncqfIrJwiTWeoQd93sN2oi6pG7leWmwDebdlgRc/p/7TOIZbF1eXrZ3yjEeJtl97KCPrvMxJqyJBBYm4xkzk0TI8fX1dY1Go8FOdYMXHCzmjHe4GXwzv951U1UNqPA9xJ/BlwOhPIc5o192mFI23Fevhxxv1r/XR8qYAQv6l8/9XMuEv/M1udYptmvMB+NkgE4AwnUSiDCpyP8mOU/lVN5D+du//dtaLpcD/WvMlY5DriWvL9sS32P8692gqVe414QE15HhDgnhI8aMecFDzq418Z5r1844u8Hcd+wnwcpeNm7V8B1RtpE9fQU+mU6ng+CdyQCCEVWHpBzvEluv1y0YmUe2OZibuAX8y3c4zpA+tNu+wWazGRxba2yNbcE2jkaj9mqKm5ub1r7FYlEPDw8NZ+92u4YvGWd07Xa7bSRHVbX/kQfjBO7llRDMh3dEmPAkwGSiwbLJnGJT7WtkohhjAC6mLuTPf+facl8yocyywLXGkvzYd/N1Jj69Dv1Mfs7Pzwfv/358fKzNZtP6aptPshVEL/2jHew05vMewcy4cAoMiY5V1XyNq6urWq1WbU7YYUNfnWXuwHsmthqL+PhbyzjX5DvMEjPaTx2PDyd+WO/wG11DW2azWdvNst/v21Gzll+I8vPz85pMJm3N2Vcz5s3iz1M3mRyyD+hrfO/V1VVbT8z5ZDJpPghzb12JHLAuGKskl5Kw9bP5OzmDXvncd3+Mgo5bLpf1t3/7t//HnnMqp3Iqx0vqO2MPF2yfsSQFHeSd7uhp8zDmy8ybWZ/aDoNjza/xt/Ucvv5kMmkcoPkRJz3Rbng57BuYII9x9xGZ5uYuLy9rNps1jFh1OAnO2ML8l8fWtpPrjLXYUAIePj8/r9lsVlVVq9WqYTmwrgM01Fd1wAlwFpwqZ6yFHeU+OAnGAJztecndltgl21S4R7CDuQDGnrGAG3HbkCuwBDws34G3c47tc1hGzKPh13A9Y0nbHeBLnGLsYt6PuTdXn7xoz6a6TmNP22nzWp5XxgfsYHzqdptjZRzg7c0t+1UD4E3WCAFSnjkevx7nulqt2rX4R6wV1gTyybhWHRJfGTNv8gDvcB/jgB/kU00sy9zL/Yyt9Y99K+QxZdV+JT7XaDRq687xEwLFrBviIF7f9MV6k+emL+HP7ct7ffMsH+9tTpu6zE+zm5e1Zl9+Nps17sBY2zrL/hybQPic51qvu6Bj3c+0Pckvfml5l0HQn1PseKCcmRwmILMo8mgCB0/5SSHKRZNGwpN3LOupR2rbAU/Ci+9twFLx+po0pFay6Vz6GvfRgSkTI3YKPb7UywKFOCJLi/E/thPUypxxt7Jn3EyWVx0CBm4bAZScExslf5ZzxXjZmKVSwvAaCHiueu23cfd1jKGPweJ9VZAR7NCcz+etj9TNeDpLJMlJ+o0yS/lwENdkHUbNc0Kw1ll3VdWOryC7G4feWUgZDHJA0iAps6o8N7lG8jOMbBKlvbnOkkQObQVUuZ02eoyb16mNFONpOffYIXPpeHBfylIaBOrmGt/r+zznNoY9Q5TP8Frn/zTqvs7r1s/kbwMdzxmZXQZn6OH9/nCsoA2/25363fK8Xq8HWYWQsxmsdsai55j+0S6ChThZBtqsqwzEI6PO3LR+5rvUdchbb53bOUxHlDaknXCfUlZMIDs46XbSPvqXgIy/c55SNq1zeA6fod9fXl5apqfBrQFYyuGpnMrXWv7bf/tvA7vCWvP6Tftm/ZG20GvAzrF3umP/IStsx2hHYiOSD7jGmePoYda18Y2vc5KfHfI8osunWtBe6sMZTpvKuDjwmTbYiT0O6NJ/Bw/ANTwfhxInmIx7bJxxjLGo22F9x5jiXBuzoEsZGxMvVQedy1xdXV3VZDIZOPZPT0/1+9//vl5eXmqxWNR2+/reKOaOHX5V1QLazkD2++FJkjPeTNy42x2OY6Ots9msEZ+238YFljHkzmOJPBFQ9bPtOFumvEb8Y/m1vewVX2dyKfGT8XWvP9SV2IQxMiZw+1er1WBemGfv2KXftqvWH+wO8Rrlb/rNfCPvJhZZTzzTx3iNRqO2hsbjcXsnmXfDeh2xZuwvmIzCP/F4G4NbPuznWeexLghq+v+bm5u6vr6u6XRaVdUS7xgTyCIy/jmKzYkaPNM+MXNTNTweOvGtA5TGmV4b/L6+vm7v0vNrVzja2rttXWficdsJ1pTlz/KYHETKuUtvDWQdx/yTn1qYu9/+9rf129/+9ovqOJVTOZUvK8fWP5+ja8zbJHdhnTAeH94p5+sz4Jm6vOrwnkqeZ9Kd4p2XBB1sk3l+Buf427bEvjdYiY0A2ETjQY8NffKzVqtV64MxgnWy8b4xBddRJ5ym+RrjlPl8XqPRqB4eHga8LPacIC475njf53w+HySTwSPAO65Wq/Y/Y2sbPhqNml0yv1ZVg0RDn0pBP3nHKBgDbsfHg+YYJ0/oTQHMuwNAxhf2Pfif9iQPZ3xGYfx5Pm1MHt7ttc01/8XcJA9p7Js+RtrslHOe4Z299A3fyXVZ1sBXJAEgR7T/5eWllstlzWazNzjbvpTnezx+fa0Hcgx+TP+CBFPWivvOuidpz+32LlDkFB1AUJb5Z2yNi+yjUi9cWW5qIsgK/vb1TsLnenOY5vMYr+TW3K/kIfntNY18WsY9J9aLBG/tZ1L/YrEYbEozH1BVbVOWubZcm4lxbQ+sqxKPuvR86vzNOH0ptvzFB0Grhgau6u3AWtDsUFUNQbsF2kLjwAj3ZrYBi8d1pvPGdSbnETA7t/6up0hNfKGILMAWai8CE2W5Nb2n1FnU1OejFDzGbgfKlKAn1xEgNagwOW6nzrtv3ffMcrUBMwCwQTBRhfJz3YwB83txcTHYjeosJJQkn9HmDD4zfwkgKQkmLI+An/3+NYP58vKy5vN53d7e1vn5eSMnMfqeR4+V39GToM+ZJVbMVlKMoZUiawFFmHJlR9v10kYHp9KwU6/X5eccaxtekwkYdZPBGSDqgZYEMzbyST7wvYF7T8kbrFoGUi9lyc+zHr9PKus5dm/V8Ng+Gx2PiUGW6+sF9xN0e6ysW6jHsu5rWKvOuqQY8Lq+bCvzY6IUfWFjbQfMRtoFfcX4sib5LkE/7bBu4LPc6en2eu1gbxwE9W+PvZ9hm5DOA203IE+ZzfmhPQ5Opt1E31ln+1q3NWUh9XYGWgxY0bur1artuGUnU9r4UzmV91LsGFBSt1o/9+yrifp06KqGu8CNdT73TCc7geVYoziXmaRk55FrycqGfLGdNqllosiZqPTPR1qmU5s23O2ibmMLnGR0p3EMGAGH3Xo4A5zUzXd8n/rcuHk2m9VutxsEwXwcLnjXRA/BG8bBARfeZUjWto+kAusy9mBZB5mrDjodmXDwEjnwnDkhpqraM8FJzN90Oh3YYJOT9nUgPXpYnn6n423b4L7SBtZCrhV+9+ze54rlJ+2c67UNTn+INhEMhIwEm5o8pe1+RxaYOd9/xngjO2SmVx12ykKisj7xB0huhYRiDftdqh4j1s9+v2/HtD48PLT5wC+h7Xk0sYP5VTUgRZF/E3jePeOkMeMojy+ywa4Z+wYXFxdNJsERqYtM/DrJ1H6OZZdC2+3v2Dc3FrLvYNzDtexUX6/XdX9/X/v9vr0r1v6y9TeY0+2wXB6Tdcv0zyGZTjjrVE7ll1n+8T/+x/XXf/3XXW6kqo7qHX9nronPrTedrHuMz8Tm+29OjPN11GV7NZ1O2wkX2AfbGvAXehi7cn19PUi+Nv/Is8B5XGd7hG4mwMgJBMnBGsvzf3IIxpUk3pkndX0kqt3c3FTV4ah8cKzHksS529vbVhf99NzyGRiCMaONxqt8z2fYKo50N8/CWDOv8ODYTnhCB8PMKTGHjCmylvJE2xw4x7Ye67NlEF7Nn9v2pu9Bu4xLLRvmmZKLsc01FrLtTu6SYjlm/Own8jx2JFqm6UPiFcaVes2B4RskPmIePIfgKt4Nj3/ALtFsf9XhBDXaBV523fapkAuvWzYTgUXNlfGMqkPCn+tiTDz+xrfm0mg/ayR9TOsd403zZsm9mfPib5+KxrzhR/q0RupwvV43yeWNx+O2US2Lj8y9uLhoyYX2sdNX65X0txij9C19fe9vyng8rn/4D//h0ed9rvxJBEFzQKve7hBl8vf7fXv3BpNhY+zsVuqxQrNSy2LnyxlT/pyFacfOgm7DaiDgH5deEIPxSCV7rJjYxuhZ+eW1u92uKTOUHO0n+IbxNgmTAVEccNqZBJmNvwMsnmsUVwZgUPz+Tb8cADSYQ2FmdroNiJVq1fDoBI91BvRMOlXV4Ln0z8qLNgKEOJIT4MNZ+Mix5cjP8XgbYFge3W4reo6jsDFK+cMYUK+JA9qSYNRHGhgY8b+VoAPMKf8GE7QPY2jwYsNqmc51TWF8CKgCjDLRIUkHz11PwWcwiGe5LRTrGtdnsqWnQ5L8O6azvKZcEmjbkOWY9Z7l9gMg3E9K6sf9ft9kGpIryX+DI+Ta68myd3Z21kh8nCLmCPBGXZYhAyDfk9d53A2ccn5zTg3SEyQwJ/z4fQQeK4qDA6n/Ab8mry339Mdtp24nd1Qd3gvCej5WvCYsbybbLAse80xO8t+73euuI2yLM2yPOQmncipfY7Ftt95M/WPSpIc37ZBnwoYd3aoakBYmchykyWd41xf1ZYCJe9GjJibAktZr/ptrc7c6Y2BMZMLENtdOY/aJsXDgyTswbS/pH0fQ8vfj4+PgfXpp+xLXUyfOP+104qPrYI7ALMahdv5tk9brdT08PNRyuazVajVwTMGdBHSYR0gxsBf4y8Fegs3U8/T0NMgG5sjWqkPQxkmJPMOZ0HyehXq8w9c4ysk16QMl5kqCwXLG/Vz7Y8V2MPHcsev9YxICnyCJKcbO9pzdf5x6QF387yQxcA+4Y7vdth2kzCnPpo08l12P9nNNtNhPdjJh1QET0y6fspLkMq8ZYDdPb+2AX9EF3jHK86xPwGCJGRKrIF+MN/LIuoCMZ6xMhLNbGuLK7bbPyJghk044oY/8ph50MH1kvTPmk8mkXl5e6v7+fkCkeVe86zcm9TN/TLaNqXqcQ66T3vWnciqn8ssq33//fVX1kyGMs7gGe8D/1nkuDgTav0wMZT81Pzd28skF6F0nYGH/sC9wWOZLzs7Omm9NQlJVDeq2z0pfsalO7KPNtN8chrk04zn6h50yV0XiEnbN42I/2RwfAZjR6PUVPzzb2NrJT/R9v98PNkrQTuMF3luOnWc+aD8+wWQyaRjTeNJ8h/mk0Wj0ZpcuP7SbH/sPyBrcB3NomUkZwv4yTsmNZ4Jf1fC4+V6gKW2n5d3j2eOxzVmY9wA3U6+xj2WaeryhJzkiY1JkmnGgPxmQsjyPRqPBqWM8g2Qy/vbuRDAfGImgOElys9msZrNZe5eofVbaYp/TQUYwbcoQXCFr15iR/jhBks+SZ7d/TKF+ZBIdATZjDnyqCHjeMsV1nn8woHUL69Fz46C9E4T5PnWFMTVzaI4PHZH8tBMRHdzOY7WtEy1rXjsedycPWB96DtMHpA7/v9vt6uPHj/Ul5U8iCMoAOoOBks4g5DIBJAc67ODhrPSCMlZkqaQyQ4X28ezMJDWJ0utX1sN9/t5K14QBdXsR0wcrEz5z2/xcLyDqJLBgQ7NcLuvh4aEdk2Vn2QuU/3uAy0SLAU0vOMP/OJRW6K7fixGFgJLt7aJIx9Cf27iiJE1IVNXg/YVWgJmpkUAPg5/XQEJ5fu3Ac2+v/QYifoG0yUgHWlJhQej5yF7Lq7N9mAMHeHOHYNUhI8dGz2Nt4qZHGNMvrzUbONpjGXDQzcVgxMCFMbbS9zWWARORGDTrhR5YSqfBays/NxDI9UI7TGDSFuulJOyyTX62iwk7G3DrhqzTz7TDwLyQrQ+QYJwnk8mb+THIYr2yZrnPYGa/39dkMqmqakfgAmSYPxwGv3PU7QfIAQJYi3zvvz0GkG1cYzvkNU22ZAICX0vf7aDl8ULItQPNXkMek3RCj5Fa6BP+Zn4cYKYNJrGpz4HjlGUT2j3bloDcegDgSUbh5eXlYKfMqZzKeyg9Hc7/uR7T3po86q1v1j5OjNencY6fg60yaWKM611crO+np6dGHuU6R3+CaXysKfXsdrtmF9KuGN84KY3r+J7+98aT+rAVHKftfjBeDrDaB2CXnLGS7X1Pv9FvnH5wG/iAOeF51ImNYvxN1uFUc/wox6PxnijazJzT3w8fPrT3+Tw8PLT3j+52u7q/v2+7U9Gl6/V64IzvdrvBDozFYtFkj2AahaRHSBPe9eqERtuNqiHesi01oZEYxX4LbeVaYy/+N1nn+uyw8zmyxz25ptwGyyD3J6ayDecYOsjRqmprw0E34wfbQQhGxhj5Zt5NgBrTg5EhV7Dl2FH67WSx0WjUAqUmacD1fJbHaiOz9q0syx43f09drOeUkUzwIonDc8b1xvL2ybjHRJXJGe69vr5+c+y1ZZL2mxBLvOO2Gi+aXAM7MaY88/r6um5uburh4aFxFPRjvV6/kVH7gTzfSa6Wzfwb2bR/0yvH/IJcD6dyKqfyfsvvfve7ge41rkKP2Ran3181PGITHZfJc9i5DAz5/uRz2PXkkn5k1SFZF5tBEpHbjD3yUZE8C46Lozq5B0ybdgY8TJvBmIkB+JvxdbIPeBB7C5ai0I/kKOiLsefV1VXd3t4OfGVw7MvLS0sGZNwIZlXVgAupOpzKBRdCMBk75feYY9+wS2zWgFvHLhGINc/p34yN+8fY+fVqng8nixk3OUmLsfcYWv786gD7OeZrqceBKOO+xIVeS1XDVzf5t2XFnCbt8npEzvzb45Xt47r0K41tHJgyLrLcIpP2g+i/ZcT+oDldJ3giH5PJpK6vr2uxWDR+2nLIs5FH4xnrCWQP+YIjs2wypp4b6vE4MJ6eU3PA1Ju+Bn6kcV3WQXv8SkD3hT44FuAxYHx5hnl99Ah9w1fgKGHmi2fib5gTZ55JBEQvmt9LXW19mH645dp4FPmyrFleUy9Qx36/r9///vf1JeVdBkFZuB50JtDBHl9jshgBTCeHRfLy8lIPDw+NAGGhQhpgzJhkBLhqGAk3KWXBtSObTrwdPP7OYJwBQGY/mDh2od8cW2QBTfLZConnoXCdPWQAwDFHGELq9Tb25+fn9j4iioWae7xouNeGNB1JZ8TjBLp+KwLGjufQR5Sr277b7doOS7fF93kXKYrIpIqVG/NF21MhWllauVhR0XaUkkGd6/IOWmTD/bZBZI49L36/gcFBrhkDWZ7B7x54cZDKRAfzClByEJ3+W7YsA/5x/44912Pj4DTA1wCCtYhuQP5Zzw5ge93xTIhC+mdAxTz2+pEgyPPgtcvYMS8mlbiHa/2uY0CcM9GOERbWNQCelCPIswSLnpMeyZJjRn15JAVlPp/Xer1u7wpI0txr1203KDMA9tHB3gXO2HqN8UzGwg6LgSIyi1OR+oCjwH0sR84tesdjyd+AGNphQGWQz7qGKGdsPXfpvKbtSAfBOoixTyANMDRwScCXAM92i3Ey2e3MS7c1gWvuXnGA9lRO5Wsv1pGsGf7O4jVnPd9zOKyLqw760LjYxHnVIcGE/51ViwPFu+r42wGiPGrJzho6Hn2J3sKe4qw6iGXH1f0l25brevrf41F1wMmXl5c1mUzenEhgvMPzfIpJD+c44OBEMeNn41fGgLGzHcKm0S90mF9jgD+y2WxaIBQsa/uVxMRms2nvkt/tXt8bhX0AE7mf2+3rDtPpdNow2Gq1aq+18A5BY0MIQxM82L0MUNlu5th/bo3wfSaWJX76sbXE58e+y/vS17QfkjuTkW8TZ04upP9eF2dnZy3oBta3TVuv1+0dkYxx4rKeLwi2BteYoOJ4ZOpmDZt05jlPT0+1Xq8HJBey42dZnj1WXvfGXJCxlg/mlN3HzHdVDTAC66Lq7ckr1jEmklLmvDYpxjK+zjrFhJdlz1jHdaQfY5IMPegEhqurq3p8fKyrq6u6u7tr5GBVtSQF+75uB8+0jDNX9h35Ptdy1pGl56u45FidyqmcyvsriSt7hV2VydFQUkegg+2vginQkT6ppMdz4u9Rn20+xL2xF/ood1/ZfqJvqd+EvBNezC3aR4XbQH9715p3VVlPg5dso/D3sdfpM9OOXpAJ++0dmmAMYyH7ByTR7XavSecOUtMWF/xtY3XaSGDUmIb3qRoLGU+DV8G55qXH43F7Dzq+xXq9buPT47rg7OzvmIOjmB9iHByMZn7s3xibIHt8Zz+nh32M+zwPbleuN/sayZG5jcaWDgTSZmMnB2vpX95vvweZhuu3HIBT3R78IeTAa9C7Pb3G7PPc3t62d6JTz36/H2wk4npeH+GkQT8rx8z8r300B+FT32Wsgf89/owR37MD3bu/M97hhED7jjzTY0xhrFkb5tI955nUuN/vBxsFvBt7vV63tlsveTMX+svyap8cebZ8218zFueaDK7bD/dc+D5/94eUdxkE7Q2Gf1NSoeTnVhImO15eXmqxWDSF/fLy0nbaUawc0yBmW9ORN3lVNXSgenXYmCahm31HyFwPi4rrrMhdjxe06/HvXpAvhTEVPYuHTGQvMpPrNuIGHXZenckBQGJcfAwR/bZTTlt6BInHxYrFpRccoy389nyYeMHAOEDFdT5OEhkANGQAwYQEz7Biob8GdCbBPJ4+XsEvNzeRwpgjpwA195M+GIBSULY+pjQJD0BaKjTmzxl0KbtJTGUwJWXQ/Ut5YF4s31xjsJCgHNDFOnfGDm0w2Eml7zVn2emRBzY6+Zl3RVbVYJ4MsnAAkCP31+ORc8zYJNGUBjDXAGvLbU058312BnJd8l2+I6CqGoDPIyOsXwE8GHZkouotyPDueO7nmG7a4cw0z4GBQxKB6HKOXzMRZWeNz33kooOfqTM9xqk/rYfoa5bU7Z5b61UfXc3vdAgBoQZ9lnPmwqDcjoW/NzmYxGjKHLoMBwkdcyqn8h5LYsLEtNahtnt875KYsOotaWRbBRZ2kMu4g/vRS/m+R+OldLDRi85gpc3oWQc8+Mz1ck3afO7JsXC7wFgccwkeSdyWfgH/O9sW5zaT2rADJk+yPYyt7QPPZ7zAYCTwLJfLVjcOLe/+BCt5DBgrEjypgx2wtpPIBf4O9R1LLjFR6WRN72RkrMFOxpOMLX9TnzGSsYJxRvo62EP+dsKP14DXTa4Lz09iMBNaeW/KnYN43G/cyDXun+Xl/Pz1PVX2NSCKIBGrqh4eHto9fM+6SRLM7wKFlIKIYq5MFjnZ1js81+t1rVarJjMmeB3AB/fbx+n5zSYMfWy15x1M4/cUJfaxLjKpZL+oanicoWUqMYXfS4tsJY5KvWIfruerW3641wl2JE5WVdsBbp3kd7fxbtDdblfX19e1Xq8HbcuAtGXZazK5AMt93kM/TuVUTuVPpxiTGCcm77nfHxJnrF/BkbbpXJc+OHgii/kVc2M+HtwBvqrh6RC8zw77yPPzenQq2NjJIHyWfIYTyeEoje2crJxYARvgZ7O7f7PZvMGP5vAYE2MH2kGxH419pO8kFjmRPvkW98X2mWPt+dzPBT8Yw2NDwaucVAKnwv3U4aRneJvJZFKXl5ftHZ7Pz88tAcjP5/QEdoGSjJ5HytonASc5octJ7j2e0PKdCYAOhI9Gh5P20j8wP2P/wfY2OWbk2sFwjzH35TpyveYEGePEMuZs7JsZC3kjCPPH+y+NfcGyrHnGj+Boxkkc+Pzuu+/a8zmVhnY5oE57zKHRJnQAOItXgiCnrAtj8uQgc07pg3WgOTzWlnFr+haJGynm8mmz16nr8b3UaZ/U3CfXcBKefXDXy/gi3/QHueKkVPOmxoZex/Ytrf8yocT61vyj+0g7PZ6JYX9OebdB0Fww+X/VMLjIfRQrHdfrhf7p06d2dJPvybZksCKJDguq6/AisuGl3TboVk49ItiOisfHho97fJ1LEmBWvl6c7mP21e1x4BWjjtHj2EL3o9eH3LlLnzy3uZCoywDIisEyYKPXK3Zk3Wc/w+CuRyRyT5JrzkJxf1AOKTseh/H49dgA72qrOgAeEwZJsvEZwANSxc5+1UEJ29h77JAPQCtjmePrrBjaz8vhyd5ZrVaDIFfVIQPPmTHeXWLj4H55jhgXgCnfMeY+jjXXsEGEAQjG0OAF+TMYcl3pPOS6tTF0AMtElOXIMu312QPIvXWF7nGCBNca0GOUmGsTTzwfA5tttK7zsYnIg50ftz37Y4BzcXFR0+m06ZK8vqoGbTGpyrPZyWTAvVwu3zh6ACbqw3GwHBtkpgF3f30kt3XO9fV1+59dSeyyMqHKSQTeuepiwJHgle89d4xXOnO+1nPJXCSxa31mEGUblHrZ82lbZh1u+eX/3rry7wSRyNipnMp7Lem0ungd2okwFsjPEsOiZ45hWNsuJy2xriA7fPyUd9Qbo9KOdByzzTi+dkRxLG33+BxdmPWljvJ4bLfbpmszq9UFPZbOKrrGtjKDHsYOTogCIyQeMTFAQGq327WA0263q4eHhxZ4NSnl+STghG3hB1xJW3OXqDGM7arnhp0ajJ2Dl1zDe6/AnPY/qg7Z+fYZGB9/Zuectvh726PevIGfGGOTTthAYwfbSts8rx3GJ3GRcVz6lMZLieWZC3Cvg4WZqGC593x4F/d0Om3BOzDMbDZrx8G9vLzUbDZr7SOAdnZ2VovFona7XSOCjH1s9wm22Vewr+E58Rpgnsfjcduhw1G9Jhx9nDY6xziOej3W/A8hbqyL/BhfJyGDz+/5NnawjPf8wB5eYv4tF8a8xqTpL9JGJ5KhdyeTSd3c3NRyuRzoS/SKfdEcA2Mvtz9xE/rCPl+PMziVUzmVP43S4wD5wd7Y7iZf5EAI+trBHetXYzjb4qpqyXZVb09JSq7Qz6+qwc7QHh+43x9OXcjTzfjbr36iHeAZng3G8TGs6GrGyryaccnj42M9PDwMdrhiJ1NPe9zA4VUH+4G98S5N2zLGAfthfsb8mjm33W7XcPPj42Pb6WZfHpsOLnl4eKhPnz6100q2223jH8Glo9FokDxF/1LewLwZVIfP87tKScZbr9etvbx2AJzqZL605WlH7d/wnWWdz8yBwekbJzL/lOQ2sjhZNe11cnleh3zPb/uMjJ1xHDiIOs0xEsxzEgLfe0OF8brxGvKFz0jSQvLz9MXjw33sXtztDsF0rjNeIiEzeVb6xwkrTohjDvBrqLe3mSHfx556x4mI/GZ+fL19wtSXXttgZvricev5rvZ18Svtt+I3WJ6YR+Ne6mEtmj/u6VC+d7C45xPxueXO82Rc6nqYp5TtP6S8yyBo1VsyxwJE8eKuGmbG2tmoOkyes7sfHh6aU0i2ONe6Tn7nhFhg8t50wN1mZ7FnENROZRLcJp+4hx8HNFDkeV0KM4s+Se9ss4N42f+qg+JxNpiJqSTnc8H4mCPvtDI5ZoVmMAXZU1VvjBBKnQyd7A+BiV6frAS41oDGTq2DGQ4GuQ5v07dC4lruZ8xS0ZswTPLTzq/JuiRj6BffOaDqrDXaZcPOfZYrZ3hXHV4YD8ChLfP5vAV5eF4G4Oi/iSfkoLfDE5k1eYZRSRLSbUng43H3vCM/BGUJsvbAY4Lcnq5ysbzk/Cf49jhlgJL58t8eT8uzv++VHnmEvCNvXJdz4TbQRuTCa9Lz6z6bcB+Px233pQldxtvtQt94J6DHh/UNIKZ+G1oTaOgCrwUcgtSPBq0ZCPBaJZuS6zmews7J1dXVIOPx/v6+VqtV910VyJl3uyaxZnLZeoLivrufPMNAyX1LAi4dzAQ0tMOEpuXETqj1mOUtZZR2eJ5OgdBTeU+lRwIdI6CP4c78Lu2Oifgk7bmO9eOTKqiX9z46sIROp74M6hlHoqNZ5+CZbIcTAakHwoRn2Lnnc2MIjxW/wfNcY/1mu5tzgK0HR+BQYkeoA53D/WAedDifUdBZm83mDRlFn+kv5Jj1+Xg8rtlsVvv9gaSzg29sA1FAP2jb09NTOxrY+hY7ZBLPmCKznBk3y6JtuNtEX4zp9/tDMAu7nsQN9gtbAAZgXhIf2e6nfLudGaBi3p10lBjTDnzaXNdPO10v80cyIGMNLuB/3oeOzOCbgW/yJBKTzZbj8Xhct7e3A+IR7DObzZrsOLiWCavb7bbtVoRQZmx5NnMxn8/bPfa1XcB0rDn6kkdie8yNZe13MZ72e3s4xn6w58r4w76CdTD3eA6tZ0zwOfmS9vBcP388PrwyJXFwyiHvzLq4uGjvbUMO8hQU+6NJHCU5lXyC5dlrqMdn9GS999sl7c6pnMqpfJ3FuoRiXiN5S04YMHFuctx1Vh0So1KvmENKfs2nj9n3NQ7MRCruc7IMGAcMlDyQg2TGG+hBY1Ta4WCeeWhfl7iH97jzjk4+h6d0wNg2zu+GNN/G8zymfl7VIXjLGDEuHAfsV0QZr9gnABuMRodTq8AI4FmuZfzAaH6vOFwsbaGNzDvXJBamTdRJcDW5RsbAfANJYZYhEta9QeJzQRpsuPE/zzcvlzwe88Fz/QxjTOpKTpPPjI8cHDMOt61N38JrkTkyt+714IQ9819O8szkOfttVcNTWghc2290e8C29B1ObzKZtDrAacntITfIOW3KV73x274ffoeDuj3/1PNjnUM/3SbjIPsZXOs1a30GFrYcekeofb2s0/N8dnbWNhsl1zkajQabPLym3E+SEq0vzs/P2+tU3D6K9baL8aT7lMV+m783fv1D8OO7DIIm6ZOEa9XbIyZ7RJFJWxub5+fngSJkAdgR9qDnAs7iifZ9GeQwQcznKDyTBz1hqqrBkTp2/lGWXIvQo8i84KygHMzoOZX0B2VhRWAHHjBAhjGGFQPG+2VYcGR30O/MSHU/9vvDO5CcjYxysPHzb/rkI9V4rh15gwTq9q4uGzcKxtNjwv88GyCTRKCJEgNExt7ZJ/zukUh2VlFsACSDNoMm2uF++PgIG3MTLfm+IhtwB2p4DsBnPp+3OWesLFu8owhFbtBrUOVjJljTPkLXWVIQTlybARLLrw2WZcprzkfEAfwxEkn8Wv4yyyll2+0xwQuIN7hlHWSQkrny8wERBhTWXZahlA2PD2unRxL7M4qJJGeNcU+PYPW1yDBj980337RsP+px9hbzYv3huQVMA0IJNhLg431r/CTRSDs8fl6zvYSM3NXLOBrM8Y4LJ2ZAePGy+MvLy5Yp6nrsOCVZZTmxLrMcpcyYCE4iMZ3N7L+BsO8zSKfPyJ3BjoEdRH2+J8S6z4SoSdwTuXYq76n0cGTix2N/e83bBht/GLPY5toW2hGCqOdzit8JY4fbzhJ69eXlZfBedfQmdaajZ7vANT1nExvkdpmw8pimrqqqdjQaAUGPX/5dNbTLOOh870xn2yrG1Fm86KXeO3Ec5GSMOAHABIXbY73NfOOsejco9pW5AqPwLOwMzzHuG41GNZvNBliEa0gEQy6qqh21RJ+wrSZU0pfhf8bPNgfiLftt2eBzZ2EbS9AP7vPuFeNk/29yxyQDdVF/khiWvcSUTtZiHMGlNzc37VrIJcYAAoN3YDHXJCNwHXNofADmxveaTqet3ciAMS67RRl7H21WVbVarWo+nw/IsKrDaRn4VR5Hxsw+hsfFZLDXuwksE6reTeRkN68FE088AzzHddY1XhPG1Z8r6dtb19h3TXLMcmSskv5AyvHZ2VkLhK5Wq7a+SZbj/sRYiYVSv1E8LsZZPezq/veeke0/lVM5lfdZ7J+lrU4dYI4BvxxcYq7KdtWJUsn5OVBZ9fZ0raoa2KLkDpKbsr4Hm9A/bBUEv3EwyW7YHeta2/c8QdC+OTo8bd5isaj1ej3oJ3YhE9Z81LxtFe2Hm6Ff5l+qaoDvPeYOfuT7wjl9gKQo4wVOc+M1Coyh8bA5T/sO8DHgAv43Z8y14/G4vbfc+MnzyZyRFOgAluUUWeQd6MbG5ivwX5hL48bke3p8MPfRPveb63N+evKNLPQ4OddlfsbBa/AYr43imb7HXApYiLmuek3S/PjxYwteIkuMyWQyqdlsNgjucrLZy8tLLZfLxukScOZeyzMybk6RH4LcVVU3NzdtfaxWqzecmNdl8k+0GxklFsFaxT/M9Zw7K3P+WdtwVsmpef6dMMfa9dwiy5lUy9/mas/Pz1tswmvY73QlzoEeY/7gPKkj5ZaCHKFTewmqllfqyHp4rteQZdzz53rMp2b5Uoz5LoOgVW93rCEcBvwpMHbGPNgYDZ9TTh2Pj48tO8aOFUKXAMCkMnVk9hD1+LgAFgCLCYOQ2aoIlJ0oK0PqsQOa2QbeYUNB+fuogXy3jOvrEeGABBw0E9l+dxOZA4w92a04hygiFBVnd7NYIQD4eXp6au9DciDB19J/xp/Pr66u2rn41MfOXytIgx/GBAVNwITrmOsMpJvIYrwgGFx3HhNguULRMAcQIJ4Dyxttc3DbhtZznQGGfK53/CaxkyQKgJe5T2ITgwNpcnl52YgajKKDQxhvgJSVr9+FxVpg7DebzWDnqoOSDkQiy+4jn9MGB3QZa/rs+nPt0y4Tm9YdgDjG0crfa416egFUy0WC3TTWbpv1iwlvk3WuN/WUZZE5M5AiISPHhbbQDmdmApppt+Whqmo2m9X5+Xn98MMPbzJI0R+ZUGCgjO4xIWt9SVIFQJsxMeBAN7L+cRiQe44wZA2hu6xnWBdeT3ZmbL/Qpzc3NzWZTOrp6an+7u/+ro2B1yz1MQbMD/NieWIeuB6ZM7FnEtDjgc5Cp6aDRd/pV9VhV5mdX9tm9Af6wTKTfaTe1Fm+z/J2Kqfy3ovtbtVb2U68y/pN2299jl01prK9IjHEtgcMtdvt2rsLnXxkMoHdYiapbC9sY+2U47zZJjgISF+w8bwXDx1c1X/naVUN8GgveJFjajt+dnbWAg5O1HKwxni9avh+c/4m4Mn1/A924T7vHvWYMR5ORsJp3+12zdl9fHys+/v7Nsd2upkH2ubAH3OXBJLxiZPqIK8mk0lVVTuCzKfoZAYyOKiX6Mg9tCdxmZPSTHZ4HvFBvC5MytrWZtDMNq1nQ4x5Lbv006SUZQ9ZpkAS2YZdXV3VZrNp5AXz/f3337fPqPf5+Xnwjiy/q4ujv+zDciSdcY19C+86gfCBrBmNRg3reEcFWMbZ5O4ju1uQu6rhazj8jjJ8MnQGMmsffzR6Df6aZPUceS48fsYrjKHXAhjEa9h124cxvjM+d+DaMsb96ADrSD732kxew/73dDqtu7u7diSu3wdr0sxJj167PZ3osUuc5c/so/j7Y+vkVE7lVN5/sd2HuwRbmq+pqoFtNpZE3/iHaxxkQEeZR6g6vKfZWMgJUtSRgSrbd2wcbbfO9k7Eqhok5HAfxUFVeArwTgZezaPAEVIHO0DR4a6/6nACCnaWI3YdUOPHgQi325gjg24eE48hY0HB5sKrwbGStEc/eAaJ3LSV5xv/VVXDrNTnZ00mk8bFOHhl7uni4qK1Abk09+oALAVcSHHyEONC+5hPX2+s6OC9x5S6jA+SW7Fc5Pfm4mxve/Pb8wMtm/b17EO5jR4Xy5xl1AFofCCvPxK0aM/t7W19+PChYb2bm5smD8gcsmJfkfbx6gWwK75IJr/C2ROI57tMauQzxtkn+HhjBH4dz0SWvMbSB8k4DGNg2fMcOsnRHBr1GC9bl9lXIsnYa8d8rGUAX7Gqmo/Ad147ll2e0/M/7X+Yq7ZcUXw/Y4P9yJNerBs8Xpb1Y7zHl5R3GQS1EvGgG+DjpHmiHWXHcWXX5+Pj42Brvp0aJsrBSYxKOhBJImehXgcSqg7ZFFXDl2ynU+8x6ClTt8ML30JowXbQhPsJZjr4kHXRBgDJ9fV13d3d1Xw+Hxi//X5fy+WyOfQEJlFqFmqT4Cw02uL6eC5k1G63awqLzJLVatUUKMXOInPqABAK2PJihZ1B5CTjDGzyWpSglY8JR8bX85Ng0fLO30lWXl5eDo7SyqxrK3EHK8mu4XuTVTa2/O+MEIyGSS2eDxjhHuaJwCtgg7FwkIbrMLKsQcbXGSlpgGgv3yURgVwzN3zGmLjv4/G4Hb9A4Tp0BvX0lLGDrwDgJO8Mqvg8g1o5j/7Ocuzxs9Fxn00QZb0Gmr7WpCAgiGISkPudLYZcsabS2PI3OxXQBw7M03aMPnJBplquCa5N4GKCmjZeX18Pjkjc71/ffWVnyQSVHT4TwZ6TlDl+G4RZ7vgc4IVeG4/HtVqtmgyORq8Zd3/2Z39W+/2+fve7373R6fxtZ9KAzbJpfeU59txbPtxej7X7ybUJinJc/By+z2e6b58jGY8BoWO2+FRO5WsraQN6ej+dbDvYfFb1NqvSwVATOCazcISMRbBxZJ/b/oP/OIXEmJJ60OW0zTqPYjuOY2UM5Xs8Lg4O8NtH01vvGjvynXdvOjDK+FFIarMjiT4ydrc+pR3YcogebBxjS/+ph0RMJ3M40Obgpwmr0eiVLMJW8Uzsm51641mSACFJOAqNTGiev1qtBklodprB6E48ZHzSR0tcCm40OcicJUZOTGc846QyYw+TVL4/bZXxrW2nsUratGPy63Vk3NgrBA9NDngNIAsmCyCQwC1pg71GIXrwccBPrAMCjsw3O02ZYwckkT2uR0aRM/vFXmv2T+gjgU/vQrH/QAIn9RtzMM72Vbxuk+jNQKdliwCxd6umH2YCivG3PPsz++3Mb+ri3MVqeUwsQ3tMXo7Hr7t1Z7NZ28ni53n+jY/4cYCVZ+TzPJaMFZ/lfdbJn8NbyVP82Oenciqn8nUV686q4Ukg5kTRl9a7TgL36RsZrEj+w6Q/eLC3+84BByfzVA0DPMYKPg3OAVj+NjeVfJyx8mg0GgRpGRueB/bi2U9PT+0d71U1OFGDPlMvtpl25QkM1tPGRxTwEGPu8XAgwmPDnCRn6F2tJO2BYcAOft832IUdlex2HY1eA0vT6bRhSJ7D9czddDptXCLBNzANfXMfJpPJAE/ZL7FM+KQPxokx9avQclOQMaDlxnjPn/kZliGe6bq45phtTr6ROc9gW2LVTBjvBa5oAxjPJ2Ysl8sW5E+MMp1OG9/rxKyHh4d6eHioyWRS0+m0cYasE5LjGC/kyH4W/iU4kuS3xDBXV1c1mUxaMBRsiPw6ruA1Zh/QPDPtZH3Y9/HcmL/2HNvvYL06UImM08ecE+bS82U/MzkA+kt9fjWC59++FDh+sVjUZrNp78llDNxGxsv1oU97PCFrk2IcnPjYz3CfLWep03hOb538nPIug6Audrar3u58ouBMMrEOgEI6MDnpjJi8TxL72AT0nAK3KReSjQ7XmkQ6VnxvOskWdmfyp1JFUG2AjzkqHhsU4q9//esWAKW9ZOawTR2HngyiqsORCRBDzEEGS2wMrfRNYhEs2e8P2VIUK7L1et0UKsSdyQ/a5e3jjBtHwCFHqViZLwfMMyiTRBtKhExnxtmAK2WqF6hzFrfvTeInjTdzD5CpqrYDA0KEfkFkVFXbIeBgMj+sD0gPyzE/NthJTEC80DcTLIwlfQVIGQAiAx4z/s6MasY7iVt/Rp9yTfAd89VbJ1X1Zn0ZIHsuklywkbAMJIHHGFoGmdNev2mf/zbwtU4waLJ+gYDzuKN7yQZELt1GxsG7Tfxjx4j/WUeZscUYkGBhoOuSetHEqmXRIAc5Xy6XbW28vLwM3uHJ2AAK0SeMlwHpbnfIjHRfTcBbFh2whFSeTCbNjl1eXtZkMmnHAt/f33dJqAQcnpe8znJpO2QykPmzzPI9z/L/GYjA6XLmZba5l13H5wZRnodjAOlUTuW9lZ6dSWza03O9tV41TPKpOuhDZ5pjI6oOu9i413VY73Iv65CdTPmOl3RGfYyScZz1BLqD+xIfMAYO6HkXpLGu7TyfJR6yrTKRlESf9WLV4VUAdpwd2DCBhK/BHJjw8W5bj5ttNfYHMs3tWCwW9e233zafhv7aVnIPJ2eQQGi5ODs7a8cicb9JQLCdbTHzjt2wjNLG/JyxzZ1qllXjKmSENpggyBMrIK+41+Sr22g/IkkqSq4D2xrXZdLDxGRiN2Mr6qVPnmswLYmDYBAIC/rEzozEfIlpTfSAZTJIiO22bwsxhBz5pBuwOXOHXQd/s6Mz2+JkMvsoni/8wh5JR/9MMBqzWWbSZzf5ze6SnGtjGPuA/J9Ejo8mTsLGc2osTP+p32NvuUamaLdPtrm6uqr5fF739/ctYGyZWCwWbYwyyc0+kXW8iUX3wXoi17nXQtVwl4xtke1YXtvDb6dyKqfy9RXwQJL+XsdgQH9mjhU9hR+IfrIuQh/5uRQT/uY++M7YETvs+5MvBseg51IvUy98VgYpSDDiFAzryOQPR6PXZLXFYjF4f+V+v28nd4Dx/Bo27DA2hzHKgFDaW8YGm2/8kvwD40wiHToZXpHAFpgE+wFe4R3gjLVP2CJAagxnLshzg+1brVYN05lTzA1OBF3BP5Yj2zHjOOo1BvFO3+SC+Iw5ZQyNoxzEYkyMz5gL5NHzgBxwnfkxim2tZZB2IAvJMdpeW97c3lxj/E8/Li4u2qmMfuevTzczf2l+br/fD45Qvrm5qbu7u/au+6oa7OLNwnr0WHhe9vt9ez/6eDxur5XY7V6Dtz0szgYDryPjNWNy2gSHl8llYGOPOeNHv+yzGdvxXNponUffe/LAnDtxI+XHG84Y46enp7Zbl/lmbVkOkyulbp/mxppKXe9ijOn14vm0TNufMJb/sfKl+PFdBkHTEeUzEy8oSSsG/uaFzz52NRVkj0xCYDzpFk4rZTszeX8qI4rJX3/ufiJ4PbIhDQmBgwweQRq4sAAyQMDzczzOzs5qNpvVN998U7/5zW/aLko71xA/vNMoCW2Uh4OgNiYsYvrmQIg/S1IeAIDSIVO46lWJIScAFu7HYAOKUJQ8j6xqH8dBO5JoZPyyfSZpbCCt/FAatNsZTgk+rXyp04Ql1zgYahnyWCJ/SeC5PgdrPc9pqBkTAkQEMpl3gw4TdZYzB788Z4yps2g8xp5Tr2XWrQ2dxzPXVs6vPzeI5n63k3oghrxGE2R7zHIMkyw4VmiT120S5ZZTPyfBusfN9WK4kVWAOPXwbOtGE1u+zk4KxJjbybVJXlpWsz7Ls0saXWTQZLmTJtBJfqdayoPbSMDex2rjpPHDGueZ1OEkAcbaiRbU5V3TOB8EQRmXh4eHAQCmrcxJgiHmOUl/A5XsL3OVcuV+5Vr0vGUmqucw5zk/Mxj0ms1n2H75mlM5la+9JK7InyyWf99rnZ71pVNie1R1SEpK59/3VA13PLE20TPX19cDp4r7vKsT/Oe17GSnJL2qhhgN2+FxcUKa+5z/Vx3e05knGjjYR32bzWZwMgAYEVtBsMc6FkxAIIsTN8A9bjfJNSQWQhhRjIV4PuQE87FarVq2v0mtdCQzQE0diUu5D3LPfoOJk+Vy2eSDHWnIDzgNXOn6LavHfB/LMPiF+fF7nHyf+0ZbKYn3/HmOF7LsdlC8BhhD5o8+JpHK/4nlWFcci2vc5DmjTCaT+uGHH9qzvZPT/WL8WVceY/pAMiPz47ZybK5JosVi0XaEVx0ILsgwxo+xAPvYF0pbbWxIX5346nlLIstty2x9/1AHcm1iKgnj1KNZsv2+B/nMgKfb3fMrkJnEr/Ynk8g7Ozur6XRaNzc3tVqtBroUstjHCCahlT9cYyzvvmbfaZfrSALvVE7lVH45xXyPuTZ/Z/xkzGAuYLFY1HQ6HezCt463jbROBB/xubGDfT+T+4kHq4YbCqjf/IVxh3UmvAU6lvrgCrDJFO67vLxs2Gi5XNanT58GJ4UYH9A/YxVjQXhJrjWeo+/YIfvO9AW8khibvvG3k5XhcJk/70R13d7p54Qozz99YA7YOUrgnACbr3fQl7Hnfk5o8Tsk4RPBEuAfYyOfPkJfeK65CfAV82g58thZ3nK9uD77CZY/vk8M4HVGfR7DlOGUb7fHeCWDdn6ufSzuIyhvjpUTaBinzWYzuC79O+773//7f9f9/X3d3NwMjsz1q6zgudIPsaway5mnRx6QPZINwGbp73qt+T7Gy0H3fHUXY5Q+M23yXMOH9+TFgUSXXKPoV/puubYuddyA78CP1On4F/9bhmhX9sn8pnWeZTJlib+ZN+6xD+r6LbfGo+ZuqfMP4fjeZRDUwmunnM8YHISEH5T5ZrMZZJabLM3gQ9Uw2z0DF/z+qZNAXZn9TD09p9vtoji4k8bMjkoSzm57BjpolwmUFDAHDe7u7urXv/51ex8NAcN08ngeisdEFRlYVYdsIysSjwWLxUQQv922qsOxGSkLjEUSeA5e2Ql3xkcCEo8LbbZCdkDDwUUHZWmbDb4BnMc97+EzssST8KMOO7UeU2cZm0hghx/XMz7MIwbKwVX6YMLL5MjV1dXg2C4TLgAl7/5MY8HYmtRBjjIw7vXcG48kUmwIXK/n1yRHOgKWQcuF58j12LDb8KXhMDDzOnX7s31ui0kh665eu/m/qlpWuYPfrEvAqIO79MFH3aBzU9+gH3qkkHUVc5K60WvFxBDtoRgs0E4IYoKKyN7T09Mg45Ax4B6/g8OGmDZ5x4I/Z0yur6/bcYTMCe8cfnx8bMkVti3e1YBMUudud3in8fn5eX348KElKHgeGVvmjrZCEqbMWsZ4lvV/OpgGO96l42uyLhPB1jH5vASCPMsBbPeP/zPIfyqn8p5K2q6q4yDfJDXX+bfvNSb0euZvYzKvJTtNiSG9zsnqd0IJ+CKTxngGQUSTSnaoeiQNOhU7QMAvsYKDC9ZT1tF+H6evR69at63X6/ZOHD8bneodk36thl8BwfsZqdOYlLHb7Xbt2HNsFLs701kE25kMuLi4qPl83p5tnVx1eM8TbTFJxfW8h8kOegYpGSO+4wd7xzNNkFlmaXcG1qknSUoToyYpTQB4nul3EkDGQZZHf5ZJhyl/rtPrKrE2/bPN87xR/Nzz8/PBDguCvcgU2IHj3vxagHx3q4P7kDsmjPkMcpb/CexPp9MBrrLdBt9RNxicuWE9+GhkiDfPkefT68Lr2Tt7TdS6JFb338aRJprBXQTTLX/0p9fXJC69a9r4yySn22A5MnZJHZ+ylsnXu92utT8TPNEFjGcmIVvukvTiu97/yS0kdj+VUzmVX3ZJ/9c8kAl44wRzQhRsGpyjT9Wy7sRe4LcaI/s0pcRF6Cj0buJgcBA8HfYrfVxzP971hm8+Go3aTkTjGNtYbPNyuayHh4dm480r0D/Grfd6NtrO2HAygMfG7eZ0qqoD3ucZxt4OdjJ/6/W6tYGAppPPHLDwmFEfAUZws7G9uRq3C9xk3gQcYbuKnJBY6L7zLPgVvzKNRHXHCWw7q4ZH75sj5se4MH0txsEcsLnv5BXTJv/YusvgnX02J84l9k1f0hjL8mQfw5iWeb++vq7pdNr8GXYVIk/UTfFuUeRwMpnUcrls6+Hp6anW63XN5/OazWaNf6f94D/GFXkC3/okGOsGn0IymUzavcvlsskHa4B+8noJ5AL91ps3+m0ON5P3jO/sQzuW0YuRWDck3jQ/7c1N6F/GgnXD3JBoy0YirvPpe5YL9JlfjWEfi3ZeXV3VYrFo7TPH/jl57+k1+3+We9flNrjvX1reZRAUh6T3uYUBBY6idHZ1T4nlhFUNz9HmeoSVehDUz5GvXJ/Z0NSVuzMtCCzGdNwz4yhJ66pqgsz9NrIuAAH+duDFzzw7O6v5fF6/+tWvWgDUQeYe6ebMC4wIi9fn4Gfw0A51VQ2IIDKGnJ3EHI7H41qv1+2ZVqJc48Cej8ul/yxWB8XoT2+ue46kA7rMp4N7DoTZSSe7pqoGIM9td3/4nGczj/wmw5z6ncXBZyhzz7eDVpAtGbzIcecz1t/Ly0vN5/M3QJf6rewZX0ruDvU6oOTftNGZhVX1BiCaCLKR4rkYRAxJZkAZGJs8ZW6TMMOIpK5IubJe8Nj2QInnNNd0BvYBzJYfio0ggb8kcwCRfh59MBFHFp+/Tx3C38ghsoJT4SQDE2Wpy3P8mEeAhcE7yQjoDwK9JrkAdJB/BiO0j/o5eoM5NSjxugB4QUqZAPX74KbTaSO/yVCsqsFOUfSiCfXZbFYXFxd1e3tbLy8v9T//5/9sc28b4jVu8M8Y8h3XoRNtm7xG7QRTl0lK+u+gtW2f1yL/GyDZsTUQtJzTBq9zSurGUzmV91AM6ntYit/+3v97TVQNMU8GtSAcsJesL9aw9QfXpRNnMmY6nQ50igMeqcshSXAk3S/Xjb1AH+OQ0W8TArTTu/c9Bm4/z7GjjLOeAVB2emLfTIpQFwEHfI7NZtP0vkmnDKASRLVN5B1/VYcj0GjrbrcbkDqMCXOJDaX9vEvKR6xZ3zrAYwzq+aqq9q4Y+oqONxaFCKyqNk7pMJt0AGNYprjWJKpJQv9NO4xdGEcTipQMFCFzDk5yXQbi0nn3erWMJxY01jTO517jRONXEgdtu5yYeX5+Xh8/fhwkuIEjvGZ5DskJvA6E+5Ar2si80V+/8xMsQPBwvz+c9LPdHo7oZy7tt1RV2yHgMfA8M+bWRcYAqatYs6wl+01gP69Tisl2z5Hb5jHI9QoOtmyk7NE3dAVzAMHH9zzL+tmygH5wwqevuby8rOl02uYWfEw/2Q1qvsB6Nom29GvtpySOMl/iNv0UUsrXnfDZqZzK+yj22/y3OYG0WVUH/JjJt+g0dJ0Th+xXU5ysRyEJzs82lrD/bPzHb3Q3v5PbsS3I11nxGYlniQvBRaPRqJbLZeMlza0xNh4/24MM2Hm8XIzfHSxIvtB4xFwk7dputw0vGptSr19nQXDJWI7xe3l5aQFgbC676HiFEW0hWdBHANvnwM6bR2Y+sc/2JcB54Cj3Pe8jkDydTru8nMc3+VdjiJQ9f2Yuk5L8o/+m0N4Mrtlm97Bp9iP7cIxvcRDKMoQcPz09vcFZyGOuSwo41EHL2WzWXpOH7/T999/Xcrlsu0KRIeRku93W/f39QJ6QUXwb5pQxwN8AI/MaEE4DBbNaLtBTXos8i//BWR4L+6IZn7FvwZz4VS4ZZ+Ke5H2pn5KbrvjesmpedbVatSRV+3fG3cyjkzI9lpZLrs36Uh69Zn1/YvPevZRcZ73vv6S8yyBoFg8Oi8BHFEJGePCOBVLS6Fa9JW2/pKCUIagtyI7mpxIzuZPGNxWO6+TaVKq+ztkvBgtpkP35xcVFfffdd/Xdd981QGPAwjUYNUiT0WjUdlt5AbDr0Eelshh9DrczJlAeNm7cawVoUONdYAQFIa38vcc+CfceKUMmrgFIOvGeEzuiJl5MxOU9Sc5kSblwwIM6fR47/cEw2/E30eSgju818WZ5yXEnUM1xaYxTkpFJxKHEnfGN0XZWn+fXpKeNsdeUSSGe4SMhWBcGcdxHf3Jdug+0P+c6kzZsVA2ATA71igG258My4b6hC1OnJRlCuz2WBuD89vU9g0y/uda7LigmcZAj1l2+Kw65MFjv6TOTt959avDg9UW7XRfvavNxKIwfvyHCvPOYNWPSnM89nm4nc+8dHJB2z8/PbSeOyWIfqYyeg7Rkbd3c3NSvf/3r+pu/+ZvBDqkk/AxyWIv8nU5ugsOUQc97rk3rIctMFjuDyK3n0I4p7aG4Tv997JpTOZWvuXiNZxCh6u0OHOM8Prfe62Fe14F+Qh852SRPIICk8Fr0O3hoK4FK6kTX2nntYUyeUTV08umnbaWvSXtqRzP1QxJ1tMuvOnABhzrgZyez6kBwYCtwsMHA6DQcZ+wdtiN1tHeUOciFLccuonOZZ3aT2p5UVTtlg8Cg58wYiL75u9Vq1fQ3pxckbmD+qIc2O3nM841sGcPQ1pw/y7gT3HgG9TAWPMO7THv+DsWYK8krY6dMdnPfubdH2lpefW/PoaeffucVzybozP3z+Xyws9O7qsEK6/V6IGdV1WQTghK5cwa8catliPXpBK/VatX6vdlsmhx4vTr4DMGEzffxyci9CXPGFbzjXRr4mrSH+UqskDvRTYi5v/Qzk8OqqiUApH/q3eGea+s061rPtb9nvJljsB3XQ2SxftzH2WxWNzc3tVwu2/PRV6wD6xPGPv1bt9N/9zC3v0+d+lPLl9xzKqdyKv/vinFV8knJYaB/qg6vbTKeQ29gx6wLXI+DTfiGuVuPdviVNOmTvry8DI7S5XqfwpT8R892p09KEIV7acvFxUULrK1Wq/ZuQp6PXcc+mUNN3Wg97YAxeCxPjzDWyyBxvrrBGNe42LiHcQAPGN9jp7HlTiADx3A8LnMLRsEGw78Y03JKFviOZzp5nDbDjdJ3+0/mFowvkB2w1f39fTtlIxMC3R/alGsC2UiuLO2k8YbxtLGDfRo/x35f2k5jCV9vbGq8mu1OPJqYifYSMAavbTabur6+Hmy4IkFzPB4PdubiJ7E+mHf7AU9PTzWZTGo6nbY64PrRObTf6xxfhjYnJwyPNxqN2jG8zBXP51QN7vPGMPsfLugPvje3yN/mxJg7eDufgOh+UbjH/q95Vutgyznzxpw6mJyyZt+Ze8GixEtYS+hRPnOMwBy95bAXxEeOzU1aHlNuc23lz5eWdxkETVLczpmdk3wfhgUiHdVUQlX9nV2+9ucMPBOVAS6KF246717s2b4ULLcTw+BrbBxcTJK5fXbuzs/P69tvv627u7uaz+dNuN03jj11W1FMHJlmMglFOhoNM4xQVpBH7jOOL8/gfhN3HsvxeNy2gC8Wi5YZi6xYRnLOrBTsELIgt9tt20FmEsGK1CQjCtwGEaPMMXI2VHaWrXwzIGBg1hsPb/m3g26nmf7jbDsw5n54XZyfn7ejpUyOGIRBvBjo0Wb62zPCnt+Ud5NG7r+v8dhYkVq+vYYThHK/j1a2nvGzLO8GENTluXJGjXXTsWIA5uxt5g/yJ/t6rK4eULKxSZ2XYLgHAOmHEzryefkMAzHLeQblaQ+6A51ikG0g5J2sfjbyiQzYoFpmIPH3+yEhze5LZIBxyeNhLIvMs4MEXtfsNma8AWF2pqqq6QZ0i4luZz3e3NzUYrGojx8/DgLCnmsnU/g5BkcGNJnF6OMnE+SlbDG3VQcQdsxJsO5yQeaQ/56j2JOzrOdUTuVrL4nxKD2H1U4Bn2dhDaNvq+qNrUldYGeH53j3lF+XQJshH6jHQTraYdsPjkMXWX9kUJb+GwfZ9ntM7Ahmdi31oUMIELBjKhMNGQ/0PfaH/41nqJNMf9s4Z9O7XnRqOs/GOMY+l5eX7Z07VYcglfUyBITJAq4djUYtCMv32DnjUBNp0+m03e/d/SZYRqPRm3dT2cZMJpOBH5G4KHcZJ8ZOHG18mTJAPcZFiTP9fCc82ZYwr36+ZcNkW/qF1JtY0v2z/TSRkzjS/g+yD2FpXM38g4v4QT6MpZzMxbMeHx/bTm7ajr31WgKjkNCKD8U6xRfCh0A22NXKvPg5JoGM5ZJgZaeHMaDni7qRdXwSdImJKGSe/5FvJ0MwL+lneyc0r1K4v78fjLVl2PNpfGifwiQbn7lfjFMSQOjRm5ubur+/r0+fPrV2gt0goJ2EShuSZKKt/LZMZ9965edwIqdyKqfyvor5Dft91h3p91UNd4Jyjd8dSJ3GouAzY0O4Rft++PxVh+Qt6zOfflH1dvdU9gc9bJxI3ea+6I9tLn3d7/c1mUzaKRz39/eDpPrZbNael0nF2BHGz4Fe2w7jA/Mm2DJ4VycH+TncC7dh/ovrnaRUVfXp06cuxwoP+PLy0hLnwA2030HH8XjcTixAbsArjJEDoFVvj5s9O3vd3JH10jbaxL3+sV9iXGbby3w7ETF9LXNH9jfSniZP5n73fJnkKV0sa5YPxqXHafqn5y8m128+xtdeXV3VdDptR9gaf+Kj2FdD/maz2eCoZQeszavCbY1Go/rhhx+qqmo2m9VkMhkE0T1u5sQ83o4V0H4Clvv9vgVukSPjK/Pc9mO92cXjZe4xS3KnyWeDcTM46bn18dmWHSePVg1fJ+J6fF8vdmI5M2dgzs67+FlvjFnPF+dvf9/zgayXqN/3W9a9toxffc/PLe8yCGqHEEVrp5DjqxBgR6qtUOywpuLi+yTT8/fnHAKXVFqZ6cTz8nMvSi+SVKQZTU/BseLrkfG+xgJIe87Ozurm5qa+++67wcuJGfuqQxYtzilzgsK8v79vyobF6oDnaHQ4uxqQNB6P2y5GgxYUKgXl46wIjyPngDvr3YQZi5x+GSgxvg6qYvhRFM7i5Tl5lnk6uFa2Z2eHd2kxXr2jcD2nPaLGgNHjZcKpFwyibZCcDpp6TbhkezBeXp/MCbvc3G4TGm4vJTO4+SzJIgyrZZh76Z8NuuU9AbvHic8wUu7DeHw4JtdrKkFDgnsDFZM+x8aYOpNETqLQz0oA0wPR2cY06Nl2QPXnDI0BngP2GYyjz1xjfeG6GHuDcPpjQITsrlarliWI7smAqufeYNr6gyMjTPIB3PyODOtL5N1OAWPBMx3cpI7Ly8uazWbtiAq3nbFCL6BTcDaQBx/5e3FxUXd3d7VarRpRSUngg741wOldb/mwXCAbJvBMvPN/2lzGNevL9ZmgvAeS+Nv32w5+bl2dyql8bQV717MN1u2+vurtsU22Mw5wee37Wv6mmLSoenvahNc0esiBT9sk2ygTRf4fG2P7i93N8UkiP22ed7XnGDoQ7PcB0ldj/sfHx4bDrIv820du8g4lCB6O2coj4EwyJQ5Yr9eD3Xy0FT3tYzmZe2NeB5RJ5uEasne988Bk4Ha7rel02sbDwVvGxcFg2zkH/WwTfAQ87fKOYJMe2KOqA1nRG3PaSztsHxyIN+ljOXaQlzbRZo8jxbuDGS/7aSmTxuOJ83vkgMcG2TdGYVxeXl5akN1+LuQRSVqsv7wfeXRmvn0fE5E8D9n2bkeOuDs7O2sko3ctMk7uB+PooC5twXfws8GEtMuvM/A4MVfj8XiQ0GqSCt1EPZBVTsBlHoxxnajo3zyXI6KR1YeHh1qv14P5TH7Auts423qQ8UJG0SkUE13I8NXVVd3e3tbDw8OA3OYZPhLbOsfPT7LVcmpZ/ikluYRTOZVTef+lh0WtH21zqw7+uTkP60T+dvDAOsfXWB+bc3Exn+jghXW/bZ05K+Mxb7zAVmUw7Pz8vG5ubgYJPfxgF7bbbS2Xy2ZPqefi4qKWy2V7nrGc2+7AGs+2bfZ4ZPKgA5tOYrKvDteaPkHVkJfBhhIcAWeQ0EQgGLtIu7gHbDsajQYnhjw/P7fNSpkEZP4NXOjrwDnMKWNgvtWYlDFkXMGmli9sa/oEHv/0ySiuyzY95dQ82ZfwEzzHdSQHaExvTJY23Pg/E1Kpj/pJfp9MJm33J7hvs9k0H+P8/PWVJKvVql5eXhqX5oC7sQtjgj+x2x1eV7VYLJpcgQHN1Sdm6/lV3hnOfenz+rV3tNG+gtepfQdknB3l1J3jl3yw+Srv5jbnb38kZct97CXHoTOsj1lHrEmPhfVeVTUcjjwgI/aV0ndN7tABY/ph3W+dZ7+oN5d85thGfvelXN+7DIKiqPy+nNVq1XbpeMAsjHZc+YzfCIoVhI1CCljW9WMlnRg7SblIjt3Xm2wbOK7POrwQ/awMfPQySlAEk8mkvvvuu7bjcb/ftxft2oiSwYPD/tvf/rb+7u/+rhaLRctCd+ZtghbOaLdBZJFYWdtwVh0MJe313KOkcNoJKvB8KyDGwwSBjaHH38HMVOYmS9KZ5jOMOH/PZrOqqlqtVq1eHPuq4Q4s6kpyhXaZ+HSwx8rfyhJyygQQWTLe9WYiwOPgd4Yih70MqrOzswGhYkIvwZSVp9cL40VbaQvP9Fxwj4/Q8NrxmnDb+W39YeKFvtC3lAPuZ3wNUL3GegRelp7RSV2Q/TL4Y8wMJn2tg6Oef49nyln2tecQeQytJyhJljNeAAsfG+gduL7eY8sOhcyqQs56pCpzmmR71eHIF3Yz955L+xywN6nLs6sO+gI5J4vUx7LlLibG9Pvvv6/n5+e6vb2t6XRa8/m8fvjhhwEQw/GaTCbt/Q1J8hnMGKTwHbqqB/JxMNJuJHBJ+UAWe7aJ8aGuBLkuPprE68El23Eqp/KeStokSg/T+R5/bqfYdoJ1k5gTfWB75Xv93hM7i4mJ046l01h1OCoXPUJ/reusnx1csz23zj2WYIRez+CTdyCQLc8P+gf/wjsgsZ+MISfOgNP8CgjwkI/O4j7qqjpkFDvTFzvAdXzOe4+cxOZ+gvv8rkxn2zuost8fyCqScfj+/Py8JpNJIzlIgPQJC72jg2kv431xcfHm/ax+x7UxIjbER2pZLquGwV6Isp4Phzz1iAeTW24PMpU2yzjGvoZtETLuBCDmxFjR8u166Zu/89gmQcgcp54weYt8OlCJvFe9PZ6QNU6gHGwGVjceoa0cEUufV6vV4IQOTohhHdjnI7AHIXYsCOfdqNTL+CKDxruZwOn2edytH8EeJlop3l1g3Ua72W1yd3fXvuPdnD0fi4K80GbLoH2jJJfSB6BNkI8OrDI2zDvjmHJtuethtNTRve8Tb+Vnya2cyqmcyvsp/+Jf/Iv6r//1vw6SzW17zNGkLkF3OEiQHCTBNPhArsNu+v2R5kl8KkbVAf/aznOv3xnozRCUDBj17Kv/R+caL/J5vtOdNmGjwRBO3LGfbI6P5xo/uiSfgQ3BdvI86nASje1kJnuZL+J38sJp4+A29vt9O/7Xcw+GrTrwZz7CGNwIFmGuzVFUDRPhfLz/eDxueMd8AljB/osxXdpZ+DLzpuY7sqRd9Fy48Ixjtjb5WftyyIXHgM/cDmO0xJlem67LY+tr+B98BI6YTqe1Xq9b3MUYazwe13w+b/cYk+D3Obho3cE9zBPH7vIuUAKq5mKJR4C5cq5zEwbP9xHSFE4CgQtn/BxoNRa3biAhMWXM65exZv7sw1EXXLXHjL9Zu9SPXnHQ07KCXgJr8h1rA5xuPErbvIPessz6zLFI3ZSyzmfGt/SL75grj33y3dY5xu//9J/+0/qS8i6DoN4ps1qt2rbsqv4xmZQeEe9r0gm2EsKQJJGeispGP6/NIIuv8SRzTdZjIUuBRrgsMHyedUMye+cmi9CkltvyzTff1N3dXU2n0zcGFsfz6uqqZrNZy34iAEo2PTtAnYHr3YImoEw29Ygynu/FXjVcoJ5HjKN3kDloitGgzsz6IbuFOp3RPBod3m2DQiVT20rJJATt8RFFzAVOrY+iYDxMdPi4r5w7y4/lc7fbNaMBiUd7HORIZcUzDAR7RI2Nu8mbJFZdl5UfbeE6kxyZWc41BjRuE4DFgT/qzl2HJuIyCJOGyoEa1hDjSB0mxBgHQCNA34bPZIRlPg1BEmk+Ntq6wrLpunuBcGTWBs/ODIA0wYSJI4+l5T2L+2Hw4XFA3gDhZJn5exM+FN7nsFgsBrIBsM7dmQkUq14z2jh2EGIQ/W+96B3Jo9GoJW4AniD5np6eBqQpR7pRN2DM68kABSfu8vKyHh8f2xEhEG+fPn1qjoXbNp/P6+Hh4Q35ZHmwHPC5iTcTchR0bQJsn7zANZYj6/eUBSdX8Ld34vM8dH62PQnU0Wg0eMf0iXw7lfdSjAct51mO4dvEAbYpJi6s840TWKvevWg8RH0ENbbbbcNFYAsSO1i/2GXX46SpY7jW+CadvLRDtuvpOHpsIK7Qv6kD+dtZuTyTV2xAvJDUNxqNGpm1XC5bRjSJPPQfnQZmBps40APJ8Pz83BJZwA5OxttuX3fnXV9ft7nCdvmIKsp+v69Pnz61UweMiU1A8HN1ddV2DM5ms+Yom6y0ffQ7niC0KJmohk3wLlzvWHUiq9uPPmcs/RoAy09ixlxTVYdgvE9CMFlojGJMYptv++JEQfqBTBqLZJ/cbst2Yn5+TyaThrlIBGUNJCYy7qbdzOl8Pm8BT19vv867cquqJbb6HbpgF48F44HMkNVP22azWdMBtM1yzdg4CS53NaPfWJdgL07U8K4bY/veXKS8US9kH9iNPrCL1Jj77OyQxLrf72uxWBz1oajLv5Fv2ppEGL+tp9yn8/PXIxZvb28bKezAMes1X51h37nHi9jXSHn2Ncf+zz5+rvTuPZVTOZX/9+W//Jf/MuAequqNPTf+TF2CXksOlOL/nWhunsDv7uT55g2oA3/bPiW41z6oOS0nhyR/aH/YdeLL206bw7MN5X4T+LQx8UlyelX9dzg6KY3+8QPXSsE/98YPY4eqA/8zmUwG2Mh+d45L+hfYSOzv1dVVrVar2mw2DU/zOjK4T/NLtm+cXOEjkN12TsKAW9hut/Xhw4c33Axz4nc3OiCV8pZ+huefz1JOqNM+hK9FBmwLvR58T66H3vfHPjdWzXqyzcaxfH4sYcx9Zn35iFvwCnIAH+oAKLuHr66uBpyoOR2O7gdjmrfmpI3pdFqz2az2+33z5+gP88v/+Fl+D67HxjwRY3F2dtZen2ffjLXOeCWX6ndu0nfHVnJuaI/lwyei5Dwxh/aZ0SVuB3XTXq9TMLuLExJpP2PB/8bAPMe6lHmzzFiOHCS1bPk3Y2Ndk+vQspiY/S/+4i/qS8q7DIJy1NRyuWwLKw1xKqoeaeSSyinrOebIZknyykJDfXaomdw06C4p2PldPisDOl5EJrmTsPBidKbUbDaru7u7wdFHLCRn3/g4V4LSKDmOo03BtdNrx99Orq9l4Tkg4+wIO3/0k//9smbGhL6z8HtGkpJzRd+dDZYKDoUGEeSjqCCUGCdvqackAeajPBjnVD4QIiYNfGwr/cOYmQi1PJlMdXYL8+NAR46hx95t8zhZNr3+uM7AwoAmDTtjYhIoQY0DtFzr9d0DOv5NOxgHj1W2v0cU9Ip1RfY/g4ufq8dgPnVAts2/M3nC48vnAFfXl888Nl7un/Uqa8vZfznuLjb6tC2D1Bh8rw8fddNrF2NhUtokHmuSY8R6gBLikDZZHgxmnO3PPSb6LHs83wQoYB/H6+bmph2Ny3up2A0KiPO7u6g3A5EGT7n+vXY9L94l77XKtT7ayLbLetUlM8Oy9NZUDwRRmDcCNRksP5VT+VpL6r+fYkfyWus7202+y6xP62evY+uqPM3CARLrFxMqVTVwnmzL+Qy9bSf08vKy1b/f7wc218+w3bYesh7mHuNdYyPrFnQjOt87w9brdW02m6ZnSXKjzQ7QpUOZhTEFrxo38j+BI4KhjJeJM88V7cQWMWb08erqqj58+DAgCknsIxhGprd3hdrW8rdPJ4GgYl6wP5YJruWZ9hmMb3kOY2sMzjgnNrIM28ZzL+PBddhbPrezb5nnb9psXJvJfz1Ci5KvtOgVY5IkDLyeII9MOEFWZvDfuyT5H1mkTxBNJkrATchz7oSczWYDGWe358vLS81ms3p5eT0VhmOV8Vk8X8a4JnnRP05AsOzYfyMxzsmGl5eXdXNz07CTE9/4m3FjbO33uA05ntwP/vLuB+rHdyNBordrKvW559vynu+ysowkBqfNs9msPnz4UD/88ENbp6nbrq+vB7645ZdnGwenTck+nMqpnMovvzg4kjjU//c4h/QhzSM5aSiToq2jrGPRxegugibWj37FFjYbfWo8k32yfgPTgLvcJtqAXgXbgp1Sz1u/M5bwct70Qbuom/+tl817gjP3+/0bzGTf2+8Bd1DY+LrqkABou0TCmWWAMfQRw+YWeAZ/m9cFv7ITliAa84APwGYNnuNNCNSBTUYGSIQH/zggahtmG0f7wevenEDSk7EAGMT2Obk1y1NyLB4bY0PwqOeYAkZNO53ryTymORG3K/lt87fH+pL4Fizx3Xff1eXlZX38+LHhOcaGtcBpOz7lJXlDr0l8CPO58GePj4/18PBQ+/2+YTHuZd7su3h+7Q9Sp/1k+uV+uJ7EQvTRPiD3I8PMGQmjPT7W/ofblK+YAM/TD+YaHeI+VB1OumSNW1d4kwW615xvzj2xCtYH82pMbtmg2D93PMBjaVntxV3yWusZY9hj/OGPlXcZBH14eKjNZtOEkAlKY/ZTSs+49JSlF09eQ/FE+3Mv+Aya5MI4FlTI7529QLtQblbSFPcFhYLix8GmXvqHEbm7u2sv8oag4Z7pdNoU0X6/bztznX1KgNQ7QL0wqJM5NXnjBeMgaU/BMwc23vQ3jTrKw8dapXFAeZp44T76jDJkjCEbAGdun5UX3xMsxun17sIEQianUEhV1Yi53e51N0AqJRsFjmyjvyYc08jzg6K3DPcCJDaUzJtJLwd9U6ZzvfAMFDT3eQcJhspgIAkqrwcUNv02eer1YaPPc0i2sJ6hHZm1zzpKPUAb+Z1kg4lfy3Y6EklCJDliUi4NLv3xfHuMaBuEkI9acD20oxdgymt7pJLJFwNjA/eUB+tOrw0DJQN8+mGdwL2WKdrD+gTQGPwbRHON22kSzMDZxtnHfj8+Pg6AvX9yxyPPYDcEx86dn5+3jDXeRcVc4hygG7xG0LmWk17xdV4XHs/efPGctJs9wMk6oq8GhgZMPRKQOfYYbbev7zm5uLhoRKl1wqmcytdcbIu8ptIxTuzn79JG4OhUHdZ0rmX0qx0iO4JuGzbB+NHOFfjSut0EB/jLwUP0UD4LHZ5HmKGDWdvGY/TJ+A4c4oAq45gZ88ZzT09PtVwua71et/cxcgQuOol31oM/sBtVh2AbTjC7MH1SiEkwvw6A53i+fWwp7WUs/O7o6+vrFrCiHXzvd7Nz4oFxDXN3fn5e0+m02Urbc2y/TzlIB5b5x95iI/23bbvxFXixhzEtH9kmxtO22vca63rnnbGbSRNjYuSaZ/E968nrhWd5Hbjk+nSwzz6A8ST+FBifcT87O2v+k9/76rmkbezyQA4hsyAjab93yoJ98W/m8/ngCH+SrsBKHIWGLJoghTjB7+F51MNaoG7k1qfqmAjBj2Ju8D8hydBL9Hk2mw10DVgpyRXkBt1jAp4jDr37l/VwcXHRArH39/dvdrcYDxqTUfyuedsCf8czvVOets9ms5rP581H93t9TfSSVEe76X/iwcRcbnfKdE/Oe5+dyqmcyvsvSWDzN/iKv10c6KsavqPdmK+qmq5N3zKfZZ/aOs56zBsl3CauTXuPXsQ+cC121K+IoC1O6vZzjUV8PXbF+BuOtOotpq+qAadonxnOwDh+PB4Pdkqii3OjCf2Hu6Qu2k97sCVgh+QnKE78Ni7mdJHRaNTs6Wg0qtls1rANsgC3XFUD/JgJ0/RjtVoN4gDegefNIFxvH4B6HGRi3qnP+Dg5bOMS5CS5P/tAOV7mvY4V81/mBHvyhrwkp2k5spybz2Isev6kcaSD38mrsc72+8OuYmSC641ffGwtHLj9StYrczIajRp3vt/vWyIec2KMbv4K3pfnWwYcuwFH+3nJa9tfAGsh+8avi8Wi+V30y75KcnFgVR/xm/LldjOOVYegp+XNxXjSr/5LGUbvOn7ijUseL+YlOWVkNe9LPs+yY/7bfp83tritf6zyLtnBf/7P/3k9Pz/Xn//5n78hOT3xnpxjA5cLPBc/E+jF9LmCcLgeGzULL+065ujnb9dlJdF7dipVt9ukFUKG4nL2zG63q+l0Wre3t23h4viRMY6CI3sXp5QjEFiYHOOEU1l1yGQyGWbDwiLkxwRVgin66OPDqMtn8lMv7bYzzg8K1US/s6gzGObgkbONTZBY8aGEU56SgHNgiroYaxMxPNckB46uM8wshzZolrOUNYNSCn3PuiyrPUNto+k6DLoc6KINXisOengsc51YNmibdy1YaSfAcL9MjO12hwC6jZkz13uZQ0k2GEhkPzLw45JjncV19eak95l1ho27MzP5bTBt+fEYW0cAQlK2fE/qa37baJq0OnYPxLPlAUfA45og1n1nzXiuKam3KYAEgBjOEAUd5iD5ePz2+GfLmjM63W6cmqrXo/Cqqr27zYUxQBfk+qdOiE8T3AYZuZ5SF7jNSfb15tr6xs/wWunJttuWxbvI+J9dIxcXF/VP/sk/+aODplM5lf9TxbKMzeDvqqENSNK652Dbjji4Y51SNTxOzPaUNW9syPXU6eCk7YrtmANCqUP9mfWA7aVxWzrudgRxpqmDQIiDdS7Yuqoh4bPbvZ4cslwua7FYNCzlHWoEGaoOhJ11PEehG6tjL0ajUQuemlxLTI4j6T7jlHrH3nw+HyTV0FeIJubA8gWZ5wQlxhkygzrcP/proqinw7G72MfcocsJDOkvYbcIOns9OEhGX9LfyeCR14GxKHOeONv22CQYn9t2955fdbCHPVxsX7Jn2wjeQwwYZ41Go/aeJHybs7PDu5Psc0E0encv/hZyxVGyyNPZ2eurHXo+KKdPGHOQWMh8e417vBgLnsl9Jo8Z19xhsVqt2tyBe3z6hskRP59rTWTbh+Aoaeu4xCvuC/PE3yYOGYvJZNICwuiMHqljbOkkMOtP5OoYLrb8bbfbRhrf3NzUDz/8MOg3uorPjEftC6Xf0ZODJLWOFeO8H8Ngn/NrTuVUTuXrK8YR1puJS+0j5o4sY7/0+f2DT+uTCY7xBH5/qNtJW6xrsCPUYfxm3W9MPB6PB7iqqgZBt+SvHBihDvM05jWSJzEvan6Q671Dy7yF7S3BJcaPNoNnwXYEOY2nPS+JvRP3OQj29PTUAsUk5Xm8r6+vW0BqPp83HA3HaX6VoKjlxNjBgVFjP+Np2zT6kXKLbYSbSzxgDMH8pK20XFOYB8cpUvaTo/P99DcTBewzmGczdjFPnnXyOX3zWjA2sF1mbOHPzXft9/sWmGR+8Rv3+8OmIAenkQGSOBOj5hrwfcjZDz/8ULe3t63tPNc+ouuyXHGN+czUZblLFe6MPnG/N8Mg+9vttr22YjKZDN4j7HmzXDBG19fX7aRHy2gvWOh4h/trH2Q8Hje8Dx4k8cAJJOhafCNzwU46tj9pXeAd2+4TfyNb7ocTFMwd2A/o8X85bl9S3mUQ9O///b9fy+WyLTaUX5YkhHqFgT7225Pge3xvFhaRr7ESMhFggqTXdggNO80OXKTjZEPFs+wwoUyt0DObg/5fXV3V7e1tc7C53zuunDFQdTgqF2cc4YZwyWOMUBxWejbkznDKgB6gKo0xdaPQfD/993Mwfh4TZ+cb6KD4esYOcATpMxqNBsffQvqYBAKwWfnQPoAW2VwO5nCd38UHGeIgEPNjZZuOKc9m/lMGq94eHeUMNn9OffR5Mpm09uX7T01g9ILCBovMuYGNZd/rIvvIT5Kv7ruBrueW+pNsYXzpO9emEnc/en977DzeXgs/pfj6/Jt+us081xmTtBsSKuc0yfFsWxI9njPPIUYzd+26L1kvcw0g6rWJ39PptF5eXmq5XA7AMPe4fmeOen4tM+g3gBcgjH54h4t1cPYDR2YymbT14+wt5scBRepkjUCs884FAxTGmXHlOZCazAv9BYSgbzLLMuXPNgc5T+eO31yTstUDaSk/+VmuOz73jws69fz8vO7v798EiU/lVN57SZKoqr8zh8/tqOS1JjbQsdybJJCdSmeOm9yyXnRbTCqYvLA+MflhQi2Tz5IUQJ/akaUNPu7L9Vp38dl2+3oqyf39fa1Wq+aE2n7tdrvm7DugYH3vLHh0FBjayUWQdqkrwaNgtxx/xiLfwZpY2biNHfK0wTtjqw4Z/Ng4MBufQQKwE9GOMH5B7kCkT5k0aGzOeCEL1EWbjKm436clMH8802uCtnsMsevGfm6b+4AcJamVPpzXWWIe26ievcr1iLx7Jww4hGDlbrdrQTzumc1mdX9/PyAwR6NRI6QsNxAsPrWHz0kO5ah9iBKPh4kZjoZF3pAd74qG5GKnJjtNkT/vcqQu5It6kd+qYZCZtjNGJsgYS2QFshV/lDZwYhF6zfJsv4B2cYKOExTo6+XlZU2n0+YL42NaH2Tmu3WafVf7Fi7oTyf+8TOfz+v29rY+fvzYxta41ARbb6dByuTneBTfkzrw5xb7RqdyKqfydRZjFf7PtWtf0EE+44IkyanTgT1jhfRLk6BHbxsDot+NaXrBAup1O5MTRM96xyfPp5/G3GBMJ9flePAZtp7nGH8QsKC4PttKbLFxOIn/XGuf38fNGveDSbGb9NVjY6zoo2d9wpqxLs8wXvZz/UoG993zyg9txp5xDf3FruMf+Gj6TAK1b2TuFXnp8f702yegINfGmMm783diST53PckR8pxcX+ZHzJMkF5PcomXEPgHttoz1uCzLNmO+WCza/HocWedgvPl83vAX9eKngVNYa8gqcouccD/XrVarhsssY247a5V1SnucGOB5TD7UMnl9fd2ewVj4ZI6qA0ZlvTw9PdVsNqvZbDbwqVkvGbch7mOcab7WicX0zVjXcmh9jZx4LVEf8mEOwOOWwffU6+bhU9dS0O093qKnm823/1Q+/OeUdxkE/Q//4T9UVbUJr+oD9Z5RPvZ9ljS6JkKO1UdJJ5gFRV0mmCxAVroISrbRdfpZ/h8F53vsBKfiZWFBjDgD/O7ubkDEe/dnHr2K48lxQakAIFUgl+gfTrIXWFUNzqE3YVZ1yDqysud7K14WqbMvWOQen81m00gFriPYAMnHwjX5Z1DBNT4uCRDF35PJpDn3gLKXl5fabDZ1eXlZs9lsAFxspA0uUDYYEtqxXq/b7gcDIc83c8SZ/BAMJgUnk0kjERJYMmYeExsu2oqxxXBZRqsOx2tATvBMxiRBVQZUrJitUGmrM1Vs+L22bOh9rJaLyVbqZb4JQnt+THjyncGMjVgCogwUOfCV+sdGizVigs7jRf2um7awHrzzIAGgx8J/M5aZuXWMDMySxKXBo+fVRDtzCshATi4vL2u9XjcAYbBtp8vj7ew3fwY44rMeCLCT5J1IgJWqahmMtMMOmefSdXjO/HwTkPv9fnAUPHrcR9XQb4qBvY+/cxtcEgTzDAPvnEvuM8hycIL6+Iz66IMJQ4Nx63Taa2fB9oG/Hx8f66/+6q9OxNqp/CJKOsY9J4Lv+Xy32w1sWmJS1p6dpp4ucDCAZ9s5TMeLQuJY1eFdmD1dbMfJbbc949m+JkkKE1XgOZNWmUzh5z89PdV6va7lclmr1arhJBxcfjN+4Bc7u7bFtm3GVuh+E2jj8fC9SCYBbJche6bTacOJtJ1ncDwTbfExubQdu0RmMKQAtt8BUvCuia3dbler1ar2++Gxo/TFO+zcZ+TAMpz4jmucMEhii+UKrI1tTDvek5ckA+i7g4mJn4y3XbefaVLAdsvylsSE5df9NynntWW/EV/K5IPJSHAMRMrDw0NVVX348KFms9lgBy4k4Xj8minuxExkgZMVTDhn+60LNptN82/8jl1jI5I7wTWr1aqNpX0/Bw7pu8kwjw3r9OXl9d2k3qXOq1uYc58aRD9ns1nd3NzUZDIZyI1xyfn563FlbqNxP+M2nU7bu4SNzS0LVYcgvX07+1SWXfcXjJptow8EQanbesrjTtst1z9mDyj+Lkm1UzmVU/lllVzftj+J36qG7+Q2J4B+sx9nvEDdxq0+jt5Y0lgYDGP95WeakzAGSeI/8YT/d0Ia/c5EKfvAVQfuzddwj/17JxeB54wdfUqUbUEmT9M+cJR9bfQ9GI/6EsPCYzo4SbCK9zHmfWBaJyVWvT1Bj7ppJ8/LcYNfA686UZNxQm7ACJ5PihPTjdXcLmNVX8v82QdhPC2v6Yu4JD6mjw6yp/1MbtB8hzl3y5zjIca1aceP9c3rxXLhuYbDRu7ZAAAmMwcO/rPvQPu5H//Gu33zlQP2N41ZjLdIYM0NOvwYU1te8QN8fc4HcukgNziqh9Ec/+D3y8tLS1K8ublpwXrWumWaHzYOLZfLgUx4nTp4bRlInQxmRe45BdMcvvsDv8040ReC0tSLjDEvmeTh0uPs/J0xv8c9decfs7zLIOgfMhieBP+fn+ez0sHtHa31uYKA2lBYeVOvDS/FjpY/M+Cwc5cEsa+x0f6cgry8vKzvvvuuOY52wHAyCQbRJ+86tPKoOhBgZ2eH98c4SIXDvN/vW0DOThs/Vsy94LIBA33xomQMHNSmXgKhEE0Ya8YGx97zgeNp0p5AheeAcVqv1wPg42OF2bnFeCAXJpVM0AAMPT8mPH2tgwQ+6oE2cxRBZn1ksMZ12nj6ehuaBF8JJpII43PIS8aZ+jKrjrFPg+eAt429xwb5ybo9NgmUcx2a1Omto59bHFyy8c52uC/ch1wZyGTJezJYxVz6evc9S35u4+z78hnMka+z80KfWV/efY0e8fn+rAXekbnb7drOA5P9PMdzyN8OuAHeptNp001eb09PT23N2FC7znxXWm+ceCbyWDV0dKgfIo1dp7YX7DiwXhmNRu0dWLwX1AHcBE6eM4q/92eWDxeDMObNts32KMFhb96t15ifY86FZcNOTm8NnMqpfK3F+tI2LNfnMbzqa6oOiYJetz1syDOrXvWPcYVP24C48K54P9f4INvC9b4n22Cc3dNFtNP2g8K6v7y8bO+hz3ZQB3YVgme9XtfDw0Mtl8t2XKdfJ+BXJ9jeO9jlYALjjSPpZJWqA37FtnmHW1W1HfyMu4/15Z2LyMWnT58GeBb74R3wJN+YPKCYTMRugUl5JuPGODAmo9Ehyc79ThvjecO/AK/7hJZ04sGVSTQg0w7mOZhvmbA9MBFiAscEXa4T203LEGNpW854JiZIP9KfHcO/l5eXze5XDY9NZQ3xmzlnhyI7Ofb7fS0Wi0ZemniwfDK3yOJoNGonSDjY6leeYLurqpGi4AwCoQ5IOpGN4N1+v2/6hnExnmGuLe/5v0mSTKwl2Ws0GtVyuRzsFvLpRqwVkhsmk0nN5/P2Xl1jOUgk1ofncrc7HDNGHZvNpuFQk7iJd5lLrvP/XkO5A5U+ML7n5+d1e3s7CIRST9aFvH6OtLK96Nkc2ynf1+NZvrRYFr7ErzqVUzmVP04xxkl7hP63rrF/aT1in9e414GctIu2udvttunzqkMA1LjVdtLtSA6Ugv3PpD/rLicA8Qy3lXYmF2mf15jevjz2OLEtdpJ7qBseIo+FxRaDJc7OXk954GjOPEnBY0/SfVU1ToU+mStzkCixXi8Q41coWI4IgrGLleQ+8LY5CPiO3ERCX3mebRwnOhifO3DjoFj2EzyMjDkIluPN59SZJefd/xsT2p4mpk6OyXiux9UZ11v2vHYTk/IZc+qgP9jF80TinHkYj0/V4bUJuSGHtQPPBn61TDGHu92unUrpNZA7R9mchQ9DXeBaY3XrFmN5+93mn1IePU6cSuqxTTkgoPny8lJ3d3dvTinr8ZO8soR33ef1zDNYl+cwxuBx1p55bo8bY8n6dwKL9YXb4DhUypX1v/Fh6rbki9MPtC35Q3Fkr/yig6A/5zpP0rFBthA4eJBgP4M9dqBNFLmNn5vYzFCiLXl/r79W8BhsZ6JX1eDYHxaFj1Cyk5TKAzLEWfNkZDgbHiIfA4TSe3x8bISTgxAGV4yzF1aSeChUrjGAMbBiQXscDVi889PKwSSY58UkvOsiYJEBBq418XR+/no80XQ6HRwZm4aL9vI/RILnmfv5wchgKJjLVPLsmuA4KUoeo2Wn24aAz1Lp97KPuQcDQj2WM5Op7r8JORMkVraed5NrOab+MRBkXPLHY89zuTezWnqlR4D1vvc1BiqWH+ssX0/bUgflM71+GEevaeYpxz+LwamfkWNi/ZVkMWPona0mubz2E0TSBvSGHTCAj9/7CzizvIzH4wGIswPlncjOaHPWJfKXO3NNynqeLIe2F878d+CCgIPXBGSdiSw+8xGGFHaFWO9Y1lL2esRWyo3Xv3/bsbS8eqw8Ft6FY8CTej7b0QOMtocpm6dyKl97sdN1TG57diLXqe2DMVjVEEP4h+8ISJg8cNCs6qCffF/+jZ405koH/ZhtSR3lvhgbgmloK7u0ptPpgLxAP9tBx2as1+v6+PFjLZfLFuCDWCG5b7fbtSMk7aBZD2F/GBuCOWBJiBqOMofo8VFn4BsIIRLUbm9vGyYHR+PsMw7r9XqAdbxzL512dLHbdXZ2VrPZrAW06KNPfCFo7DmyTDJeVcN3y5pMsYy6DuNH25SePTWpdgyjcZ1xBkFP6jOG8z3G7P4/cR52xkkCxrEe/7S3HjfLuwkLSAnGhbXpur1zk3FmjvAdLy4ums9l/ILfRiDSxPBodDhK9/z8vB1ja30CsUQy52azaYkEtMN4crFY1Gw2a+PM2HiXdVUNyG3m1uvdRDnjmNn3nt/NZtMy4fFzCDROJpOqqkY0oa+8M5zdlYw5Pht+rrEn84keurm5aeNM+3o+C4V6HEynWO9aNph38N/19XV9++239fDw8MZHtP+D/HG8t2UzS/rcXh98ZjybGPIPIbDs8/4UX+tUTuVU/vgleU2wkP04f+4ghL+jmHNEj2TCP7rNJ3qYoOdZ9pmpCxtkDtXcqW0ZNrWHv9N/R/+SzIXdpo/mAuAgsG88B1vqpB7wlTke7JW5AcZ8PD4kQZsfgMOkLdgbns1zPNb5igoHocyx8Btb440b4D84F/gL79jDtlpOCObCm/KZkwMJPuOP7HaHEw49d8ZzGYx1MUa2DbWc93yWHjcC5ktuMf2r5DR8mk7yeSl7vaAS8uP7+C75QvfJz7B9Tg7R91sevGY4VhkfhFcCIBOz2Www19l2z4vxKomjs9lssFkADI8v5td8wHnjH3mTUY4DbTqWlGtfCcwMvs/59VrMDVD2u5GhzWZTv//97+vu7q7m83lrgzGi9RmvqTBvmMmhzKHXq+XW37v/9qvQRaxPz7/1ZgbIzcv7WvO2bgv60W3s4UtvfPhD8OPnyrsMgv6fKCaNqvqOwPPzcyMIkvSh2NHPOjJQYHLnx9rW+9/10YbMVDEQsXLGODoT2vVOJpOaTCZtoZHtwbXOgiU4gAF8fn6u5XL5ZvFDwpPB9f+z9y7JkSVJdra64+UvAJGRVdnVwsfPJbCnHHMNXAHXwAVwERThhEPugDPOuIDmsEVIISlCVr9YFRkBwB94uf8D8DP/7oE5MrIqqisjy00EAsD9Xrv2UFM9elTNbpI0SQglGdFb4MxbkgSpAJwJZPCUAROT8IydM7E9TiYLPLY5Z4yNgYznHqUJIOE5Pqsd0GQQUFUtc8YAMrObICtQojbKAA5IB+QB8EV/k7AwUExSphe8MJFhpzwVecoWc4e8ejeJCVHPm9dBrh0+99jStsy2Sl2QpG8SMciilbaLjWISgnxuA0N/kEETCznGbmsayGxfAiL/3SP5DoEzP8999RpxybWajoXXj+twoBv5QVYMtv3uZIM5SGOIMsaaNe75QidxVMV0Om16DRmkbhNutCEJU9YWa9BOoeeK/iZ4sS6zs+d+2Xnx8czWW9gtxshg3u2xrKd8eUwPyZ5lzvqRubZTSrFuTtvqcUiZYT56ANA661iO5Wspv/jFL1pw7O7u7tX3bzkCh9Yk685OSzrySfBUDYNEvoY6sc3n5+c1nU4bXrD9pk7vCqeg60zMuy+J/dDfxiT+zolk6HHjhrRj2+227f7k3YhVNdCxJqhMxDmQaXzrfvG/bYX1NbrUSX+2UWdnZ3V1dVXT6bRlDNNvSC+TRLwagbllFyG6mLYToKFffP74+Fir1aru7u5aVjPtwG5AciAXHHOaSUtJpORODOMtE6hJ8FCPMYafYRnwPPlarwm+Yy2YALOspZ3pYUDmDXzGT7bP7bDNNYZM7MNvJ2NC2BDQ9FF1HJdFXc72Zo69ozuDSX5FBm0nMXI8Htd6vW79u7+/b/K4Xq8Hp29Y3iHDkJeqalgIAhXMgO8BCepkAuso8A0Ebs6ByRfGwXPC9wR3WdMOXJuAZoeKk3XfvXvXsOF2u627u7vmt7IWIH0nk0lNp9OBn5ZtyQCBfS3kDNkFf1qeuQc9Zz01nU4HyccOrBpzJzGa5NqhYnlO/folCavtdlvv378fBMeP5ViO5Y9T0udHV5q74Lqq4cltDng5CIGO4m/7c1XVeB9IerAPGygSHxjzmrPDdmR/HDxzexxcdNKUcTHPR49al9u+YK/QjU5u9hGx5rMIclpnu29+zzU2Aryd/IbxAAl2JAHRb54H5wEvCj7mM/NdxvfmG6mPtvqUPa59fn55r6Q5SvN8rtd41kEiB3LMr3nuqvY+TY6HuZvEscakyTFYfhwsSsxIW5L76vk4Pbns3YPP0MPIlLSV7h8l++nrvJ4dgEN2zbV4rRinTafTuri4GGyqgu83L2eM492g4CewJ3WwlrnP3KDxH8mhtNmJC+bDjLM9p26jd596TjMI6P6n/2xc9/Hjx6qqury8bO0isc5zZC7S82GZMeeXMsz4uM18TpvMC6acIAdefyQ60v/k8ZgnF9puu3AIzx1Kdkse4fctX2UQNBf65157aOAsLG8Nbi844gXQUyzcl85V1fCdQG/1qRdYs0LtKc5eP+wE81wLLwvDWcO73a4RHb2gKlk9GMnNZvPqvaAYeu63smVXKO2xQXcgrBdgsNFy3/0MFi7P90vXPbaef8bFQSkrDNqdY25FSt1WpM4EQ0HSft6xipKbTCbtSDfPFeADg5BG1AEVgqrOFPc4Mi7b7bYREg6GWJHxHX33s0yKpezZ0bdCBqj4KIPdbjfILPNc0naebUDi8fc4+DPPJfVY6acMUAxg3H5kyaD3c/TSDylv2u1MGeq38s/++zo+9xEhBqy+v2r/LsoMAPuZDsy5JBHt+t1XE91ex86YTOPssWcOkR0HMZFjQLSDjbPZbLArPXc0MXYu1u88iywwvvO7NJzNx1j4yFoIMOSZtYQTZ72BzvQ6vr+/H4AsAxZIQxOfCVqZf++COAR4LcPoboPKqtfgJAOPlsscV9aL15zb4rFIsGP5PFTSYWEOjuVYvobyL//lv6yqqg8fPtR//s//+RWmTPl28fqCkOI+7sV+UmyfWS8OUEBwUI/XtZ+Xa9v6gJ2atB3HED1opzADA7YLFJ9kAs6ZTCa1WCyaw42u4BlOIOM+v+fT+phim0Xgx0eGggGqqh3z9Pz83N4naJtMf4yXPabGD4z99fX1IOFrNHo50pN2+wjRi4uLWiwWzZ6SsMmxnD7WjDbxTk/6t16v25Fr19fXDYtVVTuCjOuZQ0g43gcEAWb8ArHBONhfMhZIksBzblk2MWZ7gX+TpKcDdMgS8+pAm9dUz29M0srYz/PoJD/WgYOk1GVbln/b7hoL0T/WDfLkHdDff/99nZ6etkx5B7jAE04myOx8rjNWwD95fHysi4uLQRKACbiHh4fBdwTgeAUKsgkBxXX39/evSCja7jFkDdF3cCFHjBknEcgHG1qmTGJDWPWSsbif/lft9RTvDq2qFiC1z4l/zxrk3ajG7vw2LqUPrDljfMaDdWU9hu9OHYvFouklxj3XFfWhn5kbSq7NLL216/XypcpoNKp/8S/+RX377bef5Wcdy7Ecy5ctudbRY9grv4vPWMvJsMaZ1IVf7QQc60fzQdaZ6D7qhj8yT9SzoQ58uE/Jn9AHYwYCee6H+Qr73Gmz4YuqaqDvjR/4nyRnc4V+tycJbzzfGyyc2MX19NUbGxzQtS2F0/brILBJ5n5tr3nNF3jVY2+7kpwtttkcj/k+85F+JRByYWzj+phDB788tg6oZ2KNg0CeXz8DPOI2e2143F2v15Hrd0m76aBufu/nGYO6fv7O8TCuQG5SdrPu5M6RTXgu/IG7u7t2HfMPHoLHts/AODrZ7uTkpCVLjEajJvNgRccsKPYz7XutVqv2XK9DB1sP+WT4a044dZtzLpGn5+fnQYKGx43rt9tt3dzc1Gg0qsvLy7bG/XoT2jOZTF69ExjZsG+R8kZhXTsuY13qvuRmMusPEnDtR/n+lEvr2OTkLNe2J7meLIe9Z/w+WPOrDIIeKoccV5eclLcGLx1jJsfBS4oXkZ/VI4N9T36PUOYiS7LKhoLvDRBoI8DAQIQx4Mgw7oe8gDC5uLhojlsGDRkHFhTZQ1Z8XMsxSRhbDCJZzCyu+XzeHUeeazCE4WecrUxRfIyTA7geZ+9K5B472mmgbFSYC6535oZJiu12f2SDnXmynQEY4/G4BYABTNR7f38/eIk572nFsfZZ+5kBRX02Yt4ZwXwnMPEcGlAxNtQLYcf8+Mg5z0M66X6OA5uMXe872pTkF/Pg3R8G0/ztwKeJDubfwV3LoGUAAMVc9XSE++bvDKqTcOEagzXWsgEu/fA6px+eI/p5KHDF+q3aZ+cn4Od5NtqWDTsLrCXrLuSK5+f9ACKvXScX5Dr2rgLm2feTvEHShrMduQZdlGR7tom+rVarBr4hq3a7XdslcQgkn52d1cPDQ1tvBtqsd+tor8ck/bjWQW2310QfjktVtUw7xohrkWFniaa82yFLm8l6S6BicM/zXGfVUHfQX4qzZG0/GOdMqrEddEmA/yXJuGM5lj9k+Y//8T82nWe7QEl7YWfKdtp6wva054j5h+9s073e+c7vZWFXYRIX2Cb0sImri4uLgXNvLEUBGzkA1huDi4uLury8rPl83rAWAQn6gH1Cf3PUJdc4OcX4gmfPZrNmNxhvY3O3yViAfmEjIF82m0179QIYnZNXuIf28CyO5mQeybJ2Ytx4PG7HdhIAYX64j12vYHKc66r9bgsHrtN2Uzfk5Wazae+lsj43UchYgcOxMZlM6H4zlhnIRO4TGyb+ZQ7s8FvWjZmM+0zi8ayc58TF3g1r+c17eyUDW8g4smAsQYCffjN3DkRfXFzUzc1Nm2faahnwqz38vfvBWvCpM8gEwU3eOW45Ygc7cl5Vg0z/qhe9cXd31/xQJ+LiTyJDkC68G8k7tpF9jmymzfYD+dz4n0AwMgM55h0G+c73JKDwwdA54EMnAIC15vN5C9QiU7TfOsjYK/UefUfmjJcoxnqz2awWi0ULBvNerizGwsgy7bNv4ZIEVNqOH8OzfE7Z7Xb1n/7Tf2p//4f/8B9+r/qO5ViO5Xcrtp/mWMAfGZhAB/b4iarXrzWyjsIemMM03s2AjIOuPXtqXdvjyownfC+6mg0bvTHhtzcdeHf+oUCZsVvybMaP5hj9Hm1zN5ksDWbA/mXwx4mEYB84iLSnbqcTn7BL8JbYQ9pBEjg2iHanrXYyFu2HO/G4MJ72SbCbxmD2cfy/f3oyZF7BspGcnm1jj7NOeXcgPuXAPJu/N7/he92mxA2MnWXY/TfOcn/8zLTX5qNIsKMg2+Z/SXrzzuaq/WmQPvYVH9MJX8aq5+fng81R9NVHGZuzox9gYjANfbZ/R9/gFUkCReZoO9gOf5b2I8vGdawnZJFkRM9lyjyBUBLXaL/H7vz8vObz+WDskFnz3vY7wNzWHXCCfgWC1wO43XKOP9iTa8uj+2afih/bCfOPnhtf69LDkV+C2/vZBEGTLLLy+9x7fug6lLIVSDrxFBNGFgomOYM1lAw2Upe/d2AgjYYFzYvRysFBGJw+BzMmk0kLADh4mIQbRAoOItke/Ox2+3eNEEjFSdxu90e6otB4lwkBQb+Dj4Ve9XpnYhqW3ry6zwZvzKV3R1GHF2mSGznXBhhJflTtlbp3PrrNdtR5no8+YrzILiGrxQ44RqFnSB3sTfkyeWRQy/8GVvQFsImjb4Bpo2rDa9lHgdPfDPShPLMuAnYeF673ujA44jobHfrsYLf77PVi4oO6vVM4A4fU4WsTaPhoLD5LYsGF9el5TUfE3+V9XkMGAmm8POfcbzBpBwPZMYgzUPX4eOek20g7evLBfCVp6oxIAqMGWYAmxh5yjh2VgBjvgrfs80zq9VizTmkzdXi8Afu0xwSffyjILuvb45vXMrYOMFj+0LXoZ0AddZmQNyinj+4rY5LXJHhJR8LOhWXTRLafZbmjWLdYJxmYuiSo6jklx3IsP/WSdqjn+PZs9CF8WVWv9JttQtpHB16wW5AcdtRHo5cADIGCqj6OyTaY7LFutLPmvhpzY99N9pyfn9fV1VV7rwqOt4N61Id+WK/XtV6va7PZ1Hq9bkkzfp6dMDCCx9HJSllwFi8uLl5lLXtuyJymPxB9Z2dndXd3Nwio+Ngn9L7nfzabDRzdzWbTglG3t7ftKCWceXb1oTdps4NGVcPd92kf/N6e9Xrd7qf0SIS09Rw7n/jTuIOAtuXVOJf58G4Djw12lfFLvGf5RK4SV/n/HtZiXBi7xNv+O7GcbRWyRh9NxnCv7Tef+bm0kaNQOUoMzA5hyRyyBr07xX4X64967u7uBiTv4+NjTafTlsVPcJ17R6OXICUy7v6enLy80mA+nw/WHusXfGciFX9jPB6/IuOcZMV9XmPcD25KXzp1H2PBfaxf+lK1331g2SJJAZnCN0MOco1lgpv1p4Od9oFZS0lWWQbYHY8cMPb2/e2D0B/WQPq/PX/4S5ZDvE3PJzqWYzmWf/hiG23MyXcU6xhzBD4pgevAIemP9xI9ql52+dtWVu2Pj7dOy++SjzMXwuf2p72z3kl2bhNjYLtujMN3s9msnb7hDSPup/kPkp/cLnBMHptLHdvttiWkJd8CN3CIq8F+mYsg+Wq32ychsyPPfkfaESc02scnKGxZsWxg550MyPiD7wikOrnRQW0Hwm03abO5D65NvtXt8jzzY/7cCXa+poc3D/l25kJ6NhDsbh4pEwvMGdlX8jN6zzb27vFByFbiJJ4HFmGuWGtcT9tpU/YTjoof3uOZ/UHWWZPsPnaiLtw4c+R2O4Fsu922jV7US9+MIcGc9ms8/6nD7Ac4OIsP43lw26yX5vN5S2j06Tvb7bYly7Lm7Vdyv3Fbrj/j9sR0rAv3i1hMVb06kQ759r1e3xTa6k1nxq20z+Of/F3Pj/pSePCrDIL2APjvA8oPAW++c90mGpKcfqs4cOPPUkDTQczPeoEdG21/Z8WfCyUNBkoHEIERPBQwgXQw6ZQ7dVarVQukun0OGnA9ZNFutw+0pBNu5y6Dz3YCMzjKWdt+Hgvd2SfuLwvZCjGVnxW9j+CkPdTvFzNjIEwUOkid8uYAEuOHonGQ2EGZ2Wz2KnhC5jbgKwM6hwr9g6wig5r5Pz09bef5p0xbSaMwCVJZGZqASoDmcXD9fOZn9J5vucv1lADbYIz6bDgtJ5kNSL3IuvvB9QTKDZAtqxgYjIDHjkJ9fIZc+lgY2uk20weDC8Yug9yWQY+jMxwPJQgYcBpE5dz0wJavP+QM8b+zssjgYm5Ym3asvG7I3gdIOyBaVW3np3dAWAcadCH3DtTawFNvTz+nTCWx7u+9BriWdUTQk/Fj5wTy6PG0k2XC91Dp6QbLsB095Mm2xWQ1smEZtixkvV5DBqqWNd+X4CuvO5Zj+ZpKOt/+3A4i1/SccN+T/1u/WN8TfEEfEmggucRH1jvzO7N37dhQHICxHu/pmUw0cn/RJZeXly0AypGU6YjZaV8ul3Vzc1N3d3ctaOPAgLEsY2HdYv2D7bTDWlXNPnAkrQkk7IbHlx2bYI08kvLs7KwdxYstZMyZF9p+d3fXxgGcBia0o8qcnp6e1qdPn1p75vP5gHTg+d75y85eE27sUGT+GfNMwDTh6WOV6DO2yhjCZES+y9K4mP/TprgkWZvklG13Yi/64LVkAoH6bLcSV7kOnmdbl7iAJAPkxu2jLtt3MB51OOiJ7DjIDzlku22/y76OnwfOQn7xdUgoAFOxxqmPNcIpRK7H8pNjAX6jL/YpnCRhkgf5dPDT/qWJLx/9nD531XAnK9hwtVoNdK2T5igmBkmKsL/iuU/fne9TR1Xt323HZwQbeBZycn5+Xu/evavb29uBX8E8O1ifOM7y/bkl5T3vTxt0LMdyLF9HsS62v27dhb7ChjuoYIxqO5r8Ddc6sdaJ0Vzn19Ogw20rbVf8mTkMc6/87YSpqhf8Q2ACPWl+q2q/i95jlbiX4g0hPAtcRbvgFoxjsOHeqc/34DACP9Rv/xsb6Hmx3p9MJg1LwDkaW2DD3Cf4PNrhOmkHwSbmHb7CgVNz2D7O1hyag2nMl2Xp+fnllJPFYtFs5na7bTgTLLlYLAYcn4NRXJd+lGUvv3fA2fUeCi7yGc92gZOxDPr+rNPrL+2t1xv/Izf2qcwzej7M7xhH54Yh42/WJKcUctpNj8/0yZOJSRmD3NjDySJ8T//pp5MbHGznegf0lstlW9eMPXVxsgjtpV/m/HPMLAOOK5jvZ9NYctLEQD59+tTWsk/WMa/psfVcW98lv8Znjv0kF+dxdqH/FMdp8lV7voZ2H8J8qSPNa5g76PEgXxI7fpVB0N+n9Cb5rWtysD2pqRx8Txp315kOTxLdNnh89lb70zHnuiQhCEJRt4U2nbf83/WiYDabTXuXkHd4YsgcQHK2rPtKBjlja0NthY8hRomlMfGC8fgbfGTBqWZM2IVqZ5BrbKwc0MCRT5lBKXEMpoMP9M3/8ywTUJaBNLgoIjvHdphRmDzHR0owR97ibuVjeRmPx00hAzRRfv6eOcvnI+sO8LhPJi2YZ/fL8sicMQcOmpo0MGDhWhs0ZMy7Ma1gqcfzmAY1SSwXA5OeofQYZOCLYtBvwJ1r1MYun2kQmbLEeOUxDjYy+ayescc4J5DsAVTPedaf4+ZrDY6yzUkQoYMghXyEA7t+kDPkBudhPN5nPZn443+OCfd6ReZpO+2fTqcDEtH15Lo1seZ6Ux4N/k0Msi6tAwxe0w7RhiTi+P4QcWWHzCRZ2h70S/bBMmEQ6Kw0y7qd1Qz6mOy2M5gE5pFoO5avvdgmH8JkPXLK3/eK9TJ2N5N7WKsENdOJstNv0oTAB9fbIfc9VcOjzGyjIS9wID0Oo9HL7sd37961HWq80zLHBqy0Xq/r7u6ulsvl4P19Jm3os3WL9R+OeY8QM9FmG7vb7VrGse0b7SPpxra0qloAxzv5xuNxSzxE122321qtVu243AwSnp6e1nq9rul0OiBT0L3Yqaurq4bv8hSSqj3B5eQfkuOMqZAnY1VjEfrtADjPArPSN2fa28k/5BwbGzM/xoxODGVu3EeuSzyUNs+/KcY4uRYtH8ZSzIWfncmnkILe+ZI2bjQavouI+eitLdpIm8H3m81mcJw+gXz+dhDTgXif2kPSp8eBNjipzASRxxIfxztdkHl0i+XNBA7yRmICc+1gp5NVMzGBdW3f0TiLtvPc9Xrdxs440L4VpLT9IeMZxhKfz/LiJBDmwAFOxou60+/ldTbv3r2r3/72t03neX0Zj6V/gR5IX+wQpvohrJV26IjNjuVYvq5iXy85lrTDuTvQHA/FQQvXkfbLSdHenYj+IgAKF0VAkba5mN8yfrP/znUnJy87s3j3s5/pvrrNXOe/0bG0m5M4uA8uI3Uku0FtM4xvSJCzbcjE66oajIlxlbGMudfRaNT40Kp9AqQTbxgj+97Gxdhg79qkLuNCcxeU1WrVbJJ5DRKssGPGr8iBbb75X/pO3X6N2CGe2HKcvJbxvblvy615Frcj10vyH8xxBkHNi3jcnURISVm1jKXtNaZIXshtoE3GOa7f/SJg9/j4WOv1urbbbTs9iLmkXvrkRACvL75ngw+7QPGDjIPyREr4NB8zy3ecVEmSqTE6nHdi9+T0zJ1bjsyDnZ7uT9jE36vaJxIwDg8PD3V7e1vffPNNS5pjbo0LJ5NJrdfrAQfLvKBXcu7pR45/+uvIvOfXWNon8aV/xLg4gcV9tc5JXW9/2nWmv3WIz/hdy1cZBO0NwucMzI8F3VmnSfbfBcBbSVg4esrLhtPFJJAVZxJYJvhRIM5ar9rvvLMyrXpxDsnWMXFA28iWJ+OcBWUHmQVi5XJyctIyYRlPP9cBNBM5GPSqvTPu7eV25Dwv2+128BJknpWGh7ZzzALX2HCbdLFitaF2W2grigeHuqc86SPZyFxDhjWKFKBHBkhmx6Uza/LIpAeKxsbYBtPyAxGCobITzZEkXG/CpkcQGpzxmR1yA0eUo4lTzxnF7TZIdJ0GDUkweT5sODw3fGbyj3ZmMMhHVCSRlmDBc+VrUre4DsswY5j9yPXsdcaaeH5+ffRMD5Slo+P6AAaUXlKFM52q9jqH7/M3Y+txtYz5OkCHM0LReSRl9JICbOQ5PoP2sZMhd8ci2/QNIg8Qb4evtwuKcbfOQJf2dtHkeHt++OGddhDsJqEdgEXWE6wluEibw/xltqKBXoJfrxs7Cek02sb5O8+jwVFPb9vB8zylM5k29FiO5adcrN9SB/A511lHJR5KB5N6+M6kjNc+WGQ8Hh7TiM14fn5uWeNOsrIO8+kQ6FMTLG5jDwdyHfrLax4sMZ/PG964v78fHGtLEI523N3d1d3dXQv0OHko9QnPRH/iKNuZ8zWMOf30cUx2XBOXgCFJJkw7jl6/u7t7hXNoA9nNBD/BV+A3v/eFBCDGx36B/QWeDfbjKE0nEBEMYscf76hCDrGttrvYUI8zvgJjYp/Esm38aszKd5b1dJbBA8haOuxJatCHDCbbhnrNuI30wRg7yVCvVdZfPievN4HpMbaNTIzOvJCNz5qAbGGeCapDVNF2xgCSjcRX2gOGQMZy56h9J5OvJo2RUdqDfCEf9/f3DR+5HuTGPhZYjOt57y94zMfnGcN5zNElJmjsrxjH0Xf7ie6jkxUs48Y4jJt1u3UyPnviYO5xkoDxJuM/mUyqqmo+n9fNzU0jvJwskr5LElE9n8T3pvwf8mGM+/w59fR8jmM5lmP5aZTkXszrmNesGuoUYzj7+95cgK+ILbOOpD5zHtRv/Z92NDkS18GzrN+M+ejX5eVlzWazV9g6dVji2fT76aeT77jXJ2vQbnQxGM3vIOS40B6/RJ+Mi7EVHgue4edl0MYJTdTpwLGTIc0TEHBym8x5YB+NTW0bxuNxe382Np4j3Z2gBb4cjfbv17b8ZQAlsZu/9+YgxtD3Jc/GXBs/9OQvn2vez8UJlJar5Nx6/KefSTGeMYecsuu2eT0k51T1OsmPv43X3G9+CHKDg5ABEueQafeNNpqnRI54jQkBvYeHh1qtVg3fIvPmr/BZ6edutxsEXDnq1WPikzXsmzCmnktjRfsOlk9ziPk6Eubr6emp1ut1O3rbx/WC93htID61106OYfpCxCKqqo2VOVnHKfBPaZf1J+22nw62dPHY9HCf/7aflH14C3/+vnjxqwyCfk75nMFJheJ7+e0FX7V3cjJTw8qE4u/Saed7/29jhtLCIBk4VA13t2WbUSzeho0CzgwLgw8MAU4yhAV1s8A54tbHblXVwJDayYWoIdBoR9ZjZ0VtQwEIQLlkVpQNhd8P6MwwxjLrpn4bLCtbjzcKn3ElwwkiYTQatYwpMoqZEwdXqc/K1UFQ+mQA6TF1pnXKaQYLMTgZdEuHFPlIheXxYn4hCTjL3UAGwwEI89ibZKOdDhra0COXCUbcN+809jr18aC5frnfJEcCyRxHZxux5i1n9D8DxgY0nnvPSToNBuW+h7HiOWlEaI9BTwL3/MyymePjNZ+EGMCdtlRVF8SkAfNadf3ZRjs0JnbJAPXcVw3fC4uuMDgF9FxcXAwAGXrOY0cGfcoKc5bAyhmYBtK5dquqptNp00er1arJAIQy6yzXN4Fanstv5sTvxcpMPwMW+si91tsOJPMZutDz5Wss34ypAXeCJMbXTpeDLH6OyUbr68y0RR74HofTa8TB+WM5lq+l9DBsEsXp+PiaLLYPfoa/I6BJMTFwcXHRskitxzn21c9nvfsYSTvHxrwOQlTtg2PGrdwDVppOpy0r+P7+vmE1O6uTyaTm83ltNpu6vb1tGeDGi97pRPt4BrqEIMRqtWq2xbsZMgsbHGQ8Z71rDAspxpFhVdXen7jdbuvTp0/N7hlvbDabgR7F3rhd/hv7R/sYAwc/n56earPZtOAy72PE9joQhe2gHyZYmD8HwWkPupngqfW3dXbPSU5CyH2wLHuN0C5jN5NRtNlEqecyHXJ+99aYMUy22QHVHhlgG8g1tPOtMeA7CEP7RhAZTk7d7XZtx7Rx9M3NzcB2+thh6qDf3iFCAJ822wczvrFPw/r1sdNc75N1PHaQnqyD3OEBYeQgr3etXFxcDHaRmACGUALj4TOnP26dxPgZw/C/fayqPfFtH9a4kj71+ArjKcsRdTspM+0FhNnz83M7MhzisfeclE2SB0x+uk0pgynXP8TBJE5969pjOZZj+eOVf/JP/kn9+te/7vIpVa9tmhM1rLOdBIevbf86gzfofOohOIfehHMzx2r+KPFs1esjGt0m46HZbFbT6XSg293XDF5YJ/Ibu+zdaePxuOFSEmVsDwhycj/cIX2xzjen4t1cHn8HYpgLBzNpF0Ek7H3qfQekzQvBTzgJDtsO58s9nhfPufEtcmKODV4E+24+lv7bbptf5lr+9okZPQ6U5yV/aDkwfkwOwrLSC+IfKubo4NjyOVmP8aZ5Idtmt5H25c5Xj4M5fJ5n35H7wXPMY1UNcKN3P4LfqqphEMcmkD/m3u11GzjFh+P9Cbh7vXh3sGWN5NfenLMGGCt0ChsLMtmCMbaOYxz8vzE2ftpo9HJSHHjMhVgJ8RfWo/EmOmQ6ndbt7W1VDY+TNvfGOvYaYG7sc3GPZTh9csuPuU1vtMv14cC4n5P8+iEcmLJ+CFOORqP6R//oH736/HPKzzYI+rnlc8C3FZcnwobF31tgfH9PAea1Jhr423W/VR4fHwfHI6Tg8tsOv8nrqv0ux9Fo1BYigsvnLNTVatXOuAY4eNFj/HE+qQMDbWWdbTXgyJeAe4xZuGnoDCpQwrnQeZYXGgrRTj/PRllT/3g8zI6COBqPx4NdnHmtC0HUlIEkhKzkXOdut2vAID83ULHSRo4gJ3yNASHjj+LGSFjZMfa9wBzAyP22ca8a7ia0Ycp1lIbFAUKPj+eLwrx5vikGKV4n9M3tZgwth7435YrPnCnpMfU4GpjTH+/U7BFvnlfLuUGFCTna43XqoLTXB/NkQJMGnZJAhud4rSGjHp+ewXXA3rqK9eM581rwmHs+GFf6MZ1OB+Qe19F+ZxqyjpKw5V7anaSdQadl0yDe74E7OTlp76ejHcie1zA6drvdtuNAPAYGaJYPAJ6dBjtOPRlh7HprM22W70GWeK7n3LKZ7eQ3z6Ue6raOssx7HqzD3P8e6Xcsx/K1lMQoVft1aFt5yDl4q17b98QodiLRfwTF7BhWDU+OoH12XiHkjeeclMb/1r8OrpnAGY1Gr467NJ7EyeQUEp9a4vf28VxslvWdk1LQrehu2mPHju8ZQ9rHONom4eRy33Q6bfYB0uj+/r5ubm4GwRzGnezd2Ww2IHYoZA97jMGk6ExIJQKazDs7z8CGs9mstdt6nyAnRKWzrLfbbTslpOdr0BfabjnCt3BilnFvD/8lKWbsz7g7gcw2zc642+C6bV9668fXMFZO3sHeWV64zv6E6zVuYAwsn5Z9jtfyejK+3m5fEhe9lnjeer1+RYixy7tq/350E5g+tt+JoqxB5JjfllFjGMgdcKYJKe6Zz+ftmakfjDer6tWObfqLbLKWkXHPqYlg2uHruQZZcmIDfUFeXNInyYCmv0v9zvfT6XRwLJpxuIlE4y/aRtD56uqqJpNJbTabQf9or31yy01ivfRxEtO7/Z/DrRzLsRzLT7/gV9mmV70+8anH44EV0ifOhFZzkXkUpd+hznOxJ8YzVcNkK/vP/l01TMDmf9rmAGjqZgKT2AYH6owFsG+2kXyPH84pH9aT5lrh0MyP0BZvOkn+hP/NT4K93X74qcSqxlB+rvtM8tNoNBqcRsJcshmBUyiMiXNeCIZ7Y4MDShmYoi3eqeoCfwZ24Ye6bPfMDzmo6mJ8Z3/M+I9xSf7FMpbyl1wk/3uNGde6f8y7+RTb9fQZk9Nmvileh5YrrwEwE3Np3o92ZMCfhNCbm5tBG3xCDHJprAV2oU+0F5nlOXd3d3V+fl6z2awuLi7q4uJikLCK/nHSP8V+peUO/4PjqL05oucDmpMyhkK20FMO8qLT8gQj1j/j753ixmWTyaRWq1WbE3OA5tDcRvqGbnIf7HPkZrvdbtfaQX+cuMC1lqueP+L1wHo3d2i59WfcYz3pzw/xH59Tvsog6FvEzg9d87kDlYDef/eMVio0K8e36k+F6MXOxGJM7JD1iN2s04qb+8mc4FkmIViwOLkOgliJc3SSHVIUFg4hwp1kdwbyaKNJDi9qFxaxgQZ9SPI8SRBnNuWC6c01daKEkyBjnJyhcXFx0XYnJHBC4aMYkjC0cWc8PWYOVtJm/kdhE6xx3y1XVtRWSpYTvrNC81xYGdNWxsWZYPQB8iOPnrLRtCzbgNtYJVhxmz0e2Q+XzJyzrHnuMSK5rr02fVSAv0vw4bHz5wlQuDaPJrCB4poe0WJ9UVWvDJT75x3evs6yT10eK4PHBFfcY9lAPjz+PQLSMuD5sVNi4sf1eve6224nBJLo7Oysrq6uqqoaMQ6Q4n6IeuoCrKAPkWfrhDwmw30wQGVHgB093qnGuxLYlQGIQycA9n3chEmv3ljxXDs81pMAM9rsoLX1seWnR4ylDI5Go0aso7O9rpOwSyDOuCGnJmGtV00u2yFMAH8sx/K1lp6+/RwMa/vP/0lsoONtU0xOUezw+OhHkzk9W8MatO5yYpSvwbZ7bTu7PDO+CWKAw7DtZPAT8GOXaAYtsa/b7bYbGK160YEcu+Txon3oIpJbCEpiJ2yrMrBmR5q6CWiZRLi/vx8kD9J3dDrPYjzYIWrCincX5lFFu93+XVrMJ2PIO63Bs9hFCC8c6LS9JiNNyPADkZBJYIlt/RoL4z7+t63r4XnqMxFjgsmBP/eBcYEsSPx2aO3ZrjP3tnkuPRLMn7HOsj+2vcgpc4zsJiFTVe0VKMgGcoUvBS7x/BujsD4gg5AB22PWg0lhfC6P7273shOVJC5kD5x1eXk5CLxyP7uSqddrCUKI7ziJx7rDAc0cc+NX3wv2cFAWmaJPvDqG3aQZJKzaE2kmsSx3DgBbl9JW1gJjYJ8tdbflFLkYjfbvT769vW1zekg2uR9y0qWH2fk/+/2WnfpdCatjOZZj+Ycvf/M3f1NVw+TlTHg+xFM4oMd32Ar7hOa6sCc9O1g15CjAHLan5p94Zs/XtD2gzouLi/YO0EzItc9vkp/6zRFuNptB0gl9dEBpNpvV7e3tgEeAPwHTgfV8agJ9NIYiac3629jIdpM5w/4whrb3xuXwP9zrOuBBwcrGu8whyW20Zbt9SZQDY8HFONnQGISTHuiHeQDLFTw045OngiFHrt9Yku/S5/HrPmh/cnGW3bSr/tx8d3IpyeG48DxzapYtB5MSH5njSx7Odbtv5oqM8ZgDt5cANXLIfPv+y8vLxse5//YPknP3tfhFj4+PbT44oaaqGqY8PT2td+/eNSzIuzNdt4OJrGOPeWJi6wmPM/Jn3jV5YfshyIATQyaTSfPz+N56Aj+YV1GYxz07Oxv02ycVeW7dN77PGITlxu13ezy31lfJC1QNTy1JfsA6P33hHjfe87382Xa7bTbqx5avMgj6hy454ElA5YRagfraDPRxbY9Edl1VrzNBqC+Nct7r4AVCbiIKIXY2qttfNXznEW1n0Zg8IFPKpIePDqXNKCAUWNV+SzwLACNIprsNBA5bkvJcYyPg/piQ5zkGL1a81Mcc98gFkzoUAIJ3lSVxByni+1Fsnk8ILjKxk7g7VBxYpM9WgB4Pkw7OgKGdaWD5sXyMRsPjEABtEIsoNAwjhoodBr7WZCLPTONr42HSxcGrHCNnJrrdnr9e33okRt5H/V7ryJSNuvvka1NPpDHoESM2RMhLzgnyiOy5nx5jt8PrB4BFvQZtbo8D2jyTepjPBIfWhYyz15fXovuZ3/Msg3d++J8kDI6aMUFnB8v6wIF8jxW7apx170CpydkEkilPBkJek8wX+pTdquwGYkeQdTBrKrMHDeTdLtshE3EcQWIHyb/tRPbknmL95+daVi0zdjxTF9PeBPXpZLhPKTvu31v29liO5adUvPaSVMrPknBK7JmfJzawLnbilQsJc8/Pz6/eUY7NnU6nrwJpJhNsF6v2Gcm2Gb7O9qJquPMfx5H22jkjWIKOTIe/ap9lb+c0MYTxh8d3t9u11x1AOOEI+thbY1d2p1H3brc/lp2gEv39/vvva7VatbkiOaaqGqFWNcSVTtLBdrDzwHaRsYTc4whjExFgUsvI8/NzS9BBp56fn7d3NlXtT3mA+POx865/NHoJnuXxdInjGXM74BkgMjbB7wBP9/ygLL7WeMN+l+fespjt8nrwuCfxYOyWMpGkR2JiSq7lzKT2mPADtmBdOMsc/431cnZ2VvP5vEaj0WCHKes2nzObzQbvmLffybhst9umR5x0xvNsx/EBjQGQM3wK9BFtOj8/r81m8yrBFJ3FDoPxeDzY3cP6tHwwT6xN5AScZF1Evd5Bydh47vFpfTR4z7eynOXuU+aROhyA8M4nnm/dxrWXl5ft1S2WZWMlrytK8h0u6RPzbGPhlN38/FiO5Vh+2iWTkOyLo7/QJU7krtrb8sfHx5ac1uMB0HHUW/X6hBF0k3nI5DGqhvyP/X+eba7D15+dndVisWgcnv146nbidZ5oB+fgBGwf9+ixpM8cjWvbZUxmboZxoU/o/R5m8XWJz/nbc7bb7Rovm684c50k/vBaLGSAd6f2eDHaQuI3doag5Wq1as++vLys09PTdgoEmB7bz3H+bEAhaSuDj+Y54HHMISYX4cAYfUJGjD+RfZf0IVgT3vln7GgfyWOWvCC/jcnNqziRKtvheg7Vm8U8jec8+ZVM8qN+fA9z4ASv8b3Y1MV8m9NNPjo5veSJ8GeoJ7lDTgSqqsEmBOYAvg9Zst7gWegt9I4xKzqAz3pceHK1TpRA7qbT6WBTFXNqvj53sDK2BHnREXkqCe223kN2WN9uo2XAfsv9/X1dXl4O8DFccMoS+gjdAxa1Lupx+D3eNGU1n9XDmj+mfJVB0CRhDw3A51731nN69+Sgp9PD4s1iQ5XXZx2pgD6nWMESmbczXLXPgvaOwXTAiPQTuMJw4UTi+LG4TDw7Kx4FYeKarAWMGAsbh5tjy3g+i8FnZ+diyrlxQIMFb8OXgQk7Z852oW0J6li4jBvZwxjpyWQyOHbTBBFjWrUP7gL6bDzTYcSI2gjwuZ1WkwdpRJEJ/schNhiw3LleK9l8r6LJJjvx3glGH5FJlHJP2Rk0GwCbbLKj7cwhjzdK3qSTx446fY0NQgIfioGf54hx6Cn2XGs5X1xrAsjvR7IuyqNl6a/BYM+YcI/7yNyaIOceAIINmdeQd4Izz6kTkhzxuPtdlhTvrDbJjUy5LSYAAe2MhUGTMxCRYe6hjVxvsiwDgAB2+sKx48wXMm+Cys/IzCvaiRxbD1Tt3yFKBl1VtZ1N6M6ew+m+ptxazrxGnJDAGPdskNtp+bI+MJFmoOj1aZth8GrdbhI9ZdjOgx2T3W7Xdl74GcdyLH8qpWfrvB7tdGI/R6PR4MSGqnpl36v2x1Ki59K+sP4Se/Sc8CSYaCP1Vw3JLNsBk2hVNXDGaCPt5RhcO5+2kcaMYN9so8vV1dUAA3k8wScQNc/PzzWfzwf12j5iH9CZtmnYGNrnI3SN722T6Zt3+oG7TEaYhCDIOR6PW3CWOaNPtIe5nc1mgwRAB7YISIIRjF1pn30Qk6kOAOaP9b1tc8qRiSwHC3u4mr+pz5ioZ0fTrqXdc/Je4ml/biIGWfS66/kph7Bokm7pQ7C7A/KSHb6j0aj9D5EDAQnx49MyxuNxrVarpidMtjB3JJ+Bd/DBeDcl48PaOLQj174dY9MLbCIrubuAMeaoZgcVvb5oPzKb9VjvJEFtIpprkjzabrevdrZa/uxjpb5xXamHrZ8sR9RvfM5zZrNZXV5e1t3d3UAfpz/lNWN59lxTcm38UDm0Bo/lWI7l6yv2F41D0MnWg+h78EjqAXRWYgFzl1XDQA3PyF1I/IbvNF7s7f7k78Vi0bCdfXXXaf1IX6v2iWrGQ/jXtjvUiS4k8cgnmvCdT+XjPuOxqmo749xH85ppX8wxGI+aU/H7G53kBG9jvsfc0MXFxeB949gmc1pgAcZpMpnUYrFofNB0Om0Yw/10QNjBIhL6Em95rBJf9cbGWNqcDDiJAL79lcSlieVSvlOWEh/ytzGmsam5E3Pb1G8u6BBWtg03v2gZybEz/mQeexgD7Mju5pOTk3Z0rv06cJx9Ma6xDjD2Ye16fbLOkMMeL8vGInxBc27gUPNZyGhVDdaDsVhyeficOW7U6U1o5iZ9WhBr2By3A6HWIzyXBAH7TA7iem6sJ9lQQZ3exJA+hnE2eLqq2u5V+1nwv4mHKcnfW+6t1/PzQyXr+V3KVxkE/V07nYN5qB47BP5BqaB0D91rw+jgTxI3CKqVL+20UPcUZ4IP/5iItxLlN+S567ABRKHMZrNaLBYtmyKJLZMzvBu0d04/SgJHzFkMOFneNUjGe9VeCX369KnW6/WAsE8HDSKvqlo2VtXQeeVIKDvuGZw2KKCYnMtsDY60pD7fg3Ik+GlA4/YzF+v1uini5+fnRkqhtHy0Zfbdf6dzajlzZpz/T2OEbBFc83EcVqjIKoEjAyP6anIVQ8nc8JnPXz+0Dnw8E/2BHPRcIh/IGmScXyyfgBBAYFDnZzHfuWY9zoyJg8IOPPMc64k02u4DxWsV40l/AawmQBhbGyjXbZkx4HN2Tn5vcOI25xFdFMug+2pd42BbkvQJgB1MT+KVvhnkcB9jgcEH1PNeY+b75OSkNpvN4L2drAnrPmTf7yBhrNGtDoSz1rAZjKWTIABGBr/n5+eNwLu8vKzdbjc4OsfHwx0q1kGQccy99ZAzcA0uuTbBKHOZNitJuSQJLc8m4ymsmUxocNIEc5Ag3E5LBmmP5Vi+9pJ4teccpM3054lNWdPgJutuCrqLYkcT+067bFt5pnEv9srv1kQPofvc10POu0ko6yTjV3QabbNt49q0l9YlxqW0GZLHDh/PceCU69BH6HkHZHme2+Od/g4Mjkajms/ngyOE6Ss2infDVO0DTCYhaRvJhdhQHz3mUxD4/fj42HbZnZ6eNvzOOENo4RAbj9k3sVOO7reNQR4ZF/fduMr1+beTAY2D7VQnPvEze466yUbG03gof6iv5+Qjx8ZVxtKJn7DbJkW9dil+p7e/s49mUhQctV6v27XImzEW8846QGYJnnI8neeG3cLsakEX0C8HR9lJQkDWO6MXi0WbB+QEjM6aJ0GMz8Et3sEJhrJO8q4cJ+gmydzzA/wbX5W1lO/VZdz9PjgHQXlWEj5cB5YyV4DP7h0N1OEd3Pw2aUxA+927d/Xb3/52gJ2Yd2SRep2QaeyVMtjzYXol22du41iO5Vi+jmIcafyVPIP1hbkI/nZwDL3ogETVkPcwbqkaHjeeWIA2+HPbQAd10JME3ij2W6kHnsqBCHa3cYpHBhTMMTmgBX4CA3PkJXYFW4R+d2IfmIR20Lfdbv/6NCcSOdiCXfKYu6xWq0G/wQM+spO6nTgEtjWfwzu/faoCfCbjbd+DvprLM06yfw9mdWCHMTP2BP9YfqnX9s2YmT7aFqe/kBjb9gzZBEMYK/RsYNpV/2+MYJ/I+Dn5Gv/tYJw5PWPyxKZug9c1xXLtcWYtnp+ft6C2x8s7frkfXtZz42dS79nZWfNzzF2Bh/xeWWTTc+jA+vPzc+Parc+Yezgp5Klqv0HDu6M9H4m5rAPv7+8HMRlz0GB4NpuRkOq59fx7bs3hWy/a77GPwvonlgDet0xYb/MM5NcJspYt4jnpR/V89/T9klOkD8nv9v7+EvjxqwyC/j7lEPC2Uqo6vFWc7z538G2IKSbkUxFb6fjHz0xl6QKRgkAnMKE+OzgmmefzeV1fX9d8Pq/JZFKz2aw9x8oMRYKz7GOMMhOA5+BIcy91ci0Oqwl3ysXFRQuO0t7dbteejRKxck3l0et7ghPGjIXK/zzXII65zJ0LPi6DOaFfNtDO1E85MfnCO1gBbA5SpuxYnqjXwNFttrz0iDfqSDILGfQ48D9GkLoxTlUv4IojLvyeHCs/Py+JoZ4DTsm1Sb2MsY9sS0Nvg+Z3ImQ/kmgyqLGiB5iZOLAsJ/lB+x2g4npIRubNgBAig+eaxEiDYoNkEph+80wHstw2AxJf6yAm36dDlH1P+XmLpEzDXLV3ApLA5Lkmv7mPZzl7iTkC8LhfkNIOxt3d3bUd7si5g6ysKQBXHkuBXnQmGHXgZHCfZefs7Kxlsl1eXtZsNmt6z+8dyfGmPYw1suT3KPi+/J0kNQXdylq1vrdO9TrmWbne07HgOhOg1JXBXgCd77c8Hcux/JxK2p8elk2MmFjR+t5ODviEwlrjyFfr36q9ns/XLHi9cl3V8P1R2DpwiW2/8Wv2Mx0v61LjSL6jv37Hpp1eY1hwq59LRnqSAh5n9A22hc+or6ra5+wO5XqfXnB+ft4wnu0K9dlWkolPMMl4gixmn1LAGEC6+W/jW0gqgrW2f9gNzxfz6usgQAhkmoB0QA+ZYswtYz0ixmNhLGqckb4Tn/leim0S9/kz/s/6bcO4NvGdiTqTK8YkjJ19nR5moThRj+cmyeH+2g7Sb96PtNlsBgQV69/+BN8ZG5kYfH5+2cFBAihYAZyB/I1Go5YgyzvP8dUIqHvuxuOXI3aRM2SS9QS2Y9zc9qqXQKzxHScZOdEMQgoZNQZ5fn5u78HluSasGOvz8/NBIjF1WwbAaJ4fY1brVOMnz6/vOzk5GSRXkGxgWXASpjH++fl5zWazms1mNZ/PD/rqyBo4OXVeT1Zdenrbxbq85xccuu9YjuVYfjoldYG5MvRR2iAHOG3bKLaH1v9gmtQ19rldCE5V1cD+Gjc6qIrd4hhcJ+QZS5jnw2b4ZKbkPWib/XwHIeizxwu76UQw8Bg2YLfbn27Fvev1um04MW5ZLpftbxLmmC9sf9U+ucivK3PyDjh/uVwOMBxzQNsyYAg+hBMDT9uOM8bYfe6HS0AOnp6eXgVac6OLfYfkVf1OyUxaNx9CfWmHUqZ9Pc/z3CaXxfW2n4fsY97j73qYMevwtWnfjRu5PovXsXF577p8FuN5cnLSNs7wXL4Hh3mnM0FKTlUEs1keeA78m4+ffnx8bK99wLcxxrNvOh6P2w5VngOe8//uI32w3waHaHxun8LjTf9ZJ9TrdTaZTBq2ZH7tf+D/2t9lPLnHOJS+e3MB9Zrrpj+0G11tf8exEerOGED6TU426fkXPd7OPn7Pj/vS5U8uCNorPWCe5FE65vlzaJIsuFYOGAKTEBkEoC12thz5z+dk1quNsA1mvvfu6empZSC8f/++vvnmm0aKcWQqiwXniPY4+JmgqGqvFFB2LFKcax8pwTjaabVRIpjmjCgcaW9bt5Gv2juvDkokmWjygPlJOaC/znAGpE2n0za+tG86nQ4MJ98lSEKJmoxE6XO/ixWZQWC22c4xAMkGjXZ5/LwlP0Gm1wFjzGcYPANLxow2MX7sFib4Y7nHwDG/fjZGJx1myznFoMyklHcgZrIA42MilutyveVY2Fgga7n+si8pX9YFvqZHfLGGaaOzjCi028egGXT3dJ7JVgNqg50kaLx+POdpRA38bDA9ji49HUz7HcxmrHPdZyaS5QISkGv8ripk1btruJ8MSu/I9tgYXDN2VdV0njOvuJ85MnhhDbCrh/ZCPOLQPD4+tuPNqJexg5wzGYvOyndz0VbAoq/LYpDigGfK6SEHFXkFxFrW/Ax0gd8JbT2aOj6d5GM5lp9TSX1r3WnHOL9LrENdzmSuev0+bNsyt4Hrcdi4zvjIyVBO/EJnOYOaa2xfMsHLz+dZDmyk08T/6LNeENQZqd69iBNNBqx3AIKFk7DjHsiw1WrVdD66l/Y6AZDfvAKiqgYJc8b86MLZbNbGC/tAgiDJgiadINAgFpP8ycAiGb3GcYypdxB610SSh94tQf2MeeK0qv37ejKo1SMBuM/t68m6Cc4s7m+SRFmMW3pBH2P0XEPGQHzm73ytbWBiSt9vW5i41O1Fhuj/w8NDC5rjU1bV4HUnBNkspycnJzWZTBp+cYJDJjHYJ4LIwp8z3kNXeN3zXiSuzYRFbD46Z7vdDgKs+d5aArTG1bPZrI2pk6jS17BPlsVYNWWGefOuV/uxOc+WYc85/aVt9gcpnlfLVvoa5g5ms1ldXV3Vx48fuxwCmMwke7av57vkc3v//1D5sdcfy7Ecyx+vpM+GvTAXYTyGrw6GRN84uRudaV3mIJs5GttSrjmkW7kOu2tMwnG04Bk/m/vBJe7P/f19LZfLwUlYLslJmN+zv4odB0cYtxk7pu2w7RqPx+196/QLu2D+w/2zref309NTs6ngTcaeAK1tG2PqTT2HMAq8n/kS+g1GoE5skHeK+j2g5vZ8Ehfj45NemAvLpMcQvAznYlkz/2O+wTLfw6K9kn6M29O7x5yN+fqeTXZdveeZ08s2+Prk44xr33oOsuugMz/2xVgHxrPI03q9bvjUO4wJ8o1GL6cNksSX7UR2SFYAQzrGYL6Zuq+vr+vp6an5bMY5YE5jQeY6A7yWa/wfJw1yfS9wSMmAfAYOU6dW1UBfUiefERxOzoD+e/PW3d3dIFBs35RxoG7LFb9zV7RjH7TdweiUQeu3nr76Ibz5u5ZjEPT/FQtIVX9yUrlznZ3gnCjXh6BUvZDieQQZApOOFULbU1J21tgOTl2pGLKNJrt/+ctf1uXlZX3zzTft2EZn0EO0mHDKgBr10keUHgsxMw8glGiviaGcA/pjhw9DuNu9ZLryHk4CtRQM93q9rslk0gJCSYShrGxErcgNVNJ4oZRRwAAG2k7BYDM+gEYf9+Vx7Rk/lI2zRTyfKXuAqMwCS8NI/z231Mt8GSDwneUKghCCbjR6OU/fZIyBhMfS4NiEAGOQwTme6aOsqMuBT9pnmegpVhvpBGpca6VuHZBj2APiPQKsB4xsgNw/G9oM4jIuDmzxGWOQjkM+1/+nc5MAysXyzfjlWu6RddRroEcfbGghy2z083/LCW1i/vgepwJSmF2dq9VqkLQBqOcIF9a+kx881uwyBixAvnGt5dfywVpOhyiBN8QzSSBV+wDEfD6vxWLR9CxAjjEwkZZOo4O+nj/LWa+4jSb00XiiHH0AAQAASURBVOUQqk6WsTNJ32izrznkUFg38D99HI/3u6qYt2M5lj+Fgm7p6WbrEZNOeU0viQh95SAH9oOkOZNKDh7acSOgZaLDdj3xhOtL3YTOBOORoJfHNnItut5YL4OmjAF4zWSO7T76zQEzJwyh78A86/V6gAPAeE6GYf5wliHh7EhW7Y88ZUzsuIJ5Tepgi3judDod7NY7PT1t/QXr83xsL5h6NBq1nQ7MvYk5E0/4IFX7oChjboyALYVI4PnO6ud3OsXGijnnad+MsewzuZjo8ZoxRsuxTblM38zE0VtrLslQtx85R/Ys/xSe5bkF7/Ad9dAmjwv2l3t5rxaJirPZbPDqD+pj/SMvXlvT6bTV4SDq6elp3d/fN/IYnIiMomuqXnwpTiCinYwB2DJJKdoGmcn31Mn6A9tBSFM/x+smTk39aJnjJ3fSJ9GT/lv6zYl/rHuYM+7nmZ5vyyhr1IkbLqenL69W4GQRy0XVPlnP/hOFth8qieO/FEl1LMdyLD+N0uNH/R3r37bbhLgLOgf7ZU7KiXMm2qtqEIxEz3tnv3eBcp/tlwu6mxPKevrNvju6d71e14cPH17xOD4BA31J+8wrgauTW6Iej6HHle94Lkl6bschTmWz2dR4PK7pdFpV+1eGOVDSO6nBnAiBU8aO9hCMhDNhTsHF8BVum7lweFHa4MRnxmq9XtdoNGqBUerJxHLbR9rJ/Hv3quWY57GT0LKQ8pvcBJ/1MKZxoe/lu0O+m+u1v0TbjBXNL2VdufHHttn9yfZ5HYCLLKvmmr22vFbt7znJzEHNqv0JkPbZbm5uBhya++kAOO0kcRM5tJyZv2YMc70SDF2tVu1kNb63rskEDcbFuoz2gWnN8/m0SvtQ+F/IM3XZf+j5AfZ1zBn7eyekOpjJM7gn58Un0uHPMX7mwd1vt9O6x/+nfPnz9OeSR/5DlGMQVCWFp+r1VnQ+O+Scu9jBYGGQSetF/ZbhtcHkOVb4DnBwfS5EBAmjitHYbrd1dXVVv/rVr+r9+/ctw9zvMDKhzvMt5AiojZUdbfpvkohAIU4r9djZpaBkMKAmvDxWONe01QvVW+2fn59ruVxW1T4z2oo6iXv3hcVs5ZwGiusBPa6PMcNYIAcc2YSytFJlTFGYvd3DqSgMQLMOz2FmWvu5ng9kgLnjXvoAmeDfkB429Iwn95two60maKx4DUItgz0g4XH0GqB+GwqTb8yL55J7nMVD+zyfNs5euwZPVu4ZOOT57hNj7iP50iiyng1u3FcDQ8+9xyvlwGCGPiD7ngevCQdiTYDmdx6HJMK97pB12uXvM6DO98w7bUZ/McfOrGTME+wnIcn9EMnoEuuX1Wo1yFyzvrV8GHwalLOLJ4MFLvkOAcAN64+jPdbrdX38+LFWq1V7hpNd/J4xryecIdYEn/XsmvVEb475LMEa68gBZ+QkkynoqwO1JjItPx5bxvFIwB3Ln0rprVHWIRgj1wPrERLJdhW9hK4hM91rj/tyrWEf0lEaj8ctGQoSy+uVa5zcYxLMxMbj42NLXElsZR0C3rSe8ViNx/tjvuwM4hgbG9pRxLl1Ig7PQu9DvFCfdSz9ZH5MlGH3/O5C21rsjI/sH4/HtVgsWh8JbFInY24cRdsmk8lgPnJHIP1xpv52u3/vI7sGCLZiJ8FU9N/kg/W18Zl3iRhjIMvYRif/JU5LGeQ67B+233ae7x3U9Rx5Tdk/ScxqXyBtma81frfcpj9hW2wcYX/AvklilyRYLy4uBkcaO/BuIpV5gri0P2hCkbWxXq9bYD2xIrJgW85a22w2rT5IaEhdklWdeOBxpF8E3ZFz1oBfrWLfEL3k8feaN55A1vLkJPveBF0ZP8bu5GT/flL74LTVBJpl1PNl3WnsRP3WEbTXOMz1mACeTqc1mUzq9vZ2oMvsS+Q67dmQLIn3DnEbx3Isx/L1luTe+O0f+/W+zslf1jH2y9NmYuN7OJH/ezY3sY65Asp4PG7Hn1t32UZiJ8E+d3d39f333w+4TNdr3c191p8OCtiWeEzNsYG9bFu5L7G7f5MQDa5MHvDh4WFwgoh5LPgEbGpuCmFezOsQZM35wX/A3mFvGLfValWj0aglIjn4wnHDYCLqwZb5REGPtzGIx9Xt93xjvzOZjOs8bpb/DKam3XQbfL+5rB5/aY6jV2e2K30F/u+tJz4/ZOeznuT+zPMYP7s99Nl8NuPM2OKfuD6fvHN3d1ePj4/tlA9fm/y324rMWPfgBzJn5kp9CuJ8Pq/5fD54xR9ybx/Qfh9+MvLjTUpeI/YXU0fhhyHL1iFgaM+/eUSK5ZdrLIP2F+13+X/myZxccgsuuU7sL9Aet42/e3yEOezec3r9+hLlqwyCvjUpWTxwvXry+97kpMNuJ7r3PC/SQ+210vL7Cr1Qql6/d5B7bJCcUZvktoUe55BdmfP5vH75y1/Wd9999+rdLpwlD3EOwUPfErzw/Kp6ZYBw0NxXlM5oNGpb4He7/Uu9MYY4yjzPAeX8cbYJ9xvwOEud3WA4uH4HEo53AjaUG8/jevoOSbXZbJpRN2HlACCK1NkXNhjML0bDWfI22DZKKDETUGR14+xaKdrwIVOW+TyqkmdxVJKDvhQHAjNTm/G3o82aYrcfspHB0V5wymOT2X+0xWuQcTPIyXEw8WrlzucAQtdPmy1vWWeSN6x3E142PjaSzIXJCp6RACZBngkxk6A8w0E3Ay9+U4d1Q0/3uU0OdPXkLJ/jflt3Ms4mItE9CYKsm7NdXG99n9li5+fnbd1a5pBng9WHh4eaTqdt3Zp4c0aqkzLoz263P9IZ3cM9ACnrMTs+HIHLvLAOSV7h+egIjurpjYWPJ/dcOemF7524YzBnG0Z/vPPKGbuWG37bYbMtMcDk8968Uqy3bI/8rGM5lq+xpAOeznav9L6z02MbZ8xIQQ+YWKIO2/wkPGyDIenRI+A++mA8gQ50Nin9cNu53kFQB2Z741RVgwQPMBM7Wd331DcXFxeDTHkf/8puNuymk0uMkdFH6GGPq3Eez8cWONGkav9ucE4ZydMhsOnWsQRoGN/e+NAHn3LAXHqHACTZYrFoYwFuB9cZW9JGSDY/z4lKjIn7YGxHfSaOEnvmPCLXSRBxrfEAbbKsI8d81yNasl2WV8uA8Uz6ln5uzgtrBH/Exf6c7bL7a7vH+CwWi9rtdu2Yf/sJkJ72N338Mklk+I4mSMFAPJP7/QqOqmqBTd5jzv0mmxjb1WrVxgf8QfuQa5M2noftdtsSXcF5rA1wEgSrZcLrB1lk/I07wcMeb8ayqppfyzgwdvjQKVtuv9cJc+GEB+bFuMz3WS6r9rifcSXpbz6f1/fff98+t55LDEU//JkxfeLA9Ek+l7DK+o/lWI7lp1XSn6aYe7BOxVZTzKsk18X31odOMuFaf8e1xhDWq+aU3E7KycnLaRjJHdhu+3j+5XJZHz9+HBw1+/T0NHjXOlyAMTH62gnAtvmp+5xsh312YAKd7nbbfjLuxhNV+53+4DsSE3m+E/9s0zi1D1xP35kLMPnp6Wk7xcHBTk4T8WlZ9v9pKzv6ttv9UfeeN2MF43HaCo5x8aYVyxBjlwE6+0rIZG+eLEfUj8xnoKf3d8YIjAWpw/UY46RfxmeMJ31Mzs3PSYzoYrlx/+27OWDW4wW9trmWa8Aw5n6QAdYReIT2sUvXc0Td9ifv7+8bF8W9Dw8PTV9Qr+e96iUpgGDr1dVVi3vAC4I/0T1workOSRYkITXxqbH3+fl50z/m3ozrPQfJkXq+aGPVfuOT76ON5k55nsfBwU98Mda6ucDz8/Omd30SSk8GeB6yeYhH7sngH7p8lUHQL1l6IP3Q4KdT/dZ1VUNHxsEJX+N6eqSWCZWqGjhzJqDSGXHf7LQhtFdXV/Xdd9+14285VgsjkwRY9gsDb3ICZTQavWQRQzw9Pj4OsoRYCOk0o1yqqhFQKFme7ReHk63hrCAcTSsUiJiqfSbwbDZrgY/t9uU4pOVy2YyrgZTJCMYGQ+zjMu2kQ+Y4g4zrbJSr6hX5V7V/3xLjl4aZ+zNLx7KSStFG3GAJGTPgrKrB8aGW5ZRP+sVL03ln4XQ6bYDLfXQf7MD7eKYMfNEf76RI48w1lntfa0NpWXQ9z8/P7biQVNLUZ6Pg/pj07D2X7z32vrZHZDE+Bn+e3x7Q8Xj4OjsYeY/nwoRLkjI5f72SpCDr2n2ybGZb/cwkZDymOTcE+3FEeAbknY+TdX0Y8LOzs3ZUNuDLZHNm8GPg6cd6vR7IGGsYIMH7RA1OZrNZA3iAiqoa7NgwIdcDijg2BorUf3t7+yrQaGeJsbNDYD1hmQK8pGykXPOZnVuPN/qsR9TmGnKd7sNbxfJzLMfycynptPizDKb4O/9tB9mYw9gEfQFu5Afdir5kjfu4HdYeO6j8PcTGeDxuCRu0zQFUY5neGgaTEBDw0VgUY0wn2HhnJHUZz3E9zp7xlQOZVdV2Q4LB3VcTYpyIAQHEGI/H+/dvcg1tBIt5dz7YF53qsYKoI/GG8bRNA1MzrrTR/gynCoCvCRRRJ3YWkoFkQmMWrjGuNHa2zeU+bCQ7USEpGKtM7mRO7AcZ0yTBUrUPTtrOOFjDGNifSduZNq+H3anH+M4424Rv3uP+gTccEE4yzX5U1f7dll4/z8/PA3Lw9PS0kUK9xEBjnN3uZacnOGM02r/zk3HyugD/Mza5Q8O4Chmyj+VEYPuEXrvoI4qJOPujBHtpi4mr3s5QJ21m4iLrzfM/Hu9fz0KbeQa7Wav2O7ghyn3cLPWmnOUz+XEySbbRSZWspyR9Gfv5fN58XubFfib15dpIm/I5RFWP6zh0jcf3H4oEO5ZjOZbPKz3uoWpvN1m3DqylX5nkvAOFLth7Y02ugwN0Ehw6HFuB7gdfGvvwTJK1aH/6nGBVeMQPHz4Mjmqlf9jYqmpHxZvXND43njHHkdyyxwOsBkfAMxPnMC7257E5YNzT09N2ysJut3+NDzwtdr6qWqIbNpG2wcV5IwiBWmwi12Hj/RoI6sYugiOMZ5zA5PeuGpf7lXKcqOfNFk70AqfbbnoeqDf5KPNmPR+rh82y+D5zWuZjD/k7iXmNLXP9+Z7EnmnHwSxcC9Ywz8ez3+L+fI3XqeWzl9zqduED2I/BT6DO5XI5aCu8/cPDQ0uaY4wYS/iwDMjSPuoy/kMG4dM4QQWM6uR+6kDnwB2CZcGCTmS0D+VXZ6WsIPuWXT/Tspo+mHWf++hnWA8aryM39h8YW/w61r/1F5je/UQXUawz3RaPY8oVJXXilyp/8kHQH1MSzP8QoKd4gfF9j8w4VKxkETqUv4OgWVKZQahcXl7W+/fv6/379y0AimOMwJuISUeLPmTQzQbZSo82YlBNcCfJT5shTXyUQpIHs9mskWo8z2fbexGNRqNBMBSQRNYSissAwOQDWVPObE9ikfFxhhLAxQYmDYsLTr7bbaONUrLspCG2cXTgxqSZFSZtyV0htJvgDcQU7bRM5DGXp6entVgsBsra4NRtTlCA0vZc8zyDRbcdY2+AzX0mnjxOzh5kDfE3smAjDWjoESTca/KGfnO9iTCDL8tYghoDhdxBkUDnELjwtSlDECa+JsfafeyVlD2T6DbkNphp6F2/5dVkpAFdAnMTxpZLDLuNs/Ulc4Nxv7+/r+VyOdArtAXQTt0G41V7HeJMfchev7vDRBjgfzQaNUCU82Qi0EkArC0DQIIL19fXrQ6/8Lxnt7xmkrBNmUsnLYFKgjUTfHyOvve6t05wMMbPpK4ekMry1nfHcixfc7H+T6Ko6nVSSe/vxG4+hsjrC7uz2+0G7xU2oWBnlfsIiDixyXYYjMa9iYGTLOP/tI+QIyb70eUE6Zw8RJCNerwDCpvYcwwJJvpoLmMH42T6b6xSVa+OChqPx4PMd9tjkmLofxJTxst+NyqkFG1H9zNWOONkPDN/4NRM3GJc7+/vm/2CbBqPxy15MpOzvLOUH8bI2NH2jpK2xbbOuMIBtiSGkA8ndPIscKyJWK8b26A8tQQ5dkk/zljMBEQSIT0cnOs0fT8HLV1XJi/RL5+SMh7vj3hm7JAr5Jr1QeATTOT2MX5PT08t0Mi40p/r6+s2bg6grtfrWq/XA38QPOC2Vg1fI+PXEdB/B+AplomUP74zZkS2SaQwIY/sG58y1vTXhG2227oZHff09NTGwFiGPjmIbXlIHQGx5vuNrY2HkxQ7OTmp6+vrms/nLfE3MbvJNfsQif8sr74/rz+WYzmWr7/YLvPbPxTroh4n6MK1YAh0q4NaDo6gV8EvyQVQwEfGrMYbJycng3eBuh/0jWDF4+Nj/fa3v2141r4p+pW2Zr+rhj62edweb+M6M4kF/e2gHUFH+9vb7bbhX/MvcAjcB5+APfLGE/DudDod8B/cQ9sJzBK4Mm+2Xq8bpqja76qFC2Q+SBqifYy922176WQo23PPO5iW6/3byY3+PHmqxHHGjT37Zk7xkB/me3t8WF7n65H1XIdcR7/MURoTc78/97j6eS6H1j3XOhjuMUZWq2rA6VQNkyMst8y3ExqQexI6HdjkGmTA+BaZzeRerk3MR3+oFz8JuQcLg9WY60wyAG+SZAZutS9sTs/ce+50Tr+D9Zb+vseB++zTWrcxT17LPMP4OvGpZcM8Af1hfZuL5TrzzC7pX1nmenzlly7HIOiPLJ8L7DNgh5KzMXR5i7RlUXp3YxJLVl4oDNeNUC4Wi/qzP/uzev/+fc3n86YE1ut1LZfL9gwbdNdhh7rqdfYpZAyOLYYUsp7FC3GRGT4OHjhb3890UATlixKaz+fNcWdhGbiY3PcuUBYvgIJgJ/1HsTmDnfb6CCGDI+SEQC5KPwPLqZxQoGmE83raQRAyQRNj5sAwfWd+GF9nrXheABuQQRRnhfF8roMcwfggU9zvMbRCthzTjgSPkG4mDExIGoC6MF5JLCRZYWORYIhxMvD2Gk0iwgEhA54EvSZa/OwEHJZfrvW40o6UGRs4A5nUGzaaqaf4LvWMDXCOt/vko2FN7DqIaKNKfRnEzrmmXZ5XA8xcjzl2nruqfeA/x84gBhKMdvo4bwN23mdAEgfPob0QYuic2WzWdJEBvElHA3z6yU7Qi4uL2mw27YiNy8vLNma2HfTNWZkUdKvba3LXffT4eW0kGPbcJmj3M6wnWOMGxp9bemDqWI7layjGAb3i71h3PUyZdqZqqP9PT1+OrcJpRM86SOeAmDGlgxF+Bw/3mQgw7jHOAc/i0Dlw0Ounf7I/YA7+Rx8bs0BmgRXtYKFXaT+4xa+AqKqGF9FLbhvz4PeC8iz0GXrR+McnPBif5RxXVcuot5yYEMNRNwYDv/E8nHpwGXZ5NNonCT4+PrYgLM/leogIy4wJiyRHwNXuh21wOtcEeJIksk63M428pT3xLgA74bSFe3qnO1C84+MQgcu9tNmy0MNZ9D8xhElY12uby+fU62RJvjMBgexhW5fLZd3f37f3mZGw5SDker2u6XQ68KEeHx/b8c+eY5K5eK6D9n4nE/iFo8U4UpdCvcZLDw8PTf7G45fgLYF4jtLjO48FPmsSb9Yf6CX65vkxznEAPQOJxiY8m3XupAuvUxO3k8mkNptNrdfrRux5HTlJkfvRm5apJC/TfvBM5hs9sVgsajabDfxg3+f1lljPz/gx2OqIw47lWH4+pccBeHdSciwOYKE70bfYUOtL9DR40zof/WjO0MnNbiMlE4WMCbFhVUOeCjtxc3PTbB24gLp4RYF5Co8Fz7U9N09lP57xciIebU9ey9gAu2M+hHba9zduA2/6KEvbU9oLpwDPaa6RthkrOeBkP8Kng2CH4Dv4u+rlKHwnjBEQAq/aBlMfuNmBKCeMIX/JYZpDSzvveTMPhfzY9tIWZPBzfDjfl3aV+fV1Kc/mtJnnHv/nNid/Q5+Sg7QfZpmzzDI3YN/k2L0eE584oZFnG1PhP9E+y/V2u22nrjEvXrtgLfterE+X7Xb/Sr4cS/SNE8R8AgqvY6Gv7pP9HLi9+/v75m9PJpOGYcHCxv72g6kv2848pEy7vb1xo07rIJ5JvXCS3D+dTls71+v1IBGCo4KtPzxnPZxonjfl9RBG7K2nL4Unj0HQTulNRk6ChTYLAmaQwN+HnOmq1xnGPNfOmxd8EkY9AGAhu7i4qO+++65+8YtfNGcTB9MOH4bR7crz93GYcWofHx9bIBUyhWxVnODn5+e6vb2t3W7Xno1RNTGD0bYhc0DJxJrHFSNKm3FyfRa4leRkMhlkuZswwtnMbAhnDHEPpAGKkLHFKXdwkXu97TwDipYDy5mzRQyKINssX1Zu+U4hBxZcB0FsG0/GMY2v22UFm4RCyrX7598Gi8yRCV4DHgfOnAXm5xgQGLTYQDOm2QePYYIFQF4vgMT401aMD3JqUMXc5nNoh8mmBM09HWLZ8o8Nn+c7DVTqGMuH2+Q59v0GRgZ3/t/z4EBX1pNgIB2A1KWek5xzrmccJpPJ4F23fA/hZkDOuuG9xByzcnJy0vQea89yTRIHQUnvshqNhjvSWXcA/NVq1fTG1dVVzWaztlvfpGNPRzIW6Lzz8/O6urpqGaH5rlEDP8bB40v7DOxyjrjeDiAywvW5U8gyRB/ctgR4tNF6xbrhrQDpkXg7lq+tpNNp/WndaL3m+6xn06HiN5gIe4+99XNw+OzkVL0+FhXbC7HBNc4I9g4n8JcDn25zJkn1iALrJMYji0kuAkEkjIAFCcRiV03gQAD19KcDv+Bn+srf2Afjb+yM29TDXDjQPmEDnDqZTJodYBcbffURvdfX14MdY4ydbbsTeMC0tInkPUjI9Xo9wGImXpy5zP/Gj96B4SODTTAx/hnwoc18Znk3qZOOfSYDIl89gsH98jrzmOW6svy6ftaTMaJJiVyLJtMgJ7OdyFuSVSaQmA8nfeLfEGxDVvEX2HHDPEEw0df1el3Pz89NrugbR+extjkKbzQatZ0ztIPdO3d3d20N0Qdn8nt9gYWQbScgjEajms/nLSkXrAMRyhFmVdV8wkzipC5jYj7PAD/jmiS7ZcN1oAMSIzO/9Ik1u1wuG/HL80zQWg78t08YckIossT/+KDs1AGPgoW9c8e+gGXUayPxfOLBtEMuPfx4LMdyLF9PSV3BZ1XV1Q/o1AysmPcyb5J8hPUu+j7tsTdMmKOznslEvNzkgS4nsDOdTms8HrckIAoYaTweD46+rdon/9gegKVsYyjmVB00pe224xxb66BnXrNardq92F2Pge2ssbv5UrBZ1fBEBQemzDnwHTyF7ZET+oyx7Rtgq/PUGM8hNpajSb0RAl8luUH7Tj056MmFub/kwxjLXtty80Dabs83Y5FcXG9d9Xw/yxHf9fhIPzPlIP0q5tN8EM/IutI/zbVPMebhPgfXjZ3sf9qHok1gUubKp9qcn5/XdDptp5fw/2QyqfV63dYrr2lzHMA8OT4XfCJY3PLjgO96va67u7tB0m8mUSZu53heY0zmz75KyqP1p2Uwx8o+kcerJ4dgWvslDkwiF/blnMhgX4YkSPSw59fFMpxxhEOY0PPAdT90z48pX2UQNMH1oYHoLfrPrS+dl1SkCF5+bvLYDn3V6634SS5VvTaQGZBw9o13ZXoB5XP53DtA5/N5c4hQKCinxWIxeIeJs1Pv7u5qvV7Xp0+f2vvmcLLJeqAfkCi73a4dgXR+ft7Oo/eY0A7anNn9Ngaz2awpFZ6BE8499NmZwV6gKGQT6uwAuLu7a44vGRHOms6AAEptMpm0I2B5159JQZSK58xEJHVCkFXtg3vcb/lgjGygkUWURmZO0Zckh1B0GBHIQBN1uZuB/vHjOc1gno9H6wVM6LMNtgNHjA3kqxX/ISLVBthrGCOx2+2P1LJBTIPkNZtHutkwJZlpXWDDmkDB85ZzabDP+CXBwpi7nzmWBlzIowO/qfOc3U79JvZ6RCJty/YZnB4CVQZBnleK+5MybJ2RwNdjy3UAaUghssHsHJGxtd3u3+3pMd5u99lgjKOD487IshPFvQZH3qlNWyEsF4tFS9aYz+d1eXnZEk5MJDK/OFOAn7Ozs3r37l2t1+u2AwQ5NPlL/22b0l6aIGTu/dvy6NMArBfSGaadToCgZHsYY44qNmBzG7NtbwVJj+VYfmrFTohLOqe2oT1sm3aT4iBT735wCskfrPvz8/N2fBjrG3wAMWWs4RMyjH1oTzpa7rvtXtpvbHBiCeoy1iDgSSDTx4EaKzko7GARenw8Hjc97Ex7noM9IlhjG+5EFTC1+047sYHgcScRYh/AWT5Vparq8vKyvefeuhFcDU48PX15TYHxqJO1bL+urq4aEUiwlH4ypgS+D8kic2SM7IQliALmzcFFgjyux/LAs9JmWL6y+HrLmetzHdgw5sakiXFD+nTZBhNvXJuBe/sW4BjLn9tvfAg+dx+ZH/tJBLLpN3jf2Hc0GjX/zHjaZDRrH8LTfh9tz1M+lstlW1smUH3ijnEcsshaNUnD+ELy4rch0ycnJy3wB+nEM8F2jBPjbJ3hXc3IqeeP9lhGmM/ETfbTHbBm3fB7NBq1ILGTJe0XZHEiTPoU6aP6O357zJIrSD+UsenV6fIlyaljOZZj+WmU1GvpX1svG5eZd0LXwKVVvU5UQtdW7W2sA3Hj8fB94bQFvQ0mSd1un5W2Yb/cJ9oDTqmqQdIc+hbOEd2PHaZ+TkihX7brVXsbwnceBweJvMEBm06bwNvmCsFMToxKjpnkIew+GJ8xrtoHcGgDSTNVNcDY5g7u7+9b+7CPrh858THucNAEQsEMlp3ckJO8lMfTttq2yFiZdhl/WU4tI26/+2BsSDt6HJbrd8DQcmPslb5Rfu5iPwv5yfnONvB94l7abyzr9ZDBURfLgP9mPIwjkxOkLeA4+EPGebvdtiP7wUrgWnTD8/PL+0K3221bt/ZX8HvMX8Nx8yyfDGMs71NpkDP6cn5+XtfX17VarZrfx5pyfMiJek4wdewDOTM/Zn1aVQM8iDz59RD+sb6zTnaw3Dy959LyTpsdtzDfmSdj+rnUmzvR/Tz7Ncnbuv2W30Ol5+99Tvkqg6BZfmhwfp/r8p4fGmgvaoTDpH0apN79qQRZXPxNscK0k5bEwcnJSX377bf17bff1vv375uDiEFiVxNOEcQ7Ryh9/PixPn36VHd3d3V7e1u3t7f16dOnQZa6jTyLEMLJATwrWRaSjbXJOYAFCgMH+u7urvWfI5Yw0Bk4Rfn05o6F6gAcgczlclm3t7eDTCbqTQcTZeE+3t/ft/c9WQ6YK3aW4ewneeMseZMJFJQpgMJZ88isFRzyA7ihbQ6kAva++eablu1tMtPtg3hIEohxAriYILB8UCzPBk4OFloh0i6TZHzeW1u+1/X1DD4yYgXvtWRAhkHNNZqOgefV8m85smz2lH+WDELxfM99Fj73+jDQTMDlcUkQ48AwY4VzYnlPw8y9NqIGlhjgvJY+Zx8SUKI7nB1FfdSV68J9NOhBN0J+A1J8XKQNOGvaDgXrCwfG8sX3HBduUGwQQhtub2/r3bt39e233zYdZQDnMWRu2C10cXFRf/Znf1a73a7+7u/+bjAOjB/9og0O4vI/45kkcgJ05tsErnWN5Z05s+xiMxjznOfM5OwVr+djOZavpSQhfcih5rve33mdv0fHYUNMJOFkoYNsU22PvKvPRIKz1K2//SxjIONk+mhb4QCNdU2P9Id48nGaYEPIGe+0QlczTmDd1WrVgkAQWeAx+mhyiP6CRUyEWTfb6Qc7Ve2T1ajz/Py81uv1K8zFbwiAu7u7Go/HLdmOsSZImuQBOpu28h5RzxskQzrajD+634QFcgMuItvaBBtjxXN8aomfATHBdy527NMuZTttS7NYfkwCmJyhMJ9eT4yDsa9tWpJ0Pcc+1yz2zJ8bI1hOnJWdNt8kre2p8eLJyUlLpPLuQebe2eusF+TSf1Pf/f19zefzAVYiYWuxWLTsfObJ4+b5SrzvI2JZn5PJpMknvuV4PG6BXepkB0DVficL6wPsNJlMmq4gUdbjm+vBcpLYHVyYmJS1kvPJ52BGk/G3t7cDIpjr7WtYPl2sJ43DKRBa1M/OnZubm4H8mhA0Vu75Jj2bY5k/lmM5lq+/2Od3sW1z4M04CZ0CHqiqwQlt1G97YP+PkuQ5ujq5H3Sl20DBnyRZrKdrCa4Yw9mew58ad1k/mz+hX04atG5M/Wrujmc76Y42Z/ISthIbnsE72uhgIWP0/Pzc7CXP5v75fD7g88BEDj5id5krB5d6GLbHPbnNvIPUbfUceUzNedqX8Lwb81MSJzKWjJXtuOvNZM20ce4Xspm8Wc822u+xvPoZlrfkWHx9ynqP46Ot9N/P8HVus3FFj0czD5f8GnPS66cTaEm+M8Zn7XgzAUfLci8n9uADjUajlsTLmvEJksnf2o/AX3FbzcOTVOrE1vF43E7zcBLGeDxuiXhOWjMHjJy45HqxPDLvtH0ymTSfNXkAcBx6xJxqrh8HgAnMet2YJ7SMe/7dD+aNsUu/3f1KLOv1kWuyd02O348pP4sg6D9U8aS9BfJt/K1ITABRh4sVjJ+RW7OTwLFjzI+fcX5+Xt9++21THOyEgiDC2FxcXLSjhEajUS2Xy/rtb39bv/nNb+rv/u7v6uPHjy1L3g43xYYCobfBNMFBVpMJBBsyj4MdOwIHGC0rLZP1FMgwE3CeD8/L09P+zHmCwTYygAFnYaVh4TMUpTPCIBa9AxUl6gzhk5OTtgvNdXoMMAg2FoxZKnHLDArahCVjBhH4/PzcgqQ2YJZ/lL2JKcu3yQOMkAEBv5NgQGYdGPFa8P0oYe9EyKCMf2eguEdooOhzDTEGkHgEoVmXyIzbSnv4znPo4D9j72IDnCV1RN7XuyeL25fG1nUwp/4OfeMxtJG1kUyyJAlyvutlTWKYcx4MBLjOOsMAFHl3ZhZt8ffIM/e5rxRAgwOEOB7IpoMHzuoCfLmfkGceF2d7ea5Wq1WtVqv68OFD/fKXv6z379/X5eXlIDsUXcsRPXaWZrNZXV9ft538FB9NmCDdazTlyqDDbfa9zI3l3nNhAHXISfD6N1mfu09yvKyzj+VYvraSzgK/0yb29LbXav4N/rBeMz7BXqM3WJcEqLifoEjVXpdRkmRJYsI4zI4gfexhDnS69YnrJajh936uVquBrbbTTj043Zxm4uNvvVuUQB8Z666nqto7DL170/cyFt49iUNv7MP31D0ej1uSjPXf1dVVsz3YDdpuGQCvgOnm8/kgiG28aCfdZAv62rtMabPfNYj8OEnJdj/tGvdgFxlvSEY+M/nicXEf+DwDpZRDxJNlIb8zbjVRwFwYx3JPOvP2C/htuTYGNhY2fncyUeIw7/LNfnldsp5JvpzNZrXZbAZEBX4C8207Tf+9A8Q7HE2Skoyw2+2DlRzl7wQmH8fH3HkOwU8kNbAbJf0QnutxSJmCHMPHcQASv5fTP0h6c5IlvhaEjuXFfq/9WIiyxNL4XMz/2dlZzWaz1u+bm5tB0hn39uTCJbE34wC+I+GZuT07O6vLy8v68OHDYOy8tnJtvEVE+f+3/JdjOZZj+brKX/zFX9R//a//9dXnvfWdvjl6MzGq8ZGPM68avpfT7+dLPsB4kP+d4G6uhOKgHs8y7kH/23+v2u9MpW30IXdXod9pL7bSvnFiAPenar/TE/8+eYSqeoU16YdtFNeCizmRD9uIXfbrKubzeXtvIb6CN2pw7CU2mX6/xcN5bvgeH+Lh4WGw4YB2mDNwwMuBV+bXts94wjye/SdjukxCoz8ZVLUcMda2wT1bmevAsm8OxXXbfrtP9l88vshq1tH7neOb/EgmBfB3cm6eG/8Yo3Nvrj+PhesZjV4SDDjlhueApfzqFreVNeBYAu88dx+c7OYkQAc4kR1kze8Mpo3cS6Js1ctavLy8bJsaRqNRS7LDZ/A4EH85PT1tiazmwOj7W+PotcH3ieOQod415gHcb77n75OT/YY266+qanqAcSTBl0113oFNmynJV/i7/P+Hymg0qn/+z//5Z1/vcgyC/sjylkPgaxyMdGDPxYvfZIQXw2g0PP4TAori4IoDo1607969q+vr63YELscpQsIALC4vL2uxWNTJyUl9/Pix/vf//t/13//7f68PHz7UarVqhIoVtAEBfYKIqdobj+122wwrn/cyoDNbAQVPv+yAkk1mpehjJqgHhw8FwGK30+06GH/30/PlIydMEHCtDabnwe2ibSbnDAxtpNxGKyHkggAUjrqVn8kVKzFnTzMOjN/Hjx+bnGE8cnwctHUw2qSGjTR9YhxttJljX5vj67VnoGli0NemcqekvLldlrskozDQBMoNgD0OPgKQerzeaZfnhuJxdHuz5JrLaw2asiTA8vxbb9h4UY+BvAGkA+lc7+dU1eC4ZP6nDW8FKD0vni9kPneaeO6q9rtVIbX4zMkI3GNHIscMg45TQp090tXP93gQoLQOs53IwCLywvO325eMtw8fPrTMr8vLy3r37l1b/yZqcY5wNqbTab17966938u6C7twqP9eM73gpY+4sbPH//SFAIXng7HzmrU8WS9+DrGWoOvHgKljOZY/dkk9nvJuvepr+d3DJVybSRjoDZImXFfVix7y0WCsfXb8OQDgBBAHPwm0WEenrU+MQJ0egwzGeOcneO7p6Wnwbnq/09262ngHLMz16Dgn6TmQ4HbTZmwSAVSTMNyLY8yY8Bljz5FKdh5PTk7akbTcyykh6HEHo6pqgHUZe9rBM6pqkKDn+aJg7/ETaJN31Hps0h7y2/jADrT/ptj+M6eZ7e72eWebCS2+tx31WFXtbQk2Ahtsu+X1lzgp5dj/e3xoSw/n204ac5rQMWHKOsrkTH47UMdnrCP319n3JoXBFfhN4H/LyGazaWuOOTD+IRlhuVy2fkAm8fd0Om2n5+RpOw4W0ufZbFZV1drmpE7wOIkF6/W6ptPp4HnMIcFZ9B5YhGsmk0lLFl4sFm2NkJTKD3Jg8sqywByif5zoavzMOBPgfffuXTu22/OVeNqBAK8bAs35vlCve8s0R2hDZPmZXt+W716xfGWbjuVYjuXrLn/5l3/5KumiamhzrafMn5mPwpZVDTEjxRiSHZnY5AwU2FZkUCc5Phd84qp6ZXuNYayrwSPmRNCt3GM+hfoyiStPhjJW8PXgSH9vu5FJiLbxxhYO5IIlmR/aA5b2Tjnw7263azaFsfTpTHyefJ75bgdRUz6wjcbjJFX5+FCwCPWD7TKhj/lMmWAOvVHBdtu8Qvpd/psxzQAmc2oM5jYxpraNGUD1OsnSw42WOfNX2fZe3zLpkdLzN/2959r4x+1izo2tXZzo0OPpGCvjP8+lZQ98xXjzugNkyv1xDMXzhh+WycHImceZ54PnWV/mwafT6SvZQq5Zt/QFHGqdlFjvLRxFe8Goq9VqMJ6+H73EWJofyLliE1TyB+a6WaceE5/mk/NmHtQ8OM/3GvNzk5vulaenp/rLv/zLg+P0VjkGQX9kycV+qKSTxD2pdA5NrIlxG1EWKkLnIwjIkq3aK83r6+v61a9+VZeXl3VxcVG73a4dt2XDRkbseDyum5ub+p//83/WX/3VX9X/+T//p2Xyul7+dwYwBgKnLo2i35dEZo9JqiRWDJZQKOyupAAccMhN/lTtz4qHQLIi9Y5MFjeGjKxg7wiw8qdfJrsMwGz4TPxxH4AqjVvKWBoc+otCtlNPkM7BThM8Pjvecsl4GMjgFFOngQL99rFg1IOS58fgLAkvK9QE0s5mM0Dgcx+r5bHNwGIak55BScNPm0ywIRtcj1wlyWhDkqQihom6eoAlQX3qhgR61i0ei959tMEGqid7yFaCSxNr1GWQxfoEYPnzquHxHJ4TBwCTjEfX2BAaHBnIITtJXPoeZM4/kGqeu7fGHdIXwvD09LStZ4CZ12vVHlSknEDqcSyb5cQEmdvz+PhYy+WyHh4e6vr6ur799tu6urqqq6urwTuvGA909fn5+eD9oABx69dcowA0A8G3AEnv83QmaRtj4yN/fE8C7Jyft8Ch10+PQD+WY/naStq6lH/bSdt49ICPYUVXW/eha7CvVXuChYSLDJql7RyNXpKFNptN04l2ejORy7gp7VCPvKI+ghU4u1XVAoPr9fqg7YRUe3h4qI8fP7YAAUFQ6jHOciavM+kZm6p9Vr4TbNB7Ps6J53OtdySw49M66+Lior1nHoeZRKyq/fudqIfEtaenp5a4aKLJ72Bk7iH4wFRgZU4FMaZGVpCN0Wg02JXPfDppzkRNYhZkLcc5g4DgAtsekyHIl3dl9NaJ5cKECu3he+7ByTe2sNyDixiTXkKZZdvjR3v4nqCZMb+xWJJGXjsuliFs62i0D7Yb+xi7OgOc75AzsL37bz+Aa5BJfD2TKbvdriVUGGemPBmngaV4nyntgegyLrfv5uL5sG/o55oUJJns+++/b2uL97HTfo+xdW5iUu/MzjXivjOO0+m0rq+v68OHD4MTh7wW3HbLcxL6PtkIX5sxZb3Tp/V6PcDJXgfW2T/EexzLsRzLz6/0AqAU9J7tJrrdfIZ9TCdFocd7CUpgGesh8w62LbSl6vWpe74+T9IzrnQSlDkEeDDrVvff3K7vBzv3gjvmLKr2p9Z5vHe7XUtYMr43j2r7DRfKM3iFmOcJPtSvdlqtVoOADm0D7zqRzaeeOIjNs5ID8Hgb+zPmjBGJRn5Xdu6ic1DFHLnH2zJhrMP9lq/k2niesVX6LS624f4sZdFz1uO783Pfn9ym1xPXJx4xLvQzvPZ8r3FMYhUwrnG0ucMe50Ndye32MHbWB/e+XC4bLgEbOZkr/QFO1Ej+b71e13q9rvF43HxG7uc3vHXiae5jneGzeUOHx5F1UbV/lzB641Ayh+fWnLLXDGNkmfLGA+b84uJiwNl53no8nGWafsK38hk+i/tsDjPn2hg114D5xkNcK8UcxueUt2zUW+VnHQT14KVi8WefW3oksBW6AzVJDHG/SRPXa4Xn3Y18b0PHM/gMY4GAce9kMqnvvvuuLXwvHL8YmEVxenpam82m/sf/+B/13/7bf6u/+7u/GyxgAxf6YANN5hCZ6Fb+FGf0mCjh+SafcMJZnPzNvJlI2mw2g3nAeKM4HFCjHW4rRzs44IBCoY2MH2SRMx4oDobgBHMd93osAE5pKLzj1sqCMaPvVpbIDsdhYjCcDWZw5ICR5Y95sLzzfB9bQl8t6xgUwETve8u8A0GHMvAMclHESZak0SfgbxIud5b0SFIDFQyL15SVP4Da8uNnUAysLe+Mn3UJRE2CNJ5t45bjQFudKGBipGpvqAzGE5BUDck6g7o05sgwPwTyGE8HF5MATQIsr09da4NtgJABNK+n3KHC5yY2mQdIJ+p0Fph3q3oMrU/4zMEG7xrleIk8bo56aSvrCx1g+UH+IbLG45eMzbu7u/rVr37V3nfFmncCC7s3rq6u2pFr1qfn5+cDfcd8skYNjmhzrqF0ICkk3Tioa7LX851zbyfbcmIw1XNGjuVYfm7FdqH3nddjOk/GlJlF7YAYxWsRnZT21vaOOiFibGNxjrDLfGe7kG3nM+zlePySZQuezcQVdJ0zyt1+/l6tVvXp06e6ublpepdgaDrQtoPYutT7jB/HIFm3gc+NJapeAoycZAKuhJQiwENCi4mdqv0OyOVy2a7H5nhMsv1gjqurq2b3vBuUOXeCFq+ecGINMsVvk04OlJi0pG7jMI+l5SjJwSSlqN++i59rufVnSXAgM0kajUajQXDdeMf9cL3GQF4PXOcxyDE8RFR4bfYc/B5m9r1eG/QDsgffBv+N15zYnzDmRVaQNyfyVVXDLvhTxukcS+Z17iO0/C55H/1nX4X7CeI5odNybryQO4Genp7q9vZ2cMoJ/eWZ6/W6JQOvVqt23W9/+9u2xmazWS0Wi/rmm2/aO9Poq31q+od8I2c51wS+0cGz2azNhxMM7P/5//RJdrtdO+qY+eNaBztpm48YzuRTr9+U/WM5lmP50yu99Z9cD3jPHJmT4bjmEC9rP5vrEqdwTfqJ5lgdXKGYqDc2NL4w5uQebA7/53jY7rqfYKqq/eYCByDR2/jIxgeJW8zFpl7m8x42OT09HZzeYow8Go3ayQmMI+00d0L7nTzJjzcM2MYlj+L2JtZcr9cNP6Sfkf6Lg+bGjrmbz89KnjN5IfMMPdyYHKPnmu97mMxyZaxM/a7P95n7hIPqcc72zZw8mM/xGjGeTf4v8XtyLIn57at5fiz/lunckJAYCB6KVzchv8QGkFX+h4v2axg81o+Pj3Vzc9PwJZgN+WK3sbFabjzwBpjkGr0OLKNgUOScvlr27Xsgx5YhywNzkTovg5j0xz6H22QZSFkx/8j4oQvxQ5ABywnXjscvG7M+ffr0yp93O5Or49rs0yGs+SUx6M8+CJqD9YcA8ak0Wdw9UqnniPNd1etdaXbyKSYFkgxDkJ+fn+ubb76py8vLdgQCWeQYCkh2zsp+enqq3/zmN/W3f/u37cjFJOot/F6wHlMTGyn8GG8WEguQI7YwqF6gONwsapxm6nYQzU7cIYItFxnGA2XroKXBgo087aB+xjCzyfgfBZUBOCtBO6tpqGwIdrtdC3ZaaVhRQzgaZDkrm2AVATfLLnVAZoxG++Cq35djY888Gbhm5gtj7eApP4cy27mvF0Q7RJpyvYkwG2uu53cadBcTQf6NwaTtfJfBMa8Xr+EESJZbj0FmttFeA0BAu48mOBQQwujnWPeIN4858+t5rnqdzOExc5DKgJxraavBp+c9r895MJjgHp7v+U6CKIEAa4e1bnLJdVrvoiMcNEX20/lCt0F0G0zQL+tFEg0gHX3Mrcvj42OtVqump8fjcS0Wi3Z8tY854/vR6IX0ury8rO+//34AbL0+mEMHuZEf2ut5YfwdWEGH2oZ5TdouGBw7acPP6Nltzz31JPl7LMfyNZbElfxOO53F17K2IT9M9pCUlYkeTjAxfsFRtEPq51H3ycnL0TzoLdeZBHsG4eyIcTwX+CMDoMY2VftM+txZ7vG4v7+v5XJZt7e3LWhqwsfvj7czyJhxVCXfYRMJOoxGo8F7P+kHAVay7pfL5QB3VlXbgYlNIzgFdry7u2tjVFUNc3KUGXOKbp3P5wOyDbKAwKp3irn9JsvQ1xxfanx+enraCAWIDDvLtqMp10muJf6wjBhXWcaNkxkT7I/ta5Iz1G1i1j6B6/a1rsv4AlnJ79MWWY6Yk+x/ymvaZSc3WRYOlcRVfr8aWB5ZpE4H3rkfPI/8g1Fsr7fb7aAuJw86a5++GRf5+5OTk5aMVVXtXb2012OKXmL+SB7Ybrc1nU7buCPrBGsJ7PbG2WPh9pFUenNzU7PZrD59+lSXl5ftHWq0j3XW89EZD+YwsSC6ej6f12azaePo62kXepuAKeQX/egRo+gS9MH5+Xn98pe/bP5++jkp24fIq7dKrsHE9J9baMchDuVYjuVY/ngl7aZ5oNx5WTX0IdG56EfzTWn7HAgyRrPviZ1L/smBWQdj0CnWMenzJldG282DWZebQ+AUBpKiV6vVq3r94+cnhnDgzrqdtjmZmtNbwD1geBJssI3G7uB3+gO2wx8wJvY7vx104TnYz+122+bS7WdewezwU8kp9/AhXDZ9Np7EBtMfYzn7RYntelzhIS7KmME4Mfmsng/nflHsn+U1yFM+Jzk6+0x876A/Y+wxsF13W92GxK2J03OemF/zpVmXOT3m0T4J7URWwUWnp6eDkyjNdxl30z4H8/AP8Sd57605O2QQPcHawl82D0iiKs9zIgHt80YZc6FeT7T5/v6+8foZbMwYkBP8PBf4hd7d7Q0P1rXpXyFneb31bQb5zeVyr9ezi+UlZa6HB+2XWca+ZPlZB0G/ZOkt9kOTVrXPzsh7bMwMDLgHYat6fbRSKm4vAtoDOXR5eVm/+MUvBsfgeqGSeXF6etrIl/v7+/r1r39df//3f9+OwvJCQSBNVPUMhvtoR79HTDuTKHcn5rFFztRIopv2kAnBNd6J6bnwsZsm9AgW4EC70FeUC0bWR0P4mAmUM4afo5RMPJrw8nbzBGPMvYkb5tqKn/t8hC1ympltyEvKkGWQfvB/GoyekXMdNogGnb6uar+D1kYkDadl0cRXElNV/ez67KM/s0LOtlOf62E83A5IGNdtg2zjn/dnnyg5BtTtdeCMMdfRM0CehwSVCeZ6gCydhTRouS6z3h7R1wOHboedD0oGIQEtkM60H11g8jYDASaXTPBbhnL+WDt2biCh3K4EMp5zO4jeSUobvfvGIMPrg3ayG/5v/uZvard7OQbdz/U6PD19OVqE7Dhn/FlerUN68sQ4MF52ggFe3nGADUnnxrtGqmpwugDXVO2d5t7xubQvAx+M37Ecy9dQ/uIv/qJhMO/iszxnyTXlz+2wVQ0DMXaITEh5t7bXLVgHXAfewvm2482uyKq93crkJ7c9MUzV3mEn+Dmfz1tiF8X6EmfZgUWe9fj4WOv1uu7u7gZHfIKD0fUmeWwH2X2GXrNN4nvGw/Yeksg6fLd7STz0O0apCwefMaZNHIGOLvU7FtG/s9ms6d/lctnwIbtcsU30m+fRpsfHx5rNZi1ga/KEazjek2cyHrTD8mF/I3V/kj92sO3bcA82PG2QMaFlzYH8LMY0tjH2xzKZzbYunXe3lftzDLjPds1rmuAV45kER5LI/A8+sq/F3+CFtOcmxKbTaT0+Ptbt7W3rk+fLfpTxkBNVndhlOdvtdnV5ednI2Pv7+3ZEs/vqtcUpFoyJcQun/VTtEwA8Jt4djp6g/34/MH7Z8/Nzk1d2PHvtsyaMrQluVlWtVqt6eHioDx8+1MXFRU2n07q6uqrZbFaXl5e1WCwGSbU80wkSvNcXPxAyl/e3s3vVMmdsmYF0dIVxuX01AtmeA04O8vpM39HPSFvka3p6/UsU1uP79+/rn/2zf/ZF6jyWYzmW37+kPrAt7OkPfmPTzck4GAdeNO9hG2reo2r4fjz+zyCCn9/jZsy79QJxTta3nbB+ti9NfSQPmXt1cnO+DxBdbv1O+4xxxuNxww5VL7zmdDptR8tSH3g1+SqPl5Po4SPsi3MfttLJkbyCgjZxPXX6c2M4xpT29RKCwJm0y3PqI0HBuvTJeMhY1raxZ+/MjfXsmOXb2M+f+1qKE72ybuODbI85u169nk/qNX6132EZZbzdluwf15uzSt7dGNdts5/pzz3+nmvw22738toEsGlVNb8D+UPWCOiTCGrcu9vtmk/o5EzL2MPDQ3vfvN/fTjvAhLzKhHXBsbvMv2MVyBtBWdrJaZasi/SJ0X3EArzGGTfwqQOM1rXM+Wg0GmD2lGNkxP4Iz4WP9KYLryHraObB8sJ13kCXsuLrky+1fH4p/PhWOQZBf0TpKQd+2znw4khDi9Oa5a0AqLNs8nq3y5lU79+/b6SRnWIE3QaL9q9Wq/q///f/tiAf/XOmEErEL7M2KMGY9fqYBgfnGoXlwGwad++q5bMk2mkr42dyy2fnA0CszLkOR9TH9hIEZI7tVHIt87XZbAaOOBn0nLUNUeU2eRwx5H7xeRrEDKpY+TEHGA2DBI+dj69iLk3wkEllmbfhYZydWWRC0vPmcXMg1mvJcki78ljYBCpec0lMpUHP6y1DCYZcsj8eRxNByFsPNCWRmHVb8bv+XiCINppYdXIAMpIkmseZ4BrX5bryc+xo+EjY7KfHM+fV4C5Lynj2F+MLYKPfPjYFAJUBdAMCZ8UbLHpXDPINaUb9zI/BDvfYaUIfVNWADLfzVLVfE1XVdtLc3d0NSDuvH7/Li+fYQeMYkPH45X3Ok8mkga7z8/NBkJGxIMuW93hYH0Do59rryaLl3/LCdZ43k7uWG4NAOwEpI4dklM8NpNA3vWDpsRzLT7XM5/O2RquG9su27i3Hu6perYNcsw6ioE96jhJOnB05Y1u+ty62PfJOUjvzJkqsA3guWHk2m9X19XXNZrNXp4RwbVW1XV7GUZTHx8f6+PFj07G2Z7YTJJOQvetdpTiv6DPGGLzGfcaGBISq9kfY2mm2XkafJy4h2JhzjCOOLSRpj2DPp0+fWnDH2MD1+JUJToQkY5+x2m5f3g1VVTWdTgf26e7ubnAUr/VxzyYw9g6y+uhkrqeOlPkksmw7LBO9NUGdPXImP+vhMdd9aD062YAxt0zyfP9OYiCJJoqxauLeXF/ul7G3ZRc5NOmD75D6oepFhpGnk5P98YAE9Nm5CH6YzWYDvyJxi/vta0y4MUZk7HMf64L7IWY5ztZ+GH0FSxl/0Fbq9vvc0TUEXLmOtbzb7U/5QEcsl8uaTqe1WCzq+vq63r9/X4vFou14H41Gg/cC+wSk9IHYXeod4Jmw4kRI+7teh7TXMs417Jy9urqqT58+NZ1k/YMM2R/JdZH/5/r5fQv24Pz8vC4vL79YvcdyLMfy4wt2y1zOoR90tf1e+8boGSeYoJvgS42Jq4YnHPQwq6/hN5yS7agDD8Yr2OBMELaton/evACnQF/BpQRAsZHYTnxvxsdBD04BofgVR8ZRfgWXv+deH/VpHGKM7iDl09PTK56jqlqwyNzc4+PjwD5hP83NggsTHzJe0+m0xuNxw9jgZOwcwWBzA9hNxg17ynwaM7suxiqDLQ5qe8yRo/w+8WDyW4fWhvGPZdXyw+/EgcbH9p0Y62xX8oqWd2NIr9PkXZJ3NN+T/oTxGbJjvOzCvRkYA2Odn5/X+/fv6/T0tG5vbxt+Xa1WVVUtOH5zc1NVL6eFPD8/Nz8G/80nkblNfg0Jrz2gTYlTqc/YLbG1eU/POzKK/MM3+lrPI+PneA19516PawZheS4+If6r/Wz3E2xorp0ALnU6edb8JOPEfDIGxsuH5r7HB6c85D1/qPJVBkFzMg8N0B9y4NJBtnKwss8JtUKiWBlVvQ4ksIhMMNn5tcA9Pj7W+/fvW0YqxgHjz7E5PkKLZ282m7q5uWnGBOWOM0jwxH3GGDlgZuNlENQzwvSBtngHlhWonTHaa2XD2Lg+jJ+zgwxgcvz8zk4rNwcHnRkFIUg7uN5ggmejhFarVdudy5G0tJUjKHrGhjG04aaNzK376Yz9qn2WHOMEMDJQRHYJVgCMLH8mM9LApVFlLJhPDNwh42oyEhLEwC53t9rZzzWV6+kQYE45Y/yyuH0mHxwYtkGwYe8RBw7O9Mg/z1f2y+vL4Azw4PYn6HT/LEMJlLIdrsPkqIFhjiP39xIiXKevN1FjsO/2W648ZwZzLjas6cDwvXfLj0ajRrTQfsvk6elp21VkfUESB0Si2+UsVXYf4BB5jnwkJe1BN7J+SODY7V4y5ngPKPN5d3dXo9Gorq+vazqdtrZxDMjJyctOg+l0Wre3twN7Rf/snH6OfXUfDOAYc3/Gb39mB7e3Ju2oOGCQQPzQ38dyLF9D+S//5b8M9FI65JS0K7a91t/GRSZ8rCPtzEBamDS3DkAHUa91NnbEyTXYBeoHPyV+cH/4ezabtVc6pLNMu6ybPRbePblcLpuT7Hep2xEEz5ENjH52kp7tGHPDrlKeB9amjZPJpCW0bbfbur29bTqYk0EIMLJTjiN/CSxxPeQadZPl/Pz8XOv1uu024EjS9Xrd5oFArY9aRwcbnzGHYP7Miq4aHq2ObRuNRi0Rx8E+5LCq2vj0Au7YX+yAnXK3N+Xfcpnr4ZCzbXlOUor2JuawrXFSlgkMY6IMgLoe5MO230SE28gY5np0m2i7CRXLKdc6IGjMx8kQTo51NjhjzVoYjV6O2mI98J5N2sVOS/wb41WC7g502vdBPler1avgOuQrRzez/v3uXLf56emprQHI4pOTlx2lVXsy18FX7zgA1+PfMpYZaPYpNoz1er2u1WpVq9WqBUOvrq7arkvm0YFrZIOj39jVQwJtTyYt86w9j23VfrcMcsl65rmnp6d1fX1df/3Xf93kwrLSw+CUnm9z6Nrfp9DWX//61/XrX//6i9Z9LMdyLD++2I+z3jA355KYM222eb7T09OWzOv6zYGCQx3UtO9obq+qulggMbaxifEF3Ir5PL43/q3aJ6k/PDw0O8mR5R4D+7NgU/xvcJB3UubYYh+5HyxMG+zDp7+QHC12zK96sB3kHuMd2m7755MIsLduD3Ppe0aj4eu5GGvzH34eY+DksgxamauzXCTnhlyZ33F7kyPkXl/jMbVMez3w7PRT0lbSR7jqfK7n3zKYGLSHFVwS6/pzY5ke/+hiWTgU66BOB06NUzxn/Lb/OJvNmm8GrvNrP0ajUUs4RXY4UYRrkGvGl7pOTk5aTMSYFUxqX5yxzmQD+mLdxN/WTcRQHCzuJel73bIe2IiVQV2PWdZDcuLd3d3Ad04fgzHJE/eIBTigTB0ZBN/t9q9DYQzdptS9bgOlt0a8fo0tvyTG/CqDoD3gnUb30KL/sc/okayeQATImfKppNwmGx+MlxUvi4n/ycq1UgIA0Aaugyz4xS9+UdfX1wPCPDOAUQxkxuIwYrR74+UFy84h2pBHF1kB0K7dbtd2WHmHoskWKzsMv5+NQuU7K6SqGgQmJ5PJYGcoDh8GlPFgrDE8ZJOY9HDgiN21PLNHVqJcaCck1G63a0cNe9cs9RK4RqaToEER8nyClM6EMpAjoyMNKmPN2Fjh0WYUue/nXubEYGc0Gg1IMxOCBjOeS57v9eXxTOCVQOAtgJJZ0Xzu+py59rkOvRVz1XD3cRK1lBxPrjeRmsRK3m8DzPMdVDZZ6+y3bDftsMFJQGcDXzXMWHKfDYLok52QnF/Pg+uhoEe8+7z3fg/fZwLJQUe/H8ljZtlB1qmb/jF+zAXrjDpYqzxnPp830svgy+ABos7vqgDQoas9zgZJtikOKACqAOA4IbxDi+88d+ju2WxWk8mkOV8mMnmmZR2ZscNlHW+d6DFNJ9lyZ1BMwSYapGUQBPI+9a5tgo+iPJZj+RpKz9Gt6tuTJJtsI1kv6DjbA6/Znq0wTuK5HBvkAKfbkp+xNvnJwBkki/WSf5+fn9disWgBQYJE2DveUcSzsAcEWdfrdd3e3tbNzU1zctG1DtQ5S914iQQVHFHvRHUAxm0A32MfTNYQGOKZiQsdfHXmOwEeMP5o9LLrbbPZtHcljkajhnV3u90rsg35SSxueWHnHPO93W7b+6Q8RgRdIQ8I8lZV60sSTul7pLPtABX6nrHskam9wJ5xr8kt6rHtsPz1ZMH+XeLKxKFcx2/+dnCesUic4WuRJ7AC19En+p14y2NgfWCSye+F5X77hpxUk0Qg64n16+AfvgL+CPJaVW13oefd8+m5wN/i/ufn57b26T+fg/HsdzkgjQ+82WxqsVjUer1uO0TBcSQ2gClZ68jFbvfy/lt8HNY8fzMmjKN3FCSZ/vDwUN9//31bM7vdrr755pvmB5kQy6A59bKj9De/+c0AA3vOWX9gSyfcMZ8mN/kefYD+uLi4aAkZzI99oHxu+lYuX4qgovRI1mM5lmP54xb8wR6ms+9m3w/eo4cjsU3+LLlE9CPPze99wppxiO06BZ0NH2YOh3vQuSSjUCc6P/EGNoUf7GNiHtri+n00fCYbgk8JDpsjMNbw9fzv90DzfOMexs7HzFfVwGaD++g/44v9IQEf+2m+i7FlzsCArgfbt1wu22l4z8/PLRGoan8Ur09H9Lu9t9ttCxilD2VfqofzkgPM+80b2XYmh9/jC/nN94kh+Z52294a//kZ7kfi1B4P6XYYRxgzJ2eaQSnuN29Dm3Pd9Hg34wf7IBT8HxI2z87OarVaNSwHNtzt9jEEOGZwXJ4W9Pz83Li1THJgDtFFYKievFhOrXcckLXcJX/pQL1jJF7zvo/5ML9vv6XHFVguiIGQLGtZ8HybK7AO82l7VXssTD3mA538cHJy8uoEOnMMTv409/dD+O5LY0rKVxkEtXDl0X2UnjL6XcqheiwcnlD/7hUrSwTNmfcIHsJpsrxquPuranhG/Hg8rqurq7q6umpEio0NBQPrzO4McFqZ0o4Mqjgwk84R37s4cOJFCAGEI2Zl0VOufraVq8cHRzN3NXE9MpMEjTM5TKy4b36Pk+v1zlrII75HWdqA2oiixHFCnf3MC5yp02QAYIyfquGRD54Py6vJKoNRy1JVP3vOxWA3j0OAYKFuG0wbQssZ7cvvPNdej711777yWT63l8lCyT4zXvnMNOwO9mT7D93rsXb7XXzMHnVkEJ+/aYsD10mUG3z0AL/lFQBtR8JyZODo7w4BJ56LfJrkM7D07pNsZ84NxWCAOjLIap1nw29Al2DAzlkSqgb7ZEGxFp+fn1tSCfWZ5GLdc79JTjuWnnOvV2fKWk8DSNhNQd84yu78/LztNoAYtEwyF7214Tm2ns5re7+zHs+ZP7MOTscxybC0udRH8hC25ViO5WsoXkcZALIt793HGnNynfVH1etkmh6ucyY39/Cuc/Q2AToHH3lOOtLWbya4aLcdR3TeYrGoy8vLmkwmtdlsWsDGO6n8Pk+wz/Pzc93d3bUfdoBmAAoMZxKO3fvgYZNL9MMOKdezi3E02u+GROfgEJI4xz08j51x2B6cx/F4/1765XI5GIPtdr9LlWeygww8XVXtnYTYWfqKbmSOEntxPeO02+0DadPptJ0qQOFe21/Gzf6M8QjkBeMGzjWepH3YWNfLPCZ+6eFBE5S5XuxHJc7PtZZ4IX3DfAb38NsY1AFQ7+AwucfatC6gjrS9SZCx1vDz0k9ijtlhS71OWmStOpGScfJRhWCc7Xbbdjtut9smr1xXtX/nOvWCbZ205mezPtxmJ3b5RBv8XQK8JAsgP+v1utW7XC5b8JVXApydnTUfFMy72+0ahoDsYS3ZLzFZ6GP5uG6z2dTHjx8bfiOpItcMuHu9Xrekk/l8Xh8/fmzPT7n3OvTaNcld9fIOU8ufkxvOz8/r+vq6bm5umv5OWX7L/qT897DjsRzLsfz8SvIR5hbQzbZb9tmsJ8AniTfxw8F9mQhuUp1iTEnb/CzwsbkC+9+0w/YUO8j7L90f+FzeEw0es23n2cY2xiG26/CM9H2xWLRXa+WYG6cmH+Dv4B2q9vwidpnEOGyQ+Ql+wzUylrS39z7T5+eX00lIyDbW81ibz6DdDw8P7TVBZ2dnNZ/PB6/tcoIXfbSv7wQty4K5Ko97chSWE2+q8XWW3ZRnc4J8nvY625H3ux09PJtBdcu5r30LJ1OMgX2N++I+ZX+Sp8k2+xl+dm9M7ZeOxy+J+iSkspY2m03NZrPmLzw8PLST2ZBR5hp86dN0kGc4deTK4++kOsYwEwXxk5Hp5L9z/sz3UdK3MX5DTzw/P9enT59qNBq1tWAuHazv59qvuri4aL4i442seH5Zg/ZT8EdZV8yPT81Mf8XHgVt2LC8ZCM11Z1np+VVfEld+lUHQHPy3gPkfqlixeDJR6D2HwSQ719uB8r1c7wCoAwI9p/7k5KSurq5qPp+3+5x17WfTB8gc6nWWeNUwSyYXDmPgIBfttJLuzQ9j4SwADL4XibOHfC/tsCNXVY2kwhmuqpbBZSVOu3InmMfZRqRn+GyQE7ChcK3c3QeeyX20AwILpbharer+/r6m02k7Fs6ZdIxzGkVIJsbLShIl5xc3p7wCkEyQuSADNh42uMhF7iqGxLDsGzB4bB2YZX30QEYPMHjeUOA8z0G47Fsv8GKiwmuPejKbkTbk977fwMqJEW4748Uc2pB4rXkc8zkGVJ6jXJ89AsPP7gG0HoCjpM6xMbP8uk+Z/OC5Tt2XoMXj4p0JkFnoG7ct54p+mFAz4E597aNx0LP0iXECxHucqNM7utEBPLeqBruqcw2dnZ21d8IleOd+yDQfS+fjbnhnsd/p4fosE14TCVjyOhPc+WMd0VvLKT+9/xO0W16NCXyywLEcy9de0t5aR6YDgXNHAMJ2zHWlrQOToItPT09bMM5OUtVwh99msxnodXROvjLABAXPM144PT2t2WzWgilV+2NUuQa9ZQzCUV63t7f14cOHll3r9+5VVUsEccEeEkQcjUaDdzY5OESCiU9eITufoI8DJByp5HcpEowgOIKTbryLc7/ZbOr29rYRASa+7LxynKhfffH4+NgC1SYjCXzRX2yBcTZ2aDKZvMI8DrKDP5xUaYxlAs6ZzMZk2CXqMzFg+WAOk7SoGh6RbDtjfGASoofrezj/reJnG8cYV9g2YRe51oFh5JDxSPLJBITvYd16PLiv92M8zlggH1dXV1U1TAaARMp1jXxw8sV4/JJ1znvDlstle4YD5tZFzBV1kgDqXdu8J8y7wU9OTgZrlbXI8bZVL++q9a7vHG/rrPl83hIDIIlXq9WAdEdHMI8eO/rjgLXlGN2yXC7bWuEa5p3nMP8Eb9G/8/l8EBBm3rnfbfDaMR7r4WT3Bd4geY2ejfiSJNSxHMuxfP3FnKj93UO2iOLEFvCSeQ2uSW7G11jnUvgO/Z16jM/yPdH+29i0qppOxodGXxLsW61WA7zpAB/HRSbvkdgFHACu9Ku9SOShPXAEPvWKeswRuU2MP7aG3w4icr/xgXEtAaSqF3x+e3vbgr6ZgI/NAP8hJ8yVcSLt8/yZw3agJbk740fzReZMzX+lPJnPTp41OYyUcX6bT0q80MOUtrXGqr06jauNFZK/swznZ+bZ3Z4MVllGXPJ/z4HHt2oYlDUez3GDNzN/A+4Zj8ftnaBgS/wdZGo6nbb3p4ORnKxWVQOftqoG3DbPf35+Hmza4bUJDrbSXsbRSQnGYfSf/iaHbD+6qtquZ3AZ844/R128LgWfl2Idau735ORlZzanIbkt5oyRVzC02+sEY/ReJsrB9Scngf7gGRmoTW6zhyvTv/rS5asMgv7bf/tv2wT/r//1v+rf//t//w8CynsKk2Il64VgUMD9GIIUYgsVhi0DpAh5HldWVS1QhkCaaLCSNclgp/zx8bFlsrPgTYrYqfIYpDFBkXl7tANOufjoN9m7VmAYrMyyyKAf42/SJQ1nLjzPE4s956tnCDyX3E+Q0UDER0+gpEwyUgwG7MjaYYdwsNJgTCERenNASaDI2PoziA0bxLfWFTLF2Bt8eN4hGJArG4Ykizy+9J85SVlL4OD6MshnMiQDqBTkwYCH+5HZ3jroAZxcczzf6wC59G6N1DH0wwbMOsF9tRE2mZeEmdeHjWISacxfAlbfw3haJrNYln2P1zLXeZ4ZsyTtLC895+bi4mKQ3OC1l6SnZYDx9/PtaEGoI+v0CcLOZG0G4/htnc973NC16/W6vcOKDC6PAZ/z4/577gywvFPLjg+yw1jZDuSY5uceO8+LQXpVNafK69nz1HuW54O6PSc9Ock2nZ+f17/6V/+qfvWrXw2CysdyLF9LsdOYDjHrLR1z6250RxLtVft3ffCTp4vYwaZgC8hCJYGqh2VoL0FYbJWdJ+PSqiGOIsv35ORkcKS17TD6kOAd+IhACgHEqn0SnHcwUhfBRxw9EzjGROBRyCQy8z2+jFvV/lgndKDfWYj93O12rQ7qJlDCu0B5x6cz8Gmjs/k/fvzYbNZkMhkQWsa5PkLKxwuvVqtB0qCxholLxoYdudgikwfUX1XNn+Dz3mszuM/Jnvy2nbB8G3+kI22ZMk7P4E6umSTVMkDpYruVf/fsnDGsf9x+23nLkX0K40XjmMSa9hVdn/sNwcKc5C5H4+XxeNzeI84uF2SV+SdZgjbe39+3JDQIEusE1h5ECSQ4RFBV1Ww2a6+LODk5aUkDBEKRRXQecuTXXJgc9zxbFulDzjVr1/40p2jQd+8YYB1414rn5/7+vu7u7uri4qLpkJ5MVL2QcBCBi8Wilstlw4r2de1LmdxFBpyQlkQVXIF3weZx1V5fiZ1zvHq4unfdsRzLsXzdJe1uVXXtkG0U15jTRG/5VAL7q4k9kv8x9sKOjcev359nvxRM59cNJM9km2ysDL6qqsGrCbzrsWp/JDr+tf1Y+7W0kT5ga/0uTOwO7ff7QL2pAFuQY2AcQpscTCUolvwSdTF+xni3t7ftFWp3d3eDOcCewutip8EPTjAHg2L/4Tly3rH9Pbmifw7O7na7AaYxBjQ2TPtl2TKv/BYezHvdL+PMXDPm8VK2D9Vv3sPzbTvvtWJZMz4175b3ZeCbkpw5dfd4tR5PlGuX/mQffULIxcVFS6rjFU9ek6xRXu9kfGcMzIk9q9WqfUaxPMGPgbPx+ajXu6k9H6xT+kg7vS4YQ/pqfMgJbeBlnzbE8/0amAzWg6MzPnN+fl7z+bztJrVPlPwqn3OddQRy4Q1n1GU9aZ8u4z69+e7xjj0cab7jS2LJrzII+m/+zb9pThzGoKc0/hAlFRifpfHPSbSAZVAg3/9nkhpiHgcN5ZrKfTwe1/X1dTsv27sAWYjp3OEsohwZz6r9dmcWirMR6Cf19UhmK1uPRRoo6nXbHh4e2ns5rahtgFhwSY77Os+ZgyrOkPJ4uF8owwREfOfdDCajAHAmVkxgJPHTM0jZL8sEY8ncMRZkx/j9PwkgLS8GNAYIaaiSbHJ7bEjoo0Fp1Z5wpS5nrCXpZABmw2ql6ftTDnPMbKCZ9wRCJnrzyFsTTe4/z3W/EuAnGZaAyP31Pan46ZOPADOB4efYuPUclBw3t9fF/UOeaYuBT2+d+TqPl3WHd6hTt8lhjyv9M5HXI/0AAHYkTOBW1UAGXFcSYz4q0TuJPNcmCumn35cGYM+5cjYVZD+OCuuXnUKQgTmf6GranMeq2bE0Aci85bsU6KfXjvUg9SZA99rJY3+Qgbw3QY7BZdbP56krfb0/4++Hh4f6d//u37XxW61W9a//9b+uYzmWn3pJm3iosG5SdxsLudhWe92zZp2Ba70CNjCpgd4juMi1xuG73a4FC0y2V+3XN+Q77RqPXxJYLi8vBw4obUN/ouPQ55vN5tXRtwQinLxCHehmgpRVe4fZGAW96eQVdvYzBtghdqy5f+fn5+3YWtsCxt7kz6dPn1oQlL6v1+vmDNMu2zvwOslx4DvjdoLCJgLo72i030VHO+bz+UBmsI1O6rFNYQwIOhnfjkZ74ooCkWiCLXEljrbHy8QP8/gW8UJ/wQXGPNTpezNA+pajnY67n5ttSjvItelH2h90OYRDM2HBbTDmob/Gl8Y/JpIYMxNB1gsXFxfNLxuN9u+Itayxjlgvd3d3A5LHPhH1OFGAPp2entZyuWx1UwdrcbPZNPzIPHNMYRJcVdXWp7GF+1K1J5chigmsOuHAazHfIefd2FX7ZAKPM+uZpAOSCLzb3e1EjzH2fndw+g3Ws8y5/TMnzkG4cS/vuF8sFq9OBjGu9xqwTPdKz7f40gTWsRzLsfzxSs9m2TdPX66qXtlI+9PmsrgWPYSNsC03N2B9k8HG/M44xG12e223k/88OTlpwT8CoU6Ys//twISPhSWogR2YTCY1nU5bW7HJ2AgwtXkRcKL72eOj6Le5GeyUuaDkx5gX+kHQ03jXRxXTZhKs4DXMkRDkBCeSIEg/CWS6D/5t/9+YB4xBP7wJ5S27A+ZJGXD9tn2W4+QujAFdclwT05oXz3Yiq1knuMe+TfJZGfjs2eMMQvGDzNNG85XJtfN5j0POtvF5jpMxLfWcn5/X5eVl3d3dDYJuyBgJaikbk8mkncB2c3MzCLwbI+92u3YKDf7t09NT24xFW3s4yAF3+0nWR+bsk8+yT+WxxZ80PnP8Bj+xar+D1H6Xx5hnk7Dq10MljrSfxyY8xw/4PpNV7eNwr9dhzweiMLZeX+kn9WzMlyxfZRDUx9R8Lmn0Y0uSvmlIk9jFYFhh94JZViD0gc+5FueTOqqGu6Oow0qEaH8aOge/HABj2ziED4bNWd12PlmE/HixWIgdcLDT6+/IosW5ZKu2F62zhHiGx5BnOCuE62k/42AQ4rnEIGNI+N9tcFCFeaCk7JFV5pc680x+TCylQbGysCPrMaOvgBAUOEoLmbq4uKj5fN7uQXHZiQYo0A5njSXZloqTfpmsQiEjdxkkQZn7fgOQXA82EjzbL2u2obHcW458rXe8eOxNmPQUMG2xDgC8ZkDVa9vj05Nb1jj6wyDB65s2mcT2GrSRSMLPJY0yzzO5bRmk39ZBrLGUYRt2wAO6BYI054g66UvqU3byQHa53TyHtQ2567kn0Ocgv50fnm2yFD3JM3IXkdeBwUHKESQT7fcOBo5QhABGLnGEVqvVQD874YWkH8sH9xpoQ1DiIOX7DCw/vg85y+8BkZYrxs+ksuXE69+gk+8sgwbvrBvLbQIqOxJ+RwJzf3V11XaHIUfHciw/9WIn4ceCf9YF+tzOW2a92uHsYVvbKmM/k//WP9YXPbyZTqTXqnWwdxRmxrjrpm3r9bpubm4ahsTmeBwJbIBvvMMe28QOfNqCPjk/P28ZxgRZmBvurxq+y5EjzBx44R1/4EN2/VdVC+IaZ3mswNL0OQPVtqm21RT+Bpea0KM+O8pO8DPp4KPUcdAJPlmWwOz8bWyJnYLotP73s9L5tU+QQb5cA+k829fy9x5nPzftYW8dHiJ3kGvbPmN/5O6QT5V+Z2I5E6zG8fgajK2Dh/bJWAvGXdzn5/CeT+rzbk92qEwmk0YC8z4m2n56etoI3ar9DmvklfVlbIZs5K4UkrQgW/FTTWZ5ro0LTfIY9yGXfkeU5adqnyjAvawNJ3MQsMfXRY4sC9ZF6AywCe/tZRzSd/LpP/iA9hdS5uiPA9v2R/CHaad1P/MLWWYs7fuTyPpdypeo41iO5Vj+eCXtYnImvsa/0ekU+3zoZE4oQi9ax1ftN4M4eMTnxqwZIDWu4uhd2kQ95suqhseoGxus1+u6vb0dYNTkenl+viqBZ15fXzcugHaBl6jv6elpkExIX0nytT31WCbvYVuYvjnthB+kr9ir9XrdEvqwM9wD78j4MbaMJQElsL1PzQIrgmGm0+lgBx12zsfOY+vM/49Go7aLtGq/oSG5PdvO9F/SJ2GOzL9ZVlLuLOPGE5Yrj1GuoUM2Me03zzMf4s99LfVn4M0l8abXgrGIxwuZccIjc2aO2OOe/ye2QLZZJ8zJZDKp6+vrWi6XA06ftnACCcVJaFVVi8WivVqhanhakU/DwZdzQiC+IH4bx11zRK5xLONs3G65Nf71OOBXmztnPWw2m8E4IaMEQsfjl81v9uPsi9Im1p85SdeZ3CvxBLhXuNHUJcmDMq/s2DXWTL7Rspp9NCf4h8aKX2UQtGqYpfFjyaLfpaQzkwqjaphh7EnkepNHCJcnHEOYivNQQMPChwGA+Oe5CC8FYYQ0IqCC07vdbuvq6qpubm6aQbTSc39pYwZjkkDxONhxd7Gi92LJZ+TnJiEc2DBxRkDBi82kPuP48PAwACS73TDIaBlACfM59zFOOZcEJj1OJqxspAwUkAuCkdxPEA154jsHBfjbWVcmW1IZM7YGKBAgKERnfxjwOiBmEGaC033GQCQgznVtGeK5FBtej2sPWCRRyxrt3cN3vtbPN2FjmSNQl0CqB2JMeCRZw3NMYLkQbE7y04CCZ/Db88Q4OGuP/hrMG2C5X342fXDQHlLJZLeLwaB/3O804r4e+XJ/vVvTc2+HwYY3d69jsAEA6Gscgc1m8+oowcySs4PCPPlajy9r133kqB2/75M2UY+Pt7X+4XkGiVUvJBpzwVrLdev7ExBbDjw/1mt2DA2cTQbyec9RznnO73rXo7czO9C/fdTwsRzL11B6zuGPLaxRkwjWjV7zdpLRUziPkBbGl1X7HaKZnQyhQRu4n7Xvkxbs9PLD7njvMrTuGY9f3gtzfn7enMCbm5vmmFpPEKgjm5XPybavesGFOJJ2Ui8uLlqWL332kf7YNdrB+CyXy1d68fb2tmGoqmpBW5IOT09PG7lEdi/ts0Oc2d70x+84HY/HdX9/33avWZbQ/7wn2idTOKnJpKPnibrTFoODLV8Eo/2uLewR9hR766Qs2uIgLHLAdZYn+wEuxlysA2yPCR3sdtZjW2PcY1yXvqDHK+vINqa9xJZnXa4/5YHf9iGMzwnYpS+ZCRDGdAQXp9NpzWaztluRI1knk0l73Qo+FYmW4JSHh4cm1+zoJoC52+0G76MF71gHcc1isWjrgjVm/FP1Qm5ZvyGnrH1wCGPssUEfOWDsRE3v4kRGnJCWc2Sf3r6iZcxj5OOu8dEYF2NU9KLrdZ+9tlln9Nv+kYOvrD2vX5LzmDPv9PH49vz/YzmWY/nTLenTZeAxE+34nmJbPh7vX++Uz+C3dS/6FUzhBKzkCdNX72Fj1w9eSvKepGh4N+vE1I89LI8t9cYG7vU42X47ocmBG29u8C5LxgEsllzF4+PjgKdMDondrfzmemyZMRrY0O88BYPyLI8V13D6wWq1akFTJx9yAoJxDs8wnuGVEk6cTplKe5w84yE/K3njxH+JA22T+Qz+xTKQMpc8Xo83zDXDc4ydGasf8huzvt4zUi4YC8aTufK4G9tSEjdk33tBQftRzDH9IqGA37wflOu9CYNEAXNqDw8P7V32Toy7v78f+LysseSlwLtVe87MOAr9UrU/Mpd5SV/GfhlcVa4zkvgZM8aBd/GORqP69ttv23PNQ3rewLtOWvBa8jNYp72ApU8GTP+cZzKuybNa/r2uc015XfbW2pcsX20Q9I9RUmk40JfBr9xB5extiCY7V1yTRK4BBc+1AmKRLhaL5rjZmJkAorAw/NLdp6enWi6XtVwuazKZ1NXVVTtyyNkOBN/s2KaTjkKmHxn4cj96gp0gh/bxnQNGaXA8dv6slwHDtcylF7fvRWH1gjEADu+6ZJwcWKENZEfTngz4Oghjg4hRJysMZeYgAO0xWGMHmo/KtbOPDFqBO3jh8cYZt2K0ATTAPEQWWDHyHO/+6AETy5jHi889Bp73lL005BiTfF4GZS0nDkyn7L9FeuV6NHnB524v49eTW7fDfWG+0BkYaAfgDDIcqKLNaYB4HvJhcOL54m/0mXVUr/5DjgfXOYDK7wSWDnDZsLsgk35Wvu8YQGGCsWq4C6qq2jsF+A4ngescIITUsuPTG2ue7wAs68w6z8R1BhkTZPJsJ0/0siutO/0ZJck2nsW8Wo5TzvLYaurwDg23n5Ky4M+9vkxe+/+s/5BcHMux/JTLW445JR1w9H467qmDEh/xmdeUcaN/wH/WxcYPzv7MemizCSp/zpGMJsFsNzkSEn14e3vb3pPn5JAMbD09PbWgjXWeTypBt7PTrWqPT3hXve0sY4Z9JnhEWxn36+vrGo1G7f3PNzc3A1xN3bbzBH0O6UdsK++fmk6ng9MWTMyhr7kH/Ug9ifWYT5NtBCsz+3m327UgDsEuxjLnwMSnMRU7DI3XjM2MZ9I+WS7Tnh5aP8aAXjNOeMu1k35FDyP1Cu338xhrnmnMnfg6cZL7B+5mVybkp9evyQPwBeSG1xVjwvN3u13N5/MWCGNn82g0fP8muMlrKQPYmVTKLkMSxFg7/NA/1oaxBFnxvAfYp8IgLzyfQKMTNTwfq9WqrfOq/U5VgrIEDdFVXGv/FawGscb7TKv271o3Iefn0LZcc4lrwHY+MhjdQxvszyHTFPsVXnf0y3rGAXAIxp6P0PvNmCRePJZjOZavvyReOPS9sY+/6xHltu/Gg5xI4XvwYzOAdX9/3zBhTyehF21LbZN8H8/338bF2FG/m/n6+ro+ffo0wLzU52QS9DynPXmjAs/w0ZbmjtHXefymE6qxveBC+Exv9MCmOfhgPECwBQx5e3tbVTXYvOO5AhuArateJ0VTbH/AAWAG8ITfgWruwzY8EzA5uYAC90TQFnuIT5G8VfJQKQc9/MX3lmvGred39WyhMaW5lOTdbEtzTO1/2Lc5hHvtq3mjAiV5F3NEPd6O4lMcwSLm6B3DMJ7nx6f39PxV+Gvkguewnlhf/G3+ztwUeItEWvQHQX7zXbTL3GHyXmBUTiex/Hq8qTdx3W6337VpbpaxdzAWLJx89tPTU93e3g5O8cEX87yzBiaTSRtv40LzBo63IIfWz+Yb7R9aVzq50YFSy7g/91qxn+Xf+bdL6vEfU45B0N+h2Dg74OVM8SQwnG3tYxzyOiseKwOXJH9xXm20URS+FqG/v79vmQc4WNTFO494iTVZ9gQBuZ46aL8Vsnc8uZ0W7syIcLGSTUfMStLECu1zVjWLzFuz3U4UkYmsJPw9X0loMPc48EkypLPJEUjOQEbp0C8HQbwrj3E1CeXvTWJ5PCARmEOcaMutHXFKBn0t+26TP2MMGC/LTAawPL+bzaaRDDaOvjdBuOXcBtZjkIA7P0vwYbDMtbkbxQYxAYGBm69NwMWc21jmuOR8uOx2+13j3JeEkEkcg5icA9rSe2bPkeF6A5Q0VtZtOXa5LnqgCocnd1+7bwYsXsM53z1y09lPCXyq9u/2pJ3MK2sFsAGYAvgZYAAkHBjgOA6vfQpr0UCVNUWSy2azae+9M9BnrL0b14kG2+1+V5adLu9S5XkZdHc7E6R5Hq3zM9jA36kDvBZ7Mkf733IiqNu6hs/yWJBjOZavqfQc8SzGF7aH/t469FBSje2jbSNH/Kcu5j5nvhovOQkuMWgvsY8gG/jNCV7YO47K2mw2gx2g9Il7yIr3zjHqQMehm3vYrWr/jmMcYU7DeH5+HhzjCm7xqwgYI95TirPrZMeqPUk2m80aAeW2pI1jDnwqAN/ZCSXI5HHGJpio8FzyDh0cWAdM7Ryj650Mw5xD5BnTOlGS8aYfllMn5Nm2gCVT7kwqGFfwGW1O2UuZT2zSc8Z7WDftt9uXds44OgnZxK0+fYJ7ekQt9prxSaLCdVguIYOcoOb1bl9lNpsNvkNm2cUJviTA77Gx/fU6Z11yDbs9R6NRSyJwNj7t3W63NZvNBn4NxBA7Rhhf6nAyA3iSdhKkZFwJ/OUuUY+r9ZqTXH10LP3y+Pooax9Xyzjaj01cxLXmGDiW24Quvy1fxmPoVcbU6w9dyHHDi8WiPnz48Mpn6BFWLj3SyjL7u5JUx3Isx/LHLf/f//f/1d3dXf3mN78ZfN7TCbnOrauwD/bVrDuNKc3j8QxsB+8MRd/1uBIHYvh9enpaV1dXg2Qc2oydddIYNuX5+bkl3qHvq6rpy+VyOUi4td0j4Oc293gJim13bjqAQ+Be43UfZQsPkTwhtr9q+J5sbBavNhiNXrhIApXGg9hg81ij0agFgcAB4BmuSxxqGwyWMR+OLbZNhX+GV3HCpDkG8AFjBMdIsKjHc+Vvy3jaP/czeSxzS5bDnt1MHJrtyPWVQVPqNk9irt2YpNc3y7nb23uWxznXb/JoHl/LCM9EhoypkI0cL8/xzc3NgCvD3+CHWAb3+DV3rImqPZc3nU7r4uKinSzkxDzrhJRP+2W8csqbnowZPS98Dg5NPeB5QeYJYBJzoS7LyO3tbc3n83aSknUa7T05ORmczkP7coMZaw8e1PiU+bReAVt7ztF5m82mYUvqT5zYW18eX1+bf1Pev39fi8Xi1eefU45B0N+xILR2TnoKzcafxZ87BAEFVa93Y/l5/m3C3EYiwQhCh6LzC6vJ5mXRXF5eDs5rn81mjWyiLxBDzqw3oe6dpQRL3W4LNtcyBj0jZFI7jU2SCF7EJuYYLwIFPnLIjmIqsKp9prXBRgYRUbBJ7mSgbLfbvx/RTipAw46359gy5N0eXENbPGaWG+bHY+mjL3tKxUHfVEAmRjy+vo/i8UxjCIBNYGfwaEIhDbLJOc9HGnpfm4Egk3yMTa6jDPpV7Y/Hcz/ySL4kJdIYOmDE9RAmyEomCHiMvL79/iLrDxuW1CfIkQ3lIQLD91pu3PasnzVosMZ3AJ6cn+xXVbVgHwbXZFdVDWQ7gViSqglEGQO3n10EAIaqfWLHaDRqxwLaGUD2nAG1Xq8bCOO4cc+/CSkcDo8PBB/PYEeGM0AhEZMAzfn3fJkkM+j0OuUaJ2P4c2d2pqxYN3j9oIcsLwkE3e6cNzsCfO9jSFLP0rc8kuNYjuXnUhID8Zl1i9cSRIjxh5P3KE5kQkeCUSA2wAEOfrIGIdStW9FzVa93wufRV8aGHGV0cnJS9/f3tV6vWwC0ak9+YB9wMG13bJsyAcy4imebiDIOQucyhnYG0ZUPDw/16dOnlrTiBDwwtO0fDvvl5eWANKKd2A7Gbr1et3txMJ2IQ5urqpEC6EE/H705mUxqNpsN8AfBXycqIhMQUcy5584+jZMXE/e5jU9PTy046mCNZdhBUmTGJIXvSRyS9gP549muM9eWZTX9Mtu/Qxg36+K+7FPiIdefGNw21ljIOBbZdyDX5BU4womrxseQpdQDYWo/8ubmpj58+FCfPn1qhDK/kTfmyPNJMNC6gj7OZrNBkqqJGIKYvBsKuQcfIvuMpQPJVfvg6m63f8UIAUau85HP9m2oH0IKksxBfuMS+ujnZ4CSxAjab31q7GMyzHjdsmF/w2Pquc+/aZv19sXFRV1dXQ0Cxm+V9Dl6wYhjOZZj+boLO/6y9LgWl7SZiRGMCfifIJVth/1Ef8b/PXxg3IV+RHdX7XFHtsuYAbx0d3fXgiTmTvDRd7tdffz4ccDLVVVL7IMXwG6l3cnEcXN/4Fr7v26v30fNTtWqlyAnJ8/Rbp4FxrSOB9exacQcS3IEvePb7TPAc7KZhtevcZ3nl525/O/ENzgDc8+MnU9MQQZyJyL9rKpBgrqDcD1ZNmZJHsUlg/D2afLv9CkS0/melPd8njkVBziz71531JvPzdhDtsP9SA7emJO2JL/D85F/7nP95oyY20wkMC5lVzSYjTr9fNa+T8iEp/cORtp3dXU1eOUVcol82VcwLgNPs0bH43ELAoJ3M8BIHYyJMZ/Hy347O945pcOYczwe183NTUsUpn/GZ4wj7xr1/NlnQa5cB58R67DPS3DWeBl/bjweD07sS77PPoDb2Vtvb30H9/q7lK82CPpDxpdrcuA+575esTBaaJhwk0tVQ6PqAJ6zc+3kVA2zBgwKbORN4DiYg0PGYmOhONCJ8ZtOpwOjmkQB52Xvdru2kP2OShwn+pC7LyFIcPC8S8if7Xb7l+7SbzvAvQwS5sJApmp4VGUGUCBoGOPRaDR4UTLzRT2ZHWElTxsYzx75iHOOXPhFzbnoUX48A6Xj4KvlhWLjkLJm43EoEERfNptN29nAj8lPnmUQZCDBWPAciAID2CSAqNsErsfAc0dBBqtqkHGW9zmriXbQRubFYM5jxE9mdjOulj8TdgbySXS635mB7T4YWPA3hGTOnwOfNrCsL8bnEBH38PDQjJR3DObcHgJpCYS8RqzPDHpoo/VwT1/6CDLLnR2BHIsMgGaWmvvA+qTPhwCIiX7mFjlEL5EBhnzxPIKVs9lsQEKjl02Wb7fbdr0D9My/SXl0DvoMULhcLgc7D9C/duIs0+xqSsfGgBT7AsAxKWqgzbgwVg7qApgMFnPOLCPWC0n8en5M7vp56M+np6dar9ftHX29RIJjOZavvRizWQeDodAPzjwHs1hfoPvBdM6AJ3sURy+PrrdtMslBvdbXPo3CNgR9SxJYOpfeHccuT9tXdKTb5OCE7ZTbj+7nO+oyqZJEnQO+FNpLcDYz6h3U9fHpfI+O5P2H6DPeZWM7fXFxUd99912r333xexCdOHRIB56cnNTl5WVNJpMWCGUM/A5FMD7YmHc+MkaQBTwXAmC1WjUZQN7S0U25c9KPMVwSL8yxs/qTsPHc9/DVof8p/t64h9Jzxn2f68RWJqHktptgZc2aWMpxMEayr2hbSTH2dIJj1T4Zlec72Yu6Wd/4TA5wIxPsvLA+cbsIkHK/55dgJu9+yu+Rb5+GYXyBH0niGrjLian4gpYbBw2RO+sndKhl3cQT70s1MQ02N2dgnMs4s8Z9HJxlw3i0VxJHpTzbh0Yv0NcM/uPTwA9MJpN2BHjKUrYhZf1YjuVYfl7lr/7qrw5+d2jd9+xq+o8U608nA7seCjrUWJLrra9ts7FHnHaBDob/Mgeafbi5uWm7783fWbeTqHdzc9N0e54yknb66emp+fJwW9hf2yBsmccTWwFOIznQmNg8MPbP48+GGOwnAVPjGrgE7Cv9B39jT6mPZz4/PzcusKpaopznyScQwlPzP/bWGNTyRhuZF/MnVcNAqzdH4B8Zjxpv+hmJ45xUmtf1PmPO3Ofefea5XFdym+6f68nfKcc97Oq2ZTuzTmOXt2y8uTr7R66LOrJu/B7HNxhz72rGz4DjxM8xx857Zo0fmTv8SeMhc1vIoTHaZrMZcKLJb9IfEuiMHZ3k5jgE69H+cVUNnoFcevwJhNoHto8Jtp1Op3V7e/tKLtGvvFrCvm3V0P9lTv2TvgMJCXyHLsFf9FjZ37f/nnLeK762V/72b/+2/vZv//agbL5Vvtog6B+jpGKhOJPFE2mCxcLPZ1XDLed8z086kekM8b+NJRmcT09PNZlM6vLysr04GgfPGb69heR2mBCH1EiHmr6ygFjIGDErITuIGHofXQZ55UVtwt2EmzP5M/PWiyZ3aXrxJ6Fl0NQzWoy5g4RVr4+zrKr2XK61IfZcotApjAsEWAZo/L+zydxOlySQ3CfAiK9xBowDkQ4+uP92xJFTlKHl3grfawSjlArOBsbEgDPY6d/JyUnLbjHRwpi5n8y5DbFlxmuT/51NZNlP8MQ11G9gwPf+23MBYGNN8jfjDlmVAVaf/46+MMmdcuBxTCCURt7A0brIYNgFOXedWVcPaDHeJpRckKsEDa4b8GKyMEGogTfG2DsGUncwzw4ieAwAPz4ObrVatQxQZA2QPpvNGvjBYXBQwjqTefTflk0AHaAGIjFBsIOoDlYwDh5P/2YucV7yfSLW/713b/q4dPpmWaWOJLGtZ3rz4fqwd1XVAOvHjx/bbhG/L+RYjuVrKj1yO8shp5L16yAKBUzlbFj0AGsem+odky7oncwi5tm2r6xDdB4/xszOHLXj6CSO3jtf0EX87UQNxsYZ3yTLcUwPzyTAY9vn32SzO8mLI5SWy2U7LcVjj03onYaCPvaOrV7QA6IK3IFzbzxZ9bJT4+rq6lXQM49Iw+5vt9u6vLysb7/9dkBknZycDE4zoL0EQE9OTtp7U50lbTIJZ7hnX5G3THJMWWEMjOtpn+XcCX8mDnqBI2PO9AWM1WxnUpaMdV16JJ3HIu1dEkq0nfExfmF8rQ94nn0H4+Tsh7Ew82IZB6OAoTiFhP8hWp08dXp62o7MRa5oC+sd3cIObdYh9bGm+Zx2gGOM55Ap7oFsQV+gT7w7BYzkoK3lyUfuMRY+khuZh+QGS/E9441cQkrP5/NXOAa/gGfTpt5RYZYjdCVjbwxoeeB+ZMbjjQ4y2W4dxD0EiheLRd3e3jY5sd/T89V6OP+ta4y1/fmxHMux/DxK8k5OxDKXwP8Q9OzyQu/4Pvtz1q/Gr+hMc1S73a69ixPda0Kf5yeHcnNzM3iNTXJdVXu9tVgsBu/1dEKfk2ycAEeQh0AgnCdcVvr95iXpq/U3SYKcVgKH5w0Z2FuPjzfzkFzvnZbT6XSQPO7TVrDJGYCE2yDJm4LdI4GI8canoGQiPnaZUylsh5gTbwrxEfmJZ7Fjm81mkIBpTNS7J7FhXnPo8+SV7ZMlV8U8U1yX7Wtem7bU9tUYPOtNDjB/268zLufZjmEkbqXf+cxen8ybUzdzgh/EaSPMG34E8utgKOuPur3mvfa90xjMhD/q+IVlzr6MdQ84l2Akfcd/Sl/GfgPr1VwrP6wZ8HFVDXZXUyd9RKad2GgsC7ecfo71oxNbe7JC23KdOpHXm/UYO/c5caBl+x8KDx6DoD+i2FFhoiADcuFbkBzRZwH2hCGdZTsq6TTnIrGjSCYA7/m5uLgYRPidpYrgmZBwe9yH8XjcyHa324rWDrMXBgvOxpzMCBQD7YA4ol5I7s1m0wAJ97PQnaWUSh2DzaL2UUkUZwQfMkAUZy1ZLhgXjyn/00cUn1/+njKCYkGRUbeJRCt05s738ly/M8uZL8gBWf1+JsEZF8tfb0wsi/yfoBdjkco758yf5XMdtDEB4eAsffVRmRk4tRF3H5irVMyMs4koZIV2uq9e3wmo6FuPKPC4mLSsev0idOrkHr9oPsGcn+V1YJ1mnZNgj3oNTHpz5nHs9c/XJKFDe/yZr/cYHwJWXIdeSV2FfjSpRluYU1/j8TAR5LbwXlDGaLPZ1Gazae0wMci7p5BJAozca4LWzpgTTAykLy4u6uLiogVCOSrRc8b4GACR0OJre6SY1xm/TdwD2Ewy+tk9gO15y3VhmchiefC4rtfrBoo3m007PhL9mbr+WI7lp1p6TnXqcOs7rmFd2vbb8cti59S4w46SdQ04l2I7a3yapyMYW7gv1ifssHKSBtc5kcJBAztW9MeOKgTOfD5vQT2SRLietrGDraoGfWXsTk9fjtohs5VEi0+fPg0y7Z0I8/DwUOv1etBPHHiIGtsmHFva6JNI0KPe/WZMw7wxZ35PzuXl5QBDeVcppB1BJ8bMMsKc8q4ZJ1Pan7FttO4djV52WyBrJiFoK3+bwLJPkGRAYkKTjolRbYPse/Sc7R8innr2LNfkoWJ8dQg/23ekfZbxxB4m85hbt8mYzWSjM9A91pazquF7kezPWO4gfcH1PI/3LNFu3pf+/PyyQ4QkVgca8Rt5XpLPyIjX0cnJSdsZCjGFHHG/E3vBdukzMX48D9k9Pz9vR4wxRk5UTBLdus16MXW159iy5DaZmGLcfYrSofucdGsCD91hstHPop1nZ2d1dXVVf//3f/+q/h8qP4T5P6eOYzmWY/k6yiG7Z06k59OlvuQ6c41guqrhO8PBTubQaEsvsY/72enI87Gb5gEoBEB9bGQmmjhBB7yDbWOnFu1C95HUBWYxpwK2Mb9VNQz8GpOCM6nH/WBTADbj3bt3jQf2+HMPXAnjxLN4LdB8Pm92nw02cBwEG8HmTu4DFzi5jnHLTR6MYWJF5AD7ncl3tlvgSfsdlr3kM6r2r37gx8mFxoy2bQ5MG5vzDK5LLs6/6UNvffTwovmV5O34vIcL/Ey+czHWzO95VrbnEPbtcTfug9vn8cvf4E2vBbhp5JhEVsYdOfY4ezOKMZzH1NfnK6l2u+HuUDAup5ZUVUtaoK3w2yQ1sJHAnHRiLp+GSbvAvN6EQb1ONDCeZ73jD1pfOWbgOTfG95yx3r0uwOj2iZAbx2BY78wL9ZjD8zj3SnLIKUNfqhyDoD+iWKBQsD560sJlAj0j/gifFennFhNTmW1/cnLSsjjn83n7fzzeZ/cQMGSxpGFH2KkvHb6qIYnAd5Ao9BOjipKxorFhyl1JVftdlYwVi3GxWLSFx/GODgymIsiglRfVeLzfWo4RRBnR/sw6p2CQ04EG+Fhhu9AOwJsz3v2+GsuXn48jy7jZUNiIoTiRz+fn51oul6/IkMzspi8El3u7KmiDQYKJLYMMGxjPqYMSzNcPkUg5jgZ7VtZV+x1rJk/zfo9z1ud2U3rkhAlYioPolhsD8iQVLEdkIo1Go3ZkAWvRfadNbqvHnOtNgGf2f4KsXCe0jb+tb5yVnmPVyzpLg+Yx9bX01WvX3yfwOmQkvRacgOE1YwNPybE7NDbobz/TgXZ0lJ2c1WrVjh4ExBjcWHYye5H243xxD+sK/TEej1uyCE6JHRyK7UGC8VxPHt8e8E5ijv7nnGTigeeSMfWYuB6KwX/VfieMj+IZjUYDoPhjbeyxHMtPpbwF+I0HCEYeCphQcj1R0Hu73W5AIDhDnGfkurIN6QWYuJ76+Zvi4JrXvrPNqQv9R4DFBIKJoNls1n52u/272I2pfLKCsRh94z2kJycvO/RWq1Xd3t62HVLoWP5GNyUGTIxEwTalHbd+y9M0NptNs5Fc72QfjoI6Odm/T9EZ8ZPJpN69e9dsEIHQDHR5HvNYtwycIRu0a7fbtUCV5xwbRdKOSat8hnf2pdPu9nktJCZnjFPObX9cb8qt+2ccnCXvye/8HBNKTiYzOeI6qdeBNq95y5fbbHKCOrJ9vf+ZW5OxPhpsvV43uU8iDLKIzyBKvVZNohDIdCIXAX766qCdE7wgwr0b0+vBegycQ/H4+JQgYwn8QydEIKusb3aFex4YKwf0e7turCd6uDgJIx+bm/dY51s+WXuMuevz+Fq20SXs9vZ4J1bvlfQdDq2Jt8ivYzmWY/n6SvqrafMo6UPDC7F5w8ko6C+CZLbV2CDzI05Md1AHXW3/Ep+U+gmA7Ha7ur29bce6ui18XzXkQwjoGRvzOhbrOvpMQc/j/zN2xj7GhrSVa9n5CQYA067X67Z5hH4xhm6DE89JyL6/v2/+MydaMZ7U4cCGcRdJQyTyefco48NOX9qGrebHmM9z4gCo8YeTlvjceNuyZ8xlvM+Y2D9Irqknv+bl+J18Utp398/XZD1cm3wl42me1ZyisSL3+Blpn9O/Ms+U2MK8WmJVc8vm79y25By9JpKrcbv86i8S6iz3ucsy+bT0UZzIxzpAB3iM6QfYcDKZtJ2eq9Wq6RBvuOFVAszR8/NzO5q259P05MvtsjzwGfcj9zzfAUmw53q9HiQwO8EUfeJ59zzxHJ8MQxvRCw7CMtZe0/jePbzX83Pyup5P9CXLn1wQ9HMGMhWW//bChCCx40gWgMmfDPp4ohE0K2fupf5UMoec+Ol0Wt9++20zXFX74BzGcbPZNHIkCQUvBhw/jgBiZ6Z3PRFsJMOUfme7IOkdoEGhWjlSX1U1g2wnDCVkQ+hjvJz95QCej0/w1m4UG9lengfAmHdK2XjYcbRDntn0JhMzS4n6mGOMVwaAbdyQszRelh/3hb8dlEVxWZYcVM3gTWapIAdJ2iDryLTvy4wdZ4AdCoKmgWA8kgAzGHEQit8GPLStp/DToFCfr6PNmV3usSA4dXZ2NjiaKwFBgqOq/QvALde95xsY2RhBNnpMDaSTUDPQNtC1TFIHbfBY9ubMckk7cxw9N54XAw8TkK47DXaOpdefAVYaXDsU3tmQssmzPYc5DyYdnY1Ksf5dLBatPRz/4yCmiW/6wHpjLOmnnTQH/na7/Q56ns/1u91uAAStl53NiCyR8Vk1fHeD29eTZY+br+V+P5vrrKMStPuZKWcAUQInjBc681iO5Wso1o9pX7PYWeX/tHMOEpJFajyaSTLYfGNNsIvxkTPSU3dzjwkh2x/bEtqdJJN3dyV55R3v4E47XTwXu0jg0E582k/a4TrAmff39y34+enTp8GJC8bA6DQHUbD/3s1lbOZjxH2NEydzbPnbRz5l0gp2gj5YbzMeEGWLxaIWi0UjIU0i0lcfR8wzmBPa6zFwUM8JebZ1/KScZ0IN9tjYLf0m5g7swjWu1zgQGeA7J78l7qSf2PTPsXU9gigJUBNCia9sJ1m7ifO5zkFLbF4GQBkP7scvM5bhb8bPO67Tb+OdtMhWYjWIE+YSQpXdmTzfiQjMHaQX5CZ2nTHgGF0H/5PsNAbmmDSe4yP5IXyNv2i/sSGYgnodpJ9MJoP+e55NTNEW60w+d2A0g9uPj4/tdJHERJavxEzGgDzr4uKiJVeOxy/Et+cEGZpOp7VYLAbvvf9cjNdrH/1MH+CH6jmWYzmWn2b5oTVsm2vfFfxoX9UYjB9zSdavxnHYZHMaaYvQc3Ca6HPahR6nzcvlcqBrsx22NQ6+oGN5/nw+b/WYR+Qa6rG+51qu865M7Cm4e7vdtlOPzHM9Pz83HEcSHG336Sf4ytzPfMC90jdsOe+790l44EpjDCcyJb7h+clV+vVBFLgYYzvbWAfGbHORA7AomMZy6za4LcwN13nMPL69a3v26y0fzljJ//dspq/zuuvVbT+gt55od2/92kZTl/vrfid+zXl1Pxnn7EPyPcboxjTmd0ejUdtlmZgZOcF/S/6cXcnenYkv5T6Zj0L+/RlxkPV63f6232ZfiPF/eHho/iP+kH0o+zWei5wnX4+cU5/HyD6Ssa1xpbE/85Cb4MDY5h7NSTpJwnLjzR7We5ZX+ywpz7318IfAiD+bIOghBfQ51/k7O485CZ6sqv37Rphosg+s9C1AdqBtRB1hxyhnoCEDfSxOFvz79+/r22+/rdls1oiL8Xhcq9VqkD3OEUQsoHyfYGacuh2z2azG43HLkGIBQ8YASEwYOGuIfrBwcLBzoXux5e+qasda+H6PJ3PD+PO3HXY7+M7+wOBBCHENxwAD4KwwcdCpF1lYLBZNEVS9AAYUJiSdAy5Vw92wjAWOLG1H4RG89XgxDxxZ4QAsx7PtdrsGVEaj0SBjyySoSUrGif+RZxNQECWu3wbM56VbSft4ql7CgAGMxwi5TGPhNUI9SeIYNJtcg+yA+MMoYHhy7v18GwDamMY7wV8SJp5LB9Ns0Fh7DjKbBPVcuj7qd4CTz5BDArhcTxuR2STFTF65HUnIOqEgwRBAG8fI5/pTp41kAkuDJa8jOztuBzJPWyxzJq2texJYJEhyX2mn6zWpB+nE+r24uKirq6tGElMv6wqAleNquULPehfEx48fm85gbmkHOs0kWRL69IM2GFQi27TDspCynTY3wZKf62tsE5LU9ZycnOx3Omw2m+b02eE6lmP5GkqulcSB/jydRjuM1kV5j4sxnm0+gQEw7ng8HiQ+OXhlvZsOsfvUw7R+TQCfPTw8DDCokwr9PJ/4cHLycowXhBo607YKx9kEF2W73bYTMMA5j4+P9f3339fHjx8HpAs72bDBtN9Eg3Gad6QxNtTHeEAe0Wfsj98fnTLhdzaNRqP2zlLGFCIMvX1yclJXV1c1n8+b38EuPLA/CS+JARPngEuxU4wBOt94kbnxTk9jMb+L0nKALOPjuIBrbPtsm40HGTsHbNPnoK70zzzOPdLS8uzxMkb0ddhJrvGaRMaNCb3Gjb1M3hmb8IxMZjLWTdzv04GMF8EMDh4+PT3Vcrms29vbqtonqRJMdKKFE/nsBxvXQ/Ii4/iX+EruJ7/z9CVwFeuLV3x4zr3mjFm8K4Vsd5PG6CjmEDK6qtoR/PaV+W05y2Qv2gxRx99Z7KuZ8LWeYOysi4x9GeseCXVyctL6whxZbmezWbc99MlrxuvgUPmc63rr71iO5Vi+rmK7ZXyYXA66Bt8fnU8d5jixXZTkYczzUHdVNYxDneYNvVkEO+YdXsaxtmXgYXO1PgmP/s9ms9put3V3d9fq80YJ+mBsS5/hFtHnxlTgWBLZwInmLbyRphcEJAGGMbm7u6vLy8vWBicCOqFptVoNMCscMMlA5jp4LvZtu922V0vYX+FUPsaY/mMrq14neVbteV5vNjAWT1xojtLjwW/zUzkXOX7J+/l/P8923/bSMp7rptcuP9/3pb3s2WT7hSkn9M98lblE6nAQ1df4b4+5sS/P7/GgyJoxHiV5L155VLXf4GV8b27dJ/GAmWaz2QAD8z0nptG21WpVVfskVZLeWO/gI9aD24C+Yt3xP/4VGPPh4aFx9Nxr/hzZT93pceQefFf7JcalXk/4hPTb1yTucvtPT08bd+lNVfZpSJJwvMl1Ji/v0pPjf4jyswmC/j7lcwC3HWsUGsrcihajkXUjwBgcKyU+tyPlax3F9xGIu92uFotF/epXv6r37983cgNDxCJJEsDtMkGVQUmej/FjMXirNSCC71lY3pVj8p9FSCaCnT8TaTbeSUC5Tu5zP3zkA3XwPedUA3g4Nz8JCAyr+wYQoH4HfGk39SwWi0YkMl/OGAMgWEGhNOib5+jh4aEFn8/OztrRwN5q7uAu8z0ej1vQmCxm5ikNDsDBQRcrJv9mzDgyymDFDrhBhwMyuT5om+WAuTeBYHLOY59AhOcYNDnQaZkHfNOGQ8egeI57z0kSLtcX1xsseU2mweA+jznXmWzkut6cpiGxwaPeJFMAB74fIGGZNUDqgTd/7h3dVXtQYdLDMkPpGUzq64HEJBEzEJpAj/F3W0wGGhykXnZ/7Hi5PrfZwIZ1QYbler2uyWRSv/jFLwbkdRKdlgdsAWuAdcj723a7Xd3d3dVmsxkQ8Ryhk7JowOW5pC2ATveJ7722bTdYvw60+Do7Cp5vj3OWlK/RaP++hufn56bjvVaP5Vi+hpIym8GWQ7qdNcW6t4PqdeqEGN9r7OrACfiM39SLPnBbbYNc0Idc01uTJGgY46HfbDutl7FTOIDoJ/Q3gRT0LEEcgqAQQfTDRM2HDx9quVy2HalOGNntdo2M8lgaS4IbwBUEZtgdmnPkhBjq9CsSEud4Lj0PYCJszOnpaV1eXja7vVgsmn2x7nYipuVmuVw2W+2TTBhjxpD7aZ8DYIxB+jZ25Kv2x5gyNp5vy57HIMlE4zIHfrARxgJur0kR99++j4M+Xqeux2303ybSjEGYa68d23r7Vemf9daRA8asEzAO48taw6dIEsnj5h0stImgIO/EZdycCOogvhNSIZWMDQgmeqzwgZAbxtYENPUwRyZsnGXP/b6H9eRTIuyjmyijf8vlcnDkL2Qi45Jks+eO/9FLVcNTNVifYDfG7vHxsZ0ulbjJtsB+BHNHmxgb6wuPf8ou3Ma7d+/qr//6rwcyYDm2L+U+Hyo9v+hYjuVYfh7FtudzC9gQ++d3w2ND+Uk/0ok+DrqkbszTnfw9+GQ0GtV6va6bm5tWZ9Xejptn4ZQ44xnzJdap2DKCfsZoxjZ8h63kc59ygv2DM7i7u2t2jGt9yobnA56Q68EzxqBcZzxMEBbsip/PO7/TBlVVs79w44w3gSk4TvpdNXwvp1+jwPMS02DTbGOZC/MYxpt8Zy6IZ/ZO07GtMl407+SS2JD6fJ2v6fFK5oNdj3GI22UOJ9tivigxqoPNiVmQD9eRY5J1Gwdne5JzzTZmn/jt5xt/Wj8Yb3qNuW3myJDN0WjUkh3AYDwHbmy9XjdZH41GzS9NvvH6+rrtyPZ3eTyv2+VNVegnrs05yMQR+zD2wewjmH/MMfb8gQV7HFn6F9ZbfO9rnUiH75vvaE0+r4dne/jW1/fk/fcpxyDo/ys5sYcmwAqddwbZkc8AQwacWBBV+/dOWmE64Fm1Bxbb7TBjuqrqF7/4Rf35n/95ffPNN43MQbk7COC20J7sb2ZpOHvX250d8MPRJDvYZ3SjfKzkIaczmOOFzqL0Dtne7iTGxuOF4iLbwsYOA+z5nUwmdXV11cgxxgenE1LOQRWCt1ZoGGuUCgqpJ1e0hfZ5vPjbxB/zwbjjQC+Xy2bEnYFvcMA9tIfdoMialZPH2zJgR9oADnl2wNnvwTEJ5Pb11pjln12YCVKqauCMe430st57oMZt43/6DWHiXSg2jNknipW1jYb1hwEHgXmucSCTOvwM6xMXB7P9Y8OURo+2+LMekOPHRImJMpMtDkrTXmTjkHHrjR/3AdYt8ybODQDQWZaJBMaZAemSpI7X21tkDfVTZ+p46wquM1mGPHiHMWTg3/zN39TFxUVdX1/Xt99+2xIpLPvoJQoBQI4svLy8HBw9yI5Q1pdJQDtMnjf6xnMhJS8uLlrmm9eFCTX+tmz7dw9EIfN2zFLu0wnhe+TAu6YMEHsA71iO5adYek7gIcCf69W2he/TnqB7elm/2MP5fD54F5CxDLqCYITxi7Fkrm07bV7jfIZO4V4H/bIP9APnEZ1mrHZ6etpO8qB4BxV1TqfThkvX63Utl8tarVZ1c3MzwIO235BBjI3JIvc5E8msf/0uQvAtxFLV/pg37CuOPv2o2tsUMumx2Y+Pj81xxy+AfMr3Mdm2Mh7UQbshEbbb7eB4NMb58fGxLi8vazKZNCxszJj4zP+nrHsNJGFkW2Qijf7Znicxw/pwgpJJGBMB9udoT2LStPtuP2OZ5AOfO8HRWDtxReJEgud+Dv3zrmK321iXgL53fvo4aQdBPS5gDuSb4OTZ2VnbiWL7zW5i76AcjUbN77m7u6vHx8eWGOvkMPvRs9ms+Tkeb75nzu1HI/OsVxNRfpXK4+PjQF7ZwQo+sx5OP8Ryg39uLIqMeg4tI2BcrwHWp3cw3N/fN38t55bnuy1ur5/H2OLbMH4m0I3n7K8vFotGFlqXHbJJb/Eob/kBx3Isx/L1lR+zjs0RUGz3vFHAmM96L7kH9JJtpZPnqmrwKhnXB+8FVru9va3lcvkqQOdrfXqbk/55Tu6mJ2h5cnJSs9ms2Rr3zZjV2KtqnyyOjSb4yW5MYwZsG5jRSWXY2Uz6wV5zP5gU/pN+n5+f12Qyqclk0vDDxcVFzWazhp89l9hQ7I2D0E6KxBZnoMccCnNh/4HvEuulH2I/I/kDP5N+p5wmFnVbuCY5RXMPyUPkevHnPaxw6Hrbe9aAOZze+kmfLPlMczkeM/42n8t15q57/Fo+3/XZP+Bac37+bSyDH2UfMbnVHh4HJ7LO/Oqxqr1/4A0WtIm6nbTB3LA22OkJnrWv4WRDfDP0wvPzc0vk5dUNllsHqs2N0QZ0Et/b90q54hrj1yz0lXWecR/PF230Tlr022i0T+T1/W+VQ9jwD4kZ/+SDoDm4b5FOdobZAcfnFioLiJ1DK3ArHAt2klhJCOPk/fmf/3n98pe/rMvLy7q4uGiLMJ1g6vdzUjkjxFZKOKEYTxw9dnOyuLyIz8/PWxYFhEvVPiuc/jvwyWceQytWSCa320faur/00cFAH/frOliYSU7xv4kBnFZABU6hgRtHQUEO5HFOVkBWcFU16J/njj65LR7zNGKuw05tBnp691h5mlD0NYCkdPCRacg3b5VPIGHZy7Fx3/P5FAcFkzii3762Z5xzjXtdup0eRwOunD/+tmHyuFon+Hvfb/DktXooS8cF0E89XJ9kyGi0J/d6QMuAym1h7ZoIZmzdZ+bTRAu6xEfF0DeTMLTNcu9r02nwjh8HYq1bfD3txUA7UJaJKOiQlM1Dspvr2wklFIKI1oW0mb5Mp9M2JgQuLy8v2zHk1hM4D34+gVTIbI7ZHY1GdXt72/rNrqYMYmY/q/ZHMvfkI4FQD0BbV3n8LIPIk22c5aA3xlyfu1eq9kcPZ4D+WI7lp156OqWqXukbPrMNMcGQn/vvDED6bxwxYw2+d9Zo6kd0gm0DjuahZ/MZwR1wtTEO7WC9k41LoCMDOIwhu6gYExxRkhdNkD0+PjZyyccrpT6bTCYDXcbuTvScA8RgBvqZ700hKFNVrU9gRu/8ol7PA2PKiSAQAuBNkgC32207HQY752RAcH/uaiVYtF6vBzaSYj+DMf706VOzDZB4SUZSv4kjxi53Faf8G4fgaNuGmrCp2pNatte9nQ+Jd7wWkuAyJkwfJdvsdVHVx3HG3JbTxJX0zX1lJ2eSJTw7jx6mDcY9xlvG3F5PJoaYa16rsVgsBq9acduNLZz0ynHN7Mi+u7sbkLfgM/q2Xq8HQUbvJuV5+GDoCRIC7KPy/Xa7bf4y+oB2eR0zjrQr/QDGNgkxfM6eL8fapd2+Dr/RCZlPT0/tOEXPC+1izi13tM+ywNzQNmMtnpWYjjGfzWaDVzikv9Artk95Xcr3sRzLsXydJX06/kYnOShj7JMJRtbVVdXwQHKj6FsK/5PMZR2NzvZuJCdMoxfBPpvNpnGdHO1uXUcQJXmIxL/eGJLtH432CTqbzaYl+FD8mjGSy05PT1tgZbt9eQcoCc95dDD3gQ/BkfCwtAV8xv2MtZPdsD+2ixyPzjXYCI6/BJc5oGWsYRtFgXsFCxlj4cuk3+P3M3It/xN0YY7MjZgj8pj1/Cru99xRLBfmKW1XjUctQ66X74wp0q9yP5MXMZZ1m+mXxwC57+HZfA5jAhY5ZLM9rsmJeVw9T66/xz0m/je2p16STpHbp6eXd3Pib6AjLLskxBqnJubPxGBzqviFPpkEGWUtXlxc1HQ6rYeHh7q9vW3vU/d1xnu73ctJO+PxuL3GaT6fD4KMxnPmvKiHxIS83hjRn1sPe35SVzMHjMN4PB7shE05YC6cjOp+WrYtLz35/iGM+aXx4886CPr7DpYng/qYSJ/lfGhivaAzEOIfPktF689xYE5OTuqXv/xl/fmf/3ldXl42pwoBdZ3OmHEwzM62Hf6eQTs5OWnkD0aR7CacZLfVmbcsZpPWdvRMgnixGUCYSILcwjDaWHucbYy4lownAJbJM7Kz+A7DzH0+qsnv1DNJkuQj4Io2ohxS8VhO7YRbcdAPdkkyDj5uIgMr3IOM8qw0nmlc3CYHWhPcWqboH9kg/hyCjmfQrjSaafQYE+TMRIaP8jwEXnzEStaZBr83B8w9JGyC3ayH8eHH80BdNk4uDtBRl40BbWJNA7zSsHk+85k5Tj3Q4c9tKJGjdDAS3Oaa5Xs7J70AWlW1rCOv19788Lfl2v2wg2OnxzrBzlSOA/UBWDL43dsF7rZYBybwt56lPTgh9J9rkfvVatWOJpvNZjWdTtv9y+VyMOeANNc1nU7r3bt3NZ1O264NCK2ezHs+kH0DRPqXR+FYlpkD2yHG2PPfCzbQnreK+wsZ7LHGRtiJOpZj+VpKOn9Vrx1or11/ZhKlaq/PWJfWO3awfNzUbrdrx/n3inUYOJECycOudNqYtt7OmfXtbrdr7wn0994tSbAE28Lx3uiA3W7XMKTfD4ijilP8+PhYHz9+HOhF6gALOfCSWfS8U4n/CeDgCKf/wPdOLLFj6D76Xc05Hvwm0cW4jfeCeozQ7ySogfGxPcZ2tIVrNpvNQAbByNzLqQTIno8dpr480s12YDTaHwdl253yb4feNt342CSXZdxy6797Dn1e23um5zXl2f+7zT2c5nF3m3y6ip+NDDG+6Xt5nHw0nn1TBzX5zBiHOaSN9sdYTw58Xl1dtQRcst1zFwfvC6O+7fYlkMo7ldh9s1wuB/4XQUD6f3Z2VqvVqskkdUGIsb5vbm5qs9m0dwSDr+2LgAscfCSx2euK38wDY+WkPvuwxsheT8yLSUPLK0kbXo+scZ7BkWtJtvLb68FtM5Zjt3kmnhknkehcVXV1dVV///d/P3jdQfIaXkPuU2L2zy1fmuQ6lmM5ln/4kray6vUuO/TEbrdrGyn8eQZuqoa75409zHmAVRwUq6pXfiw8wXq9HpzC4QAgmCn1Hm1y+4y/0dXYY/vl2CIwJ/oVHc49q9Wqnp/3r4jg9/Pzc7Ob2BkHK7DX7i+2HB2+Wq0GvCubWTghwfyvcRt98ql3PqWDe6v2XB9zwXOwx+YZGVs/g3mCc+BesL9xT/JQyIN5QM8h45Kymde9hRUt38mr9fBr8m3MkduRdfv5eX+vTz0fMfuaNrbHgxoj2KdEpjKpzpjGz/WYeqySj8wx8NhlIp/xjU/IMdcELsQXIm5heaVPvNbBbSXY6nFGXll3rBFwM2vi8vKybm9vB4kNxoUOuPJ8EtRI0s0xswyNx+MWALXvxNiwtvjhfs+Jv/P/lqmMvyCLxKOqauDLMp6sV3MM5v3cD3N/Pez3h8aDf3JB0FyIfJb3eEFb4bJQ5/N5m8Sq/XnJue03yX4WjINrFoQMuKB8ELA/+7M/q3/8j/9xe88PjikOHYayan/Ejp1g9xOHm4XN81ESvOOIfuB8e9s396TTj0JKI4AiwOhztJKBDdebZEsFaQBiEigV2fPzcy0Wi9YmHELmLIENStIAzscrAQj8bjzIIhtkk2kO1DKPHmf6gXNNMNEEFhkuzInrMIgwSZbG2O/jsaJnPE1A8ZmDnDZUlhn6fHZ2NiAjTYBxjzP50lgyhyZ8Tbbudi+7HHy8SQYDPZa5vh1kdKCOucWgAeL88nAHf5xEkAGePFrBuoVnOIPPJY2C//Y6pG9pkP059wMAmB/rIwczmVuPi+vzZxh7z6d1YY67HQSPl3/TtyR3fLSCZSTHC1mhpFPCZ64rA6nWkwT1DaL5289yUNr6z0FYO2esOcsgBaekan80DeDo+fnluJ537961426RN8sa64EdFNvttq6urmqxWNTp6Wk75pF2GBh57SexlWuS8USmPf/Ild99Z0eVHwM36rM+StLaO54NqDhK03qGF9s7EeRYjuVrLz1HhYKO8tpO3WdC3vdnhj31O+hlfcUOSvAleod6+TyDAVWvd/kZM/L5oYx/+gExZLIFXWTCHtKfYOLFxUUjkD5+/Njeq2S77oQrv0Ih8R0EUQZofaS7ya2zs7N29NhsNmtYqWr/mgS/b56xGo/H9d133zXsYNzl0zmwHyT88T1zaCfZGId5JmiEHubdV5kMl9gOQovEndTdOOWQnMgh91kmE88bzyTZYlue6yDlMbFhb/0YUxoLGN8l5jCB6Hv9fAcz/Szm3ZgiCR6vkSQ0+Ntzy7Um15IQNZZK21413KnhtQsWZ2wIlqELGF8+Y3y8nlizyLnXtY8B41muFzkiActzQL9JaKDvPtKLZzFe4/FLItloNGpH+7E7lODofD6vi4uLluU/nU5boJSxZy3ZV7Xetfykb2l8yDyZoCOp1MmHveMDvS6dzIGv7VOTvP7xTa2rWF/sTJjNZu0dVrkms+SaOXTdsRzLsfw8Stro9Pv9ufUDmAfdmO+Fts3JgIz9ZHMX5saq9psRbDf530EdbEb68gQZql5zi/THPGgvqOVgAHWQJIg+d7KZX8lE8h32lgQkin14bCvJaVXVbCg4rmr/GjaCncYr2GgnBzGmubuVsfB1ngfmF940bTVj4vk152Wfwa+fSM6P+XKg2nOegTnwi7EM35kTtJ3OQK1/Z3DJxb7UIVtoLswlP/O6MpeVa4uS85RtOFT3W9xP1fBo4wxyIes55n4O8+3PMlmd+mkDspcngfB8J8vySjySQZ3QyrhlTAE9YWzppAJveqva6xHwpPsLP0oisXd8O1HXx+LSxpubm3p8fKz5fN7WFf30/NCvHg40NvZ68vpJHpW2Gat6owMYuWqfJMdahxc3v8x6xqf1ccDZVtuO/N468w+FJX/WQdAfW3KQewEDO/TeIfWW8+psZf9tEp5rCcTY4cawfffdd/VP/+k/be8A3e12g23aPcee9ljQbfydGWxnmcxUiKmnp6f69OlTW7R+l0wqZwKz3iFg58rGjTEhW/ju7q7V5b4ABByYcNaYiT3GFkLq7u6uga0MVthQOqODYoeZOgku46QyPlX7TO3dbn9smdvksff80nYc7gym8Ww+SyIABWVjYKXmvlCnAYBJCPrG3KRRtBxbvtII2wg6C6anDE06HSJLR6NRO9bAa82Za4y7M90NVkyw9QgLrqGvNm4cmUIbMcaUHJMeOElHIMfK422D2XsOBi2D5siEd64kCHTw0+uBcfA8JGmeADHBYc4v3yEDdmggtbbb7WDHS/bXz2YdpMwk2QjQcODY5KT77MwuA40M4vNMnAE7RF5bHlMnQXjcLI8OGhKwRs+gx6qqPnz4UKvVqr2DbT6f18PDQ3tHiAn60WjUkjOur69rsVg0Z4ogYYIQ/3je7Qwkwctndv48Fz27+EOFsfT/6CSD7s1m015gn7ri4eGh7f4/lmP5OZQeEWN9UrV/R7CJF3R2Bkb5rqoaMcIRiHxWNTyRhOdBnoPNcCTt1CZhkY5xYhtjWuO4fLWC32/Xwx4U6uAYzoeHh/r+++9rvV63H2xS1d4ZdoAgyRcHMxgbBy2xIyZwMpkqdeXJyUlzfD03s9msHXmbtoPrqvaJeMY3vFvaJJ4xY8pHJqjxGcevYZcYpyQM7QcxJmRG4y9lAJQgT35O3zx2xkL2nUxmMMaMQc/2exwpxjCeV+yb60YeMsDfI8qMUXhO4j/bR9te+2OeM5MiyPchPJm403KYyaPWB/TPAUuvOQcpIVn5zqQo/lKevGNi+Orq6tVc4mOAt2nLePxyDK93NyI3PkkEv5Vngx2q9sf0cYwY80b/0F9nZ2d1e3vbkhvw+wmYkvG/WCwGO12r9gm39ndTJphTJwdCijPG9pvQpxBllg37GonNaXvuXqWf6Dnuo04IvPfv39f3339/cM1k+V3w3rEcy7F8feWH9IH1EjxfFvQQGMc4xLrbCUO20diq9F2pi88cBMFuVFXDN+ZDsVMkD1unmZfxM6qGnCp9dyLdaDQa7OYcj8dtYwV63e+Bph080+/BNg/qnW5+9QLjN5lM2i5PjlinftsLJ/OZ38BmOZHZgR3zm37XItgAW+fTUIxj+NtJdzy3h+dI7mEHr3Gk5RA84PG3jaTeTACnDmNL81DpQyWXmve6TmMzJ5aaU3KwP+v1uPAc+wOJN9x/+2BuW7aLes0nZvFnnkfjOOIjLq4vfzPOPb3iZIWMndBOkuBGo1FbR+n/4IMRQzEXx3fwZLvdfsezE8qsP5Bbb4JD/quqLi8va7Vatbb7WbSN61kzDw8PjeNj/dDW0WjU/CnHkxh3/AbjXXOzxryMB/d5vr3m7TtQDxjfOs6vW8hALbKe+DD9Ic/7Ib/+S5ZjEPT/lXRS/VlOFtuQTe7YUc16e5MIwW2DXlWvjA/l3bt39atf/aq++eabZsR8FJeJo6ph9ouPpiLTx84T7QcM3N/f1/39fd3d3bX+8f4WFpGDAzhuJj9sYKr2xpxi8g1wBNHlBWtFY0c9A3E5xgCn8XjclCGkCrsJHRg9NPeM83g8bkc/2PnmN1kdDqJ4x5+DrH6WlU3KAoqYTBGyKegXxQaxJ0c9YsbG1cFaO+POHPO97gdyZfKEtlse3WfvlLCh9bMt+55bEwLUB9BKMijXosfN4DkJItrj9rMmbFAAMTY8Toqoqu58Z7DOxW3//9n7u+XGkuw8H18AWSQBgh9V3dU9ownpp9CJIuxQ+Ap87kNfgC/G5z71mS7Dl+BLkKWQQrLmwzMa9UdVkQQBkCwS+B/w/ySe/VaiuiXNjKZ6kBEMksDeufNj5VrvetfK3K4vr/U4mAw2megAFc+1XqBY/kwY+jn8jdHkec7Koi4SMlwcmDV49rwA2E0CbjabASnqeTGBhPxZ5zgowP9JBEIypdwxDpBovK/N9dBnv5vT99Im6xTLuO2GM6po82Yz3GFAHbxz4OzsrF6+fFmz2awODg5aMNBy/PT01I6GOzw8rOl0Wufn581hyqBIAo9cm5YVj1kCpZ6MJ4n2sZKgnbH0+nICD8WAjtMMrIP2ZV9+30uukbTttrnWOci9CRbrTNto46pMEkBvco3fp4fjBr5h7Wc2rNehgxR2ln0965z2Pzw81HQ6HQQebGtsS0xi0XYCnqPRqC4uLhqWevv2bb179645uFU1wKXWnT5ZxTs+HTR5enoaHLlm+5U20PaYa9H74/F2pyr9w8dgFxptWywWtV6vW/IX7cVhBouym5OxZ6446o35d1JSEmI+2QadiywYw2O7x+PxIFHs+Pi4EYnIqAkAJxNavhOnpOOcOAWZs3y7zVlyjflZtlNpCxNjWR6NSfP6XQltxo5+nrEB17n49AXq7OEz/1g/mFhifN1+zy3+nX1LsAnPYZcK7wsFO+FrIuOsV55HkpoJIfyNxWJR0+l0gPEIzuH/WXeB01i7tJW+4L/RpwyAQngZd3E/Qd6Hh4daLBZ1c3NTL168qMlkUrPZrPWPpAXk2v6B59O6mzYR2EUfgXPRvwRdCYQav5Ecghyw1kmeQ54ysYxxt19P23g33mQy+eAVCLt4jdR5u0qP8Op9vi/7si+//+VjBLYxnu1M2lx0pe2nk8v8bs/Em9Tt0/WcQIKtAu9wP7reGHk0GjXc5F1P5hmsr3p23XqUwADYy/iPhEWS8apq8C52bC91kBzNyRu0AbuB3ibxj1cg+BQEbDNtYFycqObnwe0SbOQ6cCjj6LHw39SZCVzmSh08NTfnALSTrRk3bKYDWvnuVvN8fJZ2inl1+1N+099y/f7MMpy4LQOj5l/8DK+RXfwtY8L1xhb5fONL1+XPzAv7x1ja9ybfZpzpsXKgz/2l7fY94MLM2fl3Jjs4YQH/zFiT1ycgJ8jz4eFhS2DLen0ikdsMduZa+kWA1L50xlfYvEOiAzKcu5e5fz6f1/v37+v8/Lwl3Fm+7Y8zZ/atzTHiJyc/bp/b85d8qAOk9hXT12BMfGw1+spxJ/BqD0Mm/7gLJ/4my54drN0A3Aa2ahv9JlPe5G/Wl8rLzhqLxUSVlTDPQhHMZrP64osv6tWrV82Q3d7etqyfVI60Cycqd6yNRttdMiiPxWLRnFgCPhDIzsg1Ge/6TDaYqHabMHLpiGOQORIiHcck3jN4YsWL8oOgSoeW9jmDiPYTGEUx8TyylzIQi/PsoCCK3bsYDMb8vh2TYFZcXOPMEsuRQZgVlJ9vWerNkXdt+LcVqceYa2hnL8jaKwYRNgx+JtfZePoaK+TcmWdl7/alMWesKJbLJL0MVKmfY0m53kEey7PXh0EwxaAui9vn/lgn0E7kwI4AMu61YGDveeV7t59n+J7UTehAxthBWgO4XX0zsCSzCt2AfJgQ45kpK97Faz2Q2UocIUi/yJq0HuJaj0nKOSCKZ/TmxkRX6riqIeijfzkf1MV3Du4vFovBLgt2gH722Wd1cXFRL1++rMVi0Y4lxJEZjUbNseL9oo+Pj3V1dTV4v66zJm1T6JevsdOFHDi7jD45KNCzlf+S4jHNeXa7DcY3m007GnJf9uVTKB9zVK1z8tqerqnaJkRVfeiUszbRSZzI4eCM9a91QQZQHUTDXpiQMA7sJVHZyTRpk0Ed6wCfSJJtJTjx/v37ms/ndXV1Vcvlsm5vb5tDnA4oGMP25eTkpAVwHZTyzkYH3+zY4oSCFa0v0eU804l1EFgOXlbVgBDjyPOqGgQrjo6O2nFQDi56PhlPnusgJt+l7qZ/PsLWWBxd62OLIQjSx0p8bIzn5DsCwQRgTHwwD8YUSdAYmzAG/t+2gvb1/Devo8Q3XG/yy+vB/e45+J6TJEqT9GFtHBwcNLtmWSOoaIyZyQPcwxyB6SyvFPt0HGcMqXRwcNCCh7Tr6empEbqM19HRUZNFnp9yzbNZ9/hAEK4QsW4rZAvtNUlqjHlxcVEPDw+DE3bcN5IcuJ46IY8p/G3dtVqtWl8ODg7q9va2rq6uWsCS43Pt/9JXxh4d6deVIPMmeb3uTAa7v6wPZNHJaeBfBzMpfveVyWpkiqOCE9P2StqivMdrbF/2ZV9+GMV2Ku0c+s5JVMaGYCFzfVVD+54bPOxP2taaz0t+JG05XIL1JJgDv58j0r0jCztkvs4428EQ3lmP7gevPjw8tJ1r9Pnw8LBevnzZbNv19XXro7k77BmBwKOjo2Zn2KTDqx8Sazs4Aj6jzQ6qbTabQcDGiT3YBRffBxYYjUYfvAKBNiADxuwO8DG+addJRnI/EtcYD5rnM65N2UU2sYGJ53qy1OMc3Q4XuBNj0AyAJlbNZ/Mc1hJyQZszKOmxpb15rL1llc9tm3MckrOyT+TxoA9+vpMPMlicAc/05xjDqmp4EJxkDggsx6YANkHhLzoQR0IoPhqBO/tZPGO1WtXp6WnrZ++1bOZJj4+P2+vrNptNe43V1dVV4878CgJ0oLE1CbsXFxeDE0gyaMz42h/32I5Go7ZmfLqO5YB5N4/nuEfV0B+h3cxJvj8VHUzCrZ/H97Tb7c2S9uQ3XfZB0P9/6Q2yMxZQxGR/co8XagburNhz67IXNsrBwkw5PDysH/3oR/X555/X2dlZE2Yfv1pVTdBMOKFwHAxcrVZ1fX1dNzc3dXNz0xxajD1GlWOQ/F5QO1oJBmy8TJjk7jvGx+9Dcn302Q4nDmS+MwASwIYkszFQMgAu+uAjlaiXPrPwq2qwA8FEQSp7zyWEAH9Tp4FZBoep1waOLDT64mus7CyvNrIYOIxjEhA2qgZwkKGQeTaKyJHn1eRUgh4HwnOuTKIleeo1ZIVM+5G7PO6iR/TkGPHs9Xr9wf1V1Ywfz4UQtaEw6Pbc0waekXIDoYMM5/1kB5okMeDif8uKwTmAlXnkc9fVA4g5bgmC3B/PKyV342W/0mnhmSZA3V6PZ8qZ5y2Dtn429RAEBVwwpx5/E+lOPgAYj8fjdrRqrgfa4SBuAuPeMUDum0E377i0XmU3ONegS9brdQtmnp2d1dnZWR0eHrYkD8aU5JbN5jkr7dWrVy1Qannwj/WldSpy7PfTuV12oJinXfJueep9l04BMp7knttNYbx8vPm+7MunVNKGpYPqz9OxZA1W9U+LoH5sCD+2jVXVksWMrVhrDgy5fvSmdaIDflVDu2jy5eDgoO2KRMegn3FOaQM6wSeRcOwXeo/gp4+oNH5ix1pVDbLlbW+qqpFKBDNty+fzeXO+/R3ONgE9dqPxfDvyjAvXPj09v7uUseL56EvqQ/8RALW95AQD2uTA6673c6Kzfbyoi4Ns2D0nQ3l+e0FH483EGXxv4soYwcHClGsn6nhNeN3YN3H9tK1HBvgZORb2BWgPn2cb+N7BWep0ElEPt7JGqIMdv5l45DZlW9K28xnz7GAe9/G5jy6GhMV3dCLpZrOpt2/ftldHjMfjtrbcFj7n2RQIGp7n95aZdOZ/klBNqCTmwE9wAJJ1QF1k2ruOTGLl+zx5xdzA09NTe/0KpNnJyUkjqU0ouV/po6FnLJvoJl5rgByhjywj+LbYA3QTc5GYDLlMgpQA7HQ6ba/D2VVSDj3e/s3z92Vf9uXTKN9FVFN22SLXY91ijsR2gOAE+tGkvbGD+UHzGD2ezDg0eSB0JUEO4z+fsufgHven7qVtPm3JAVBew+DE6qrtzlAH4zjRxBw0dtM+98nJSZ2dnTWeFF3u4Aw4njEkWQ17C16kXo+7+dPECff394NTHPC3HTBNHwFeFIxh/psCtoG3wNbxt7ku2mY+gPpTDvk7N5jkdRlgMmdqObZ8GT/2+LTktswlGvd9jJMxX5JcE9/11mHv+fbZkmfr9SG5Qs+T1wPF85r23200Hs4gcXKYxq78j/x6bvh9fHxcy+Wycf3IDz4h73oHb9ovMH+NX0i7fKKk+SvkGbnl1VOPj4/tOTc3N61NPMeyPB5vk+IWi0VtNpv68ssvByecuLAu7VemX5IBzOS0zfd5/u2bW3bsH1Lf09PTIGnReDyL5/f74sFd9uffgif3QdD6cEFaYLwgR6NRI1iqtkRPVT/LOhWflbx3OlmBW9AODg7q888/rx//+Mf16tWrOjk5aUd/0TaIcDtTCBbCyK5Rgp+3t7e1XC7r5uamqmqQeYBDBSjASXTQwIvFhsJktEk0DDjKgQXONSa1eTZH8dgpQ1nwnjv6X7XNDHHWk7PrnRF1cHBQi8XiA+BlI8+Y4sj7fZlWpEmU+d0wJgJTkXCPt7Yz59yLcqdtJjQBZ8hpBgMM4iyffGciz9dZwVVVI+3oE/dDfjirz++pHY/H7XuvARu7DK5Rr9ePwaUVoHf/2aAbINBf9zvr5zva4m36HieAHwWQ6rmnMI8AVRc/n34YjHmN8b/JQs+B1wxtYg3YABrA8D+GiTFLgOK+mQSG9PW6geBJwjP74cC5x4x+GLTaOaJPacANvgwCuIZ+2oFIw+8xoB7PKYkU3vVo5w0Z8to0CHdAG8IanWJwx3XovLu7u9Y3SEjLFqQ5Ov7Nmzf17t27+vLLL+v169cNaKXcAdxOTk7q1atX7Z3JDjR4jTImvSAn68LB1l0Anf+RH8uddTZzb0BI+x0k574ewcoY9QD7vuzL73PpyWs68FX9I50otjkmLXAUewlUJH7YzvseO58mlxxUol3GZSZAKGDG1DNV1fD1+fn5oJ1k4vpd88ZX0+m0Hh8fazqdtiQQ3v15e3s7wK/WT2B5MAx9yLGoqkbuECw02cN9kDuHh89H0fJeqclkMrA5ficiwY3FYtGOMoM8I1Of9xWi93kWdXIqDGN6cXEx8At8VC42g+Cojzr1MWPs6DOeMS7IjHqwAnbYwShkBB8lsSHX+H9kKUkRcLjlnefxm2t8f5JF9pcSx7k9fobrSaLJsuL1mfbNtsnkDtfkGvUzMgmL741j8aFybdJGj6WJIScg0n4niDq5Dn+O9UcC7cnJSV1cXFTV85Fe9h9PT09b+7nPGf20E19rOp0OyFLWsHEpbeE5EFs+oox6V6tVkzvvckZ2PfYmjxnTg4ODtj43m81gJy7jZh8Iou3Fixc1nU7r9PS0nSLloCqvoDk8PGzr1FjWx+MSUOUYt/V6XdfX140TsJzkWLmdzGMSjKwrZIH1/PLly/r666+/M6HMJFpiSErK7r7sy778fpf/9J/+U/3N3/zNd65/41R+rMvSR6MQTEi7a8xU9eH71835GD8kF1T14a40dB+2zCey8VzzqavVqmEmcBPXmF9Mzg3fmp2f+KzYGutMOCOSgUh0A8P6vc7r9bq9N5CkP28u8Q7XzWbTcCa24fb2to0pzzX3CkatqoEtMm/ovlAH3/skF+xJ+heMX/I2zB+4133ieZxuBQZgnrwzNINrDuwaB1k+0pdJ3Md3if2MWXv4zrjN2NCySF299pmXs5xZztNXtK31GjKnw7WWQ9+T+MF42es1ucpe8fjles1YS5bEat5F7FN2wDg+HhfZdWKvd2Lf3d3V6enpB9i7l0ThxLvlctl8SPpmbFe15XjBjIeHh3VxcVEHBwftXaE8B13pxD1zfsvlsqbT6WAuGc/00xNnpd5KmXaMgT6Y92ZsrAOqtvwteoR7wPFwATzDHDv6sccF7PKzeuXFixf1H/7Df/joNbvKH1wQNBVIGj0rmhx4Fp6F1MQxP5ntmROcisaBRISL86B/9KMf1cXFRXsPKOQ4ZAiLnMx5DNFisag3b94MAp/sDoL0hpB2oAdF4cAlbWRxYdRzN6B/V1Vri8fG59g7O5e+O7hBJgVK4O7ubkCQVw13ebHAqobBCB+jgREkcAFZYmIEQERfDQTYncBYOSBio2KSi75Sj0GASRrGzAbexBxZ0ciW3yXlzGvGwUdIMQ5pfHuAhL76XVdJ8HjuuX7Xzt5cQ+53yo+fZbnx/QZLfGYDmsY8HfMEIlbqVuwmAnKsDDqyfdzvLB+K9YrBt48u3QXed+kkxh9DBEC1ATewyOws6ywDt55suz9J3nmtG4S675Y71iz3OdtzFyjjWbkDoifXyJdJYx9p7PnlmdTFd7TP7wOt2pKCZHw54Ic+Mih0Vr5tg+fAxB5EO+QzY2rQnKB9uVzWL37xi7q9va2f/OQn7Xhctw/gd3BwULPZrO0IXSwWra0+usfrOMFpyprXgte2+5bAzLrcoCj1Qa4N5MLH8fXaaNnYl335fS/T6bThCmNRy7Uxq9eYA1bYEwrrDGKC9ckaPjg4aCecjMfj5mCCBSlgGeqGJHJSDcXBA9Yq14EzTQIdHh7W6elpy5YFo3I9gdAkd2g7+vLdu3f1zTff1Hw+bxjSWNL2F9uA3ScREOzlJDsHCjwm2HnwEvob59v25v7+vkajUU2n0wFWI4iD3vfc8i4V5tkni1Rtj5Ij+ApOxUZhp7zbDx+CduMAcwqB7RztNNGH7+H5vbu7a8e0VX2489BBStpAkN3y7XGhoN+RWwc4PX+22dRFSdyXdrhnJxIX53Vpz/x54hqTZInvwFpJ9LheMLZJFvsc9m+SjGK8fa9lmO8dsPV8gEN8ignzg0/Hmp1MJm28VqtVW7+Qq+4f79qlX96F7LWfu3Dog/GCdR/Bx/Pz86Z7aLuPMbMfPxqN2i5XsJZ9VPuIzMt6vW6BUY+/+8jrZlarVU0mkzo7O2vvO+Z76uc3/TUBbOxIsi1kHnNh4h3sdnh42HSaZSWTKO3fo49YV7yXGb80cXmuoZRdl7wvuZheAWfaN9+XfdmX303527/924E9dsn1bMyKve6teX82mUwGiSnYIutEvgNHJNlvHtX4ie/cHuOJqhrwbE7UrdpyCrzL2piF+6nPnCAcI1ytk4iMO30duj53U56eng6Smkg8hzsCExNQ8TMYl/F43GwVdmM0ej4VD/8fm8OY2x4bPzhJMF8Nh82gfeaowCWML3NhnobrzbGCQ91f5s1zx3gZC1PMNZnLSm7bfozbak7K9u1jfIPtpNdB2knGxzxmL6Do55vzynakL5Y8JHV5bHocTY//8frNpLy83+1BFpMbNG+U7XbbvJmB5yP33kj1/v37xofzGZy9d0vi47KxjARQ3qOLH1pVgzVhbHh3d9deK8jJiSQWej17LpExXtdyfX3dgqPJq1dV84lp42azafeiJ+1TmYe0LmZ8jZ2tgxyLSL/GPD36w4Hb9Ictn3AOfmbPBlB/fv59+LvHx8f627/92++8rlf+4IKgVR8PgFZtgyoudr6tDFxfKq4khauGWcCUnGQE7Ec/+lG9fv26GUAWgQ0SWaZkmldVXV1d1f/9v/+3vv766/byahPLKAc+d2Z9LxhB+zgbn37gXO1SfB43gpg2gjjSngPqMplhEs0L2EENB+/s0NM3xgqiyuOBYgTgAMhojw07gGA8HrfsKxRkb6ebZcrBccaFdvB8FIgzp7yT1ESJs0VQwN555kCKlaTP8rdCGo/H7YitBBcJJjw2Jops6P3bASF/53Fy/wE82casNxW+lbUBuMeYOj03jLNliL5yjcm11A880yDLY5zXVVWbB6+7BBoJbHaBI4w83ydZ5HGk/V6Hnhc7H55zAwg7Ozwr+9jTCSbrk2Di+wSc2f98jkGmAT/jynOcIEFd6NMeaWiAx7ia/IXsZuzRz+5DrtmU06rtLnbkxuuLPpq8Ho22x+RUbcnH9fo5yeTXv/51bTab+qM/+qP2fhMHUsl8e/HiRXs/qJ0inkl/M1vRMuX3rVp+0hmmmIT1vFVt1wHjZNnD9lq/8N5qOw2ev33Zl0+t/Lf/9t/qf//v/11///d//0GwrWpo+1K/W7fbplPASuv1uh01Zhw5Go3aLnE+A9tU1UAHsfOQtWldx9/OzgaHOPhq+/vixYuazWZtt5htqHUj/SADPRMA3717V1dXV4OMe5IWIU/YDYme8u4GcDY4CD1JX8BSVcNj4U9OTmo2mw2ChR47J2/w9+PjYxtjAsQeK9vng4ODpp8JepKB7IA3z0Uvgrupy4G0fB+TSTPmNAk9fm82m3bSwdnZWQuAGptyikhiiQwoOjHR/kHaDjBh+lK7dD3f9QgArxnLlu2b708/0QRa4kiTHT3iqefkJ5lkwjP9S+bKNpc2Igtek9yb2NfzYl/VGM9+mkkofCt8o+Pj45Zgtdls3z2O3FIHz0Q+RqNRnZ+fD8hIB3FJXoDURHbZqQzp+/T01J7NM5DPTFjFv6E9xlTG18haJstyP/LHmmMtswu8qtqOaweM7+7uWjD0/Px8oAvx/TOIj56i/QRRT09PW+KGA5QOxBpjm+g2NrV+Mm5DZ0DEcyRuz/6kjP8mC7rxz//8z+s//+f//Bute1/2ZV8+Xtj1vqskDkUH7bKN5lccrEruhP/R+07KByfxmTk92wHrq8SV6HmwYtrITIbHDjoRg7+9CxP8yf/Gj+4bgZTxeNxsCPr48fH5RCj4XU4B4Nr0DegLbcTuYDOwD4wZfaSd4/H2dBPuN77xjkvmwK9UABfCE9ueuOQYg28zkJPcMM8xt0M94CfzJ5ks5uvBNcZQVR9iU7fJ17n9xlnJhZuPM47Lv3u4E4y5C996XHqcS883zPuZ6128zC5sTDGG4jsnTrq+Xv/tQ1nufZ3rsm/Epij8QdqA/4P/5nlF3vDpnIiGf7hcLuvs7Kz1kRM6XLiW51U9r3kSOexnejzw4ZhX3vF5c3PT3l1qP+j8/Lz5tsgBp1h6zVgWGWvPa65jxsR8neUYXE97er54zivrOGMf6C3mL+NLlq1cX3nNLsy5Xq+/00btKn9QQdDexFV9aKDt7DLpj4+PbTLtqPYmzc9KAgDlZic0ndGqqs8//7y+/PLLds47Ro8FhlNyfn7eCK3b29v61a9+VX/3d39Xv/jFLz7I1sYhxYFlAVE/meq0yYEJf+f6cgwpOKYmgqgLhUe9CV64n+f0xhfFy/GOkFwQeFXbbCqTTt49a2MIOLDxTaXhnQnsCLXT7DZzvwOjAAjq8c5dE0GAQjIovIPCSoa2+/xtkxmWKZNv1G9SwoDSoNKkW4IO5tM7BJAbxjSJoixek3bWk+CyvPSuz3VoxW7Zcz1+BvU6K515MiH5MWVt0G3SyevbBCNZ5zbKrtMGjGIgne3wnNDHHCfu4xkOCCag457Ua+6P5SKv9Xg4uE9Btt0Og+w0ph4byzs/Dvx6jTihIcfD/XdJcMD/lmvXyTPQCQZlzG+vrpwTryd0lR1F9BjP9ftK7BheXV3V09NTXVxc1KtXr9q79awHOL7u8vKylstlffvttx8kZWTSTuoW5hO96ISNHrjfVTJAwPrznHM//c/3Sud1+7Ivn1r5y7/8y/Z3OjXGjOn09HR0Ty87a5OjF+3s89ukjQl/1jsJZW6fnTfaiVPozyhc/+LFizo9PW1YFx1HnbTZeo92gfe++eabevfu3QeBOJxbZ/eT0W9sZmw4Hj8fqzkej9vuJ2MYsNnT01OdnZ0NAndVW5xoTFlVzd7TZ+/KZzwJkjB2HA/MfGRABwceG8F7GsGsVdUCubRnNps1/e6jRkej0eBVH95JiozZgcZW+dh13q8znU5rNpsNZIxxA3slWWX5sZ1B1umjd1SkTUdedvkmab9YH5Zh/nYbe453Oulebz4liO/SNiXWcr3GJQ7UGVMkQZtEq/uyi8hKAsvtMV5Gnm3jwawmY6qqrS/m/+rqqu7v7xthCulKAgPjRR+YW88xSWZ+Hyh4Hf3gucdXNwnM9SZRnUTq9W+iOXWFM+dN4NuHw+9lzI6OjgaBx/v7+9b2i4uLQUJDT77AjPyMx+O21ugXP1XbpMhegiLjTT32/7mfoDb3gxO//vrrASmWNqr3+zdROM3k//yf/1N//dd/Xf/zf/7P31jd+7Iv+/JvLybSk1D3NRRsm3EB+IYkmaphUODp6Wlw+hB/p65Jm5/crv3N5C2wAe6P/X508dHRUTs21ok+7CjDDppbM79pW4Fdsg7nmFvGwvYNW2Su8+HhoSUxgkHBkOA7xg8shx2DY4Qvwbbd3d01jOETWNi11gtgO1jpIE3VcCcdfWYsjHNWq1UtFovWR3MD5jw4dcJj4rlCFni2A4s9G2aZSPznTQquN+3drrqz9NaHMR/YOG245Tfrd9wh5T6vYZyMK923Hsdp/m9XmyznvbHqcYhOmM2xcL3G2ObUWHfGo5vNps7OztraIMmAdUJ9fkUIa5BAvt9Hi59WtU0YPTjYbu7K4viD58C8O5jw7OysDg8P2/tD8ftS7lhzPPP09LTpSY+rdZp1Gfro+Pi46afePHCt5Yz1wHrz5hFkhzoygcH+6PfFhbt8lt90+UEEQb/PAPUMMb8tMFbkJtQhDHjXCMUkbO8ZVmpV2+MNLBhuz3j8/C6UH//4x3V2dlaTyaS16eHhob0kdzqd1vn5ec1ms0ZE/MM//EP9zd/8TX3zzTdt0Z+enra6UQz02USzlbuDkmQWVdUgCwmlkMrM/aHdLAQMKc9HkdlJpQ0mOwAVDp66DzjGXow4rbnV2w68FbOJHmd5oBBoJ0qBDGQHKZxhbwLRxh3jz7FojL/ngusN8GgDbUZ50kYTfQ52uH/ezZoOfMoo/fRuD+aUeaSPHFHkozhMzliR9ozier1upGKC53TgM3vFdVmOPW67DHKPHHCgiWu8A8Z98fEw2Tevi/zOslhVjQBBBgCqzEOuIQeZadPj42MLwDl4ZCOXwVS3y33ztZYhOx8mkrJ+yxnF2f18Z3n3/zkvbofH1yCJH+sgG/PxeNyIIT6nXTkOCQhdj3cQVX14TAbzaEeKzzxW3n3JWub5rGPPi4GTd7dbBiybq9Wq/RweHtbLly/bvThFgMLj4+P68ssv27uiLd/WqzkuJp4dvGZ+vIaQWe9ItWy4r9xjMM33vs7ErB1ll54s7cu+/L4W5LnnxPYcVYrtq50R9LV1JWvz7u6uOVDHx8ct4zxf+eA16KQIB2LQdQ5iGUckKcA1VdWCoH6PaNU2COOjwkzAgMm++eab+uqrr9q7LElQ40SPxWIxeD8z2DBtELqQOghU0E/fhx+AjgMzggUpfh+NdwawO5MgEHMO4QX+5R4feekkEI/17e3twAlmvpgrXqnB2DHGfj5t9s4AiDCOiWJecKKRS+Tl5OSk7VQzmUNSn59lMiH9B/82nnS/jO/TViQW6hE71NmTzyxei5lQ1MPbkAG+NrGtn29bbl+MeeK37aSJRNrC3BkzJYnr55iYMkahnSbL+CFwxlrgfoL5YMPFYlFHR0dN9vC9nFhh4oc1zDO4Z7lcNuIng5zseraPjuxCjjlL3EeeMTcQxpBingMngZrUBc/gf3oenABsgshJf7e3t+0oti+++KLtHrXsI0PoV2Nu1vRkMqmLi4s2dsaH6Ez7lPiC7CigfuaGMTJ2fXh4aMkNmdjcK7kWd62pvOb7lN8mIbYv+7Iv//LSW9voy6r++rZ+xWZUDXdtJSYAJ9jvR3dVfZiITjuwc3Bo6GCwhXVl2mRjDk7v4BqOkSXoCU/J9ZwoQjt4po+Vpz70MMdfgkWrarBpxViFMabd4HlvgMlAB6cTYPdoD+3jPaSj0Wiwk80Yh2e53b7WpyY44IOdND5zEBV77wQccxtPT08Nd56enjZ7D1YwJ+267VPQ/p48Gucbo3rMk2M0z2POKBPCjQ+NIVJuc70Yk2b92QfLrL8zN+SSbTc/73FxXcbUrpvn2yf058bKub7cDj/bATzq8fP4TTIY/spotH1PaNVwl7ZlwomUtItNZSR3Hh0d1dnZWcOnyIYxEn0AE7p9fHdwcND8OXCafa6Tk5PGtxunoaPAZjxzuVy2Ne5X19Eey0m2BX3roKcxZ/J55jYtS4wFusmnKh0eHrZ33ePTek7oS2LD3rr8bfJ4n2QQ9F8CgtOhzsFMUsnfs1BZ1JzDnIbF9XJ9BhlQJD7yytukLaCvXr2qn/zkJ3VxcdGcJerFkL98+bKm02k7Fugf/uEf6q//+q/rm2++aU6KA4QeBxSCFw3GkUVVtRViglS00WdpV22Vlg01DjLkEwvH2QY4lyY5TFJV1SAgYKPocWOuqrZH/Toz2fOMcukFZTCCVopcjwOOQfQ7nAzMcGRRWgZ0KPAkF3Fece4ZYwIVDkCa/IHMenrabvu3wbQhoi8QNLTXmdfUzbVJpFg2rGQdwH16emoZLPxvObNBtdGzQTe4cAByPN6+uJnnQ5xaZnrjTV/TwFJ4V4KvZ/33ssdMLhoUOEjmF0LTZupx1h3rxYRhVQ2MKWNpIsZtoX6DLd9nAEsxwLcxct9NxjkgZkI5gZvHPsc6P2euLEcJNC0rPQBkYhog52fkXDJGln0DXfSHdRZ9s2xkENhEpvWU9drZ2Vkj9HFyJpNJ3d/f13w+b6QhO9xzB4NlCtKK+cCePDw8NN1swurVq1dNBpFTQMnJyUm9fv26fvazn33QBzsntMfg35mn2IZc/3YkPR+eH68j5icdYdYnx5bQTsuX5/27yLd92Zfft2JHz7Lbw5PWk9bDvr/naFRVw3Cj0WjwXhQwpp/Derdutm22LjL2cKJQrveqbQAUx9N4z+20A2sH7ptvvqk3b97U7e1tuxb9ClbH1lqf2Eb4KHnaZAc9s94J4lA37z3ku/X6eRcc7cBOJHmw2Ty/+x0ihyOGwSrgwuVyOXC4aRtj6+ASuNrZ/ia1OFbNxIPxg9+dat1PQV64xscc8Vy/dsIYxfbc+NEYy/jAut+Yws55JsP5e/eD73Mt2WYbfxnnmsDxdcavDky5X8wB7Umy1ngpsZOxWFUNiErmJZMY7cc4OQEZ9NpChuxf2J7mWPpe5rtqe4R0YlgwDnM0n88HhI5lAfzi02/SP0C+379/fucnMuagJffjt+KD8hk+FjuU8XH8GfNl/8eJy+BFr4/xeNwSI1i7lj/G38m1jBvXvXr1qs7Pz5ue8atejDWpH/KJBBYCodfX1wNZABMyj4w5ODN9L/QK7SMxZjwe1+XlZc3n8w9kaVdJefvXFq+dfdmXffn9LebndhXrdm8UYI2D8cAxTuwwLjA+6SXep92yTqQdTsyyLXcgy5sduI/XscAFul88C04UXEiABp0M7pxMJs2+OCjqNtoOgBGwoyTSUzdJedg/7zAF/7L7E7tLEAYbZ07PvC2Y0nPgRD36wXsMjbtykwT2OpN7zJOC6bGfzI1/jFWMizwX6SNRj69J3rPnN+Vn5tfzmZa55NWSY+MaB+Tz/l79yaf12mhcaQzrwmfMBWOQ8QPzOe5LPo+27dIDyd8xb7k5IseO9jtpjcDi4eFhS7h7//592wSAnPmkP2NrZBJfjmAquJVjqR234OQej7U3a3GNdZJ3kjp4OB6PB+9F9jvZGT/GxUkMt7e3A846eUcXc7ZV1XaxG+/5Pss0WNR42P5YyrLbyxzxd/qUKaNZUof/pssnGQT9t5SeQUxFxHWeLJMgPQHzPVXDxY9isVJJweaas7Oz+tGPftS2RxOwJCt9MpnU5eVlIx/ev39fv/zlL+sf/uEf6vr6uikwBz8xhFXDF0mn4aCffOaz7i3wdkYMEiz0kEcsTgywAYznwRk8jK1JFNpRVc1ge7Hn0V2ekwxWoDA9F97xSqFPZPEnELGyox339/d1e3vbskcYU2ebEfDhHpNgj4+PjRCk2Hn2+NowmbjwTi9eTp5j4KAQc0Rw1PXST2c4J3DkWuQtjzj1msq1ZiLXitSGw6SUDRf98Pc5Hsw/gNrylIEyt8k/JtEYAzLHUxfk2PWAkI2+25HBuCTC3acMPlMsNz2g1xtf71yhIDM5lp5Dk3GUlDOPtUHYZrNp5FWCnu9Tci6tYyHfLZ8uXr+Mg9cIn/fArdcdesuAz/LindyeKxOXEMaAtJOTk1osFoOAI/V5p5P1pfVWOm1VVTc3N/X27dt68eL5vXu5Jhn7zz77rN68eVNff/31B0dge94s1zyLneA9m+KS9jXHlLb0nE9fQyILdfachH3Zl0+52OHrBYDS6eg5+f7cTkbqRpLpsOus/6en7XtTvHuLdkGasE5Z0yaGTErYfk0mk3aaifWvM1HBPtQBJr27u6tvvvmm3r5924KHVcOjaDk1BYIJzEz7Hx4e6uTkZGDLTET49RfgCNti9DCkku9dr9ftOC/rMiefYKdWq1XbOcl3i8Wi5vN5w4UEdcB0m82mJS16XGgr/gpzRCaud+3RXif22U/xO66REXAU74tywMi43Zg3MZDtiPGCk82QG+y59XuSXOk3pF9nTJuOdl7bw5mee7ff99vXMk6iuC5/Zv/ENt+4znX1vnf/kS++TxxrjMI8QR71iCz6BmHCnHv3IPfZTvukHJJIT05OBjsy0Sm0FVnzEYPoBvu76KXHx8f2HmGvKepyv6qq6QP6YHyGvJrkJlBYVQOZZ5xNVrO+mKOzs7PBPNgHtp88Hj/vKGDXwcHBQUt+ZmzsO4NzIbGZUwKhZ2dn7V2p3IPu8elB9jHQQ/7chL995dls1uZnF2m1L/uyL38YJTmoxKS+Lu1m1Van5I5D7AmYAF3kACe62bbV/ISfZV+ThDBjZWO45JO4lkDmw8NDO5lgPp+3hGOOpsRO0u7NZtNsG39XPQchwJBgMtoA7kUPO1Ds93aC+0hAMi6seuZKedegx6hquwMXO4f9Y+yoGztOIZjkxMmnp+d3joIVOIaUcTO+Tl4MO2lMwzwgI96FZ9vroJ65yJQFY0eucQA1ea6ev+T6etwc9WegyOviYwFBy6P/zv97wclsK9f2/s/x/y5ez3U72JYYmGdk0jptNoeUsvixMci20/eqbYzC31MvQX1k+/r6enDKIycG+bUHcOBVW1/y8PD5+FkSVmezWRsLJ77xahPHC8Bl7r/XE30mCc9+NX6fsbuDv46tzOfzFjPymHkTgrllfMY8gbHnszg4zrpEn/GZdQqYmM/X63VLMPRcI4dpG3L95me/6fIHGQRN0tSOCsUOalW1hWRFa4PM/Q50+RlV24VrQ4Mw4+h88cUX9Ud/9EeN6LCR4R0qBMkeHx/rzZs39bOf/ay+/fbbWi6XAzImj1Ws2gZBHRhy31lkT09PLUuUMUpFbwH2uHhhcC1ZQb7Ov3tGzGPGEUcmNrzryAFXk28oMpM7VkY810CF5zroi5KECDT5gxIBlDlo7CABSpM22rkka4TxT/CEUqVOwA5jCuCy8TLpkUSO5yoDrg56UkzQAGzSSGH0M0DYA8f+LIEKfxucpJGjfQlY3Z58tvuTQT2Pj4naBLAJhHqlJ4deXwb5ljePkUnF/J1/V20Dbsx5ti3nyll9PWBmYoS2WgY8vhkETYJuNBoNjiyz8TYQtd70WBt4JUgyuHAWH4af3x5P9Bv1eac6ffFRbDyjB2qzz9aR1Ecdli/PxXg8bpmV6AHeRXd/f1/L5bIdfcGuy+yT9Ry6wEcXvn37tvULW0Y/AH4HBwf15Zdf1t3dXd3e3rZ1bF3s8XTwmrEx+HEfeyA2A6sp9y6+n2BAJq2knO/LvnzKxRgqHdmeM4C+MaaheO2aYLBj4mDDcrlsiWbs8DaeszMGDkHf+Fm0y0lU/D+bzWo2mzUiJo+dQp9gA8hov7q6qn/+53+u+Xw+CBDYMcOBHI/HdXd317JsfQoGY0qg069VcHCXevLkEnQYx3GNRqMWgLANBPc5UY/6sLPz+bwdiXR3d1d3d3ctez8T/JgPxmSz2b6uAb1P+4+Ojuri4qKm0+kgqdEJVx5D7AhBFgg+xnQ2m7W6ZrNZu4bgrDOs7V84+9q7D5Hl3okYiQddnPCUOM/Xp79mbOG6e9gq/UE/J30efhtXWo69bmg/OMw2EJuY9SbGor7Ezr6fuUyb6vXP3xmk9dq1L2TsimyAEfwM+zMO0pMkCmHK8yGEqef8/LwRVcgbpCuy+PT01I4NHI1GLWBq8ohnGncy5lU12PlivJ/+G+vea83+Cc9Jksl+EOvdcmT/erlc1tXVVY1Gz7tCWROWdcvNarUa+JOTyaTOzs7a7gCf1MTaYq7ztCjm2vo2gwsnJyf1+PhY5+fntVqtmhymX7Qv+7IvP/yS6902j/8dFOoV9JaTNJy4AlawnUMXmuus2h6/axudPiY6GXuO/uWkANtc6icREHt6e3vbgp8+seD6+rrhWfpmrGNe9MWLFzWdTuvk5KS9tgael7b5eHT6lsk7tvfYKwd52eVprMtvYx9jAtrnsafvjBG4kTaAqznVxe00Z5kYzQlByX9xT/Ka9m8cLDY/gxwmtjOO28UlJX+R2CptnPHgLu7CXGC2zRgxebXEtfTf/cliDJpclb/P/vV8yuRuzFkmFs65TWyQ87ZrrDwXLolVzUURL6na+hrI7eHhYTvO9u3bt3V1ddXwo9tovhPf12OAPL57966djvH+/fsWCGXNOKBqvwcMaJ0wGo1abIMxwY/FR6QOr2Pzok9P25NBSKa1THn98D/95DSQnFPPTcYNjNuRC+JenhvwJrELsHDq5JQ7y9zvovzBBUHTIFt55cSgvKs+DIL6Giu/nnLhuRZ8vnPAZDab1U9+8pM6Pz+v0WjUdv5sNpuBs1f17LxdX1/XT3/60/qnf/qnWiwWzSDb2XI/lstlHR4e1uXl5UBIEeKq4bGozsTx+9fs/KciY+GaUHHg0Au36sMAtMGPx8fFx0J5DiB2nFlkZ9VKzSSVg5/MH4oCIEK/GVPAlg2zARh9pY82rA48Qloxb/nOWZ6ZipVnW4l4bAGTjBd9MNABaAAOqRNZpY0ZzHP7KJZ7DE+SQbSxR/T4OVzr7GzusbFIhW1Fb6Oc69P9M/Dw9fzN91byadhdNwbL857XGGDTXsbFffMOBo+L5z0NCWDQiRVeszyHdgL+05nheDPLg4FFAhEDJc874+iMf68DiDJfm7o0XzBuebGOS53hNjEmgADGhXXiNQ2gJ5PRujCNNv/nmrPs0FcHeWmn3xtlcpOgKOR9VbVsNNrjsSZpxbLC+nl8fGy7knjfdDpmgLhXr17VYrFoJGVvfQKarF+rthmijEvqba9Nf2bQa3tqubDORD7ToemB6n3Zl0+tpHOcOCt1dTrzu5xM61/WE3rPuK9qmHE/Ho8HRHk6o9gHvx85v2dXFnr49PS0Li4u2rtcnKHLc4y9CbpcXV3Vt99+23ZOmbzCuSSoip4AM3nH2OHh87FJ0+m0Tk9Pq6rakT1+r8l6vd0NZiIHxxOSie8dLKavPdICnYyNceCUzwlWcD9YFIxt20nd7F7lmtPT0xZEwr7xfJMsfici42X7h02azWYtYxnMenR0VMvlssbj8Qc7G1xMJDhJh/Y4QNTDAchFEiQ9R9qymqRW4gyudT0fsyV5r7HOLlxrP2bXek6bZ2wKVjcRYf+namvL8btoJ2O7y0914q7bZGzAPU48cnDQCaVVz2uJoNnT01M7mYZ1i6zzmhHIIRK9TLixk7Rq+3oUE0vG/dSHTgPnPjw81Pn5eauPHeDIKQQvxFbKTgbnjbc3m82ASCKoax1s/O014Hbgv87n8zo5Oanz8/OmW7jPiYjWD8vlsiVIn52dtffTpWzal8lAPH6gsZ19DMZ0NpvVV199tXOdJIm1i9Bym3Zdsy/7si+/vyXXrzGr7Y0DMxT0JLrf9gqMkRjTPAykuoNfDshlkiz6i/pM7oNNzQvizxqjXl1dtR1lxhFwJbe3t01H8poFbBmBDJ/0xn1wMdhb21J4XWNoNqhwL/fxjnmwKf0gQALPZ16G8bL9Z+wfHh7azleSazhulHfQ83xsGYXxpf1wDMxx1XPikE9ogYthfMEA4BMfZ+oxsr9C+S4Maf6POhgbb/jIuvjfJbGB8a/9MWOH/Jt6esXXZTCy16Zck77XY2Ku1P3MoC1tS/7G+KKHjzyeiXPtr6ZuyHkzZ2bsVVXNb7Fs0zfzc4eHh3VxcVGHh4d1e3s7CIRaFnzqBxjKiWjgTPwtsCO6rGrrX3HSj8ePvzml0T4++od6wIS85o9kDPqOTqja8nLoHuYkfZHUzTzDc40+sf+JPFCHEzaSE6Vur92Tk5O6ubn5wP9Jv8lz2JOF33T5wQZBdw2YjXEuJi8e/22nKgMoPj7HihOBsjPlII+fj5P6+vXrury8bAuDTHCDg6pqu4HevHlTv/rVrxppbRIGQ2GSgSOKOD++ans0I0aTPvGsHolgAj4zABy0syKFIMPQM0bOSO45VNTnIGV+RvtwtHHwLAs9ZQpZYBK/p4jTmAJYTOKYKGAbPEa9qgaEFe2EeIK4op0Ga3bmHXBwoCDfPZVGjXaZ1HQfTVqarHGANLOhbdSpB5kxIPF8sW6ciW0DkKDGcpfOuoNaVujul9cvdaYCpj3+7WAMz+U7H9vndnuMHZwz+WT94B/PMYX6c64M2Hr6xrKRO1483pvNpmUyWsd4PnxEFn8nAOLZblfPMcrAo0m8HunkeXfQnTFOB8O7kvLYLwCQx9g7me0YAa4B9dZtHnM/2zbDbbbse3wo9MvOynQ6bRn8m82mZXVBdCGbXJMgkmtxbEx+Pz4+1tu3b+vi4qLtuqA/XqOfffZZffPNN3VzczMAU86Us/wzDn5XnxMhPDZJwDm4bNnPkjbaAIxx2Jd9+aGVnl1z6TnYiTX5Pn/7nnSO8lidxIF+jgkJ4+EsOMIvXjy/055jhSBabF/Qtegu3pnM+z/BqHlKA39b76FzFotFHRwc1HQ6bQGD6XTa7AIOrY8lsi2xnSXzljEGd49GowFpxrg8Pj6/25OgLH12trAdTsbbR9lid/w6Cx9pZse5aov50bXeaWHShfGifoKfOPWMBf8zXtgYJxGdnp62o92N7W2HmSfLEe3tYdO8zvLZs6uWZd9rstSkR892uH3uA3+njPfa4WvdFvcNPGLsSz1JAPaIZLcF+bRdNE7BB0n/qaoG2N4+krGr/TafVFS1TbT0zkQw1MPDQ61Wq3YfCcV3d3cNo3r9393dtfmlDSQusCbsT9knYj3RJuQejJWyZx+QHe08B3nnGiesMvb4gCbcmTcS1vDvEkv6tSH4M/ha6IfT09OaTCaNTLMsMxc+xvro6Khms1l7jzDJFKxx1q3xPUFndp8zjl4j6BbIrOPj4/Ye5l2lZwPyu5TnfdmXfflhFeOnqqENJKAGwV81PH4Vu2Suj9/Yhgxc+vQJc14kuaFv7f/a1tFGeKbNZlPL5bLevXtX8/l8gFO4l/vX63XDeZxicHBw0I78NR/gIAy2he/ogzlmEp3Rx8anfA8+pH3+jW2EK2Hs3Eee+fDwULe3t22MwIUEhsEV6/W6neKAXaCd5lew+eaCc6651u/zxvY7IQ/5Ya6NBSwXvYCi60iZcvnYd/aXsl5scm4O4D633ziNOUreLH0uno3MJ071denjGU/vKl5fbqfvc8KisZfHLsfGsp1jl+13Hfbtsn20ASzj92/CMRkr2V85Ojqq6XTakgl4f6jbZzzE5yTJHRxsTwhifS4Wi7YT09+Dt6qq+ZckQ3D6kLGWZRk/irWOPvAYmz+kP2dnZ22HvXWUuWzG5fT0dOD3Maf2O/wqB9rgMUbm0S/WyYwfCRq75vzfCwf+YIKg3wW4bXy8cB3oSCKb/zme0BPIJHvC7Zg7oMh3EBrcb2BwcnJSX375ZV1cXNTBwUE76gvDyT0QIre3t/XTn/60bm5uaj6fD5S+s/xt1DEwV1dXdXl52QyMA4EQMyxuDKcVF0qGBeYz3/38qhooJWccmzzhewdIesEVGyYMSC8bwQRDjgFzZdBi42WigLlCflAkfI5iOD09HSgv2u8dnihhB0BxWnm5+t3dXSOQIBMAF/QhdyWMRqPBZw4wMg4moJyVgXHLM/s9vkm+pBIzyefdjFbYaTB3Ear8zTU+zslZb8gMz/R9yK0JNxeDNwcsTRBbxg24UnfQboxQ6pMMgHk+eAZ1GLjYyDC2tDev55mu12sIA4/c+13BCYw8H67TICrBVe744RmeZ+bWpJsD5qxHxtk7Oh3ottx792oGBV2sC5hjyC4TUC6AGMCDAZwBh8k1B2WTaLO88b/nkDXCkW9uNzrJ73/j5e04K9bXDuhW1YBYh+j69a9/XZPJpKbTaVVVO2734uKizs7Oajqd1qtXrxpxieww997xSTsddEXnGfTTX6+pnswhs7vsOevNICu//9j/+7Ivv8/FOtx20d/bpqAf/VnVh058rjPwV+o+7uHzJBPIPE2HGh1th7Vnk46Pj+v8/LyddkIWrROQuBcdcnd3Vzc3N/Xu3bv23nvrVetb27qnp+1uRicwclws7fOxXnY20amJaeij6wFv8Fy+46gzB0BtO52ExO5/j50xqZ14/ABwNe89tV3xUW0cScR7cnx0k3EHR7AzZowluxf8Dp4e2YANIJhDcbDLmJFnY9/AWSZMHJDn2YnFXCz7xivMk22WMUwSoCZFjd2SvMp20abe2vNYJ1FkUodrGU/sOG11UlriN3ByEmwmVXrf2T7zP89FDiFE+Yx3oPmUIubbCbIOps1msxqPx+3IfWP7qm2CGokKo9Hz8bj4ScZGyP/x8XEtFot22pHXaWJdkgYsz6wFr2mKE/iQH+9qpw32/7i+qhqZVrXFluDGTGwmUfn9+/fNHzw9PW3H/Lpek2Csd3zG8/PzFgjt+SCs/6pnfWU8nb/BqBx5Tf0kXu/LvuzLvlCsN2wT0xcEt1RtcWXu0PdveC7zUOYU/Azzf1XDTQM9vIwNwbeu2ur9+XxeX331VUtCpr2bzWZg96z3saXr9bouLy/bKQToeCfEmFsy9sbWYmvyFISqGpx6QsHGUAfPMFdzcHDQEpmenp5PCWQzjZMLwSMOxvj0Bn47+EM/wXTMhZMa/WoJcAH42LwayYPmwoyTGG/je893JnclJ+X5SjlKO25ONG2q5c48ojGwcWnWzTMTV1pWezxarw303xyU11IGFnvPoOzC1ubkEoubq3e/PD/JC6Z/6r4lZ+bicc/gHG0012ucRrCd45t5neBisWiyh86pqhbgNyeGvmBzGXWyoYG208aTk5Om8/wqu6qt35gywzrjZBWfjMeaYL3CIbKm7Nt405b9IOpPbp+C38s6I9Ei+Xf6Sd3Hx8eDxArG2X5pj99Im5E6/jddfjBB0F7pOaRVQ8XkQbYiYTKrqusYUbjGhp9FYYLd2dk4+3YO/S7Q+/v7trXZmbCQSMfHx/XmzZv69ttv6/b2thl7K/rsK4JZtVVkCCTkOM9yADeDjxSTCjzHIAOl4zHD4eR+O4MeP+8YcDHh5YCf59k7izII6jn37jOTejjJ3knQU542vASn/WwbSpQUfYN8cbYzZAfjx3GUVqD+cdtpH8dGGUh47BxotlK0IbFSs5H0HNlgOoPOII55IlDkwFIabPqQZIUNBM8x0OC3iUXGm/sNhD2HyEvKBf2jLgewDF6qtgSGxwuQmrLg5/UMuXcE2OjTfo+HwUAvG9KZdiah3Df+zudBOro+y0caKca+RxB6TeeRth7T1FE9At/gK7/zvLk91q8Jgv0d40gf0dGsL9qVesbZpIB+1h79yXnBmUAn5LqG+CcZAvlBJ0O4nZ6e1mq1GpCIEPgOhvK/5Y53T/nd0o+Pj3V1ddWyVy8vL+v6+rqurq7a+Hi8ejq1F7xELiwjfG6QnsXrwTLl9fixku3bl335FIrBf2+NUazHPuZIJx60Lq/aHl1ftcVwBAQmk0lbZ8a/6CDqMwY0znQyXNV2F9HLly9bYMcJeCZEaNNyuaybm5u2AxR950CHdTxJZugrjqXkXUU8zzvPbJcz2REMU7V9l+Z0Oh2QNNhf7DVJNsvlsjabTcPztuGLxaKND3jz7OxsgEuxH4+Pjy2Llu/oH3ao53PwvXUlutPYhXmzLWXOwW2TyaT1jTFlvJFBCDnPZ49U4Sdtsu08ffJ3yJr9uZ6e93f+3va4R5B53nv1+tosxkauIwkc951+co3HxP2FJPV3/u32JE70muS7THBw31n7Jk5sq/295Y/5coICWAa8sl6v2/F3BPZZ01XVjrwFc7EWGBt8m6pq39k/dtKDg5Vk/ldtCT/7cNQHaYSfnbs77R/SX8srYw0JhU9nUhiMR52WTXSK5dHvjuOUkM1m08bKPjQY28d8LxaL9lzWjk9l8k5hy+DBwUFLyKO9luHZbFbffvvtPgi6L/uyLx+UtJHYKewNNsEnaKBP7a9aJ5kP5fvkXY1tzWP6dU/Gp74PXtangVxfX9c///M/DwJxGSxwojF48MWLF3V5edmSW66urgZJh9iPTG7Cztv+0mfbRcY0+8tY0dbkU8Hu1Hl/f98CoCQZJVcE3r2/v2+JexwdD16Gd7H/UrW15YzJ4eFhS9ir2nK63l1KX7Dn7Khj7NK/SP6eOYK/Td4iZdP4N/tgP8dz7v/N8SX/lc81tuutEX73+A0/01jRz+zhz13+Yfapd50xuT/3ZgXzbVk89h5jc+rmr3cl5fY4RY9tjjt183xj4RcvXtRkMqmrq6uGcSaTSb1+/boljhHow/9jHSW/R3Ip3DuvVjGH7yQBH/1dVe0z5jT53MTXTib1hhZjWXDkzc1NnZ2dNb2WfpY3T5DMyDjmnPs3+Jp63Z/UYejsp6enhmF5NZeL6+7xgb3PflPlBxsENdmTCspBGzt83OeINsQNyt4ObE/JpJPOdVU1cJxsSE9PT+vHP/5xy8whI6FqG2RwFs39/X29e/euBUHdX/52X/xs2mjyxgLr+7zgWaBkA/M8/3ANRo1+2um2w23SfBfR4c+ZQ4CADSZ99Li5bZ4H6qGwNd0AhgwvQJTnPWXMwUUMpwM7GURJIIaznAYXss7Z/nY6Lde0xcFCB3rY9WXQhOPf2xHicWeskiTK9lruUyaYawgJy1bvHj7Pcc92OmiVc+v+84w0GhkoS2DAPZbHjwVhEuSYXHBfbaC97pLwsmy5z2loyEhyvQaNPN+6z/PqoGQPYPT6xxj3+uzx6+lLnA0b9gRcCXJdDMKo27rVRtnj5zFLgOZ6AAd5Jj51O/OQ9W5i3mQ49/HbOpc24ZC4PzyLNQqRjhOBrrLzkvo4xwGwdn19XZ999lmrCxmaz+d1dHRUk8mkzs/P6+3bt1X14XtWe6An107Kd4L+XrEe6zkK2K7vCoLuy758iqXnpLt4TSSecUKS9WkGQuxwpjNaVYPAh08yoRhjWE+5XXxu3Xl4eNjeUck6Ng5wAAKyhWO55vP5B/rRGb/WuWDls7OzFmzhGejoqmo7UNHdtgVpG8At6GLwsa+9urpqQYfNZtOORONv7mF8+I6gkIPG1O0MenAidom5Jfg4Go0GwUrGifZm8Nh9xtk/ODhoWBGdTwDJc8m4GN86GYixtoz1CI5MTPP8pkPutmKfe1jMstgLdHos0mZ57XxsHSYOynvd5vRFk7RzEIp6EkuBc3vtyP+9NnMMKMbIfob9GdrDWPO359g+H4HPqq38mpwBC0G6nJyctF2SPknj8fGx7Vh2mzmBJ08o4kjF0WjUTrih7fjuJu4ODg7q7OxsgCMySdl+GXiETH/7YN5NafKNYKlloOo5qYN+ZPCYe9n9wrifn5/XZDJpCWqpe5gr8DS/Sfzw+9OdMEcbOLrQ889cgkudlHZ4+PzOu+Pj4w92mvawoEv6BLuu25d92ZdPr9jP5nfaSezI6enpIAGPAIVxavI26MldtjkDlJDv9oWTU3IbfRrHmzdv6te//vUgcGj/dzQatZ37/M9Rl7zqITdAjMfj9s6+HodB28zPmgcxd2Msa8zD7qsMutIPbAUJNfP5vHESnNIAtsRmgFPhEvkNds6AI4FnvucEAQd8wAzwGuBkruEYfXNZvjcxl4MxycOb9zGfl5y0n2H+LP2uHj40hjMHRhs9PnzH8/Oznoy6Hj6z7Ph38mBpb90Ol1222xivargBxPK/Kykq6zT+pA7PRXKMHiePl5PG7Avgx/BudPu7yLHxJZhnNpvVbDZryQFgJ/tmBEfBrubvGCMw7nQ6bfjTMpP6LefW/6cvB670blXGCx1xeHjYgrxffvnlgIfONQKGXiwWbd3bfyEhjjVuPWK+zju/wajJe5+dndXbt28/iIn4754s/jZx4g82CGohSrKm6sOdgiZt7Xg7ILYrS4HCYkinHGNlAXEg7PLysr788svBETZWUpAkkB3L5bLevn3bCJd0Ft2XzCgYj58zQW9vbwcvHycTwM6tnSwrU4gR7wjIwIxJMBsYZzpkgCrbngER9ynnjoXohWPDk3PmYFMSXFY8PuIM5ZYKjYyls7OzOj4+bkecQfTRb/fTCs1GGeVAsUPv91NRh4/FAkDaeFup0ibARlW1Y9XyGLJe8ZoySHAAKZ9L3xmjNFiWJytMzxvK2zv0PPZpTHrGhWutA6g7+2sFjVz1Asu98fF1Jr16ToBlPK/je9Y899I+B/JMatgwWce4L7vAVIK03npyX32v+2UA5zn2nO4iID8W+PSze+Df/eW53k3OmDh43+sb19mZSICWug1yyEFS6rUOcDZZruWqGrzT2XPhHQ30n2fc3d21YxdJmgCQ0H8HMdElt7e3zTkh2Av4I5P1/Py8vRsE8p3+Ms45hynbKfO7iq/3OrWsZeBkX/blh1h6esnfWQ/tusYl1xI6yskcfGYyvqoapiE4aR3vYEE6sOgbiKiTk5M6Pz9vGNTXOYiHnuTVDdfX14OAJVgGx6tqi8E45hs8xzMcgOF6HOLRaFS3t7cDcolgbNUw6EvwwQ7h9fX14AQOcBZJMBz15XdyMpaMGc/MI4Zos7Gnnf3Hx8eWKT8ejwdHORkT0g+cV4KnjIUDi6PRqJ1EY5KSNkGi8R4dB07tV6U8Js7oOeYp48ZHSYIwDw7Q+PpcB2BDJ3Fm23prx/cn9s+/XXZhlF3YjWurqh2Bz/wwHlzD9+6zbbHXImuNufT1Hi8nS3hcLHMmmbjGn1nWkCv0CPoGGefduVXPhKdPi7Ev5ufZj2d3NO92yuQN/FrWgDP6/RzGmL+9Y5NkDNaZCSkIKI8hbcqkB8sGAUaeSzvT77i/v6/JZNII69Fo1HYxsEZpD7qJ5+DXTSaTWiwWH3AaxmgEo+1n4aND7Fk3MTez2azpm1xDHyt77LYv+/LDLB/DrbaDBAfQKeh/EmLS54OD7dmmXmK8eZrEU9kWnjEaPQcxq6p+/etf169//euGlcxLYisJgPL55eXlYMMEmI82YXuwQ5y0Qcn6wVlO2GI3J/qYusCV6G3wMZ+v1+vW3sfHx7q9vW04kRNOwH88g3nKV6bxvMlkMngm45ecCP2E4zPuBcP7fYRgeTA1fQcHObnKnAA2m/n1s1JGjNssDxkg3RXYdDGnlLK5i2fr4cdeAQ+YL+Mzxr1qy8Fm/f6sx1vmeurx/e6bg+nmc8xbMiY9fi+fR8ldpcaSHqPE0RlPcTIb7cXX4lQ07iNhLvldJwRwYhEBQtpAoh7rdLVaNR5tPp/X+fl5k31z+09PT4PYSa5dY3D71Int0RvsUHdyLRsjCP5Op9P6/PPPB0kTxu3cwy7VfBYysEumwX/g7jyND5mg7yTmpT+4C0P+tvHiJxkE/Zjj6ZKEjCfDQTTqMWGf5HPV7p0sKGYrT0+qM3J4jhflF198Uefn54PseBYxWQcICsaId4b6+c7W57NsJ8pzsVgMHGMreAdOEeKPkWo4qxgiFrzHPOvPwE46fxSUAySWnWFnJ5jw7xnM3vw5K4k5cSaz5QVF6yASssHP09NTezExfbGSQ5E4qxrFmTtX6RNtdtDF/bHxgijEeUex0bYM4DkLPxWcFV2SNAYM+bnn23LDPK7X60HmMfdlcKVqS0bQNkCcf6ijRwBVDYOCGQTt7SjrKXmvP+uS3vrKnSU2Am4nhiXHiM8Bq9xDWzOwaWKKYvBmXWYZpj2ZCW7ZymCW6+c63lsEKHdihHUG+snkOmPonSSuf1dWWY/sZG5MFDtISRusGwyaMpjH+kTn8pnBgDP5nUQAGKct9NOksufVtod2mjSnTQZzBoAOjhKoZD05Oytt5mKxaECPNq5Wqzo5OanZbNaCFgAt1iDtzzmxTCUB3HMiLKMu7lvKQdrpXuF53wcj7Mu+/D6Vj5FIWXrOdMp6YjcTQ0kK+X9nuLMeWdeJh8F+tme0B3uzXq9rOp0OSBMIGI4e4lUP6NzFYlFXV1cNU/USZGgbJMvZ2dnA/tsxpE1gJO/Uz3ccO5OdoC12bb1e1+3tbd3c3LQEEdseBxvpH4GMxOjUZ6eeNjDmOI0mAKqGiS0ELNjpz9FDVVvbaz/B2JddCRn04fnYKON8Th8AZ2bWPH8z35bR3s4G4670lSzDXhfGGv5uFyFkwsZ40CWJG5f07fwc4xDbPH9nJ58+ORnTffCa6yUPJr5x4Nm42mvBeMRyxPPB27nGPBbcmwm9GYg1fjTxdHp6Wvf39012+G6xWNTR0VHrK+9O4sgvnse6JcnBPg3fI9M+4pa282x8I+rHP8MXQc59xKB39LC+WdMmsFhjJoPAfxwtWLXFZiadGVvqdGAWvUKiyHg8boFQH/Pt+ZlMJm1cPU7MC3qPceN+5pz5pF/IEe92ffPmTcPze5y1L/uyL5TEsPar2UXI59jiDLLYvjlhj/v8nX1M9K45LopttPkH7rm7u6tvv/12EBxEvzqpBdsD7iSom8ePO0DA83mVDUGaxFr0bzQaDZLVOAadgt0nicYnx6GvaTsJLdRP8hztMtflzTXGpA7M2JZRj4O6o9FokOyXGMJzj51NTij5PZ5vLodn0xbspD8zDmQOkp9L7NfjMNw3j415jMS75nW5N7/3+si/e9f6mqzDGC9tsu9x23xvL4BJcdD1Y/wK/qU5PcsX91kWWE8E8ZOT5Bpj21xjXsfoBXP2xsY+atkxDzAVp4icnp7W0dFR3dzctNc5UAe7MOHYR6NRw65PT091c3PTEoC55unpqZ0CZB3VS3RgnDKOwTNns1l7JaI3cPkd79fX13V+ft7a4ORhx2wmk0nd3d0N/Fnmwz6DfQ1z1ebqwa0vXrxouo7NfX6Pcq6Lfw8M+UkGQU1Em9D2xFhxmlSA0K7aKiu/Q69qG/Sq2mZUOhvI9yLIJjcQGivnJJOo4/Lysr0LNAl332uju1qtWiaPM0R6O+UMFPgcQ072ggMIdnSs4NPZhZTxHDiIaEXKWEDs+zhUk9oO0vgYShyzDFQwjhg8z5HHxaSLja0DhRkA8o4szyXHNDnrGPDhoAROMtkPJpAM5gAAdrxRhChZK3Pa6bElQGbwA2A6ODhoz/cz+dwywjpiDLyGDC5zRxh9Yo4IAKXxTIOIrCOzNkQmYjwujBfKFwCIzDJfVtTUYb2RwMTAAGNqPWLywOsrjbqJYoyI++HnJ7gyMU1AEdCbAUYDLhtxr70E/6kTGNcETPTZR25xjdcJZJWBFW31M3MMLaMO9Ceh6fGwPKAjkHuTRpYv77i0/LmtCSQT/PaMP9cYmPBcE1VJapM5xrs1eK+GiaZ0VCDi6Cf98HrgOX7xOEDSRCU6zFmWBnPsfOXdBsfHx3VxcVHz+byur6+bXrQNzTXA372kDvrIdZQE7thCE655/y6QT90mfnvHCO7Lvvy+lp7z2yvWqb4m1xzXJEFk3Ocd5thXdKiDet5ZSDGmQUcaN4Bn0Cl8b9xjjFVVdXNz047z4XsnmlQ9Z8Fy9Jjx6mq1au2iv7ZtBENMVPnYoqrtqxUyeevu7q6Wy+Vgp+Th4WHTpwR2IcfI5K+qhh0ZA9plrEZ7IMgODw9bUqDnERyGnqcNh4eHzWd5enqq5XLZ9DH2B/zqeeJ4UmzFbDYbBJiQN9rKe07J8reNdZA8SUj6a/IC3GSMiw7nN7bWQUM73xSTL5m9bL/KstAjlnqfO2i7Cyvn83YRRTwbGTVWQF7sMxp72D+x3TQmNE7pJVN63PK5vWLyiLVFXX6Wg2h8Z9wMlsF/ODh4Ppq2qgZH4W02m7amCGR6Dqq2meX2AXx0s8cI2SKhoKrarkr7cX4NCu198eLFYIcL9UN629cxEUebIZQTc4L9cozAkbQF3WAdNhptCebVavVBPRD47IRFX9EudIV1OX8fHh62Hd72AX0d2P/o6GhwnGFP1inf167ty77syw+j5BrH10T3YUcyeGabBZbCrld9eLKaMSv20jjH9j+53KrtCUw3Nzc1n8+bviYhzKcZOHno9PS0Li4uBkFbcC22Dh2KveJ/ks+xO9g5+/fuC3UZB+brcNbrdZ2enrbEGHAkJxmAu5gH++qMJ4lIxvLj8XMCk7E6HCj2ytwy42Ps7U0HjAdYwHiZ8cHnME/B3LsNxo4pP4njKLblTuCkJD+YvhR9SJuWcm/+yXjRXGHvGS7UwTy4XWCXHs+W7bLMu658FsU8CvNhji6xcuKTxMjUk/Uav3qdZoKCfQP33/izx9GC/9wO6js8PKzlcjngtDgOF78KfPn69et2RPNyuRwk5plzNIZkDRH3mM1mDfv6ZCX0mnfBMz7uS+q/0Wg0ONHz6empHSFNMPXx8fn9oD7t0uuU+uzH2dfw8y1zjKNjWswB3CO4E9wNxieGwFzmzy6Z/G2UTzII+pOf/KTG43H9/Oc/H3xuh5D/rVicZeOJdPFEeDvzronoAXkHRHcVhPTzzz+v2WzWAg4mTajbZPbj42N7Z6gVCsqDPmG47QQicATs/Jxs8y7Cy86riSsbHhSj22QDaOXYc7wz8AJoYQ6cJWtjjQHNLAraYPCQ/TVJaLlwlgZ9wvDakEOIJdFIAeylMubMcvcLOUgHvjfPflaOETJPsJv7DRZMxDn4TJ0mT6zYCeJAuNF/ZMugLQMWtJV5M1lpMi2BrmXHsu8guTPIeBZ1m0BJxW5l39MhyI4BtGXGAMAGwgRJT9F7LjFY6ILefQDi/C77lKDIMu71Rfv5zPLhe1KXJuhwO2wQTYanDDDPrCcb4LyfsXTwzzLhALHb6OC8ZdnX5T1eZ8gb/ezpMNsVyzD3QZTzP7uWOOrMuz55jslcyMW0V26b9RTk1O3tbSOsJ5NJVVXTKxy7/vDw0IKn1k2Q2bzXYD6fD4CTwYsTZ7zLArmi9AKgPO9jQCedqXQ+siDD79+/rz/6oz8azPe+7Mvve+k5HlUf2hjb0dTRqUvS/vUKdjyzqK2HuI41xk/adLdnPB63rFqeYWIJvZVJKzhQTvJyO87OzurFixc1nU5bcgaZrE6wMnnUc56rqgUIfT2E1rffflu3t7ctQcWBOJKU2K0Kfkf/0F70PfUav2QSm22yj9TlGgIzfE9B7+Jc8t1kMmlY3uRa+kbYHPs8BKEZk6enp3YEJnabY0xpI/LD3BlrIzfGzcbnVR++971HmqTNcMDN//N3zr9xhdeX15jbzPe2/zzPCVZ8nyRukgpZaCPj4jFhzHqYr4e/PF78bwLJ2N4+B/W5zdlXy84uv9jJZjyb/8fjcfNFIJg3m+f3i/GZ142PsjVmRXY4wou2j8fDd1hap7E+SLLymrK/4fb6VJ0cV4h56zljMdagj/pL7Mx8uH6Cs+Ap40b78ehNAsCJJeEvILdoH75o6htknTHorRvGmbrPzs5qPp9/1K649NbgvuzLvvx+l5cvX9bNzU2Xr0sb8DFdYK6RI3DRMfan8UvxozMB3NyF22FcxdG2cFPca3teteX4FotFXV9f12azqbOzs8FRk+hb9PHx8XG9fPmy6V6ea/4W/ON2bTabZve88cUnHuTuNbAxupu24I8bMxDUWa1WzbYTAPXx+owBvj+4maQ5z5FPBTFnnHaD305QdwIf7XNwJu1lBmQJqOBbnJ6eVlW11/j4VXXU4fuTJ6Vg27yzl89t05MfMheY+Mf2vHd9ckr+O9vX+98y63rdhl14lu/cL2NgYz2P/cfabwyY/Bd1IAuJIXf5uOYtKcwpcmvMYq4UnMg88Hzu86vq8A3ZkOXETLCWZZQ2TKfTOj09rfl83nw/kuSqqu14XCwWA51jvUC8h+/wp3Mc8cuqtj43ui053OPj47q9vW1YzJh+vX4+uejy8rLhaWMwc4DMF/OS+t6JpYyddZELCXLUw5wcHx/XZDIZvE8+f3+M3+uVg4ODOj8//xfdQ/kkg6D/9b/+13r37l394z/+4weZwVZ+XqQ4O1UfHqlU9WGAYrPZtPOLewa3V6zI0yHq3X98fFxffvllTafTJoyr1aotRmeG01ayEHDsMK4OGFhIcbD8zkWO07Hhxfh61wygw9kHVp70md8IMErHY8kCxuhncCYdTBakM4yYVytq6id7yTtRqduBHPphIJAkAobaTijEEERbttUAhjqTsDG54fp5tjOeTIo4e8x18pw0yEme8FmSIVxvBYVBYdzpm8eH7z33OO9JVnnsDQaT2EmCgyCMSQPLtmWUufQu6t56S6DmdWmj7DHjGXleumXXwCIJIO8k8fjxTI8r5I0DaAa92dZd5FrKNeNt4+f58Hj0SIrvAk1uU36WCQzZ/pynXuaXx9P925V04dIjWiyjHjP6z3Mh4Sm7DLP7zfrxcZKAJPqMjvC6gTT3XHM9IIUdnJZLByxoO887PDxsYC2TA5AzHE50DYDw+Pi4Li8v6+TkpM7Ozur6+rpubm7a2rBDhBziEKKHc91+bKdJylhvDm3jfE8WiMLRaFT/5b/8l7q4uNj53H3Zl9+n8l2O766SdpHPrNPTQQbnsG5NHGF/baOxZU724tp0bvmc+wiCVg3XMzrJ6xo8Mp1O6/b2dhAgBZc78LnZbFr2K+NE29kVb+cRQu3g4KAddQS24/PValXv3r1VIBO9AAEAAElEQVSr1Wo1SAAB51VVe6UExJG/A+eSXGLn0TtMwbUELnw/iS/GbPgI6HnGFB0+n88bfppMJu1YJupcLpcNdzoYZZvCKxqMX/jf9gc9jx/CXNNm43auYYwS5yb+6uGyJE0Sp/AcB3CSqOP/DLQmbuz5Br2fHgZzGxMzeU1aJll/vq+HmWiT8Tp9pm77cInRbWc9RpvN5oNXUiRepF3G8L2xwAfO5EZjNROhxib39/fNBx6NRo28dfY88ltVbe3ybI649WtJ1ut1O5LMpCn4Ct8BeYUQRk4YY3xLdkA7sAqhRnY/wUnWIG1kDfuIYxNw7Mq3XNAmz6VlBPyXiSvoLCd3WC4Yf48nJJh9cq8Ly9bh4WFLRPErbL5P2YWl92Vf9uX3r7x+/bq9N/37rt3Eo3CSTkxOHxx9lgGtxAnGpOYijCG8Q8o8B9ei3wgCvnv3rtX14sWLOj8/HwTg0LEEQvw+6NHo+QSSPJ3KuNu2ZrPZJpiBmayTT09P6+TkZJAUD5ew2WxaIpoxA7tPPVbW+/YFbKOoi8LnvSAu/cBPYCw53QobBFft92uDTfxKHfwM+pVcUVW149wnk0k79YVdqVU1sM3GM65nV2JdjzOzvBmzpZxmMR613+Q5StttfiuxoYP+tMu/jT2zDbvaxrpK2cj2Jb9Hu3pY1XgUGTZvzHOMk3NczSf5eXlPjwM3jwj2h09L2ce/qRq+ToN1gyxzDC78mWMjZ2dn9fLly8Ha8CYSc9i0kTWwXj+/+oGkPxJZ6Y9P/UgsZz/VPD16xj4Xf9uvXS6XjRc09uUZ5rkzuMxaTf/ecSQ4T2NX/F92wvo9vyn7vfW/Sye40M/Xr1/vvOZj5ZMMgv6P//E/Wla1nRUb3QwUpTO3i3D1tflet16xkLuYQOg53Ov185FTp6enjTBZLpeDd/84g+Hp6fmoxPl8Xre3t4MjD9PQkR0/nU7bwkGI1+ttdg4AwMQDAMULCQNjx9FGEcfP5enpqZ25nUKNQ8siRImZiGHM7bzjLHpxeiHZqbMc5FFE9MlOZc/YOVPW74dC6VgpHB8ft+3mnH2NYvHYWJEzPmQUW9HZ4Pro3ZRlFKZ3m6GsGQ/LKnJJHzy2ea3JEBttK1pkhTEGeNqpZ4xsNLw2esEw98OfZZDZBsTy5DHP4Fn2Lz/zWFMAb5vNpu18sBz6eoMXG3zabbDkdWRdYiDke22sXfJ/68YELJZ3AyL60SO1Le9JFLqvnrc0mEkO2iGxvHh+TahaX9uQ00ePY8pEtscknsfd/XV7M3kg16HbkvNqoHN/f9/WCLIGgYaDiHPE8wFgJhkPDg4aGVe1tVX04/DwsM7Pz+vFixd1c3PT3nPgxBbrYhJ+VqtVPTw81M3NTSPJIRCXy+VAByQQXa/XLTCRYDodYkoGQLJ4fXkMPnY9QeP379/XX/7lX9bj42P99//+33fesy/78kMo1tdZ8rO8zokU4BBjJe5JUhyMxPpP54bvSSYcjUZ1e3vbjiDKRL/NZtN2r1dV28EOSeITOYz53D6TSVzjpCoHL9gBim2fz+ft+G+OmUyCyMdPmkzA6R6NRoP3G9rJH4/Hg6Nvq7Y6kDHHBnuHG+/79Dv8sAMEJzl2M0k4+wdgNcYYfV1VAxuFLWE3BJ97xyvH+9I/xtV2Le2obasTryyPiZfAh553/w8utL/AuNmX8Fi7LYkReK7/7xFPGXy1j8U9GWxz/4zRvCY9Pn4mdfjH9TFnkKqUHoHnQHGOsa/LOUhMaHvscbG/wP+ZNOXjArnPRwnSltVq1fQBiQXIOEE7gvqr1aqR0ZyaxHqBAPNxjCbrWEcEKRkHJwEnEcRvgqtgOE7j4Pd4PG5B0vF4XGdnZ4P3dNIXgrxV2yQSv6+YNUcx+WY/F6LMQdX0NcbjcXsPlD/zbtP03fhBb9BXxutj2Gxf9mVfPs3y93//91X18SBL+nwOClRtdSX6i6AYeobggwNF9i9tx3xN2rqqGuhJbyqhYF85gpX3/eEXVz3r9PPz83r37l3zrwlOmtw39nPwIzEYfj36MgNF6HsCEfP5fIArCDI4uYfkHeyM+TVwrZObzGluNptBAJQxom+ZHAPPix3DBoBNfbwup1CZb6QYJ/s4W8aM+WEe6CM7Pxl/rjMG6fEOPZmxPCT/0MNlyFDvO/821+Y2GgcbS/mnV4fvN87KZycOY90Zr/K/cZz/Tm7FuD0xaY8jo34n5Hlsk3ukOLDpaz2nxjn4H7TRnKHvz+RZbzLymNt/A4exVo+Ojur+/r6Wy2XDRlyHDNFu1hrcfsYeeAVL1Ra3EdvpxV68cS3HhTHmN3GP2WzWduyjR9CzxCXQDamf4foWi0Ubl4wJGOPb12G8/Tt1oneFV1VLWMw11ZOBjxX6j436l5ZPMgjKVmUm17tsDNz5zER51Ycvd3Xx4jDh0gs89ArC7N8pyCiKzz//vCaTSavXjlcSzHd3dzWfzxuhzXdkfBOYcYa4s2sQWAy0hZtMWxw4CCK/j4nxyKwO+uyABn/Tptxu7oWDo5aOMv3OQIT7vWvu7Fi7Te6Hla7HxXLDMzHSPsLSijuDriYaGD/GO8mP0WibhYzSxFh4/nHy/VkaVe53oJIxtjPrwBK/PZfp5DMWDrLyvQkXE6EmKui/ySDWk4+Pow7PY65n9yezhzynOZ9JbiVgcH+TtOJzG75e4Ib+p+7x+FBon0nWbAvX2cFw2922JPYsXwYejBnjlmNqo+i++HsDNz+DgmHOH2TU6z/JtyQkAUCA5apqJC3trhqSmz0iz/o8DTvjjOw70SLHHLnmuZ4bP88ystk871Qaj8e1Wq1aVj+JPAAeHA10AmU8HjcQZtCF7Hj8yE5l7RF8uL+/b7bD5DA7LawT1ut1zefzOjw8rM8++6y1C9CS80efcYS8kyIBu4tlpve9x56xTaCehfGknzha+7Ivn2Kxo7nL+fT3tiHox0wQrKoPdKUJm3SW379/PyDncTrARtZ56A/jF4IBYAcf/59YEqxDMALdf35+PsgyJYjq5Axnr4KZCXKaHDs9Pa3NZjNIPlutVvXmzZumIwmeYDe8s61qe6x4BlaNR8DSYGDG8+TkpAUe0kfwzlD8AY6Ns99CuwlE4OBCFLELzQ4puJ7xxUaRqGgc4nfeeDee3//noCd/g/2Mk5C1TOYzLrFtM7ZOvGy5sm1JDGfcYXxk591koGUQ+XGx/fEcuH7aYHnz/a7D/ye2y/XsfvewFM83prMPwmfU0/NBPBY9G5u+dNU2ucvjSgDTpBVybWIl1wkJA/hZxhgeC9YEpArBzM3mmdBFti3zyCHr5eTkpGazWZtH8AH1Q1bZr/XuHXQH6w794Pf4ou9Y7w6+8m7k09PTGo/Hg3dDORnFuBtC2z6I/Qf0lLGOjxa2rraftl6vW1KEkzaYl6ptUie+Iz4quHA6ndZisRi8V8tzty/7si+fdvmXruVdvEv6+T6tLoOU3JeBrfQH/R3P9E7B5AW517sqCVr4OM3RaFSTyaTh0NlsNsBzPBvsNR6PB7bLvGBi8LT9TvzZbDZ1dXXV6vJGHPDYYrFodo+TBkajUbOP8Bz0i2ALAR76j12g8Cwnx2Gf8AEyIdy4o6qaDTUe5R7jPP928hx+Qu+EBNqQiULGOskR+lmMeXJMKbeWU4plzdeknPc4xI9hymxD+nfJteX3GQB1cT+8bnr8jHk784m71nDvs8SXHoveeGVxe90e/rasmV/N+4z5aad5aPqLT8SOaNYDnBi+JzudeQ889aC/wIOc2oEMgz3xW9frdYv5wKUh36wtJzCgUywH4EL0kHe8Hh0d1eXlZd3e3rY2Orn16emp4VD0GuNu/Jm60jLr8fP6S84AHZnBUmPWnrznM79P+bdgzU8yCOqCgPi4qqqtIkxDuWuwPPAsJAQ8M2tzgR0eHjaFzQLEIUHherGu1+s6Ozurs7OzJvS855OdgVYcCCvHCzw+PtZkMmkv6vV5zhBMDnZZyJzVmv1gEbA71UoLQzKdTtuYpoPFeCP03mVE/60gIZ9olzP6XU8aJkoGM+wAoihM8tFGjwvjTz8IQtg4ub1WAPwNmcbip+0YbjKTfb13NdEOngVooP2WaTI++N4GxX3gecfHxwPSDHn1PQ4OmcBx/VaOyILlygozM8+4xoYV5WjSK41jzjfr02DHbeFzz5nHkHljDHg2smHizmPuuedvnscc+tn8j6xl4DfJNPct+5vzyxgCmDGEBpmpi+wAeA0yJx5Pk3qpIwygvDY8lybFudZgnz4kuUdbfOywAQn9gdSlPyaxeLb1wi570NOJ6CD65jGwHPA7SVTvbDD4czJC1fboQo7ZAIiZNM9kBjtUACgfOcsxh3Zq7FyaANtsNs2hM9BC/6ML5vN5vXz5siXZHB4eNqDoDF47Pxy1zroHfBGMpfQIVc9LOgy5lntA3fdZprOufdmXT6EYK1V9uDsr11+WtDcmBdJWVA0Ty/J4KpyyXkKBMZVPguBZOF3j8bgFKDLJBN1up248fk4UcdZ57tLiOn5Wq1XTO+jV0WibKW9/gXeoEPgkuOogDXYg39HOuHnHKvOAQ4sOpB3YbO9QIFDjgh3ETjCuPA+bMp1OB3qY12pgV8B/4/G4Ha2WJBPPw7E/ODgYHLVGkIn3R+NQT6fTwfHG2CzshHE3MoSc2LZZJpnTdIixFcYAfkaPJE3ZdD34BhAEXmsulv+sF7nwtfTX/oNtru9NMivJqXy+sRb/87uXKGddkW3ib4858wgGykAv3/uZJl8gdLyr2Jg5+2O7DG48Ojqqi4uLlthwc3MzCD6ye8bJC8gcxO7d3V3TMbQTveC+0iZ8sdHoeYc68m2dVjU8dnG93h5VTT+4lns5pWM8fn7X3GKxaGQ0x6E9Pj42f/P09PSDpGvqB8+C4/LED9rloC5z3XunL2NjuTSp7F1AyAttQI9ZB5NokrtF92Vf9uUPp9ieWQeYv7N+qxq+S9N2qmr4WhPq4XNzEC5glgyIUTdtQPctl8tBQNFtBw99+eWXA3uG/ud5VVuc4aCdk8BsY316Hwlm4MSHh4eaz+f19PTU3u+32Twn0pg/Bn/C9YH56B823DjJCXskF3pMud48GTaHpB767HHHhtmOTyaTWq+fX2nhTRHU77nw3DCWfo+238PqYLIxOv9bxiyLGajN35ZTc3WW6/SljKcyQGqby+f5HBf/3wtAZjvNkyS/YY6khy+zj4lNE+96Hef/GSzz3DBX3mnMfbnpwNhq15jkuOVacLDRvHIGSdfrddtIt9k8JxHg7+AXgDE5UcwJrubfaa9fffLy5ct2YqePt3XQFV93vV6314+wnmn7eDwenPzjzVL22cCsDmSenJy011dtNpvmO5vjTJlgTK2DKT61yXEL/51zbT7B9Sb/2+M3fpflkwyCWllV1QcLMX+qPjxiiZKDbucIYeeZHxMYyBEHPOy48hnK/OLiomazWSM3lstlyypFeSBwPiIIopx3jSwWi3bsAIKK02hnF8EzAWMnmaPB7GCdnZ01JYNhpJ/O3OV+xgdi3USBFy91QY6hxFKR8VJuL7AkuRNkUDCuOI0ZjHLgi/m2QXZA1kbNAM0y57pQhpAsPhKYjCwTUIyHA3NJljGefEZ/7Dh7nJ0BzTPIBEF+eBYgw8EFBzFy/TigzP8Gpm4HwMrz4OCaA11e3waxrrMX0LBx5Xq3z4bP65n5RH69riH/mKseaLEOYj3tAlU9MMNYJ5C3XOSOQPrVyzIE7BkgZRsSCGWfsjCWNmq9PvpzGz9/nnqXvqcO9vUfA3lcQ18NBhjDvM9B2mwTOwBwCAyy7FxYv9Nf68esl2I9BRjxu+zIqidxYTQatQAkR6Xzu2obqEAvclRHBgaYP46S8TGI3AdpZ5KxqhoARFd7/fDD+mW8qQ9bBXnu7C/GKGUxwbQdEN+zq+yS4X3Zl0+hpLOcxQ7urmuTgEp9aTIFPJc4drPZDI7jQcc585P2GCdUbQNfzjrNZ/RwZVU1zMeOKerFSQWvEIShDuol8ECiIDqIPhFc4dhbCDDbuNFoe2QZbfUOACfAOBGFNlImk0l794sDJw7SVFUL0LBD1XqUAlnGsz3n+A2MKePIO2AgyZzdb0caeaJ+vre8MMc46U6WYdzJlkYGjLUz+bDnT6V8WN6cxJOJnFUfvlPe68LPckJrJmT1CBOvNePDXGNZwJUZAHW73GevBdpmoiHnxP/vso+Jc4yfHZw2OeExMcHh73u4zIQkBBj98hrt4WR8waoaYASOX66qhonwYSCIFovFIHGuakv2ss743r4Gcs6RgwQl7fcdHDy/G9i+HrIM7iJhmTIejwe+sccUXITeWq/XdXp62ghr3jPnhLScU+rzOuolXOLrjEajFjymTezm9nxCnPG+YWN4y5vHGD6CJBX02L7sy7784ZW0iWnbXbAT6BBzS4lrsaU9P9FYlnqckOZgAvYPzPrw8FCLxeKDZHR03MnJScNvj4+PtVgs2gkkiUt5NrylgxYZOOA+9DjchXejkszH507G4RURxvbgSziAxA/odHArzzXnCbYbj8fNfoB9ffoiXJ5xn3nbqu17PGk7bcAfqBpyC9hmB2jo48HB9ihej1/6HeZRq4aBuEy0S14h+bCUY/PoxpS+lr+ND5OD613v9bGL92DNuK/m9fM719/D18hT9jF9QCdL9vitHAvGnbVA6a1ff5d+JWvVesEFWcx5YT2y9pCFnk9QtfWxCHbyLPuEnP7oGA3rmiRdzzV64/DwsN69e9cwMKdtknjnU01YSxRvrPLmCgd3qcP+Ej+TyaSenp5qsVgMkoud/OBYA/2Fqyfu4u+QG/P16c9ZTrke/Y0vnnNvOUYG/PPbLp9sENQBSAbZiicdre8aTBs/DIK36FcNj9t04MlBCRtZO60mA168eH5nJwubLFeMqYNEDtTMZrNBNtLh4WF7h1uOBW3nBdfUDyliJWCHC6KGIHA6wigfxoDxYlFwFj/Gz44l41NVg+ODqqoF5uzs2dnm3HkIMAOXqmEgiPHGmONgW27oM+Ng59YAgncGsMXdO7VoO8/hmSx+Z1SjWE0GJNFkGeQe6uV5ZGR5Z4KNUwaskDvApknBJKIMHE222cA6EMu1VpAptwSUaBtK0GvNRKsDbWm4si0UyxclwQMG0ZluNj7874AX/ePenl6xAjcYoR+W0wRdHoPsb69+GzkDrSTOuC/XCP3pfZYgMMfR/XZbEsR97F7Lm5/9sQKJRcn1xG9nZXEf89sDmCnzVVvyLAnYDKoaVHOtEw7SoUpZzwAuziA6kWNfSJjAcWCXkslkvueZljtkBP1HENQAjDXr42P5fL1eNxLQR9GYSHdQnvWDjqmq5uRAZu6aY/SKSW5/n/Pfm8992ZdPvfScc4rtsz/b5VTbVlrHmzSCXGBXkgu6C0IDZw+saGImCXvbM66D0PEpGL7fQTl2lKITSSYzBqctdgrRO+PxcxIf369Wq7q+vq43b97U9fV1O+6WAKHHIfUgetT4hDaQxEe7jHc8vhBdJol8XBL1E6TghBcHXGxH0LGbzWZwpLnbwbwRBGK80LXui3cOYHvSl7L8eSy8I5Sjk2mz8Yn19C7ckDjPcmV5p722p/7b7WUOk8BJm+G29DAFz3AQ1fXmddS56xo/N9ex12/6sZ7jDNqCJ2g7//fWv+WF9ZOBYWNTMGXidP+4HRmkNtFjfIp8mHhysHq1WjUsBykN9sC/tQ+y2Wza6TtV2+P88KXY9c31+CSQz65/s9kM3gEHL4BPbR8W4o2+8HyTQB5PjpDFp/Xc+RhB6mOt07aUDetF1jrHOZrwsgyhfxgnB60zGMr6dp+wG7PZrG5vb78Tz+/LvuzLD6sY832swG2i431CyGg0GgTIwCQm4bEhiUmSIyExxYke1Mmz8YG9oz35RAIZcBDoTvCOT33jfts9HxXvIAYYDCzMK3Kc9Aa3a1sM3iDY6dcPEHzFdvhocuyVOXN2pOEH8JujQTmZwP4Iuh07Ay43B8OcgFf9blb6TnvhMx3cZM6ws/QZ7uFjuLHH5xh/MQeWW1/L/Bp7GbMmX+c578l/r027uEAXt8OcGdc7IdCcco/Doy6ebSyX4+F2+1nmF42hnYz1Xbg+/VL7h5bvxOh5v2WF/rK+8aeMYewDmKezb0OgE3/FOAhZPDk5afVYJ1RV4+xyDi4vL1siHViX9ev/aTd64Pj4uJbLZU2n03aCmnGbT9zwCUPGnuPxuJ3oSSyGGIoLMsDJQq6HtjHW9ifMXZoT9FohWMp1TnJI2Uzutsdp/LbKJxkErRoS6144VlSpPHYpKl/HtQQBqz5O1Pccajv9NtQU3g9CxgLC6ei7Mydox+PjYy2Xyw+CG3b+IIIw9jzDAACwYcfYDo6VWzqkJp14Hlu+rTwwwjacGUBFkdo4J8HHd37HikkYsnoNQOy4GVhZaTGvDlqZaOJ7godcd39/X7PZbODU9nYNM94YfWdMOCjI9QRrfeY9nwF2cORRwowFCthy5+AL7TbQYD5saJ+enprSxfjZaLJ2uIc+ARAN9BwQ9vykUU459nrsrbPv62Rb0TK/qR8S7HiXB0DNRCv1JPCgXf7MQahdwMcGPWWf+wwYeoA7wfsugs9z2NOZmeXlcemNq/vtvplo4XsDRbfHhe/yeNaqLbjhOoNsG2o7ET3y1v1LW2CAaJCYuslZYBQDFDtcKcdOukhC2yTkfD5vuwLG43FdXFw0x+To6Kiur6+bA8duBMbOTo7nGqfHOy7u7+/brlCO28EppPg4Dog5ThlA15qE9bE8rBWT8D0b7R1UCYKdIfgxmerhgX3Zl0+xWDelDksn09f2dHPa6t46qhriutR/BECpG/uAbnRCFdf02vLw8NBe6WCHl8LzfNxlBg/9TmJ0LPaawCl6k+Dn7e1t3d7e1tu3b9vJKYk30YPodmwi+M/OJ4ET8AFZ8gQdq7a72xzUsF3j2TjE4/G4bm9vW/0k3zHWzIuT/djFimNpcsTYHB3sE1qcPEOglKALz/cOfuN36nGyJXPt4JYxhPG+Ex/tF1n2nICX8r8Le5kUSjxjXJYEieejt+a4xn8zTyZWbH9613s9+DMTAyY0XIfH0JiWNoM9GGP32eNlGfF8ZbDLWB15om73w+uW65wgxjxblrmfDHXwyWg0aokOBwcHLZv96elp8NoU++ZgwePj47bzk7bhB9undlY9fWENkZgA5vFuCIrlgutZU7SJwCwyyW90DAnQjOnj42Pd3Ny0xIfT09M6OzurzWYzIN8sN3l8ZGJa5gS9OJ1OG2lt3dw7wSmD+/hC6D/qPzw8bEFZyOz0YRJj78u+7MsPr/Q4m7Q9tuXmJvPUMtvup6enwStden45dm08Hh6Fi31MzqSq2rujq4ZcBFiSI16NFTji9ebmZmBnvZHESUJuq7ECQYPNZjM44YNXKzAW9tUZLwIL2A8HcV3MQ2T/OK7W+N18MxjV+p9nYcsyYYhxdMKZA5lwB94JBn5EfpJDzAA0bc0NHDzfctOTz/RLuD95fl/jNvXsl3Ea9Tu41sOpPQxIG3vclLmkbL+TpNxP7jPG87jv4iTNG7v/7qPH3e33d715SAxvHJtz9TF9QjtdHChM7GrezX2ybN7f3zeMBC7iNX6sdSelWeaRT3ApOHY0GjXOjmOuGTfjaOuL0WjUNl3d39/Xy5cv6/T0tOFi5sL9xY9Dvvw/gdBMXsy4juXTuNLzz3wgP6x1J9nlZhDLHWOSspZrIP/+bePGTzIImgvRjnc6fpQcyN4A+/50oik9hWAl6gXHfTYUR0dHdXZ21o404HgcFxYU/Xh6emrGElIDMmEymQzOlec4RQQaBw6jZ6OO4Hpx+AgfjK6PerDDyzUEVFkEVTU4Mx+l4nFmnB4eHprR9VZ27mNRGUgw9gACHwGJQ8tPkiw2ECbTACKMj4kn/kfZ2SF0tpRJH2TTuxxS5gwMj46OajqdDnYfc513cNJejwvK2gaROnDq2dLPWGV2PuNJu6jHAVuUH/KS7xG0gWIcM+CB3GZmH9fbKfeapq20MUsCEdaDwafHnj4548fkYVUN1oTBTYJKSq6rNHY9vZDkUpYeIeU5hthJUGNZ9/jZ8OVYWH58LJ4dltSjfg515hrlOr7/mC62I0NfABceI8bE8+o1S5/SWTIwTN2AE4LOTQeC59EHz4UNfpKX1Fm1lakkFtMBNFkPAJtMJo1Ee/36db17967JmI8CtgzgvJDVSr8g13wMj8eHtnJKgTPCcg7oj4lJ1gv3pdOWJTPUcnx78rPL4dmXffkhFmPblH3bcXShHTavJeyssQclSWzux147MQpd4qMmeTaEBX9zPXjEGIVCHegIgp8ELpz85+SPqu2Oc/ThYrGo29vbur6+rpubm1qtVs0JOzo6qvl8XlXbU1x4hk9aSX3vZLbNZtOcZ+9A7SW7GXc7WRHsbyLHJ7ewC5/nUo8T8ND7tM8JccfHx3V+fj7AaJy2QuILgU6OHnYiEf3JADmf0yfuMTZOItMOvMkyZM62K8mjnk/X+85+obG9MUo63S5ca7nnHts3220HfpAXY0Lq8vh5/eZv42j3jzrsEyGzrI20kZ4r41f7DunTWW9Ql9ttAsT9sh9s4oPvrK+c1GsS1Efder2gM+yHzufzwc5KEkXv7u7aGvauk/V63XbWMM6sK8s8xBg+FX3An2RnC7ttWIPINGvF75HqHf/HeHideIfA09PTgODOpGzjU+5JufGcTafTRqxRuM/YzvNm/MZ8sTb5jRyge+Aykn+xPP22Sa192Zd9+d2XXf6Yubv0yX0KF7oMPZ+cmfWesaMTZX2kq/WnE67w9TkRALvnnf7YSyfEgDfhYc3PmWMAF5j/sZ5nM8t8Pq/1et1eccP92BJszcHB8y6uyWQyCBxii8GRbh9j5c0ubLKYzWbtVRHm56jTPKOxhY/UrNoe2cnYgmUfHx/r9PS0qqolXzsJG1tuzMG8JK9vHtD4v8dfpsw44StxFddncr3roQ2Z3NPj+YxZzeuZCzG+NM/idZL3mVNOfynb6+J147qo3zbc45F2O7k5Y0rmjN9OiDfm83p3Xb32JRdrLEo9mUBr37THwVnGPP/84CtVVUumAz9yVLM3SFmXGD/BVbLWCFyil8zz+tQVJzvwrKpqCcO8+tD42okh4LLDw+173Hn+ePx8ItJisRjMU8pTT36tv7jGeL63Zqq2r2dhc5wxoufE89vDiz25/m2UTzIIyuA5KIPj42DBdxGmHmAHZDgKoKq6pACCQ5Y4xYo1gzIZ1Mq2Z2CFxWRHFyeOwA2GkvOsyfp0hB4nkGwEK0CeTVudOctCMbHEGGFkGVO/ayjP4rZx9eLdbDbtaEYTClzLeDw9PQ2OVDCBRj/YJeot6e/fv6/b29s21rQfZ53243xDPFVtj09Kg2lAY4Xod+uNRqOWRQZBdXJyUsvlss1d1Yfv88HYmrRBHmkfsuOdb4AP5tmZcAAU2nhycjJ4IbSPl2Cs0xE2sLMRQvkjZ36HAPf1DONms81iNqHiNlv2vJZzjZgIMOjjOdTPZ57PHhmG3NIGB3Jt7A3avG7y2CnPmRMNGGsTUciECSfXkWAvxyq/N4nU24GYYMtBTxNF/I9+Zf5N+jA3ZDhaxuz8YLAhsE1aelxSHqxPDW6YM+tWnKgM9psItJxSJ/qIRAH31zYkdYB3Fpggt7zybO+GzH6z/r3OSG5ZrVY1mUzq7OysrWHeJ71arWq1WjXSH0A3Go3arsynp6fB+/UYV3QTgIyjDJEd+oBuzznzrgn+Rw6QCwBRVf/Y6iyWS+tCgi0Gr74269jlkO/LvnwqJZ3Rj8l0z7njPnSdgx98bluIrkWvoS/4DN2ahABrH91oDEI7nMiXSRdgWIIG2AiKCQx0KbbJp2agb25ubur6+rqur69bMgn9ACtNJpPmpFlnVdXgHUwOLvloIu55enpq79sEbxPIzPfHjMfPR3HyHmiCHlVbX4KxRI8zPsbDDohAWjEGjD1HKfnVB1XbrH7sA/qd3XTgbI6LM242TkC27NPwvZPGeqQF9yQG2yXDviedZeOaJKM+tk78nHS0jfFckhhw4Jb/bevzubZniQH8txPn0ocFVxm/GIMYL/fq8LhnsJJiHGrCClLF/U0caVLVmAu5Mp7GL2HNO0HM/ibkLevbOz45Pozx5l4nBzCmiWsZd+Q/sT1+yng8bsS4TyWhLtYY/aBe++msSdpq4i3ngePTWH/T6bQ9y3idMU6yKjHmZvNMwr18+bLW63XN5/NBsJm6newAtrOPYW7AOqGqWlIFxxD3SN592Zd9+WGXtGf+v2po2xxkMMFu/U9Jcj45GD6Du/Nz0G3obYKQ+PrcD96ivfkcMPT5+XmzRbaV3rloG4fOxFev2r6zHbtjO0o7jVtJyuFUJdt/+MHValXT6XRgx8Ak0+m0vSvV/DNY26fNURwwMS41zjFvwr229bTdCTxcx7wkz+nAePIqlgnzAbTLmMzfuZijM9eQJbmf5EZ9n3EPz0h+x9ya/bNevb3veV6Pj3Zgy8/v4TvXl89Jn9N1JBb1d2Acz2+PM6We9AlcvB52jQfYxWPC3+AWMAvYkvHxb+MYTlvzqwntN+HjLRaLgf+J34oviLxW1QBXsv42m81AF3Bv+kOPj4/19u3benx8rM8//7x+/OMfD159xTWpU/nceM6Jd/YfPOf2yY3TU37Sx0jdbX/XPv7Nzc2AN/Yrsnp2I/nX31b5JIOgVsCezKr6YPF8n5ID7yh7r9jwOsDGZ6lk7PwSuPLzWAQcW8OOHztnFjgEzO/v9LE5dgJNyqTC5XsrbBP1VdtjVFEoOSbr9botfNpk5YiTawfKBpf+OYvWSpD5QZGkM41Cow6ORBuNnnfFmohar9ftGEnmjPbZiaRkUIo2O0DjXbwcX2vCirnwdfTF/Wbsea6PvHCgHKIL425SsGp4tr0Vl4PPJj9toDILxzLn3+4H92fwnDYZwDCGBrTIlcFBOthenwRDuJY2oQ96YIv6e8Sag8gmPk0A5+5oP8uyk/2iDx4n1vuu0gvy+e80ENknt8FgBKPde3YaINqRY+VneG78GfPNXDsZwpn3lgv3c7VafaC3nelJ26znPc5c5/bzudeK25r9yHXi+UywYnnw594BSR8MvNNB8jMsK7Sf90e9ePGiTk9P6+LiogGryWRS0+m06TvbGc87ck69BFTZIWB96mcDqBgXsjlpZ675zWZ7dM7HbDFjleOdAGxXSZncl335oRU7p99HxlOX2xnGZuWaZN37JA4Ck050AbP4KMYMihg/2JabUDEG4H0r4DqOKeO39Sy4Z7PZNAxJIIFEkNVqVe/evWv6knuTsDo5Oanj4+O2I9R6H7w6Go0anqMf6LWDg4OWgW8MyThVDQMv4HG3iXd+ElxmPEg8JFDiDH/GgR2ozA9HbI7H48Hx6LSDYGlVtYQtv0vU7/VE5/O5MfB8Pm/9A1OSaAcezeQx22UnpKWPZGKhhz34DQ4z4ZU+2C7HOYkvX2c8ksRNrinbRNedbTFWsoy5T0lEVNUgEYD1YzzHeqLswj89/Gnc47Xq+twX6vEOEe4Fa5jIMS43bvZ4et6N51l/rD3eVf7ixYuW1MWOTO6DtLIOA3d63UHIui1goqoanGyDr8X39t9IGED/4J+ZCPT6No5hPZnATIzJDztjOYkDjgAf1+vIXIgTH+2fHB0d1fn5eUusY53nvJgES/+HOr1uGAcHIHatv33Zl335wyq2gegl86bJVTmYYnyZfBDFXI1tm/En163X6/YaGCftwt1Rv/UmNgr7cnh4WBcXF3V9fd0wlE+JMw/FrlGwol9j4yCeAynwuk7u8XtIuY4jdBmv4+PjwfulOVadd1pjwx4eHmoymdTp6Wl7PptXjPXoN5jf+MHH2tI+bINfoePgJHPiRLyqavcYM5n/5B7mAhziRMAebuT6xJlpm5KLrOrvHkQ2LFvUm7YxZdb4jHqNwWx3e3wehXVhuWYMfE+ukWw/f6e9d7/NAxs32x9NntZj3Pvez/Y1Xv9+hq/1+NjPSm7THDDyas7b42O5gJMbj7fvjSdh1rvDubaqBvELYiHWBSSwui0807EI+u33dnIS0Hq9rl//+td1f39fP/nJT+rs7GyQjAwmdmzIOs873N12c5HovPQbPCcZG7Dfhn5I38+cafLknmPP8++6fJJB0AT+XkxJRn9XSfIZg5hBgKrdL+X10ago+KyXie85FKPRqDkRBEHfv39fi8WiLYrMFjC58OLFi7q8vBy8U6iX0dMTbAf0MtBj4871eR//O8hmh5pF58XH83y/g7a524CF5DYQTM3vIYEgucg083UYKrKKOULJY8pvZ/L6h+LAZY4jxt1OqOs2APL9XO/fo9FosIvOgAkFDRmxiwyhnRBszvClXchIBsss95nFk/JlRWwAQh0m9XINVw2PlOsVK8teIDj77HVoA++5hlhxnwzeNptNA2pJKpn0zPFzG3o6xcXjmgZhF2nGM7y2WZ8ef+o3qWWZSCBjHWrDl32xQTVpwmde9z0QmPqUufRnHwNPvs5zQf9NOjMG/t/zZZnI+vgOUpw2ci8ODraAen20MkDJz7IdSxLVQIFnbDabtuvz9PS0Tk9PBy9QBxDRduabIz5sg0w627GCqKbwWYJZ5gtSkGv5jmu9M6BnB3KOTYxaH+7Lvvwhlt4a6V2TQRsX62uTBXnk4nq9rul0OggWoE987L4DQbYzDnBaz+dpJwT8CID6GnQo96IPacdms2nHe0MELRaLur6+rtvb21oul1W1Pa7Lr1ugbvQegQ52XxEoyXGn7RyXhF1xcAq96sAGf2OPnABossg2HGccv8A78KkP59rjzFzc3Nw0nU3QBGzDGOJTOCmJIAbjRGCWDGjjIzKgfaqDcUPuTqTttnXgBMtEJu8w7yacEnckzumtHdtrkyp5HbLNmqgaHv3lthuneH2lX5VEEiV9Mf+d6wDcYPyz697EmZZH6mTuqrbYxPcYmyWeNsahn8aSxgcZDPWYuR/GRTwfGfBOZ3Z+UhcEDMkJfM5uHGQs+258noQ7eo728F6lqmqvFrCeYG2YqPbYVdVgxxP9Nbaz7DD2zDcJHU6so+9ObEgZpS3+/vj4uC4uLprvCCblHvQSuscBZnxG8wPUvdlsGgZ1/1Ke/j1Irn3Zl3357ZZdvIY/h9vLJBz0rzlR9BA6Dh2UASHzi8YMxou2X09Pz69KwN8lUMH7PtO2gk3dTuzLbDZrWIrnmY+az+e1WCwaxubVMg5eMA7mP6u2doMxgwf2CUvcw/Xwx8Zj1E1yNP15eHho2JLEHPOT5qn9yoc8DcU+PRs0SNKrGnJiXEOfHfBl7OAqjJ9sm40ZbSttLxPHWW4Yl8RWHvMevrIvYJxrPqN3XY/PMz4yHt6Fj7J9/G2/hHvMtXhuPmZ3k/PiuYlX/Vz/7f8zMS85QPff92Y/jJfdfuPNHkec3Lz7wjMZZ64dj7ebt8B75nvxxUiU4B2d9qU4RY1nGEeCpywbm82mZrNZLZfL5q858RFcZy7u3bt39fT0VH/8x39cn3322eBa8/mWPf5nlyvjkvKTHHAm76Vceu7NA3I/652/weeHh4dtB6xlwX/31sxvs3ySQdCqD88LZsB6C/r71FVVTUlDmrheG+cUFgtCEshVH56JjdP29PTUXlJtxf309NSOzbLzU7Vd5DaIVdUcRa4lkwHhZDF7q7gVlAUfRea66YfH3ONsp9TZsKPRaJCdlMUZ6ixW6s1AnR3k9Xr7Dj+AFQYYcOJsIgMPnGjer4fycYZW1TbQ6gzXu7u7lonrftpQm/RCWdA2jyuAie/SqGTw1kqUefIxcrTZ82IwYHn0b2cwuz9WSh77JJV68uB5chsYwzSwHwMePUPnoBsF+XebrJxzjjweBnUukCcEy7kfPQCZyPsODAzdvyQAc9y4hjHt9dt6iu+tV5J4sb5ChnqB2DQ62Xb3J+fTmZ18hzzaEFqGTJjxXD7zfHKtx4ViMjProB2sUd/D2Lkt4/G4JRbkMXY5BpYxxsNkMZ/jpACkkCNIJdrn4zI8T/TJziHPWywWzbmifrI+J5NJ02M+thwghww4KMlxNdznOUsng3ZnxiPyBsCifmwO48Pfnr+0l9Y1aYv2ZV/+UEqSyB+7Bt3Qw1j53WazGWAmJ+4ZX6ITq4ZHXOVznd3KZ8YOzqpHn/sdxzyPhDFjUN9TtX0303j8nK1L0JP3fpq032w2g5NJXCf6B+zDcyFlHh4emrPLeOWJJzkW6FKOVWO3GMeeeSwJnGADuJ5gLbjTgSDjcGyYAy4cL+Q+Q3ah641tbbv4jPaAWUmQQRdTl4O1DjTxOXbGu3dpOzbEMkI/jdHyWmMey7Zl19/TzsRbPfxjm9UrPf/Sfl8WPzNxfdq9HkHi8WTsTWqBRRysS5zksTAJmONhHObPkQPkpIc1ud/YJddFEjKJKajDGfzuI+QrhKxPGIHAJYnh/v5+sJOaAjHM56PRqFar1WBtEeTn6F3WU5LoxsPI+WQyqfF4u+Ocgg7gfW70D5xtfIOuYf1WbRMXwVbGe4xpJjw6KRvMST/wjzlqjWdbNzhJ1ckStIMAhbHkwcFBTSaT9p7kfwn/si/7si+fdrGNzs+raqB74br48XXoVZKzkkvrkfYUJ+pmkIvn4D+j20kQsx+emBce0ThnNNq+p3mz2QxOFLi/v6/ValVv375tp5rAIdJ++8kOypCchG2Be0I3Yw/BZdzz6tWrms1mdXBw0OwH9WAzptNp88mxR3DQiS3MidofZx74n+vgvbnXvK25A8bTieNgTcYlg7vgAM+n/zb+oa3URx34Pw62Wu4oDnrlNSnfxqnm5ByUd3t32UNfW9XHaNRDSezI/5mUxt+JiZPTy+tz7Pydx6E3Jtm3/DyxIMX+WY8bzLZaB/C55bNqu1OT5+bGKesdc9/ICDJqzGYdxitQuAZ5z9cZstb8igHm4vHxsa6urqqqGgZ9enoa6Bv8otVqVb/+9a/rxYsXdX5+3tY4mCy5ds8/WHTXWOXcU8xDcn0mRlMYJ8eiWKPmO3fZivSRfhflkwyC9pzIJNyTyPe9H6uPBQA5kA5d1fDYr/wOh9HOPAuKe7xraDabNfKcheWjrgi+IIS0azKZNCFnIWEoFotFLZfLgXLGoWEBsjBNMmTADMFlF5F3LNoJJNBEHzH8fk9kLki/RBunazQatSOAqoYB3yRSMLomIiDWCHI6A8Htpg3OtmCBuz4DMIANwABFx5zgIHrO+RvDzvjQNzKnIMNsPL0bLIkXEw3Hx8dNniCokAnmMOdsNBo1MJVG1H03CePne32ZmGLenCXPuBgkONBk4iUBlu/xWrSidGDGpEqCAf/OZ7BuMmnARArrLgm8nGfrF8u9ExCQ915xoK7X315BrvI6G9GcF/fBBhkDluOV690BemTGL7xPEtsFmfa4+1r3M2VuV6HdOA7e7egkDLfb8ouM+jPPCW1Bnm3Ee2Qnjgq7+tl17l3czkRLhy2D+b3xu729be8oOD8/r8vLy7q4uGigjLklcFBVzbZ4lzzzBWFvmeFvZJmss5Qjk7D0ww4f9qVXEtynff9dgaF92ZdPodgeu9gW77rejrqJAe/ydHDMP/4cWw3JYpIoSX7eaYz+PTw8rNPT0xY4qNoG5Zw840Clgxdgsffv37fdn9fX1013mkDCOSVZzMlsj4+PNZ1OG57EPqM/2fHpY8kYW/AbupUjx4yNxuPt8bdVw3elcj9jBNFjnAHGtXOLrgXX4k/c39+3HWqr1aoFdkjOYuxyvMGgyAjj5eA4tuj9+/cNX4PJmcMkFT6GXRIfp59kG8x4gLmdrGdcSTG+5//su+fwY5iCdic29nOM23vr0IRW2nOvxVynmZiYGJg1yTyATWybcyxtf5PY4LoMoGYfuc++CPdYN3jsaDdz5sCfrzEmM2bFV/GacPLo/f19ey8Za5kxsI/jI/zH43HbNUN7eJ89ssZOSScO9HZLg32ZJ+YtyVQnQiCXfg+d8Ss62X5N+jbj8XhAYHNdkvG+h7mFQHvz5s0HMpLYD1/ecsw1tBPsP51Oa7FYVNWHCbL7si/78sMrH/PTkkcwnqCACc25mWSnbidWgTXM0/ZOlki+arVa1Xw+bzv6sSfwA9hQdDmfo4sTo45Go7q4uGjJeOv18zuXb25uaj6fD3Zdof+xRxxl67rBclVb7gysyi5M9O/5+XnNZrOG75woQ9vhjhlHAqDm6+iHd6xSB2PBWNMujlMH3x4dHdV0Om0nGOIrTCaTNv/GAD5VjXm3XJBIM5lMPuAXuLcXaGXenbhjjtHYpSenDoaZ4+Ea836We2MtX2v86HFgLIwPsg1ZzF25/73nU0+vPcZa5lxznvysxNR+BtcZRxgTp/9pvszPyEBbjm+OddXw9EL+Z61l37if/pN05rFx0hknYfI3+I+5MLbkuGm4v5wj+29sjlgulw1rkphmXzxf4UJfbm9v6xe/+EX98R//cV1cXLRn4e+y0ctyZ78oZSLnyty3TzzqBc09nulf2T+hPl9jLt1z3OOyf5vlkwyCMiEmpas+3LLbI1LTQbOCHI/Hjcywk+v7TNj7WXYALVQWLpz5qqovv/yyzs7O2tZrjJcXEJ9lPX62FT8OnMkt6k4Sh75QH89xn6kbQ27S3O8jRWjtUBMMraqBAvAWddrt+bNi9nnZGWDifVWMyWi0DdKyCxZDTBDXJJ0DcZBKVlY4dMgGO4TZfcV9zAEygDJ0tltVDQgyGxUrOPcnyR4UkoPdfMZYrlarlu2R8m0ygrZbqWOEGCOAKL9pfypAyAnqs9FJg+vgkckTE1SWAwCLyZi7u7vWVq5BjgBOXoP03c+yzDhYyr0mPZB972BLUMj/BtP8j2E3qLEOoX4fJWCi0vPmubP8mdRzwgDjZN3htrndrA/m0VmYrAfvDEgCkfHItcXcWGdTr8ehB9B61xpQ+bmMF211e0wmWRa4B53MGNpueI5xFGhbAge32/rfiTUmlHluGnrPawIEg+/Hx8fmjLDb6ODgoL3rE4KbY3gg2dJuOPOS3U8ek+yn5TntocfYOiX7msQx69D2yyDfMt9zHtIu7su+fIrlz/7sz+rNmzd1c3Pzga6r+jDzls+qPjwhINdFYmIwK4E+65XEPegVnoNeNUmC/nFQBP1KUGA8Hg/eH2fs5bbRbwgoBy/n83kLfN7e3g6eX1UtqdB6DTtrog27RH/9PhbqcH9ImptOp3V6etr0uoPE6FdsAK8rYMdaVbWADQVSyrbCdYKlIbS8+xObBPnkRLgkldw2bK0TDR3kWq/X7f3c1ONXS3AcMf2i/T3SydjXwU+KE82QU+aUuUpdbye6N6+eA//mb+Msxtgy5/XiNtk37Nlnr9EkixLXuJh08hroJUNynROdrAPSL/K42C+yXbds8JmLv6f+XuKYsafr5jdjbXu+y7ddr9ctyZMEsrOzs8FxrZDnBwcHgyO3IJK908R+ytPT0+D4Psui17wxN+QV/bWOxFewvmQ8OG7bJ2HY70Bvzmazpo8hzB04xdeGZAbvzmazgd9nYtDzhkwy9+fn5/Xw8FDz+XxAGhvTEYCm/5vNpo0tMoAeILluF7b/TZSLi4v6/PPPfyN17cu+7Mtvv5jrc0JML2iJfTEna33pHYE9/gEOpEfAV1V7H+jDw0NdXl7WwcFB3d/fD44Vp17sjHENm1cy4WcymdT19XV98803LXnOnIX5UGMa1+2xckI+7To4eN5tj30hiIvuBQcayzlx2eOHjQAHoePv7+8Hvr0xgcfDmJlNJ35fPP3GRjkJ3Vgujxu2fOA70GaPTWJIJ4AhMw5o089sS+I3+0zJt6UvlTgxP+tdZ/438Y45z8SU7u+u9vU4VPO1vsfPzza57b0+5XVuY/JrXJ8cpOtwO7w5IHFvDyN7Dbp/5sB7mNixCj73KZmPj491c3NTk8mkxYQsjyQW4MuR0OBkXifq4QPf3d3V/f19C4CORqP2uoX1el03Nze1WCzamLnP+HYHB8+b437xi1/U//f//X8toQ1ZR+8xHoeHh4NXFdgXsWwxJxmjYT0mL8lvx2iqqsU/GHNkOuUi5ec3iRP/JeWTDIIyoD0H9GME6K4BxvFwEGjXc1P58rmdfTuG2d6q5wV6dnZWl5eX7T0ntKNquH2YxeaoPMo0gxI4xRypkO8TtTPs51TVgJTxeJmQwbiyqBzssIHqZfqmcWFhOOOI56STWVXNwbJBfnp6aoS/x8+ZHAAHAsE5L74OpcVcmrx3EJj3B5jwsXMJsYeyRIEeHR01AMX4GCBm5lLP6HqcDFD8f88oGmD4ucypr3Ggb9duUStU3+/n8gyUPTLqOeZ6z7X7YJKCoC3yjnxSh0EGbe0FIJ1R7WCQ5YL+JBHnYKVLEmnui8fKAZ7eNVlS1yRh5f9NBvreBGQ9Ms4kIuPI97kDnLoz6E3xNa6fNiQBxncUj01+l2OSgNAgnXXN5z2AxzNyraUOsqxm3xLU+m/Xm0cHvn//vu3mRJ+gp3JucRoNbh10vrm5aTr8888/b2QU746jDuYYvevdR2Tzc63tC202yMyj2rNYH6ADE7R6zty+XB/+22O/L/vyQyp/8Rd/UX/1V39V8/m8qj5M3kvdZ52ea8IOcGIFEw9O9EAH2K6aOKAdPr4qyQgIKRNHi8WiLi4uGl5z8M1tgVyx81b1jCGWy2Utl8u6urqq+Xw+IF0gcvgbfUr/+Btn0bqYIIvtEthiOp0O9NZ0Oq3JZNJ0r8kbPqvaYguy4wkm8Pyqaq9WQPeCh73bjaCJE0KwCxn8NbYh+OokNtpFG8BSfjc7iTrYEmMLji8GC7OLzU6udTmBGScl+Tgq+1PIXAbFbMNpD880fuitDz+HktiUvxmXdPSNhXt15voy8cJnjIdJt7yGet0mt9Fr2fbRcpFBV9aAd0bi57gfYDlkzr61r81xY83RFvuTOQcktDoQmVh2NBq1wKSTJ0aj54An78aEZMbvYyci91dVwz34d4y/yeGq7U5RrkPfeT0zHhz1mhjYJ3wwr+zAZv69Bqq2SbF3d3dtTViX5DuPHx4e2pqmrTc3N4P1w9/oC/AkbeX5zCGvg+GEI/rFWuR6/DeeA2HOtbwmhLkwp5Hr5l9baM/r16/rL/7iL/7V9ezLvuzLb6/0bCMFfOGAJMec58kjYAr0s+2S6zb/mX68OSH033K5rPfv37fXYGXQyfjDJ3Ggc815YB/v7+/r6uqq2RkCHA4C0GZsJljPwVJsBNiL63jfNL9JaFsul4NEIGwLdsknlIB5zS04EXA+n7f+2+6/f/9+8C54n7JF3+DFjK15btWWt8MuGZubY7O9xabzWgpskTFhJr7RnuSMzH2mrLowLsgfY2N+0xxrz7b1MFyPc8tn7+KbLD+77OcuDOk+GdPlPb0AqDnTHtfZ4+D8PIrXXvKWbjOfs4b9/Aysm+e1/PT6WLVNrjQm9ueeGyedgXseHx/r9PS04Z71et2OkwbbHR4etsRl+w30gyRWnkdcBx0DTru8vKzT09O6vb39wLc2F71ePyfD/fKXv6w//dM/bSeD+pQeJwbQdvsk3tCRMuZElB6vWbXlaZ0Uwb08HwzrufTaSh56F3f62yyfZBC0ahigyCDKv7Qw8D466mPXVg2PxM2AVO96nOyTk5N69epVXV5eNsGECNpsno9r8Euv2cUE+cD1CLozHnA0WVQ4JzhEBgU9QUvFXrXNBMX40Nbj4+OW2criwqDzfAegDDCcJWtAYSXGImIB4bzlEUMZXHF9/hxFBcFj0gXDTTtpK1ljDixVDc+btzHmGdxP233cBWDFit7Oc08hJLnh8eM56bQ7uGRFkz+eH4gH+miygPE0mECZ85wMmFqeTHz0DHHOob/LNrj9PN+GnPFIo0j73R6PJcWK2AGkrItxpd3UZ6KLOgzSspiUTpKpBzhyXt3X/K4HyhhfjBHgxM/0OLnuXePpkm3OMc2xzkB6gh7vUnfAzs6F5YbfNr69OWFtYcSzEOirqoGMJemaP76+B4hM3Jvs8nE0fi91b36wHbQRXUUfP/vss+Y8QPhD9LMOccLQZ/kuLYg3E5Y4Iw6iQgz2bKB1E2QhdRnw7gqmZr93ydS+7MsPofyv//W/Btilhym/q+yysXYerV+qttmbJkiqhgkpXmsEYiB13Fa32YEICHJ2nZKkZ2cLzGjsS/bs27dv6/b2tm5ubhpGzoQJn4aSxBC4lX55xxV9dtLVaDRqx+WiK/EPaDc6PMcarHp3d9ccU64nYx99D5HlYCe45vHxsRaLRdPj1rtcD55E1/KKDe53cAeMyvcEVtDfxoPGX9a/9kM4rsy2iqAzc2qykft676+hj0kEORDLs+z3MA6WV+NCruuRY+l3fNfac197QUzfj41j7BMX0R76m4ROPtd9tR/HM3OeuM/tTBudJwSZoDIpnXg+sSQ+JuvXY+L7ci7yt9u+Xq8bBiFQh3zRdh/Tysk9xjcORB4fH9fDw0N7rygygg5x9joFv3Y0Gg1ePcL6MwHN0dCWZXz+XAcm6Ly7iX7Tdu+e51UFT09P7dSb6+vr1u6zs7PByUxV290VuaPm8PCwHWHIKSImAJkn+sdpSilrqSPQ8f9WTiYLuvOnP/1p/exnP/uN1bsv+7Ivv9mSPhn6F1sDTrH+NH+GXudz8xVZf/IlVcPTgmyLSFgh8Wy1WtVmsxkEYqu2wQ+4PPugTg4k+fj6+rrpzrOzs1qv1/Xu3btm59DJfh2D22xM6ADfdDqt8/Pz5iejx7FF2BjsjZOCwLK0k1c3kETk/lU9nyLnzSQOwDh5KTkUnm+M4YA0NsOnvWC/vPMOW2k+YLVaNXnAttpnSS6Gz8wrWy5oc3LEyScar/G9OdTEXvmdP+M5ec8ubNn7PBP/Eh8nD5IYNvnTfJYxrftqLJqcXY6fi7kgj0uOR3KClqve3PFdPs/+Y/q+GfzGLwOLgVmNU+17LhaL5uOcnp62ZARk3+1kTZJQgP/lZOCqbUwFPInPyXHaBFyvrq4Gu7rNpVHP7e1t/fKXv6w/+ZM/ackK9N/JtBR8KfDf3d3dBz4UWDDlv7cmzGuDk1NHoNsc6wLj9vyu33X5JIOgv0lwTX3j8bgdsfox4imd1FxoCAbCgNA9Pj6/PPrVq1f1xRdf1OnpaRM6FoydyFQOqfycZQOZ47PSudaLMLMncgx8H4bABDhCzrGrCD71OWDgNqMI0/ijkFwYT8bDYIYfv6/IwAGinf7QBo7vQbmxk5PPXFAA/O2gBtenoUMxecs5xhtHsqpquVw2pWQZoy6IOxt2Z1knAGBeAHA25DaQvWAB7U6DmgFEz5+NW89gm8iwErQMu01WmGmoUsY9Hl7/yJWd9iSB3L8k95zNkvf4dwJA12HjmWSG59OEUpLLtBm5N7DKdrEuUwfxHcExt8WG0DILwetrrb/oY84vfenpSo81v3tznyAu5S0JM8bZBIy/yzXt+tw2A7Ce0c1xy+usR90Xz78BkJ9L/e6b3w2MnVitVoMjaau2uhygTtKJAwcECwA5tAX9iNPCnJBVil4kqMEzvPOZ57PmkCEfj5YyQLt4/i7iOddsOiKMe8rOvuzLD6nswiXfp/RsnT/HHnn9geG43sE38LB3EvqdwNQH/qBO7/Zj7UPCOEsUR8tr/ODgoOEoSKvFYlHv3r2rt2/fDnYtETBDVxCgoD47u343c9qig4OD5txaT+UcnJ+f12azabu3bINOTk4a0YNOBovy/lJ0su0rz4Co8rFs8/m81XFyctKSWnAsR6PRIJhNoOPk5KROTk6a30H7GFf0KrrfJwwwJ5vNpm5vb1vbbOuOj49rOp3WdDqtzWbTCAPmnHbwP3iE/9NuI+89MgX5Mq5FdsAvth+JWYyre/bevgX/2y715or+9HCF8WzaQMYy12n6Y0nK+Bk98oHTVYzReSbtSZzb8w+MY51g1sObiX14nrG658NB6/V6PUgmwH9DXi0TPkWHY8Pw0fDPTk5OajKZNGKVtrKmyNqHFCLpwPifsTSOti+BrLGWqoanJ6Hj0DP2XwnEMrashaoaZOMbtzMWo9HzbtHJZFJnZ2cDnUlyw3w+b+M/m80a2e014TGFTEWHcsTwfD4fJFrYl7CsMG/YDvdvvV53j8T9TZSPYfZ92Zd9+e2V//gf/2P93d/93c5k1VyTu9YpeMabGdAp+JvoWoptkTGtfXnbPdsktwGdyPGt6EnziTwHPpT/wTn8vVwu6/r6uq6vr1tSDXry8vKyxuNxff311w2vgOvgKNlcgY32dRcXF3V5eTl4/YR5LoIm9HmxWLRAK2ML9gUr21Y5qGl+03jBAVsHLsyDGtOYp+XkgtFo1MYWzGr+ALxZVe1YXdrNK80crKau3iYUt8dcXPIy9MPfG4f5FITEaZRd/JYxpzmSlFvP6cf41PzM2NkcTg+rZnvNwVmmzZ2mv5Pry3xaxiiQCT+PfmaANf/2XFb1X+9g7tNcKcXxgd58eT7TtzM28oaDg4ODevPmTS2Xyzo/P6+np6f2jlt0COuEOMRqtRrIq/3j4+PjxusxriQlcEKSsfr5+Xk7OhfZXK+fd5o7SYQdoX/2Z3822Ak6Go3ac5FHJ1SYj2aOfWpKxmDsI1A/ugHOkvH26UKMLaea5Ou2KD1+9PuWw8PD+vM///Pvff3g3n/VXf/OJQX93wqKncX4MXK1R6qjgPndCxCs1+s6OTmpy8vLFgBFKExKYLQgp2yYTHyY8IHIqKrBTh8TVLSharvQLdBcn0Eh+oJQY+wBDrzLiHsxtJDpSQg42OIMU4qVqbO+/LmNJ4vcbfBC53vmiXbYsDMOVryQUcgDfbdxxXgDOABXNoY4mbkVHaVBfxJYus/M23q9bk4811hho2h733suUpZ7BsX1JmnCPQYKNi7cg/wwfnzGvBmwGNDmOCALjLn7l3Jh4+u/3Y8kaQwwDVQSBAEaXYdlx+SCjajH330xoWbDZNIp++H2eDfxZrMN/rJekRU/F8KMOryObLCymHyk7qrtOyKyGNzxf69uy6XXjWWrR0aboHEmlYl1A7UMnnl9WqenTYHo2Ww2TYa9Ayf76+JnW4daZi3Dljd2H9G/m5ubgU63DrUeZF4grw8ODtr7ogzKcMIAMQAs7z4YjUYDMrtq6+wg77Tbcp+BS8bC45BgJ+1pDwD19MO+7MsPrdjh2GUTKR9bE9Yru7AyOs7vGqENm82mZYyze7JqmIiBDcIeGos5KEPQrGq7Qx6n0XrQdgacsVqt6ubmpq6urj5IDEHfG6Ngo0wKpX6qqhYU9Bihu9Db6D5eY0BbCWaCd2knDiq+hLNjZ7NZw+zoWAcfk5RgdxZtPD09/QCHOBhMoLXqObBChq93t5kkIFhEljPBKOb25uamHTvqAMnx8XELBvs9gMwpz0n/xzjEfTVW8jyaECHogp3KI5awf4mjc5djPjOxlX0Vy4LbZNuVa8oYw3UxBsb6JiDy2ca6XrtuN+0z3iQZ1n6AA5eMJxjG2JQ2Wc69Jo0VkFHjW8+j28t68Rhb3llnxp/Gg6xl6iO5YDweN5zE0Xu0ASL17OxsoJdGo1GT98PDw8GacTtJRBuPx4N3mUN60V+uZy59QoZxPv+zftCttJXr0FneXYr882zrDOSTkzhYo34nPJgR2WAMrbOn02njEnprhr99Kgi+hI9zY+c7+s0B7d9E+U0HVfdlX/bl+5X/9//+33de08Oq2Ifk9LyW0elO7jWnSunZQoq5J9sR22s4tOVy+QEmtq3GvzVXZJv48PBQt7e3tVwuWz/ASeC1V69e1eHhYb19+3ZgMwky+NQ29OTl5WVdXFy0AMvNzU3DqehZ8A9YAj6GACJ9wL934iFjQ9KLOUXGx68cSzyDTaEv9/f3dXt7295RTX3gY2wVWNn4gudzUgpjRNuwNU9PT4PkP+bLxwC7uL0ZgHMAB5lxQmfygJYbc0jJQdrOmxtJDszP9tj2+KNesZwiP+bvuMa/3XdjRWMxc2CW/xwH1508j/vF2Hrt+hm7+B3jbWPqXTxg9sH8krlazw2f+fnmsvCNOCUDn85JDLwXGMyGfN/d3bX1AN7DH8Rvw89i3Vr3GQtyPX4fgVVwpjdq8fPzn/+8/vRP/3Twegj8Q/sz9oNfvHjR+uOEaPsPu2QEWTw4OGgBUMuAN5Qx9gRCzaFn8Zz+S8r3sVG98kkGQXPB/UtKLnx+UNqUzGR0MI16vChRRihVOzAI849+9KM6Pz//4MgHHyMLmcAisdNSVQOji1G9v7+vxWLRFhMO3tPT0+CYBZxFMmZtUHGk7HwmqcAiZuwhyU1yO6PXAKhqSybxuZ/jwJmdSy+o9XrdMqiYBzulGGiPJ8qFoC3jC1ngoDMOL3VMp9NB+5AVE/r0g3dW+ez7VDjIh7e1875SK2obLDIn6J+VvNtMPZZRr48EDJZTyzGy1guo4uxiKLwuEqAaPDoIaMLDpJKv9ZglEWQZssH1XKC4IQCtvOk7bdrlWKcRdra6CQ/GwPUjW+iQBF4mn5Ary7QJWP6nHQZZ9NVrx+uN8QAwm8D2vNL+nA/WYsoz3zE+vXVhssvXZ/H4+3rWuY9pZA6so9BfThDxPGcb0GFOWnF2ovWSgYPl3OQ6xfPPvPA593iHlO83OGHs2LWDLF1fXzed7SyuqmrH+XhO5/N50+8cA1dVg+MofRwjIIZsNB+NY+cNXYUeQ27YjeL+8LltJf1MIOf1m4khuU4NeHPs/jWYYF/25fep2OFI5zmvy5KJBl4XtjlVW53stWU8zDNsy/1cdGcv6ALuYgcXWBfdiDNYtU0kM1n/+Ph8DOzV1VW9ffu27u7uBkkpdmrd9swaxmYfHBw0p9YF/OcEFets+nxwcDBw3ghiGAd7N79tjJPXeK+TTxnhORBLzIEL7WPMwOzUyfsSsRmj0ajtBgU30i7s6ePj42AXIT88i/nFNwAXW/c6uIet4nmW3Z5utn+QttsymglqxkB8Rj22gxkA3EWoZrEc8Cz8DJfElVmHyZv0O3N97iKVcl15HI35/ByvE4+Xbarxpucq+1hVrb5sE39zH2RmYlzmpCfXtMtkiQPfyDty9+LFi+aXQdqia0i0oM3I8sPDw+DIac8tbTJJ5XkHG79//769j83jb3mnPnSnST+CtR6DPH4c3WL8bx1kH8SvK0GmVqtVzefzRhI7EGncSiGIydiRcMLYM04HBweDuWW+sj7GEdLexNi/tfxLCbF92Zd9+c0V3lH/XSUDPS7+HB7OyR74t3zPe+6MwcxtpE5LThcdRpsy0Yo6sTnmqriHOsC4JOQ52YW/n56earVaNZ36+vXrevHiRX3zzTeDnflgRoIoX3zxRcPHcLP4yOBK8AcbKtCvJMdUPW+C8fWMpZPLuX+xWNR0Om024uHhoabT6SAhH1vjY95vb2/b7rTFYtFOZqGt9NFcJTyDk9lIuGEeCAjx6gdjPp92cnBw0P63fWbekA0HTHu+VC8gx//mY6lvlw+Wcr3LZ/P/iUM/VjfYILGX5dd9yL74s3xm4njGjN/p7yVm9bPtM1GMOzw3uQkh68gNNol96bs5ycTEntvsl8e2hyvAMKenpzWdTptPZl/J9U6n0w9eeUA/eT1L3oMPSX+fnp4aLwffyLoGW19fX3+QDOex+eqrr+rw8LD+5E/+pMVC4BGN05MT8Mkhd3d3H5ws4/E034be5HuO17UPxrgTJLZOthx7Tnoy+10FzvNfUz7JIOhvqngRILg4hyZYMtvExWQ0AmLBWa/XdXFxUV9++WV99tlng7pZxCaK7UxacH1k2d3dXTOAi8Wi5vN5LRaL9j3X87fJJcAGAs3nJhvsECap5rFywMyL2wEJK1cMpYM2KA0bbK6zI+hjdw2gCJJAuJtAd8Y9ZA79zyOLLBOMo8kx5gLQwNzbiPO/Ayx2JhnnJH4cjB2NRoNsLGSBwj1W/BhKxsYBG8v0x5Qh9fSUvJ/RIx7pk9vG+DiT2YSN5QmSwQDX3xmUeY3Z6NAW7vFc8rf7512lvcI88jfg0XPvZ/XuY015LlwM2jF8vXYYnBvsGcyYDKHkbomq6gKqXQSbwQbG13rB2Yx+tskvntEjyh1sZK1xLYSKybtMELCTQh0JgJCZBGLMDY6F12k6WJbZnA/r+Z5DRhvQcf48f7jPeoExQO8DVNxerrPeZa6+/fbbenx8rM8//3yQTUrSD0kWBAjs0KBXN5tNXV9ft4wxjwXzggzuIjlpZ45zktaeN9eXJPG+7Mu+fGjjrMPz86qtjndSFLYVUpxEI78/E33iRKCqoe1IPXZ4eFiz2ay9q84kT9XWJvCddejDw0O9ffu2rq6u2q5I+nF/f9+OuKyqD3CDnTL/oEOc8Ed7wE20gXvoFxiS9jmRaLPZ1NnZWRsn78KkbjCnyS10q99vCn72DisnwTA/q9WqBUEJyPooUI6qpU5ILwKwFBxt43XkwfLhAAd2YDabDTCMEw49F8amzCG4xfaN9tpvMPbbtcPRRJJlvxfQ660frw/qdvCJeo19e2ssMa3XQhJIxg6+J/2D7JuJKftcJnyMj3rXWhcYy2QiFesAGTA5ZRze80f4yQSz3jja9/P8+llcM5lM2vvLIGtoG/KED8g6yGO9uff09LSRV9yT+OvFixftqD6egf8M1s+ApH0h5ou24o86gcyYiHFgbfMcnybEc0i6oL6Hh4e6ubmp9+/f1+XlZfvehLLnjTWCzzmbzer+/r5Wq9UAr/UwNUncfs8Va/34+Pi38l7QfdmXffn3Kd+HlE47x290RtUwsELyMpxn2ofkz5zA7d39BBsSg5qXsi2hDd6B+PDwMMAi3OPE5aurq3r37l3T/zwTXAKuQ7+CkUajUb17964dAzkej+v8/LwuLy/bKSnob3DXyclJ27FqbIgtMK4kgAIfQpv5GxxP/+7v79sOU3S7j8xEj8NL8xxwOCeDoNvBe8fHxzWZTJrdQf/ze7FYDOokMYn5hNNmjsGS/O1i+WKuzRUm9jPmTIyxXm8T1MEau+Q4cWZ+7rYk7und3/PfHD/wd5Znc/Puu9vs+sEaxoH5XHNe5suM83b1n7/9P8V1JR7wmLldtDVjK9zDd7TNmBIsYnm23+HxTM4TrDQajWo6ndbLly/r66+/bphrPp8PkinOzs7ahg3k1SdecnrmeDxuuzpZ1/Zz1ut1S9YDcxN8tQ/77t27Ojg4aFxgytxXX31Vk8mkfvSjH7UkB4rH0hvPnCwH7kye2zwef7NO+Jv4CmP19PRUy+WyBVYd/Lbs2Z9I2fy+5V9zD+UPNghqR208Hg+yS3oLO4lwO6QUjEdVNYOGQH7xxRct2wXDVlXN+CDEPorQx8+wQMmOx6BChqRQVm0dHAgEhN8BBvpo47HZbD4409l95B7GgwwuG38fucRYOkuCZ3Mti9kBg8x2oE8UZ/Y6o9/Pp771et2ylriW33b6qQ9izgEm6qd9Dt5yHXPhwLmdTgCHFZId/qpt1jPzRF0cP+x59ljagGcQ2eQKP55LrwkDBX+ehii/y+Cl58zOt9cexSTGLoLJhphnuD4D2DTG2TcTNB8r+b0TBLKN7q/XTrbLQJ/1uaskseJ2fRdoSnDjrEGvqdxZS/05hyZ+qCNlyJ/5GSbYEogkALIRTVIv5c+7iVw/P4DuquH7I0gI4Sfl2f22c2awm/rR82gdYLDq9Y4cORicyQqMwWw2a4HK1WrVkl+8g8m78rEhOG8nJyd1cXHRdnpa5+b4ercQ65GxJInEsm0dZLlDH3mXkL9nLdmWWP5oW8r+vuzLvnx45JHXal6XNpO/rXesH3P9sd5JUrO+SNuLrYHgcbb/3d1dy4DlyCECF+jYh4eHur6+rpubm1oul43oqar2WgK/RoFnk7RBoBAih3ab6DIRdnJy0hxOcKNPQKBujg5KUopr0L+QSw4gVNVgp+jt7W2bL19Hlr2DsI+Pjy3xhYxa2osdQbfixHIyCN/hZxgjE0Cx3WU88S18qoXtmI8gtSPN2DphLm0qssczbQ8SO7n0MoztYySWcn98TW8N5ef2R0xW+Pse2dQriXeNH3pkkvEK/Ux8DTawb+J7HVC0rU0iItuVOJ85rdqe+uLAI+00/jLGoS0eN48Vcp++9GazGRxpTT3j8Xiwo9uvgyFoCb4Dx/ikDCdkgYXAkIvFou2eHo1GbR1TN8STE8Tcb5JHOPLaSZSMG2PIEX/WwWA9n9iCbnUCGc9323gGenE8HtfZ2Vm71jgROfDzCV6y29VtZ337+DbPE+2g/4y5kwv3ZV/25Q+n2Lah2429bAfQKfieo9Go7QJFH/rYVuNO7KDxhzmJHt/F3+b8wDzod/Qj+vrdu3d1e3vbgn3cRwCzasv/jsfjwaaTk5OT+vzzz1swgAAkWA7+NAM3Pt6W4CkbP7gGTOtdnIwXpz4dHh62484JsOZpH9hBnnd7e9vGw348vLRPh8D2OcnaXB3Hzi+Xy2YbScgzJkUWHODiaFLsoBPz+J2nJpgz6+EiFwcQE4/5Popxn+9z8XORteQweliw97zkVndxan42nyVuzXXg52cbMmnN/o4xW/JyTnjMurnO9WUgz+3oceDZbtrhBFaSRRmDDP6l3+T2VW1P2Tw4OKjLy8v69ttv6+bmpsl/1TaB9/HxsV69ejVITDs+Ph4EKR8fn4+AZU0az1MH/h3YFHzJPI9Go5bQ9+bNm7Zu7SOgt371q1/V+fl5nZ+ff+BrMP48hzEE33qzGW1L2aRfJPYy5iQSWkf4VE6XjHnsWm+/i/IHGwSt2jqAkAQODFYNgyxJ0n5XvRi/L774ol6/ft0cMYSfhTaZTJrwInCZEfv+/fu6vr6uq6urduwVWfXO3EnyOZ0vH2loAXTfHMCwc5oLw+NHG1lM9MUKiOudJW5F6sUA0QT5wmc2JLTj+Pi4HXlUVYPnAhLcTpN5+Rltw/gybqvVahAQZUyp5+DgoCk3DLWdQxNDVlpk1PIc983ZTDZojBF1rNfbF72bRPLcIeO9dnluLC8953VXUIziYIrr9PO8hpgXywOf20CZXDXgsfz0CCqPV5JqGLlecMXXem2YNLDx9vfUS8nswiSPTRj1doL2jH+OYY8wdLuqhsE8j0smQ7jfzvzHmDNmBs8fGz+e6aNP/B36y2NDWzIxwRn0BrNOdPCY0j8+gzRMQtNj5SMo7GjlZ949n/Oe4Mv3016Pv4GZ14zXsUl2jn3jPstovnvj9PS0qqq++eabenp6qs8//7zVNx6Pm7NpJ8FrDb2EbPqdASbQMpDu8fUcYPv43DY25dpj9u8BjvZlX/49SzrmVf2EJV/v36lvk+Bx0NPPQXeCnThah/WdSWbWt1VbvInTBq6CGPJrGyAxjIuur6/rzZs3jYix7iF458LRj1XVghjr9XaXp3Uxu7rIXIVgAT8RvCVRjb7ZLhCAACfaNjL+i8WiFotFszlk9/q4IGw5eJzApvEu5BxzTVttzwiWVm0DUuhVju9kHHgnIs56OrvOCEYmCKLYHvMM7AOEHwScZcNERS/QnrsXqj4M4iU2tF+Scp5El8faxGiusSRW0h7twn2uHxnZhS/8TEr6NT0iDr8tfdSeb2q5si+UPkGShr0xox88l7Vo/4mx6gUyPeYOvBnfVA3fV5vyka+LYTflarVqu0Lz1BP0gPGVdR/9tfyydiwPPMsYkzF1Qm1VDd6Z5vXIuHH6BriHNWZ5BNt6pyj6xn2332z9xP28i4rEN/QofUWPkDRBW09PTwc779GJPAPdj2yhx5EJ+gGf0pP/fdmXfflhlrRt6DDzW3zuv5NbTF7C+sinrpmPyaAMz0DvU69tDroXHIoOQ7c9Pj7Wu3fvaj6ff2DDqqoFCrkWjpV2Wu8/Pj7Wcrms+XxeV1dXAwwOf4jex7bA7XE6CEeM8/otJ/nAC4MHwdw+fYXToqq2idrYATDwarWqq6urOjg4qNls1oI4DpCAkcEHnLZgzPz+/ftaLBaDuSdYSpAHW+lkRdta8Lkxom0fc7ELNyGLxm2+l2eay0j5pa4eV+j68jN+u71Zh322DFq6JGebfKf7krx7D6/ms90uj1niRbeBuer1zfcZW/s7PrM/5Hsc6DYe7HFMxrbgFffFusFzbL80x4S1aE6Rdc06IlkUPEVCxosX2/eBIl9gLfpGvxyvYTxXq1U9PDy0E4/sU1xeXtbT01PTBU44rXrGy2/fvq3Xr18P4kLedW0smzjP+JznGjfTdgc5icE4AMr3FPOzKXfJs/8u8eI+CLrZDMjeXGi+DuFAUC1YFpCqZyfg7OysfvzjH9d0Om2Oi40NTlOS4JAn79+/r9vb2/rmm2/q22+/bRkOEEkILwvVQTaAgo9YMMjYbDbNgLsv9MFZuBZa786kzSwoxg3A4kVdVYMMVxQARs7XW9FjLK3wrEDSucMBhiizw2ojTj30I8EN9S2Xy4ExgMwysKJvPI86nK3rtqNcmBOUJGCR/hL0cLZTGjkrFgeL+M6kGO3z71wPyApBeoOMJIzyx86/lbbvQd52kS7MZRpoAyZk2wRNry6TaC60AWDqPubYMLaAXJMWSWx5zHluj4ByGy0vveLnpEG3sUjAt9lsBmRt9pHn9+pB9hyk5LlJTtrIuY051tYzBkgm6Xo7BhI88Tl60M4IusR63DJp/YwOoQ3O7HJigscJOTQBvYv84zNn79tumCD2vJgMNHhhTUJmHx8f1+XlZR0cHLSdQX5vHPoAO2FnZTabDY5lMxgz4PROn+Pj4zo9PR0EQQ2MUjZNiLF2AYipW3q6wvrU87arfMxJ2Zd9+VRKz6nfZSv9965r7GQYVxg3ouvQxez48XFV6H5nfJuw8CsGIGbAtwTbeG/9er1uWeDsKgJv3t/f183NTc3n87ZrlCMr6Q/k0GQyaQQT+mS93mbHO2GN3afG+dbBnLJRVa3t4LPVatWewTienJy09lVV2yUPbucYIOYBQge9xjGbfpeygzVVQ1xDO6bT6QdEG/OV8sM4MAdg19lsVlV98qGq2lzSBr//KgOd1OMAkE93Qa58TK7vc1uNDzKw534lZmJePmYDerjH9TqA/TEnPMmdxJj8ZqwSjyQh1Fvj9hmMLRLzu27jB2N8kzj4HPgTSXLZXzPuNAbx92AVyNsk6DyutIX15uAh9flYavqH7NgnAUfkuiJbH8zqI/+qtgluyDNHQzMO3hntYD9rDj8SGV+v14MEWXAPCcdgoNxVjnxQ8OvZscM6tQ6jXjAuz/X7Uekj47RarZqOdCKKE92qaoB30RXoM69F32PMZjnHp/fxlj1Sd1/2ZV9+WKVnf5P3sK22LjEfllwV92EP7B+njrH9hs/iGp4Dh+T22E6u1+t2ksZXX31V7969G3CttA0eFi6Ctpun4lrwzcHBQUs8hr/wrjW/Tx2MiL0ajUYNM1ZtA48EHXh3p201QU0S/sC52GD6sFwu23G01G/Ozkdzpt0G202n09av1WrVXtvGRh9swng8bkfj0p7pdNoSBKkXG+kgEO0zlmHDjDkC5tm763oBcP+/C8+lXCcnmvKeuCq5zFwjzL3rsn11cd3GWdluP4u6e3xocotel8ZBVcOTVajTWNTj7vFwG91X/+T35n9yvpLnTLycHJrbWfWhPDFnPDOD/ub+jRWRfe+GhFvDt8SPuru7azLr00rMZRtbM2asEf7Hp3z58mWNRtujdeH9WIfj8bi++eab+vGPfzwIcHr3teXE8uax8uYGj6WvYY7NFVMnycb2Tz3PWT7me/22yg8mCNpb2FZw6WRaGWGE7LAx+bnArFj8vQUFQ/fjH/+4vQ/JDghOktsEgbBcLpugXV1d1S9/+cv2Amo/145jOqsEDy3gLMCjo6NB5gPjZSHfbIZZxM5yT0fOOwG4z2OahonP+O2jdVwfW8K5tpeNzrNMktmRpe8+rgJl5MVM2zkrn78NVExgPT09H0uMI81RFDivJqhcmC/6WrV9T2rVdhfXZrM9UoJrkVnvVk0DbuNi44NMeL4zmGql6ON4HRTJQAR9QD6swAxw+d+ZJruIG76n7WkcDHzpl9eu6+Qzr3/6A/FGGw2CLbesGxtWK30Dq+wX15gM8nPoXw+wpBGnb5ApBvTuX+o5t9nzmYRQAhoAstvXI1otg86ktLyZRGVs7UyYMLKMZn/57WB0yhxtpH+pf2gPc2ECGtDMmPmIRCe7OJhpOTBw8HjarvTshccUgGY5MOldVW1nEJn7EGg4Fuh/6qOO5XJZ33zzzSDRAl3DuDA2ZLc5a/Py8rLtcKLY5o1Go3Zf1TZRBB3OOnfwFXKzR3xbnpl3O5u99UGb9mVfPsViGU7nO6/519Zvm4Hzl5iW56M/IVm4Dx0FKeFEtfH4eQe6yfDValW3t7e12WzaO4oIlrGGb29v6+uvv26vFMAuYKerqu0uPTo6ao4o+tH6v6oG768kwcwOpokwk0bW78YftuN3d3fttRSQRLz/BR389PTU3ssCNuQ4XMgsH/ULzkQ/29bhMFMvAQsygtGf9I931xwdHTXM+/Lly0ZIZWCDdoDJGR/jIL4n4Anp5sRGB9Od1OdEU8t3z+fwZynzPR2fREzve/rQq5u5TRzkZ/eem/bHBFSuE2M615m+F+00bkvyjmv433+DQ1gPzEviCmTN6934AyyUbc0x642J22/fpWqLx+yTGCd5Lr0u8XNpPzri4eGh4RHWhskrdBOy7O89/n629SC+Hr4juoRdMGAjJ55mP6ued6D7GHAIbJ7nebSvTd9ZV/hnHK/m74ypqJPrIKGT4OQ54L7pdFqTyaT5txB+6KrkWdB3KRfsNGfs9mVf9uUPr9hu2I7ZlpgXtE8MnkAXo9PgFqnHmxkSt0H6V9XAxtmWrNfrAU46Ojqq+/v7+vbbb9srZ/wqM+5Bz4JxsA0XFxctOEk/zFkcHR3VxcVF87fN/YCH3V42eozH45rNZu3YSnxzcCEYk2c4YQZbiq7HvnNEbXLP4OrFYtFwPOPM/fQLboCxIRmyqgYYkvnHljAe7HYzJjXnZw7Y+MKyw1gjbz5VLTkj22tziow5NpS54zq+T3tmDOU66Qv/Vw15SWM/12XbvMsPND/GM3P9gPds83uYOjFployB5D09TJvj0xvHXVjec4ssGrvyLOSZ+r2OEmv72b42x2m9XjefEXk8Pz+vq6urhgvBlMQK7u7uGpbmpE7WMvONz8dnJKXyWa8PrB2vFerabDZtR+hyuWzrZzab1fn5eY3H4/bKrMvLy4GfbX1o39N6NuXLY7iLf/Ca62F++1m7OLp/C7fxry0/mCAoJZ3lXc6snSwfx2Xix8WOvYNHKFgWCAr8yy+/rJcvX7bjwHwMlnfY4KDc39+3jJ3b29v66quv6quvvmrvKfHLrS2o2cc0HBkoct/s8DIeqYCsqGxMvIBM+tvA5LxYmeLc0k7qYXxsbKu27+jEEON8ekE76OW54W+uc788l9wLseWMYgIwBJAN1GzgnPGOMqSNGGpIMebw7u7uAxlMY8Dn2d8EBfzvIBlt4/80ZKmYnMHs70xspIGxAbTxdx/SwFse8t5UlIwVxsmkZhpijxmyxrO9Tj3GbmMSMR4jG2MbVYN064re+PTII64xaZPzTz+QObfN82uCO59nIjKvYX05cNUDKi4ZfO49N+XO+sPXpxPDtQ6we53nHDmg64QC6maefA/P9G/rUwcIracsn87qp322CbTHxF8Skt5Rm+sng8AAMeomGGBQzVx7N+t6vW7H+nzxxRf18uXLVp91LTYQZ4D1NpvN6tWrV/X4+NhIdog3ntHTd04icADfjqt1qufV6zN13i6Z3Jd9+ZTLx3RuzyH+PsW6OO2udWOS91XP+o532FUNgxbWtdi8Fy9e1Gw2aztJeffRZrNpuAd75RNSrq6u6urqqm5vb9v3ZMHyDiHrWtsonk3fHMz00bb8xon16ScO2FDnZrNpRxvxXqX1et0CoDw/20LS3Gw2G+B1HxEE7uddTQR4aQM+A0Eb5sI4ynrQOpP+O9PY+AUc4ACGxxbd7nfVELyhjRyBBOFHkMVjQXvoM+11oNfOf+K+XeSPv7Nsc42vty3t4TDLDMW2O8c2sUzOhQOQzLmf7z4ZR1K8NpB5B7hcnNDFmvBaxGY6aJ67oXNXKN95vffmNDEe9/J3D98z937fmPttjG5swXUct+VxmM/ng7lGbtkxsl4Pjxtj3G5ubgZHFTIWxlHe8UydiWeMlajDwVL7c64LEi1JWmTIyQO0y6eBgKE5KhE9yvyhgyCl0bX296u2/jt1nJ6e1tXVVWuz286P/RO+M9Hp5DknXO/LvuzLH1ZJG26f0tfYDqZN5Brb7N4pfPaDnZjCfSSO8DnPQq9PJpN6//59/exnP6s3b97UbDZrXB7XGu8aP2Kr0bPYAXTx09PTIJh6cHDQbAr9d1Iw+IzgJn1yEmBVDQI2YAY2u3izxnq9fSciOz/5/+joqAVYsQUEg+g3dspcBUkz4NVMPsdGYRvBuz5mnn6aRzO/6g09FOyrj4E3P4mcGfPCb2EvHQhNPwBZModnTiplO+V1Fz/qdrrOvCe50OTx6Gfeb6xrXi1LYmyucXzAz02OPIvHJPtiHFdVbY1Qr3lA7nH7Epsan/n65OP43nEP4x7wFnN+eLh977vvPTx8frULyQibzaYlDGw2z5zt+fl5e03VYrGo+/v7uri4qKenp+bfgYtYV2z0Go/H7V3s9t/AfRx7a/4PXfDq1atW3+npab18+XKg966urmo2m7UE5pSl5OgJzHpejfctD+iGnixb1vk/OeWeDH3s+99W+UEFQS3cH/vOA40gOjiQu5Js8DAkziqvGiqS8/Pzev36dV1cXDThtgA6k7tq+97Px8fHur6+rn/8x3+sm5ubwY4dk+l2DFOB0EcbRUgUDIYXiZ13E2HOhGGhc4+BBg4gdXJvKmSDEkoGHFwcaMhsUxQRTpaJPAOrDCI5Y8zzmv3vEfAEKlOZ+nqOgcO5NdlAPy1LjKMD6zbinss0Ts72ZZz9jJ4spKHxfLgP/N8z8J4T98vtTmLI4+v6fL/JG1/vNcO9qZAzaSENXZJm/tyEAD8eW+QoSaAkhNw2P8P9TCPSI5v4H+Is12EaE+oAKKY85tybQDWBk+2kPTluWbJNmfXjccjfzoLs/fjZSZBRj9uIHkJPOrHA1/Pbc8X68VrL8acA6ugH9gPZ8RpLo57ymDqwZ8NYLybDcaA2m01zejgGA1J6vV63d+A5gH51dVUvXrwY7CK1vPn9bKzHqqrJZNJ2g97e3n4wLgbntIFxpT/YTo9FEmise/73HFv3fUwu92VfPvWSzuCua3bdY+fR5LrXJLbIR+bzuTNeU5+DYcBcdhrBQNR5f39fy+WyqrYYDAePaxaLRQuCXl9fNz3E8d08K3eDY+Nom504Y070itvsDH6PBzr57u6u5vN5I26ur69bH03scJqJgyAOvI5Go4bvHx4eWnCTeiC2fKKJs4fRjRB4DorRP+86qKo6PT0dBHpJInz//v1gF1riUnAu7cUxnkwmLRkQpxyn304xskHS0Pv37z8IQo9Go7az1TY6nekennWxf7Hr8yTBjJl6dSdWzP97RBX/25Y7EGiM5zqz+HPbUZOmVR8m9Xk9+HvusVxTh4O4XGf85zVl/8I4vWr7WoG00btIPvsF9t3SN7Fvya5p8Ix3fiKnkLM+sowEAv5G9hiz1WrV1kn6dTzbO4l4FnrF8+Xk3Jubm0aom0zNQKRlM/mGXvIuxQke+AqeY7Ap80q7Ejvb9wKvoZOPj4/bztX0/7y7x+Rp+tvoHpNq+7Iv+/LDLcacVUMewEFA8662BfjQ1nHUax0IF2veLgOr9jMT55qnQKeDq372s5/Vr371q8b1cqoJzzDX4tcy8HzbYZJgsOFgKwIe+OzoTl5tA/bt8T9O1mG8STrElnAcLRiBvrCLlO8ZD/NtyblhHzNRx2OaATmCmpPJpL1+wcfWjsfPyTYEoOkHY+Mg98HB9j2nxiBpE43pzCPymcfC85Fym1xZYj/LVHJ7vetcR3JEXJ+BvrzXde4KVLq4bfZpev6i62GszDN57VFf9tfPz3HJ5/WS5pkbz4XHiDakPkm87bEEw/V0iPEK7SFBF5+VNUrSATsu+SGJgHUBz8bx2OBU9BsJamxo47mTyaQFR5kncJZ5dq8T9OVkMqnXr1/Xu3fvajabtcQ3rnl8fKyrq6uWkGyMbZljnMB9KV++x/fi2/ZKT05Ze8mR7pLF30X5wQRBdxHtvUGuGmaz2zmq+tAx9v8OjPgsd4zpdDqtP/7jP66XL1+2l0qTNcB1GDhnwtzc3NQvf/nL+sUvflHL5bLd50BSVQ0yQa2oqoaBJASwpwTsUKch8d/O4ETh5Bgxpg4qPD4+Do5mcPt9XzpSHuNUwjiGzorle46H9Hx7nvhtxzINFe12NpJJCECAx8xKFTl6enpqJBdHSNgQO1s+n5FEhfthJ502WOEjR3ba3cYkOXsGu2q4422z2TRwZ2Oc68NkE8Vj7PsMYEwapaI1CcTnaWx5tsmUHJv8n7r5m10NPYNNsbG2goY88HcJ3JENt919yf44I40+sRYNZrOYiHbyBHVwH30xEEzQm6CPe75rfBxItNFzv/07j0Qz8E1C0IDQOgedZNlDr2cfLAdJWlIcBDWZlG23rjRJxzzk+0lHo9EA5Pg5bndVNRBlghHCz0cHsza5bjwetx1TOFNkpdEWnJB3797V0dFRe3m6Twzw8efoV3Tv8fFxXVxc1HK5bO8jQH/lnCGD1qkJgPjN83ukacpDjte+7MsPpaQ9SP3T+57Pfe0uRzSzr30Uj3Xo4+PjAKPyLDs/PjbVNn46nbbjuDiGO7PvnaXNNegqyKPJZFKTyaS9u49ARwa30Fn07/T0tCV2WK8Yq3mHFgFd3vGJAwsZQ7Y8dtMOqV91gW4mMEvQkN1r1FNVg2vpE35CHj9me0AwE8c78apt+nQ6be8MRI/z6gbGxVn2BKp5Fo4zwVT6wc6F5XLZ6rdPQX/YZQd2drIf8sSxbhSTLib60n4bx6UvZCzIZwSPe1ixR3iBlbzOjCsSP6Tjbl9pF5HA/0426hFO1IGspx/L9/TNeNT9S5LPvgl12TfpBeC439jFAW77icyf/SZfaxxtgjXxDn1kJ7YJTsglAm0c/Qc+st9EUgfyQEJYVbU1S3Ce5+FrO7EMmWZc6R/rgvU6nU7brvbJZFLn5+ctKWA6nba5pK3MlfFXvlaG65DRJPO5BsKZ4CdEMiSZcSh6g78nk0mdnZ21tltfHB0dtVfzINfoP78DD+LQJOe+7Mu+/OEV202KAx7mX8y1mHeimDNJ/jN5K3/HtbY74F7ad3h4WL/61a/qq6++at+DB8/OzgZJalXPwYvT09OaTCYt2RjcybOxFySM0RbbOWwSeMzHzaJb0cuj0XOAZjqdtvt9spz7ZT8bHUzwk3FmnNzuo6OjlsAMhqvaYlb7ACQBwstyH1iTIG/iL0rafq6FK01s5HmmPoKwyZFaZvxZJl9loM/zk5irxwEmPvIzMyEgsSmlh7UyEOhiWU/fz+OUHKB5wV2Ffnu88pmJlcH27id/uw/cx7z2sHrOtecmN1LlnLl95uSpz5gpx4p7ZrNZnZyc1Hw+r+Vy2bAsCaD2tXyyUSYNr1arhsPYEJec4ng8bvEeYhzIGH+zLhPv4QeC1xgLxtXXJD6zXI9G25Pg6Ld9Is9drpPk/Pg8eVb7U5YV2pDP+V2WH0QQNInSXYSpB5vfGazhOxSGg3csdgym62HiX716VZ999lkzWDc3N7VarRrxwm+OEVivn7cs//znP6+f/vSnLaAH6cMiyN2bztIxsQWpRTCLOhxUSaVu5dUjzljwKMMMguHs0j8rJJNjOJFuN+NqgigzFgAD9BPlkRnIveCmlR9ku7POGFP/nUdpMq5kSHgXsB3yDFY744c6kCHqNqDwEUMmHzPIMBqNGhnmwKJlohekdlst+7SdYAokAUbBwAXFmmAgSRrGjTblzmkTWx7HLLsMqkG0yUmu871+ThYraj/DRJsBmu/xbl6DeerxWsogYYIj5oosSdZwkiM2ojY6nt+qahn0CYJ6DoZlgLWIvumNXToRngfLn5/R07OeHxvufIbbYaDnNYx+gIhi7SWI7JGBm81mcJQufSBz0uQd64ExzEAy9c3n80ZCUZxxyph5fKmDjDH6ZOBRtX0nKHrAsgoomkwm7R0ny+Vy4Oyt1+taLBb19ddft50QR0dH9eLFixbQPT4+bu+v416OOJvNZi0Q6iBED9BYJ6RN9RpENyaZ6rWY9/2uwdK+7MvvuqQezO96BPMu0jmdcnQBtt56s6oGQTzr9qoaOFToQogadpijy8hIrxomDmFveHfJ3d1dw8boDV4RwY4i9DTJXug9B/OcNOSkKx+FZudvPp+3dws629aEmU9CQV89PDw0HUjiCfbCmI3xJABCkpyDU+BhY1uSTvgOW8t7mhxoYg7JHj45OWk+hp11+sS92PDlctmSZY6Pj1uyHvWCTcCxEALT6bQFzN12v5eR49r5HzxpYtSBJh9xxlzRd2NWim18JhZ5Dfl/Yw3Xm2so11+uud4687V+Vo8wMF7zc+1PJHFr3OaTfliD2Tbmq7fGs520yYRHD3vRFq51Yqq/R879jBwHfhI3mmgF27CGkfXT09OG01arVRuDk5OTpi/ov7E9x57RXt5dSVDVya/Ipn3SDO7xmTHeeDwe6L7VatXW5sHBQUsgmE6ndXZ2VuPxuL1n10lwxufIiuUcIpn1TBvAp6w7MJ6xseeUXVqPj4+Do8wtb4yFi9e0fRKI8Y+RufuyL/vywyppI6q2u0Ctc41L+KyqGvYwVrXdN+azv0idBMZ6wQ4nqZsTPDk5qbdv39Y//dM/VdU2KIgOR1+ySx6MCz5Gj7IDkmfZdpOAwjG2yeWMRqM6PT2t6XTa8DD2n40zFGwUPCG4iXebOlHeAU7sADga3exnrVarNo7Yo/V6PQjqwD2Az0ny8fsRN5vnY0PZoUriIQlLtIE2swvU9gJ7Bb7E7mPLvFsuMSJz3wv6WC5sr+0jGavweXIxyffl5743/a/EdMlzZp277Gi2M+11clTmY3a1meLneVxyfKnT68txil11JQ71mu3hdrfZWJe1xE+PH/azjYuqtrrA43B2djZI/qqqgX/C+iO4eXd312I64Chk+v7+vmazWc1ms9Y+EgjQd17PzBnvGDUPnHM8mUzq4uKiHh4e6urqqulV8OV6va6bm5vB62Sc+Oax55htEuASq3sNgDUzMOv5s4/ruTL+9Nz+e3B6n2QQ9N8yUHbUIH8B6pndaiVko45gVQ2F6ezsrF6/fl3T6bQODw8bqQLhcHh42BbCZDKpx8fHevfuXf2///f/6qc//Wk7YpBAmQN2fO6AFwvYYKBqGICzUXbJoBNG0g67hZ4xSiVu54/xoa/eJk0mvIMIJrmzbVVDZ8+Gzs4/IIbgclUNHFwHaaxYCfLc3983B9JKmDExyeSj1ZgfH+vhuRuNRoMMKdfPzgjIIepEFvk8CTyUpY22SUWenwbUgbU8Ps0OLfVizGgv/yc4cNsdxPJ3GAy3m345iEQxWB6Pt8eq9YJZtMnZM7SvR5p5VytyyPW00WNu0IDsJUHVy8S2fKfhpt4kNzwWfu+QM7QdVHS7vZZYM5Z/6jX57HkzWWVA7nGFZPZzaXcGt0yeZgAdx8Lz6PnkftpmI23ZA9j783yvpX/TXu6lr4wPMpd6I9eBM/M9v/7M+svf8zzWOv/nsT0JMExibjab9n4C5M9yx5jQ7vPz85bAwc4GZP/9+/d1fX3djtN1W9wnnBzqJdBhMGnZ+RjhhROEAwNhbuI1S4Krfy+wtC/78tsu1pW9z2xj+c7/Z13Yl8SyfIYuMnGwXq8HWdjYbHYVsQZtk3CgIHHQp2AdO8lV2/eig1Ehh9JZ8u4rdIvbDu4DBxBgHI1GTa+Y7OKe29vbWi6XNZ/Pa7FYNJ2YSUjYMuNtCCEHbdCrkDNV1Zxg6mHHgE9k2Gw2zfGEJGI80a20h2dhg5i31Wo1eJc4mczIBVjVu8I2m23iysPDQ93c3DTcjL2n7WBtxtMyuVgsajqdDnC560bujD2cROpgE2PIM7nfeIp1kPLq4FliEe+sM3axrU1HPfEAspfkbq4118/nXpsmaozbeL7rsoxnIJE2eJyxx/7f48OaYtzz+TybMcNvtcyYaLbvwLzxPK9hPkvSN/085oQxBqexfpAJ76wGb0Hs0gfjEtYh/bDvxDp3ogd4B3I736e2Wq0GJx15LByANB6F+CXJkGNzn56eWib/0dFR23HEjm3Gxv4v44+vYLkzvkZPWPeapPR8My+0z4Hk9PspuXbYbcA84s/mWtmXfdmXH3bZZQszGJn6CH1qW4yO7/FLfI/uwpdN+2vM6oTbw8PDmkwmNZ/P62c/+1k7DcNcH8nBm82mvvjiizo/P/9Ax1ZtOTVzNNjW9XrdsB9jYBvEmDmwd3Nz03Q+CclZP0e0E+C4u7trSc/mp4yvzAk/Pj62946S2Ie9cdKg+TTGhwRH+Fde3bBYLGo8Hjebt16vazab1Wg0agFW+kGiJcGiw8PDwekqFxcXNZ1O6/T0tI0zONcYxnV6PI0pzHeBDYyNEg/SdkqOgZ/B35ZJ15lty/97vF7KedZN/ckzJpalXjBy/qZO9zWDkx5TF4+fPzPGNUfbw7vuE/jGfkticObQnFvW0+OLUx8ZVzNeYE0ndZ2dndVnn31Wb9++rfl83p7vDRdseku8W7U9XZF1QWIqPuloNGqvj7Fewo8yD8hYojcuLy/r7Oys+d+z2WzwDlHzpcvlsiXbIfvmEZkTTjDxfOZ4W26ML81R+KfH436MJ/xdlk8yCPpvLVamOC8mGfLaXPj+347q69ev6/PPP28EBAaEIzerno0m2TVv3rypv/mbv6mvv/66ZYyyIL2gaFdG3akPx8cGy4sw+80z3N8k+614TBhYcdnZ9U4/7wqyA51tscKwkXJAFWcThWClyucOSKJE7IwyJnb4TKLQBgg3B15RSAneIAX5ziSZFz7Ax5ljtANl6znGuHOcpucI59nt5nr66N2J1OugF33NgJiv9/jQV887xoM+pnFx+zJAmTLpdYfMOJBrJZt9spG1vNnx/piy7V3jPrhdPYDjwKXnw0SR31nmfqT8AbYZ754R53cvqaE3TgY//GT2jw0YnyGnScxRl9cV68HthpTKXaUe12y725PX9r5nTB045dn+zADRZF+OrZ/h+v0DAZefG0TwLAc2kWl0Hg6b9YTHsQcYWIN+rzO7jqqG77G27j44OGgZbex28Dwul8u6vr5u7yUwQUj9BEIBawcHB3V6elqvXr1qQQfq436vLY8/hTXyMbCan1vX9K7Zl335IRfskPVY6rPU/Xkvv7FPDuARhMtklKptYp2PxrLer6qWwIUDZ0LGOA3cjQ5zggm6hl1d2I/379+3wAC6JHca4QhWDbP8wYvr9bpub2/b7k9IHO7jdA1jOnbGVw1xNckn6EQ7sw6iQvDw/qX5fD6wk/TJwVT6h/NMVi5jzNyQ1GKyBPLKtonxY0y8K4D3tdJPH3/GySd5fCZ1OvmPIKlPS8EuOBiUttKEl09ysD/wXURQYkHGp2q486Nn0ym5nhJb8p0Df8Z1/mwXbqSOtGX5vUkeY123y9+7LfbreljW7XGCHfOSxFTeY38OOUpfIPGa7X+2v2p45KvxD+sQMtW+AWvTCa+su81m00hrYzbawO6UqmrvbcLnQpdxj/0vyyVk8Wg0apgMHUfAlWNj8dF5zt3dXSOjvaP87Oys5vN5XVxctOQC1hhjAbbmeVXVsJkxZNV2TfJ8MJ5PD6EO9BljQDDBa8IE/mi03RHuIDZzhBzm61n2ZV/25Ydd0Lup521b0THoIPMoTv4y5k2uzAERcBbfJ5dr/HF8fDx4P9/d3V39/Oc/r9vb25Z4AmYBh7HTcbPZ1M3NTUsuRuej73nWZrNpdiD5SuMCf4duH41G7bU2JALanh0fH9dyuazVatX4ZLD0/f193d7etlPAjo6OWiILJ0j5tEH66U0uxjU8F1zKjsyqbcIN74vnenwFxsIJSYl5mDP6zMlUYG5OJADL97gzy465POyhOU3LjHEWJfGPOR3LIm3GHzEGdX3pd+XcWz59rzEfxeOX/Ar928VVGhfkmvQ6MZ7MurLe3vpK/s4+g+vsjZHrMZZMHO7n9jD2rvuqtqdW5pwnPraPd39/XycnJ/XZZ58NThhiDeE34u95/R0cHLRNC+v1up065I0IYGp8R9YnCa3L5bJ9Zp/g7OxscGpSVdX5+XmNRqPBiW7gvdVqNVirVTVYa+gAfGH6ULXl8b0WaIs3ozB2zBP3oOMdtO7hwn8PXu8PMghqJQkpkxNiJ9ILKh1yDNhkMqkvv/yyLi8v2/tzMJBcw/E9BwcH9ebNm/qrv/qr+vnPf15V2yMLUOgYDjJc/Z0VGkqYdlYNDQ//8306zjiUDhyh3NPpsfHJYJ6DoCgJ/23HONubBEtvvmgnQSUMO+PKWDBOPg7Cz+LvnqGmvXk9RE+Okwkd7skMeP62oqFPfr8V/QOszGazQSAFZZPEBmQmn+HE5nyZsLLxptBeZ3xTTPxYEVKSrDLggOSyEqQOk4o2fs4Yp75Ujlau6fw7SJjzniDU5I0DhZYF/s4gjAOH30d57wIUHmfXawIMQjjb4DXPdZYNl+y/5djgy2AFp8B6wCAmf3tuq/qgI8m21K08ww5OzpsDh5YrE3peW5bXBOU9YN2TN35MhG82mwGplG1zXQYU2AcAEESX1zJlvV4PdmGRMIPeQ4+kTmY8j4+PW4YpO7PQf7xDazKZ1BdffDGQCQh2xotnkj37+vXrevv2bQNpyIrlppepR51+lgnqXWtplyO1L/vyh1LSibSO+S6yOe0P2IE1av1rPUL9thFVW4zMWuYoW3Qfx8M6MaWq2jsvqYO62ZEFziJLFVzFUVskYrgf6FQTOujq+Xxeq9WqFotFrVarRlZhU+kf9dM/9BfB3KrtzkXvTOVziCuCDs6UPz4+ruvr60Egg11ftB3yDX3vbGCOYaK9JycnLcCMbWBHrN9P5X74KMyqaqcDkFzHdcyxsazlh+SuzWYzOEmFuSKQ6uC67SvzjWPtYzgth979RptMMBqv0i4Xrne7kwCjX7lTlPuNmUyS9PCP7ZoxwC4s4eQh1+XPjOd62M9kr9ubmNbjmjso3A6e68Q199vYEFxgLJNB0x5xktdQIHypH4LU70mzr8H69ft2WZ/IJ8918pp9UpPAYG8S+JhH7nFyR+IvvmMu0GVV1XQdeoPgITLHzlbqYZc5u0Nns1lNp9Om9+gjiSJOXmM+0LEPDw/tFA/azPvpfFITc2UcNplMupiOgo6Gn/D6JBED3bQv+7IvfzjFdpPiExm4BoyJD23f3NdV1UAPUdD52DLrweQkuI6gBbjkV7/6Vb19+3bAM4DFDv9/7L1Lj2PLlZ69SOaNSWZW1lXqtgzBl4E8sseeeeL/4Xl74JFH9sAeGAbcf8Hwn+ih/0IDNvAZ6IENt9RqSadOVeWNZF7Jb5B4gs9+K7KOjrrbOueIASQyk9w7dsSKiLXe9a4Vsff26vT0tAUXuObq6qq9r974A5tkjDEabV9p5p2XYCwfbZu2EbxIwGQ0GtXFxUV75yaBZF7n8OHDhxbMHY/HDX/7eT41hDY9PDwMMK5l29udRjINXAIJ1lyHjWOHm7GBEy45OYXP4Uppn08/hPvFrjK23szEPDOnZXyV888Y3vPExbxEcmjcmyceGHfZZ0sey+1zG/x34ua83u3LGIX5L/N+GRz0esvisaEdyS3yeT7HpTcmPX7Q7bP/6SQ3npE+q5+VvrHbZHwJ/mOekVhnfppk2b29vXakbVW10z7Z0bxer9vRzlXVdkDjq7GeSC7wa6vAXI75kFicCR6z2axOTk6aXnASA7um0UM+yYhTTMzVs148l9k5atl67KxfaYP5zHyNQnLyPfvw+yp/kEFQBicDoL1F6+utQKq25MLe3l69fv26zs7OajKZtBfLMiHW66fjAHhX6HK5rJ///Of161//uq6vrwdOjB0NnuMdoBgUH8/qwkTmevfNTk6SXCYKTCyYGElCwe00iZAkQyqzlLUXoHeO2dHtjQ8FAoW2QiRxj8cvlblBU+4gcxCG60348T3KmWc5M4LneZeu38+UAemqJ6f448ePjfDjqDSu8TOrtrs07IRmAC0Dmb6WuZrGMw24iRAf++s++DM/g/GkeJ7m3HRmXBYHxGkPGdXOyO7NWY+L253XJXjBUHsOJjDxerEs/X9vrE0MmaxCFjbEJqzy2bnOs5h88ho16E/9w329OeFnek1BwmaQkroYXwNXE0y99ueazYCs24F8kZvH2PMw9bnJcK8z32t94c8z6cKAIOeCnSLud8aoiaMk2tOm2OHyLmIcNcgvjpnhyA6Am3dVfPjwoU5PT9t7BABVeRwabaW+ly9f1vX19Wf6EsBncO2ACXqy5zx8CZCbxAZs7cqu/CGU53Sxv3sOI9l2G2uxrm0LrLdY69ZvTi6hbt5ZxM6fu7u7tivQgcKqakf7k4nOO1Osk9BB1MF6N55JW+UjTKnv6upq8H4Tkz1V1QKttB+MQJvQgcvlsgUhSDRDdzoISBv528TReDxuz7CtQp+xc6xqm6jj4Aj32OGlTKfTFoA+Ojqqk5OTRm4RSNlsNoP3eCJrSDLeJeVgjRMwjV98fBlyYIyxp+Bty8Fz2TYMmXMCipNAjQ8z0GbcknYk/RATJokdeiWddWNhB/XsF9h+0V5j4HT8exjF+I729uyi6+qRQcZ6SabxbOaT/SOuZVyNF+2LmVxzwNz4yrJKMs4yoA8mwR3U5G8SCrh/f3+/Pn361IKn6AuT07TDSYb7+/sNt9h3YOek7yFb3kmpSbyaBFuv101XsIuH/rF2LFdeD1A1DATzqgJO3eA1Ouggt5FCMIF28rz0Z9C/tMOBcX4TLPDa83jRJ+O8xLpem98FwmtXdmVXvn0xPvymktf5f/xDAlwkiCReAN+Yi+zpENtFJ8252P5UVcNIo9Go3r9/X3/913/dnk1iCcFPdk45kLBer9tuUgKCh4eH7d19DmY6Ie3+/r4FQ9iJmvbfR2zCZZJceH5+Xh8/fmyBR74/ODiou7u7uri4aEes439jVxgHMB4yQD69IAh2wRtG2BUHFqAt7ErFvhC8IajDcb1sEAILO/jEPOA72uaTVBhLJ3Amt8bniQk9FxL7eY4lt+frzFNyjW0f2Cc5yuTb/Mzec3v+WA+vGoOmT2Bb3lu/5kCNOxNnOskgcai5y2yb4wNOhs/YAG3hb+MFY9Ue9+m28535sexnyp22efxYn8xNvoPzJwHh5cuXnyVwVn1+KqafTX17e3t1fX098CMdGB2Ntq9z8aujwGW8jirb/fj42DAiiQk8E2yJ3mUsHdBkXMDYjr/0OGvzeZb1c7Yin5f+1e9avsmX+1L5gwiCpnC9GD2RstiJ8y66XLB7e3vtXaBV1Y7bgUDgyAIIkK+//rp++ctftuwCjArPsdLKM5sBCBAjDp5gFKu2ZLWdWooXhskVvmOS+h1CNpBcRwG4ZL2WI0YN400x+HEmloMNfqaPYKBtyIMFnuPsvjtI4LZ7/JGJCQ7mCE4z/5NxnIEaL0ofhcnzLFvLxRlojP9qtarDw8PBcUaASZSyj0ziN+3ysUWAFAMb+uKAlckM1oD75He/uKShc3acjTLX+Dg1AxvPOc9f1ollnMdmJcGV859r3B4Hw20c0BGeV/TNc9dy8pxzMIu2eE7xd5IZHJ9guX7JeJgMNCjKcfG9loWNueWTIMXgotcO+uxjgZNcoyA3P4s+OIhpvcfnOZ49cGainu+RU86R5+aHDb7nS8+Yez1454KdMOs0rvX6AMSPx09HJXIkGev36Oio7VTgXtrEbiLXRd8fHp6O5MbWXF9ft4zL0ejpXR0fP34c7OjhuXYslstlu4fkn0+fPrXdVcjIJL/XTk/OX/o/xzidgudKb83vyq780MqXHOl08sEGdnb945132N/UBWANk9tcTxB0b2+vZauje8BNBBvZRXR3d1fX19eNfMJ2ONmCJEH+xvauVqt2Dfrp7u6uzs/P6+bmpr1/yEFf/rb9pf/L5XKQTOf+e1clhQx+y4ssYjJpSQhKLEQfqrandEyn03atcfRsNhu852mz2bQALZn0L1++bMdnzmazRtLRbvC35wpBGmcd85sjO+mzcRE2/ebmppFb1EkbsVOQguhs+p/JMNRhItOv+rCjX/X56SQOJjO3HTTnOvpjZz2xe66tJFyQgX0J2zyK25TEF5/ZfhuzJJFgnJJksLGPcedz5FkGsYyFXE+OVWLvxH185qRM9y/JaD/X7fCuTWRNIM+BWdY+84z1gn+DX1BVDZ/4OFj8KIpP1IA89q4h+yPoSvSgg6X2CwjqowOdeABG9JF/nlfoltVq1Y7L5Qedke/+9fxhx1Fi+vV63TgJdDDjZp/UfjG6huODPVeQK2S4OYXE+LuyK7vy/Sscy5gnrH2p2C70eCL7c9gUJ0NXDROJzLWgwxzssn/N9Xyfz55Op3V5eVm/+tWvGveETaBun+yBXarantrnXVXwrt7VRZAUPbrZbAa7vEh+wZ4QEEaPOqC2WCzq4eGh4biHh4daLBa1XC7bzq/z8/PGG4EnsWPYYp6PfSAhkH5j00gGSk5oMpkMXmFh+0fQk1d/mVt1Qjd4kM/MedOGPMWEgKsDXcbU2CJz0Pxv22NerBcHMFfle4zjcj4bCyW/ZKxkftt4rsev+rsvrS/Xl/3y8/N5xqTGzN6AYl/J/NtznBnP9vXM1cSvWcyN2990O405UrcwB3pyABt5nuBnum3GOrSDYCHzfjKZ1OXlZa3XTxvbfvzjH1dVtWNu8TsoyR1THKe5uLio0ejpOGjk5yAkeoe4gd/rWfX5blr018uXL+v8/LytifV63eIkTqJLDA/Wc9uTS8gYjhOWjem9gc/YP+dMctLftkwmkxZ/+7blBxMETaWVn+OAmYROA5GBML7zdv2e8/rq1at68eJFO36mqhrJsV6v25EAo9Gorq6u6v/8n//TiJrN5umFuWSO2rBUbXcV5cKazWY1Gm2zBXwcGJOYunC2cHScHeSAAs/HcFtJ9gg1gxKUiY8FMvlhgwg4gOhImQMIIPb9XI8BhYVqg40Bp/0mBDBGDqg4+8yGCWNthQMQcTtQPJB79N1tQD6MFaCHOZYkiDOyyODy5+PxNhiMHGgTY8i8A8xBFPaypB4fHwfZzv68Z7xsuC0zB4esLL3+PJddFwSEd8exhntB2zx6xHXlXExFb8DH2NqIp+FMQqoX3ARM5rUJhjBE3EcbTIQYrLi+3J1nefTAlMcyA7a+zmORWV9ug2XtgDvPdeCu907UDJBm/Yy1EyPom9tgmTBWBoQmQg1QvIvez4Rs4zoTs6wtHx2BjOgHz0/ymEI7TSpCGLJmkf96/fT+OsYZnYOOZywhyLElkHbMMa8hHDucIwcf7u/v6/z8vI6Pj+v169ftOWRuGhBbfxwcHNTZ2Vl9/fXXg12Z7DSinehEOzspIx+pZuBE6ZGou7IrP8TSc7azpMPse7OudJTtrKXziF3lfzAj11tn+shKHEayWu2YEqyYzWYt2EeGN3jQOpVnEzDN4l2KHDvLjjC3gTau1+v2jiUnjyEbdkz6fUn2C3z0F4E9cIrtKPVCMCG7HvZwUBiM7nd3Yken02k7Non2O7OeIMrR0VEj7sCzYD5wNjJmNyvvSEUm4FfGnXqdxMRYcewTvkieXALmBCdBZJnQxF7asfb8Mg43selAoe19Eju2q8ZaJtqYL8Y1xvX2H6tqYKe99txWryW+M5FGMYZLHJvkjDEka8tzibaxtnsY0fclccT/+DL4npYD49Qj1yyDTNrlGU5ATf+B/wncoSMojLv9AXzF5XLZcL5/koSBXOJ7MB9Z8zzXBBnBzKpqR2ND/LBTBzyE32Lf1vMWH4ts/KOjo8E8ckIB+gistlgs6urqql6+fFlv3rxp/q6TRCheH5a3/ZnJZNJ2HRjTmWykDWBK5tH+/n5LAuE7nk8fnMCyw2q7sivf3/KTn/yk/uIv/uK3utZ2wbrH/5t/M+fpAIRtlW0ff5tbqqoBn2sbm/4k9ujTp0/tNAAnv3AakrEyPJr7gX1drVZ1f3//2WaW0Wh7qpN3mNIndD+YCazikzfAtuaGzWthA+gj+tj8I303F7i3tzd4fyf9wpblaWwO2JJcd3p62mQA9mPXGsk55kDB5vCetBVOC77S40s/OVGBnaXuo+eHA+JVNeiHsYr5muQkzbs5WY/fPQyXOCjnvHFOrg3LObGRi+ej+5H1JR/r+nJd+D7suot5GsvH2NNY136lMX3ic9eV8yTlQJ18n3rAOMfY1v5tj082brasjJs9R/w6Ak4Zqnp6D+erV69qPB7X+fl5e8VUVTV+Hg4xN5H5Xb9V1ZJab25u6vT0tOFfsJr5fj5HrzhOxXhTF89cLpeDRGTjbsvNa9NzxTLhbzBzcteee8bhOY88Hjk/ftuy2WzqJz/5ye907w8mCPpNBeFmBosnlBcB9zxHLrE42RY9m83aYOMgHBwcNNKZBfn+/fv66quvBsFSKwuen6Q/is0LtGcIU9FXbTM6rQAc7HMwwgq2R1hn8X02Bq6f/x2gZKG6fq5zW6nbOxicZZqkuAknl3Q03W6Pu3cs9ogE5A6pA/DAsHu8mGsOANNeZzVlgM6EBsDMxskKpQcsUIb+HwWcO72e65vH0oV1Y4PkwAUAxcRSr9hAQeqxfmzQ7GTb0TaBYkNrgqQHcnrEsgm2BBY+Ns7tYX06kJ4kz3PghPni3a8ExNx3Owxup0GGQUCuf7cr9Z/bYyPseeBrTAj3yELflyDN68r3P6dzrA/QT9YnPeKt5yTl3GDuAkisd3POexwMZg2qfYRZysHzwnJmfQPseX4GTJlbtGO5XLZAArts0NsQdMx7H71N/SbxCAjQZoIROGQcA4SDRNIG9fAOBLKv3rx5U+/fv68PHz609nuMWC8O/tI+J4Okg5nzYFd2ZVeeL9+0Rrz2qmqABTie6+TkZJC8gp4y+VI1PN2C7G8yMXkXKAEGB/sIQpBJ71dHkJVOYA28UlWD7Ficupubm7q6umo70ZOgoA3ofIJfvczcDM5UbbEO7ZnNZq292GqSzdCz19fXzbFF79v2GfdgX3gH4Hq9HuAnbAz3ETxBT4NF0O0EQI0fTODRTmTEOLmtfpZtaCbWeEcuuAz8zRgas1JPHv2eCUCJJ411wF9gm8QNjJntLUFqX2tiy+SMA3bMbcuxt86ew9FuS+JB7rOv5L4nIZC41Dgid6dQXxI5xlr2+dx3y8nBeMvdY+GxBb864GwSO30+cI3nnvvNvZY111GH/VHGar1et6PznM1+dnbW2smuUAKo1Od3OYG/7Jswf6ue3gXledwLEE6n04EP6PXv96QR6Ez/czx+Og0EvfX4+FiXl5cNv7IrFB3powqTmDU55fmJ7vBOcGNi66+qarjTuBXdwDxhbNznni+5K7uyK9+P8r/+1//61vekD227493izyUg+f4MAJm7xY6bg8sT4RI34POaH2KXFc8BWzlJDNvlIBl9IBBKYgl6kWNwwc9wcmBs9PdisajNZtP4gaurq5aos1qt2isekB/XwZthp5Db9fV1uw6uAbmxi3Q0GjVcTcIamBebgG3ihxOlsAUEVLyLN3kUjw/95Rp8D8bINpDx9nuuwYzIkucYw1YNg+E9zot5ZMxB3XznOej5ZNuKXJL3Sg4v5UJJ3o7Sw4K5vvL/b+LznvMRvZZ6mDYxtNvWC8omp+9r/Fmv3+ZJ/b/xYsrGPk/KzH0yJ53cHxiP9eVkS9pwfHzcNifAi93e3tbj42PbAX1xcVFXV1ef8XG0hcAknBvyYCOCd3zz3k+fCkf7We956ifjhe9Nsh44k6QNr23kggzQT/jVlp99B48dY2Zdnb5Sb6z+Nsrj4+PvZKOq/oCCoFXDzAQHpr4JoCd5ZKN+dHRUb968qZOTk0aM+BmQBbxz5ze/+U17948dU2eQUpwRlArUDrqP2vHutCTW6YtJCyY99Zq4d9Dxm969hsLiGeyIswPlYKv7zrO9sFA+GPrMoEiCgc+sWL2zNIGRx7znICInstkdiMNYEiDLwE4G15kHPMuKyrulMjBIOyBz/H4kt9FyAPB4PMjqnkwm7Sgl2uRjnUw82bj35lOuGQwHn0PWQbSmcXZAyoYp6/d4m7Ci7gReCXRNPGR7e+AmSTTPLcvJa4V1m8QQpWeckTXjn0fE0Z4MpNEW6uwBKP9m3jO/vD5S3jZSCQ4TUCRoeW7MXDd/py51fQaitDWvoR1+pp0Z/jaI9ZiahON667zn5gTjlKRi9tFjVzXUjZk1xVztBUGtBwAtkLrU6x31Dw8Pg91CtOvh4WGw+2p/f78BopOTk7q+vq7r6+sajZ5OKlgsFu2dUQkQq6qBOI54n8/n9erVq/r06VO7LmU6Gm3fi5ykL/Wmrcqx/jblm2z6ruzKD6n01kiuAdYmmMrBudlsVpPJ0zuRyOL2mnfyoO0vWIe/N5tN291pIun4+LgF6cbjcXtnKDs5nbiBXgBP4JShR8fjcV1cXNTXX3/d3oEERuV+7CnYCZ0I5kEelpMDIGAm7DNHv7KzknsJtGDLyfiv2gYWIH98LX1hlz3Je2T929F1wk0GPo111+t1C8Bi6+0Y07fRaNR2tBGEYZesdyKQcEPbfdxR1VPQ1TjdOyvJaGaHsMkLz1lsDP3xPLU/Y3vma2zzjb0Zo7wv8ZcJ1sSJtn38tu1PDNK7N79LMs5tyvaAUexPJpYhKelLxUFDYwPjI/slBMOSjLRO8LxiHDN4lrjGiaxp800wu03GQYwvvhhBy6urq0YqmdTxTnB2mjBXN5tNOy7bxzazK93+rnWZ28HcRQ7MVxKgr6+vB5+jM5O4M6ajOAnFJPR6vW5H0tL/d+/eDXZc5k6hxJbGvlwPJqzaEs4OVHjOpx/Ed+nD4hvvgqC7sit/mKVHeCdJDiYFn/FdkvpVn3MNPIOkl7RhDoihf29vb+vq6qphQXzio6OjtsuRjSsOihgv489iN7GPBFc5spITRqgPW2A7RzDFAU1zko+Pj83G8RwwFbvDwH6Xl5e1WCyaTKu2CYu8W5QToEhm5rnW+bxTHvwKpqb/2Eza66NzvZMWLJq8CliYIEtyUx5/XnNF/eBF8IQDdA7WOlBmXs88EDYLG2WOLX/3uC/mYvKM7pOvy7nb45u+VL/5cq+rxGOWe/KO1GkMYCyd48Z45IkqxvPJ+RnH9r5zf3ufeU35s/wuuUGPrXlL188c4nOwVvbLfBs+GH6sn7lcLttJZ3BqL168qPPz80FyHAmunJyD74XvxBh++vRp4Pe9ffu2Xrx4UVXVknmrtift+VUnjJ39Z7Adu7n5268yQSbGqNanYEj7yJ4PyCmTT8z5GfPbN/O8/X2UP6ggKAWFYjLWxeS/nfZUWPv7+/X69es6OzuryeTpRbQEXiCSbm5u2uT6+uuv6/3791X1eTAsHWZH3NMpxkhaSTBpUebefu26/RvHjOfZWfUuAdqX2cBuaxICVirOQkqlZoeQ+zOAlsauFwDlmf4bubEwHTh2lroDFowzdRB8oO2QbQS8bfxMMjjQbGNEXwBtACKcWGRheZsUMuGYBFASGh4LMpcxdgQw7DzzTBvEqu0Wfb/vxsUOOt8TeLPRphiMeKeHx5B2mHAFVOYYJ7gxMZjPfe63wQ/zLIGV+5KAHrm7LbTRgIXxdB/9LLeBtvV0Q7Y710IGmDyvrN88d/L+JLJ6132J6KMfGGKeb2DmPmQ/PJa5Rnvt9XMNhtL44tCY5KSdSRrzN587OMzRiTl+bk/PsJOk4GyzBLAmpA2oCTCsVqt68eLFYI0hyx7YdDaryTUfyU2979+/b8duoCePjo4GO6voP47kixcvajab1cXFRXcMewDeP54T9OV3Lc/Np13Zle9T+W3mbjqz1qvWKf7MOh89YHLfOo96q7YBNHQoeipJHjJj0fVkjRtvbzablt2OXjg6OqrHx8d25BV6m+O7VqtVXVxc1PX1dX38+HFA2lcNd4NZV9t++3ghCsdv2lb4mF+uh4yp2gYd0ZHYSTAKOM2ncoDd7XzaSQRXTqfThgk5+j6JFhxaCCrkScCEMV6tVnV8fNycZ8YLfZxOrrOTwScEhKuqOfDeYeDdCSTcmIhyoo6dX+aUk54yYJL4z3PZ91HAjIlv8nnM48TRScTZtoMn0l/xTxKnDqL6GcjXBFb6W5TnMBZtS8yCHJKQ8O+qLTnq9W7cxHqwXBLDWgY8134lcszj9VIeHjNjZt9r0oUkCnSN8RR6iYQCk7STyaT5PZaVxxm8msSaSXUTRe4PvitjRnuSkCcpFZ8KIp65js9MHd4RzhqC7B6Px+00KnxD5MY4Gs+nr1I13FVg3ZDJzcwJ5gMyR1/DfyAz+6rJn+zKruzKD7cYY1qXw/n4Gvgi7Iu5gx4ORi+iU8GXJLtQ0E3cs14/BQvhww4PD+v8/Lzm83nDkQQgqj4P0tAe7Av6Ggy5XC6bfTo5OWntRKfa/3aiHjjJ75B3Mg6BUjhD+mubgg3c3396Lzz3o+Pv7u5aYg5+u19ZcHx8XEdHRzWbzQb206eLYPMIkGArncjDZ9hekglXq1XbhIGNcIKPE7QsI/rI+1arajCHGOfHx8fmK/Q4EPAVf4PXjDmxe8bcxjyJEdM3SjtHO3JO8hnP6s3v5/43vjKGN4dpPOV57DlsrMf1yW2mL2iuLOXrOIC/MwYxd9njNY0t7a8+pxeSN7Ofmzxp+r58740NtNFJfR4zsBdrxhibgD58+cnJSTsy1wli/A8GZe3d3d213eB3d3f18ePHQVKIfSDkyhrxySKWLzwn+of3GC+Xy5rP54P5mjxcbkYxt2i9yN/4l54LtM/t4v70rX5f5XsbBPVk/raltwBd53P3UHA89/b2aj6ft4wYJhGkDwrGWdocwWDy24vZ2TtMRNrGfZ6ANgabzWaQwZrZ4r2/aV865xiGdBCdhZCyo01cl4rSWRF8no6RvzNg8ns23R5nBntOeGctzhj1W5G4fbQRhzQzRGgb/YD8y6wkggM812QV8t7b2xu878rKB8eypzAAOw6aAgZxWgnQWvlBrG022zP91+v1oO04qwavzJMMZFhmXMtccZ0Gt88RPD4eI0kSK2m/85a5mVnwXid5NBvERq59nsGaziPU2GWXawcZeu3aEHuOum2WhY/FNqjlmhwT+uydF9YfKQfuheBIUiSBQZJ7HqskMEz++bkJspBhzpkkM1On+Bkmx7I91gGpMw3asl0GUCauTOhlm5FpJql4rbpt2WY7AN61Yl0Jsed76QNk9mKxqOvr63rx4kXTIzgsPpEAG9HTpTx3f3+/5vN5k8Pl5WVdXl7Wq1evBgT4eDxuz+eoN3YRzWazOjk5qYuLi89Auue2333LGsrxNHjO5IjftuTc3pVd+aGXL831/A5b7mzPqi1R5KQ19BBrl3rQuwQCsfcQ6ZBMvIOYAsbiB0cSrERxBvrl5WVLIkTv4KxiJwmUosvBRWBDCCYHKB3cxLG1nqRd2Bc+B/Mjo4ODg1qtVm23ZNUw0IO+JXjCdZmMU7XF9c6OB/twLBLZvJaTCQISbUjO9NGmy+VykFRju0v/IbqMg/1ubBx1xmC9Xn+2g9gOrrGkbQJzqRecduIf9RiPZLKfsWL6VS629bb9+bnnuuvxd/7bdj2DP+k/Ji6gYBPdtty57ZLHz/pkGd/vfjhQTHtNiNk/MklrLJpBNMuB8Xd/TdxwHfXZX/EPzxyNnoL5nt/G45C5Xn8mbxycM0mTGIu6PA8gtsm497onEcF9dcDW2f0edyeVjkaj9uoBr1HzALQp383MyR8XFxd1f39fr1+/br4h/pfl7flLH7gGfzXJv9Fou+sIfWpC33qWZ+VpKTmuv0/Ca1d2ZVf+3xZ0LVwQes5BCPN+vRO8uNZJ807SA3skx2QdhK1ZLBbNTsxmszo7O2u8LMfhgimxqfCZJAODcb1b3jzj7e1t3d7etp1jo9H2fdH0gxMKsEP0CVuA7XIfedc6NprgKLKbTCY1n88HmAH50+ejo6N68eJFHR4eDo43p26eN5/PB/aW+sGBk8mkJdQ5+cWbV4wHbM/NWSYmyR/GDns3nU7bvLEvYpyFPUoskz6Q8YvtE31NDiH9q+RIHUji8+SaqOO5DSXJM3Kf6zFHYqxjfJycV7bL9bqkTBLjuvSSZ+2LmH/sYZDsu5PY+OxLbXLfXXf2zdiW+Ze8W8rZvgnrjPUK18vn8/m8yYH1QELGy5cv24YGsC594vUF9MM+Dbzd1dVV86HtrztmYP7fssNvn06n9fDwUIvFouFpEnL9qgr0L/4fBZzsMeMz42j6aP48kzEdZP4ucHTfyyCoFQtR8OeAtSeMFTkKkL8ddLQixdBxn537t2/ftiBoTt5U6o+Pj/Xp06fBJMB40X6MoDMt6WsGP3lWbklOZWCiOZWOFx4GzYrCi8LvQOJzZFK1fWdTVQ0CO7QhA548h2u9mC3r7JMzflFmKQsUZ2ZB4SAiT8gissUYb7KJ+JugHn0CjBDw9m5K9wVDj9NLof5UatRv5WUSwySLDRJjgyHK9zX5/YEEB3l/DPOeI5r5nH4xzu5/OrP8zzrxPEsQwP+MlecGR4cA3gyeXEyyOBsng1Z5Vrrnoo1MAmtnpDmrDBCdhqxHdhoc2XAbkAH+GdNsP23l2SbYqIP67DBQrBvpc4KgzPZxUM598xxw0oSBFf1jDVNP6mYbVMsGcGEyz4aeksbf4wsp5bE3sEWmJpZoe8rfcvJc9Lj4O+ZUD6xazoyh5ZVZZdb/tBFHjectl8taLBZ1cnLS3tOBXHyEN89w/ehexnB/f79evXpV5+fndXt7Wx8+fKizs7NG2tnJMWHNGMxms3r16lX99V//dXMQLU/GDLmzxgxyTbQZEOZ4eM71ivv6+wRXu7Ir36VifY6udUG3WGeBmbxj3Ef7O4Fqs9nu7gRPHh8ft+uNhXEKKQTfwC7Hx8ct+Pnp06f6+PFjO6qSwETV8MQP9A51EGTg2SZ4kAX9cbAh7Qo2Hb3k3U9+RxH9clIkNgkcSOAxT2nBcXZSHPchGx/VSb98/K0JOcbH43h0dFSXl5dNblXbHRQOrvi9pN7ZVlXNcQbTcpTxZrNp485RS5vN9rQEk1Jpj9PGbjab9uoHMAzPzrmUOMt987zGJiaZBBalXYkzsi4HzdwvBy5JcMw+ea14fNwfk235HI+t+4+fYLmaCDEZ4QAV8ybxfPazV4x5eZb9HvvTtIHP7Hfb5/O4JLFsjFy11Rf8vV6vW6DSfr79CGRA+y1znocO8fpEfui74+PjGo/H7d1KrP+jo6PBCUFOeqBfTrwgGOBjFZE9MkAn0u7cqVlVn536hF+K3wrWNPFHm9EljAfXMgc9NtSVnITbbb8Gf4pECuv7XdmVXfnhFttR9AK/seHWixzNal2C7jEuMhap2gYrSQRGpyVfxT13d3eN67q/v6+Tk5O6ublpz8eWV22DMrZN7P60XcP+OsALj7ZcLuvm5qZOT08bf8SuL4KSTi7jWU4wqaqaTqctOY17aAs63Njh8fGxbXwAuz48PLTXtqGXkeHDw0MLJHtH12azaUFH+o+te3h4aAFXdL1xs99hOhqN2gkhtNEJQ/AL8KHG7uZplstlk4Uxs3F/D7f1Pk9eks/M1eZc7s3zHnZLri25UvplfpDPKMjRfEfi56zfpde37I+f7zZkfT2+0/1JOTjZjHppe/K5rsvBuF5//IyeD5GyoQ3WG/a5mFvG/9QFXiVhzfEOEmq9y5E6Dg8Pa7lctl2Xm82mjo+Pa29vr96/f9/uYZ6zcYFd5KPRqE5OTlpS29XVVa3X63r79m29fPlywNH2Av/wn55XbMxi3ToIar/CwWxvZHKdHh+Cwt4J7nmdPg4YNLHj77N8L4Ogf/qnf1ofPnyo//gf/2MD5r33ojwnZDuUzyk4O4cO+nH93t5e2/2CQ4QR8IQhWGbiJ4OcmTXx+Ljd7WUiO8kZZ/lkX1KRWBZ2SvnM75vku8fHx2bIaHs6VJnxmoS7F2IGAmhfb7H4Pju8OX4sPgguwIQzWhkXrncwA0eVHZ3OpMXhc4Y7gAsw4nP0DWJoi49T8+5QE2B2/PkB3DGuVsAGSUn+2Am3cWN8faa3vzdIRcbInnsNZmlnrw85jh5n5n0vuOm57aAb91bVZ/fZsfb68HzK7/0340BbDf6Qk4NntNN6gTnHOk8Zek4kycaze+21DL1+cwdqghJKGjcHBK0XvwTaErwZZCRg6YEh+mdHIueF24YckmzMcUzDb2DkeZ1BZesdf04Q0kGCDLalzHLu+zuvB/f3ubmQY2wHbDQaNefD85S6Pn361N5DAthChpDnudPGxF5VtXeATqfTWq1Wbacp93jHg9+BQH17e3t1enpaZ2dn9dVXXz27/tImkZxicpR5kLrD4/6l4iD9f/gP/6Fev379jffsyq58F0tPV/B56uxvqsf61IkX6Cgcvkxsqdomudlptt4Hc3F862QyGewAxaH0DkcwO1mnYK2qqsViUZ8+far379/XYrFoQc+0zw464tDRRrLtnehRNSTluHYymQzex4m8CLiCczn2zE41CSnoMuu0DPSAo42vkNfh4WFLqiQRjefgY2w2T0QUbQG70taqakEQH0FPW2azWXPgwb7GccgEUsy2lTlze3vb6sPeXF1d1XK5HOzmJYPaiWRJRjlAiM3tkSyMec+e276mPTZhaX/AayKv7+HEDNLZ9icx47qdhOT6TTAk1rHv43YZaznQmDLKMdtshgmyxiaMuckU5inzE4KT74z/qK/ne2Zg2Z9b5pmoxmf2czmizzgB4ptj/tglQmIrvh7rAFzhU3RoP3PPCbYpz6pqCQA+7Qc/mfmCbnFCpP0sfGrWUa/gm3sMeZ5Pe3LQ8erqqvm9r169atxEBmJpp30bdCA6h0L/rEtznnAN7To+Pm76uqo+mwe7siu78sMtPZ8ZXUFQwJ/bvpqT8/fGqPmbJD1jQmOe1L3oSK55/fp1sxVcB6bs4YoMwo5Go0GCHQFVb7xgAwy7K0kOcx08wwGO+XzeghXWnw68whdXDROTCRbmq78ygLJerxunie1E9uaFkQkySA6WuggyE9w0P8wpdHk6RdWTLYPnoH0+jc/j48AviXy0wcHQHsfokvjJ17iv/E5eIzFf3utn+Pr8zM/Oe/N5yV8RfH+uXa6nh1WN+5+757n+0o9e4Dnbb5/JGNvfuz7Lw3gqOT63JTlG5ENdTgRzG53MBmZi3uFP3d3dtXbZjxuPn5Ib2NzEWPCuXo/z69eva7Va1fX19WfYcb1+OrHx7OysZrNZVVULvvLqh8nk6X291qPJk9MmJxf4dQvn5+ctsEuCQ46Xx8FytL9inQ0uRS7oWfN3VdtTAewzJH/6/7p8L4Ogf/Inf1JV26M0cQafE2ZvUfDD914U/O8gghclBuD4+HjwLg0M1Wq1aobcDijvz3EWvEkOZ0/w2wHFJBO4P5VQLwCagRnk4WAW93LkIccPUJfJnwQEGD0UjJ9JcbtQILwHKp3/lH8GKKjPBt2Zzg7UcS0yhJyj34Aof2bHnHGFDGCHA5mzVdtdp86kdRCTv/1ulwR/aQTsvKLcegbSisU7oAwCUYB8lrJ0XbSdHxMoJvM8/vztsUdedrgxZgZr9A/wwtoxaWkZ9Ayr5ZRzyECYue85YYPKPSZkDNQ9Rtl/gwr/5Lr0dRnsStBjgs9ytjxSJ/DbGePuewYtaaPBZy+xgsLYuh3oEs/RHKsEgpa/x8B9NRBJHe176a/B/Wg0ajtleiDXOox55+c+Z6TdP685ZMM9dmys91xnzhXLyqSh2+6EBRwLjoI7PT1t7+e0XXI2HPeaZGSN856A5XJZFxcX9erVq4Gc0Xk4jej8+XxeL168qLdv39aHDx8G5K/H0EdqoiuTYE2yM+d/T14uBHYeHx/r3//7f1+bzab+1b/6V91rd2VXvkslgxFfchCsQ577jvpcL7olk9pYM8at6A2IBggiZ5JXbU9keHx8bLs/IdRZj6kL0J/gIYJ6FxcX9fXXX9enT5/q6uqq7Zx0YIBnokeMO6xTaG/VEznP88G1xuHWt2BBZ+wTCHa/wfMcwzsaPQVyOVaN+0ajUTsWzcG+o6OjgZ2ez+cNb+Jb4AjTVwI/BEJzl5WDynZYcbgdfMMv8a43n47Bb48Z88RYFlmwA8IYA/LC5KadaF9nm4mDT/2ZxGV7Yl+O57ittn0ZdKMu20TPS+6DKPFazQAifchAWv6fWM3Ej7GNizF6kguJoWyvnQhg38i4OXE09WTA3+13/3kWddPeHhZm3iFv77wxmcnz0R/2H/kOvTEajZpeOjw8bGSq8ejBwUELPDLeBFKZnxDB4Ccy9ZlP+CXHx8f1+PhYq9VqEBCtqub/m6AmoQAii7bTF8YU/4hnoZssa+YsJBvHc5OV7yAsvq39OpNTtjWcTFS13enAuKCDq6q9IsFry2NiHO01nKTntym99bEru7Ir372S6xNbRPCKAEPV8AQgH/eNX2odaB/dmJdr0EfclxsneBco1xrPvn79ui4vL5tt86lL4CP6AobCfoAr1+v1IAkQ/xUcTbIOwWB2UWIDLTfrUU6eG42egjVg4uQswK1gyAwi0h9zgN4w4GQnEnUI/Eyn08948/39/c+OnwcTgsu8CYRx7/GAjLF/gwlJ4maslsvlAMvRT9phTthzMLEbuMW4zH6TOSDzD5TkKPysrBMskvf36jSn51iEecK0sb0kAb7rPSPbmxyYOcXEmr7fvqWxszcV+P6UI/0y9kvZpCwoDqYZB+eYObbhPiNL49uMt1g/sdaZgw8PD82no5AIyilBlifXsanq4eGhPnz40JJa4e4IcHIsLX27vr6uX/7yl/UP/+E/HOBNdKq5f/uNPk3EPCSJGI5hVG3XrOch9+CD+2/z2snr+m94xvSF+P37wnXfyyAoSm9/f79Wq9VnBqTq88Cn/3cmSpL2vjafieGD6CAQhvFm4nobNc4bAUW/A4lnMYGc3ZOB0bzWE88L2Eauahggq9qSPemoMkkBEev19tguK+Ik3nge96D4DEyQgRdUypz+0R5IN19vRZnOMQt4NpsN5EjfZrNZzWazwU4EnD6ehTJxsJm5lsE6B+jcZ88nAzJnoyS5ksbQit0/GVQ2eKQN3Gsne7PZDDJHbFRNELEmkCdZJD5aJNvjYERmpnu9OOhBQQa5Tlk3DoCYADFJgjwd+LIxps4sXg8eF9YTbU1FnkSWdYZJNORl4oI58RwweS6o0wvIea34viTXbPh7c833GQhZvlk3RIqfn8Se25XAx/LheQChNKhJFmU9/sxzhOsNfCleR26n52Kv334Ozze55LFl7A2qrVMAW5DoyMBtszNo3d/7eXh4aO/yvL6+rh/96Ed1enrajrJlBxNthgzkCCKcNxI8yMqEwLN+sWPKPLi5uanDw8M6PT1t7+fKOUH/0Yl8lkk+GUDNMf6mQn/8vpNd2ZXvS0kn1Z//NqXnBKeDT8FJon4nDKWj62shJEajUTseEp2C04W+QL/xGWU2m7UAAvV//PixfvOb39SHDx/ae5UcfLLuwDH10VmQVwQsnWiBvkWHUO/9/X37nB1nyIb2msTJ47LYNUm/fQwwxJgxItn9fg+f72cMaLsTEV1oC+PjYIPtArKFsGJswcjGOOz4h+DCPoBt0O0OmBGI8lhhPxgnE1UEZG136a8xnHf2JkmShIbnvEmPTIyi/4njKDw7gzbM/cQYWW+vTb3gT5JQvXYwjthDsLqxgP3ExFVJDtkWGuek3PJvrk+CygSPk7ssn8SS9Cn7zfgT4B+Px5/tlqG9PIO5xVyB+NlsNm1H+dXVVXs215lIv7+/b+tiMpnUcrms0WjUsvM9J1ifThA4OTkZ6DjagDxubm4GuNaY2K9gAS/5XbyeJ9RBokhyCFzDXLi+vq5f//rXjVyzXrEMkxdgjhuTssb97jnWFuQaMmVHFCXx+HO27bctf9P7d2VXduXvvqR947ftDwW94J2DTgap2gbobC8o4Dyug3erqoG+5j194Cbr4xcvXtT9/X1dX183/YfuYqMGfm7ej7/p3Zi8XxNsulwuW/3uCxtpSD6BIx6NRi3hzjbx9va2rq6uGu+9v79fs9ms6ffT09O2i8z2ErvGc9gJRnDW8vRJIfCiJOvRb/AtG2bgEhwsNhYFS3s3qTk+jpanPb7GSdreWVq1PSaYcTCeMY/guWgbmH/3+AoX7PBzNsj23TI1T8hvZGI+1u3s/c0zenxTtt31GzP5b9tTz0tf6z6Yw/Fz4bvcPvM3ybf6mf7cdaIvEjca9zkw3JMReqUXeKMej4n9DLCUZcWaY+4TwDTGxEd1kJbkYMdFlstlvX79uvlJJycnzd9arVZNPviBo9FTwurXX3/dfCMnMPiZ9NdxB3ApSRsew5y73I8/6MQ6n0Sy2WyaDjAfSB18hq6hff75fZfvZRCUiYQhyAzdLxU7Y73vKEkYsSAgL46Pj2s2m7VJf3h4OHjhdtU2Y5eAkqPnPM9EsCeJz813yYlU9XlAMcmF3jVWLG6njxVORcU9uSPVjq/P1UcZ4HiaPMKQpCKivWQy2Rh6YTn7FzAxnU6bE4aB5bkOqqKsfB2OKN/h6NFmB0oBAChNMjsMtlCivXdp4VCbvLCjbUCHrKyYe8YIcJNECg66g+MoLtfn53APypk6vcb4jDFOcOC5wlzKzB0brxwbwFYWFKwBT5KrHgvPzecMu6+BkHQf6YeNM6DMpFjqD69TtzkDfc+RAz0DwdiY2OsRaPQFw+WsSNdloOQ2WE+6bsgP6s97AS0pi3RcPB5J6OUc6cnBz01ije89vvmdxyxBFQDe59zTXhPMVVvgaF3q51seDuiaHM/AuMdlMpm04EISkdTpAPvDw0P95je/aXPk9PR0EDQALLFbIQEOIInMU46Yo18+MhKAQxsPDg7q7OysTk9P6+LiYqBfDMqwgz2QTD+QkW2cbU7OJRdsNG36bbHBruzK77tAAH1bwjhJpfz8OWzrAIYzVHv2IjHp7e1te88Pugnixg5k1TbhCSID3cR1y+WyPn78ONgB6kQ368jJZNLebeT3a5qIsk4EhxmLV22PnAQf3tzc1GKxGDiqTh7DqQZrgQPm83kjqcCJTqLif+pzMhj2C5+C8ZjP581RdjId8nNQlrrAzAQjSYCx/eO4UPrutnHNer1uWJh++ZQbYx7rZY7gNfkAroYkoxh38nxjAJMKGZT0vEJem832SF1fDxa0DUiyg7GG3PC9Xi/+neOXn3sN93YKJPY1OfQlgs14xm0yjjH56WAesvb1xiPc57WWfqIJk96ze+uda3gWa9R1MrcpTopzQq/XDr4d13p9kolP1j71oy9oD2uF53j+oXdMbttvZI47WdT+A/rLmfXoHq5JMt5+jH0qz0WPr+ey5XR/f1+Xl5d1c3NTy+WyEXC9uvjf75E6PDxsu1ZNAOJ/ICPLHizJtcgUnZdr7tsUY76ebdqVXdmV706xPcNWoO8JdmEvrBPMjaBbXGxX8Fn9uir0U9Xw5Dz8bXQ4uAY9Pxo9nYKEX2x8hL2gPQQq4H/ZYWp7xFG46/W66WHwMT70YrFo9oLdm96NDzaFi7i/v6/FYtGClpvN08khebJd1da+eDODkwI9Jnt7e7VcLtspCLTdXCp8q+20j4O3/LHBxqjmUsCRFxcXLVmOhOvczOFEZtrD6Vbz+XyAN3sJnLTJuIfPjdvMp2VJfs12Ob+jUF/P1iVuQobGqD0ezdcnJk2sau4xuUKu5/vkIPnf/JzXnHGo25gcrNvp66uGrzHr8Zfgief6z3r0eLj/PaxunGUuzZys58totD1Bkc/wEZiP5rLss+BDeR0RJ3Iy3mq1qrdv37YEDdYJz/Eapb3L5bJ+85vf1B//8R+3+BdtR85OMPBmi6rPX4lFyTHyeHKtT4CDezRPa3/UMva9Oe/yuv/X5XuJJnOhPqdsrIjs5GFk7Ph7ceVitiPHMzmigPoXi0ULdJK9g/H0expNOnnCeXFaUafTlYEVK3OUBkrVO14tNzvSfGdAUjUMFKJsaAP9ttPkPlZt3+PJD+8t8oTHuGXwgTomk0kDOBSuJdseZ5f7fJQYbSRb3vVkxhIAAOBhsswZtLw7lPaS8eXxsLGBCKINABI7kw7YMm7pMOJw8zdjbHCJkka29Mlz0WNPmwgu80xAHkeHQNKh9AhkIBsrvTS4bh99cZYz8vLzTcQgC5NqkF08i/Vscs5yog8UHx/nQA3GlzHyPDQI4F6AdBJI1itk8RkoOqPRAagkpKjD7esZdwN9gCrFuiFBVa8ur2HmvceVOeN2Mb6ep9YjgAXrNuZS1pFzJ4Gh+5aEGPJ3v5Oc4z4cCWeder4yrp6LJmqpj7XPM6zLWI+u03PZY5DjTl3MPe+85VleO9xD+eqrr+r+/r7+wT/4B/Xq1av2TAKq6DDaQZv9rmMCAOgvslhZt9yPrMmKe/fuXX311VeDJArbagg2xgxdyNjgWDJ+nueZQNArJk8NfHdlV77r5V//639d//2///f6n//zf342b59zuPMainFrBnVYj2Rmm6wwocJ6nEye3pmJUwgpAl4Cc3FsVtWQ0LKNpPA+kvfv39fV1VX91V/9VV1cXDTbgI5BT6AjxuNxSyBBT/AM6qdNFBzSzWbTHM69ve17NZEBhYAe+I7rp9Np6yuEmd8Vw7Nx+LgfzDQajVrb0cFgQAcOSELzLlLbSe+05flOsuSHJBuIsoeHh7q6uhrYmc3mKViGc09bSJQjsEt7wUhkK0+n08GRbSSCOumvqgYOvgNOTiJifMF9iUHyNBHmtuvJQB91+vqeb2MSLdebMY7X2XPrMX1G3+O60z6mTfP34Hj7vCaVjNOMCfOZiZncB9fPemW8PZaJHbnO6zWJtQzQ0j/Wru0+bTfZgm/i746Ojur29raOj48Hu6sd2MQHBd/YVzNhVLUNSiIL5G5fdz6fD+YCfqZJe8uUdcXf6FiwJWuKe9jNjrypH/8RMt1y95HW9HE0GtVisajFYtHI9eQD+O3xog4HFayTeaZ9QHQ14+kj2lyv58S3KayPf/bP/ln9i3/xL77VvbuyK7vy+y3GGxDy5lLMiWAr0DHeXW7fE3xhzotnmKCvqoansAPexMB10+m05vN5ff31180OODgLvjEnwe5O9J0TzEjuS//fJwA8Pj6296mPx+N68eJFvXz5sqqqBQfNNyGX/f39Ojk5aRs/wDzgTdqG/j05OWk6mGRB81nJbVUN/QZOeuLZ1G8/PLm/qqdEyeVy2RLhwJAOzrL7lROozAuCieGejG0TexnDOxjkeZM8sPES3/U4Tc9hY7Iv1Wsc5bnt31ybzzKOcN35rC/hT9tk4xWKMV5iU9eRfUw5uH/P9THxshOqXGhvz1etGr7f0+vT7XA/jKvcH+YVXJrHGznzDLcHn5Eke/QQc4+EAnwqfEfq9Was09PTms/nVVVtBzp+GHEPxs7z4eHhoT5+/Fjj8bj+6I/+qCUAG8dx7Xj8lMh6eXnZ8F9VDeIqqdNyHlo2yNz62zEPb6zIYGlvDn4XyvcyCEr5bclNLw47iF9SJKnUWGwoY2+BrnoyUMvlsi0G3+9s9twNigORW5MzmMZis6G1crAzz0TNIJ6JJSa6s58dCHXwxpmslqeDDizWJO9RNhy36IAb10Co8QwcXe8qMBlXVS1znkADbXPQrOrpPVA9wjwVOiCIjHsfyZrEgrPY+N7vujOZ4noYCxM1Bkcm0rwbNAmDnBd2oj0ODhYwrgYqFAMME0S024aGZxo00I802DkfKT2DazDKevBnSQbZ6EGcuF+9LMJeyQx02uS1MBqNPiM6HZAzweO6kmjMa9OAJyBIIOR6cxzRMSayDcDyedzPuu+1OcfHMk/D53WfmUbU73ZDBvWeYQLPa4x1AxDgGu5DRzgQ2iPdrMv57aC6d1fybPR2gj4K95qYpK2ez36mj5ZIkhCdYv3gMcz2e57R/svLy/rFL35Ro9Go3r171xIj/D4862KTfyapEySZcE3naW9vr46Pj+vo6KjZQ7eNviIrZJw6K0lc64LemuiV3xYf7MqufFfKn/7pn3Y/7zmWVd88x41x03lmF5OPKaV+2xNnWidZbvzlpCp0Qtp622VOHrm9va1f/vKX9fHjxxZYM4luXVG1DdQQUCN73c9x0hefLRaLQXvYccmuUuOePI2DQn2Hh4dtl+ZoNGqng/COGJNm6DY70uweJdCa72wB1/FM7BLkF/UToOJIos1m03bv46R7NyvBXBOMBFmoh+C0n037sBU810FT5hC/8R04WjeD1NTrZ5Al7YA1c882iDF1xrNJrxwv/k68ZxudGInffG4bbRtlzOQ5x2esKbeTeWZsbNtv8oU67eNl/fTPuCzrsv/CGNBH+xSpJ2ibsZYxEL4DfXRCmtvmZ1uGjDP3GceYyPX9noM9Mgeilc+8W9hjxw5xz1djPZ6DX2gyh2dYJ6OHTN563ePfovd8XCNtJ7kjg4h8N5vNmi4gGAo5bZKQZNFPnz7VeDxuO2O9vtEzPb+N640N0RHGy8jeetoBe/f9t/HJegWZ//mf/3n9+Z//ef2X//Jffqd6dmVXduXvvqS/Z87AttaYoGr4ugPbZusabAbYxoEFYy1zMn7/nd8LjU2GUyWISCADncjuTfNsBPh4JjYGu/X4uH3tDLbWJ4IgJ/T94eFhXV5eNhw5mUzq6upqcATsfD5vbeLd69gnNoQQ6IQXwyZ7o8fe3l7b5JAbFAioIGPsk08VYQyPjo7qxYsXzXaTtOfEpevr69psNm2csPfsOGUckBEBU+yJA6cEoLDb1Gec1gvoJDZMDsi8rTmkxGKJD6kj+TJfnzYvuWjXkZxO9sH/85z0qzw+fl6uN7fbmM515HPy2e5rr2/GzlX1Gf6yj2Mfz7jZz/dYmLfLZxsL42PQfzhSc6PGpd7IAP40Vh2Px+197LQFXw8/hqQBYj74XpPJpN69e9fajH4gccGbE4wbnaBLkunXX39d4/G4fvzjH3+WQFhVLXEZ3YC/Ceb0esC/5Jk9ztqJJTkX/D/j5EBpcsxZz++zfK+DoJRcBGl8KSh/B3qq+sEGlH86ngTt7KgT5CMb04qFupmMXtxM7jwGwO+m9AI1GZ7ENG22TLzArQRMZJDBjUNJpmk6RQAF3g/Hs3KHV1U1udkBtpFDnhgdznXnc/qGsTOIQAmR2cp1OJuMG8+mvb0F58ACzwCg2GFjHG2YM8joueAAmskbxpx+eq7wWRomE0UGISh/Hwdh48b4Md99NIjHCdDA38jU2RwGAl4nbgtyT1LWbXZWTpK6GCbPN+YuZKeJFcvf2V6+/7niYKNJXrfNO+S4x8RoZm97riSQcEmZ9UCF52l+5jVlQor51yPRkrDyvLVu8PNynNz+7FP2LdteVW03aD7DpFIPiGbGPcU7N1k3vsag0HoTPed3U2SwFYPPd5a5512WBNDuo2XeA5T+nvdIIUv654wq2mlAyGfWOR8/fmzvLvjxj3/cCDCC+g4+OvBpGdghtRNrubtNR0dH9fLly/r48eNg5zvFTi398dzxvLYcMyEkdc2u7MoPuaQu/jbzn3VmUt67OcEqtrFOKMOOs76rtoQOei+TgnCAIC7QLZPJ0zGvV1dX9enTp/r06VM7CshBBQce0H3ofR/ViI5xATfSFogd6mXXKseJWW9zj/EJ7U4syPuYRqOnHWIktvB87/gHb6/XT+/nxI/gnVMONLDLzePH80kgSqf36OioFotFzWaz9m5TrgfTGHPmTk0y8iHo6ENVNcLMmfaMKWPPnCEAYrvu9ni3An1DnuBP2mt5ex70bHvV1u7bLtlmMNeN4ewD0Bef4sBzTHSl3X0O5+W1GTi1DEy0MF+QY5JVJl17fp/rcZu412vVn7t9jAFtsU/hOWnSyBjKddum2wemb1zDPPKcsJ5zAJKx83veqI/PHGRmDL1LHL8WebHb3b7qer1uu6KNkwjs8woYt9Nrtara0dQk7lp/0RcTd8wVTtMgKcXkOVwB9fM5fX18fBzsHnJQk7nN9eY5+I6xZT3z3Xr9lICB3kWeHhvbk6ptEJQ+/76Jr13ZlV35uy2p/9Fv2BX7stgx86zYI/vrybugVwi8pb03Z8M9PMO+J204ODio2WzW3qFZtQ1UwHHxHN43vdls2judq56Oq0TfgqHYQVa1xd0kqdEmsOL19XV7LQMB1aOjozo5ORng1F4gCTyM7MC9Pp728fFxwEcjBxJqkI2fZe6Y5CICQavVqtVF3z2myJedng4wUWg79oVkIgI3xtK8ggOfwbYaWZr7spzADPSJeeZNTZYLn/U4reQiet/xd3KmWR9t6XFDWZ9Lr12U5PD48Zi6f8awiR17MQH3PYPK2QZfZ1mA9/jOsu5xje4H64rrSNZifeLrMAfMYfd4PGMmfIGHh4eWOGBcDT/GGmUuUh/vA/b8Ojo6aicMMZdJuJjP5zWfz2u5XNbDw0NLHPAYk6DgXbS/+tWv6uDgoF6/ft1wrzfLXV1dffY6Bnww1gnr37ETZGUd7h/rBnPkyMu8oq9x+a4EQn8QQVCKB62qPhu4qmHwzff5d9Xni9lKCQcZg5LvV8xdfCwSgnrX19dVtT16h+vsaNmAeydpTqyciH4/SQYU7bBzDUE0lAjtzUnL537nKTLjOThZZCOhNPjczicOEobPGVw+Xs0BSer05zlujA/PMBnmkuSF2wNB43mTDrmDDlXVdgB4XKw0qcMG2LvDngvwPEcGeK6lcjcI6BnHHDvPEwcUeb7bmiSH25aG32PjwKOf4fssA88VAzUHojwOJpr8PI9hgiGPVQZo/VwbaepO4GmQb0NvIsZOgNdugjXLMcfRJJKf4zoAjJYn13gc3Uc/N9uSBJn7Qb/dhnRQcv5TH/rPhF2CTo8T8+45mVgfOEHEY2WijsJccSDZJL53ASeQTNvh3yl/y9frLet6LrmFe5xd5vq51gHch4eHWi6XDTy9e/eu7Y63I5prarPZ1HK5bLuOvNvebfI8xCGaTqf15s2b+vnPf95IPK91g/IMtqbD4PmUAHlHpO3KH1rx+vg2BZ2f9t66m/8hS/wZDit/Wxf7+qrtTiY79mAViP3Ly8v6+uuv21G4+/v77ZhJMCxBPnQTeJVnQqSkfc2Ccwf5RPDSAdW7u7tGUtmZJWAKfj06Omp9ffHixSDgyZGcTiAjcGEMThvByX7HE0fsEky13UDHchQtPoh1N+1EhgRoEgORlASmenx8HAQ/nX1M0Abn3Ts0HPym3bnbwu+Toi2cDFP1+fsje7jX39u22vYnaUL7XLCbPczDPfTZeMp2qBdEdPDV1/K9MT11gMeSiE28mVgs/ZKc8z3/l7q51vrDeDLHAd8Tv4z2IAN8x/STnGnfs+VcR3uM8Xu+r9vp3eEek/39/Voul+042b29vbaDh/VtvYFOYhc1OsI7p0lIQG8eHR01Mhc9ZzlyL3jL76ubzWZtpwzz3q8c4D6vMZIm2PlCXwhCrtfrlthGW+wzE0BA556dndXR0dEguFk1TBYgsLu3t9eOW2Q9p+9m+Xvd5jxBd3u3wa7syq78cEtysbbT4CPzK8k3eTND1dY/N+40HnTwzxiBOgkiUBf6CZ2ELZpOp3V8fFyfPn2qx8ftaRYERW5ublrgjx2X6EhzqzyTdponJohK++jveDxux8duNk/H9v74xz+us7OzqtqeNADOw86hl8E3PgWQ4Ag6ntcsIE9wrbld24Pkbanj4uKibm5u6vHxsWazWUsoxI557CeT7U415GBshj+B/4Fd9C7Z09PTtuu0ansqAeNjDuS5TQE8y/MTDh/8y3dpp3qfUV8P9/WKr3vODvb4MD/L7clnJseW12Z/LPPEkvYb8nm9fvb4U3OJHgfqyQ1T5n743wl1KQ8/P7G/sWv6P7RrvV63oB3riDb5dBJO7gBbMs99Ioc3ahk3zmazttkMf8yJxj6BEh+Sa1ar1SCWQ5DeySM///nPP8OanMJmP92YEdmnX8Da8nfm58z7VW3fOYw+B/c7edOct3Ei9fR89v+X5QcVBK3qb8f2372gU08ZoRgyGMr1OEUsNj43QY0y9mTG2JgwqtpOOrIOyKD3M1NJ2SGkDows7wDKfqTi8yQ1aGAR2zgDSljwGHcM1v7+fsuqJ8BRtQUcBwcHjXjnGmRtoovPCKiygJFHZrBbRlZ8DhR6nHHo7bSZ1MjscNpjcGWA4DmTxL4dfR8bhcyd+easMMbJv3tEgufGc4FS+pXz3n115oxJmapq2VYOmPu5KRMbXBNd3JMG2fM6A4w5fzMYZZI2QbXb4iDZc4Y7EwpSTlXD7BUb7B6BR10YBnSFiR+3yYFir3f3OdexySQnMSSQ4MdrPw1Q9iVllcDVusRB4Cz+LO9HjyJT98+GmEAkxDA/Xrduo3fx81kv4Fi13dVi4AyQAeCgDxlD5pr753YxdvmTpQdy6Sdjb+DsYzGsE0zKeUyQ9+XlZf3FX/xFbTabevPmTSPZmZt2bkgeAfxB7nlsAD60F93MaQEnJyd1eHhYi8Xii4Df/XaiT28u+bPvAnjalV35fZTnHOyqvpNsu2ycBU5lxyGEj3WqM63TDoL3ZrNZw4C2damTIYLOz8/r/Py8Pn78WOfn54P3BeEkQsigp3yUFs/hBBXrbe7xO/Jms9nARvI/5Ad4x+9qqtqe/sDxZPSX73BsbT+QC+1Al/roL2ybsQnkGsEZfAcCFmBbMAJ6GZtEf5H53t5ezWazQRazg6/2Ycg+Ho/HdXx8PMC6yMJJlM7g59g2O8dOMstAFf8bBzAfjXOo08QHssO+m8DMgIxxoNdE4ltsJc81MYJPY3yaAT/L1dj2ObKsR07ZpmFTWY/ICQLW10OIeF3wHOoAB6V95bMkpYzbvW6fI8mSbOS5+H8+/cjY2X5P4qg85QPs5XlXVYMAZOqJ8fjpGD6/doHAJP6rk/AuLy+ranvEIIm59JF1zPeed2Bu1reJoEwa4ChcApupy1nzmWTmXcneLeOjzZivxov2fe7u7uri4qKOjo7asWvMC/CmOQuOzj0+Ph6QasgaG+L56PvRqZ4Dvw0W3JVd2ZXvd0m+yv/b3uVGAPv6GTQ1vqsa7p6zf53JfYkH0FPmS/FxsRFnZ2eDkzHQr8vlspbLZS0WixYA3NvbaxtbsJO0F33Mzkvw083NzeAEAn44XYDdnwT9zs/PB7tK5/N5SyqxXsX+GF9xaggJfehlZFhVzVbSD5KBwLTYsNVqVR8/fmw7ZeFXsbtg78fHx7aZBPnD3cB/4w/A8z4+Pg7kZI4crF21Pb7X9zM+2DP7A8jM8zG5QNtJP5txNPZJ/jWf5XrTH8t7zbmbP+7ZSLc5MWS2q8dx+u8MUNEGMFcPUyf+Sx7XsnTp8aSul+uTd/dYwG9lklz2lXpSbtYlufmMfvEqEPQDc5bx5RrwDIFQ755kPeK/gqFIBM1dpZYdOoj1cHt7W0dHR41r8w5L7rm/v6/lcln/+3//7/rZz35WR0dHdXV11dYFOs5+AH2xX48s0VnmFRkn/86d9742E4Gf4z6/K+V7GQTtkUC5IPksnTw7514crgODbCeBCe5sZjs7LEwf14TzRBYBypwJiYJlQTpLkklM2zCYOGdeDKPR6LPAZDpDGRzyZ1U1ACPsfqI9ZObgQNKHqicFg3GCMKKdGQgEMNBOywD5oVh81r/JIDvpVq5VwyOL04ih3DOgYJCFQrNSYx5YUWTQw4aM9jD2FBM5lr1JDpS9CQoygJ0d4qC7yUw7o3z/3DqhPSZXGHtAFO3x9nsbBJ6VssqCEvY7erKttNfz1vMDGRkgGEQzRp4jDqYiT8acvllvJPHGM6w/TJLaWCODJMlsxBkvSBDqdTshntxPAyTkb/nYEHNfj5Dz384URFY9pyXnEM9mjVMPbTeIsh400Leh5boMyiZwS5CduruqBsFfy4WjHyBo/B4pjx339YAeeovxYJ0ATryWrXNYrw5we67ShwREyMk7Igw8qqrJ3yDRyQaWX1XV+fl5/cVf/EU9Pj7Wmzdvmi1hHLyDFFlh546Pj9tOBo6Ms8ycQYb+OD09rYuLiwHI9lj1HA4K6yOdiOzbruzKrnxzQZ+kviegVLXFKA4sZrDKGHo0GjWSHD1Owh86ADyKfVosFnV1dVW/+c1v6uPHj58FSY6PjwfvRTEmdsa+3wHqhBHajDNr/IQDjBysvyBS7Hyfnp423Tyfz2s8HreArXeWWjfzfB9xi+3yNev1U7Yudoygrh11di6AK/J0Cwgv/Av6xLiMRqPmd6A75/P5YAcoJwWgmzmyifo55slJM4zDwcFBffz4sRFq4/G44Xc76KPR01HB7D71XDTGsb+Q8zLJk5RD4nJkBh6yjetdbzyIn+AgGO1ywOlLvgjP83xK+2W/wr5r4k1jPn5sS5PgNZ6hfcwzfMXEyPQZHDIejz9LCvCz7WN5THo+pz/zbycdepxMoIDbFotFq4ddiSQO2AcCq5HQAeY/ODioxWIxeJZ9abLo0TNgUvuDPpIRApa1RDJwnpTEXOE9nsiPZ+BfMY7oS3Tw1dVVI6BZc/bZn/NH0dME8dEV7DJyENi6074vn0PiwUlApuc73UjgyPe0mgtJrLsru7Ir3/1i3PjbFvS3+Yck0e0nm5TnM/QF95o3MF9kjNPjPaqGnC/2Hl1pbu7u7q6Oj4/rj//4j+vTp0+tL5eXl7VYLOr6+nqAJ9OHxyb5BBDaCrdK+7w7tKraEbrgNBKbJ5NJXV9f1/Hxcb148aLpZ/Q1sgObYku4Hx3sd5iCdRwcmc/ntdlsN7rA73jnJzaOE0P8bPOq5jw2m83gvfU+ZQQbRn8tD3gEJ1kaW5g7x2/wWDD/wMbMSeMnYyvmSWI5X+c+9bg1MI+vQz7JnfJ5Xkfx3znP3Eb+z2CT604MZuztNiVn7r4n5uvxhcap5kC/VNwX8+mWG/PRusE41+0yl2sfEhxibArOg9sytgXPwPWtVqu6urqqg4ODWq1WLYHY/u56vW6JZuBKH1Nrbi/nHsWJyePxuGHXqmoYjKDoePyUZPH111/XmzdvBjoTLOxTRu0zUZzIii6mXd78Yb+K63u+jcfD2Nx9zf//JsW8/7ct38sg6LctvQVpxxClVzU83pV7mTg4RB5oH8fl7E3qgix3dgv1O/vSTpEno4MJDsR60Fl8DjBCFFlxca0nS26tBmjYAXY2MGdauy8E66bTaSNQnI1E3c6KdXtQem4/QVfa4HcsZfDUytcOo8kJL9jnlD+ywQE1wPD45qK3wkzSxPPBREVe2zMCAAqDlp6SyblO3Q6MODjm51tmJtGQj38n8fMc4fPcvX42c81r0sSICR2DYohCr10D2F5b+U0/nyNwkLPH1LLwmBOM+zZK3SSS76HNSTZhxCFbewFCg6JsR484805C5p8BRW9ue5eG54jnMGvTJKP1oeeIAXzK5bliMiXXNPJMcGfD3vv+ufnL/97N4OAjbbVdoI18BuhwUNXAHT3jNqBnuce7HwxCPL94BkDNOo/Cc3DkOD7j3bt3DWBRcCrTAfUxPOPxdoeo57bHhKM9st8u6YjkZ38b4GhXdmVXPrdNYEhwItjLgU47wVVDhwaShzUOJoPoQE+zixJHbbFY1IcPH+rjx48t0x6yhmNhR6OnoBmkDU4k14IRTaiMx+PBMY/oMXQVdqxq+44nsC7fGUfThh6efnh4qNlsVlWf72KkH7zzkz7wuQOaTjykLjB2VTXCKl+TMRqNBoFHfAtOAZjNZrXZbLOROcKJ4Be2AVLOpCDBDb6DGHDyEYFT5hFzwKcBQLxtNpv6+PFjbTabdtQTDraDNcYSGcRh3JwsZvyIvTL+RJ4m4uyHGHt7jTjBkGclcQQxQh+eW289bO61+BzeMXYz5uj5pCaajRkTUzvAhiyfI4/42ydxsAaMEVlD2S7X1+t/1ZYEN0byc5HrYrEYvL+cOf74uN01wjylXvQEvhsy5Ngx6uYe9BTXkX2f/oSTxJxEaLlCxloOmXBBH13sw3h8SRxwYiF1c+oS9+Ize3dojjfrGd3G/KGNTkSwPI6Ojuri4qLJfm9vr1arVU0mkzo+Pm5rnHsZV69T+/Mmg3dlV3blu13+6T/9p/Xhw4f6y7/8y291n3Fnj1PhGnMGubMKXYFOghOp2h7VaptqPGf7x7Ntw8wdmGfb399viStXV1f18ePHWiwWAy7XvrZtrfkYkrDBvySlYUPAj+v1uubzeb18+bLpaZJznKxM4g/HlNOn0WjUfHRsPXid+6+vrxufaNzN7ldjDRJ8NptNXV1d1XK5bDiA/sEFHB8fN8xK2yngV9qFrAnsmoujPdgtjvy1XSRAAx/DLlfGA1l6vphTTMxn+VGMRXIu9z7v1df7jH7Y9jFHM8DqOc2z/T1j4bVlPGpO37jMMQUX+pxclfGKxyo5KNrsNZ19qRryPBnkdF15v7lqx1u89rjG2MVjT3G8IWVMjML6AHzF7u+Li4vm81xcXDSc/OLFi4bJqqodlc04ERg1h2l86E11jjc4/uP20wd2Uf/iF7+o0egpeZegLX1HB+DDWq6ek8wlrx3jzuShPb/sf3jO2l9LHiLH+nctP/nJT+r169e/070/2CBoT4EA9jMjkUmWE7NqmEVrooNB5fgC/oc04VpnzqDA5/N5yyaivmwLn2PQvQA8cSFtrES9SykdKwfFeF7V1kCQiYQzxefIhQxz2gnYwAkz0LFxY3FBgNBnKwX64qN8ud999iJOYOUAoh2uJB3s/FGsgE0ckGncC6Tyt4FVPi+JHiscGzO337uKHTT3eJgsctudTQyoNDHpdnuOmITMucjfqdiswDJLMK9NQjUdfyvdrMeytCFmPlO3icKUq8Er7TFpRP02Oj1H3QbBgSLrD7fdbXOWVSp/ZGXCyfMFwGzjT996hoU55rVjXZAgxNlyAAH3kWuQ2Xg8HuyOdD20IdenjSb9MLlkUOP1ZINrvUDdziT1OFl3W2fRBtprneL7n5Op12/VMHjIj+XM2GE7TIpbVlyDHKx37KRByvt4DurJQp3ohA8fPrQABu/x8O5a5EBg1fP28PCwOYcEXdfrp3eOQP5hB4+PjwdZqZDHOeeRteWeayjX1XN93ZVd+UMo6SR+U7H+dYDFr1xgnRMMtR4n6Ml63t/fr7Ozszo5OWn4kwAougIiiYDl/f19XVxc1OXlZWu/n2f8AFbEbts2oJM4Nmg6nTbdSD2Pj4/tGEdIKL8PyrsQwLkUdqPSB57vIzL9HhRkhJwgvMD9vN+JYCjXTqfTQaAJfe5gI//Tf46fXa+fdpI6OxodXPXkgBP0cf+urq4GmGI0GrX3TWEnPB/4H1LOWAaZYHcJWJP97OAt77/yLl8n39mHwVbiSzFPwFKJDxhD40QTkekv9AiRxJ3Mo8SA2Pgkqbgn66VNxtRuixOh+Jzx4TuTECYRTDxQn4lins+z8dUoyC3xIe1gnrkv9MH98Rw2nmacncjFNd497SQ85hT/OxC/Xj+9c5yEiKoaJH/d3d214DwnFq1Wq+ZnMo9Xq1XTS4wBc9XHhzmYyjX4VsjL+oEEBvQAeoZ2Ijf7K/Y3kC8JBKwlCDKuZzf6bDZrpJuT1pwokj7X4+PTrlr67x+3Edkzr+bzeV1eXrZTQNDbENG2GX7/HHJCHjnPdmVXduW7X37+859/tsv9tym2k/blKeAAB7/MDzj5gxMprDPRzz0Cn7/ZMWU9ia5FP3q3k4+ZxQ6zi57n2KaZo51MJu1d8fCh2CuS/vw+9NHoKaHtxYsXbRcmAUdOWLE9BD9dXFy0e0ejUXtPaVW1k6+qtu9ztz73Mb/sKrMfn1zNarVqfTNvmryWeTHkR9DYJ7J4zPjcQVYCv+BKn97ioBzPh7esqsH7vJMfcHIVxf8zr+i7uSi+95hbRj2+oscpZUmfh5K8I//3eJ7kR9z3xKvGd8b6rrO3ZrmW5K2eDU9OjDFDrpZVytlcmxMJqrYbL8yHmotn/mX7k+PM8fMJQuBD8Cj8Gs8HA3I9vk7VE7aDR5vP5zUajeri4qJhU+sC9BfP8GsOHEDlyGjmM4mp6CCPx+XlZV1fX7c6/8k/+Sc1n89rtVq1xFbk0dvA5mLd6PVruSF/7wzleusC+wuMT4+n/tsoHz58GGzm+DblBxsErfr8jGovShsh/6Z48fgzK4QcVDuvTILlcjkgNcbjp8yZy8vLFtTifgc7q7ZBULIOMAwmzB2kgnjw4qadTFqugdAy4ePAZ1U1R6kX1CNQ6nPa+Q4ZZ3Y2htTGjGPLeI4JEYrrcv1Jlqfhob09BUldLFDATx4l7PtT8Sepkm1ypg5tsRExQZLBI4Myt4XnZPDN4JA6LCvk7vnqXbPck3M+DaLnldviZ3rOeewJPvG9iU3a2CuuN8mtXMs8w2vLAMJKPMcniSsrcj8nd+SZVE6Siet5Pvf5WTm+JvIyGNszGrk2+b9HGLLrh/nQy0jvHdOQBu25jB8HaZ9bC4x1gh3PnZ7e9XNy7N0P5JXGmYKepS4IIPfThF4SqylrgsZ8Nxo9JYuwfgFWHBNpOXuXJnVCtqH3kKfbaEItdYydEAM/Z8e+f/++Dg4O6ic/+UmdnZ21nT7sGkqZ0T4c1f39/fZeE653MHm9Xrf36LEzKMfZc6f3HK+xnqOxK7vyh1gSC/T+5n878umEehekcQnFJBR2CCxLEgW41mQLDiVHapH9fnl5WR8+fKirq6tBYINAH8+0LSZBw7vcJ5PtSSHp3KKfsGE4gLQNufAdWGC5XNbx8XE7zQRCypjfTt/19XXrp+0S2bZg8EyCRD4EUp2pbyeS43TZDUqf7+/vazqdtnc3OeMXnfnw8FDT6bTZC/T1+fl5e/cTARyCFiaV3A5sLXbS9sHjgVwJMnnOOeD1+vXrFpwlkMJ8Nl4xvrUtc9DZ9t3+gQOmFM+pDAIbN2M78UcYbycx2lanQ582mecZryTpk98xrsjBBBB98X34db0kR9ftBGAnWxk/u+0m6OyTGE8awxh3JVGSCVyZYGX77vseHh5qtVq1RAKCovxwfBnHtSKb6+vrtvOG7wjYganQIQ64006f8MRcAkM9Pj62ZGBjfgKB4Ddk6Gf7vaLWVcjM79o0Tq3aEr+sJQKS1DkajRpxzBgzX2grZD5HuqELSHKhrfSBsYfgg4zjGcbGaUNyfnFNJsLtyq7syne7fP3119/6nuQP0BX27dDpVTUg6G0zCCK4zuRMbDvR15nAAu7gGmMUbAI2ntcMoOsJpoLZsBu08+7ubvBKMtoNFqp6SoYjuLFePx2ZeXZ2Vqenp4NkN9cL7qOPTqwhIYjCDn/6hY1ABzuJz7p9f3+/7RIdjUYtmMoYEXj1rjb6Sd8I7Jofur29rbu7u3ZCCzb1+Pi4i3nwRXilArbJJ6GBUYwP1+unICrJOGzkqdq+E919Nb9MO+xDJPeV88XX0e4eZ9rjs5LzMsfiMXE9xr4+Pc3P+9JnPQ6RteVrn2u77zPGZQw8NpYnz8nAs4OyyMBzIK93O3vckdvq9jmpCzn4XmROe8A1+Djj8VPirHeAM8+Pjo5abGc2mzXMhh/JRgG/egIuH/xm3wpMiMx8mshkMmkn9HAML9j7+vq6rq+v23dff/11/d//+3/rH//jf9xOEWEMWAupH/k/+YPNZpvswRqi7eYTjJOZV8b9eU2O399GQQ6/S/lBBEFTsM8VO4MmdnLRpTJhodupdeDOk8FnQzOpIIIcoDAIsOPI5GHCYgggbKq2zhDKB+NctZ2kVVuwwW+UCAQWOy5tGPjfgSm3m8VkJcjnlhUGjXZYOUECsdhRQDYCPeWbARMDLH6b+KsaZngnseGx9Ln2LF7uySCoFS/Poh7fk8rbhIU/d4Ybz4ccowCITDQkEeW2mMBAEVqGPMd96jmont8pb+pxn7nH883Osue7xzaNksffssrrWYeeX26HDaOddMY4AZA/83cmyhhrB4AMXHxPyspEU17vOWMiyToKEsLtea4wBtZX6/W6gXW+s6xTzjaMyMYJFVzj9Wtg66Ps0IvMb56XoNzzqqoGa4a1CmmeANDy7IHUNPTWw/6ftmc7c7w8/5x8wvXoVXT6YrHoZlC54PT0yFaDDYhS60vL3jog58P9/X39+te/rvH4KSmH998hb9pLdpqPtNnf32/BCWdhGuzd3Nw08Ebmae40onhMkFXPAcnytwWgdmVXvu/lm9ZH2rR0xB8eHpojhm0hSIB+IQDKsV28J9POEusXG2OS6Pz8vDlw6EruqaqBTkP/oEcgTkza21aaSDs6OmrtInD38PDQMt+9+5X75/N5zWazms1mLThwf39fV1dXA2LHGJg2TyaTWq1WDQ9Yz6L7/F5q8K/1OHKjnRBI3Oskn8vLy4YDbF8gyKx3kRftqBqeMIM9BodD/iEDcCXjRf8mk0kLGPNcbPPV1VUbe9q2XC6b0/74+Fjz+XwQUMMecqzaer3dlWCyhXnds5/GM4nX7WPhZxlz9zCZn2tc1Mug7jn3xgHGlbQnSYD0Y7jfeLZqeAIGa8JzM7Erfo9xLnMaGTAvEndbBiYO+dtkNcVECPPCz3VQ3P4MzwNX4bcgA3YYkqzlo3HZAQqu5Ygwrw/L6vb2tu3M5lUr9q+TnEQOkLLsWDHRU1VtLdMu1rx3xqALmHf2S8FJrHfWM31j7aKfkNF8Pq+Tk5PmlzA/TDiS6DYej9tuUPShdSjF48LxhNTpNWD9bb8yT33yvLaftiu7sis/zGLfDX2BfXAiugvYL+2lMWaecME1TtxCx2Jn8FXRt7TD7+XERyWAuVgsmq7nmHTwGDgPvYpe5jvwm08tGI2edve/fPmyBUvAp/TNvAoJOpvN9gjZg4ODwU606+vrWq/X7XUDYParq6v2zMPDw0HCnHe8YQu9kYLn+1hcZIftxlaZr8YWIKPpdFrT6bSOj4+bHOiTbal5z6rt7k9kajuLHWTuMK9sG227sJ8+UaXq8+NA+Sw5KM9Bc0vmOJ/jKFyP/RXzNb21kvfSD9tQ499sa8YljFv9mXFicu7P9aNq+/oTnwLSa7ttvHGp/Uy3nTkJLmJOGS+7/+5HctWWUY6t/Y7k99OH4G/m/cHBQc1mszZf8ZnY8c0z8TOtt/wqFvTYZrMZ+D3Ig6RX5vp0Oq3ValXHx8ft3aTn5+cDfPX4+Fi//vWv69WrV/X27dvWZnSIA6LmkJkfnjOOJbmtXlv+zHylx6s3l75L3N33MgiakzmLCX0Gvmq7Hd6Ectbr4KWdNzuUj4+PLcPbhpfvUbp24kwIJBHCM+yoQ/yQ5eljIqyAIZXs2EJaUMiMmUwmNZvNaj6fN0cLJ5B+ZWbqZLI9DjaPqLXSRLZW6hg42gaphozJ+HEQhHGwcbHS5nsbEAdyMMgUgwqcX0g6zxeUgAMAXuweo6pqmfpunwOuzE33C8cwFbfnKj/eNen2ZaCYvtuxTMPBWHMdSjPnn+c/yo+dgw72UA/95e+Up8GD15vXIzK17NPomSSwnCw32nZ7e9v6jCxoC0YpxzSDMDZ69NvZL8xNHzmcBFOSaJYvfeQ+npO7MqnP6yrnTyZiVG11kMeX5AaDD38PAGFsmS/03UCJ+WCHw0SmCR7LAwLGR524Xgpz3LrFa8PzlzHzNb6Hurk+g/y9seIZJvt4DgQTMmU9ZRAAwou6cU7m83kLEpoUNJHkNYTuBXyRpWbnipJ99rj0+nx7e1sfPnyok5OTwdE47Ag4ODhowU4T5lXb92aRiUp7kSFgbzab1cePHwdysS53MdCyLD1PPN8SxPvvXdmVP+Ti9WUsVTU8acBBkPwcG1K1JeOxe34nEeQCGOvw8LBhTGzw1dVVXVxc1PX1dQtegFO9bklwSQfRr2HgiMvJZNKO0YLI99Fhfj89J54gj6qn7HUyxznVBD3IjkaO2DGGtJyoi2AmuwfAvowFO9J4X6edbeSw2WwJnpubm0YS2taR3ZunOWC/rcexsWQo28YjO/etahvw4ahh6kBWyJPPwdQm+kyIGduzGxjbAC7tBZgZS9uvxL4UY0+Pv51yZA12yWOgPSbIwDjKOAVs4x0GSfB4nuX3xsS5Xo2vc01aBhTWib8zMeU+ZuAyya8eVnCb7TNQN+OWhJL76PE1Jl+vh8e8Gtuxg8W6iUx8dlajK4zBIVg5Rgz9AmGH300Wf1W14/54Pj6wcT5lOp02P9bzDCzHGqH9rGF2yt/f39disRiQUuigyWRS8/m8yejx8bElGXDqBnqCuck6RXet1+t2Cglr3uPuk3Kshz3HLXMT5ycnJ7VcLpsPbczPmnDQ1vPOONtt2pVd2ZUfdslAi21d2nY2kTj5pWoYGHWd6f/Z5qWuubm5GZxc5+fb11yv1y3Rht2be3t79fr161qv1023Yy+wOehg9DOch+3z69ev22tisBMEQY31sC9ci13ELtCH5XJZq9Wq9vb2BidwYCc3m81gR5i/I1mOOhgTdq+ZT9zb22s4fDx+2rk2m82arQR3Ylssf54PDuI1EHwPv8R42zbQZvMx8EdwfvgL2FPfg400rsnXivW4OmSRCW893qI39/Ja8xX8z28nA5iP+6a6s11pU5MjNW/iunvPMHeUPDXFCZJVQ/4pMUCPl7Ee8DMZC/PY+Ww/x4le5qMz0Yr50eOMmLeZjGC5kECHrwdXhr/G39fX122TGboBOYA1j46OGt8NbmLecqoHPghtJckB/LVYLAb41Fj8F7/4RZ2entbh4WHztzyO5prBreC9XEu9MfK9/r43vjlPc579vsv3Mgj6bUrPKGZJI/3c947s5zFUDC4Gg7pwWrIuDCbZqExOjhhj8aRTz0R1oMCG3AuW4Ckv7IXUZlepCQ12AUIQpMNCm3x2tsmnVBg+iof2fGkMniMBTGDkWPG/77MDZ+eeH2eY9ABZGhcH4/xsHPEeGYLTm2NO3x1ARgnSX79TizodnEp5IVOUpYk1ExM2RDYyGPpsq/vqAI0DRW4L1zrLzkSLjVkav2wXcs/newx7Rtl1pPHOcfKcoR7+dlv9d5YM5hg0ZQaU51wv487Pt+x7yQUm93iuj8nOMfJnDlLSB4gKgyXvcjWBxjX00fMU4OkjZ7gndaLla6ObAfQEj+gd1rHXkudtgji3xxlmFI+JiX/fm6AM+fWeix1gLbg+k+4Q54vFogXwnfDCuveuz7QpOd8MqHINUC9tWywW9etf/7pms1n9vb/39+rFixeNpCM7jfGynvCOKnY6oPcyOO0AaOpXF4Pd1BVfWofcsyu78odaes6zi526/IzAJUEpYxF0N3p6f3+/Tk9PGxliogcdn7vLvAuUNrLLM9uEvkPfODhpnM0Ru3YwjbOOjo4GJ5EQrMtAUeJMElqurq7q5uamFovFILhhogzCyMlFdh4JsrjtJJTYViILO8xcgw5mZxvBoAzWMJ7Wy9h2jrb0MevYCI5xsz1xcBIcQCY/mf3g1CSYHERMXGdiiuOEeQ7trXp6DQf/0xZjlLR3Lg6+UpxEx5wiWGs5uQ98znXgNvrR28lmrJDJacYhOeddPA7Gz8bXXGffIHFSlrSfHp/Eqv7esuzhO+aR22zsBV5xoBA8AZFk/8XrxomNPGexWNTNzU1LcEiCBQKK9vtkJt4/xvoguEjQlbaDyRI3OpBJQBCcx5FpnvusK66xf+lkAYL96GHk6OOqjdPtt0FMs5ZISoNAd1JoJu0RWCUA64Rn+6fImPcvHx4e1vX1dRsz9KPHP3etOOl6FwDdlV35wyjYqeTPrLftP6LfzHtmIgUFfWouDzuIbuIzggdgJPSgd7+zu57AJ0kn2JvDw8N6+fJlffz4sW0+MTeJnSNBDZ14cHBQJycndXJy0nQgx8/C0eYuSR+PSZClavjuUuwUtur09LTu7+/r48ePDZuBz83rwCs/Pj7W5eXlgLPGnqCv4a6Ojo7a623wFRgj5M2xuYyTk7Fsu5CNscZznztQlDwUGCB5Z9siJ9dxX85N8w1uc2/O+T7XZ04x+UNKD5v1MKQxoOvuPZ/n0YffJuDktiWXnvybeZ9vwpZgNHPQ+Zzks805PtcPty9xbI6/P2NO+ljc5JJpi5NbkxulDsdc8NsIhJqTA0s6fsPpRPih6Dw2E3gesN54/uPj4+Dd9h8/fqzLy8vml3jNgXnPz8/r17/+df30pz9twdPk78zJ2UdjDJzcbC407/MJSGBbxh3d5Hn13Pz8fZUfdBA0gwrOPuF7EyfPFb5PJ6dq63RngIjFynd8Dilkx4HJDeFj5zMdVSsJnEdP1MzMOTs7G7xo2keFUXAQIWvsvFt2PNuZ58+REQkQ6Gcugqr+zsGe8u4pYRuDHvmQC8/PQIa9dnnsbEhtEDabTQMnViT876CTg2MZwEljkI4ibXUgKcfFfcIAeL4gf57Xk7uVXNbBHHSb+c6yw6gwr5j7qTh9LwSBA0n+3mvIu0dNMDmw57HO8aRdJi1zbqUcMXjO0DbQdrud9WcdYIMLuKP9AE4fY+U6bZx5rudqD5BZzlXb4CHtS3DqvmNYDQI9vwEBEEbMrecAJs9n7njHL/004ZLEX+oDZOm51/udwUrqoL9OYqFNJm5cv/uDHjDoSSDh9c8YAxBINnHiggPABnGAJcANdoh+pA72GDgAafK+qgbBg+VyWb/+9a/r6Oio3r17V1XVdhh4tyltg5w7Pj6us7Ozurq6+gwkuT0m/54rvXn4HOjelV3ZlafynDOeOgxsiK5greHE9fS09SXOIOQ6gQYf2co16Ae+v7y8rMvLy8+IAWcSY9fASBDz1Evf9vb2WpAMLE19YCF0rQl+SCFsW2Kzh4eHWiwWjciBHMLBMyHD6SwO5vAb3e1kNnTb0dHRwAHGB4AMS8wKbgfP8x5E/BDL2cEPdn5CeGGXIClou3Go7QPzZblcDjAjchuPt++XcsKN8bExHm00JuI4Jx/1y70Eio0NKIylcUliUOMX/re9Za48h9nttyQ+Ny5zINQknfG1ZWpbnGPt+vN59i9pG+sk/c6eTGx70/9N4scYr4evTMwgZwex6RvthPTpBU7zPp7HeiRJgiQLn1LBcdGJC1mHy+Wy7Yjs+R0mqamDNWRfEh3AThv+J7hI/ezGYR1XDXcbmURjTfJ83pvG/6x59JtP/fAcZqyolx1F9ptYp14TrG92BKGzeTcw+Np6lwIR7rmPPOmjZZ6BBtrsebYru7IrP7xiG2d7WjX0x83j9DgbB8bM9Zhf8O/RaDTAtOgnBy2qaoCFSYy6urqqq6urWiwW7XufvsHRriS9oE85LtcnGT0+Pr1P9MWLF81uUc/x8XHb8UUbwbdV212r9vfR2dSD/vQJfSQK3d/ftyM7wZ7z+bxtejHexlaA7cEbDkrSZjAcyToODDkY5OQefA8nPNnO9HCe8Rk+QJ7ORb9JygOXJHY0HjLPYP6PPnwTr/TcPGceJdbo8atZvin2kM9KLsU4hGIfx22kj67La87trtriDeNX98m8ndubGzWSn03u1TESivuYWJ7vfb3bZ/4WbMLYJ+6m3ryGfsB5ET9hHbI+r6+va7PZNB7Mu7zxF6uq5vN54wrBaawz86HuF3KbTJ5euQIGrdrOf078sI58fHysX/3qV/XmzZt2+hDjxMlvObf8Wo3RaNR8Vfsx1G2snxxfjkuPh/X3v+/ygw2CptE1adBTRknK5yDZUKDkTXo856TaQSVzh2OoyFR4eHgYHHubDqezUmlLZgBXPU3i+Xw+yNo5OTmpqmGWOIQIxt/Z8blbiHZU1cDwuq9ulwsyt7JLZZqBPTtGXiw9Jz8Nmp/hvxNY5QJFsdJnjyGySyXjgA5Kz3MHcm40GrUxzfanwfFcdUnlaPLGz0ceVlTUmbvSMthkw5BjkUbecu/Jsjc/kqgC1Pi7LylHjIWJD69J73BIcMx69fi5HZ4flq8VusGtM6AxUDbkPNdZ7YyhZeIdDp5TlJ7sngMKBgfZFwryNtCjb5m57fH3GqX9zFEHc5FJAk+3yfOJa3O9ObPTZAnPNRHqnUvW4X4mY2GZOVhvZ8hji7wN9K0TaKOz5ymsNRNh6E92DpEMA1DiuRcXF4N7IOFoK/PGz/Rc8RxFR2RhDqCbPn36VC9evKjT09N2lCW2yWvdCQEEQq+vr5/VZQbLzxXaiKwz4QfZ78qu7MrvVoyFjD2Mt2zLTDYRQByPx/XixYv27jnr8cViUfP5vB1bW7U9KvXjx4/tWNmq7Q5TggMU1j0YdjweNxyFXkCfk8kKoUWA0wEEBz35jHvB437nCm24vr5ux5SBvR3sgtzyvfgD3hmH/NgRhl4noMk1VU+7Hwmccj0k2Xq9fW8TO8iOj4/bO1mREbifd0QZH0LY+WhPng9eNTm4XC5ruVy2JL/T09PmdHPE0t7eXvNl7CPwbNrn42+dRMd7CXnvNPbSOwwyaG88Zttv/OH5xPcQb14Lacs9/41HwRmJZ4znjHfS5+C3sVq21bgo/RfjWRM86avyv0kut9WfeY267+At222PBTtQGGe33wmA9M/+Br9NotAmY0ofr3x7e9tIXebNZDJp67Nqu/uD9e13huIbsdvGwUTmBOsHXANpC0bL+fP4+Nh2kBLgBSc5UQJfxYR24lcHMOnLbDZrxBgcgf067kfXJealgE1JvmAnPv2BzIMYd0A18RvjAy5EXtazrtcBAuaU52L6+ruyK7vywyppa5KvTFvtkt+B99B7LtSJnkFHJWeCHSPxg+/4fLVa1adPn5pOB6tx7HpVNa725OSkvd8c3QZWRO8dHBzU69ev6+7urr0SxoHH0WjUAotgGmwOGBCbxjvdSYpBLnCs7GAdjbYB2el02mTFsbrIz8FNy6Fqi4f8GjYnDVVtEw6d9JIbILiPcfFpZdRB8k3yiom1esk/Pl2A5/n0muRYHShmviV3y/dcnxgv50xiM9djTi3xH98z19M+UpJXSdxkzi3v621QSl7wS3xjj7vLa83V5LpmbTA3mAs9Poj2Jv5IDtNzwM+i/9lv7kV/8LoSJ+1TL5gM34J5tFqt2i7yvb3tK628lh3op33GjtQLz4dP5JOBHFhFB3G9+wpGXC6XbWc2a5++bjZPQdlf/OIX9bOf/azpCPRSzhtzkxzZC15EbyXHmaXnE9iHSv3/XSk/iCBobyFnsXF6riRBVLVVuP7ck8GGwM8nAOJFwWQwgcyE5z1LVoxMKj+De00mcFQDx90S/MSAu19cn9mZNhI9xe8+OrBj2XmyezdBGlgXLxSTE3acWIDI144Zdaai8FikgXCf/eOgihdrBpeqauDkJVGQCjznp7MrLGue1QvUZ78dHKKPGeA1weHMII93GkNnc9FWg0me5blp8GDQ4+89Rla6qTSzz+5Lbxzoj4NNCZaSLKINCVp8HwFXky/Ztlzz/s7rBtBlI22yz8aUPpl46AGSXDMej/yeMUlCje8sO9rcexZrED3kMTVJZgDpOkzQ+SiHBG9eR6mz+dxEmwmZJEY9rtyXJBz1GIA9tz4tD8bRBj51KIDE7xFxPQQCTPaenJzUzc1NXV9fN9DGM6iH+1wP/bf+9JrqOT12Hn71q1/VbDarn/70pw0oOSmGOu/v7xtBf3h42DJjTRZT7Cy5jwnQcw15vaWe6RXP613ZlV0ZFuOp1AnW9+ho79rjHkgb1j767+7urlarVTu61TucOFoMm2FdZh3AblJIIeNenEtjWR+Xxv3+zDvd6Y/1LzslN5tN2y0KyQQpQ/AUPQnmW6+379vbbDbtSDICI8ibDHYyagm2rNfrthvT9g6Hlj7hEPu0EcaK9wA66ev+/r7ZjOVy2U6X6c2Fnq7EhkCy+f3XxivYAhxq7NBisWhOO8El5OYAkokz3pXKZ/xkQA07lMl9xjie2+kbMFa5083JQtTrtWKsbNz0HDGTOM62y98ZU/Z8VmMX27aeXfS19MGYxP3PNnBf+h3IyH4iSQ0++ovrnyOv6Cf4DJyavgptJMAKSeRAtfuWP/aRTRwbX1O3CaDZbNYwFoU5612MzHl+E4jlewL8+Px+J6jnAoll1i+z2aytcQKW6AGe5STWlB3klbG1ZQlZDPHPHHIfM7CQc8hz5+TkZPCuZO+WoJ/p75sHoU/263dlV3blh1vSXqQNr3r+pDhzidzr5AvbfDASn9um8cx8vQsY7vz8vNk3+9HmVLj39PS02RjaBXY6Pj6uV69eNR3sV2fBo5gHom1Omq+qFoTg2PWqGtiw2WzW3stJ4BMbZc7HGMIn/q3X64YjE6uAPT0mPnWO8UJ2XJucaS9Ihu0DF2A3zJ1g73pcvHlhOBZkaCyYeM2bLrjWv6mPuijGIBmoS17QfgbySLyY8ujhce7rcYz2e8w3e576Oe6DMVQ+2xxL4ljXRf0e27y3129vCrAP4H76Ofm/8axl77amrjD36DEhIQAZ8B3rjzaypvHx4LjAZOy4tkzW63XzwcCE+JX4Qcx57kWv8OoDMBLBUNaYN7DMZrNarVZ1cHDQkiSOj48Hsvzw4UOdn5/X27dvm+x9FG4m7Hpu+xURDmjbV0s/3nPJc9ecdm+e/j7L9zIImpPcnz/3m4n7XJDJux7tLHtQceSqtu8FJWvHmeZ7e3vN8FVtlRY/GCtID5Mx4/E2m9SOr+vDSJHRs7+/XwcHB80QOluT+00omUwx0KA4QGDi2073c4oe+VKc+UrdGL+qz3eXolzSmPK3Fb4d36r6zEA5qGMnbjTavozbBAftTOLAyt4GGDmirPyybsaOsbGcPP+4Hqd5Mpm0879xXp3Fwbuh6K9/m1RJQwThxDrg+VZgBkJWjp4ndogZO2RlkGLZUx99dVu5ljnrcaMNZMRQ7FBTAK42mA4KpaE34cX1BrPe4ZiggWts9N13G0SPkWXjJIYEAkls9YAWesL1ec66zbTRDoLbwudeDxjz1F0+IsE6FHmxFgxGTGD6f8+lnIMQRg6Sel4jT2RB3dZtlifzwNchQ89RX8+88hqhTZTHx8eWhZVAlbVBJity83PQx17DXgfr9XpwNA/P5DsHsE2IM2eSBHfQm7q4jneTuv1OPjEI9ZGF2BzIczuMdoY8buhgj5GTNjznbXP8XYIpr5ld2ZU/lPJN8944lv/TKXFdttfGzRwHBk5F5xh3+RgustNZ57QTXWFHajKZ1HQ6rfl8Pgi2oLcnk0lz3tDZ0+m01YnzWFUDe1P1tMuSwApHQKaTv16v285P2o6s6Lsd3NVq1eSwXC4HpyxwIsvBwcFg9xV+Am01vuMdUw54VNUgKIuOpi2Mo9/9hCOPTfB14Mc8gQM5gDE9nwiO4IgTIKJu6TOnxAABAABJREFU/BjqvLu7a++LRYbeKcZYPTw81PHx8UCOPMcYPImWJFWYT4xjkli5y5fxzHmfa8U+DPWlX2Ob5fttu7NwbWJSf29b53vy2vy+d6/rTaKTtuLD0C5wq9ctfU2bnfOl1+dewpz1Dz/edc06p96bm5uW+Q5287tsWe/ui4+SZQ4y9mDny8vLhkUIBrL+8OmNg6qqHW2YRKJ3gTOH8BMgxJCxA6w+tvvm5qZevXrViG2wJfP68PCwJWDQNxIJkCvrGP8HGc1mszZGjLN39fq9x54/iZNpm4/89pzzHEA/gH+pJxMzd2VXduWHV75EfHszQNVWL9rO2n+0TjL25H/qS46LeqwzHx8f6/T0tKqe9O9XX31VFxcXzQYcHR0N/HX709R7cnLSEljgguEAb25uBqf6UZ/x3cPD0ysHTk9PazKZtBMP2HmKnQJ7UOdsNqtXr161d3fmCX/IoGq4Owv8yQ82jiBo8pPmQShgcMvWJ4X55D+PlXk//uc0FE4r4Frz9NTbS5Y3h4pd89wxjnTghu94Ttovc3i0iXZwb+JqfszBcE8Pj7lYfuYCe3w3z0+5un0O6nl9ZV05Tokjc736+17gNgOZKVfGEYzihPyq4TgmF9rjNM3dGktkmxMn+1pzksy55Nc4dWSxWAyS3tgdOp/PG24Fj+ETXVxc1MnJSa3XT4mznNbjxAHkgK8IT4+f5PWIz4Ru2d/fbzrk6upqwCmi7z58+FBv3rxpuAuf2icyWb/t7+/X9fV1O+XHY2uu1eOTayT1fG9OfVdw3/cyCPrblBS0ld1vcy9khh0QFoBfvIyh4jqyebxb1MrA25sxXH73Go6CHRQcMQeM2P1JEHRvb69OT08bMeRgYk/hpWL2RKUYkHiio2QdKPEOSgeaM4jZU0gOIvk5VlRJhFdtjUcGLqnHhLoNdxLtJgcsLytyO+7+HsLN71PNALKLjSd9rPo8UEs7Iea4xkHYJHMwzmkcuc5n9HvMrMAcjEEuDmjRvqOjo8HngEcDBIi7DGg8BxD8jOdIot7/SWj1QIifncFiPxs55mdk7riNBlx5rwFVjilG2/9nH3py8t8pq2xH1efHKvfAKX3CIGI43XeucRZ9Ho1AW8hM4j70inUgc8T6wnLhe5wZBwBTn/Act9Njmo6T5ybjRZusg0x69fSkx8jAzTrApKHXGs9z/V5v6P/9/f12WsBisWi7IyDXqD91U+pROx62DU70mUye3r93c3NTFxcXzZmDCLQsU79x9I6Ph7T99dz1+LptvjbBu9et5bYru7IrXy5pd2xXvJ5Tf6CHwLroCBIewKU4huj8qi0OWS6XdXV1NcCWZMZbVxJY5X/wjgMekD3YBR8rRECNZ/MbHI5NW61WLZAHvkaXOgjKZ+Bq21i/z7nq85NNkBPOM47ydDpt7eKYMU5qYbcsjvN0Om1BBoK3yBD5M27T6XSwGwEHmvHD59hsNoOj1NgRgNzTV4GMQxYkUI5Go9Yv7MPR0dHAqUc+ONr8zdg4sQgi7NWrVwMbyDhjr+h/Hv/pOZzY28H5nPfUYT/Fdj2fYSLCWMZYAdvutWTfwbiDOpI8sC/E/5TEkuCIHk7Mglztz9Av5Gv/IdsL3mA8PPf5zv12nyiWSeIm7mHOsn4hdpkzrFvuwecgscAnb5iUnk6ng+QKY3jmlfEUbXPis+cQO7+5NvWECT50GOvYu6XZve0E6oeHh5rP53V6ejog9RlHY75cU8ic1+s4Sfju7m6w054xSSyfScvMG9pI8vanT59aG9AF6LV895WPJ7Rv5Dm2K7uyKz+s8k2Et4M9ycWYJ1iv14MAG/Y9g3foWtdn/GGu4ObmpiaTSV1cXNTl5WXDalVbm0ZxkMAc13w+rxcvXrSTRXivqIOwBEXQoca0tJl7kwdYr7fvoOdVNZz2xzMIbjr5xQFY2gxuhnfu6WK/7zntNcU7/pEv8mf8fIKa8ZIDLt7EQxucVGlsbfvn+sCaxiXmeXyt8VjitHye56yv9efmX23HUl5ZZ/KRft1d8lUeG3Nk5nNcV/Knxh89HtLXJSfl4H/iwV6fLD+v6+QsGRtvJDH+dt+ekyPXJX62DJ0ElvqlqtpcN79u7AMe5G82CDgxwBwa88TJn/igs9ms8WskfnLqBzKhT/f393V5eVlV1d7ja7zK7m3aNZlM2qtSVqvVIMns7u6ufvOb39SPf/zjevXqVUs49ZxA3uZjfQIdcsvgu+eZ9SrX9nhiz5nvCu77wQZBq4YBBzvPX1pYWWzMHLBzANCOChM6DQQTBycBh43PWax+ZwntZpfgePy0S4j38xAIhdCGTHJAw8EyZJHySYBgkqeniJK0dlsxejZslnkqJJzHqmEmsQMSVqJW7F6UJmA8XlXbY716hpD6UZg5f2w4qM/G3MqcRd0jTHLBZ10m45AldWOMVqtVA0qMEcHX58ggPrOSc59ogw28f6qGuxh9LJNBTtU2aA6YSaObsvWYZAY1ZICz8dwfjzPrx31x/5wF5jmWpTdOBhbPgQ7f4/nbq8fzLQGi60rgk8/0WBlw9GScWZF81wMmgAAbSBs9B/h8nfvr97xVfb5r1m1w5r4TT9hxYnCV6zdlYj3Ljwk7Ezq0JWXgeZZEk+tNpwA9xj203UDKRyui7yHvIIoYx9vb2waOfcxkvqsOPes55XWBbUJWkNnpiHGSwP39fctew0GhbusOAA7jd3Jy0o79yPFxINVtZW5m8XO+ja3elV3ZlX7pYbCqIckNbkNvjsfjFgwbjZ6yUI+Pj5v+I6hgkt67ifxuJScwmEznmeg+jtper9ctiOHdTNgyv9PJeodA6Xg8bo4iQQb0HTvewXwciblarQa63ngw8QfOs195QRAAW4PDWlUDvZ/vpzHZULU9ZcYyrKpmB8bj7SstOJIzd9s60YUxcOB3b+/pvaKMI5/ZTpscoF8OLvskCvrPMywPkwPInGNBq6oWi0XDsX63I3aCsQDH2Y8xBs3gIe1B9u4jc5xdtNTT85G8dvLvxNRJtPh++zMeJ/s/ab977eFaY5Hfxk4aB9ruer4ZWxsT2WczYch8MOnpvic5YpKJOvAX+DHerhruDjZByk4adksfHR0NXjtAkgFJAG4LRHG+f5YTl9hls16v6/r6uiULJLHjwKMT4BgX5iSJIuzkhoieTCZNFzGO7J6nrYeHh823514Tp1xnmeE7GhPyGQkZ8A08y7g2x4u1T13Ih/GDhDemZ6zQYfZb0Us7fLcru/KHUcwzmE+oGnJ4aTvNoaJ/U+dQ0JHJx9n/N+d0dXVVFxcX7X74Jng2PwuMhf6fzWb18uXLZkc+fvxYy+WytaGqBnwuCXBOLsR+oCvRx0dHRzWfz2s+n7f6OOkPeYGT0clO+EKWJFE7UEkSjuVme24cYtkbP4CtSBp0Yl4P85gnpuRnXJeBJeMErnM/k+9IvOT7n8NM+ZnxAs/yddmO5CyyHX7Oc3W6bvsQ5qFz3Ho+XfJkrjevd1t77Ug5G6sm75ljm/yv54b/p5/JU7rf7pfb73o8x91/B/RTTvgcvAeTup044X4tl8tar9d1fHxcDw8PdXZ21pIL/N5Qr0EnqR4cHNTV1VWtVqt68+bNAHvCFZL8V/X0rnjeEb9YLGqz2bTX0Tw8PAze22mf0JscVqtV/eY3v6mXL1+2TXKWhX0o6nJinuXOeKBTMvnOY+PxTb8n18Lvs/ygg6BVWyWIok5H+bnSU852WDNjxQvVpAD33dzctCxuHAoHOH3UlwOse3t7zRBCqEAYkDHOhMeh55mQCFYuqbh4loGCd2LRJya+HWUHMExmOZiAjEy6uR3pJPN3jg0gwqQ/z6X/2T/Kc4bSi9LXuB7Xi6ychYV8aDfkXs6h59rTIzNyrAwMGU+cabLMcNJxkHuEi5W/5exnJwHBXMo5ZEIqr2ONeayRH/1JosBGxwRDZqPQbj/H7eF56cynok+DnOOTgMAG2fV4viQ48Rz33wlYE6hYnrle0B0GGTm+3O/rvCPX4w7I9/xCVjkeBmQeF68pz7vePKAPEN6WzWazPbLZJEmOj+t3f3vzt6dXEpxTZ37Pdw7SZqEtgCnLxo6EQbWBPv0ATPB8H3F4d3c3eOcHBFgG0ukjcknZeR1CKiNryMCqJ1Ka3aA+ysxrxvOa9TudThsh6gB5gtKUX9U2GSZt0q7syq787Rd0P/jGgQVjOtuk6XTa9FJVtUx641z0EsEJk0bWb2BX4012fJEdi968ublpGazoFTCO9ZbtHOSMdeFo9LRzlKCDs9BpF/i1qgZ6HJn4WH4n+3gXFHqPQK2DpIntcGLRjcgAPUsgg3tsM9jZ6jG1vuVUBsbRNhW9712ZtnvIFhmwY/Po6KjZA57nOhJTEPwh+Mw1fI/f4+PkjEdoQ+JEYyYTHR5r+omPgI32mBkLUI/nvPuVhBSFOWyb7OJrva6Mz43BTXgljvT8oX/GQ4kBPbf8TORFIJ7nps21L5c4xrjcayXbABaljfbhwD7GDcb3TvxknnCvZY9uWK1Wg2QzMJTHisA8awMdyFHRYBH6i7/n8UOvoXPcH+M87wZAt3If6wLyyrtO9/b26urqqum/xWJR0+m0Xrx4UcfHx410Q/boH/QocmBOrtfrRoDl/KMvSWR7DvlIYeTrZG4TgH7XMfOmtx7s6+7KruzKD6/0uA1/52t8+oaDLiRuGctQsE/wjBzFbyyEHbCvDNH/l3/5l+2e9Xo9wCDgVieYof9ms1m9ePFikHhzdHRUi8Wi6cbNZtOO/SQhB13NiQRsZuGUp8PDw3r37l3jfLGVnNrhoC98KPWal0Lnop/NzfkVPA44Jq+S/ErPthtTGWOAt8Br2GPsNHaO8TDOoV7z7z0eAxmba6Kdxi22yfTB+MDP59kO1rsYKyYv6JLYK+d7+gHJZ/XqynsTa/A7OcUeV2sZJd/pdhiXuv4MEGf/jct4nvk1Y223DczlMece4+IeB2h5mmOu2u4K9f2OjfCaOT5z8h+Jnfi04MncUc06R1/RPzARuzXBoB8/fqyjo6N6+fJlS0SkLvvhyIU+cQoPuG08Hrd3gc7n84YLWYdVVV9//fWAk/O88zphrIwtPRaez/aVGB/G3eORc68X3/l9lu9lEDSVypeusyJIA/pcMUmNcTUh7l08ZOZYmbILCMcEYoUMHCavX9DN5JxOp+0anCScIwfX2E5NRqYJKK7xbrznnGv6BWnkhWfFyD0mnlIxWhnaocOx7RUMJIvHWaQUFDaLB0Xp57GYe8E/FIUDTwYJPLM3n9LAIUc7jHYqLbsvzbc0+g6+GHBl1qwdV/5mHlmJITePvY96Qr5pWJw5b4VmQ5mAyIAVQ8K8tQFLw+bnMVetMHlPlp/pcWGdeY7wLAMoftt4O4mB7xNsudg400Z/xjiadKU/Nvyer7kW89meD/ztudJr63MOB/LtHa2ca9DzJtc188iko8nelEvOIZOj/G1j6nkHgdrT977XayWNrtthsrJqu8OZv5E5ayp1QsrWz6UOriEgCjGU2VKWq3WTA8YG7nw2nU4bocZu0aohwc59aRNwpOygeB5gYzjSh51fOGnMO+rzOOCALpfLdq1tnMlk7mNMcl0nkWydsSu7siufF9ugxGV5Dd/ZEXTwYbPZNNzqJAmw5mazaQ4d+sDvJbq/v6/z8/O2q8rBz9Fou6N0f3+/HRH5+Pg4uB/d6mNWUycaX/iILmwk7xFER/rvfH87No0ACTrNRNHj4/bYTX4sF2RAoHgymbTgAIHZqq2epT/0F1vHmBHIQE+T7EZ2v9vNdRBlZCyjd/EdOA7TehybMJ1OP5Nh1XZXKEQdhWf2gte8G9T23X7Ow8NDCzoZP+RJAlXDY6psG4zN/du427vVjGt8P+vA9sX+YtopYwsfzWp52Y8yBk88kRgu8b+vyx/XbzKMtlIXf3tdsTvPAWa3HUyOLNxvY1yTURmsZ81YRh4b7nU2u/0QjyuEjvGR3+2L342uYmzsj3Cvg6Qea55nn9/HjrFLJ31N6ya/H9d+EEmr1gnr9XpwDLjnNs/gPpP0s9ms4bLR6CnZgVOhWI/ow8Tv6DDvFLAv5Dlnfww9xRhBvpPoQpDC5J3xtl/5g45AJyQ23pVd2ZUffrGvZx4nbV9VH8ui4/15Btp8Ih334eP+8pe/rIuLi1oul3V2dtbejUlxcNX2/PT0tE5PT2s0ekqq4915JycnDRvDDWdgzq84qNqeIvX69eu2oYVEM3SkOQb6SoA0A7z878Cjda0xmE9T4TlOEkP22E7v3E/ug3qTC0vuD2xgG5z3uc2ZUJ4cDJ9jR4yfbNOTwzW+M0eUPFRyDsZUtKXnV/X8rryW5/WSvf1cj09yez2uj3ZmnyyH5KyNH/nf86/3PONBj605ONaPsUi2hbqMN/J7ioPTDgKnzLLgB3Ad7QX3j8fbd8zzfJ/m9v79+8ZH2x/99OlTS0yrenrvetXTRgLWADoB//L+/r6m02lLUsW3G42eXjUyHo+bL8Yax082xsbvQw+SnDqbzdrRveBmc3G9OVhVzSdLH8XBYM9F7umNAevW/GzP3/kulO91EDQ/8wR2IQuHkg4W9zsAxDNQlunwWHnmkQkEriBGHh+37wHCAeX5DsAxAU2iTCaT5nxAgoxGo+b0ODPfcnH2awY2TGJzn8l4KyRnwXKvM2WrhkcpUB/OW9U2E75niNLIoTR9/j9KwGSUnWxKBkZsxHpK38E+Bz3S6OTY27jwk8bcQQkcUwy/lUEG/jxGyBVH086is79Q2JAcgCjGJB1hzwvmafaVvwE+BjSQXNzHnDfhQt/4bXmayHAQ1PM3j3Jy0BPFboIU42HAaYOZGf7I3MYxv7Mz78w1xikBn9dOL/DvdQrpa7nQHoNv6nA2PHMxiTXGmOezvryzJIks2pO60/rD12Q/mEceZ687ssVNiPjHgUOPPYDcIMVknHUu/cpEAROBHgNkkmvcO3tMdOd494y5gR//+4g5ZA4xB0mFreA9Sux8SP2EDqAeQNfV1dUAGNEOCjLwjpj5fN7WjkFvVQ1IO45lg6jmqEoAWeqqg4ODOj4+ruVy2epANzAX0R3WH+ls9BJxKJmZRh97f+/KrvwhF+u255x2Byd6WAk9enh4WLPZrH2ODqCYkLm5uanLy8taLpc1Gj0R4D4G0nqK+sFITljjOnA1SRw810l+YNXHx6d3t4CHfHQ4Npk60V+9vlRtiZCeDcLWYMfp2/HxccP8BA7Rbz4ylL+d5AiGhCjD/vFc21J0px1rMAskU1UN/BAXH7HOb+SPf5HvyrHvwPiAm8Hs2O7NZtOC4KPR9j2CDrIZ/9/d3bX+gUvdV2MFByTtM5j4SZzDPDFRVjW0J9gZsJZPQDBuR87YU5MplF7y4HMl/Ye0YUkseX0bc5sQNBZkXI0NEsvxuU+zcPAySTj3NYkS6qUf1JnyYx2hX+7u7tozmA8eR4758rs46St4jgRd6sIvYB5xfDS+thMK7u/vG7nMGmJsabffU1pVTR8xZ5mLrGnvhGbdMD9oO/3zznn7ThBc9AFsNpvN6tWrVzWfz9t6xKfwfHACcY65fQn7vvz0MDQ6gqQ3+ynuG+vIGJ917VddpE3alV3ZlR9G6a1rcwS2rVXbnfrmF21/rKPQu2nrbXuxX8Z7o9GofvnLX9aHDx+qqlowgmMnzduZRyBJbzabtWehq53sMRqN6uLiom5vbxuGuLm5qcfHx5bwM51Oazab1dnZWb17927ATztwi3x4Dt95EwbYC5tjO2A7iV3i/h6fwzW218lv2WYgJ5/gkUFL6s77bGOM9SjGeP7fY+p51vP9aYO5vPSJ3GbbRNf9HHeW/J37Zpn6XupPefSK57vXiXGEZZn9SbtuXtD4O8fKuNV+IbY+cVze7zF3exMLJ0ZJnjF91+QJLRPrFY+RsRjrwBxtcqRwWGAXkjPNR4Jt8DHt23H6BzvESR415v348WNbz3d3d3V6eto4NnP3+IiTyaRms1ldXV0NcLljSrSdOUEgtKra8b2sMa9Vj3lvHbqA/XLOGvvnOCbfkBzl77t8L4OgzxUrgVyAPmLBJRWfgzi9geY3C4dsTAceMLgEKpfL5cAYVQ3fUwlRQWa0n2tF4/PueZ8P//cCZXb6kQNttWNNPRmgc4asjVjKhusdaEpi2gY97/N1dmxNTPkYMt/vBen+uA0mBCybdPbcDgxXytNGwUGMJBAtN+9ydFstN3+XRAUFR9jzOI0G7XPQ2ESS14jby/09o2aH2u3KABFzyLL3+2lz3HqK2M/N7J1Uzjbs/m0CIxUx32fWM98h5x54y+cmKE/94/mUgNJz3XPkOd1jAJsZ96mXcperyQavqZ6udMl+obOeSyLx384eNBDskSmM73MBrEx0MGD1MRe5g5B6s7+u0/rffUrZUA9kPevV8yif4TFh7gI8Hei1E2VymHmSAXzGEvILEEZyjWVpvTSdTttJAx5jk/tV1XaJfPr0qd68edOCCz7OB2Doucw7RTn+4/HxcfBOvBxLZGP9+aXiYEnOpS85EruyK3+IJbGIbU8Wgnm+jsDmer1uWLbqyaaTIDEajQbvq7u7u6tPnz7V5eVlrVarmkwmLWGjqpqusgNugp6AAU6rdTOk0mg0GhzPSF9xPAl0XF5e1tXVVXMWKeCU5XI56KMx8Hg8bgFMHEzbVAJgVfWZ3aHty+WylsvlIAhlrE09k8mkjo6OarPZtDYR2OQZTni8u7tr9dJvk2BOQGRnnMfZ76OijtzVC/HmuiD4wAHgX3anQgiQ9ew5RGCJYJdJCdriY3Wp3063CR3PaWxBBuywL94BsdlsdwiaeHHWu22w56bnon2knt/Ts2c98iztmAksY7bE7CaykAnt8C4Gjt1zH4yh7JtZdj52zxjTY0N7E8Nzj/ucbWeubTabwTpO4tuJZOBk+s48ss8IXrI+qdquSdpi0sjz3wmhkF3gE/vSXh/oAo61ZW5VVTvy230GF6XcaB/z3msP/cR17EC6vb2tN2/e1MuXL+vx8bG9HmU2m9XDw0MLGJscpK8ZgPAc9FzweHoesqYJeNpuVFULWjth0QQea3KH3XZlV37YxTyKbVDV5xsUqj4PgKB/nVBTVU2/oXfAbelTYlcODg7q/Py83r9/X1VbXunTp0+f+cHcx4l7p6enrW2j0aiur69bOzhJb7N5elfodDqty8vLltCG3tvb26uzs7N6/fp1uw4uN5+Ljl6v15/ZCwp2xzqZfiFD7EZuaDFfyPO9+SQ5B9swJ1r5hzYx5h5L6nGAm++pLwOtveJ7e7yW54i57sRqJBr6meYlqZ/iduVcdd9cz3NcLvVwL7bQGzdckivt1Zm8TuI347z8m3lAvTn2ifN6Npvve/PU8jO+SNzper4JF/jeDLxZjsjW2NBYkTnteeTE/cvLy4b97AM6QAqu87w1ZpxOpw0ngd1Ixnt8fKzr6+s6OztrAdT1epsY+vj42BKQzYHxDDb50WbeS0zCxf7+fp2enrbnvn79uo0r/TBuIxnQsuRv9FHyeB5vx6GSX7bf810pP5ggaG8RMdkhVtLAudgppD6KHVOKCQQrMjs9OABVT87Q9fX1IGvZzgCLmbZ6ITmDgWexIOx0ecJxP8QVhIAnH3XyHJRTGhkrJTubqcjToUmSOjOUbZh8v5UpsraytuHzPb2sMJMEfJ6BtARbHnP+tjxSORsgcL2P4qB/np+pHLI9VjoeB9eXxsM7q5ydaxkkiWNZp/GDFOj124Y1gZQJHM+FNEA5vllS0VKPCZ9cl9RjmZtgsTFP+Xtu+bqe4TdpwTiYVEMGJqS8vug/7XR7vUYcEMugs/vho6Zoh0mGHgHntvpez2OD29xB7jHMNWJ58e6LlAMBsHSQPG6pf/jeayABWhbrG57L354HPTlYVsw/Sm9uUJd3lXKts7xM7kLK9o6rcJYaTiDHjq3XT+8AODo6qqurq8H8yzHBNuEkMjczOGnd//DwUBcXF43c8/oA0HmnErrVx1wiI653e5wd6JJ6yOO4K7uyK99ceja4angMkTEBeDXfZwJh79cuXF1dDQJhvFOpqgZ6jPcNHh0d1Xw+b+Q9QTHvKkxHm/p4Lg4on0N4sbuL3eU4pJDy6FtIMYKLi8VigI2RDXqavtEn+oXOms/nzV6h3x4eHlqmLhm53Odjy3FqCRrbmXedm82mkVzT6bS1dbFYtOALSZg+MtMBGY7r9XM2m03730dcItf1el2Xl5cDmTAu8/m8jo+P2/tgjd8JdmPv9/b26uTkpCXeMF446jj5DkTzY/toTMv/vXdD0hfbFfCr5yUlSaBcJy7YX7chCa9eANR1J372ejRWNw5x/5JActs8Tk66dLDZmdrMTZOtyMnPSzItfQhjKeYfa899QRbGpIwxSWzMp81m08gh9BK+M3qAZAH0lHdGM7dZE97RnHOG9w0jp9yF6XGZTqdNB4Bv7NNaLoxPYnbGAqJ+s9k04pm6nMBAfaw3dCP3vn//vu0y+tGPftRkwhGNzBkCquDNqu1at27wPcxx5G5/BR1eVW3Xrf05dH8S2fTPvnvKb1d2ZVe+W4UEV3Myv02xzUq9aH6l58dbJ0D2U8xJ2C/2M6iP7yeTp1OIfv7znzcfmPrv7+/r06dP9aMf/aiqqiUUg6XYSeXNNODIqmq4kmTC4+Pj2tt7eq/z9fV13d7e1tu3b+vly5eD10FwHbbEv8Gs9Ns8H7rcidXGIWBrX5v19Pg7J18nF4btxkY7oOnPcqwpGbA0jjEnmFxsBiI9h/JZ1Jm8b9rjrNd1ZywgeeDkmox9Eu9k8TW2e+are5gr254y82fZ3lxz7q85N/qcHJyv72HClCH9oK9+bmJX4458roOKeR/tNVZLv9bBOgdBWR+ej3k92JREr6ptEq7bQ534Wk7y5X3BTpajbw5igu2ur6/r5cuXTVa0kziSA/aOI00mkzo5OanValXr9brFmjip4+joqJ3gtlqtmj58Tlfi83tuWo6MS+JkJx/mfDOm/LvAecaj37b8YIKgFAsaZegMmJ7CsIOYSjMXbC/YNR6P2zs6OfaWOq+urpqjYYPLRByNtkcoYExMKHuR2glhofkIK09aO1P0ww60F3JPQeXkdaCPtubW6N79NkguviczQllomZ1tJ6tq6NT2DCHf2eiYpM924BTSBoODngFCju4vbUaZpHFze1ESSSRY8XjMEkya4DGZkhlzVr4uzC/PDz/D99pZpU/uu4MnDsDRHq/H7H8PLHicXWxYM4Mr+5J9MrjxnLDse06722p9kA48cjDAT+KNPjA3IHmcge7icfP7L0yUVg2DaqlH3D7L28Ahn+m2+vPUi0nYeR76e/7mu1yXjHeCvl6wzGNJ3xygtfwZEweGfRQM99IejrCg/ZnV6DkE+On13+2E/E/y0UkyVdtdJYwb4MnBTcuVv/f392s+n9doNGpAiPpwDk9OThpJ3ZuPBsT0Y7Va1cePH+vly5ctYMCRHcxZCLTxeHvEI6Q7P54rBp8ZgP2m8ncBnnZlV34oJfVP2sCqrf5KWw9G5R0lDsxxSgk6z0e8skPU2IzkCOq+ubmp+XxeVTU4KhbdCOFDPWAxCB7a5/fc0cbValXX19d1d3c3SCJxwgl9RvfyzOVy2d6tR304nWTRIgM+p118xhGv7EhA1/O+QnBm1TYBz3gDko3j0A8PD9u7NSlk+u/t7bUAqPE/AWXkQrILtgvfg/ZgT7E3YBGCtbPZrGUsMy6TyaQFW5ApwXH6wvtQSQTl+GKebdzGqSaHh4eD0wIy6Wc0GrX6jNUYG2yZ++/EHD73TtznHHFjb9YPxZjEuJn7kuDjc+rJxFK3P7EDcuLv3k7jfD7j6OQFtyX/t55wslJiZuqDNPEpDEmeORuefhP08z3IYjQatYQufBaTiYwnSRanp6dtd+PR0VEtFovBWmLXK2vcgbueHzMajdqcZv7TDhIpqrYJF7QbfcX72ROXe76B74zX7MNDgO/t7bX3SXkeg59Yq06mcFIKY/ju3bs6Pj5uuozy3PFmjBO4c7PZDN7Li5zSh2Pe0g4TiNgM8xOZFGh/y6T9ruzKrnz3ys9+9rP6//6//+9bB0Gr+kmu5mT4DF3ho1yrtlgDHcVn/LYNSF7AvNzR0VH9/Oc/byeUZFLuw8NDnZ+ft3d7bjabOjs7awllubsUWTiJhzqxaePxuH70ox81rDSfzxueIgGMXaRwAuYHLIeqbSKRN8rwbLAlddMHdLFxk/knyzVfQ8b19gf8nTlhc8rPBad4puvr8UrZb3OHbn9v3BkTzzWwR3J8brP7l/bImMaf2X/KktxZ7/Met2WericjrgNn9LhpPw/b7T48h3+NNbypJuXL+DmA6DbyOfW6zaz1xPTUD3YDs1o2boP7a+4qcW7+7/FKrnBvb69ub2/bqUJ3d3d1dHRUb9++rY8fP9ZqtWq+MPwuPttqtWr3MM/Nz6I/wEzG3T7x5O3bt+1eXucA77bZbAYnsuUzwK/0Y39/v05OTtqzOcEJfcp6sP/OvMQnRb7Ggx5D5pR9aGTq8aP8XfB44/G4fvazn/1O9/6ggqC9Re7gXSorO69Vw908WW9PAVkJcKY8R1nh/DF5ITaYZBhClIuJJpNPdjggM5iQznB1QMR9syyQARFzGwhnb6PUMOhpZLN4IWTwg0BvKute4DOVahqsHCcrvt73loWVeZISVuxJRuQ8MIAz2MLoZl30ITN8XJcVjP+mnt69bl8CU4Ox0WjUxtZzwH3KPiaATCNk4IRcLU/aOx6PG6jymemel7m2XFDcaeQNenL8EzTk3+5Pbx44q46+JBizof9tSz7fTgBZ2p5v6AqMCmvI88JA0vUnEP1SYBfyx5l8DsCn/jCZ47rcLwNVxhFg4wBsPtM7a108Bm4LsnHAnWv8N21xe5AtxC+6zX8DEhJA8x1t93EYmRWZMvSxbIxp6hz6A5nn/njHAtld4/G4Efnob0j4zWbTEnS888Dva/OcSyfv4uKiLi4u6sc//vGA6DJwREb0//j4uFarVesTBDoBkJzjqY9Sn1AMqnr6eVd2ZVe2Je1BrnV0t51UnBuCoegUsOlqtWoBwqotvma98i5O1iq69/r6umXReo3PZrOBs0sgzbqdwk7VzWbTdhKen58PThqgX8bWVdudgmTmol+td/mc4ATyIJBJwM4OoE93GY1Gg6QQ3oNJpi8BQ3CHnX4HTdDr6/V2l60TYbALYBXaCNHnoI1tnINQYDIHXdHDkITT6bTJkzqMJY3p2BnHyQSMlwOf1M1OCewg44AckD3PNe6gbxSPcc59fI/0D3p/J+HY8/eSgPG8YS14bic2YzyynUl2GUPRNttY5kpiIWTFnDBhnNnbJjiZd8akaV9N2Nj2U4wnjV2RV+5Ixed1AiD32K9hHTnxYG9vr717l92Zq9WqrVN0CO2D8EFmyBPimx3EJuWM49BF3olEYgLv/WX8jTOd7Y/cmZPGq/Q3A97MmcR/yMz6Y7lc1vn5ea3X63rz5k2dnJw0gh3c6nYwFh5P47kkutLndfuon2SGTO6jcC19TQK6xy3syq7syu+//I//8T/+xnUkF5M2xJxOTx+hC62/wSUcKdvjldDnt7e39eHDh4Fes+7h5KOqqrOzs4a9jIGc8OGE3qOjoxaAqKqWoPP69etBEMInXxgv+jSMDPQa045GoxYk7m1i8P8+UcB2PwOIuVkmA57JCaVfwRiah/E42Ha4DmPRHg+YfaItvT5bFvY9jN2MRxz4oSB3+wxppxN3cV3yhMYSWbwGMhBlW0sd5t1TvsmBWnb27zym9MccndtGvxMLcW/6VWA3xt/Yk7+5hs+y3f7M8uuNRXKO5t5JwDVn7nHKtQ9vxzUkYfKb+uynsvsbTg2/9ObmplarVfOrmJNsZPD8RV/Aky0Wi0Gyxbt37xpmfnx8HPjj8LWM58PD0wlEngNsfjg7O6v5fN4w6u3tbd3e3rZXaSXf58Q/nmnszPWet4yDf1v3es3477/N8vDw8DvbqO9lEDQXQRYbUL/LyIE2Z91k1qaDhCbZrXyrnibU4eFhm2jersz9LBCTLkxgCGMbeX7sTPI8FgATkIKjmAQxzht9YsGYzEYeKJLc3Wkl2CMfcCRpn5/dC4y59IyfF5UDsl6wdqxpG33qBXysmJEBz+o5o77X7bIiIIOZ3QEmEzebTQuEcw3ySwLDhImz8m2sLW+DQkCYs54AezYgBlGuy6DRffVOLytcB2hGo1HbUUsbbJjdVkAYzzFwsbPcI57cD2RE+z2HPZ9yfnn3hedD73/PU9ZP1uu2uR8QL7kbgHpsCBnrDCj2jmxzBpzHz+Rott0ywSh7TSahYXlUbYlJdKl3lWR7XB/3GoR6p2WOD7/H4+0LxfksZcPnCaQtK89r2m1DvF5v3/HmLH7mITbh8XH73iaPp/Wx++057neOMU7oSeqCPIN0Z10BOkic8ZgwFtTPkXDWkScnJ3V0dFTn5+ftnUx2uuiDQS3vtrbzgN66ubmp9+/f18nJSXufG/Mc3cuYeSeZbavBktcM//eSOHKO5Jx9zsHYlV3Zlc9tVGI6Cro37R62f71e18uXLwcBAOMO9It3T+FIETit2mKKyeRpd/pqtRqQWWStGr+iR3imCXwydbOgv9DDDkpyD30FM4N5fWwtuo1MXPTjer2uxWLR9DR2wzhmvX5KbOIIW4KC9IsMW3ahZQKdj51Dx1t22Aruu7m5ae8BTGeZ/jughNwYH2wQ/UaG4/G4Of+bzaYFcY25fVoNu/TYqccOV9fJWK/X6zo9PW32Z71eNxJgtVq13ax8T9+TVOvZE/pp8sYkku2HMantjv0CY/UeKeY1Z3vvMU1Cx89OrJ7+QQ/78L1xmnGXyUWXxC7U4b4mxmF+G3el7Hw/z3SQG1+IZAXq83svfb+DhgT4wbvMfd6Ty3xGrxjf0UbwlvUd696Ej8lidALXsY7tP0+n07q9vW1rfbVatWRldBb9dRDSPqzxkXUrc8PEtXEqQU7rir29vfqrv/qrevfuXXvvHDLunX6UdoG1hP5M/YC+Qjczz8CBxvLgeXMEzFX7iel378qu7Mp3q/xNfK30vx0gsT7s6ceqrb5FPycnkXVyv23TZrNp7+ikODhoTgVeFh2GLSEJjGMu3RZO0Fivt0esn52d1YsXL5qudhIgOBPdZw7Q3J/xgXeceoNAcmVO6AKvmOsxVjLXbDmkbaCNLolduN+YJTkazyPz4C7P8bB+Hp+Zb88+97hlt8ecLvc+t9HHY9PDVInT/Nzk1twnP9t9zHVhzGXuM4OFlkNiSWNM22CPj+swl8Zn5rGdwG67ntw/+InvzLfymfGa8XHKkn6bg/SGHGSSc96xkNQN/Jije3gYvncdn+zNmzf16dOngQ/FnFksFo1zW61WTd7wZWDJDFrjryCnxWLRODcSUW9ubloyRW5EqKp2ag9xCfDsmzdvPotBLZfLOj09/ex4bPtixp0eZ/OhOW+yXRnk7vkjf1vlb1Lv9zII2isWNiWdy/wsI9wmglhAXkgmj00SzGazloHt51RVI4YgjFjoTFifMe2MV7fP2RZ2gljImUHtYFcqWepNpeQ+OViMAe8dzYCcMiCbY2K5O8jnxUZ73RYDEztNVdujQXsOXc6FvCYXI4u9Z6zTcHlOkNVloJF1u42u33JCQZncscK2suM6QCDPpc3IM51bBxqyPWmA+SyNr6+HWKAd3rXhOfsl0GCyyM8C9NqouqQce9lUyDEBeAI8BxlNgDjz3ePg+i1HZAzxhhx8fWbeUEw8pdxM/hpoPTdGSbTR9gxMIhuTK8gCMADJkfUB+tFZjKPBC/87QSLnRTo61JMy9vUet5Qv9SSApJ/eIeF6qccJIL05YBk6QcPEowkyB8B7fQIY8cOYeMwZK8aFNni+eL4xJi9fvmykHw4cbeK5ljdtZKw8x66urury8rLevHlTVduAhO2WgwB7e3uNMAQ8Jpj1+t2VXdmVp4JusD79NuU5ZyPxH86snRUHNvnf79R8fHys8/PzRqYfHx8P9JKDGThjVds1fn19/ZljaBvBcZAmo2jb4eFh3d/ft/eRQv5vNptBAmBVtd1PYG+uMYFAW40n7Tzj1HrnFQEZgn04wO7ner0e7AbgeFja43d1+ui08Xjc3k3Ibkl06M3NTU2n0yYLfIfEqASjHx+fjiwmWJvyZEe+7dje3tNxnKPRqO3apz4CV2QuY8dwqCeTyWCXLMFjxpZg6OHhYXtnKmNhYtFOuEkBxtSJRk4sNAGSwfP0a4yxe6SVfzOv7Rd6bXEfa4O+f8nnTAImn5tYJ9e0n089zCPmGGPT0wVuC7ogcU7izcSLYA5kymdgDIrXIJiIteL3hhpXGp+BQ1h/rE3+Rvb0i/cxGdd6vlC3k7QODw/b+9kI9vH53t5eLZfLQSJo1XZnKbrh4OCgEU1+xxtyM1a9u7truwXAUQ4EQ6JZNyWmtK9ivgBMd39/X+fn5/Xw8FCvXr1q692vBfK8MhFovLm3t9eCmMyVxOC0AVLQ68o8hsfe/r/XxZdsnfmDHo7clV3Zle9mST7OPECPZ3NJW53Yp2qLDawbzVuQoOF6vEnBnOdsNqvxeFyXl5f18uXLZttsr25ubhoGBkuOx+N2gsbr169rPp/XyclJTSaThuM4/Y/dWOg/c4i0mTppl7G1+1E1DCb2EtRdcsNE8q3UZzyVHBb3J9/q8U6O0Xy6r08uzfe4f8wVczrIP9vRw1++x32m2FZ9KTDo3zl3e7Ys5QPuNXZ0/XzucfRzs0+9Z5o76rU/r0sOxmPu8TLnkzzjc1yx+93Dr8bC5kF9T84NYxXmI2vZsultlvD/bDYwfgKXoRdIwKNtm83T7u7Hx6cdodfX161eJ9k6WY/f8/m8Hh+fTkVyIqnHkONnadvr168HQVT4NtqJ7nAcCf+JJAwCulXDhES/9xNfzVy6T4/0eCI76jKH4JhV+iBpB74r5QcTBK36PMMdB75qqDRysTqrMR0uD/5otD2SkjPep9Npm4BMBhuK8XjciA8752SO8jxnLTOBmJRezFZKfO7goPvnttsAYGT53FnWvh7njmshBPwcFmXK38SDlVoGDAA19NeZpWlIACQ9woI2uW0JFvJ6/53OeG8+2QnmOc5yzYLcTIxQEgRaUdBfj6VJPu5/LqCWxs59ot3PBWz5nYDCc4z/GT+/q8vtsHHDgbURos4vGcwM5vn5+f9zfXqO/PL3/jsNrY/a8zh4zhh0u60JLD2PU04OknoM8hrLJT8zoDWp4R0vtMdEeN7f6wt6ym33bmw+Y307OSNBaAaoq7b6zP2hzZkt+Fzpgd0ETB5j61df5yxT+kt/0tFIUgd5+znoCsCNdSPH6QJ0DD7J6KKY5OO36+Z4jf39/UacY0cgt+kX896kG/MOuUNwXV9f15s3bwaBXmTWI1Ah0R3Q5Rm7siu70i+sOdvMb1PS/vG/M74dOMidlugssB7HnxJcw8lzwIK6qrbBDeskdNzj42PDlLy3jnsIHFg/oLvW63Utl8u2yxC9hyPIPZlsYpnSJxP39J0d+fSNz4x3cVDt+JkAM06i7QQGCBJClEGK0V/wJHLlvVEkSVIvWIujlMCdZAwfHR0NAqtc58C2g2QcoY4Dj84msIuDbblxVLHH27aefjkg9vDwUMfHx21ecnoBgZke7mAeYWcdxHaA1njOc5xxcEKg60sirIdBjYcZY7BO1pvBH69bz2njzcS/rEevg8T/xi0mbKiPa90n48jEt4mtbcuNZfihHnAd48v8dDKV+0d/HDC1v2sCi98miQlOGs/zjnPrG0hqgvO+x+O92WzacWbWi/QJn346nbZ1b93BDlBjX/xo++3cB248OTlpOwm825755qPAx+NxC6ouFouGG5GNx5o1/PHjx5rP5+2o8Lu7u3r16lVNp9OmX3xMtH1qdIX9Hj6n78jTc4o2TCaTWq1WAz8/8V4SnF5LXyr0Gzu0K7uyK9+PYl6r953tjf1I2/HEBnmSUNri3GG/WCya3iaRq6qavRiPn945zb0kwNiGZSAAbhc/nVeiwQ37hAHa79fXsInAsqiqQUDDOhRbRckgpjeqmMuCn6XAcWTCFp9bltbXlmdibLfffFvqdvNNHlf7LIk1kp/zfclJ9trt/iXv1Guf/0/+v8eXJn71dyn37GvKz89IPjbX0HN/O0ZgWVumjA1YMvEr11n+5iFt85GjMWXPB/VYgM2yvryO9U07sm58NGNkrgNbmZu1T+e+Vz0lU5A4WlUN33neHRwcDJKAl8tlXV5eNl/v+Ph4wPFZBvguFxcXnwUbSTjbbDZ1fX3dkn7H43GdnZ0N3vOOfnACHHJi48P+/n69ffu2RqNRC3giY58e4rEGu5GsQZJz1fAkJsdwHLTOGIX/T8z4XSo/iCCoF5kXiXdaprK38U2l4zodUHDW9PHxcb148aK9BzTrZuE4k9rX+NgqK2ImqEkOP58F76MVIQMwMDae1E19LMQ0srQrjQhtTqfLhEPPMNiYWpY2vNk2O38sMJ7fC7L4uSbws+8GMOkYUzLAayNv2fhakyM9+SU5A2HhNiIzO6SZ7WqDZTCSxE2OZxpnK6EcM49V/u02uL0mTT32HosEPAZKOXbPBTxdnDlFX3JtGwS4byZubQipw3Ms+2S59Yw85JUDSgkUDRAS5Jso4n8+o+3MI4MHB9M8x10HJCXXozuOjo5qNBoNdhJUbclZGzuu87j2xtiy8Xz259YJCXhybSQx7nXSW2s9ItAkTjpZXtOunyOETfoY5Hk8cn1Z5xg4QA47q5SxQe/7yLaqp4QLH4Hoo3ZtH3i+j6Wkfh8taIfTczedKPrBsy4uLmqxWNTp6engmQRluQeyD4cwHafUWbuyK7uyLX/0R3/UggQfP378G9WVdt26Nsnpqv4rC4yjjDvRR3ak+QyHjjo3m00LKpo48HGO7CLEJqEnCfRcXV01pxT9ZueZOv26CHQswQb6g65L3Q35ReasT0EBm7LbzLuqTFJV1cD5ti4mScVHLnGEGu3HZ4FIw5m3o2/74kTMqmoJl4y15e8x90kGtglkM4NVZ7NZ0+n4MbSLz5Hj1dVVc6D5Wa/XzaYxXgTDaV+SdNgPAsH7+/stMMwxdVVbvwdMZ3/E2Dz9GUpiKBdjKfeRa/1/D1/n83L9+fPe93mN/2ee+6hW1p+TMo1VklADD1o2ng/pI3tXtXEC7eIeH9dlP8DHEJqASSzr9vM/z7Pfk0lgxvC8c5b55z5CLN3e3rZ55NOZmI/Icm/v6dhd3gPlk5icJFJVLbOetY6u4G+uOzs7a4FaxqKq2mcU9Oh4/HTiFOso241MnWRHggHvqXr79m29evVqgPs89xl36qRev0+V9cD9lpUTLP0Mz1nf9yW+oVfW63Xb1dqzXbuyK7vy3SzP8U3JhfS4LzgVrk/dYt7Az6BwRPr19XWNRqOaTqef+c+TyaTOzs5aYHI+n1fVkx5bLpcNkxpfGHvu7+/XyclJnZ2dNX4Vv93JxOhbdHW+sxzdntjCGDw5NkoGRLgmN7Bk0qJtfbbF9js3ySQnY17S9RgH8785EXMqyX95TBOjmWvLYExvLiT3mJjIsk5eLkvKy/f17Fh+ltyu60z+3qXHafba2JOn+TY4QNprnjyDoe5jBsFswy1Hc1/GeD0u1Lgx+VWvefN1XGsMaFnk6XmWj/lAYyZ8M46+5cQO94GjsTebTTvRJndTzmazxu/5tA84ONb4YrFobfX6oC7w2+XlZd3d3dXbt2/r7OysXQv+ZFz8KqrNZlMnJyeNL5xMJjWdTmu5XNZoNBrIx4kVPpHE6x9d6ZiT53zuBk0c2fN3vkvlexkE7TmTveJsYZPjGIKq4XssrWhZ3BmMOzg4qJOTk5Z9nUbGC2YymTQyx+87cnaQyXUmG+3MPvOD44dznkFeDEQG58h0pY0OqlomqYR6WQO+lmebcPCC4G8vODutdpp5th1YO1AZNLJiTaPhenu/3Vauz+BcPos5YQCz2WyaAkkD9pzM0rDYsPUCFvyYbOTdN76/Z7ytsAwu8pnMCzvGNl7PGV4DEq5jPkGGegzdJ3YcVG0DKlX1mWFw3V4H1GXD72tSESe543GHwGFNQCYA5HiWAZ7nSs8gZ4ZTytRyd8G4ZNC3B4Tpk4FNApCUu/voncyeZ6xDDKfbY51pgMmze8AHmSADk589AgWd5e9tZHMdM4aeH9ZF3O/xyHlUVU0mPAsb4vZXbYmwqmFCB8SViXpenE7bHYh2AghZqW4rcqJ/ZIlRIO2TkGUu8163fIeewZbXvuWNDAGFJycn7V7rCa8LxoJj5nju7wsAfReB167sSq/8y3/5L2uz2dSHDx/qz/7sz/7Gc/c5/MHn9/f3A+cu7yEQOB4/7WJ0vU5EQ3+B8Yz/CKrlO+l4bwoOIkEHcPD9/X2tVqt2JCV6FaeP9qCD0bOj0ajm83nTW8ZYHC3EO7LR/dhAdDPBN2TDbn3jdx9hzu5O2m0/AL2O7rbDzK6tqmoEmsfFnxlXTafThp18LC/2Y7PZDHb+397etusItiJvxgEca1mw85Y2pr8DVnDms7EH7bajzg5U5paP0UVGx8fHLRBMYJhjdU0KUkwIGK9SngucGE/5fz6zn9YjaYwNExsn9sm1/BxGfY78MvZJ4qFqi7WZr7TFMkmyxevVmMLPS/xMYdy51gQiuCF9B7AB88c+E+0FxxhbQTaxKxSdwrx5fHxsx2nTzzzNA7kul8uBLvGR/dRnH280GrW5Z5zEM1jnrC3aDAa8v7+v+Xze1hEBWL/PdDKZtLXGZyRiVFVbM8bu1l/0kyPDX7x40eR+e3tbX331VT08PNSbN28G73dmDMCj6T+xMxVCMAOnrAPGip2aXo9V1framw+5BntlNBrVP//n/7xev379jdfuyq7syne3oLN8OoXfHw/+qhrys2mnsb0+HtcBMfzmy8vLlkDHkf+2HS9fvmx4ClwE5sXOkKwGviN5bzqd1snJSUvO8vvb3cdMXuM7voc/zCSTqmEA0JxLT2860ImczOMY5yfeSNz0nM+QpWfnuR5bD49mLEExz5tjnRwP9jfxn08wcJDT7XG//Zx8hvvOfHKd9nnAO8kR2jaaG0mOJD/vydMl++Ex7tVL38A3jEcGbVM2iW+ZQ/hTKVv3l++NAZL/pT0Outk/sxyfw5GWB2uMe9AxxkfgZuM9vr+7u2u48Pr6us7Pz9s1TtBlQwBy2Gw2NZvN6uzsrK6vrxtfSNwH2eAfVlWrjzrMu4HFaC++5Pn5eVVV49+qanA6jv8+Pj6u+Xw+wGskGnMSkecb2BP/lnrsG4A7M7jJfOM6xuRL8avvWvneB0FTUVM4Nsrfmbixs+Ugk53fqs+3kB8dHdWLFy/q5cuXbcHe3d01h8nBRxSIFa2f46wESAI7azw/jRgTzkaTdmcgjnb7c46f9QJkAVjZ2HlG1j7a0kbHQQ+IdRZz77hU6vQ48AzabaOSBt9BUoMMO77c62AVffNccSAqjZzHAofR885Zt34u9eZnJo7SqPKdHWmCPciF6yEf0iiknD0PTei4f5ahx4QxsCFCGeJwe04kYeS5wzoyyHOACYcbJ9rBGRtXz7mcN6zvDOin7JNkStm57T2dkYkUVdtjTiBFmItJLhmsUI+PXfB8Mani+dRbD+iDqi3RZYKI4oCnM8l5jn9bL1AX19NPCFWcGdpk4GuwlASKx8CyNzBg/kBcVW2PpLZcaYNJSMakarsLwDrda94BS9aYd/FzD/97t5PJKWwCz2d3jdcMQUneD+V3dHrnibO+mHMm43AePa/4zXV7e9t3dBq8eRwTRHtN02ey19xHj6flstlsj6P3mHrdJHDiutTPvbnreZPOQOq/7yLw2pVd6ZX/9t/+W5eE+LYlsZwdda87goHoTr+/HpsLprVd8w5JkrHYBWj9Yl2M3rNzVVUDvUeQYLFY1O3tbV1fXzddwm6srJ8dU+w2BaM54c/Y2kdW2oGG8MdJZJeT8ZgDexnoofi5BHlxokejUa1Wqzo8PKz5fF7j8bjttnSikcfCOIf3oU6n0xqNRi1YiL21XHmHaeJaxmk8Hg8c8uVyOciOJvDEGJno8RzLRFJ0vk8YwB9jlwSf+RQdAqB7e0/vJ/WxTw5M2UHnXuv9JKG8BnwP1yZpxLxPfJJz2vPgOUyZ/qmJA+TnUzr43nbLc9QJVM7MBq+wTn3cLNd4LTJuOWdSdj2Sy4SmfWbjqaoa+H/IFHnT1kzyc/uYi8wRxpzPPB+NYcBx9oHJiK+qdjQz2BRSO/1xk+w80+uMH3ZGcy+yQHccHR21tVhVg7oI6q7X6zo8PKwf//jHdX5+Xvf397VcLgdkvbP/TSp5txFycMIJAcivv/66Hh4e6ic/+Uk7Spg1ylxi7doPp60cl+bEVZ7r3bSMAeNtLOnkQt/v73pls9nUn/3Zn7W//+t//a/d63ZlV3blu1mwAZkgUbVNtgWbcL13a2YCFtegX+yDghceH7enKxFsdUIGJxs5ecz6zO+XT1/35OSkXr16Vaenp61e67/kKCm0DZyKPTBPRt96AUpsYBbvku/xYsaRrtPPozj4YZv+3LgaQyAf9Px6vR5wUtyDfJLPcr+zbdznNppXos/mGd0n85g9jGaeKrmD5NKyXRTzlPyf8nP/Eqdmu/yZ5ZX39wJPxnq269TlPhpPGQMz942vXX+uZ/wr5hyyc5+QSeJ4y8cYPOVl3JgckscjcTxcm/lJ8MxoNKqvvvqqneBBn4jvXFxctEQ1dARY1q+NIRjqtQYHfHh42Hwy9BHFmy3wCeAJ3U52m24222Re5vR0Oq3Xr1/X3t7eIPGVOpjX5i6rqgVBPQ7egGJsz1xzvMDcnPWwx8W477tUvpdB0Kp+Vq0XdQY8uB6HwYqgZ1CYoNRJFtHLly/bcQkQ3XbMeZYVjp1NK2KcFZSXs6mtGD2BXO+XFGsGe3IiooAoGUzl71SkVcOjF6qGxxvZ8ewp6yzPBUddUqFBoNg4W8n2SCm3j7pSNlmQH6SgHVDqSoP63G8/60uESbajN4apZPy9yTnPtXTQ03AkQeO+4yBDrKBMCbI4AJT129CZaLH8uMe/87MEkpabAYvJCa7hvgQJVVtjY50AwVs1PGIv+5NgwkFKtz91DYbV3ydA83cpE2dsewwTSJog83xhLpsscnsTKHvO+VrrECdBeGz4GzCdoISCUc3MTwNq+p46MOXsdpgc8zx3f9039zvJds8Dnuf1lvLkesDS7e1te78UfVmv14Nj0Nh9tLe3147uub6+rsfHx3a8rG2Wd3/kOONUors5up13nViPGMD6Ox+9xlGOJq65L3enVD05Zaenp+1YT+vOnBupj/O3r3tOX7v0HJxd2ZXvevlt5vbvWhKr8JmPm7StdBDr4eGh6RrWvROxCH6BZ9GF1k+Q9DiMBB7ROez8vL6+ruvr60FgEOcTLGLcQRBhNBq19/z1SAEwOo4oxYmA2Ma9vb22i/P29vYzR8+7Xo37q7aJJbPZrL0bynrPO/vpA3WDbZ0Qhm6kXvqAvWdXArLhx5gdMhBbBPGG/2L7Af7h+T5SCZKSxB7aSd/Z2Yn8ccJx0CELSd5B3vSLa9n5hpwIRNF2fo9Go8H7Ik3M9OZ+b03wDPtlfNbzM/mdhIuJw1zHiS3cliSe8n6wguezyQfqZn0Yp7guiB1jI/sGxi5J+LqNDqriG1v2jKvxFgkGzOGeL+y/GV/WIdeTcOc6KPQBAps1zbUQTvx2P9AHuZaQNZ+PRqPB+4zpu4kzr2mvZeRye3s70JVJ6qILp9NpnZ+f12azaaR9BgOQITqaHabgR2SELr68vKxf/epX9ff//t+v4+PjwXoi6YJ5SN9Ho+0ODetNzwEw7WQyaaebGNcxrr1ENr7v+Xie7zsstyu78v0s5ijyM/NC4A3sByU5qapqiSPGH+BAAo0+khz9dHp6WpeXlzWfzwfBDOr2bs/J5OkUAoIEcF5nZ2f15s2bOjo6akkuxjIOAJlzRI9m4M82wBytuVfu670+gOckV2Q7mjyHcUNiGGxK2nePFbiAz7GTacuf44VoH89wvx0s5z7Xh/yYF725RTttz1yMHZBxYixfZ/xmfqjH8eb/xjX003Mk+SfL0J8nz207TXFwqqoGfkFVNSxNSazDb8siOX7+TgxGccKaE2MtN+SR9/fiE1+Sb3LkFPu7fh59h4dlXbLWeW87Ps7NzU3DNY+Pj4NXFnBqHPWgD8bj8eDdw2C109PT2myejtMFGzqxDr+IDQfgSHTUp0+fBj6Y9dNm8xQU9ftEnUDIZ/ZlGUsSmS2nnkzT50l/yMHlHo/3XSzf2yBoFhY9C8hOMwOazpud0V6mDAZ5PB7XyclJvX37tu0AdaYDhIEnDovNpDBOPpNwuVy2o29wXCCWbGB6BtOLmQX0HMiwMk2H80vFRoG2O4jsutxPFm4qoC89r6dIs3jh9YLZNswOSFlp5yK2rHqf47jbIKfxzP9NBFCHjZKfmYGlDHDaWJnEyGMEXKfBl0EU3z8XsOR5o9E2A495bpKE5/k4E+aAv2dMLBvmlK+BeMtx6JFIKUMDRK/pHCuucz0Jpvg+FTzXWEdUDYEBxUElZJZjzD25ZntrMufOc+vE93nccz6ZmKJ93OPrHBj2PbQhA1dcZ1IHGVkHMK9MgnGdCTfrYK9lg8U0zp6H3r1k+SS482cmPXu//Txkl3Jgzlv3ey4yz3n3AP1mXfTeaQeBbRKxaqufPT7cA4ADhI5Go+aojcdPAVm/IN36wevcgQ8cSnaVer17jhoAQTgmaGdsc40js978yvJN9mtXdmVXnorJhSRVrK9NPiV28NHp1sk+/YQyHo9bkmDaIAKEOJ84jKvVqi4vL9vxZTx7Mpm097UYU5CoiB4gSYQjXU0ajUajpnOpg/dF+TQP9C54fG9vrx2762PanNhFfcgCGZ6eng5IL3QugR1kgpwIStjvsK7dbDaD93E6oLzZbNqJEvSHQGceF3d0dNTemYjufnx8bLvDcMaN96tqsEtjb2+vOfTcQ3DTQTOez/cEZxwcTUyEY29/J7EmdtM7ZZGTsYXtfRKLtpsmumy//LdL+o9uv0kAy8fPe47ssi01MeV2+f/0ZX0SBvIyDk28mTbcCZ/UwRj0+m5cxTixZo2/aAt6h3WUOoPPmCu0yfjb42Js5QQB1maPkEkfZzwet+MQOYLWweTJZFLL5XJAHtEGroEI93xy+/Dz6YeP2rWPTcY+R0ePx+OmD+EHCK4yBzJITD/9frvpdFpXV1f18PBQl5eXjUw7PT0d7HBNX9IyQz/4SLSq4Wtn7FdxLBx1GBcjC6+dHZ7blV354Za0s/5tjOgkYSdsVw0ThZwgQ+AU7hE7A77jGZvNpl68eFHX19eDa23z0OngHXT09fV17e/v109/+tN6+/ZtTafThqNs76yb0zc3njZ/WjXkmZxU7u+/xGcZd/n7rB8Zc505cHNifO/rKfYheoEP44X03dPn79mBbHs+2/PJWM5Yhnb3MJrxFu01v8S1mbTjYG1en2OZfc6xsyxS3slDJnfa4xxdPCY+BrZqy+nCCWVbLb8ePrbMLJdMBnU9KVNk57lGu92exJ2WN3J+jhPOe8yJVlU76Qf/i+Dh0dFRvXnzZnAyhTcvXFxc1KdPn5o/yv1V2x2f+HIfP35sSaSMw+HhYZ2dnbVTffDJ7F+nvluv1+29xgcHB/Xu3bt2ApDjS8fHx62d9q3AnE54RD5+d6ljFtYNjgcY/7mdDr5/n7DcDyYIWjXMyCUazyKzEveksUL0QsewrtfrOj09rdevX9fZ2dmAvHAGtR0BFCqfr9frlpVJ8JMjGrx40rl9LpDnz+xc2BBQ7IT7h+K/v6RM7DBzrcmJqiGpbYIDJ6pHJiSR4D66pDLkeWkMkgCxkrSRTiP4nKF04MBKnXYkmPP3PkKDPpBJa+WUStqK2obPTnb2w2OfhA79yzXQC8I5WyQJJj/L4NBBG4+XA0GpVC2/JKRyDnuc/D6bnvy51llEBhNZUgZJmJDgQJ+RG8bA91iXGAR/0/Pcl+fG1z+9cXbpyZAx4Tft8PzibwcaTYJalpQMltooW49Zl2SQy/qzFzzMQB332AB7fudcy7XO/T2Q7baYeAUssJ6dWcd3OQ8shwwekD0GaDIIN2Bl/o1Go/ZeOQNYgyvrMifKeN5w1KDbnHPC8uNvMtZWq1V73x5985zNoD/AjKMscV6dfWi78yXwlOv4+wS0dmVXfp8F/esgKOvbR0XiIKM3CEgZx1UNd86BkdAvVcMjsXCwcMKqqpFFOGTsAPXOUY4ZSnLBAQ8HHt1mExjoZOsdkjO8C6DqSV8dHR3VdDptzu18Pq+rq6uBzoN0ox3oSwIw3pHKDkwTZOwocLDWzil6nT4fHBy0pBV+2FVGEKaq2ljajrIb1WNFVjNBnhcvXgyIPMaRdjr4S4Ip7ceJtwy5xgThdDptfzvgbJ+BviNPfAzaZSyaxJefb/zPmHEfcyKxsbEq7fD/xhMmGBL3PWeX0ldJ/GqZGl8y572WjPkSOyEn5pwxjeU1Go0aCZNrjLmR/oHHjLVmUpBxz0xzxj3HI/1m43z7np6THn/vivQJRfbxeb4JIPxX5MDObu8SNY6ZTqcNm9Hmh4eHurq6GhDQyOX+/n5w1JnHgLViHeWdz5PJdgcTO6vPz88HOwssJ3RH7tIGM/r4x8fHx/Y+5aurqzo7O2t6mXr8aheTaaPR0057dGH6qeBJ435zGN5dTv22RTs8tyu78sMstle2wUmm22ZbH9j+m1v0KwvwmbElVdUS4h4fH5vtPDs7q/v7+/r06VPDZFVP74oGG4F57u/v6/z8vPFhZ2dn7Rqf6FG13TDh/phHMweaHKxtKc/Gp085gKnsq/cCnsYllr05CorbloE9t9d6H1vqRGw/1yXbYM6zh+NcR4+3Sw4g63J9vja/87Huvoa/c0eyi5OyfB8ydH97429594Km/jtjAYlfzallcrnrg/fBz2K8Ug4u4BSutQ9on9D9Trl4LvozByuzz9+EqVNmlnW2x8+w/MCQ1i28LoEgJf4am5DOzs7q7du3DY+dn5/Xhw8f6v7+vp32dnd3V0dHR/Xq1as6Pz+v/f39+vTpU8NO4D0wmfE5rw7xRjL6sVqt6v3793V2dlanp6cN643H45rP54NEBnxL8DgYjORZ6yuuS/8v+T3kjlzQqzzLusDzLv/+LpXvZRD05OSkRcZ7TjBRby/Oqq0jYrLkucKgTqfTevnyZb18+XKwW80OG/XamNkJY3LxriNPIL+ThwVAf55bzKkQ7Gw4QGLFbhnwG4WJEkxFzr02Hg428EwIIb8/z8AAB7FXeoCItriYVLPxsVJDWWSwpKdA07m3onFx4MbyTqXtwFHvuXwH+eQjqzxmlkn+7Wdzn39bjvm5Axq9exN8GMT5e/cxj1GwXNJ59pEltMVGyeObz+n1L+dxyqr3fW9M2JnNHOjN7QRsvfHjGT5OlHYCzk2EGOA6o891IX8HEp+TS5JLz8179yEJC8YBQEBbegEy7iM45r54fFxPgmPLw/31EWZV22SHDCCbDPYadpajdan1nfV1Am5+fESEdY7BGwDD88SZbqwDv4cOMts6jH6ZQGQHEjt3INOPjo4GAM7jTXKNgwUQfMhib2+vvTi9l72FnO1UUtf19XW9efOmfebjKZPYZJ0A+Dx2Pjo3dTGyy3lhx++3BVTshNiVXflDK8a4aSet77yWsYdOhurZGetFSB5s2nQ6rcvLywFxhc7yDkN2Cl1fXzdcPBqNmhPJMT/oBDAEOodA42q1athzvV4PAjvYE+9GdEAJ28vzCBJiW3xsvW27nWYIMQcRkA/vKuV9ei9evGi+gO0ZO8Xu7u7q5OSk7fisqqbDkQHfYYfILnamr30H2un3VpFFzJgR7CRZ04Hwqm1gkXr5Drvhd7sTBOVzvjN5ZxzAdz1i0GOV+MGYyGSgi7EDxXbZZF7irB42QZ4938w4rud7JX5LMsa+TK7jLG63P3Pgn3rsNxn/cS/kDn4rthkZ5O5ny8B4mecklqAwxj6S2fOJOZa70Xk2bUdPeX6iGxIHIwvjCnScjxXsJTRbDgRRLc/1evv+YHQW8wi8hjx5prH7ePyUGOBjFF+8eDF4RY6Pt728vPxsR2rWz1pAXmBIB8jhHJbLZS0Wi88S8Iwp0x9BB4FFbUuMpRmb5XLZ5J+7aFnbkHPI4LfFdruyK7vy/SjJ4VhvJO+DDrUvDt6znwn2qtruVEJXYmdIouM5cBbz+bwFJ5IPAE+BTUkse/36db17965ms1nDFdjG5HD4O199YDtrm9zDC2AoJ+2Yi3G9/J8JJcb5/szPwXYYN7p+/reNMM7guh5HQ0nexzjNtqvHqSaG8niac0o5JheWPE/K57n2ZtuzXnOdKRNkatzUk82XPnN9fiZzMJPJjTOzX15P+A74TGAy74qmDU68z7ll/P0c3k177/G2j0pdzwU4nxvr9G9zDKxLzCsiC+oEb6Fv0CEktYGhzs7O2m7Ow8PDmk6ndXt7W8vlsj59+lSXl5e1Xq9rNpvVH//xH9dqtapPnz7V+fl5kzsn9CSOr6p2rC2+Mv7jaPSUYPf+/ft20tBqtarpdFrT6XQgk0yK5LPk14wXkYX1FbrBiY329z0+9Mfcnn++i+V7GQT9t//239bV1VX95//8n6tqm6nAIGUQzQuf/5kUVl4oAq7Z39+vN2/e1Js3b9pRWzj5dnZxIjF4EEgQLhxBA+nAc8bj8eBe+mHFkAs9HRM77iwYCooG5eY+U6cXXyoPf15Vg8XE9yacqobHBVCQG04O7UmnNZ0494G603hnG028ZfAGeQMoPP4Z3OF5KAz/3SMqksBhbuzv7zcQZbIls9qZc67D42NZ+VqTeZZpts8kkuvKYI2Nq8EGjqrngokDkxu0yyDXwI914PFJQGyjhCFy1rfBgIGGAUeOveXZI6w8R3MsGDOIW5NmzOdsvxU/fXa9EA7WTV4fJmzcH68ZgwoD4iT2eJ6JKOsYGy8+Yz14XF2/+2eQ7ix6r5kkCz0elrGJLq5h7XpM3CZ0J/11dqjnfYIlrnWbeaZ/+x7a5ox7ywOZpbMzmUwamGFcGQtnaKG7kKuP6yDjvmpLSiIfnDeDFk4ugPzi+slkUvP5vB4eHtoxGx5fxsl6vqrq6uqq7UhFZtiznHcUdjMsl8vP9EoW2p6JLKwNjzff+W/mBXL/kz/5kzo5OfnsObuyKz/kkrbX9o6Sf7NuSCBED6HHbKvRnRwHloSAcRJJixTqOT8/b6eiJEZglyN9QMehe7AH6Hz0vP2Aqq2O9C56AkC2RziR2J7RaFSLxWJQl/HrwcFBO/II7D0ejxtxVrV996fJLsugaptsSRB3Npu1pBGO6MSWkCE8nU6bXA4PDwfJNdgi4yXawHiycxaSbTKZfPb6EPSvkzKN9zzW/nHyKfJ28MzkUxJT/jzJEc8bnmu7nHO/R2ol8eU6aa9xAn0iYJ2+2JeKbZCf6f+zjufsYdU24Yv54F3S1Gvfws/uBXh7pC2214lllL29vbaT1zv+mPvgIv53cVIasrEPafLNuLHnF6EbevOGfhgbIkP7DH52zkdjWyc6ouOMT9EDVdVO11iv1+39cfh+6CnmGgR7klPoQHTm4+NjCyKenJzU/v5+vX79uq6urtoRuex0wk8C29E39CME2Xg8bom4BwcHdXV1VePxuO0IRV7WAVXbhFd2SqDrcrxYN07c8Fw3tnSCgkm37ypZtiu7siu/e0lOJP1min15/kcvmrMAX9gmcYy+8aGxHrvzwVnL5bL5r/b37+/vW3Le/v5+nZ2d1bt37+r4+Lj54Y+Pj3VzczMIzvIcb36pGgYnjY/TjlkXIpN8B2jKxXWl7aNO80D8bw6ZNvJ9FnOn5qOMITx+/DZ2MwbxfMAG+tlur7+nJP+XHI35K88fP8PcIJ8nd+32GUNnH3v2jfmaHJ2v742XZei/k29LuWd7c0NCzzfzmmJs8R18ogs2PZ/FePawevKrKRfP2x6u931Zj+VfNTwNJXnfquER/r0x4374WK4B9+JfwXe5H/jBi8Wibm5u6uzsrL7++utaLBYteEqQFJ8S3ObT5fb29gZ8JTrO85p2LxaL+vDhQ717966m02m9evWqcdP4dfbXqcMnmXqum/9lHFJf418b++fczDmZ6+K7WL6XQdB/9+/+3YA8MFEBePcAeWBtXJh4qYQgk1++fFnv3r2rs7OzwctnvQBxJpggOBkcx7tYLGqxWNRqtRpEznsOMo6gP6v6/CgJGzwbgnSi03D4f5PtaYzyb5c06s8p4+fab6Vv5fNNfe4tIo+Fx9yGItsEaHKwNkkQzx0rxedkYrnwnNFoNMhOtgP9pb72ZOHPct6kMbYBSafeyt3txiBxXd5rcsgAiOtNXOZ8dHt9vUGh524G5pjrjBnPRq5ui/uUmWqQuw42PlcgJFkjBHwoDra5JNCzAegZFBMrNlQeK/63nHpArDefDCj5/P7+fnDUWD6THwgPG2TXbyPLs9xej2muc9qOrAj+uX6CeEkm+hqPbRpz6stxA+AZuFFHHg+bgVHmleemd3h6LQBmPDcc4OZvJ+xY/vQbW2Sy/+joaPDeK+wg/yNfk4+AOMbegdDN5mlXADaVOW8AZgKWvnoN+jv3l+d7Xj5nK57T8d+2WPb/6T/9p9rb26t/82/+zbeuZ1d25Yda0D/+n88cDKkavvvOCWboLtvszKgfjZ52ObJTEbt8e3tb79+/b4FO6yz0J4EEJ7T42B3sE3oy34eXQRb6yfX0jT6A7/kbnWediu4FS9gOEdjgM/Qt+hm7Y52fJ2RMp9M6OTlpO9iROUHR9FfQ57e3ty2pheuNiRkv74S1/sYWk7BnHJABDjvX+Cyj0WjwbkJsCO0w1mOMeoE4vjMGTTzfC5AlTnkOp3OtMbFJBkqSXibkEitlW4zVeu3zcxND27dznyFOWAPe5cLznFhJe5KU9fcEzuwX0CbWHkcpQ/TSF/o1mWzf32q80PNZU76sy0xmzaAYa4B++FrXn6dieA4kFsuEROsIzzPmP2sBXImuQVZ8T3/u7+9rNpu1IChHq5HwRhIdY2u5QqqBR9Eh7Do9Pj6u0WhU79+/b31gvIx38d2Yb+yaAnci37u7u7q8vKzT09PBsbw93I/eRW+ZfHT/vV4g5yaTz49Jpl6P2a7syq78sIp1rbmTtMF5bfIo8K0Uv+8ce8hn4DHqMQbd29triSboZhKI9/b2arlc1nj89HqDN2/e1OvXr9tGGGNJY2aKcaexkvVbj+fCPptj5X/LwbYwMQ/PdXvok4OFiaUSb/BZ+gHGOx4rP/M5f76H7/y/67a9TqwIHjfHmH0xD+G5Zt4pOVNjseT2EkekzXJgMW2Y+aOe/PL6bG9i4B72pTjQatlZZua9fL/HF1wD/nBcJeXS629+n2Pt69LuW/72KT2ferJxXT2s6bliPo8fcBF6xEdbc/3t7W1LeKNtvKqEnem3t7c1nU5rtVo1HXR1ddW4tq+//nqA48FcBC9Xq1Xbjcr9ThojOe4Xv/hFHR0d1U9/+tPB+0Hd3+QTkaOPALZe6B3nbblxHyckWc+Y/8s54t/ftfK9DIJ6B5Wzn6u276NJp4bFn45rLk4m5osXL+rt27f1+vXr5pDkmfM2sEw4JvN6va7Ly8u6uLhoDoDfvZSGkXb1FI0nKsaSdlT136vi71IpeHdh1fCF2DyvR0JYyafhTGWX1/pZHi/3y9emQf2Sg2Qn1Qq+pwj5m/EzsZPkUa9Ywfj5GZykviRJUpbZTkrPuOT9PNe7srxrw4o/SQDq8+8M1CTo+NIcddDK9SaBRX0+Po3+ePxR9sjV7c/5ZxKBZ9lBd305Zr2SZJYJE89Nf9Yz0hBXAEkHwT1WJnSp30dNuV5nT3t95k/V9ggsyy2JC+TwHHjo9Zn+msClTwaDBiomP3JuO2vcddHW3pozaKEuA1k7GzmPeNeSQa/nD+3hbwMhP98A2O2GrKTdXotOwkAWbiPPxha5bkg4yPX5fN4cPgJ/kN0O5noe+RSCqicncjab1Xq9Hhyd1nNqmJc3NzcNCKIvcleK5zykWY5Rr/Sc4efWaa94zuEsQzbuyq78IRTbAGyKd/7bTvScU3ZuswOuaqsDwN3shKzaZtniuB0cHNTh4WHTsxTqWCwWbTdTVQ12MTnQSaAAfQbuB8/Y7tuhpQ15dJOdROOVDLKgtwl4oj/QY/gY9J0Ex6qtzUXHs6OVY2Fns1nzWdD9HKc7mUzaUbjuk/0NsBP9cjKNCRx2ezHm3vnZO2UFuTP+ieE4Zca+hwN7uesUm+R68sjLdL4ZJ89F41GTi4kvHGQ1BumVxFWj0eeva8jnM1bZR9+DTHvPYSx8nROLKE7OJNDptprom0wmg7nEfciFOWgiIzEjn+WcsAyqqpE8iQtyvpsw8TN8xFr6WD3sn3opd6YaF1IHJYlPfrttjLfnSPqunuOsK+sz5rh5BvQI1yE3CHbvTuLZ6LvxeDw4lo4EB4KnJsJev35dd3d3dXFxMWg7ySokzrntyHGz2TQdA+5zghzH5bre8Xg8OIlnPB4PghHp+1v+louLd1Nk4vqu7Mqu/LCKuQP+r9r6+tjCTHRBb/M5iczGeOZa7OtmENSBybOzs7q+vm6vIkC3ctT3/f19Ownw5OTkM04ZnbhcLluCGaclVH2OkVysV21PM8nN9tgy69lo8yS2i6nLzQ30+Ln09x08SfvsentcnvvW43567ev5JWCM5+yDg8ruDzLuYUXqT9vUk53/T54vcWbKqPfbdbttlkXKJYu5O+rIQCvcTI5vb/w8v92em5ub5svYj8h+ZzuNoZKf9Oc9WXi+M09Z54m5ucZzLsc1OTyug0+zf1I1PKkCXDsajQa4ySefgO3xe0mCw2/66quv6vLysr1ekXfJ047Hx8fPXk0wHj9toss1w5is1+v61a9+Vf/oH/2jlmBGolvGvJAXP7TTnEBu0uM345W7ae1XgGfNtVKv6/sulu9lEJRMyzwWhwnprGsXkwQZQPQ1x8fH9aMf/ah+/OMfD16SyzNQFnboIX54X8ZisWgB0NFo1LLMcTTsULo9vWLHuacQTbJ7N56DWVb6m81mEATIunpGqGfMM/Bn5f6cM+2AYX6fdaTh78kig6oZ7PP/loWDSL7OfXSfHUzkuTaoDoL5GtpJINxjaJKgVxJcOFjlz1FeJol6hpF7rAyTyHGfPBY5pp4bJugsS88lAym3z+SS+2VD1stw95xA2XtueA7z28E/j7ELxs3XWL424tlfjxP1OBCbsuZ3jhd1VH1+rIrneq7fBKk9kEJdJmEsgwQrBhO9eZvBPoy++5Rzwc/yPLJs/XwTg1zn9lMyk5956WCix4rPM5nl/v6+6WvrIa7h+ZkRSgCUe6u275Fze/gx+ZXr0wFazz+eT4DC88jOF4lA1Ml3EK6QYQRNZ7NZA1YJXJKYvbm5qdPT0xqPx+0dpB5n9xE7PZvN6vLy8rMd2i45V9yG37ZYv/vo813ZlT+UkrYmdWsvSGTdMRqNWlKF34fC/zjC2CY/j/XNO0B9lDe648OHD3V1ddWCZNa/EGHGpxxlW7Ul+WkDdsB6xceEV9WAWMOZc31+ZzcJkCbi7BhTn/USTrRJtvH4KRDJcekEQhwkhsQ7OTlpQQ/uZYds4hzGh6Ap762GjMMvqap2bBv2leAGP5aJsRNBDmMPJ1fyf77r08V2kjb38HNVfearUaftvIOkiQ9STr3/javSn/BaME4wvvVzjGm9xrgvcbpJSWOqxCaUJBRcP/PPuNi+EHPe+Cjxb89/MR6gX15XBPLzyOBMHnASAzg434vG3/lZz89xv4yBkXOPBKQuYwH329e7Xs+pJG/Tl+E73tvkezy+9rPW63UjqUjuYP2aqESeBwcHTd+iD9mhNJlM6u///b9fR0dH9eHDhwG/4HVWVZ+tTb+H1GN8fX3dkuo8R7zO2HE/Go0Gp4rwPf0myOxXJ9B2kl5Svulz7squ7Mp3o/xdrEnbp+Q18TXRNw6E2mahW9M+oNfADpmE69P+FotFVQ1P+NpsNvXmzZv2DlAHJ/1uerCjXz+QHMaX+F1zMuarbG8Sx+fxuMl7ZDFXhY3v2VxjIfPixjZpV5MXTfub/U5bnZw2n9Ev993f5fXmOCy3Hp+X883Xp/1JDtR9yD4l3sq/aa+xY8on8ShtYozcxmx/bm7iugyyG/ch5+Ro3XZjLLgo5lCuuV5/3cac1+bE7bP5+a6XYF+OAXPWnJyfk3KEpyMQmBwr2CsDp8Y7juNUPekFfDBOR6l6Svp98+ZNTafTurq6Gqw5XhGFHEi8Xa1WdXl52QLQPf24t7dXp6endXFxUW/evGnyY4zdNr+SzwmPlrWfYf/A8yEDnvZf7Dd8yTf7uyopo9+2fC+DoBgwMn+sHJiYLp78VcNjcFEGDOje3l69fv26/n/23jzI1qwq817nnMwz53DHqmIoJgfALsZqQBFREKXbgDYso0EbA0KlBQcaxFZbPgSxoYVGZFBbcCQEOwzFlsYZFApBFBEZWiAAsagq8N66Y97MPENmnnO+PzKenb/3yX2yblEF1L21V0RGZr7DHtZee61nrbX3fo8cORIrKysxnU5jPB6nYIYHxJeXl2M22zui5sKFC2l1EVcRu/HxAJLK44R1x1pEZ0xtkqNBpyuX4KHikTHn0biuXN3oubGYl5j1QAOvkR85cuXMozK9TPFUZTLQw/JyPHXHVcpD9/nD4JAbZjeCvCaHVbLlO/yUKHBFkTOkXE1OoMIkoPjq7fHxkMJkwImJF46PBxo0XzjnOCauDN2oe9CBwRvyxsGIyMvXuCn55oBMxp1ziAEmksuOy6z4o3ZK3xB0u3xzxzHHhAZfMs45we/Jci6zXxp7jgeBli8WkAwRYLBOtd1Xq9fr9Yq+ULJQ/KCDoudVn/qWA3e+g8bngeTcASqv+Q4FkYLELuNcbcVdKTxujvNL7SSYVgBS/Nre3k4rSMUPjieBggLkPLowIioAk6tYeWSd62glKPr9fpIp1cGjPSi74guPyGu1WnH48OFYX1+vHOvo4Fr9k9zUarW0e0E84tzd2dmJbrebVtBxTlGeybOLpXmgh/rDj8svVOhyJzp8tI+at8LHblciIh2p6IGOiEi7GhuNRjoek44hv6HX7XbTAgl9GmJnZyfOnz8fZ8+ejYjq9w6FQUX6Tqj0DVcAcwFirba7cl9Op1bDTqfTSgJSdno4HO7b9Tab7R2hxiNntbuAeNSxl44MVd+5c1P90zNq4+rqavT7/RScY3KJR2By95dwjRZaMhlFrKnytEtL+ltJFOIjknhKvCCe0U6obwxG0ueQTNA/oNOvdub8DJUtIoZzHymH3/keif879nSfi/iFdbIe1e9JL287fQ0SMZOIWI3+DN8nvpf8MQhIPvt80XXJCL8VTuysd1m2nhmNRhX5UTtkY1WOgkvkk8uFcK3+5+5DzT0Gldn+3NiybD3LZ+jHeQDN+Z0rj7LAowXl2xEPMqglP1v4kvc1xzc3N2M8Hsd4PE4LO9RWLZxQGcJbrVYr2u129Hq9aLVacfLkySSDwuZaKEFfudvtRr/frySmRTs7OzEYDKLb7Ua73a4cbyxeaKylA7rdbop1uD8qXmkBeb1eTwvtIqqnrOT0QqFChe4cdJ/73CduvPHG2+VLUX/TH9X/eoa6m4kJ6mLhWNo/lqOyeVKGsJV8ZB5FKR2uuldXV9MpgFqcRhtPexIRFUypZxy/OA6hbiX+8dgfk03U14wv8VkmJsk7xxO0ebk63VbS1pL0DPEPY1Te55yN9hhALs4q4mkwetbbxMQscfg8Iqa8NSzp+MH5c1BZOZ47biYP5pWfKzeHBTnmjlvZ1pzdZZv4jGNh4ji23+XF+ZaTp1w7XG6cb94mn1d8jpsVuHOcCXeVw8Vaus9FpbreaDSSD9jtdhPOq9frKT4XsbsotdfrRbfbjZMnT6ZkqU5gY9tzcUiVEbE7Bw4fPhyrq6tx7ty59N1ixueoiyL2FgMzwevj7aT+a266b8G4H/Ec+8NrXyxaWFiIq6+++gt79w5uy5eE5ETxfwXhuaqYhjbnEOo9KtNutxtXXnllHDt2LAV9GBBWuaqPH8leX1+Pz3/+8zEajdKRYr7CQJNDTicVnJQNjZocS7XPE3MKcGkikyc5x5yKUn9ztxKD9XJ6fEL5s74Cg0qFSpltFx/d8HtAgcqPq08IikgHKWC1neMuB1PkbVF7aIh9xRHHj8RVx3JiFXwgT/h9KTmNNKJupGgk1Qfxmv8f5FCKr67kvR6ONQ2JZINzT+S8ICDhuDJQqPvsM4MBeka/ue2eoJjBUSpePc/7nhxjIIpBWRpS8kH9IFjkeM1bya/281x2BoFIMnqsR+Ol/rseIwgWYOTKdCbKKKM+XgxmTCaTtDuF+oNgizJMY6z7cjb0v68G1zj57g+WQxDKoA91kcaWDhtXiuq6AtcKGrn8qw4ZfQEa8UdBQT1D56rR2Nspo1WiXOygnVSsS+1RElIr7mXrlLjUvGfyYTgcRrfbrQQy6ThIdmQf9a0vHtesIzC1Ok1luc3R8UG5MaZsb25uxnQ6TXLDpKza4kcB5hYn5GyTZEH18jldcwBZqNBdjdypJhYV5RxcYdeISBhYOkUJUM1/d3Jns91k4mAwSN+gHo/Hsba2FufPn4+IPT1NHavrDDqxXMeZsvdK+DF5yTqk82q1WsJf0ntM8imwL51K+yScLV3OxT1q73A4TO1XEkEJBR1zq+v8jiLLc8fR+zebVRf6qQy1X2PnySL1VcfkqgyNqewRdanKVXlMhPqY++IqypaeZxkeSFE5HigVZvTgigeOvByX7VzQiv1wnO84j+TYMmeHHK/pPnEmsavezeFJ4mfNC4275qawGIO+ek84hH4k20LeC38Jm2gRgAcc3Y9jsMRxMxOj9Cm5Ml1jpzI5vySLxITiO39YJ/Gp+ED+cOwdx7ocOS53uSFv+KwH3ujnafw153U82XS6dzwt5z/nKNuxuLgYV111VUREnD9/vuI7EmtNJpO0o8lllotkRqNRDIfDdES3/GOu/pfPNJlMEo5UUlv+hhax6AQALkZUv7iLwMexUKFCdx6ST3h7iHaOZXGxNXWA7JMwlfSG9K38Yy68ZV2yRfxuqJ4RJqzX69Hr9WI4HCa93u/349ixY7G0tLQPd/jCXy1IYywuooqfPfaomADjmNKdIiZnHJN4/JNJQeISxgOJ1xj7jsgvQHf8KJ7SbnidjCEydqDyaE/d/yB29DaTH14esaBoni3RCTOsax6GYFnOg4PiDd7XXAzRr+d++3vEseSTL1gjruNJYxHVT+OpLPZB1x3but/IcRAOIP5njJ1jnOOp95vl5vilOeG6hHPCE298Tu0VFnVsSN1Dv096RjKkZ8h/xcMVw5/NZpXFrMKxSkT2+/3Y2NiICxcuxNmzZ6Ne3ztZTX6m/qYfGxGxvLwcR48eTX7qqVOnYnl5ORqNRsLNXETIRWnyGXif/qbmHzfmcCEbY+gi8cb9ui8V1Wq1GAwGX9C7l2QSNGfwIiIFnkk55e7Ki99JO3bsWBw+fDitwFxfX4+NjY2I2A3iartyq9VKuz9Ho1GcPXs2zp8/H+vr60kQmfhhIIYBZVe+XOEr54WGPxfIyhl/XXeHXIFnKlY3IAwwePkHEftH51Z/UwlpvDyAMs845kCS/88+sd25dzUuBCZU2lQGfIdKm8EJT6zp2VygQ8TV/5QVBgjcKFLBe7k0bjkg4POARjG3qox9oCw6+HDDQbk6KPjEYFBuXjpQ0bgcFECTDtAxU14Gd1ZE7O3AJLBwnaH2CazzGV6bJ3PkCxOQ8+YtyQOC4pMMo3YUunwxoKlxVYJNOjK3YIR18jp1FXlKMOoyo/L8O0rsiwefNMbalemLSDiWrI9jJsdJvOI4kdfkN8Ecj7mRjGheaCW7QBHHRm1Q0Fq/R6NROg6bdoDBXdd7vguCyTyCDX5rajgcJueLRwUJuIlXTG7w/+l09zgOfSuFzpKCoVx9S1nw9nFlmPhHfc/xEFH/uTPHceJv/5v/U0cVKnRXIZd3tzeOzaQvGfTWM5rLEfu/xaR57N9Xns12A+v9fj8ajUaMRqM4d+5cnDlzJrVJOkfH0frCNyUB1B863sSP0vMMOM1ms4qjp2vU4ww4cbcpdbOSR7Q/Cjhpx6UWjXCVrd5dXV2N1dXV6PV6ld2bdIbVH46Zn2TD4ILek9+i+tQ+tYtHRjFYV6vVKuPHfhKD63/uVCVGpo33hYP8W3X6YhS2OYf7Zbu44JD4RPUwIOKYSu/lcBXHkzZlXj9ydodYJ5cAjqgutiU+4dyb52fRd/P5q7YQK9Am06+hr8I2OAZyvK4gm7AOfVDNFw/ECZ+zrQzKaKej2qbydTy05jTbzDooE2yP6nIZdUzq4+l8I1/pn6ieHMaljnBZo19BnUs/oF6vV759XK/vLjThUeQiBfQ5Hv1+P+5+97tHq9WKU6dOJazGgLy+VcdxURJB8qnnFVjjomPaAR51u7i4mHaD+tFt8nfcl3aZ4djppyxeK1TozkMnTpy4Q8pxW+e+muY9F7I7NvC/GceiXt7e3k56jzZI9ky+vBZ86NSiK6+8Mp3wR32uxWpcXMQT/WijqXvZVj0jW1Cv19OCOMYyIiKLKXLJMMbv3PZ7wpN4i2WpzbLhjGlFVHe4un2XzqYtUZsYpyReY73EcyJu3uH76gP7o2dyciJee99F7lsQCzhO0PPe/lwf5r3vuNLvEftybnBsyRMuHHeMw1iKxpZlkE+Or2nDec2ve/xN/GZsnfwi33wciddYnuczyC/VTT+BsVrWKQxD35Kxesco8h+JmzWn6vV6wrLE5/IPFZeVr8gNG8od6XMpw+EwFhcX4+TJkyn2qAWrEVHxWYXbVldXYzLZ+45oRMTa2locPnx4X2xMvNAJSYPBIDqdTmU+uH8gfjMfpb+pL1zuXJ7n3bujaXt7+wu2UZdkEjRiP4Pp3HtCR8QJzMmkYM/y8nLc7W53i2azmVZj6vgvld/tdpNT0W634+zZs3HixIk4e/bsPmDPFQdSSBHVHS1cwZ1zwnXf287Jrfusg8pLk8cNEY3kvCSe+HaQkaCioMIVaBCPWYcbNtblq309UCHKJWb4nq7lVg/nFDaP/8mVk5Mj1u8/fF71SZlIIZMf6g8/PM2ACY+wkmLLOfhsoxNlkO3kXPFg0ryVU1T+uSBUzrBK1jj+ekeJE9XpIJTzRmWqTQwoMqhIPeH9UBnkmY8fQRINgspjkITzj+96Qo71Oy+dfJyUAFXiXH0mryg7KkMyx7nKMaA86R32RWDL73EMqTcIhgms+bwDHukSOhs5XqlegnKNOUEh20PgLr0nx0hghQsAFJhS+5gs13gyOaBkJO1QrVZLIEcJXTk8sgsCI+yfksYCbr56X331nUrT6e4KfIEn8V1yQkeQ/NVuA7VxeXk5HY3GpK0cSwXJxKd6vZ7spMaSx20QhGkn2DyiTIjcDvGnUKFCVaJulV2WDnRdHFG1p26jdV9BH+6WpA5mmVp0sby8HKPRKE6dOhWnT5/eh1O4oCSiulvfbb/aJzumOhWIkp4k5lP7uKKWR+b7riraHjq3vV4vJRwj9hZ5MOHS6XQqyc7l5eWUAKXDSZtIDLqzs5PK98VWcqplW8QjtV98YaKTwSbpd9Yv/nFhjmwWeUsbwvHwQI1jKH9+Ho6nnIoYRNP/bDefpc3WvVxwSc/k/KAcZvYAoNfrWMTbwGSOYwsS8bsCFs4P9ssDjo653LfiXKZfzAQf7SrbRbyX0wucS+7HMFCiMriyXG1X2Tw+V89zEQPrp4xTX+R4676CB5Y5jiIGlDn+1J0iDw66/DH4yDFhME1zUMfKqt2TySRGo1FlQZmSpZPJJNrtdrrW7XbjyJEjMZ1O4+zZswl/SQY1TtpNyt3d0+m04j/p0w6a/9xJpbYQg+m7qIw5qGwtPGE8gDqQu335U5KghQpdnpSL/fmPL5gVppTdkh6jX0q/2WNTfoyv9KaOFl9aWoqNjY1YXV2Nbrebdkw5DiCuoQ3y+IKeZ/JDek24Sz+OpeYtqKKt9aSm6nPsTyzh8UrZabfjnnh2jOHxYbXDE6LOC/GdcTtd83u6T5vp9Tlv/LrjG49HeoyBvMnxnu86bnR5zrWR48UFl86reZiUcTXHh84XPefxQ97z9zx+myMfP9p8xnuY22CbONbsA/Et+0qe6zrvR0Rl3jNOR79SukSLY8lz9ns6nc71EYkLuUiMbVebhXm4EEPj0Wg00saVbrdbWQB84sSJ1EbhL8/fXHHFFbG0tBSDwSA2Nzej2+3Gzs5OnDhxItrtdnQ6nZTopdxGRPrsQq/X2xcrpY/AeUh/WDqN/oNvaJgnm3dWuiSToDkHUcqZq619FYq/r2sKoFxxxRWxsrISERHD4TDtlFHZDHS0Wq0YjUZx+vTpOH36dAoCM2igHzrB7hDxekR1p1vOMSUxkBJRPSZQ/RY4kOLjB7xJWt3JcjT5aEToeOpZKQQ6eOQzjSuTQW7kcruMfBLnHFg3+gcZSOeVr0h3R36eUSAPqDwIIrxtVBgerBAYoeyyv+4k+ooqtVk/6pue13Z2PU+FzJ0GuSS3FDEVvY+DAxgCOrbP36HSdSDo55bTmHEMJOM5g+x9dVlSQIErzf03QbWuae4SbHBuU/b9Peom51FOT5EcFLDdrIc7GakHZZznJRh9rHIgkgE9f5/znPOIgZNb6yNlmAAh9w7nqeaQ7vNd1uuLCHL6gjudNEaqz50JgRzWrb91LJgC3aPRqLIbQvNS9TIoJbukOak267ru6egNJiIVnKrV9o6AFE0mk5TgVbule5UQ5nfuHCByB6nkTG3U+257xVNSTrc6GGa7qd8cRBcqVKhKmiN0niOqjh93nMv5U7LTkyb1ej19Q8mdn4WFhYQhuVN9e3s7zp49m47QphMo/SHbzfmdW5RD51QOrXCJH3OrtuvkFsfcPBaL+lKJUvWH2EnJTy7W0rc+9Z09feuz3W7HyspKpW+si8eMKuFI2+qOqXwb9oWLGfX9U/cjlMQgPqc9pd9Ep179172IqDjWtPWUN5UpOWM94oHjVr1LDCIZoKzSP6G/QF7Mswk+D8Q392/YB9oulsE+ziN+z4eLlVQPT+9QW2Rr6SOIJx5ocN9I45tbBKhndY07iT0ARF9VCUf5jY6ViI2UgJeu0FzluLDfGgf6k+STiEEtjZd0h348KE295gFdL0ttqNX2ErH05XJBMp9D83C6jxfbwrZqjiloxu/BK8EoncnyJaM6flsLtBcWFmJtbS3phE6nE81mM31HlDIt7EhdqBNFVFbE/iCz5ES6VDsfmNTU80qijkajJE+SD8eI1BmFChW6fMjtvf8mpuCiZsaXqKd8Vzxji/Kh+VmDiKrNItZYWVmJpaWldGQ442W0JRGRfG/GmomdPOYTUU1ACmNTl857z203/9d7bgOdt+ovYzuOv/Su3vM4TS5O4u/5WPMeMSHrmZe4FV+ImUWe3MnFHTVuxKfEGl5mLv6Wi1PxPX/WsaPbe48L5u6RT/w/V5cnQ51/Pv4Re/Lv/KPPxPI47t5vlwmPfxJf0S9h/JD9dh/VcZXz46C+s7/C1ipX1xzf67744RgxF6POlcXPEGieK7amGL82ROhzMUeOHEm+4mc/+9l0qobHtI8dOxZHjhxJ/en1epWyT5w4Efe5z30qC4LZJ57wxuvaIes6mP4A5Yf3KIs53XNnj9NdkklQkSsVd+4PcopdQFZWVuLw4cOV76/JgZ3NZnH48OG0w2dhYSHW19fjxhtvjJMnTyZBVnk0VBIoV4juTNKpVdIppwhyPMgponl8cEU3j7ytrmT4HJWufrjz0xN2eo8BIk4kjQknsidt2FcHCLl25XjlvPXVOWqL18tkLsfWeZYDenQ4mYwhgKPCJqhzg07SM35N7SUAk1yTx25QcryjcfMAlwMaN7okAlmVrZV+OkNd7XNDzBU1lBeV4fIhMMx+MJDHcth31klDyHFQPykjXCXD46MYNOBcoDHKEROt7Bf76gk9JY9d1h1Qq98y1ATWDEy5fHM+Uz6pYzyA7uDP556DPwa73aC6vlGdaq+3i07KdDpNyTjJmAcNOafH43E6ypbfAlBbyX/OC34/leUqMau2K3FJvT8cDvfpDgUk9bfK5pgqgMb5J0dROpnyod0EtVr1uypaAdvpdGJjY6NyjCSPbIuIiqxNp9O0u4u20x1EjRdXyaqvqoeLLiQ/rt9zzo/u3dmBV6FCX2yifqQtoH7e2dmpfHfakxLT6e7ucq1oVbLRE1qu/6fTaZw+fTq2trbS4g8uSqE+UZmqT/pWOo/6S+1yO+C6eGFhIe3CVDCMbVQiUzibeoiJYWIw6c6ISAmFfr8fnU4nrehVAlRHAUtPqd8MzCgYNplUv3klnMDFMjzmPBcsUXJU7VbShEfZOmaUTavX93aI6VnHI7VaNajEJCttlQeZFCRguxhMoJ7mc5Ix2UQPllCGiEf0vlMO03uZDND4jsx5/s884pyQXSNvfO6wP7THPG7PcRT9BQaxuGCLCxYcz7IM+mzkjRJbxK7C1JRHJr8YQCHvNR9UPpOe4od2LBM3EueobgbKI/YW8apP3CnEuUJ5YXvFM/HK577jUQ/KUo7mYZEcXhZ24xyt1fa+OSfdpbYp2SgfQMkAzkMlNt1v4NzOzSXiRp42M8+nZtyi2+2mE0/0bMReYlvtUJvFd8YnVNfFzrFChQpdmiQd6HpXWFQ2pdFopO+oU48yiUibxVNKpP88BqV7wiKTySRWV1ej3W6nBSjCAkywRlRPMXCbFlHdBa96+KkE2U2Rxy5zdoXPuu0mUZfm4pHiFXEB25x7j/zyuBH5SXzpOtyTtW4T2X7HtbS1HqPy9uXic/pxfuVii4xD6H+V6/Er4je2y4lj4nUTv+h98o5tU7uIT3KxVbaffWLdKlv+iuOw3LN+j/EX8sbxNWWW489y2Ub+n8NUzo957ZK8cSx1jX1Xu+nTCjcyyUei3uC8Uv/cJxaP5WtpEZ8WpgkTNRqNuP/97x/NZjM+/elPV2Li8iuPHj2aPvXGbyILEw+HwxgMBrG0tBRbW1uVxbxKgFLGOCeYb1Gf6Nt5TJk+t+dwqCPu7LG4SzYJKoGTc8YPUecC2xwInf9er9fTSvSjR4/GyspKEkh+p3FlZSVWVlYqK6pvvvnmuPHGG5PA04FzR0GTjYH42WyWguqe8Y+oCmDuOFeuEvckhZMrCw+66z5X/Mv5Uts4cWhovd36W31XEJ4KhiBAzqsntTS2PPpIdbsMsF4pGQIRyQOPUWOfecRYRHWXKBWpnlf/GIxz8OHKm4aPRpoBHgW9WIcbdB9XgoGcA6kyyGcpZg9Ykc/i+2QySStbfKxyCQrygHWx73SgOd6ucFmHDL52IxCAsi69KznQHBGo1bx2AEH5UtkeXOIOEPGLIJkAjMk2BZEJEDgHHARw7MQnGltP9or3fJZBGwYL/UgyORvsg+rWcwpQc/5Td7AdlCHJtwACd6eKh5QR1z/623ezU1415i6DnBc0zPqfemlxcTGGw2ElMEPZlL1wefDxrtVq++STCX/+rfYp4C8ec4U82y89JP3JoCN3KAlwKQmr8VGyk3zX/5on1IG12m7gXd9mdcdjMBhEt9uNxcXFGI1GUa/X07NM9GpVLXWO+JazWwz4ksfkH+UnZ+PdSbmzg7BChe5I4lzw38QwxIOyVcTNwp1ynjqdTsI9SkYIF/jxs8PhMC5cuBDj8TiWl5djY2Mj6Rie8EBHUytjib/Ybre1s9nuIhLtWNKx5Dwal0mgTqcTw+EwIvYWy8i2yE7KaZSu17GQspGtVit6vV76JIZsjnZNrqysVPSqnFV+b1X6UP3UAkr1Uzs+qXP5rVHqftkT2UclP1WudK70IBNDqkfYk/4Tkyq0p1zAQ2yq5/iM7nOR6EGBItXt+poL4ogXc8TnVLbbAPfPJGt61heVOQ+83ewrKdcnTxDmnqf863/iMecFg1VcZOB21bEWx1k/GrvNzc2EebQLVH2hf6d32A7ZdWEa4kTOFZ+fvEY9QTzPoJ37nsSOkhv6nO6jkNznYiDPZT3n/+pZ4lgnxzruK3IHvvAUy9f8n81mMRgM9vl+0l86zYq6QEE37mQX9hdJNwlfajeCFr6pzZQt8bjdbqfvmDIJq/HS+HJsKLN8h3GSQoUKXT7ktp361K9Tr8tGOG4VcXFVzv5LD9H+Sif1er1YWlqKVqsV586dq8Rq6LszRubxJ9pPtoM2yhcB0Udlv/U/f+eusQzGTp0PbsOIF9zvZ7+J/+ZhKJaVK9sxYa6vOWzl19gW4qlcuzyR6Ek5kbeVbWKyljE/lcH7OR46DxxPepzJ2+EJJ/LE4+RuKx33cXGdfjMpyfyDl5HjZ26MiK3Uft6T3+hj4v3m+Dp/c36tzxGfF35NfXHsSBlleZ5Y533ynfFjtVW8zyVNdV96SCcs1Wq1uPrqq2N7ezs++9nPxnA4jGazGb1eL+52t7vFzs5O8mG1wFfjKTp9+nR0u92E1ZrNZmxtbcVwOKz4CGoHfXDynCc6qV9cxMYd9oy/537uzHTJJkFdufA4J1ecEfnkYcSu87OyshLHjx+PiEgCJuEQcJ9Op5WA9YkTJ9LRsgwgaUU3FYMHF9ge/9vbzSQlJ3HOcHBS6jkFR6g8cyujfPJHRErqMuikvpHP7C8nGf/mztac0vSxEa/0HI+aJDjR/yqD9cgJ5yphlZfjwbyxoPJ2Jc/rHghgeZ785G/yj4nXnPEk0bgwwUL5zyWJ/XiPXOLLAQz5TiNCI0A50TEknBtStAxmEtzmDLwr0dzcJjG5lwMdlB0GO5xoxHOJXvLWZZkJQh6NwKAWV1H7nJ4XKHMQkJMJl0vyysEHAQZ5onkj3aUfJh/VH84j6jvVyQUcCoYosMaEotqucjxoxzkuXlNmOJaun+bNbYLjVqtV6QsDr0pscp4w0SmZXlxcTEFqfa+pXt89QnIymVSCWjp+wmXfF3vQeeCiCwYFnQ+SH8re0tJSZaeH+KGdo7JlnU4nJdoVOBuNRmlVmea1yldQjfNNgTG1hXM1B6hdXuetcLytRD1QqNBdhXJBAf1NexgRaZGCEnwKFuk56S46dRF7AQHZfeqh4XAYZ8+eTd+m0zGxa2trlfbV67s7iERu74jxuDtTtrHdbic9PBwOY3FxMSU6ueu9VqulHeoRe0lHP1Y8IpL+JvZQHxToX11dTZhS/VbCUQnP2WxW2V0ZEWm3pr7Z7HpT+ljlEvsreSSMy90PtdrekZN0uMVDJj45bs1mMy0A5IkgHjRw26J6PWjgRH9E9jlnC2gjqK+JVSgbXBDDhUmUF8o96+TCSfJ9nl/iOJd9zWFMPsOy5yV0VI/6oT6xPPfBRL4wi0FZPwZQfWFCi36wFi9pARUX7qktet59ACXfKB/EzOSH40/uQPTAWI64E5N1aS7rGfVXc0EyztOHWJ+ueVvYB9VNX8+DfRH505aIm32cXV+3Wq20uExjyMWxmu8LCwspUUnMruNxr7jiihiPx6kMfQOPuJTznDvw9T/1A+VN5UkmGo3dzwWtr6+nfnAXqPu05AkDufN83UKFCl365DrAYywek4rYf0y6dC+xieK/tGe0nyyP/nqz2YylpaWECXWiB5MWXEjG764TS7FvtHVqE/Er/fycvnM8In1NTKdrKpP3ydOcT+12j3gmh8OIZZyfbAPjIiJfEMd7rMtxofPDY8xelsfP2C/yiPE2luFxAuI+YiD9ZhxQtouxHOJoH0vylGPKdntsjm30uMk8Yn1qG/vMax6bd57leOXtc1mbh4uF+9wvdZn2vrCdXDTnuoOYhrFGx+MuT47n6CuImMhkrF5jybid2sj+SBfI99NmBZWztLSU3mm323HTTTdFRMSxY8cSH7RZSjKn69PpNJ0it7m5Gf1+P2az3c9eXLhwIbVTOswXHTImrXglsRnxnHQYE6XzfKQ7O12SSVAqu4hIA8uVNgoS674GW8KmgW00GnHs2LHodruVj+YqCKHn19fXo9vtRq/XizNnzqSV7ZwEuWSR2st2u0Pok1PGM+fU55yznCPvRNBAh0Nleb2sI8fvnDJxcMJjNt0BdsWZM25Uou5kR1QTXlIGXHmhcaSi0E/uiFLxiUBNQTDdU3touMlvJiGk8KQgqRTZX/E+N77kcy6Q4oCGW+NzQIVEoOaJN/HMd2/NC1bR6c3JLw2T6vZr6ieBpZMDG9U7D7yRGMSlzOeIBp6rZGgoOZY0DBFVg0CZ4o6TeeBzHmDkPW+rvxsRFV2m9vnOEN13XcCPjbsB1/tcSJJrG+eUQA+/Gyde6HgH7UpR3QSJLJ9tYCBO77junQey1QeCXOl9tUuJPwXc/ftwKkc7aRQwV3nkmYKM1DsK0kve5IxRt9Tr9fSxcwb4cjpR7ZbMCQA2m810moGeE7BR4F+JT/FauqTX66VjLf3kALVTq8wcEGmcmRjg3KbOcRCak+lChQrdOtGWyg5QZ0fs2WnqUO7sUeBG79EeSf91Op3KLsdarRZra2tx7ty5GAwGlfIuXLiQyiNJ91Afy0ZG7F+kJVwuO0UcKJ0svSrdTX9A7WdihAkUHQGqnZL1ej2WlpZieXk5Bc6oo7rdbipLO0TpG0jv6XmessJgQMTeYrJc4pI8ziUgOZYepFCZuqcEKJO08/yNXBCDOx48GOI7NsRvXyjndXJxHPtEeSXed+dd/HQ5JxErsa05v4okfhBbOn71eiiTHoRl4tYXgvF0GNXFNmneMknp7eB4E5f76R069nRzc7OCL8R72njygjhA5XCxmnilbwFTjj1Q6v4n65DckOdqI7GK+JVb5e7BNbWVQXP2LYe7eZ/9cznivPMyiZmYAPT6VT6//+vfb9W7/BayypeO2NnZSceiqS+DwSBhRu54kn5UWfp+p/AsdTGfVd91XFu73U7fIiU+9aQG9Yr7O/NiGIUKFbr0yW1wRHXhPf1xkfSfbzJhQooYUv41/UmekCR7tLS0lE70ECbTwsCI6mkDjGs5viFGJm7jJhQ9JxtPXT/PxyUv9C5tqcqU7dN95yV16kFYRzqb9pT1MqZD8o0THn/J2VTX98RMuq7nvb+87u0i/zn+bBvbr3LmxfAcs0bs2Xu3XYzzEhtwbHJ94niRP7lkHeXC42CKhXo8lHkKtZe8ciw7m80qfkFubD05KmK7+T6fE681p3JxOh9r9ontzPGNcSPhFWIdb5P7MvOwt2SDuNFzSl4G8Y/e4yYZ6piI3YW4Wmh75ZVXxtmzZ9M33rUouV6vp92d2nyh/ozH4zh37lz0+/2EwRUTZO7H55zLCD+bJVkgzmQM0cfH5fTOTJdkEjSimojyYI4mAFdWuNHSM+12Ow4fPhw7OzvpWD93wJUcVQZ+fX19n3LhZM7VlSMXHAYXGAzStZzxYrDC28T+q3xXxHTIPQDBgLt+u/HLgQMFJqj4CVh8AroSdX4RIBA8SBnMS4ZyFQPbm3M8BZJYHwGW/meb3Rjk2u8On6+S0TNumHm0soMKb7cnHJ2ktHyM/duRDFLk+uJALieXrJNzj0lWgVQCiJwCJW/dqLuM+vsuUx5oPEg5+xye1z+Ww7kq3cO++/tcIcQkK2XMA7c+LpzXLF9tl+PAOae2c1V8TibpQLB+5wvf5SIQtnVekEPy498eEl89QEV9xN1JTNSrDge/ufGeJ7t6T6vgpfuZHJZDlRsTP+bc9QFlg9/Yy+l4OVKNRiO63W6MRqNKYlPJSfJdu0x1bWtrK86fPx+1Wi2OHj2avislp49O1WAwSMFSrfRvt9vR7XZjc3OzomfUZj9qSO3XGHCRgt733S45OaE+zwWaCxUqlKecHSQ+i9hLckh/cjcnHR8mGondtKBCicaIiAsXLsSZM2diNBpVjldcWFiIQ4cOxfnz5yv2Xzs0d3Z20pHdSkRG7D9BRLpTbVpcXIylpaXUZjl7PAZSbWk0GrG5uZl2ayq4zySC2rO4uBi9Xi9981O75Hu9XrKtsqNKVihBSn+EPxHVRLMSkOpzrba3S5T43Z1kX/xCW6r/NX50urXwT58OcTyvcuhbEX8Qp9EO0K6LGEzS2HEVtZ6hPNEfURCGuJhlevtzPkTO5ntbHVcT33hQiNiCY8SxYd/8h21w/on34hHxJNvn+MaDspR94nTJm8rSbk+tHNeqb/ZV79GmE9O4n0u/lW30cWZ/9J5wymSy+2kbzSMu2lKZ9B0oM/IH+SkbJTrVLiZq9bz8epXnO25cLn3hCP1vJpHdp6MM6W9PeOtvPUfdrMW47OfCwkKMx+PodDppYYoHrjQuHA/xmt+VYvBOOwF0hC51mvji8sLx0oI5nSCidxcXF1M8xWMDlONChQpdnkT7St1N3Oe2Vz/65AHLYUxJJB9Y+oT6Rc/Jr+WCIvn9/JvtJt4gnqbuEhb00zVoJxi7jtgfY2LcgO9wQZCe9/jSxeAekcf/9DuHV7xe+gPU5cRr7jM4jnFMoL99MRN5QfJ4IGOYtKN8xnlC/8LHx593G8762BfuVKRs6hpPgeGzXg/55W0iNnMiviSPHF/Mw7rOf39X//tGEJeleeQxHvGJ8uz1O/FZtklznDKgjQ05+Wcf5sVrKdOO6dgG3uOpK8JfXp6wp+RBi/663W4sLy/H1tZWdDqdGI/Hsb6+ntpP3E/ZEzZcX1+PwWAQzWYzNjc3K3zhomieoCJ8LNICRo/RaaxVnzDnxcTz74x0SSZBncE+gT14z2doMHd2dmJlZSV9fydib1IoMCMFpRXh4/G4kqiMqH4/Ue8yIcAMOw2mghl0LGi01W4qcPXPV4rTWc5NfDqFNKi+ytb5pZ8cTz3Q4+/mksIMcHDC5RS8KyyVo4msJI6IxoRGk8qPjqzXy3coD2oP/2c7c/Loq7vVToG8nCFi8EkKSskO/94s+cbE2zwnkv31BJ0fy8bkck4m5LjPc/45JmoTV1dJNtkele8Ag0BKY8z5zuSuGy0PWuQMppPaQ4NM8JwL6HAcfSeCwLXqdrnXewy0MLDGv30ezgO7DFhQ70jvqSwGczxQJ93EICjHkIEwXVMffIzYR/4fEZVvfWqsxEeuQNczlE1PuFHu1R/uKvV2UMYVNFKZ+jsH7lU37Qh3PKhNWp3Fo3lUp+Y3g1a0N+Ixj13sdrvRarXScY++WlX9FpBiwlbfkNKOUK3Y1y6uiKh8H0pBSI1pv99PSVEloNmndrsdg8Ggwh+1R/yg3qVs63nKR84JKVSo0MURMSXthfSs7JnjCibepHeWlpaSHmw0GmmhhN5rNpvpe57r6+uxubmZdvfzGyL9fj/G4/G+3UjSFdJn0j2OQYg7Op1O+iZxq9VK3x+V4ydSv1SP9LraL72tsoW1dOpLr9dLiYB+v5+SEp1OJ/Gy1WolH0JJUZHq4wpxT1xFRPrutDvKPG6XfXK8Va/XK7stmbBQEtqT3bSX7uQzQKP7tLG0/ZID2vAc9s9hSRHxsDv1ql+yzMAj8Q15x7rciXd/hc8wGOX9nof9POCm8jTmTmqD5JB1+akdHqQib92nVBkMuHAeRezOAyU/hW+ET9RXLiSV7DBAIx74wldi8tz3hCg/ek+Yg/iXfjXHXvzSc5QNyWrOn1DbOJfcV6Qss076bi7Ljnd5j1iZvlXON9M7nBNaKCG94vhdi0v8UyjSI71eL42FFsotLi7GkSNHYjgcxnA4TG0k5tTCOCUbhCd1TCTHl/yin9psNpO+Vbso59KPwsYqh/3U/ChUqNDlQwfFXKQDpVNziSzGUTymQNstn1y7PH2XqI7Bpd6RftZCN8YxtIjMv4/MeC4XG8n39ueo44kh1A7GDRnTov2g7XHsLjooiZmLm/NZ1e31euwk95732a/l4m66xlMqiKu8D44DRbln+T/9mhxvVIbzinzO8Z5y62Xxd0Q1XikiruBvb8e8Ps0ba/bH288x0rxwvO79cPI5wnZyrnp5jGPSz/BcCNvosSG2wX/T52SZmvvMB1CG1G7GPDneHCvxivE94mKRFt8SE0vWI/YWp+pd5TQYX11ZWYn73ve+ceONN8b58+crZWrctra2Kp+Hmc1mcebMmVhZWUm6TyfbqR/qE3klPghfa3yE54jDI6qbkOb93Nnpkk2CUhgZLPfkiIgKVIPZbDZjdXU1rUxkokjPyFHTkYESwF6vl459oQGksqKxk4J3J88VPSclnbOc4aUxYLu18pI7DN2RlDFXn3JJVzfydKzVfjfwagdX3ooYvFD73THW2LmScqCkNruDpfr1LL9vxQmp6/x+HfksYvs8QOUBI6+DPHPe0VnXWNEJZPsd+JHn2pGgstUWBqRyvMu1SddUtgdSdE3Ods5g8Fg5GldXiB7AYbtzwQzxSf1gUFb3ZEyZhGE/3CmXQWSikzzzNqs+tVmyo/YQxDGhRoNJY8y2McDh809lMEFHsOELL9RWBmNYt+6zLgXXPLikXX6qNxdQZB+YOKUs6X0mvPQ89SBlgY4EdZd4ohX/ngAluNJvBbJz913GVbdWSTUajWQjqGNlE3T0op7xADWD9wJNekY7MtWOnZ2ddCyw5j4X2WjujcfjlMAU/5k8UF3cJbq1tRUnT56Mra2tWFpaitXV1RiNRuk7TgyCjkajtGNK/PXvpShIJv4qCaqx1g4CzRWNuXaI0Vbn7FwOvNOeUd5JOUemUKG7MtEhd6zCILru66jbiEjfSx4MBhXsoOC4yhsMBrG+vp70m+a69Il2UkpPMEkiJ1HYlDpe+li2o9PppKRgrVaLjY2NiNg7lpELRLRbirZTulB1iw/NZjOuvPLK6Pf7abe89JcSoNK/3W432Vzpd/khtFtKKLB+6jTaYwYV1A/12xNNescDKsQn0pGyC65P+b+IzrEHCDz55oEB9skDH47nHPOzbA/EyA4Tg7qOn3ctZ0c4D7wd5KPqJs5x34UY2cvXfcq5ytA431pQisFgjoNkmtdVh2M+1bO1tRXr6+tJ9tl26gImw2ib6WMTa+cW13kSlHNFfM35VdPpNC228r4xMERsTPlnkMtlnH1SW7hAmX2jf6m2c0GGxoS8Y3vppxDbEIN7ANGxN2WOi/nYDmExjxUwpkG/SfU6/mo0GknPs996Vota9DyPQNP4KdGq56S76dcy6Z3zmUU+XwsVKnTpE/W664DcXKeOFvYS+QIT+drSXdL3WkisWK7wnBZjcBe87JN2X9HfzMUyI6o4zDdmeCwnh0V8Ib+/73/TvuTsv2M6XufzbiP1nJfjuMrHTH2bhyn5DGM1bi9VBsv1crwe9p1Jmxy+pI338fG++33iuHl8dSzLsphkzI2H07yxcRlgfzwOxrFwjEWfwmWCfMvxXpiDOGweD70874Paw3HnWHl/PB+gMlWuJ4SFf4RH1W/pBvc5OEaO08kj4kAueOO4cew9xk5cR79I7RVO0olEERH3vve946abbooLFy5UMLywXKOx+1129eumm26K2WyWTjJi+9xHVSxT8uRxSc1d9lvPMGbv+v1SoEsyCUrnUYKTU/wMPOg9Pa8gj1a5ezJna2urkpWP2B14CaCy7lRquSCFfnvQ1hMKbB8Viyf45jkO4gVXSFE55RJe5CUVt5Mbe16XQlTQhg5vzsA45eplHUxgsT8ca/KRzrX4QaXD5KDqosPpwXgqXFeYbpCYwMwlTNlfKiQv3xOWs9neNxRVdy4hyn6yHtXrSTY//z8XdCAv2F4ZEQY+9L0FkgOTnNyrDpZPvmluigdqC+cbk//6m/z0VcUHARryICe/ueAF56qv+FEw1esS3zwITX7xmvSYZIzP+Oocn9cESOSb16cxZcLQx4E8JBDhN71UT47HchYYXCSQ0LsOqH08PTAl8MBjgKkPxD+uPpdMqh2ab+KdgmVqrww/26ZvIY3H4xTwVuCWfeNqVAEs6h4CDPJbiVYG+KR3qSsZ0PNg9my2dwSeVsIqmTCbzVJiQqBG71LmlBRR2wl81BfNUX37U0E1BucpPyrv1pyBL4Ruz7uFCl1O5FiBjpnbMy1+mM32djkKE0tn8IjEZrOZvkOiHWbSXVy4If20srISZ8+eTQsnfNGI/hdO9+CUsM9oNEq7nKRvarVaOtrTE2PSs/QHInaPRev1enHo0KHodrtJn0fs7ejnkZnSpyxnYWEh7YKahyNp6xlUoP0Vn4if3TarTcR2aqtsGevj90iJEXP+BeUlIlJ/uKBS7c1hKseQahdpHoZmAIFjx/fpX/h155fjScoAxzH3LVIddU9s7P2gjWaSln1ncIV88QAX+0HZkEzoXdlZ4UoP+qhOYY/JZJKww2g0SrKjfjsPRZIp4QPJjPrpiWnNP8ozeSBZJP9VXy7xJwzvckTMKZmcJ2seeNL7/PabMKPrRfojnO+ORVV2Dqfm2sTEtdpI/UufTWNKX8d3SBH3C4dp/FSXgllMlooP7quoz1xcN5vNYjgcRrfbTbpfGJj4WnqYvqnGUTvuKRv0VTk+tEUFvxUqdHlRLt7ksTDXabQb1Leun2mDp9NpOu49Ys+3XVpail6vV9GXxJjT6bRyTLj7rsRmihFzR5d0GWMhxH053MWYA/Wj2sa+inLYwWNRqs/jQB5z8HiX16N+zauf/crpbZabwwi+oJnxi1wMLkeyI3qHcWuPfXmsL2e73Xfw6449WDf7ncMDzm//m+Tzw/Et5cTH1Pt1kOwdNHbe3nkL0HN9d3l2fvk4M2bm9UsGfTzYB8YFhUEo84y/6X3GqFiu5wXYXvKa842+MbGabwxQvdIhPkb8Xmiv10s8uemmm+LcuXPR6/Uqz+hkuYWFhVhbW4uzZ8/G6upqLC8v7+MRFzOrbVrkTJxMH4Obk1QWd4gehMXvzHRJJkEjqpNaQk1BjNh/frMrGQU8aPwE/pkVr9Vq6X8FWPRdnYiqE6e2eIJI9+cFfl05UdgkmLzHAAwdNwZEfLJ58iPHkxyRx5xMBALsj5w1D3rnJkguWJEzEu5AExi5QWUZAjpu3Fm/ywmVm/7PjREVay7opes0RP6NJU8Y5Ywxx1BlSuZ49BqVl4gKksCsXq9XkpYONMiXnDKjLHG1PA2f+qc5xfFjH+cBMCl1zkUaC44Tk2gK0pBk9GiYcmAsB4zIv5wMEPxRVmhoXb4IxHLAk5QDMA72/W/xJAcmOZfc4dBvvieQz+NXHcBy1yJ5z3nB4HiuL/qbgS4Sg0R6h0eKa54rILewsFCRcY27ArsCS7yv33xP5Yk3NPzkIRdcKEkonqltPApMCUPqNI53xK69UaCfjhZ5or7z/dxxZeLtcDiM8+fPR72+e0SlAlvaYSqdOZ1OYzAYVBb86AghBVeZbBCvuELMeZ+zN5zTTvOuFypUaD65g+g40PFgRPV769JhS0tLaU4PBoPo9XqVne3ChRsbG7G2tpbeJZ5gMmY2m8Xy8nLUarU4c+ZM0psKAHnyS/eVzOt2u8lB5O5ynoghx1K6jEkT8qfVasWhQ4fi6NGj0e12Uz3dbjfpeRLtFE+fWVxcjE6nk9rCYJjaQ8xBrEBM5oskGeyQPZOu5wITvqP6xTcPBLldnyc3ntAivnB85zLGRAyxGtvhdbo8MohBYuAkh1kj9px1lUffxJ8lhhA+4Xi5rVVbHacrWJpLXhOvOx7jokDJANvv2FR94g4Z8p5H6ssOM5Cr4Afxi2NenjSi9ukYXe3A1vd7NSZqL/tB+VdfuLhOz1KuxHviKvLR62JZxK2OGdwX0TPETfTdubpedXHHjsr0+UE9O48/fEfPUTd4vxxrE/sqWc+5px+NlWTKA/7j8Tg2NjaSnOgdYXh9N1T80PHj6lPErv+pZ6Wj+QkHHaurReXj8Tjt9BWvNfd8vC4mNlGoUKFLhw7y53I602MBtCnEFUpcemxIny+jLlpZWdkXI2Isl588kL1gfIL2SGULC7odZGwoYn+ih32gPZd+dLyVi1mRd7QxbBPLUD25+Ms826nn/LrHsDwG5ThG/2tciSEZK3L9rzZ52cQZHn/0uJIn1lgmk88s3+NrxJVelmO73DiRvz6uHF+V4W3y9grbUeZz5HkBlk+85/U63mZ7fWxE7hNQjvm8xocbW/QsFyYyRkkZ4ThTR6jtPr8o+1zMR53B3d4+Hh5/ZPt9/vgzPgaMz9VqtcrmC2JUxeXkr66urkatVovNzc30zXbFGIUNNzY2YnNzMyaTSZw7dy6OHz+e+Lq4uBjtdruia9Q3YTu1XwvdIqLCJ27I8Fh6To7v7HTJJkEjqrup6CDmdl5xQkl56ni/nPKQw6SyFBDhzpZ2u50mADPmriREnOzufKp9VNYUKD2ntuUSdyrXjYErt5xi5f1cUIaGhkAgIiqOjBsfL1/98nJFbiC8Xa5c9axfY9ncoUpeimfc0aTyyE93cul0ki+umDnufJZ9ErljLfkjiHDj5MEe7UZQGUxO6vgsGRjVqXZRNjkOXOWh+w4AHExxPNxocZeizxGCEtXNHbARUWk757tA1c7OTrTb7X3jqXLVZxouB2gsX+XQaIiPvjLc59w8I+3yorZ5WeQF5dIDRAyysN+UXZch1s22+Byg/Gn3iZ6hfmD5uVViDsIZGOQYUfepLu7CYX/4PH9TrhSc1oopOTkaf/64fdC8Ubn1ej0F2ymXtBVqp2SRdkLBJf1Mp3uLabTbk3qCR8fpeFoCLBEdQZcZ8YyyOJlM4uTJk0mG9V290WgU9Xo9JYm5o1bvN5vNBKIYhJe8ss0KoBHYSlZI4juDdJRH6thChQpdHFEPuq5zu8RnGURXIF02R6egqAx9C3RjYyPtNFMZtANaxFGr7S4o7HQ60W63Y2trKx3D6JhFAXntzORCJzpp7IMvvtOxtbT9rVYrOp1OHDp0KK2UVbJnZ2cnxuNxqp/2TDaQ+FjfiSIeJIaLiLSAKIfjVC5tPk9VqdX2dt/xmuNdjRP9IWKIefjNKXf/IEzuPkouaeQ7+nJ+QM7/8rHldfZPvpnsKOviDlb6K2of5dUdetanNpAH7DttlAcF5uFc9tXr8uCv23AnT55qARYXRvFdHwO34+SFcIv8PH72gWPBI1Z1z30CH0vyNbcjkjhbc9F5nQtCuZyKcv4c/SLVoTnNQDZxlxLe1A2O2Rmo53xlv51XOTlX/+iv6h19toH1a6wiqp+gYJv0d7fbjeFwuG+BiPih48TJu9lslo5P89iE8K6wspIP1IH0OZmA1tzlYoJChQpdXsR5TR9PC3dkw7h5hMR4EJMNHq+UrhyNRtFqtaJe3/2+nj7HIj+fmMU3r0hvOZ6V7hVWy9kb2g7SQbFCYkjySs/m4qWON3nP+c1ncvHjHL+9bMcvXgd54L/1tyeIiD88fuwYyvnGBXNu74l3yD/aYvpBfM5xS45fjoFdDhyX5GKk7BPtPdvoY0m/xOPajvWdJweNF3ns9Xk/5/kF4qeecVzn7xP/Ok8OSlB7vf6/iDGoebEx6YLcnPETE3PzkP1Qu/WpQd6nnyS+cFMKY2TCdsJb7N9973vfuOGGG1J8NGJ3Me7m5mZsbm6mvNXa2loMBoNYWlqqjA/jd67DIiJtvIjIHzvOflIG/NqlQJdkElRCSIHi4HgWnpNIDpyCK9vb20mIXOG5odJqdpXpK0gZtJATxYAGjbtPYpErMyoxN0TsGwWQ7c052DllQ4Ptuy7dMHGHmYL/84zXPMo5326ECZDcIM3jmStYbwfr8GSmAx0fBzq07tSrH3LSpbw9AepALddeKlga6ZyR1xionkajkY6v07vzvh/EOihDEXsBIld+BA5SnJ5AZdv4HhN4uaQgx8/76ElpV75KTolXmqdqq/rE8bm1YCABEXWIjEcucViv1/cln31cqVscCLqs+jxl3ewvDSzrcx1CeXdj5WPFNqvdXBiiOmm4GTQh0aFxOXFZcJ3A9jDo5OPn38hU36QnGbyjs0W9prHzIwRVn2Sex9GJL7RDAhEERLVaLX1nRGUrsawEpIgfW6ft0fE+OaeEOlv/U5dq7PT8LbfcErPZLK666qro9/up3Vyxr50k7XY7fRdveXk5tVllq03cecJ7GjOnnA3M0RcCqC4VEFao0BebHD9MJpPkZAkvSJfVarW0YlTfxpT+GAwGKTmpZMH6+nqcO3cu6YOIvaQcF7pod70C5XLM+E1P2ZR6vZ6O7JYDqN/Uobkkj2MxtqnVaqWjb/v9fjoNhjZGC1ak631Roq4pCCYdK34KLxDTcPesylD5tOG0IcTjtJ/Ss+qjfudsvfsIqpf2n+10B9dtispzG6t7+k28nMPj7J/f9/9ZNv/mmLNcybsHS3My4/iNP7mgjbeLz6ge9s/9AfKcyR7iSY5JLtiixQOaI6rfFzpy7jGw5jiTvKSPI73AhZA85p9zg1iHi2Idp7B/PobqQ8Te9ySFwzzYzaQesXwugEvc7nPDfR7tevS57kEiBvakC7yPxHkHyZDI8br3I8c/J7XDfRAmHR3PMgDHE28U/KePqfKVBJUu1jPCscLixLHUQ95+3efxvBeDCwsVKnRpEjGG/qd/yvgEbXTEfl+S34gXSe9oMUa3241ut5s+CSNM6biL9kV6nzvu9CwTHCLVz/izUw47+d+0FeSPP8fkJW0MbY/bOZavv4m7c+TvejmMPyle4Xre26Rnc/Y7Fx/0/nk5LI/8cf6xTuJlT/Z43bkEGmNVlFfGHHP88jrUVtnBXB/5jOojjsnFiT1OmnuOeNWxvs+3nAzNk3PVQ9zr/c/JXA5T5+pwPKVy5GuR9xprx8WUffbNcSvzHc6PXN+ZoNb/lC/5z94f50Wn06lgMuGjw4cPx2AwiFtuuSUidvHYaDSKkydPpvrU5gsXLsTy8nLSdVoQovZLp/F0Gd/QoWfJd2I1/7mU6JJMgirpJiNG51YCqWd4fKDe2d7ejl6vl5S1gsPacaTAEAVXW4AVtN7e3k7fDfJAjNrBHYgScAmfFI6+ASRiQF1E4XLjEREVB0z3lYzIJUccZEjB+PeMaCDYPioOBYxUJldW0alSv1iOK14qARpR3nc+6e8cj+jUO380rpKT6XQ6N3njY+jG1B1c/k0gQ3lywOBjQyXmQIjvkreTySQBPO1QYKKKiTy2k9/dYv3qd+5oTbZF7/CbMg5caQy4tZ7G2gGDiONIWVafc4bOVyozoKfnfCxEXLTA+9IR3NXhssLAgfrqu805b9Vv76vPjdyY59orvcPxYpAiNz6UDfKJgQvVLRlW/eSxyI8iZl+ZMPX5TGPvCy2oD333J0nvOlHvqj3iqxJ3/G4dV3+KB+SfAj0cT/KbtkG83NnZiXPnzqXVpdxxqXmo3ypH/ckFqTg2HBP2lwDSna+tra04c+ZMNBqNuOKKK9Kxl9PpNHq9XgpqqY2SLfVd31/lijb2lfo1Nz45h8dBJeeo74jIOXc5UJrTKYUK3ZWIc0VzhIs9uNtQ86XZbKaEm3SeFkd0u93Kt0LH43HSCdKLPFKcuJarUKVnNjc3U/1KKmhHETE635WNjajuXqKdidj77EWz2YxDhw6lXaitViv5B7LBwv3CThH7v1Gjb4QqUUrHOLfwjTbZkz/EnNLTGotc8iViz9/gc8TOtEP8EfkxcMS0xB60+5IbT57SbtM3UFncZSHSdbaN2Jhli/+kXFJF8kzcyvqIox0D0zZ6QITYKbfAiLLj9Tm+0TW9q/Hlwjb2weWF7ws7cG54oMq/58rgGpO17Ad5yrEm5lFb6F9Sfjgf1EbiSx9/va9FBfS3hM8o0yw7lyT29/k8n5Es6YfYjs9yxyL9Jo6r80581Y/e8wS88JnHAPiMSPVyLN1nIpbX+77TKSIqp3zUarV9n12gfEn/657qpuxyHjJ2ErHrI4xGowquz40X+cu2uX9RqFChLy0xMXh7ye1jzmfjAhrqWib9IvZ0Im2m1zMYDGJhYSGuuuqqFCPTRhXpGX5qgPaJ+or2UnrUP0tGfpFyWIYxMbcruk9/1+0BMRJ5ob+JaZyPJNoVPkf77GPFeAPHg3U47mS7GWeizs/xim3IyYzb63nkeEN2hz4EyXEky/H+5pKHbDPxkddFuZ4Xu/DyOA9yMX7yUnPJE/25NjnO8ra6jDm/vE96jmNOnjF+5TEdYgK+O69tOZxAOc0lsUWMpbE95A3b63GoXPmuMzl+lDl+IoLXueiCnyLTSYd3v/vdY2FhIU6dOhXj8TjW1tZiOBxWPtMSEbG2thZ3u9vdkr+uT3KpvcxXqc/j8biSCGUf6XP4OLGvX2rclov7XgxdkknQiP3KVg6BGyyuyK7Vainh0+l00i5QDTBXISnhofK4spKK0xN7qo9Glm3hJMgJCQVfBtnPqfbjadzRpMPjwQU6nPOMxzwll1NQLni6x1WnTDqpHDpwbky9TXqXz89bYePJ44PIAzZUlrlABvk3z1hR4XuSjf33trvxcXCQAxMMODgf5NAqGaoj56jU6LCrTgaYPBDHv+fxwfnKPomYJI+ItKuOxoGJFfLDy6QsyknnamVPlHJMNOYHgQ/1hfU4WGSgg+11HjMh5TLissd6eKQVgxwuQxxX8ZCkecO2S1Z4pB8NM8vVO7nFAirLQbOu+we0qRckZx5cJf+pbxxE651arVZJLDNg7oEl1ann/Dx86d0c6OPY8hh06n/OI9kLrqrnTksF1Wu1vWCUdvpwVRuP0VXdct6oYxmYpDNE26HxHQ6Hcfbs2VhcXIzDhw9HvV5Pq/ebzWaMRqPKQiOdoKCVtzo+Uv2n7Igocx7YIliXfM5ztgn6CxW6HMkd/S/EkZhnk1UmiTsZHSd2u91oNBrpmFvdV1JicXExhsNhrK+vJ1sm3KFvxNF5VAJF9lj/93q9yne/laSUzSAe9ESo72rkDv1WqxXLy8uV5KeOx2UCVHqLuzXJf8fx+u6d+xYeNCF+o63xQA7xA+2h23Tqci7OuRi96NibzzrO5Fg7NnGbq/scD9VD/jhuJE9VBuWdOIJ2l+32oAj/p+yxTNpuT6ZynnD8nR9qC0/7EfF9yq7PP5bpuNsxDcfPy+D8In/0W8ET8lQYlePhC/9YJ/EZ/RIttpyHj7gDMWfvOW8iqicquczx75z/LIzF8ohHvW7qIfabdbtfJn1ETK/rwmNqgy9MZHv8f44pifOSfM3NX/3Q//XjzOh7RESMRqNYWFiIVqsV/X4/4VLyZjAYRKvVSvKlMoUR6YOqvUyUaq4Lv6oNHjSWfszpvBzfChUq9KWjhz70ofGRj3ykYk++UJqn6yIiixciqptGIqpH2bdarX0bPnSfOmhhYSGGw2HSgVrIRptN/EKflIlKYS+RxyvYH8ZiLiZIP0/P0aYxdpSLt+SwDDGt18ffsqOOMciTebEn1cM25WI0EdWkk+O6nHwQ43kCkL/ZDtXrCVvHm445iXHcVvmzbF8OZ/p9xzz0GXLjzWcZ26GsO4bRsx6jd7/QfRHyy+VXf7tddowVUd39qvu5Pubi/jlswL45b3NzhTLmMXfJBWPOfI/+AfvGuJ73izLpvrT+F0byBWnKWTHmRZ+W8s38lr7Ffvz48bQDdDAYpFONuKFpfX09Njc3o9frRUTsi3VKr3IThH+6Ss8RU2rzhuc6KEtfKmo2m/GgBz3oC3r3kkyCUuAlVDREEXvAmsZM73Y6nbQCvdFo7DvOUQLNoL3ezQXq2R4595zMDE6rbbrOFbIR+ycLhVDX6axxIlLJ6ocBaZVHJ4UBGD1DA0blQ6PAJIYbLTcs84wxk5o0QOQ1FZ4MtP52w+dG96A2UUHlFDnbnHvXlbA7zK7YOIZsdy5B40aO7XDy9ug9BR+0klerP7xfOYPmQMflXzLLeeM7IiTb5I3q0OIDrnAR0WjM678DCQZp+Jyu8Xtk5DPr9ASS5jFXOvP4OrZJAFxOvo+l7/SUbnHdlANOuR0oDN7kjj3TvGF5Gjs3/BwTOQCSGbaX48r56GPj48Tf1H85kEoAJ6KeUdnafe7jJ7lSX10uJG+UGw8MRURK8ikgxGddLj0wnOs7dxb1+/2o1WoxGo1iPB7HdLp7rKwWLGjF/MbGRlqUo6QogZXzj1Sv11M/+T0t3VObtNNzfX09JTeXlpai3W7HcDiMZrMZS0tLMZ3uHeerZK3K8KAbnTTakBzAlY7K7Qpx0Mq+eWC5UKHLhejA5WzgxdI8TOaJI8dRmndKEvL4S+mfwWAQhw4dSglSHTemxCd1IoM/tEe+G1HH3rbb7RSs0nec1X7tRp/NZpVdbmpjxN4OguXl5eh0OtHv96Pdbsfy8nIqy4+hlT3hYqNabe+4M9kR6V0GD2iL1c6cL0IbQ4yTOxZJ12ifxD/1j3jEAyB8R22ic+/3nKhfPaDh+pvJRscxuRMpHEOwPeKrL5Yiz9wHUBn0IRwnMqjDPnMccjZI/OY4qm3CAlyE5ItWiV3o33EeeJJ/HuWeFwaXTHjfVY/stNqt/3laUqPRiMFgkPBVLuDsSUPyjItexVvKWc7/ddkjnmEgljorh5H5jOrRd9/YXmI9lxGfw+73i89c5Kx+u88iPM3FdcTyOfxNf1TPsA16lrpA7Xb9zD4znkB+a7enjrPVopPZbJYWtXGxnoKG9HO0859xCMmBkuN6VvImueGO39xCXtdVnGMF9xUq9KWlf/zHf7zDy6Tu44IK6Vr5xNJnwntc7KKEht6V/lNcSYuMe71ebG5uRkSkRWyMG1OXun5hLIt+LXGev5OL4eXsPG1bDos5rnP87u+4PfMYtSeQvF5i1Fxs0p9jX3N2WWXM09ke4+K7Ht9lYi9XZo5/jrnZXj5PnuSwov52vs8bBy/fbfk8u+5tdKwy79ncPb6be8/b4fzOPaOyXJ7cXs/DKrfGtxwPvM5c++aNmcf4hd2EQ+jTMEF5a/Fn+iNsB/tM3SQZd9+FvoTjP/qaTGrOZrvx6U6nE7VaLfr9fgVn+omO0+k01tbW4vDhw9HpdLKxV/FK14fD4T7fRNjLj8H9Uic8czSZTL5gG3VJJkEj9q9e9glMJelOuoRkZ2enctSO/o/YcyLpdGuy0Qh7UIGOtxzJ3H0P7uqaH1vK50VyGmgQJeyusPi+git0qFUOE8YMtLizmDMcrqRdgTMIQ+BDhcE6fPef+OltYhlelssK3+G7lA3vG9vLd73u3DXvE9+fpzQIBl35zwNJDAxINn3nI3cx+46/nKPp7XVDrHIEPOXsO0hxACbiDgEaG/aFQaVcW3NJFl2X057bKeHyrOs0gLVabV8AiM97X1UvgSPLVmKO9fJHwQcGDSlb6oeOH2XwNnf8Xw7M0MnwuUlAz6CEt0PlaExzQRqWqTL8fepO1icecO5xBaaPxzwgLPmkvidvxAvKqq+Km0wmadeQAjtqJ4NOLssO+JgEIJ/VV66sqtd3z+vvdrtx+vTpOHPmTAq0yl7lwIvazEAr+6n2cvz0jvo9Go3i9OnT6Tt8SrpOp7u7prQ7i0d31Ov19H0y7RajLVI/Jd8MxCrBonoobzmwTnKdX6jQ5UI//uM/Hn/2Z38WH/vYx1Ji8Qshxy/uwHOe0mGLiLRoSjqNCQDizJ2dnRgMBpXd63qG9jtiT1+pLCaK2u12HDp0KLVT3xZttVrJnosPCqCzbOklfbu42+3G0tJSrK6uRrPZjGazmY4QUj+1M0C6R4kg2WomPHh/XvBnnj+gsYio6n8+p7EgfqBtoy0UMXnq+DBXv+NJJsbYH/HIk4/zgih0ttUP9peymGsj8ZzjEpZ/0Dtqq7AD/YZcsMLb4HiJOJzk33tVHbLP/H4l+SV8QVwlog+mdjo+z42P/idGzj2jcnmyh/jGRJSCxWyP+kifghiIC8xUNgMwusZv5eoZ97f4PGWA/4s/mnf0E5kIztVD+SI2EjUajcrpG0zMObbiPOT4UJcKd3Ghwzw/jtddbnLzgO+RZ5Q9Xec1zmVhMOJp4V1iTS02YX2O893vlU7XGNH3ULvIb7dTIupA8fxBD3pQPPGJT9zHi0KFCn3xaN7pPF8ISZ8yjpqzX9LrjKlIn4mE5dzvpo4+fPhwtFqt2NjYiOXl5XRct2+g8TgT9SgXdXiyRPaE+OQgDEY7Oi/2yP/9GbbR+cd6XTf7fZWtMpwPPibz+kV7xb45ruL4McZMuXDMy/YQQzkf+C4TTrTdfp/l6D6xW872Oh8Osuf+LvlNfuT+dxn0ujhPHCsRC83zRVgf/ydOYpsd55GnbJMv9CJOYC6FPHae+9h7PV6O453cO2wfN75RB+kdyiVjkyKeBuIYOGJvU5C3y+c5MZmwmOeFFhYWKicvEcvVars+eKfTiePHj8fW1lZsbGykNnARyebmZlqcxo10ahtxqm+CIZ81XjyVLjeWX+rE6O2xT5d0EpTBgpyT66TJw+CHBl+rFPk/j9bkKlgpBRlEle0TmErGE5ScXHyWK4td8ej52WxW2dKs+/7dIRpeV2oM+HDiM8jlBsaVn9fP9t2aoxeRN1IMBImk2LlrlvXl+Joz2G6cXLkzEJFzHL08HxvWk7uXM4w5Qyel5GBnHtHIqP1UvHT6ZQikJOcl3hxgESypDo6HVgTzvuTJy9VuRo6zryKP2H+cAceHcqt5y/r8mt4jv8gz9l+Gg0EvrtRxsCceyfCxHZJd8t+NBucdA2ySQx0x6DskGPBw0Ew+uqz43GRb9YzPczfCvHfQfCdxvnGuM+BMmVA7CCgU6OQRvqxTx5hTVj1pSbnKtUHywUS/xkDzh9+IJu/0t+vRXABKx83qmWazmZIKV155ZXS73Thz5kxcuHCh8j1Ql1fWS5mVHfPdPHqejtj6+npsb29Ht9uNw4cPJ/ClxIZ2anFsfReT+Ky5wG//EjhqnFg/+8FxofyRcrJdqNClTj//8z+fdJEckTuCaMs9CEBbyERixJ7jyMUPwo3SDzwRQslK4QrpQe3KEkmfaQFVs9lMZcnWuDMlzMpdRdIDzWYzBbh6vV70+/3odrsVPdHpdFJiQjyQ81mr1SqJX7aV9pF6k4usqLdy7/K+ftzu0uZ4wpS6kNcYsKAvQXJbzGAXA4yOzdluyYHjLvHRk8aOCcgnt13EQ5Id7nCkD8WEkuzcreFt1aFrxNVuT3N2leVz0ZPGUBiP/c71n/xXf6bTvR2XtVpt35xXP31luurUNe7WZDvotxG7KFDj4+48FTbVO37UveSHc8KPqBa2of4hViBvyW/hBF5TPzkOfI/znRhTfKBc0x+gzhF/Xff4+Ajn+DxRfVw8p53mlCHxj3xk2+lzed/If/aPbWOi08dDfdRnDfSdvHa7HdPp3ukkjscpDx7oosxJp9M3yvmC1EVcLOfxEuH9j3zkI/FP//RP8T/+x//Yx4tChQpdekQfj3EP6mv52hGR8J8WaVDvqBzp736/H4cOHYoLFy5U7Og8jOR4ImIv5hCxH9/R7syLFxK/3BofDopL5njG/x2/5HDOQe+z7ayXZbI88pltzC0S8jhV7hnHIhFVnvkCLccPufo8JuoL4tmneacM5HCi40mPiV0MOT7Tu8w1HIRnc/bXMQ/7Th/G+ybZ9cVa/h75zbnkv1l+7noubpmjnPxwnuSezcmRiHIgPnvf2F4u4hI5fyWPfkoL/bF589X1DnUJFxwyjsZ2ROwuFr7yyitje3s7xuNx5RNb+ntzczPG43FaAEK+Cp/J39LnbOh7cLGl4gTUu77g+dbG9c5El2QSVAPIY6MiouKQR1SVHAeeRo2BWCpzDWy73U71cvW0kpW1Wi0JhBsLCYyCK/McgIiqEZaz5ckiti1nZFVmztkQuSGh8ZYy5nUqQRo88YdJCt1T0ogOtTuVcnCplHOOpCY+dw5QWXhy1xWtG2xd55g6iPK2Orgg0aiTN+wPDTaf0zX9z8AOFbna4oEDPUPgpvfp4LsyZtKSgZh5SRv2UfIuWeUz3C2iAKcrRNWvPus5HmPKnxy/mWxVexxU0WDQ0LE9uQCiBwT5t9rHAIO3mWMgw6gfBjspn9Rfs9ksfbdCdfKIbpU/m80qK+yZsKOssL9qHw0pE7y5HeYygprvGlPpNK1Smgce1Sf2gaCBusb1SK1Wq3w7jPNFZUuH6H0H6+q3y6uDE44vx0T913jrWQYQ9Sy/geX6lXOcpw+0Wq2KXp9Op2l3pb7lW6/vHdMuAOKr2bizibKpb3YycOzJS8nFeDyOW265JZaXl6PX68X6+npl7ii5PBwOU9s7nU5sbm7GcDisAEDqH45bbpw5b3JBQck1ZSwX+HPAfFsckkKF7gykOe3JhjuCNLdo44jr9I0k7Z5cXFxMwXHpfS0ymc32vjtO+8XdVLQ9CsZTD9Xru9//bDab6fhdfYNOessTEbPZ7nG82nm+uLgY3W43VldX05H/y8vLaSeSkj2NRiMlRbe2tpKtE5ZhkkLtpKNM3KYfx9nzksvEc46nPZjD+57oIY4iJnFn3DGxnpf9YaAjl8hlHdT/uT5ERMKSnsRhveKtBzP4vONu2QnWT557EpnPkDfEfnoud1/8crzN//Wb2M7l3X1A9s/HJWLvW/Z6jsEl8VZ9or/q/oFwxTy8TTzLQDN9LfKI/jSDJDly2efCQ44X77vtp59BOaPfwv+FixznuX9KLEFsyXbRF4qIffNKZQsDShc6nhXvNHZ61hd9qg62h30mZuf4qHy1i/4dx9t9UJ8TPLWEC0GUbGCZzg/5HTpKl/xx7KfFDB5bIc8l18TLep+8+WLaxkKFCn1piPbJdZt+y8ZSr0wmk2i1WpWYFD/PIpJ+aTQasbq6mpIDWvCRs/8R1ThdLqbgi3T0jsfj9Df1MPU046h8xuPW8/AU+zoPb7AMtxuM7biOJzkuZF205ewTd7Mx9pvDfV4f8QnbK8rha7d1Hrclbqb9cezM+hwr+jtsrz9Hnjum4HPkCdvmf7Nux3Asz/tCbJXDbMRM3k8nx8f+fi6Z6Hw9iNd+TcR4nN93Xmhu+vPuV3EM3VfIxWU5N3Nt4TuML9Zq1aO1idW8TSqXcTH2jXXKl9KCYfm/jUYjxuNxbGxsxMmTJ/fxr1arpW/AMz7tc7FWq1WSoBwLtl0L1lwXXYp0SSZBXYgiqt8EidivMPkud1VJSTEIQseEyTwKjbfFiRNC2Xg68Jxk8xTCPCWpNroAUuDVXv/ALeuh08U+OjhQ2XLWybeDyB263HVXDrlnOa45I0TlRqXGa+SbO590kNU2XmN9zkO2zw0P5YdOrZfrdbqMsX9uGFQXy+GuK/KfBovPKonCI6ty9asuBkcc3EmGcgZFz/kuaI4732XizAOFBFVqu/rhMqLfNNYONMkbJfhyRoD/q10sl9/I4ap1/WY/vG7/m0bGgzgKwHlggKvIaKik99gGJuZkXGUE9azrVCbi5pEDXS4S4TMeGGFdnO8+7wjACBoUhGcifp4sO7gnKPa56IsMKIeST64C03i4vXC7RR3IOaK+1Ot7x/ouLCzEuXPnYmNjI7WTCWiu1vJ+5XZYeIBQbR8Oh3HmzJm4+93vHisrK8lueRBb/dDuAR23QVuRk4XbQh4gzQF0tmXetUsVnBW669EdJau5cnK4RnOLNrRWq6VjEGUPZFc6nU5KNurYWk9caYe7doWqHOFgPd/v92N5eTki9vSljq3lblPuCNTu04hIuz4PHToUvV4vvSssr7Y4dvbV4IuLi5UFTbIfKoOYhrhPz+WCHCqbetcXn9CnoN2mvuUpCDzSlHUQa0VUMYDsi9qpQGDuffdD3E56IEGywZXK/i4TeKKcbDoey9kbtcHxrvcjIn/qhOw1d+9pHNlmXymtsojl+TvXrxye5T36CbLHzgvyOlcHg2xuI/UucYG3y+ctFxR7W/WeniGm0Nx1WdW8pUxrDHTdFzBynDjGLs+5seM8IIZmwk28oLz5AkrOR8qjjzVxjuNJYW+OFz9lwTlBHcL+qH0+v/U36/Y+RVQDlpzLDOjpPS080VHo/FSD+y6+K5ntHI/HWb8nYtefk07VYpqtra19bXGe5uZBoUKFLg+ibcrpFWIJ2jkmPrRpRNRut2NpaSmazWacP3++EhtSjID1MvYpfcWNLm4HiLHYdsd8jp082ZWLa3pcRPdlNzymwLgB7ZDuOyZwO8F6eN3tDrHWvD5S56tu51WuTPKIdFA8kvx0PEOaF1flmDl+ZWxHPz5W5Ddl1+MwOTzttu2g2AZ5w+cZk3LiNY6F99ljReSv18NYodrCOKCelZzm+Jjrk/dfdeRyHLzuMsW+Xwx28HGlvNP/cDzuPOI1zhFd44JAj3frGdWVG2OVQdxITC69dujQoTh69GiMRqPY3NysjIP8ZurQeUl1YTi2TX8rNuz5M/XpYvJCdza6pJOgnkRkUJerhD14wcH3Ca9yuRJpOt37tieFwo2V6pm3K42Gdp5CpKGisqVgeZ/oyDlPcs/nlBHbp7q4s0/toLDnHGv9z7Zxkng7XMnxfSoHPu/94G8lPjgeufawHd5+tmeeovV200C6s6x+O4hTMssNDfvjyQpXoFRWOcPFe57U4u4q8i0HFtRuyRpXwXP+qY2aP0xE5RRvDig4HzmvfLWc+qUADBW9yOVAY+FJKk80kn+cj3on138anpyBVL84lp4od8Di46B3FQxmoIsBDv3m814PeaB7MnIsywOdOaDivMztXGZf1Dbey4HZHMhQvzmOs9msksCWvJCPXhZ1E/WGynfb4LsUcgGnXCCHz1A2/D0Fo9gf7fLsdruxvr4eZ8+erSRD5QTmbA/nDQNquSDxdLp7DNqJEycSoNJpBHpnMpkkh1PBT31HVEl5ygfLz9m8eZQbr0KFCn3h5NjJ7RoToEp0SkcoeN1ut1OC8vz58+mYWzlHERGDwSDVqevSyxER3W43fadTuom2vtFoVFbtj0ajpG+4q+jIkSNx5MiRtFueCQbpSx3vOJvNki5zHc6d9L6Ln7qK+E288YWNItoctcfbyPIZYNC7ue/EuO5kmW5PHfNMJpMKX/V+zh9RHzyBxnbT1xJfhBNy2JK8OihwQ2xH/Z8bF78vzOyYhu/7HHDsybqJD/QO7SHL4a7aeT5Fjsg/JiI9WaZnHbc5ps/hDJXB8SSm8fnHvuawgo8xdwMLl9LX4phSfhTAEe98kYD6y2P+6ce4vOd4QN9Y5AE2vsN5RP/NZY0yIr3iu4NVRsTeQg/6n46R+MkD8kvPuG+sfrmMOlF/8X9i/Bz/VTYDZ5zrkgElUNkGLY5T0qHdbsd4PE5lM4Cakx3xs2C/QoUuH/J4mtsxYklddx0gHauFzypH+rLZbEav14vhcBhbW1vR6XRSWSqbi6GkY+mn6vmcT+24iRjJ31c7I/bjHulg7yNtBLGE633GBtk+52tuDHI4iDbGbQ3jDR4rJn9o41h+Lu5Ee8Q6PGbjvHGs7WX4OMwj2jiWL/7Oa8O8GB3bxnu52Lje96QdyeXKZYLYlpjM45f+d24OzpM14kDH7/Q/RLlY9zzydvg7zr+cvEXsxQLZl3n1e/nu13l97v8xBuvxbF8UqzL89FHGaL1dLEfXtHhYOEsndrDMbrcbV1xxRYzH47Sbkws6nAcegxTvRqNRSoQyxq34nnahUr6dfzmaN6bkk55zTJsbR+qo25N4vSSToCJO9hwTnGmuGDzRKeHT7ptc+fMUJuujIWUCh4rOAyx8341Qrm++SomOq8rIBQjYVv7vxkD8YVmcMBej2DxYQSWr5xxMkKduLNgXPcd31eZ5k5tAJ2esFCCSMXEezuszjSH7SSdR4GveuBL0SB5Vnxx/ByuUK9XtAT7yTjLC3cFKVqm9BwWncv+rDB9X/zA032M/GdTRfQUVpPg5znxeY1yv1ytGgoCDY8dv5jqII3/ZNypkGsTZbG9FoX970XkheWKb9LeCO/qfc1V998Cr3lHfaSwdqDlI49izL+ofecg5RLDOIxVcd3n94rWvWve2+ZEaHJOccdXOJQ9GSQ6UqBOAED85Ds4bB4+StZxuygU3HZz7ePB/HzOvh++12+04evRoCiQtLi5Gp9OJM2fOxNbWVgI7kmk6iJJNHp3LejiGAl4bGxtx6tSpWF5ejn6/X/kAusZUfZDD2e12084wrrqljvKA1kE2xAH57QE5hQrd1ckTNtIT3MkXsacztra2Kt/P5OKj6XT3G5/nz59PuIlzfmNjo6Jv+C3lhYWF6PV60el00nG6ao/el95W2/SenDut8l9dXd2XWPMEEh1j6TDZMe1yp57XztGc3eEpGsI95It0HYn6j/hKz/F9tZXYZF4wgTqbmJc2RbbR8RkxmwcDnHxXJG1VRHWHXI5nDIioTW4nNV7sLxMgjhvZf7epkkPHW+wHg47u2xAjuH/AnXG+cE381NhR7lwevN/sv+N7zUGOq+NF9SO3SjyX9CSv2UeOpfoo7EBc6PhC5fD0C8q5eCosqPo579wf43g7jiCeZv2US/k1xNBayOE4kDtWb81H5j21mWWw3WozYwuSI+5iYv8c6+hv//aojzFlTv3yQB7HzeeRypIOHgwGlTGUfGghpfsH6pcSEi6Pmi+e3BDlTiHiPChUqNDlQ44TGCvIYRXFgyKq8RzXF9KlwpenTp1KelW2ImL30y8qL2JvgQoX47hOpc7k4j3aDuk9YiHqSfVJdeq+yvb6iN+cZzmf2G0YbX+uHo8R6p6XE7Fny+dhbn8+F5MiD2k7yCuV6+31DR+3FvPO8TAXhyC+9KSUx2RUHuOMKmMelmYfPP7n7SeuYJ16398lv/i8+Ecs4mMjyiUBPd/h8uz8jYiKvXd+un/CcnLj5n/nrrlscy7mZIrP+Pvedl13uXEfibpA88PnE/Gv+OK5Fso7cTnrEz95eorq0iLE1dXVlMQ8ceJE0lH0E6XnhNW4SWI2m6WjcOv1eiXWrPZxp2gu/+V6Svf0mS/xiBtWdGqU+tlut/edXNhoNNL7q6urcfz48VhfX4+TJ0/ervjgJZkEpfD4RMkJac7xdCGV8PF9CXZEVI5b8Ens9eo9Hq+r53m0F3/mKYeIvSQY++hJUDko7tzk6mJ/NfE94ekOs65JMN3ZdeU0zyCyDo6BK3tXBtpxQKXkfGN7vEyvOzfmHtCq1apHTs5zxtgWBn08cJgDMmrTPMMxzynUj5Q3j9Oa1z71cTabpcSQjijS2OaMhPpE0OmOu443YpCLu4tVt8seDYePrR/lTHBJY8fvYmrHSKvVqmzZlxOfM3wH8YsywvHljhIGmnz1Mg0wn/HgpvpLUMD+URb8mFcZEQ/SiOe5ueigiT8e0FNwQ0ckqtyI/SuMIvYnyb0e5wPnJIFADkQT9OVWf/mc0990PLhin3LAYJqAA/k1b/4zYE396jLA74iKhwyGe3s5lwQi9L2+brcb3W431tbW4ty5czEejyvlTqfTyqIO5yUdGfFP13Z2dmJtbS1Go1Gsrq6m8ZAulE1gQEuJC5XFXVUO7g/SpSQ+M2+uHkQ5O1So0F2FaEOIpXQvIu+AKfEo/aTrPBp7MBjEbLYbLJdu0reCudBCwSuVJf0l0rsi6u92ux2j0Sj6/X6Mx+O0s1PH4HLRh/CwdKz0jxw27Wyl/pm3KIrOqmheIpL/M2mQs8X8/rnsAL8FmWuH7JzjYVEumOV2h3bNEyO0bY7t2Hba3ZxtU19oB9le3wlBjOk43JNUet4/WaLr7rM4PvZxch+R84QJGw+MMOjJRZLynxgg1I/khvghFzgQOX/8Od+xSDwxnU5Tkor9og9HzEpczvERnuanHfSu2jYvuCW8SB/WbT7Hmf3zuUV770k392t9fvI4aV+cKLm4tfrZV/f1HbuLmNgVn+Wbs90eeCRPWAYxsmNSlZ2TffobPOpc7/F5BcT098LCQrRarfQt+VqtlnQ/9Qb1LBe9qFztrmdynIvydF/9URtchgqGK1To8iXXWdRd0u36m3aR2IkxScW39EkGfkeUz+QWWc1ms4ov6230/73d1N2sS+VH7Nlb2jfacN5zfEZ75xhB7Zp3jfaL9tqfoz3JLdZjf4j1OWbkq8pk3E73hE2IKXJ98SSjronmJajcbh8UU8qNqfrIGJ/zwdtHvMRn/D7/Z8JJbXD58b/Zdud7zm6SP5xjudiWymEM13E2yRfXq1zV5X12vvM5f9YxB/nPNjm2YVzZ6/E5meMPSbIwDzPqPsfRn3Gap/eIbSmzuVNe9AxPblpaWoojR47EcDhMJ8a1Wq10ypzrHcrBdDpNC+CET7ngkxsi+I6X5dRut+NNb3pTvOAFL4h//ud/jq//+q+P/+//+//ij/7oj+JRj3pUPPOZz4wLFy5ERMS1114bz372s+MXf/EX47WvfW2cOXMmInZPmHrOc54TV111Vbzyla+MU6dOxVVXXRW/9Eu/FG95y1vm1n1rdEkmQSP2Aq0+MRnAmDdhIyI5EBpEgvWIqvJXgIVBIWbP3UC50eERh5y8zMTzPa2eV+CJAX86KhH7V3Tof64OpaPuu/1UHsvSxMwlMNhfTlhPIEgBcdJw8uQcRzqrnkziN6pYjxtyJgOpOD3R5gZTykt8cHnidRqGXJ/cmHvS3Z9hH9youcPNsqj8Hdxp7NUmJju9fjea7DODoJRrX5nM46Ilvx4w4so7JkpVvuRQTnIu6OeGQ8lOldloNNK3wRg4EB8518RLttF3j6g9Kk/zmHqDqwLdmDWbzRRMEl+4wl7XdF3HRdXr9bQ6Ru0Sz2h0tra2KjxUwlLBCU/OqV9qu8rxpBbljDuGNK65HQrUBbov0rxTWxmA5riIl2oDgyF0VvQMg6UsU+VqB5En4x0cUdbUbwYB1R7Xidwd5D8OCrSQg2A2p69Ul5IHKqfT6aQjx1qtVkqENpvNOHv2bIxGo0rAVnJAfcYj2cg3HRXJhMGFCxfi2LFjifec17RBEXvfYBmPxzEejyvzlnqYupvzwflGHnNMKC8aG/IoJ+uFCt3VyfGWfhyrCu9SfwundjqdNGcHg0GMRqOkn2VrZCt8peji4mL61hx1kzvNTEBJBy4uLsby8nLlO6FKktKeKHjPxSZcCCW7QLun8skPYvSIauKCyRPHWLxP3hKHu15k8o82yct17E0cyzHMOaIeWNE1tfOgxWB81m2kl+u4mc/m9LD7MLmFfMIEvvvAMTDJfSIn+kSUD/9hHR4M4D2VIdvkPiHLYPs4FnyWfXTbTYzmJPvNAKPaR/+RcsPxZ12O/YR9lcSnP8f3nD/0CTQ/ZLN1n2VRloi3OIc4ZgzQkYfEEuy3+1DsL5PevtPH5Z++DPlP7Mlgt+rX+Kn/wniMM+i+4yG1N+cXcQw41iL6t9JRHINcO8irnP8uW1Cr7X1DmuV623xOMO4iHc4gHfVVoUKFLk9yn1fEmIwvLuJz1I/EeaPRKFqtVsX2UBcJg9IOK2E6D2OxbdKBHjelTZtn1z3+58RYrmN0xi/dX+Z94g2PaTm5rWGscx7RfuTK8brolzOpKr54kmkecbzp9+td2W7ufCNOIT5jX1mm41zH1Rx74n2OOfGHxz+8Hk8Y5kjvEyuRp3omh4XIK9bjeG/e//p73nipLI8vsQyX1Zzc5PjvPPB2cfzJT7XXcSLf87KEaXJ4WM8zRun1H1S+931e7M8xlhY20tdV/+TDRuwtkGy329HpdGJ5eTnG43Fsb29XFqQ5rzVXJMOj0aiS9NfJUFzs5tiQPMr5kvV6Pb7qq74q2u12PPKRj4zXv/718YY3vCF+67d+K77jO74jHvSgB8V73vOeiIh48pOfHJ/73Oei0WhEt9uN6667Li2wHo1G8Qu/8Avx5je/Od70pjfFYx/72HjRi14Uf/7nfx6bm5v76r0YumSToBFV4eXEo9PO56g0uLOTwh0RlcHme3qWDrHqkRB5YMTby3vc2UbH2IMu+t1oNNJuN01orh7xnW6uCNXv3O6tWwsm5BQqn+OkdCNMQJHjhcqkw+Pt5wTLKTM9x8S47uUCUH6fSQdRTrGxnVSyuYmfI09qynBo/CKqR+PS8OScSPJLvymLklWNP3nn5Yp/TA76XFLZOcdWz3hQQ39Lhn0nYw4s1et7CwDINz7D1d4+Niw3F0RUO2l8SJIDDxhTtnxnLHd/+Hc1xRMGpHRdZ7zT8HggywGWnuf46R3fXULZkEGk/vA5rXZ6IJZHI7Aul1E6DhonP9pA5KBX5807KJzN9pKcTBRTdgTAqEMnk0naaaSgFI++UfnSG+yfBykpAyTfMUJZEI890SfKyR4TB+IZg1jql47F7Xa70el04ty5c7GxsZGOmdTcd91HOaJN0RGYqndjYyPW19fj2LFjKREivsuWcIx7vV5sbm6mYyslH5Jv2gj1g7qD7SIInQes5tFtebZQobsC0UGUHpRO0qIh6UQlF/WjkxV0X2XMZrMYj8exvr6edmaORqNKsKHRaMR4PI52ux29Xi/Nczla7Xa7ckQl27i5uZmSLkeOHEnl6gjwyWQSnU4nYQUlQqm3m81muk47Kp2tJCgxT8TeDjLZWC6YpI3JYQviL5IvdnTs64sR3YlmwtR1utelvnAnHMtUuayDZdKm0fY5UV/7dbWLGC7XXmKa3Du08wcFyRxTMkDJ94i9PMil93K8Ir7jdWINJutI5KWIGE/tUnm02/R96H8yuKcEKXEIk6C6rsVsus+2cmER2805IxxCOdS7xPrkC8tUW4WRiAE4VsSUOZ6zPLWNbfbn+Zt/c7zUBpXl+Jd6hf6R8837T7lWwMkX3Dompu+l59RO+SNOlGXvr3SkLwBkHdRt0p2SGY6tnnXe0s9hzEI2wOeu9BOTn44NvR+FChW6/Ij2l/EHkdsIfmNe71NXK86huAMXuEm/acG4ylYywbEO7SRxktrHzRtqC9vF5w4ijw3qmtsH2n1/RvcYQ9QzOV6yfTlMmcNbjI04EX+Icgu3crjsYoljwL/1m7LD34w15LBvLj41j/det8dSGSMk7nNcTMxAufPxpWw59mG5ep6LUFWXj5nbWMdNjvH4Xi7OOk+WHAex/yKXPfJkHh70frFulu8LUiOqJ+SJD8R1LsfeXvoIubgt+cS4F/Eu44+eVCUWm81myV+mH6L3GLtUP/r9foxGo1hfX4+dnZ3keyt26j6E2j2ZTCpH00pP8h22k8/5NafZbBb3vOc94/nPf3684Q1viNe+9rWxs7MT73znO+PJT35y/M3f/E30+/14/OMfH89//vMrMqGF1/1+P77ma74mXvWqV8VsNosPfvCDsby8HFdffXV8/OMfn1v3QXRJJ0Ej8rsUI6qAPmJvIvrOK66E9UBAbkJT2HMOUET1fHl3jvi+AjZqw8LCQvrmG3/kLNCIqxyuQpaQ8jsueoaOiShntMVTtZH/kydO7JtfIz91TbxhoMnvOfhwpcWggI8Px559YT/cWWQAQsrkIAfs1kANKeeAuzJkP3NGhn/nxpI8khzof9/h6OPIYJfvCCQwU5KEsuGGn9fZZo61O+tU/Ays8JoS1doJwjGQvPj/DJIwOcj+Oe/0P+cvDRplTGWwTr3L66PRKEajUUXGxGd+aNoBkwMeyr2uuwPhgIdjNS8QyzEQX8U3tZl16V2uLqeO5bjV6/VKQIVJPW+zZMTrFJ9E1HsuwwycUg9GRGU1VE43q0yXacqAAza+444JyfWtgy/KJhfUcDesrguoaD4uLi7G0tJSnD59OgaDQUpG0k7l2iu+0UZoV/doNIqTJ0/G8vJyZZwmk0lKLohn4r12iei7Akq2+M4wHw93PsQLlj/P9swjtwmFCt0ViPpd5HM+Ys9+KcmpuSldrRWoxGTCKgogCXPq+9jdbjfpJgWYtEhDiUolRVUHsbdshHSCdrxLx+l56nrqUOpR6U/qbOLtiKqe1Xt09ojjI/b8CiZKuAiL99220C75+KheLl7L6UO3MfOCL94etoPleQLOx0LP8ZkcuVxRn/tuCep1OvXc3eGBSH/HsaXaRt55gMRtj+MrvsdrrEvtkhw67+RTEv+ozJwdpmzQN2R5jg0c+/lKcfolnpjiaRm6zwSmj6X+pw/quzgViNH3JGn7yecczvHEMXnuO8Xnjb3642X7GDiOp4/neJiffXE/kPODwbB588Pxm367rsrhf+la6iziZY4Zk5nz/DHXH+QD5xCxluQrN4a+c8vL0yIMnmpCHTkcDiu7R3L8U3u+kIB5oUKF7nyUwzeyJbRztH8Re3pMpxW5rZCO2N7ejlarlTZ9yKelTYqItPBXG0tUZkT1CH/aD2Ikxu7Yjxy2YL058pg13/drEdXEnu5xsbXbGPKPfSBvWTZxDe3MQbEN7+88ne3v53z7eTrf8bPjAS7gY5yd5fqYHIR/RLlFis5X4gn3I0jEmMQketZjH8Quus4kloh/e5KRc+ugvjlW8P7mYvL0x2jHKaOKF3kyVPwjriRuzc2nnK/Dun2+0v/KnULCDQ7snydC+V6O78L+xFO5RZUqh3Wyz94+9s3xkt7Xpr7FxcV0Stzq6mr6VJ38dOI/xaH1LpOezMtMJpO0uUHtzJ344X1kXxuNRrzuda+L66+/Pl772temeO6f/MmfxGte85pYXl6OBz3oQTGZTOKjH/1ofNVXfVVERLzhDW+IpaWl+MVf/MV429veFp/61KfiMY95THz605+Ow4cPV9r+hdAlmQTlJOXEoNPrQXmRhJurgLj7TROCk+aggAQDJP5+xN6KAx0lpvokqAom61tHNLwMtvA6EwB08nNB/Z2dnbQzyJWiO500tuSVG+OcAfGAge9AyjmJVOJ8jzwWSbGoLOcJnUx/nn1x+eG4cqfVrYGWiwE1EfsTZc7TiL1dB7ky2W623Vfq59rizi63wnuAgPLidVOx+zhzTAnAJI88ilSGjvOK7db/XBmstnowR/WRn7nAguYjQYa3n3xi0EHjNpvNUoCH9ZH3nJccq9ls97tp7OdoNKrsxGFgwecXjTbBD+WXK+td7gkuVHZudyB5ypV0PkZqj/jK75iK5wxgux7lSiMGTAgaFFRTHxncm06nlaOxvR8OnBRoqdVqaQzJD8o3+5CTz9w8FP89SM7jnBk49fEh4NX/LIsyxWMvHJi22+2U6B8MBrG2thZra2sxHA736RYm6OkssA719cKFC3H+/PlYWVmpjJdIbVTAS/NGK870jPrmO4/5t8bX6baCm5xtKlTorkQ5p9EdaQUI9LzbLtko6iPaGek17f70ExmEa4RxtUBiOBxW8K3Kmk6nlYROt9uNw4cPR7/fTwlUd6CJqfldFA/oUzcxESFe5PQ9dTFxCxMSKpvYn8dJOtZT+6ib2E5Pdsge84hfUW4hENuvsffrfJ4OOvvvOpd2k+1ln/i3yqMDL+zggchb87Vy/WK7KNMsw7G3+k68xb4zAKFnfZeHyiMezckLeam54diZmMP75FibbXPM4sE79tsDKvOStOIhSe8Tf/rY5/xiDxblyo6IimxH7AWQ3K/2evwkI59jTJo57/wd4q+cD82yvQ6/xzntfon7Br7wOhfk9jZ4YHBefMODnZQLYj/xkuPABYjC3NpRxTrdb6Qcq2/cWaW26X2NzcLCQvqMg+M2t1klCVqo0OVJ9Ndrtb3F1fRzIyKdHqLYguwTMZ3bFeKBXKxIODin53MLMxz30F7Mi0vM62/E/uM1iQ9Ztu55/fyf9tntmsdP1ZecbiVe0HOOWR3jaHzYfr2bi3mwLR4DycVJ1N8cD4kxvTxfREQcyzE/KEbr40I+sT3OX8fSfi/nB3gbOPZMuucSZ2wree12n3xl4ou2PzfWLPsgeWAOxftNeVefiDH9N2XZsZnXzXyCjy8xIeXGy2E/yGPKIMed+MgxDMfa4+2OFz3Wq7/pe0rXOeZSO6X3ms1mNJvNaLfbcfjw4fTZOJ3K5uOs97XBSH6+5jM/xUHfhDJxkO8mHrzjHe+IxzzmMfGIRzwi3vve90ZExD/90z/Fzs5OPOQhD4l/9+/+XVx//fUxGAzi4x//eDz+8Y+P0WgUj3vc4+K///f/Hn/9138dr3rVq+Knf/qn45u/+ZvjxhtvTPzP+RgXQ5dkEjRiv7OQU7LzJoGMo47EJSBnINYTqS7gdD4oTG7gGKjRt9N6vV50u92IqAa1FSBSllxt1RGF6p/KjqgaAx0vo3sLCwvR6XRSmTxukspznmFzRezGS7z3JILamQsKyLna2dlJuwpdwdApYv9cufikmxdEzxkZ/dY9T5jleEEeiKi8DiI6f1QwVEpKFLBtepff7cslskTalSGZlSNLufb28F05r1LMrrjr9XpaQECj4s/OZrMKECXvcgqTfBB5sndra6sSIGEwiGPrsu11uUGlMSTf2C+2P2dsaQhUP+cGA4CebGTZEXvzQONMo8i6qJvUXi3qyAWj1D8ZDncARFwYMs9ou/wQvMrgctWS6hFgyH1XicDVx1IyrZ0Gt7bKjn/XarXKTlIG4XP6xMfXQQdJ7WLAMOdYCIjwui/6oJ3iPFcygX2iTdL/zWYzOp1OSjysr68nvc9gk/dzOt37/h5ldWtrK86dOxe9Xi/JjlbN8nhk8U716+PqGismtd2GEARTN7KdauPFBvwLFSq0Rww+0y7nAigRkfCCcEez2dxn5zT/teqenxOo1Wopcakjb2ez3QVBsuM8llMk+95oNGJlZSX6/X6qezgcJttF/OpH+AsfaPW/dBnxPHEyHUu2xZ184n6VLVLZnsxj8EU2zf0Tlcn3SWqv/lZZbBeJ/SB2cXIn3Yn61wMfORvL+tQ24hzaNJXFvrLvsis5x9b7Q1tNe5SzwWqDJxlzxEANMYDLA8sgBmDbvA3Eb7SHuaAq35vN9j6fkLPl7tfRz1CfiNNkx+kTeMIuh50519RentDix0eTF8StTkwOOoYlH3LJOJ9XwjEHBYGJudg/9cuDwLqvd/gu/UP6CzkfmPV72e5nyb/kdQ+seh/925o8Cpf16L76qz6TL1rYoSPI1b96vZ6u0b/weUEfXwG6iEjfjvc+sV2OGQsVKnTp00HYRdjS7ZB81FarleK2jANxEfB0Ok3fh88F6GmDpPOEM3O6jDqdxMSK/nef1WNEjhn0Xo4PtC20LyK/5u2VbSHm8neJl1g/+0eb63Zc4+VtIOU2bVDPy04zeeZxDtpSj1uqrV42caf8HvKef+fGhWNBvnGMWQ7lIWcLvW6+5zjG6/W2ONZ0rMV2+PjOw9YRsc/Gq89s4zy+sJ0+J4gtiVdYD/2MXFnk47x++nXKI69TXlg2ee9j6rKhMZgXM3bfwMfB8SHrYeyPvpEnMfVuxJ4fqrxPt9uN5eXlhCG5gcVPYZJ+Ulvd99CPnqcfQx7mSP345V/+5Xjf+94Xr3zlK+P7v//74xOf+EQMh8P4y7/8y3jKU54SD3vYw9JRuOPxOG2Y+eAHPxiLi4vRbrfj/e9/f3zHd3xHNJvNuP/97x/3u9/94uabb87WezF0SSZBZ7NZtNvtimHh6mnfPUlBZCJxOt39NpGOoOUkcMeag06lTAHX/6yj3W4nQez3+ykhubOzE+PxOJWrpGCr1Yp+v58EXgEkHumgyeVCql13/o1B9r3VaqWsvoLjvqNOZTOgIyPnq7jFXyq23KTQ8zwqmHVR+fvKUf3tq9ZzTiUVjK9KorFzhaQ2KXnD8tgmXdva2kqBtpxBdqVC2RMf1BYGDrwPHhjSNQ/MsCw/osi/EarndVQIPxDvQIhgUfXK8WWAjzIghac25wJjubmp37ljT3PfjaERpbFi+SqDK+A5HkzE07A42JDBcNlTmdptHbEbyM0BXiWVNAdms92jwzxwxfYx2EVdo8DVZLK7s1K7bGisND5MKqm9PudygUk34uIhAar6KWNFsKu2U24VQKY8cpw8AUZdzPms9+gosd3eB30LS86OytF8Z4Dck7MCEFwpTx3J9nCXhRwwrqDSePCbsRFRKVvkYHk0Gu0LvLEd4le3241GoxG9Xi9uueWWWF9fTytoz58/n+SPx2CoDZyLatv58+ej3+/H0tJSbG1tJSeUOzfIc+1KlYyq/0yauDPD72Q5sCcvyBsGPQlANdfEb59XhQrd1Yh2i5iZull6XXNROzwVHJIedJ23vb2dEpSsh0Eo4aXJZJISodzZXqvV0qKZZrMZy8vLsbq6mhZmyL5ofjMJSV0iXd7v9yuLpagfIyLZIelpLtbRNVEuACDycsVr571jbL1LfesBE9WrOvS8B6RoJzSu6gsTXKLcYrNckIHBQ+rWXB9FTGQQ96j/jrOECRiooj3JYXzWz37keMF2EsfkEmI5kp2MqOJ32Ue1lXiW9dJ/8Lp8XHTfMSblwf1NxzkcL8dQxGLit+SL2I62U311n44/1B3sl+Y+ecbgDhNvui+8ID3EcXAc7LLIcWA71Dcex+ayQszPtrF/lEe1xXcbUU+y35oDnOO872Ps2FtyqPmfi3kwsOm6SphLP5RJ1wXiGfUseU9fwdtLWVAd6gP1rDBfvV6PVquVPhVCGXPZcL4VKlTo0iWP5VCPcHE77VdEJP+WR93SjglrEtuJHMf4Ee+MgXkcyMl1JvUxY2DUk2671CbW6WW7ndI1j0U7UWc6/sg9736y2sA6nBe55KovINJ92tWcT87yczbJyXkWUeWR1zEPoztfaI9J/g7rZww4h+kZl9D7bvMPwgbEHV4X7T59Fe/3QfKcu8fkN7EgMYhjF7YpIj9HHJuKH44VnffOm3nj6+PB591n4nsez/M6dc39L93L8V/3fZOUj4n+pw4RRmfbPMbpfJY+VC6p0+lEr9eLnZ2d2NzcTHkmxgHIY/KIPgNjufQL3U+8NZpOp/HmN785rrnmmnjFK14R3/M93xPnzp2LP/7jP463ve1tccMNN8SHP/zhmE6n8S3f8i2xtbUVH/vYx+K6666LT3/603H27NloNpuxuroa3W43fvqnfzre+MY3ptMWvxC6JJOgMmztdju2trZiaWlpn8KlwBD8R+wpaf2vpAuvS+jomLuR0/tyFPSzsLAQ3W43lpaW0mp2T5ZI+LWCXsd56UfGWX1VIstBg4SaSkg7fiaTSfrmxtbWVmxtbaW6tLqfO0MVNPFAiHgaUU06qM4caMgZfA+EUAFwjKjA6PxyfP1vOltsdw5M8DoD6T62fJeGxhXHPKPiwUIGG8gPbyN3RpGvuQ+Ms+3sm4+bnGA9n9uF6ADR+5ozlD7W7lTLIDDZob+p5HPgkKQ6/ag5BiE9IeYGRdcj9uSFgFnPuoyrfhrDiOpOgVxQjWCYBkPjwWd4z9/TvFSfPDjCVUjqm4JJbDPHmA4GE/KUBc5Dbx/7q/ZpjrBeBl1ogFutVloJrnpkvMnveUksggEeB8zEnPhBQ+3/u6MgvmkeKtnHceE8YALSgRD7rjGnjaCcsB0e/NUY++p+8YGBOAb6Go1GHD9+PJrNZmxubqbk/Hg8TjaCep5zhABpe3s7xuNxLC0tVeYZ9TXHXTZGgS2+o+SvyG2A3+OOEifXFeQt53Bux0mhQpczOSaRfnKdJGKAibrdbYt0zWSye7qEkp9aGKXFOPX67gJArj4dj8exubkZm5ubsbKyUrnOoHuv14ter5fapd3kPO42Ys/OCdfqfWEE6UPpTw/+uwNHLMYkDK/TeXTc676D4zzp5txCQup/kjvJEdUddR5I8HcPCkiwLx5wdHvvcuTOPgMmTsSibLv7CApq5jCxfoiN/X33GZzH5BH7rXfoA0RERU4cX/iCMF/8xV3OsmuOuXWPbZ0XWCAuZTBCz+V2zniZ4qtOe9Gck7+pPvriLfWbu5E1jj63HB/lAnKeTGa9miccO8eQfM/H2H0Y90NYv+pyfMH7XEhBudCY53xRYl+953OY7/CHfSL/iDN1n3rF555jW85nluvzXf0S0deSTHCHAn0b8ks4UN9xZgKXc83xqy9eYz9y+rFQoUKXHuXsv65TP3gcRBgzIpIuYhJ0OBymE/600I0xTdopxVSls7RgjLYrF18TETu4LWdMlrrL9WtOTztuy8XGGMvwBJiIdd8WYpw5V7fqnReX4XW3ncQ0LMtxguqkLeV9j606H70tnqzy8nkvJ5O5MSJ+9vFyHMTyc/4XF2bNw9G5tnpb2CeOI9uhueJ8yskJ7+nH358Xh5nXfr7r7fJ4s/fbMYSPgdfBH28rMVnOl9MzzEFwjlFPkEdevsv3vHHk3/x8ocrhxiPGen1clQhtNpvpKNyNjY3Y2NiIiMjmESIi+dnyqYUH5dvPy3+IcvqA9z7+8Y/HYDCI0WgUP/VTPxWvfvWr41nPela8/OUvj49+9KPxzne+M/72b/82NjY2Yjbb3Qn63Oc+N+r1epw5cyae+9znxvr6etzjHveI17zmNbGzsxNvfOMb4w//8A8PrPvW6JJMgsqQaHssVzn6ALlQu7Or4DKTI7rHHVt0vrhjj5On0WhEp9OJw4cPx5EjR6Lf76eVScPhML2jDP3KykosLy8ng60dShR+GXo3IhJ2OSI6olCr4NXe5eXltPpeCVHxS44njwHWCiuuIKehza1uUr98Irvj50qCStWNqgc+coAgF+jwpImc/oOAjDuEuRXIfJZGytvtTiP7ExFpxzHBEMvIGb/bQlTWNGwqX4EGPs9++vior+640hhSOTIAyECR+skEyjyHlvxTAMkNO+WLiRPJtOom+HSnX33xozxyckUj6oGFXGBCz3DHnxvKnHFmMIL3GFTjmDEQ7HNPZeTGhwlcveO6jsDCk6cMwkXsOSTOPwd8DKaIF/oOHN9hm9xouy7M8ZA6k/PVg5A5ueOYk4++Q5T6gnwj71in63cF6H13qYCI3qN98v5SP1I3qU1LS0sJFG1sbKQdzbRvHpxVm6nzNzY2YnV1NbtSzXd2Li4uRr/fj83Nzcp46G/+zl13O842ORH4UrYU5OXcLlTorkC5QAPtm/72Y9C12E6JzHa7nU4N8R1PtFHS0fz2Dk9WoY1QudIbsm169vDhw3Ho0KHK4hO2u1bbO9pRp5hwR5l/DkK6UD/UayqXOJW/HRcSr0q/ExuJ58R4jp3UVl9Z7bbH9Z8H5Bj0IK7w4IRjZ7d/HE/yg21w+6kxp82iPM3D/h6IYn/UVtkjt5+5fuse20V5y/mD/J/99/lC28c6NG45vjpudL/A7RcXRDKwQ4zgckBc45jAk1jEvGqX3uViAY4Jx4W+rT9L7Ok+YG7eqj0ugyrP552PN4M9TDj73GJfyKecj+mYkNiWOoW8ofzn5JjP5bCwj6GXLyL2dgzveDfnr7iOY7neb8ocdZbLlXhcr++ehCT9y7LUN8YZtHhlMpmk068oQzoa3RdjUs/keFyoUKEvDV111VVx8uTJ2xVsdqI9mBdYp36Ufu92uxWfkotw9DkxldtsNvftMtc7rVZrX9yXiQbVfzH98ESJ7/hzHOk4hnXRbqgMjztJd3rcdV7MyvFYzsfOYQG3mbeFPPbD8nILoZwnuVhMLnbGurztfl1/Ey/m+uy/5+FP5723K4crfSzYV9p6rz/XZ+IBxyNeD/GSzzFiKpVNIqYiD3Lzg2OVk0sv05N6EdW4UI5XFyPvuee9H8RV3h9iGn/f54/Pa55q5tjT2+MyyFiqflQO8ZvrTmHv6XSaPkPT6XQqG/BEwnQqg1hO1xi3Vl887jvPf3IaDofxtKc9LW3+GQwG8SM/8iOV2MHTn/70ykaPd7/73fG3f/u3qb169/Of/3w87WlPSzhT/L/iiisObMM8uiSToALWYr4nrSL2EhK8R/JJ6vdy91keV8fWarXo9/tx7NixFChuNBqxtraWjjDs9/vR6/XSbxlgBZzG43E6JkzCp8mgBIcrQDqgCnTrtyaCAlKrq6vR7/djZ2cn1tfXk5OiFQcyqNzVOpvt7bKSYSZ/PQgjyikpOsquuHPOXs4Q5uRAZXCikrxtbAOfcb6qTDd+fC7n9HvbnS9SkExWiMe3B2CSr76yTXXScXeiYaMCVj89wJAjGVMGJRhQoFPtPMmBQf5Npev/K+ioHz9CgIbbg5Ls72w2S4sJ5lEuMMi5qcRQzlDcGsCYFwxhcFAgXUFgBRXIL/aXuox8l1H1FT4yNv7dNa6SZBlc4e1AljpE/VZdMmhu2MW/iEgLMtRnjicXNlBG9L4Hsdh/BoHIKwb8Je+65sDX++i7h11fS/ZcDpgs8EDQQSCe+siDiypXct1utyv83NjY2PeN6ZwDRH2hRTQ6dYGOpXSN+KBFPu12OzY2Nio7BlzeKacO6PTbA4lug8hj0Wg0SrawUKFCVeJiIpHmlub9eDxO14kHuCiDOkhBb+JbLYrY2NioLOzQe9qdvrCwUMHIXPjiu7GoLzygr91HfF6LIqg/aIN95bvrXf34rgE9T/6Ql7rPerVAS/dk03xX2W0hjqMnkNgWEpPYfHbe316m21jfXeuBLr3rNps2QGXcGn6mTXd86H11ueGzrJ+L88gjtst5w7IYMJjXBj3P/jK4QTuZS4LmkrvEsypT7XVMwrmrMeKuS/Wfck7czP5wZyivz8O2muOOIZ0kU45J1D5fgOx+S+465cVPyqBM+OkcIpcz9d/9DLZVbZjXlhx/OF85rirf33P/1/WJJyiFof06y87Nzxy2J490z3cjcz7wdJXZbFY5Apdzgv0jz1wXFCpU6EtHwlR3ZBJUlLOt0lM8Na9Wq6WT8yIi7VDSbtDt7e20oEI6xRf6sT8RUbEJigEQh7heEhFX8LeeVZnz9CrLcZ7yHbe9vMYy3f54DMLxWw6nsL8eZ7s1yvXDF9T4pgi3eR4b1DPO21zZubYclDAiL/m/1+N2NmfHvYxczNn56pTrm8fuHBtfTFm5fqo9IsYAfXEm71EmGPuhHM3jCe85RvL+EBvn5p7LeI7/Od7k2pYbK39HuIm+p368747t5/kqLrfzfBO2TbpJPHffgHzVyaL85Iz8cMb06XuMx+N915lonMeng/A8iUnYiEjxBdFoNKr8P51O913TdW0qFN2eWN8lmQT99V//9Th//ny89KUvTUbSg8UR+yd07puLbiwI4qlA/SggkRKMd7vb3aLT6cRwOEzHPE4mk+j1enH8+PHodrvR6XQqjtZkMolz587FaDSK0WhU2dGqujSZaCCUvOARpzrWk8dJ6sO47XY7ms1mEpROp5MC2YPBIH2AVv3WqnluiRblnFwPeOSMq57lO+IBV+gLzLB8J3fePPGpezkD7sre+5EzwrkyXBF5UEfPuaHPrZz1oIYo1y9vOx1xjgWNVK1W25coZIBS4JHJtohICUEpV8khZYy/1Ta2gwZJciXFNg+k5XjhAEDzQkqavHa+c3WRGw71mfOM76qNdPi9fQxeMSDBZwjCfOcfx45jSb47n/Wc7qlMgX4ZWgIJtYtlqu3iAeWKOzLq9XrasSnZ1zHbPkf0jBKp5BdXbYofuq5EmuSr2WzuC2yJD+Qr28wkroJ55G+tVkvfjaPMUb7VVulUjZWMtgKAbBfLd6Csv8Ur8UXAhDaF48bj6ByMevCVcq5FFuzL4uJiHD58OMkG543rU7WZ33Aaj8cxHo9jZWWlwm/Xo9wN1mq14sKFC2lcfPexxp/JX85Z9cHtid514rzV4qKXvvSl0e129z1bqNBdmajXuaCPzo8wpBY2SCfK/upd6qJGo5G+CSxdLHwxm83SUWWqezQapW+ALi8vR7fbrQS2NKf1+QvpCyYSFexyfaFrTNaRpEf9+5/qn+tyLuaK2EvO5hI2/sM6W61WJek2D2N6W72NDCrlbJCe5ft6zo/XJy+pn/U8k5zEMUxaEWvkAkzud7ks5oI9fJ7Oea6OXBBN5avtXFBFGaJdrNVqCYtwfFi3Y2W2Ue2gTXd8qes+tno3hz/1PrGmfDpiH/oY8/wSYlAR287FmbpHX1n/y/7rHU9k+wI2T4K67KjNnFsaB8eCLu+UR+IljafKFkaZTqeV78Pn+kcesX30bzzxfND8Ex9URk5HiN8aK5cL5y2fYb8ZiHecRj+EdXmQmPpU8kC/UCeLsK8qNxeEdl5qx4IWi3N+cY7qnZyuLFSo0BeXPve5z110sPu2kvvh/CHWULyKgX29v7CwEMPhsKJnZZNkyxiXyOEPlUWMemtt5mKTiP24jTrb42U5H9bL53uMm/hz/N/1rOOwXNtYPnnoWMxtBO25xykYZ/J2qyzGJIm33A455RbMkTxuwL45vuU9x2bEBI41eS03N3Jj4zQvvuF2kljR4zTErnqW4z6vbXrOscHFtFnEueNtIy7x8nLYSr8pTxHzv6ep/jvmzyU2iX/JG89t8DnXJd4vlweOBX0BL49zlLFJ+WUsj31kPDZ3Kh3xcERUPnkonbe8vLzPj42IymcaiQe5QYu/2S/y4MtF0+k0Pve5z31B79ZmX86WFypUqFChQoUKFSpUqFChQoUKFSpUqFChQoUKFSpUqNAdTLfvA4SFChUqVKhQoUKFChUqVKhQoUKFChUqVKhQoUKFChUqdCejkgQtVKhQoUKFChUqVKhQoUKFChUqVKhQoUKFChUqVKjQZUUlCVqoUKFChQoVKlSoUKFChQoVKlSoUKFChQoVKlSoUKHLikoStFChQoUKFSpUqFChQoUKFSpUqFChQoUKFSpUqFChQpcVlSRooUKFChUqVKhQoUKFChUqVKhQoUKFChUqVKhQoUKFLisqSdBChQoVKlSoUKFChQoVKlSoUKFChQoVKlSoUKFChQpdVlSSoIUKFSpUqFChQoUKFSpUqFChQoUKFSpUqFChQoUKFbqsqCRBCxUqVKhQoUKFChUqVKhQoUKFChUqVKhQoUKFChUqdFlRSYIWKlSoUKFChQoVKlSoUKFChQoVKlSoUKFChQoVKlTosqKSBC1UqFChQoUKFSpUqFChQoUKFSpUqFChQoUKFSpUqNBlRSUJWqhQoUKFChUqVKhQoUKFChUqVKhQoUKFChUqVKhQocuKShK0UKFChQoVKlSoUKFChQoVKlSoUKFChQoVKlSoUKFClxWVJGihQoUKFSpUqFChQoUKFSpUqFChQoUKFSpUqFChQoUuKypJ0EKFChUqVKhQoUKFChUqVKhQoUKFChUqVKhQoUKFCl1WVJKghQoVustRrVaLb/zGb/xyN6NQoUKFChUqVKjQJU4FVxYqVKhQoUKFChW6vVQwZaFCXzwqSdBChb6MVKvVKj+NRiOOHj0aj3vc4+J3fud3vtzNK/QF0IkTJ+LYsWPR7/fj05/+dPaZ3/u934tarRZf+7VfG5PJ5EvcwkKFChUqVKjQ5UgFV15+VHBloUKFChUqVOhLTQVTXn5UMGWhuzrVZrPZ7MvdiEKF7qpUq9UiIuJFL3pRRERsb2/HJz7xiXjrW98ak8kknve858WrXvWqL2cTL0v6xCc+Ed1uN66++uovSvl/8Ad/ENddd1086lGPive85z3RaDTSvc997nNxzTXXxPb2dnzoQx+K+93vfl+UNhQqVKhQoUKF7lpUcOWXhwquLFSoUKFChQpdTlQw5ZeHCqYsVOiLRyUJWqjQl5EELHwa/uVf/mU84QlPiIiIz3zmM3Hve9/7S920QreTnvGMZ8Qb3/jGeMlLXhIvfOELI2J3nL/lW74l3vGOd8Qb3vCGeOYzn/llbmWhQoUKFSpU6HKhgisvXyq4slChQoUKFSr0paKCKS9fKpiy0F2VynG4hQrdCenxj3983P/+94/ZbBZ///d/HxERL37xi6NWq8W73vWu+P3f//14xCMeEd1uNw4fPhxPfepT43Of+1y2rLNnz8Z/+2//LR7wgAdEp9OJlZWVePzjHx9/8Rd/se9Z1uF0ww03RK1Wi2c84xmV6894xjOiVqvFv/zLv8Qv/uIvxgMf+MBot9tx73vfO172spcl0PR7v/d78YhHPCJ6vV4cP348fviHfziGw2G2zX/5l38ZT3ziE+Pw4cPRarXiq77qq+Inf/InY21tbd+z3/iN3xi1Wi12dnbiZS97WXzlV35ltFqtuOc97xk/8RM/EVtbW/veyZ2z//nPfz5e8pKXxKMf/ei48soro9lsxt3udrf47u/+7vjYxz6WbedB9NrXvjbuda97xUte8pL4wAc+kK694x3viCc96Um3CVSoj1tbW/GSl7wkvvqrvzparVYai7W1tfif//N/xuMe97i4xz3uEc1mM44dOxZPfvKT433ve1+lrHPnzkW324373e9++wCt6ElPelLUarXU7kKFChUqVKjQpUsFVxZcmetjwZWFChUqVKhQodtCBVMWTJnrY8GUhS4FKknQQoXupCSlrxVYol/+5V+Opz3taXHve987fuiHfij+zb/5N/G7v/u78c3f/M0xHo8rz372s5+Nhz/84fFzP/dzcezYsXjWs54VT3nKU+LjH/94PPGJT4xf/dVfvcPa+2M/9mPxohe9KB7xiEfEs571rKjX6/GCF7wgfuZnfiZe+9rXxtOf/vT4iq/4injWs54VV155ZfzSL/1S/OiP/ui+cl7/+tfHE57whHjve98b3/7t3x7Pe97z4vDhw/Hyl788vu7rvi7Onz+frf+7v/u743Wve1085jGPiWc/+9nR6XTiFa94RfzAD/zARbX/3e9+d/zcz/1crK6uxnXXXRfPe97z4lGPelQCcR/+8IdvEz+Wl5fjjW98Y0yn03ja054WH/jAB+Inf/In4/jx4/Frv/Zrt6ks0XXXXRe//Mu/HF/3dV8Xz33uc+Oaa66JiIiPf/zj8YIXvCDq9Xp827d9W/zoj/5oPOEJT4i/+qu/im/4hm+IP/uzP0tlHDp0KJ761KfGZz7zmXjHO96xr46bbrop/vRP/zQe/vCHx7XXXvsFtbNQoUKFChUqdOeigisLrnQquLJQoUKFChUqdFupYMqCKZ0Kpix0SdCsUKFCXzaKiFluGr797W+f1Wq1Wa1Wm91www2z2Ww2e9GLXjSLiNnS0tLsIx/5SOX57/qu75pFxOx3f/d3K9cf+9jHzmq12ux//+//Xbl+7ty52YMf/OBZu92enThxIl1XHe985zv3telf/uVfZhExe/rTn165/vSnP30WEbN73etes5tvvrlSx5EjR2bdbnd29OjR2cc+9rF0bzQazR7wgAfMms3m7OTJk+n6DTfcMGs2m7OlpaXZxz/+8Uo9z372s2cRMXvmM5+5r48RMXvYwx42O3PmTLq+sbExu9/97jer1+uzf/3Xf628ExGzxz72sZVrJ0+enF24cGFfvz/0oQ/Ner3e7IlPfOK+exdDP/ZjPzaLiFmr1ZpFxOz//t//e5vLUB+vueaa2alTp/bdP3/+fPb6TTfdNLvqqqtm97///SvX//7v/34WEbPrrrtu3zuSgTe84Q23uZ2FChUqVKhQoS8fFVxZcOXFUMGVhQoVKlSoUKGDqGDKgikvhgqmLHQpUdkJWqjQnYBe/OIXx4tf/OJ4wQteEN/5nd8ZT3ziE2M2m8Vzn/vcuNe97lV59jnPeU5aVSPScQXvf//707UPf/jDcf3118d1110XT33qUyvPr66uxs/8zM/EaDSKt7zlLXdIH174whfG3e9+90odT37yk2MwGMSzn/3seMADHpDutVqteMpTnhJbW1vx8Y9/PF1/05veFEZq2EQAAQAASURBVFtbW/HDP/zDcf/7379S/ktf+tJYWlqK3/7t3963iiwi4uUvf3kcPnw4/d/r9eI//af/FNPp9KKOSjh+/HgsLS3tu/7gBz84Hve4x8U73/nO2N7evtVynF784hdHt9uN8XgcT3nKU+JJT3rSbS5D9LM/+7Nx9OjRfddXVlay1+9xj3vEd37nd8YnPvGJuPHGG9P1a6+9Nq699tp461vfGidOnEjXJ5NJ/Pqv/3osLS3Fd33Xd33B7SxUqFChQoUKffmo4MpdKrjyYCq4slChQoUKFSp0EBVMuUsFUx5MBVMWuhRo4cvdgEKFCkX8zM/8TETsHiexuroaj3nMY+L7vu/74mlPe9q+Z3Pb/u95z3tGxO4Z6iKdr762thYvfvGL971z6tSpiIiKYb89lGvX3e52t4iIePjDH77vnkDIzTffnK598IMfjIiIxz3ucfueP3ToUDz0oQ+Nd7/73fGJT3wiHvzgB99q/Tm+HER//Md/HL/yK78SH/jAB+L06dOxs7NTuX/69Om46qqrLqos0Ste8YoYDAYREfGud70rTp8+vQ8EvPrVr953dMa3f/u3x0Me8pDKtUc84hFz63nve98br3nNa+J973tf3HLLLfu+L/C5z30urr766vT/D/7gD8b3fu/3xm/8xm/ET/3UT0VExJ/8yZ/EzTffHM9+9rOj3+/fpn4WKlSoUKFChe4cVHDlLhVcuUcFVxYqVKhQoUKFbisVTLlLBVPuUcGUhS5VKknQQoXuBDSb89HnHK2uru67trCwO5Unk0m6dubMmYiIePvb3x5vf/vb55a3sbFx0XUfRCsrK3PbddA9rljSx8TnGW9dz521f7F8mUevec1r4rnPfW4cOnQonvCEJ8TVV18d3W43arVa/OEf/mF8+MMfzq7qOoj+7u/+Ll72spfFfe5zn/ie7/meeMlLXhLPetaz4vd///crz7361a+Oz372s5Vr9773vfcBiyuvvDJbz//5P/8nvvM7vzPa7XY84QlPiPvd737R6/WiXq/Hu971rrj++uv3tf2pT31qPP/5z49f/dVfjZ/8yZ+Mer0eb3jDGyIiLvrbBIUKFSpUqFChOx8VXLlLBVfuUcGVhQoVKlSoUKHbSgVT7lLBlHtUMGWhS5VKErRQocuUZMxf85rXxHOe85yLeqde3z0h21cVReSN+R1NavOJEyfia77ma/bd/9d//dfKc3cU7ezsxItf/OK48sor44Mf/OA+YKOVareFNjc343u+53tiOp3Gb//2b8fXfu3Xxjvf+c54y1veEm9605sqK+duuOGGiyrTPzwveuELXxjNZjM+8IEPVI7yiNgFCddff/2+dzqdTjzjGc+IX/iFX4i/+Iu/iK/5mq+JP/3TP41HPvKR+1auFSpUqFChQoXu2lRw5cVTwZUFVxYqVKhQoUKF8lQw5cVTwZQFUxa646h8E7RQocuUHvWoR0VExF//9V9f9DuHDh2KiIibbrpp372LOav+9tJDH/rQiNg9isHp/Pnz8aEPfSja7fY+43l76fTp03H+/Pn4uq/7un2gYmNjIx19cVvo+c9/fnzqU5+KH//xH49HP/rRUa/X441vfGP0+/34kR/5kcrRGreXPv3pT8cDH/jAfXyZTqfxnve8Z+57z372s6NWq8XrX//6+PVf//WYTCZlZVWhQoUKFSpUaB8VXHnxVHBlwZWFChUqVKhQoTwVTHnxVDBlwZSF7jgqSdBChS5Tuvbaa+Mxj3lM/MEf/EH8xm/8RvaZj370o3HLLbek/3WO+2/+5m9WVljddNNN8ZKXvOSL2+CIeNrTnhaLi4vxute9Lj796U9X7r3whS+MCxcuxNOe9rRotVp3aL3Hjx+Pbrcb//AP/1A5cmN7ezv+y3/5L3H69OnbVN6f/MmfxOtf//p4yEMekr6hEBFxn/vcJ171qlfF+fPn43u/93tv09EiB9G9733v+NSnPhWf//zn07XZbBYvfvGL42Mf+9jc977yK78yHv/4x8cf/dEfxa/8yq/E6urqvg/TFypUqFChQoUKFVx58VRwZcGVhQoVKlSoUKE8FUx58VQwZcGUhe44KsfhFip0GdPv/M7vxOMe97j4vu/7vnjta18bj3zkI2N1dTVuvvnm+MhHPhL/7//9v3jf+94Xx48fj4iIRz7ykfEN3/AN8e53vzse8YhHxOMe97g4efJkvO1tb4tv/dZvza66uiPp3ve+d7z61a+OH/qhH4qHPexh8R//43+MY8eOxfXXXx/ve9/74v73v3+8/OUvv8Prrdfr8ZznPCd+7ud+Lq655pr4D//hP8TW1la8853vjLNnz8Y3fdM3xTvf+c6LKuv06dPxvd/7vdFut+NNb3pTNJvNyv1nPvOZ8da3vjX++I//OH7pl34pfviHf/h2t/95z3tePOtZz4qHPvShcd1118Xi4mK8973vjY997GPxpCc9Kd72trfNffcHf/AH4x3veEecPHkyfuRHfiQ6nc7tbk+hQoUKFSpU6PKjgisvjgquLLiyUKFChQoVKjSfCqa8OCqYsmDKQncclZ2ghQpdxnSPe9wj/uEf/iFe+tKXRqPRiDe/+c3x2te+Nv7mb/4mrr766nj9618f11xzTeWdt771rfH93//9cfPNN8frXve6+Md//Md4xSte8UUx6Dn6wR/8wfjzP//zeNSjHhVvectb4lWvelXccsst8V//63+N973vfXH48OEvSr0/+7M/Gz//8z8fnU4nXv/618cf/MEfxLXXXhvvf//74+qrr77ocv7zf/7PcfLkyXjZy16W/VZARMSv/dqvxZEjR+InfuIn4pOf/OTtbvsP/MAPxG/+5m/GVVddFW984xvjzW9+c9zznveMv/u7v4uHPexhB7775Cc/OY4ePZrKKVSoUKFChQoVylHBlRdPBVcWXFmoUKFChQoVylPBlBdPBVMWTFnojqHa7I7a41yoUKFChS45+sxnPhNf8RVfEY9+9KNv0zcZChUqVKhQoUKFChUiFVxZqFChQoUKFSpU6PZSwZSF7mgqO0ELFSpU6C5Mr3zlK2M2m90hR10UKlSoUKFChQoVuutSwZWFChUqVKhQoUKFbi8VTFnojqayE7RQoUKF7mJ04403xu/8zu/Epz71qfjN3/zNeNCDHhQf/OAHo14v62IKFSpUqFChQoUKXTwVXFmoUKFChQoVKlTo9lLBlIW+mFSSoIUKFSp0F6N3vetd8U3f9E3R7Xbj67/+6+N//a//Ffe9732/3M0qVKhQoUKFChUqdIlRwZWFChUqVKhQoUKFbi8VTFnoi0klCVqoUKFChQoVKlSoUKFChQoVKlSoUKFChQoVKlSoUKHLisp+4kKFChUqVKhQoUKFChUqVKhQoUKFChUqVKhQoUKFCl1WVJKghQoVKlSoUKFChQoVKlSoUKFChQoVKlSoUKFChQoVuqyoJEELFSpUqFChQoUKFSpUqFChQoUKFSpUqFChQoUKFSp0WdHCxT74gAc8IP3daDSiVqtFRES9Xo96fTeXqs+L1mq1dG06naZ7k8kkWq1WHDp0KK644opot9sxGAxiNBpFo9GIer0e0+k0Wq1W1Ov12NnZSe/X6/VYWFiIhYWFmM1msbi4GO12O9Wh+xERW1tb0el0UjnT6TSVs7CwEDs7O7G9vZ3aubCwkO5HRGxvb8dsNqtc29raip2dnZhMJunazs5OKoPPTiaTmM1miTez2SyGw2EMh8P0bKPRiIWFhajVahW+ia/8TX6rnmazGa1WKxYXF9P9drsd9Xo98VL3NGZqG9usdiwuLsbCwkJqr96dTCYxnU4TP8bjcSpHZWp81efpdBpbW1upLN2v1WqVOkUaP5W7uLgYvV4vFhcXY2VlJRYXF5MM6H2VJf7V6/WYTCZp7CaTSUwmkzRm0+k0tre3Ux9Go1FsbW3F9vZ2bG9vx87OTuzs7MTW1lZqu9q2tbUVGxsbaew1vhoTjgvHcDqdpmc1JpQh8WFhYSH1t91uR6/Xq8jAuXPn4sKFCzEajSq8lCw3Go2YzWaxtbUVERGdTieWlpaiVqslWRffWLd4yrmnOaV7akOj0YjFxcWYzWaxsLAQrVYryWaz2Yxms5lkRnK0uLiYxkk8WFxcTO+K7/V6Pba3tyvzodlsprHx+tWGZrOZ2ql+7OzsxHg8rsjnzs5Oesd1lHi3vb0dg8EgSGr3ZDJJZfrYU080Go1KeZy7lJV5NJ1Okxyqnp2dnXRf/a/Vakm2yUfVo3mhvzl39D7bpHGWzOv/drsd3W43FhYWot1uR6fTSX2UDGgsxYetra30rv7XuGrOqQ7Ny2azmcZVupo81v+U8Yg9Pa06NXcnk0lsbW1VbA/1s/hC3orEdz7r46B2aww01mqjfnZ2dtIckExwbNQ2yYjuq2yOn/SEdJN4JpkXj9U2zSvaZ5L6SB2p63peuqXRaMRgMIjNzc1KPeSP2q3/NU6z2Sx6vV60Wq2KjtzZ2YmHPOQhcd1118Xq6mri78LCQmxvb8f73//++K3f+q3odDqxvLwcnU4nBoNBbG9vR7fbjSNHjiR5evSjHx0Pf/jDo9vtxmQyqegR9U+82t7ejptvvjk++MEPxic/+ck4c+ZM3HLLLWl+T6fTeOYznxlPeMIT0vwVDrn++uvj1a9+dcIMOXutsdve3o7xeBzj8TjZVj1z5syZfeNRqNAXQseOHYvl5eUki+12O5rNZtTr9eh2u8kmy/br74gqjoiIZLel35vNZqyursbx48ej2WwmHaR3ifc0p7vdbsW2Et9Sr43H46Qjhcmk24gdZHObzWaqg7hd2InzlHic7VU7IyLpbfkkwhe6v7W1FWtrazEajVJ9W1tbiWfu34jXo9Eozf3t7e3Y2tqKRqMR7XY7VlZWotvtJrwl0nio7aurq3Gf+9wnjhw5EocPH452ux3r6+tx6tSp1Od+vx/Ly8upnHPnzsVHPvKRNAbqu/otH2dxcTHZd9kNjVXErk11e0FfSzI2GAySXY7Y8wfov7VarRiPxwkTsR0qazKZJCxAnKYxk12gTdeYjMfjij2iDdN1/ZZvpL5pvoxGo6jX69HpdJLfI95IHtVGjZH8EdXT6/ViOBwmudra2kryqnfUFuFw+jvCL5PJJDY2Nio4RnIu/0C/VebW1lYMh8PY2NiInZ2dGI1GiW8ag7Nnz8bJkydjMBgkHm9vb6fxcmyt8vWs+sW+i4eSMfGpVqtFq9WK1dXVaLVaaSzp93U6naQX9Pvo0aNRq9WSX7u5uZn+pzy02+3Y2tqKwWAQp0+fjvX19YR/1S+RsCn9NvWBvq7mwfb2doxGo4QrxGPJJueFZES+gWNrtYW4lrhR7dH8n0wmaezUpslkEpubm7GxsZH8I8UhpAc1htRFemY4HCYZ1jyQrLVarRgOh3HixIkK3v1y052pLYUK3VXp8OHD+64xlpe77kR/kM/OKyd3P+dj5a4Ti7D+XLnU0fR3eT/XX9bJWJZiX8LMsovEdSJhYmEilUkdHbGL3YQVheFVTy42rGdU5uLiYvIDhO8Ym9P/iovKruu6+KP/W61WtNvt9H6n06nE4xlj8ZifeEBs7nEoxrj5PuNmwk0qMxeHoM+fI9pMYcZ6vR79fj9ms1nCURo/YkbZTsb2KeO8R1zFODnbKVxDzC3bLpmTLRcx/yASnqdvIgzBGCrvayxYnmMhxUSECdUO9ln8Jt8lx2oH/T/Vo35prIlhhH2I1cUbxbyF4w4dOhSdTifhRsafyDu1T+/0er2o1+uxubkZn/nMZ+Kmm26q8MJ1F9vpmKvRaESv14tms5nk1v1D+UeUj4hIuRe1V/3jc5J5jz2Tn/6/16Hcg2KMHAe9q/FnzsR1Y+63xz49F8Z5qnH0vJz4qHc0xoylra+vx+bmZnpfMnZQbN1j+jm66CSoK6QcecBD75EBnU4nVlZWksBE7AV4IyIJmBwgKiE+zwRIq9VK9dRqteh0OikYo8EUMSAqY8Fy5biIKAwcOA/W64fXyRNNailhJgjdyNPY6h3/nwack4JBLHfaWBb/VzJD/VXbmBDgOwwmsXxXGgQTVCoMhjGgpLbI2DPYINI1KkryXOWKH3KQJ5NJCtwoUMEEKCeeytT/dPYlO5Rpl1HKHJOxEZHqpUGq1+tx5syZaLfbCWh0Op04dOhQtNvtWF1djUOHDsXGxkZsbGzEeDxODi4DmLVaLQXemHxiklOkflBGFGDidQ/YaJwI5pg8Y8BLQS+fF0zw6Fm9p/KpFAk6RJ7EZbJRz4rn1Cmqg2AqR9ILCkblyOcw5yXnK3meA90Re+BHRorzmuXSaNBwiWfUQxrLRqORgn1qk+sUAiIP0BEE80fzQn/T4AnYKbjGPtFgzmazGI/Hcx0R9l9tO8i5UTmLi4uVpKIH6sh7AV4fZ9UjGVdgTHyRfmDCkW1mYFG8ys0L6THyQMFqOhYRkeyenvOgv4jJDj3L8dbzqpftFG/oBCiJqYAf3xM58GJi3sexVqvFhz/84bj73e8ej3rUo1IiR2N39dVXx1VXXRXT6TS63W5KyJLfy8vLcerUqfirv/qr6PV6cc0110S3242NjY0UiKcukBzf9773jauvvjpGo1FcuHAhzp49GxcuXIjBYBCTySQe/OAHJ/nRWEynuwtEJCe0ozmSA6TxVTmFCn0xiLhNDqLmSkQVv0kOmeThorSIPd0ibMTypSdUj8pmkkHlR+zZUv1Iz0o/0M74PRIXRapPShRogQ5xGIMRtG8MNElHUh+rDC30Ud/1rJKhCwsLsbS0lJKwwq87OzsxGAxiOBwmXm1tbcW5c+dSkpJtlW5iMEw8X1tbqySphCU7nU5sb28ne6Cgl+y+dJ4SvBxTlj+b7S440wI7LhSbTqfJt1KgTOULG6mOiEj2VrpOgTvxXfyWHWBQJWIPT+3s7KS+yOaon81mM/lwSmyKLwooaLwkh5QB8ZHJTSXrVK70u+rS+NDe+YKAZrOZkp+SFS2OEk8lX2oT8cBoNIrhcJh8FMpkp9OJdrudfCK1/cKFC0l+lPRSX9WOjY2NWFtbSwl/yYraxIAEE5bE37ShCua4/SP20hzxoLDK3tnZiXa7nca52+1Gp9NJ+Ff906Ir2V33B5rNZirH8atkUnNVsstxl7+kMZ9O9xbkSQa4UFNzXjJAWWO79LwwhOScvjP5zvuakxoDLvqjb0M9xftapKz/6W8Tz0knEb8VKlSoUEQ1cefkPrrHPIgfaPPmlaEfTzz5j8dJc+VJ3zG+IN3OuCxjKR7YJzG+xE0LssO6TxuX46HHXCL27Lu/y8VDukfbr7aqTNlYjYH8XCYKVJbH24iN9K5I/rbGUfZJi9uI27xvWpSYi4Nx3MVz2kDGFsUnvkPyGIf4wqQRr3tcUz/Cm1x0pXu0+eS92kTeqt3iq8cYyUv1mzkSJn6IDeYR/RJheiYltdhU+IU+nMf7iH8Y01PZ6iPHUrhbiVZhm4hIGJSxbtUrv8R9S+Emxg2JRYV7+v1+HDp0KPr9fiU5PpvNYnNzM8XZI/bwbr/fT88Ph8P453/+5/jc5z4X6+vr6X21Q9hdxHyJ5EeLWzudTkREZWOd5q3GwmWPsUX5D8yLsC3kkfu/Gj/6dbwuneUxK84/lU0/VIlZz2Xpt8cl/brzTW30/AnnEeOg4ofHL7QgWItOGfP+Qumik6AiCoKIBjBHYnS/34+lpaXk1HCHmhxCMYMriz1gy8w2hUuCp7KolLhKmEIpQRmPx5XVlRpQBtAZ+FX9NCQqX23R/75yk0Y3F0y9tQEVP7e2tirKhESDR6fJHdhms1lZWaNgAHcBRVSTx2xHDszQ8aeiY39FNMJyamWI9JxkgURlzkCzymfATavyPRDH3w6AvN26FhGVJCZBggI2Uh40LgwU0ghxPm1vb6cV0JrsMiQrKyuxsrISS0tLERGxubkZZ8+ejc3NzUqwQkFJBQV99bFkwYMcXKFPRcqglcaTATzKmfhIfrJeD1BSDqgkxSeBYrbLwafayMUM9Xo9BX1kADn+HEuXY9I82aDsksgnBswckLFerrrRPfFJ1yVbnH/6n0GYiL2Aqo+Fj79IbaOxEY8FIra2tmI0GsVgMEjyRwPFQJWMF8GXdAfnMx2leXqEMuWOlvNAfZfsEry6bFF+vW5do24Qj0ajUQKo1DXupLEf7mDR4fAxoG3xgD6dNvVV9+ScEET4jpscqUx3fqjT9IyCihp36vHc/OC85bNqn1ZVvvvd746FhYW49tprU3K9Xt/dDXXttdfGJz7xibSbSMBH/e/3+3Hs2LH45Cc/GW9/+9vjyiuvjGPHjiUZVPu5yEWyp6T+oUOH4p73vGcl8CkbzSC1HINms5lWl9GZoSxKNgQ+5TCqTYUK3VE0nU4rpw5IhrVzj/rRVx5rda9sup6jAyZdrut6XgF0X/Q0GAySPaZ+4MIY6QXtRlMyhCuwqe9rtVpK+En3cIHcZDKJ4XCYkpFuf1kW7aj4poVnxJNK4tA+EOs3Go1YWlpKTrUW1okvSnRKB8gpP3fuXGxtbaUTFugYM8imNtTr9RgOhymhJB0yHA4Tn2Uv+v1+qsuDF+KZ9DLtIHe50RGXDMl+05+I2O8AU99pLOkHCKNp3OVrEMNIvpjMYeJSzr6e18IV4lwGXrg4UEkr+p4Re0kz2XWuZhf+VuJXsqLrDAypfK1Il8yIx57g0hhr5+HGxkZlbqtdqodJXSXaJQtMuMu+bW5uxrlz52I4HKZkNO2w+6FsKxcpSz6VkJtMJqk8lc0yeWKJ9I4SgpIJ+SjNZjP6/X5KIks21DYtfNjY2IjV1dW0sG9nZyftxJlOp7G5uZkWQNFnUb2+eIt423ezKqhMu00cq35qnjleUr99Ua1fF9EHoJ7hDhHicWI/6SniVf7QB+B4b21tVeZYoUKFCono09GP1T3pwYjqhhc+l4uPyO4rLiO8l0sk5nxq3vPy2QbFkOb1jfFg92M9DsPYVcQejs7hIOcJn2HsVff8mhJAspE87U+4hclTtZe2l0lELkAUzmNSj7bJT3lgvI+nT4xGo4R1hKu4wI1tYnm6x2dyMR3aabdbbLf73owd6b4nEcU7xnaEoVk2ecx+ML7k/j9xhMdTGA+lj0NMwNgd5ZCYm0ScI2zCnATjWvR/6N+xH+TjbDarJNc11lw0pjZyQRdj5IzzerxL/NL/Lgsca8rV4uJiHDlyJJaXl5PcqY86yUM4iRuKlHfa2tqKm266KT796U/H5uZmGmuOhzCg+43knbCrdJgvsFX8SH/rOjcxCG9qvPv9flrIKOK85CknziuNJxPiXKhJoizxpDrJmvApcz+Ml/KeyxnjEC6zlEPG1nQvp9OZm9J7sh+bm5v7krtfCN3mnaA5Q5RLjEZUdys1Go1YWVmJw4cPp2DGdDpNSr/RaMTm5mYql8FEMlSDLcchYi9JpnLkMGiicSUu+yDHgUe/esAjYm+FpQRESiC3wtOFc2dnp+JsqK0SXDcU5K2uuQFh4GSeQtbzTGRqHBgopyJRAk8Gb14yWOVy5TfboXYycJFLYqpN9Xo9BZi14pljIOFne1SHVtrymvjOIwkZyKGz6BPPnUY5jJQ5KVomr8h/1sNyaRDcuDJhqeDkxsZGLCzsHoF0yy23pFXTy8vLsbKyEseOHYvV1dXKDjWWJ3lTPxU8ooFioo28yIFPKWSuSPPVe1SmDgTJCypOPS9ie9kHjQ13cKheGlJd1zXfzUk55TjzOgNrOXLw5uWxzw5GuOpL99zAubzouusgT1aRX1wM4gtDVB7BDPkjeSIoIoATKBqPxzEYDGJ5eTmWl5crO08Y4KRTMq9sypmeZ788sEai3BLskTc08Lwm3kt+pds5Nmwv7R4Bqif+1E72gXOM8079k5PogTp3SlWf3lG/ySOOfc7RyAFltZHt42o2yhFtqvOCcunOxfb2dtoxde7cubj++utjNpvFNddcE8ePH4/JZBKHDh2K+93vfvGpT30qarXdgCnts8ZEyYhPfvKT8Q//8A/x7//9v0+8Id/IGwFRJVcdvHFXlGRpNttLguo++ek2heNfr9f3LYwpVOiOINp3OgnUF3pOzhqxGBdlED/LxjMRqN2awmeub7g4RAv0PODvtpyL63zuKNlBfSZ7z0U9XADS7/crySIttmBAhU4+//dFbtzlqqNXVYYWdKqNapuSLhGReKjkkfCqPq3A0xXUR+EWJRNbrVblCPSNjY10dKtwrYIVKysrsba2FrPZLOlL8XV7ezva7fY++x+xl3gUCTsoCaPf/ByDEl1qsxKH/HRFRKQjPtV3jcV4PK74FhGR+kv+c0e+aDabxWAwqNRbq+0F53SyBI9UpsxwsVCn04npdO+IXY2l8IPGlQlo1UmbzoVnxDGsT+MhmRmPx2mnpmRLfF1cXKzsbhYumc1mMRqNUjt1RHzE3klGCwsLMRqN4pZbbom1tbXkU3S73cTHZrOZ7J98Jc0BD2qoX9xdLpnmaU0M1sqvlH9Nv051ttvtFORVAEtJYS0i2N7ejgsXLqSEq3Af69/e3o5er1cJrElvqC8K2koehGO5Q1ZjyMCKxp/HhlFHkIh1pJM4z3yRlcrz//UOsZTKywW12BbHYvJbubBL5c9LEhQqVOiuTe43UbeJPG7mz8gmaGcjk3uyE/SHcklF/s02zUuwEOPRfvN5+uN8j3jWY1e3pW3EF3qX/jCTlKxbfBKeEJ7nQijpb+EF8VXlC8eLz95XjymoDJWvZxlb5ql8wiA6hl/2n59nk91h7ICYk7EKxpUpO8IZxE3001WW3qefwLgPbajGh+PmOIExD9bF+Cp5ylg+YzneP9pa4RSNJ+tzTE3Z875JznyBHflJv4c+DtvofKcvwn5qnBX3YwxNzzNGRszK+CzbJXn1/nO+6P9OpxNXXHFFwoZcPCFMHLGX/NQJl3rm3Llz6RNIwqXkBeWH11W/8hNMLkou6EOxLPpJ1C/yqziuws3cVcvkqngozKj/uYFF4yDZ4rzWPKJPF7E/lqpntPAxF+ukXNLPdHllHFP9pryzvd5nyQBj/fotWVxbW0s+vs/ti6WLToIeFMBjcIIgXiTh0fdM5HyIuIqXnWaHOeE4oX3VrcpRIknKVAqDx0pJKKVsNZlUhtrIPs1ms0oCzIPVVIQsh4Fu9o0TXddUjoMOtkF8owOntmhViXjvRl2TmA4jHV3yXxPclT6VWs44UCFrTBn0kCKkkWXdfJfGT5NESlirUzipFFjj0bBULAQFSvwqMcjvDqkdOvaLziblQ3zVPU/Wkh/zwJcbSbWVvB8MBnHhwoU4depULC0txfLycvpuI0ElgYHKqdfr6VtRHjxifUzGcj5LbnJjRHmX8tTYSjmKzzrumEBMdQjYcaEAeeKG0RUfjax+uANbOoDtY2JFZaq/BD5OrnAJ7FiOg1Bvq/Oawd0cYOURVnqfyVDxm/zivHMAmuOjnvdFHhrHiEgBKT23srIS97jHPdJOUY6BB+U1FlxBxj6RcuNZr9fTzlPtyphM9o6oFZ9cJyiIL/mnrfGVbmyT2ybxh2ULmOTAqzt93i4Cb/WJSTXqfIIfHhnIoK3IV9XqXk7OmJxg4FVtkZ7Sjg2fgz627BOBPRPk6sf58+fj7//+72Nrayv+7b/9t3Hs2LHY2tqKkydPxrlz56Lb7cZoNEor+SQDOqqy1+vFwsJCfOhDH4pHP/rRsbq6WgFSHAd3cNh/tY3HINK50THtLqfU7ZQRyYkC+yXoWOiOJi7GE7bljkrJYkR1/hFbyRY6huf/nOfEnJpPw+Ew4SHfSaU5xO8ER8S+OcFv+HG1vf5XO7i6W3NZuwq1Q0z/631fBCW9q3LpEIt/6qN0lX4z2aPyVZf0n3ZoNRqNSsJJiUDtYGTwhmMXsau75OTNZntJz8lkkoJO4oGSnCsrK3Hq1KmKbdUuWiUJI3Z1oRKsTOSyb/QjBoNBSqIqKUSnVt8Ap1/AY4OZcGs0do+R0u5F8UDJUflLs9luspnyzKPzhdE5lsTotOPT6TQlAek/0tmnzLHv8pXUTiYbibckG5JT+aAaS67013c8tfBX76t8YW2NE/up71Zubm6mdsxmu8lR2efTp0/HhQsXUjuYmBQW1zzV/JV8sU/qc61WSzIm/Cg50VyezXZ3QNP2MzCqcZPc1Wq1WF9fj9FoFAsLC+koYOJoLqzgEWU6lUMBHWIQ4icucFP9xHDqr/RTDp9zkYPKpS5RfcIQxJYM0GjeuS7NBYodo+kZyZMH1ohzxENiVGJY1luoUKFCTrSh0jH0Q/1v6bRms1lJiHGRDPFkLoFJ7Mk2iGgX5sWiGd9g7NhjEI5z2aZ5z81rt+rVb+IIxsYj9uK0sonEDcJmSnryRDyVTzxPO6a4gSeW1XdiZvqnB/VF/i5jm6pLtk6xWMVOmOzmd9F9nDlOtEvCDW5jaR+9zcSisukuJ2x/rq96hvLONqrMHL8oH4wz8j7ts+K1zCU43lDbGMNRPbrPb176fHAcxb6Kn94fXWdSislMT1bxqH7fcauyGfMmbyOqJ8J5G+lHbG9vR6fTiSuvvDKdXKmYH49lll8hHSRsOhwO4/Tp0/HZz362cmoScxMeG2W8jbvWuaGOO6s1Z7nZSjLpupPJTC6sdfnRb5bFsZa88+hgzR/pE8om55DrEfnY1NE7O3ufU+FiAS+TvCSGddzL66qDmyqoL4lddS8iKp+nkb6TH+WydLF0m47DpRHwJAU76tRqteLIkSOxurqaVhJQkOgsiylS/pxcvgNMA0knnokUZuc1aRQ8pmMjB8udDjn+6rscL01MDZ6cIO0wkZB4ApTK3xWt85iTgs97glg7N5UUoJND40WBFzihEvI2qQwaVQYs1G8qWy+LwWf1i8ElBYi14pm7UpncUd8iopKQ1CT3j0czaCU5YFBb4yjZY1Jb9dI5VR+ZsJGyIOCiwykZ9ICiG0e1m3xW+7laiHXq2FzJpxKhnU6nkkxWME5814obGQkqGck+Vwrrt9q1sLCQjgFQG9VOtVty4WMp5eyrPAgyWZcCGP4dBNXjbdVYMinE4BrllIZZ76tuGiQmNXid4yziip2c00AibyljkhPJD3dOqN+a7wxyKMg6Ho9TMJLAi4CG9VPP6H/fPRqxt0tVQatTp07FZLJ7vLm+vSw9d/To0SR/Mqo6wkxHneqD6+IZgzHkl+TGdaSCgPx+sBbEMAnnAXjKD4Ns0tMcC4IGyQD1I8GJ5pV4pGAxgTfHkU6EAB139Kgsyr74KxujMeECFJUt25iTQfZNOtgTBCLpUIJXjaOvEJNudZI86R5tLO3McDiMj33sY7G9vR0Pe9jD4sKFC/GhD30oJpNJ5du2cqolG/1+P86dOxeLi4tx/vz5OHfuXBw9erSSqNE8297ejuFwGJPJJFZWVioJEOkKJsqlV7jog0cz6ppsC/WC+lev19M3VNy5K1To9hIxl3Qqk2gKuLi943NcxKGVrrQJKltzXYuYuMtP9ki6UPKuAIwvuOJxpHRCqbv0m3qF+F5JH2FA2cFabW/nuFbWEhOKpAtVJhfRiHicGHkjfUTcxERDp9NJwRnhcyUhhW3G43Ha/dbpdJKDt7W1Fb1eL43N+vp6dLvdNJaqW99D3NjYSGOjY3Y3NjZSAlHEQAaPMPVgj8ZDtkOJZdpu4TtiZupH6UP9r0CG7KvK5P+SAT2nb+1IblSmeC57yYSv/AhiWpUhWaQvIpyjMRd+Iu6QvWHAgsdNyz5wgZLkSzxWe5XoGw6Haf4IIynZubi4mBYMy+ZPp7tHvir5qXboOFkd0T6bzWJtbS02NjaSfyV/TzwUNtPY1eu7O2LlT/qYMiiq9skP4dymPy6+6G/xrtfrJYyk73BrfgjTaF61Wq20KFk7fD2wJ4ysMVUbOTfVFiYTGXBxXalj96n7WK/e13W9K3+TuJY4gklSLtCmH0k9rrnG/tBfZPvVByZt2QfGWzQfSxK0UKFCOaKOdV9Wv2VTlfSUL85knOMLj/mQeI2xQ7VB9l3PejnU+SQPxDOWwNiIxxrcn5V98+teLuO95EHE3slAep7JQuEl8VH/M+bLtug3d3wxRs6TG2QD+Y1ujwvUatXjd2Xf1IfJZJJwD+MhEXs+vPB7o9FIWJQ4PjcG9LcZmyI/9aNyfMGabF8u3qFruZi7yxnHNhcLcSLGYL1cPKbyhS/osyg+S8xNGWcuQYvUGGth/MLlJBc7m5d3II/mxWTZJ+VqtKBO48UErn7nNkEwzyE58/krfrRarbjiiitieXm5IieM83HhhcZue3s71tbW4pZbbokLFy5U+scxpl4hCU+2Wq19eQCPC4tXPKlEvgRxtPxj6lPNLfHLF9LpObbRY7iUIf2t93nyI5/nWHmcUzJGeZy3cI5JXcYhqbPdT+MzlD+1h/iacih/XaTcUaPRiPX19X0LEC6GLjoJqoHn5PBB0TUGThcWFqLb7Ua/308rvd2gkmEM/HNiUhmrPjoWYhZXEfNoIX5LJCJSIEcC2e12Y3NzM+0wrNVqKcDPxBsHUoLNhBwTC0r25gbl1gwx33NAwok4m83SiurFxcXo9/vpOSZxlByT88udUq4QGagmj1inTwbKht5leVTaenZhYfdjxTSsekb91GoofjsnYu8MdSVEGGTX+54AVeDMj7dVnVQKLI9GgErGgRj76DLO4E1u7Pkc267Am/rKetSHwWAQm5ub0Ww209nn+laOghRMWOeCit5vjqWSnzIyHtDUWHEeSv74twMDBjxFepYBCF0nzxzwOQgRUNIYez+9rFwZ/JvjynnA51iul8F5rXGTnqQuYRt4BImCpvpfwJeBF5Wr+gi41fbcikBvv4MhGaSNjY3UDhkeBdAiIjY2NqLVaqWdeW5kdTyFFjVoPrre5Njkxn463d2RqmCgAoHdbreSfJ/NZpXvWIm3BJeaaw6gCRZzpIUv/F98Ft8kv5wX/LYm5ZvPMJjFfjMIzqMrfR7qxxdhcCzoRAmYcWc79RHlUkBOskSnJOfg0AnhijNffTaZ7C46+sxnPhODwSAGg0GMRqPo9Xoxm81SAFTH6qndBEVa3OHzVvdOnDgRv/3bvx3nzp2LRz/60fGoRz0qjhw5khwJJUBp38Tj7e3tuOGGG+LMmTP7At3UV+Sd2ig7VgKPhb4YpDnA4DedBukg7XbTQgLqeekfJbgi9vAogygiBvMl58JWmtduv4m5qCO1apdOE+eT3tcOPOpm6S29r2NrpfflM9ApjKg66bPZ7vGqql8JGNpl7V6LiJSoVN/pWE4mk+h0OsmPUB1KWLq9kQ3UN00jIs6fP19ZWbywsBC33HJLSozp24jcGSr93ul0YmVlJX3zT/aRi6fIl06nU9lJxxX9ukYcpbHXMXf8/qfGWGMnftDWUDdLzhjYodOscSfe45GosgmaA7IHcvyFe+v1erK78jUi9o5S1XXJGP3NiKhgFLVpMplU5pHLF4Nz9FO0Y1oJLvrIaqfwkXy66XSaVjvrPc4V8X8ymcTa2loMBoMKXpfNrtVqKdmqOSIeTiaT1AYGH8QLLjJmsE76RraXiW2NMb+fKn9mc3Ozoj82NzcriUolYzudTkrwiqdqj9quOcwTgdgG7qTVaTTioSeEuVvd/WDpL/FS16WXiG30PBcQSncQgxJj55Ly0hXEg/RNNW9UjvudwnZM2DIwXqhQoUJOHtug7yx71e12K9/F4waHiPk+tGIHudgD68+9R/xCu8t4M9utsj2BxUQaE7teji80YZnePsZvI6rfDvU4q+wOeaHPXak+34npsSS9y6QAY8P0/71dbi9kv/kdSGJw8cXbwGS4nmH8QnFnYRv1jRuhmOChP6L6WTbjWVzwpsVlHrtS22kXGb/PyTcxJeOLoou1m5RhjXWtVqts1lCfiZGVUJaPIVvNeKFwgifQPF4j2fH785JgnF+UKWIalctxor/DBVscMxGxCBPkqpfj1Wg04vDhw+kboHqfGLXZbKaYo/izubkZN998c6ytrSXMpba02+0KzzQWjNv4t3jVF+k/8Z1xW8ocFx2SV5KriD3/RzJeq9XSvGBfPEFLjM6FrbqnNotXKs9zDMynMYYg3SifQot5GZulX0aZdLnhfcmFjzGf5fxzH51EnRex+z3VRqMRa2trlY2HF0O36ThcKqrcZKFSkUPQ7/djZWUlBco9+ExmKshP4fDymdHmIHJV+8LCQhw6dCi+9Vu/dZ/inkwmcerUqfinf/qnaDQaceHChbSLSg6QMufaMajAgCY6d+hQIN3QzlOWBxlQBqv9eb/GxMF4PI4LFy7EdDqNQ4cOVfgjBcxAhcbKE2O6pva4shYPqVRoUPVDYff+TKe7Kzc6nU7aNUiZkIJSoKVWq6Xjmhhs8sSRkrvipwI3dNr9SDYad/2tcWSwygMjap/4QcDBCe6TVf338aRhJkDjqmI35Bw/yelwOKwsDlAbuMtM9ygjPLZqMBjEzs7uVnh9+8rBGA23giwqk2PJYATBhQfMaAg8oeDAl3wmvwUSHPTwXZal4IX4Trlj+ZxvnC8EXQ40SOwLg32+asWVPwMWCjZOp3vf92LgWO0W38lLD46oDzRM5JGAghYecOW6ZElzzYGoHCOXFQWEptO93d/qq44GzIFYXqPxVgBue3s7Jc36/X70er0khxpHJvdElBE5G2wDd1BH7C2AiNhz8jR3CPzVJ70nnav2MNDLcaCciqcEwJyzuZWCDChrnOhw5YC96ouIlPzgPGJfOLfIQy6kIXGuqHzaH+kP6inpkHPnzqVdzRo/6Tx9f7bRaKTA8s7OThw7diwe+MAHxt3udrfK+EqWJKvT6TT++Z//OU6dOhWnT5+Ob//2b4+lpaWK3iGgq9d3d+mcPXs2rr/++hgOh0l2Off8Xc5pjb2vdCxU6PZSLkDCRIICEUz+EKNzHkbsrdKV4zcejyvfElSCSbqMi3C0uIyBfc0P6g/ZEOE/6nvulFT7ZG+kB+g4e7v57T4d3el4gQ6f9B0/fSFdSP0uR1A4S/pW7eF3P5XYYfCACyK0mJK6j8fjKhglOyx7pMVtcpTln2j3muxXp9OJ48ePx9mzZ9NxulwcKd3pJxgocTgejyunTYi/0qEKAsxms5REVduVPKadEs7holDpZt2TvNHeaywYeFD9kjW3i/IXxG+1XXIm/011iAdqk/CZxkFtYFBHMiw5jogK5pEfy0V6KlPH+RIzcxEPbR53VY/H47RDUf3WyS8KQml3qQe1FHxUm8kvLRqS/ChANBwO0+5LBVA8MU7fiPNRssPFWrXa7qJi7YhW4p1HYKuOiOrR3sR6Wl2vhQ+SL5H0k/5Wmxjc0bvCWPQrcliZWMD7LF9R84qYTtiJC3dVrvsEkiPJCP0SJ2E2yaPmL3/zWWFvLl6lP1moUKFCJI9lSZf1er0UK9LJThHVBdUeT4vYnyAU5WJgjP+oDWqT7jEJovp1n+0XeXKU73KDAInxKf2fi9upPPqQsn+Mj+b4IBss20ybyHgaMZPu6Ue2nL+F53TN/VDySm2QDZItI86jXDgPGZvh2AtXCLcsLCykBVjsr9orG+wLw2W3KZPcKcfYBe0446yM0dGOy+fweAFji5RN7yPl2PtOmWEcV5tZ6IdpTHQ6hvAQ8YZ4SLxFzOr9ZNv0m8k1l23KPWVb/aHfRX4pFslPVcgvkj+k8WQClPFG56uw3dLSUhw9erTyiRXyQ6emSHa3trbixIkTceLEicqnMSTPvmiUvFG+gb6G2sxEvPdJmFKYmL4x5U1ELEkfSPdyi0CJdek3Mp7H2LTaqWtqJ+WeMSv9TR2sMvW3cL0WHzJGSyKf1E+ONXWtfCnyynNSLp/kIzf6qA8bGxvplJ2LoYtOglIh8TdJgF5MX1paisOHD8fKyko6fpUJEHaOZTHjr7pFcnDo4LrDHbGrLK655ppK9lkDvr29Hd/4jd8Y9Xo93vOe98Q//uM/xo033pjeV3BVO580yPqtSSEBlMDLOVV/cjwSeYAhp4xEnAguGC60o9Eo1tbWotfrJZCiYLr6kjP6NDCcPFR2VD7igxt3ji0nIMtsNpspMa6xk6MqxcBvR+oIKE0+KSQ63Pw2qNqgwBwTpmqPAi4McOhdOquUNzrL7HNOpqlY6PCyHa4MNYYMVrANBE4sg9cUMFFASu3kGGrsmPwSNRqNtNtKCS3u4OZYUjkKSDGpQiOUmwceuCWvOFb8X+2dTve+M8qjyRy8+yo5bwvnm/NBxo5BOB9HLyOnE1kelbxABctUH8RvjhPB1ObmZmXXgoMtlcnAnfdRbWewV+07f/582h3DMfK5IfDDHQt6jrsA1D/thNCqR8m6Eu++O9YThPpbu4fE7+3t7VhfX0/BtXa7nYKEXNXpAXAacM19yq2vyne9yDbIzjBYqECmxpvywGCWeMx5LV0XESmwKl1JWyPesB0cay+XCQrJDIEUHQ49pzpzusfrJemeFidxnrvjoP5pzum4bx1zzJ3wk8kkzp49mwK8X/3VXx1PfOITK0fSc2wXFxfjiiuuiG/7tm+L8XgcH/3oR+Nv/uZv4l73ulc89rGPTf3k8TSqZzgcxu///u/HRz/60YqjyHa73tIzHB/KSqFCdwTRrjvOitizGUxcupOieeKLHYRztZqbekyfEZAO9V2O0oXSbQr08Og06Tc5m9TH0ns65UR6wVe0sv2TySQdiRuxO+fk1LJtXIWu6+IdHV7NWT3LAJJ4Ip1BR052QgkbtzMRVTwpeziZTGJzczNOnjyZTk0gj2TLdfLJbDZLu+TEF9k/YexarRYXLlyI9fX1ZHPVByZslLxk0lZtku734JCCLwzISQ7UHgWY6KhG7NkDyZWSb8KuqoMYW3Uo4CCMIVnQ+Al3EPv5gsWIqOyOVdvZNvpN9Cskd7PZLNkm540SX41GI2Ge6XSa2qVxl21lApSYTd/MVMJbZSpgI/kbDAZx/vz5SiJR/BKpD2zbbDZLWMp9Iga1tGBBeE8yRz9Y4zubzdJcEY+63W70er3Y3NyMEydOpHZovDQHNF+Gw+G+I4elZ+SvOa+IqbRTWvLun+DRfORiM/rz/MZQLijPQJB4ScykeagkLmXIF1FQfzl+l2wTnxGbStd4sJplOCa52OBQoUKF7pr0wAc+MD75yU8mPKTPLcl+MeYqom2M2P8NTcea0n2M8RAn0Fd2PZbDumyPJ2yo/zweJ3LfjHET98u9PO+DfhNLMqYlPMmkoPii/utH5OUJQ+t6xN7iIfGVMSKNG+M93CDhY8i6yWPGqMhz94ldNuQzCEfID2BiT/aN8QmdcucbMXhyk/rCuAjjsvNifnqOYyo/h3Eo4V3KKPMKTO4xAch4utrCXYXEf/xGvLCDb4ZxPgtrU+44ZhwjJqJy40Zcm5svJPVZc1y5Bi2mo/yw//qfCVElERmHitj1GY8dO5YWXfAThOpPp9NJftbW1lbccMMNcf78+Yof5+POuarnhKl5aon8KWFU+gias8x35ZKXnH8RsS9hrbJ8DKQf1E+2l0l0/wQj/WnGAYklWaaIsUtuJFP7FetVu3OnmlFfqk3qj/hEWeJCFrXX448cM/ehJWNaREj5bjabca973Ssuhi46Ceo72nyis/Pb29vR7/fj0KFDyXA2m82UnfUfJhlpQOl8a+I6Mxmg5qBxkF/4whcmg67rV1xxRbzyla+Mb/qmb4r3ve99SelsbGzE+vp65dghMpdKVs6YJgMTJaJ5SiRi/64xVz5UCDRcnDCaaJqws9ksNjc3UwKQR/dQSbIuKiwXYrXT20hQ423jfedFo9FIK4KZIJGCU3+kVDc3N1NmX8dS0WlXglCrZz0ox6QG28zEEu9pctPYqj800OwTg4ak/5+9fwu1bsvOuvE25zrOw1rrPeyqXdllUpVDBZQQbzQBQ0AFE1HInR8hFxIhEaOCeONlQBQvYqJeiXjlCRFyIUJQQVPESBTEJBJJTMixUod9ft91mId1mnP+Lxa/Pn/jecfa+63Pqvwvvtlhsdaac4w+em+99dae9rTe+0AfXZcdBzKmXsgrHLsDferjWid2kL+JKfTRR1T5fXc+9qxqu6LFhAOyZf6mI8bgGmC57+iv7YMT1zaafTqUn3ke2tgjhwQ3dkI2uNTnowq8StqglbZzHc4258Vj//snx59xQP6eIwZ1kDQYe+wODgPbxf2Mv+ty8bMs583mYcHBYrF45d2jXmxgm8M9ADmOHd9sHo4Yr9oev0I72bUwGo1qNBo1oorPbQuypB1Df2knIIz3LUAu+hhatx1SHP1AHizAMOBHjzwHkCHyYV64ncwnL3YwsLEtyCDNBGsGCK7HCQrutb2juN/c54S/X3b/WJtcX85PPxd52VazOyt9EfIxOclxhSzMqKq28IH3j3ziE59oz10sFvX8+fMO2KZQ93d8x3fUaDSqn/3Zn61f/uVfrt/5nd+p7/qu76rRaNTsL/1drVb1wQcf1M/93M/Vf/kv/6U9B6BoUEg//FwH+A5Id2VXvlYlfSvz0+S8Cae0X+mzHQAOh9v3OTPHvduTkwJ8P0ksLybAhnFcedWrvhEfw2/6cnh42FaSe7Fa1fY4U+wjdga/CqHA7kl8Igu87EeRh4kD42Mn+Kjf/ty2t2ob2HIULXYQP2k5Gofgw955552WoJlMJnVyclK3t7c1m81aQur+/r4lRE16US82bW9vry0Q4jf4Gv9Jf+7v79trQKq2QXsfzthsNp1EmXEr+mMc7lXoEB9VW+IOW4+sjLXyXZ3okzGxiVHGjQQ1OuLEqzEufaDNzBeTWuiaYyX7X37TR3RwuVy299UQpxAjk5hmNT1+5/7+4TUXXJ/xHOOPLs5ms/ZsY3GTlsgI/WOuEScsl8saDB52PT99+rTu7u7q/Pz8lUVR9mPYHrAeWIgkvl+BcHNzU++88069ePGiExs5ucurFpiLk8mkg0msA32EihezMubomPvMXEHWzGWei15g85jTtpcmmjxX8jU4PJeEOO3MeMV6mDE384OxJ2GKPLDt3tnqeMZ+IfmaXdmVXdkVl5ubm8YdcbS6F5n02Sk+t4+2f3ZSs6o6fiW5RmOvPh7S3z9WHP9mHfZnj5Hr2Eh8qu95rC3Je7IIhn7j9/C55rH8t+N432986rFwjO6TSLjfnBvtZEGi+5DJMffHfsP4AvkmT2dMllw/R/GT2HRCl/45OYQPhv9yzGPuxrjAsYWTlO6LeXbjpCzWISdJ3V9jwByXfL7jGPAxCz495uY8c27wN3jMXJH5YMvKdXgOW4f7+uG2Ig9+8xyw5GKx6Lxiw/cjNz53MpTYgnjgE5/4RHsFyN7eXmchIHELr1dYLpf1e7/3e3V1ddWxO06eZYINrOojm41r0Uvan1ydFwbz3lDalguK/XzL0bqFDrEJyXwj9fTJos/uuE6XXCiQdtbcJwX7By62XiVOpS7bzuQhM962jGif73FbXA+fpz+hva+LcV87CWrlMFlQVa8Mxng8rpOTk7ZNmcHkJ0lolMNH4/gZBAAWFKtg06nxm4B1MBjUV77ylfqO7/iORiqgiP/8n//z+uEf/uH6kR/5kfqrf/Wv1v7+fgtW7TAscJ6B8cTAJsFpw9pXTJj2EaNWTjtyG0cTNXzOWPh9OVzvyclnXA/xgRHuU0CPiZ/re7zj1wU5npyctONVTTKQeMQgDQYPR+DO5/O6u7trSdDBYNCIOR9lBankCUTw6UDV+mVQlqug3QeTMegOTsy673G1YfKKeq5JENMXrFp2Bj+0ySuRWByAM3JdyIt5ZiNohwABxHN4BgSLE0mQKcjDidLczUcxMEtDlaQjbfIPOpyyM/lqIEBbuddyN3mVes142NC7zgR2qVMGVrabyNV99c4y9Atb4pVzrpt2sSK/qpoTNrFL35ELn/EM7CokLUeLWjbIy2AqHad3FkD8cf1kMumAYsAFZC+6bsDB0ePeaWJ75jnGPRBM9i/sHkeujJl3NpME5W9+nIi1XUT+EJnWbQcGHmt0Kec73/vZ3IfsbVut78xrJ+T39/fbQpH1et3efeUxpM4+/2rZ2fb72tQDAyFsEW3OIJTdHr7WNtYkLraN+5yE4JhPrquqev/99+uLX/xivfnmm53gwz6O+r7lW76lPvnJT9b3fu/31mQy6bwLjesgbP/jf/yP9bM/+7ONTGde5Ao/65NtqnXeAeau7MrXojiQwIb7dQ3YHq61jaqqdtylV6BXbVeUYmd4nyGBrhMItlv8v16v6/T0tNkT+9z0tXd3dw1b0E7mP7gCn4YtoF/4M8917Mhms+nsXDBmxT7RZmSV2MuxCn6e+Y3svEDMeJmg0f114oQ2j8fj5ruIUebzeX3wwQcdomY0GnUIBxYUeXGoF3PQj8PDwzo9Pa2Li4uazWY1m83aEbkkZSGkGFv8KbvzjLXx88g3YwLuMbG32Wza+ygZJ/sA+xHkBLngXQ7I3YvJvBswsZdjHmNa4zsnSZMosa9jAQ8LqyaTSUts0l/88c3NTcPN7Eokfjk6OqqnT5+296dbL9Dxq6urms/nnTnCAknrNAlQvzeTH8eE3pHrRUWWB5hwPB63OTGdTlv/kFUStLSL8YTEgWQ9OHh4X/D7779fFxcXnWShj1T0DgkwCclvx2TGp+Cbqu6ucSf3b25uXiF70Rf6BsnPODluNH9h3fU8x64YIzmZbzxJe42l0F3bL4ptOHVR+uJ02uTPc1HkY2TvruzKruzKhx9+2Hg6sETavOQe/V1Vd2GRf1PMvznWddKP+xxXPlZMkOf/tpPEb8nV+X/fm301r+rNCI6nfT2+0T7Sv52kZJFW1fZd6bTBPtM71twm23gnVGkTWBkO3UmixP5uH743/S/FiQgn/NK/We6uE9/vsfMuUbiN1WrVcJfrdf/Td+YYJkfGAimfbsNYuS/G/x7nHHOekfxw8uJe/GW+LmM0t9/PZPzNbfEM86/p5z221iHrM9e5v5RMPiXHO51O2ysPMn/g/3O+Oun95MmTevLkScsHgNO86YHY4P7+vn7/93+/5vN5J6awbtuWIHfiHSfczT3xdx/eot9+v2hyy15saRmYy7LeEgsS0zinwPdgSsfEnr9erMo9aT+Zw8iJfjLettOMve0c9rNqu0HL+pKysk133JfjkfdTrHt9xXab2O3u7q6+8pWvfOR9lNdOgtLwnBQWAsTkkydPajqdtncKVm0DV4gBznbuS8LYaeYqh+l02laR8L4chOzdOHYSCAqCCOIfkvz58+f1Z/7Mn6mf/umffuV9dg5c3N6PCiA+atDS2VKXFdmkgsl3B3B+hie6gzWvcjZpm8Q1dSDjNHp870RGOh/3ow94QIqdnp62Vc8kE0hgOqDmPX8kMqmfXQaMMU7eOvhYYOhn2khgCIbDYSMq7MBSZh6PPgOTK6VtRCiAi8Gg+74pg6kEGX5eVffIWesGhg89YNcU4Mp1Wr9ol4kf+gDB4FVsCd54dt+7Bak3E8E836vsE5S62OEbMHicuM46avkwhqnXtmn+zISwyV+eY/LDuuc2rtfbozYzMeKkDXLFVjo5acLHzpZxwH6iQ+gjMjeoRuaQr8wrQCFjZPuQusMzqqrtjDPwoT2sJPV71kwMOUjgGghFL5yx4+a5JlkhsXx8NLtnfHyu38FB0EGdJDcNoPxME4EkUykJuD1ffR3ja9KLz+mLdRr7vdlsOu9xAwRar6qqE7TiBzxX7NecxLDfNfGWdo9r+MzPtm7TP9fN8dXp85xg9O6UvoApschkMqmbm5v6zd/8zfojf+SPtODduyK8yKaq6uzsrM7Ozlof0P/ValUffvhh/cqv/Er9/M//fP36r/9624FtgOXAM209f/s3/UwiYFd25f+meJ4aK2Pr0VkHLcZ5FPth34Mfx+bk4gxK7vDk2vF4XNPptGMHvdCHukyskOTDPlG4Hh9j28AiIBKTVQ8JkMViUYeHh53FOJlQcVBPG8EwXiRF37G519fXLQhGFrSdOMOLThgPnuH32xwdHXXw0v39w6k0JMocP+3t7bWj5E3OQAhgN7GhVdWSnAcHB3VxcVGr1art8ptOpy3BV7U9zpOCP0YnrFuOF/zb+JZ+OaGNz0Uf7u/v225B4xD6a4xN+/BrfAYexsebsGOugBPon5N6jBHXmiBCPsgZ/+JTJEhKo3foDoQQCeAnT57UeDzuPIN+LJfLms1mnWOB8Z+sesfvE0d7B4HHAd0CU/k1M0kK+ShaEo/IZ39/v53Q4fng5DKF0z0Ya+o6Pz+vFy9edLDBer1ucbzHAD/P99bB4+PjtsPb72xlzJ2AZPGniVfHGo5F/E5dZLa3t9cSorSBH2Rg+8iYOF41HrJMWdRHGxyPmDTyHMQuMAaOFV0YR+TCPMXePEY27cqu7MquVFV7FZJ5q4x3qrqbPfriG9sn2zTHvPZVPI//k1PzAqUs9ve2reZT3A4wjdtlO5zFXKOf1cdTmdOoqsYVONZ1nMvn4BGfFOJkV1U3qZz8AvLy4nDzcjyHxXI5LvgK+zj7fPrFffZxHjdzeMZtiYeN8R1T2BdzL/jVbXb91hnzbOYFPVZ9XL5xghcx2eeaU0TefoZ1x3yOP8/FeeYOKeaR7Osdr1AvbTM3aR43OeLUb8YGnoz6HZeY1/R9OQ4HBwd1cnLSsLxlR5/72kRfeA8oc4EcQdUW8+3v79fp6Wmt1+v60pe+VBcXF69wvZnHQL7gcHTdiwbMy3mnp+2SY1biGs+bquqcKJm5CHCYZea42JvU+J/2WObojfk1y7WPQzeWzfE3TrWOgZWd0E+eknZY3o/5C2Pv1Os+vjk5R8eCOSeHw2GLeV8X435VO0FRFDeO/wH/HINLkI4SM5EgG6nTk8hBvo2XDag77Eluh4Bj6xsEyITLy8vOMVVXV1fN8ZioSEf3cSRm3mNioerV43xcH+13oquqmyHv6xN/95HW3vmaBsztdYY+laevTX39TmLMQAEiioCXtnmFKiuc5vN5S4CiOyS+MSD39w/HRfGuAooJLh9pBEFGXdRtso0Ekv/22OTKHOsf19A2gm/Gxf/36SjjjO7nGNhgUhzc83yMMc8hMN9sNp2jwfxsO2nIv5zvbheG0iuxnQAySepks+vjfn6njD2frbdeMWYSjv8TANGmdIauNw0qhEYmUrFnadPQX+ZO3zyBxDJhijyRKXLD6XsHjp2QCVfq9nsdfLSDv6Nv1E/y3U7ehCLjx5iknXVb0Gfv9GO+eXXa0dFR5/2WVVvi2/MIoAIRZrIr54eDCNpnsquqGplFEptEHP3iN+SX66cuk2boGqAJ/XOxU7dP+DifQv+RjeeK20EANRgM2uINdnhQP+MDYQpo98ovABZyMwiyLtsXm/w2kPO19AW5mzDkOwNH2zavhnU/ErBi28bjcX3lK1+pX/iFX6hv/dZvrU996lPtiD7AvI8Af/vtt+v8/Ly19ebmpr7yla/U7//+79dv/dZv1Re/+MU6Pz+v0WhUJycnnXEGyPXN88cISQeiu7IrX6uCz7F/9q7lqleP2wHzpF9AR+1fmLe2Y8wF7CD+3/4bPEfCxnbAMYP9ei4IcsEOeOEM9sQLo+gvv/GhHCHrhFUuGDRGcSyB7EhekGREzsfHx52FecZftMs7WS1D+zxWpCPzm5ubOj8/bwuI8AmcjAJexu+yg5T/8aEmRZ49e1b7+/t1cXHR4jDs3OHhYVu8arKJ/jCOtNF4lR0KYApIHe4hSY2MHGfh/5EJp/xwv2MSsBfkAHUyjsfHxw3jTyaTNn4+xQQ95TnGXMaDJB0ZL+TKODlBv1wuWx8cV1IvyUvGC910jMSiXGNRFoYNBoM2LiThF4tFvXjxoubzeeekGvSaRCQErGNP5ggEDoQP+IK5yhgcHBzUy5cvOwsuSPIzvj5a7Pj4uGGsi4uLevnyZZODsWziZYgd5jLY2judPSe92Mk4kljGdox5hh4Y79tmYKs8xsaEXiDhuoxzuYbPfdyf7RQ2IIkykvm00fEWY+gFcS5c72ft72930ph7SDJ0V3ZlV3bFOKbq1djWGIff5qOMCc2/YHMcP7qerJs6+/ibqurdpeUYFTzn5ABY0zFqxuLZdssC3GPOy3GdE7Y8O5MkTniChcCAxjrUj581h0g7wQduHxgnMe3BwUFNp9MO5s94Njk3y7CqOn7O/B2y90Ym+xcnj/q4VDAc95lbdN3r9brxTMbY+F1jKsc3jAt94IexAD+Y30AGfJe8CM/NuIW/zds7cWsOOGVs7GdOz+3x+1G9WSDniv08GMbPNb4gPoGrdtuoxzjduk9c5rgJrn82m3X4Mid9KSzkPzs7q+fPnzecDc9PIX4F23/pS1+q999/v80xZJTYxrGqudHkscx9m/s0HvUYgI2RLbyqX2PhNpj7dX30h2cy3siJ9nks+7g3dMJjAa7HbpnHtN7yP+Psa70xxJtkbIdysYQxKLaG8ekboywfhVFte2mvbTjye53y2klQK4eTIM7sT6fTevbsWZ2cnDTSwQSAJ5ydkEkJgnkml4l+Ah3+Z0IQ7NuQI3wMLoHjxcVFO6qIwHE2m9Uv/MIvtEATpbITdIDyUSXJUQc8KO5jSZKP+p5rXFJJ+L+PjKdP7luf47GS5nP8/L7vaYf/Xq0eVumfnp7WaDRqDpsECROFYwlvbm5qsVi07zAmPtrWk5vEaFU1Y2wiI0kgnJmD38Fg+6JfVndTh0Gdk3uWFzKwbNBNGx6MGsCN+pz4o185gXmWV9A7oZg64iQH88vGx2PJ+HGP35ljp2FSBP3x/OS3HUsG+NyHHL0SDtmZPKB9tNHEi4kBJ9GquitTDGL75lYf8enV3XYGtBXbBHHmerIuOwf6ZQdiopT+sHvACUB+e7eCFxR43tlReeVhypaxxPbRNvTNts/2xaSPwSVtSR2kL9PptDPm3p1atQ1q8B8c2cKRGN6FlzuCsC3Wv3S+nvu0wQQVOmrww5yxjhk4egyRHfLxogTPVQdqkLA8j3Fh3uaORsCefal1jntIpKNDHkPGx4GhgZnnnYG9gyvmWdU26PV4pI4zDg5cPTbWNeaYQZ2T5i6Qyy9evKjPf/7z9Su/8iv1mc98pj73uc/VG2+8UZPJpO7v7+uDDz6o999/v168eFG/9Eu/VF/4whc6u3kA8gDA09PTjo+g9PlXF+uIg2/0eFd25WtVbM9JunhuYi+rXj0FwcRAYmvmK3jL1zkYBufQDt43yLUmaGzvnUiwnWGusECN4sSeVxJjS3hm9u/+/uFdO0dHR21hJicrsDsvCR9WGxvP0j78Ee1wYiKLAzT6kIkSY3Incxi/xWJRH3zwQTvSljqXy2VLyJ6dnXUSy7z3kwUcJB1ZgMT7UEkQ399vd51WbQk6dIlAnzFJ4sDYhPGjDgfCm82mJSnT/zGWtvXr9cN7nvE7TrgjTxb/OO7iGRkrWifAkoyNdWq1WrVjWumbF5mtVquW9CQuGQ6HtVgsOiQMvjIXv6EzHGXLwlxkB7ni0zPoR9VDsvT6+rouLy/rxYsXbRU8MkEXbm9v6+joqObzeR0fH9fp6Wkb3/V6uyKeueNFEcaN6Nnx8XGHkBoOh+01Kvg2kqokQdnZ6gV3zFH6R4y42TzsyPTiQ+Y39g358A5Tj5t3CVmeYA7jQ+/SZq5at6peXaSGXHMRn3cFm+QyQZx6yPzKGIA64VWYK67LuI/xe6wwv5g7zIvHOIZd2ZVd2RUXJyKd6DQH5c+ww050mQelTq536UuQmZd0LGpcwmeOwakv+WYv7DMvZB7UPJbb6Tifa4bDYVvwAx6mH5mI9LO8W5O+0F/jGS84417ucdvM0fM8/CV408d3OjHrhUbGV/w2Z0TSLXcIuh32y8jdPJ03Yxjf4O/6kt+0Jzf2+LnoinEl7TAWN2/IPfQL3GvOF/xm2STXbx7X8kpevy8RZDlad80t2JdTD5t5PF9yTiV/Y6412ws2Aq/5NQzmZIwh0E9wkWV+cHDQeH3HlMkJg0/Pzs46i2a9Ixrd51QWuJwca7cNeTG/GI+0WzwP3EVS3JgMmdOG4+PjFrPc39/X9fV1e30f13r8nVR1bDIajZr8nMMwJ289Nx/t8fV8cjwI1+n+WkbGnol505b7GnO7XGeb4HxJcoHca5ub+kuM6QWvac89V+hfLiL5uPLaSdDHCuB/NBrVkydPOtv+HWg6OCTRyUDYCPYRvU4uUKgr339ESVKeVbaLxaJevnxZs9msfvAHf7CeP39e//W//tf6P//n/9TnPve51g4XFMQEdpZ0+tkO6nHb+T4VxIYvCda+5zJ5MxnBhCWAYiJmm+xQnLxy2/zTt/q0r888fzqdtgDcBA/t5v06EDgkgG5vbxvZ40mAcSKQpO3ojoNLk+jIwgRJ1XZ7uttnwoOSTsl6gFP1xMUYYSTzucjW1xkkekL3OcO+RKn76u38TnJ4tyfOgeS/n2GjC8lhQtDz1mCK9hnguA/UYWNlwtNgMsfBQNLjTf/or59lp5DEHXrDHDABY+LK5JBBrHehODGFniFjv+PSK5Y87xlDdqw5OYhccM6+h3rsbE0eoXfI3asO7fzdR9ePjCmPJcxYlEAS3YEPhGG+zyt9AMCHY1NZOMEOR9roFUrWDe8cGQ6HDZSgA/SF34ADBxkJENBj7yYwuLfz53+DF8sSP5LAvWr7fti00QbjBnoGGwBN7GXazI/yKyYP+e6xa+0X0jf1EWtpf6u6NtbEIH20XTHg83N5NvNkOHw4ZvDq6qq9e+w3fuM3ajh82KWyXC7r7bffrsvLy6Zj9ufGGSQNIGrtS7nepU8ODgQ8joktdmVX/m8KcyEJFvAGuLBqe1SrE1iJRf379va2Dg8POwuP7FdZzGKSgfsz4Yfd9iIi2zAHRCRz1+v1K6tsHdzRDuyciSbqJmHFsbK8/5J5jryQkROgJsK8oAXcudk87NbkM66FPOA+v7KA94d6kRkElK/zztS7u7t6+fJlxz7Rd+zYYrHovFfVi1LAKcZxLDJi5x4LD3kPJTiIhK/blEQluMQ28v7+vr1bkqQeMqZtuSsSnAweIX7kN7tN8RmQEYvFoq6vrztHeTnR6HmAr3ZQ70VGg8GgvXuVNoK5wFbz+bzW63Xztd55zRgZi6K/tOfu7uE1BFdXV62tyGw4HNbJyUkbA997eHjYOSHHC3lNvnpe8R5W5i0LAbxIDn/n1d5e3ADZwxF619fXnfnCjuTBYNDIIWTtHcfGk7TRGJDngyMh0Ux8WKZeJG2bYNuH3IgJjenpv/0635ks5Tv0xTgGG2Xbia5dX1+XS2J87ADziXE1RjBvYl2gLYkzHbeYDOb5fX/vyq7syq64mNMxtjL/UfXqTlDureqeekdxoqiqm8TyKxXAprbV+CYWCE2n0xoMBjUej+vFixd1fn7ebF4ulqLNj3GtyXPyPfXkvZkEwz95FyjPBPc5zjaOM5bC75jztj+gb+Z6/dvPNiY5PDxsJyOB64x9GSvGPLE0PJJ5e3ML5jUte3NjlrePN6W95hX9N7L1dy6pZ+b17O8c79MX+0AwCX2w7GmD9cD6YPknT+0FXL4+uQDLB9zSxzuaa0suPmVmDpnPzT9Z7uZa0B3wM3gLLG8+3TJLeQ4GgxY/LBaLV3hKcCavycMGwNHwPfUjkw8++KDeeeedFgcYJ3F/1XZjBPEM/WJMLKfkr7241wsGwKTIxpxbjql5O9rpsferAS0bn9ro+DjnBQlCZOPFq9Z7zwVwcR+fRTzttvbdQ/G84Dlcl7bVOu7PLJu+eeVx9XPpW58NQvavU147Cfo3/+bfrBcvXtS//tf/+pWddYPBwy7Qs7OzGo/HLVA1OYwhdLLA5Ih/TOI4CHKG3IppoWF8HLienZ21I4N4R9Bf+kt/qb73e7+3fv7nf77+8l/+y/WpT33qlSRDCp0+5+AkSKjqrpLyQFkZMpnF95kYYEAThNiY2cha3lzj7c04UeSFIrt40jiwYtLZOGXg6Ik0mUxqMpl05OrJ5IB8Pp/XfD5vBh6Cp2/HneWPXkA8mZRxHzEmTpilHiI/2o9sLQvLxytKrMOM1/7+w/t0lstlR7YeB9pnw9Gne/Q7CRcDJzt2An/PQYgCSEg7JOSZO964hmdbrh4LiAcbfYMqyxcyEH23rNPAZUBPv5zcsaHvc/LoXR+oZG70gRoTSjbytgceM5wkZJ713XJMGSbBa533inDqSQIJh83YMtd9LECCFsCxv6M9ObYGvuws9HhDBvFMk0fWq8Vi0YhVdCDHERnc3T28W+vk5KQR2DyfNie4hLTDd1RV203iMUKu/EYWfEeb6It1Kh14364X7yxHh5jvHgOu5ei6HCsvjkighnyvr6/bO64hsw2osdkGGNZzg52cM/m5A4UMWGyHPC9yYYST6rafAOXxeNzuGY/H7R1gXkTA8+yL+GGe39/f1/n5edOl8/PzTjLDu9HcpwwaLCcnALjPoM5yp1/U+9f+2l+rJ0+evCLXXdmV/7fF+mfd5me9Xrekn1eoV22xsvXc/ruqmwQYDocdP+XFLLlr0/7X5AN21DY1bQC/aZuTGQTGxhS0xVjc/dnb22urdAkWWayDLTKmSpyJzLChrGomeVhVHduDb7T8bCuRD2PisfQiUmOZ+Xxe9/cP79dmRyh2cjabdd596gQhPg6M7OQRsmVnHYnIm5ublsAhOeN3rXrhl4N33u9oTOvFrPSHhY8mK/mM5BckiAk92oHtx+9xlBZjydij995Vx07e4XDYcIyPDeaZ9ME6QZLKSUjmHYlTZGtsywkWLPIcDAbtFQdeac2CG5L2yIN7WRxQ9RArXV5e1vX1dRtr9BB50xZ8LguBr66uOguWPQfv7+87CwGYe9TPMWXGKcRgR0dHbbHBYDCo2WzWidlpB3MSOe3v79d8Pm9zF79MsngymVTVA45z8hUdYzewF7aZB7Atsq2gMP897+kjMk+C1BiB701YGW85NvHiBL53ctNks3FmYjTH/7bDFNpBu/ih/31x5q7syq7sSlU3sWZuMGO+jN37+MvkXCj2r5TkHY0PqHM4fFgoVPXgr25ubuozn/lMfepTn6r33nuvLi4uOovkzG3QxscSANh8/GfV9ijIvv5XbU/OyJ2ZfOcT4dwW14kPyMSGeVLLMmWXWJUf6ubEBsvEY8tnbuNqtWpYxzGuE8P4Wdrv/tGuxORur0/34tUZGVf7+j7+u4+PMZ+JbvYlI8FvyBasiXxykwN4wLrelwdwDsGyMm+IHPs+c1/9A150rIdsLQ/uN07zb8s1x8bxG9cRRzImYDTzU+avfb/5Xp/csrf3cEoKr+DwwkfmL/U4Vvrwww/rvffeazywOeO0TbSJMeI6MG7Oa5KsTv6yuBLcWrXFUHD75ruNd9PeWE/M4VZVe2UT7TA25LksRCQOXi6XDa96cxN1krTmJD6wpW2Lr6eNHk90w3F6X76J/njeJ4ZlfHwSi5/hMc+/s32WT9/1iZkfK6+dBP3bf/tv13D4sNsiSdWTk5N6/vx5e5k2kyodZAYDJvFNHvvoIa/uzRUuDkqs+FXVjtVZr9f19//+328GmiD3+vq6fvqnf7p+4id+oj772c923oPTVwjanDSiQALZyPU5KrfZxoVih+a/vUvLfeR+O3QnBlw/yuKgyQ7VThDj4kDJBtbjShttZLh2NBrVdDpt29eTAIf4IFh3wI/zdTLBzoR+QMrxt9uXgST9gKQimYK8c5WtQYPllnLhe0gwfnjnDyCCZ0Ha20hSV1/Cw8UrdXAMuWvUDpoVV6kjVdtjJWgvY4YDYO7RN5NgJG1Sd5EvYM6EiQFM9i3vw3DnEVOs7HFC3eOcc8i6befDs5gDnh/YJY81cvD8zeSHC/PWCdO+oMGBAvKdTCZ1cHDQId1wGD5Ojud6pz2rJC1byEoTN+6DyWg7c+9MQd+8Qom6sNu0H90ikDABi175uXl+u8mau7u7evHiRV1fX9fJyUnnXaG2U/YngAbvUuLYvz7/kUeuGUgxV23jLDvLOEEYhLLBqnXTwYSB/XC4XZ1pELdardqRxciGhT3oCvUmOPD8Tx9m/5I6zD38/qjANQMUJ859vUny6+vrZgtZ9ML77piXSSzb/6Gn7Ebxe+AGg0ED11XblcYGvtlH2pfBiZ+Zvs/jmrJDJ6+vr+sf/sN/WFVVP/ZjP1a7sitfq2LcXNXd8ZmJAD6r2hIm9k++3kQAz7FfGQ6HHUyMn6nakjZgDAfrTjAwp03G+H8nIVhxazLA/tP22DbWbcvAC/xgPOOkQsYn6cf8WgeTRb7X/UJmJLzoh1cdI2vwI759NpvV1dVVzefzmkwmtdlsOgsM7+/v6+rqqqbTaZOxE3uDwaD5I/yak67I3K+YoG/r9boRB5YrukRSFRn4hB5ir77j5xnLJ0+e1Hw+b3iBcfZiOSeqaJd3QhrPOV6hTaPRqCXzvEjKi3q9KGw4HLaYhHiB0xYgKxhDxz/IksQtYzCfz1tc6qPv/Dc4y7tEkR/EC/UhHwoxLP1mnJnjECCsyEcergNf7c+Ib0mUn56e1sXFRZtn6/W6877TweAhAZqncGSykB2mtNcED7+5n5jAWA9ZmSvw36zSp53MPceHw2H3/evGMY7HbGeRiXFREjEm05E9dtHxJPrsRSHodsY4PAvdhIdxe5grGaswhn4v/K7syq7sSl+xf+b/5FMoYEYXY86+eqpeXdxf1eV0sWnGhk408fnd3V29++679dnPfra+5Vu+pd5999364he/WC9fvmy75Wyveaa5DtpvXoVn+Rh1x4LGoJlUMK9kruSxxXbE9/wNVnL73Ob8TXuw8/aRLEoCX3Ct5W0MCJZlI4qxq/toH5Xt4Ps+boyxcBLDSRvrRI5F1fakB+oyt+GF2JatdTF5m6qu//V3jIsXX5pvzEWn1OV7HQswLpkT6dN/xyvgSccg5jE2m03Dwo4jrH8+8cSbkuizuUy3ye0Cw7nvfXLrm0e8zx0M5c0NjB+yM48Ezluv13V1dVXvvvtup3+JtZizfN+ne3ye9sVzipjQskaOYHnmKjGW55iflzLdbDadk3vA9Y4hjIt9eh3zm52nnvPoDPMKHcSe0Gbz0rQT3bXsLZfcIco9cJLohHcou8/2GX05KhfrUz7bNovvk+v0/x9XXjsJ+uzZsxZYQGzc39/XZDKpZ8+e1Xg8borjZJdBtycnhs9BG4OHEjioYgVq1Xa1h1eDVnV3yEF6D4fD+vKXv9zem/KN3/iNdXx8XO+88079xE/8RH3mM59p9QwGg86xjxaqHUESzDY0PN8/Ocg2NlZ6D7CdjYMZ3+92PfYck952yibYbQxNcFjJvDOy73luE4aBXcF2iG6T33njoxwh93E8GCUbaz63I/AuRcipTPxkPy3zBGXZ7hwDk2kpGydlfB06niQSwa8TTLSpz5BkUGy9wXFav2xY/QOZZ11Arr7Hx7v5fb8Gpuijg3tkZzlZvhQncj0eSUp4ZXvKqA+wV3UJMq63XiG3JD1S5yg4bR/FWrU17Gmo7VgTKEHQWff4Gzn7TH7ePYEd9k4PCCU7V/qKznkVm0GKdYP7cKpODmJjDSbS7rs/jJd3F1NnApAcO/STHRSr1aq9bxpdAcyZVDKg5Shd5kDOd/eJZ9muYlNsC/07E/kZPDqYYWwBLyZc+5KWJqtcN4D3+vq6yQXdgCC1Dn8U6WW/Rklbx7h4hWUCEK9W41m2Q/692Wx3zKALkNP4Gq9WM/np8eN5DqCOj4/bcYUAUuyx/YP7yvduI33mGhOhOUbIzraK3/SF8c4j8nZlV/5vivF01dYXOkHA/DZxQBDGZ15F6jniYMV4iySSgyZwAm3h/c/Uw89wuN09hS3ow2fj8bjtbF8ul+2di7SJZEliMvs82jocDhuexNaQECS28KIZEg/eDYAd8i5KYiL8j8kO+1PjUBby2PfRLxZ/pQ2iXYvFohaLRUsyfeITn6jT09PmB02wrFarury8bAlX+8yqagumkCXtoV/4GMaKRTjX19c1nU47R/sy/t5d6zH1DlFscp5YQCzITx55TP8I+hlzsE8GyjyDI6doL4lH60bibpKVPsJ/uVy2xDTtzvfH2keySvzm5qYuLi46sYmJH+YrY++YAezio8R4l+tw+PCqERNBueDAZKzxLcQe+ug4mzE1xuf1BOPxuDabTZ2dnTVZrtcPSdCTk5M2t5bLZTvVx/JhjnkRMZjUx/Hyv/EuesMcYxw57tc67JjIz0kix4Vjcz3/qct2ib+tZxBMJLi5l8UE6CoJTv6nDsdOxDkZX6AvtuXoHMn2jMX8LLd/V3ZlV3blsWLcl59l3JOkPzY4eTUfG+77nShg8VYmVSnGopDv+NwvfvGLtVgs6q233qpv//Zvr/l8Xu+88069/fbbdXFx0U6OcLGvxGbyk/xQJlTMNzuGph+O+5PX5Tey6VsMyALg5LYobp+TcW4DCVBfY26Sa/H1LPTyKRrp8zy25o8y8eXvzUc4EWjs7kSKMVbypeZBUjdoY187zY2Yf8Nv8ro8+uMTzfDLyQWAc9Hb5IN5tpO9TkCbZ/NCTmNd5IbfT04KGYG9rCfmqZA37QCnJ5+Tc9R8BrIlr2PumJLYyvo3Go0a5pxOp69wtNYJdJiFkR9++GG9ePGiwy/xG5vheeU2ZTIZHUAfvWEFHGwszRhxOt1isejI6vj4uNmW5OqYa5aTxwPZ2EY4zkXHaIf1zzxlnz22fPb29torSoiFPV5pY9A3P9NcV9896DcxAzpkHjOL5zl1mxvua2dfnYl3X7e8dhJ0tVq1wGs4HLbdGk+fPq2zs7O2opTg0oGcwXwaB4o7kkEpQvJOlxx0BEcyzQP/4z/+4/WLv/iLdXBwUH/qT/2p+nt/7+/V8+fP6wd+4AfqN3/zN2tvb6+Wy2Vre58DdmbbK4tS2HZ8XJ8ByGOBCNdaRnxuYsVOJJ0q7XMw5MA3DQXtsYMxgeTrqMMGmPtT2QlOLUvuxWnYsUEWJwngNiZJ7UQL19JG7+6iX7TLQaJBkVeWuX8m+b0iC1nTPvffZA7j4zEg0PV9fQR79p0+po543piIgTziuTzbx8ERuCOnXMVPUhqyDDB5cnLSjLmdhvWL/mUwbyNqcJ36b5KI++wQrPMmJXxtJvmttxBP/h67YTIk68J5Whc819Kx0B7rbuo4+sEKPORth3B1dVXr9bqNA/Xg2EyAM/887uhOOrEcE+utA4A+22jdRJ+QjXfIr1ardqSZHR+LYR4LnrhmsVjUcrms58+f1+npaY1Go7ayCV113ThwkmNV1Tlmm2fQXuqwo7bPwVZhv/idoN/z1frBD/bbP7aNFM8l95HdnyTUDKwcXNBuzx+u83fut4Gv54PnXPryvnmVY9hXeP56vW7vGWMlWe4stv56JzT3o2ucLIDNAkR74ZaL7a/bzXceiz6/l7aO8bAOjMfjRlw/Ftzvyq78vyn2H/gqEhlV23d5pC4nzksbxXXYRpMGtjNOruT8Ya4aW/Bc6sf2JfGwv7/fOe6UhArXp81ljnOka9U2+KOt3INNGAwedkaygNOLLsCifg7fE0AOBoOWSDaJZblwH58hA/sT6kBew+GwyZkkK+OCfeR9kDc3N/XWW291TklA9iwGMVbyWLJQcH9/vy1YvL29bclniAqSf5BjvJuS902asMG+0h5iM/e7qjrEE/rjY+esG/wN4ULhei9gQc+RqcfPq6QhxdB97xBcLpftu7u7u+ZnTZiZkPDcQB9ZnDSfzxtOc1zoHdToPGNM0hr/xY7N6+vrWi6XDeeRwPZxviZfSS6CfZjvjg9JNvoUBc8T8Ch9xbeenp52Fpq6jefn5x18knG6j8itqnYaBLEfmM04lf6hrxSu5/Orq6t2v4ttpOehk5CMBfjQJBjjyth5UZ9jFOSB/KxnEFqOV4yhiLUSo3jeouu5oAVs5Fg/SVuuz1hsV3ZlV3bFBf/gRc+U9GUUx7Mm8c3FYs9ZPGRfai4TH2RbbzvNLi38Mzjkww8/rMViUaenp3VyclLf9E3fVN/8zd/c7CqnaZyfnzffbI6n6tWjZau2vivbyHcUc1n+jW+hfvOz3Oc+4n9s8805GUuZz+T/g4ODGo/HDRf7HmNoY1bwHWOVfEzyaua4zB3kRqLUE/P17qe5SvoDbnY7MhltfTT+TY7UY+OdnTmm2V73IX1p8i3mfPx95jL8qoKs1/JhvEiymk+iPuMT4xlvXOJvdMgn6oE7Mi7jGf5tDghc63fAJ29kDHJ7e9tiCvrJ5xTjGvDXYrGoFy9e1OXlZYdnTXl6rLLN1MlntBXOib/pn/MEjBW8ObsxkZfnYb46geelfmL/rB9pD8H/3tzC9T7hhM0yzu8kV+U5QB6DhXPon2014+fv0EHrlHUvfURuWPJY9BVzhpnwxGZlMplxzeSnP/u48tqMnCfrer2u8Xhco9GoTk5O6vDwsI6OjjpHaT6W9EQIKC0N9aoaPyuNPXX6+CiCAgK22WzWJhHlrbfeqr29vfrd3/3d+mf/7J/Vj/3Yj9Xf/bt/t/7BP/gH9Uu/9EvtiEavfPEzHyOSTVD4c9/nvvOTxpdi52gwwHV9SRMnrdIgW2FxKH3OzX22DJJM7xufvmLjYtKNSeTPaDPj17dChXvTAfpYKu6zI8jJQD08l8DVSUgT7k6KpPF1EizlQH/S+FVt39noBIQNgCe7x8n64NURNk4GVdSTiS8nhgeD7a5pvsMpGfjhPPmescCYQ0KwGjsJjOwD8rY+GnDmiheIS77nt/thw9i3cznnGW3xnDUgpq/oCWQL/fW483wnN90m6xP/J1CiHogp3s3FPcyNzWbTCGKDIttcA1kIRHZ4+Ag8diRY5wE1SbTYgWJzeS6O2kASeWCvDVSQs3XBDnmz2e6yoD6e9/7779dqtaqnT5/WyclJIxz9fMsEB+4xRdY8zwEP19mu8zl6bqBPHzz/7Jt4hmWZutCnnw4skBmLfCAY2fXrsXLQ6Xr7QK3ljZzcRuuogZETubQ/9S9BiPWCH+rFpvBMcIVlYYKcsfMCmL29vbbr5+rqqkOS7+/vt52yJrxpl4MZ+1frSYK8PiCWfp8j6FJ+u7IrX4uCToEDsVGQC9hNz4OqrW/nGB8+y0DIPszJVJ/SYj/t+y8vL1s7vOvUi2TSxtjXQXD5SHyTOrY/2HUCUT4nDmCRJtiHeAUbg3/ybm2TRxw/S7DMca3YDRKSyI133zAmXoyEb3ESGrnghzeb7tGbFPsmnvPlL3+5nj9/Xk+ePKmTk5NOoA0m490xtP/o6Khhtbu7uxZI805Rj/fJyUnN5/P2TsnBYNB5lYRxRB7FRlLJgbB9nxORli8FMsDvy0ZuThB78VMSDbQTvbNumPxkHNnByWfehcrziRchHhgT/Ivfv4MeGPMz3nd3D++9pG6OMgbjGb+A0+/vt+82PTw8bMfKeict9Rt7gR/RMeSB7Hw0Lj7SOxdpP6+9OTg46BwJdnd3194DmvE/8Rx4GhLJCwiQN3aA5zGvSdIbK1oHh8NhjUajDqkG4ekdFLnoznakL+ZyXfb7xjyOE5GZF+VZd2mPn+ujtI3l0XG3xcfeMd7ME9sHJ3wTr+zKruzKrjxWzEtkbFrV3d3VR4TjHynpd7HFFMeCXsCXdbiAK8wrwFu8//779eLFi/rCF75Qb7zxRr355ps1Go3q2bNn9fz58w6Hid8iZuQYd7+KK3fqJYdrP+rY0n3neV5c4yQIcjBv40Qyz02ehXZwPf7eSVT7cPwtOIsF9OZc+TE3wXfIjPaaK8h2GvdlHAE24VrwvjlL2pgJNp5hPsq6mXygP8sYh/rNSVDMZdifmjtJ7td8HngK7hBZeCFS4h94Osvdi5qS1+Qzx2HGxOYzEg/TXifYjGk8L40hbB8SyxjL8ywwH9jRp7dYftRD2xaLRb333nu1XC47PLbvce7IckEXc9Es96B/4Fzk7g03jJtPqLTszN07NvW88DzFXvG/k4SMjxc9wO8zN7FFPsFmNBo1zOn5R16AzYv0hXiNmICFw+YoH8t5JOeVNpv54U0MyTNSrCtZf+Jw5OhFtS7Jv9k2f1z5qnaCQqggxGfPntXZ2VknCKYzBB8mY3IS2jn4M5TGxtyd9nUOOtkhc35+3mkHyszk+x//43/U93zP99Qf/aN/tP7G3/gb9eM//uP1e7/3ex0l7BNyliQ2+buvvekY+wypjZt/U0xWu5gEtjLzncl9JnuS5f7eYMMBp0FMtiHJMJxxGgIDBRuQvb29RugDbtA595vPcQroYwbqTiLYefet+KLNfobvp/04f2TnsTAQqKqOk0N2JuxMqNj5us15dAeFum2M7ahNdLiPSR4OBoMGVv0sElqQcia0cJisBEojaIBjMiuTDjZWJqFccMgGmq6PYufIfXaMffpatQXwPlrNuzxMnPEcjxN1GtwYcDiAMHHp/nEdurVerxvhyP/Uz24Ygxe+d1KfQMDzFhvJkR+DwXZlkQkhxrCPnGWccy7b9iRINagCsDJWllXfaqH0FcyT29vbevHiRe3t7dXp6WlNJpNG8nIfdoHxwv4bUNpO5v/WYYNvJ/2RbYJrnmnbye4O5Ofkfz7ffoB7PH7enWpbYFtuHTNQNtFmm5eLd6jTYA27jgw9NxnfBMoexwywPE8AbOh87uhAPoA9PxdwyspXYw/PWbBE3u/57MAi5dvnj9POcy39zSD0dYHZruzK6xYHxrYxzBe/ksB2MckY8DjHxGK7vDjJvtQ23PPFiTyOsD0+Pm7HmHs+gEc3m00n2cmON+NR+wAKZAz21EEoQS0/+OGq7SJM40HP9729vRZckjSlLd6tSV3YQr7vs7G2B8Yl6f+crLM9sg1yQnm1ejj21u0xeWaiCFvJkbY86+bm5hXc7lN9ptNpjUajWq1WDZuQ+AU7sgufOq+vr1uynLiI41Qdf3h3HzjGfszt94IrkxzWD2Nt5NX33kfmy/39fUvm0RcvlKE+23rHBVUPZE0uEHN84ySld7zS98lk0nZiogdemEviOueTY1y/WoFxpO1O0JsspU93d3d1cXFRZ2dn7ahjdBzMw5hyPwQMBCq7a9CJxAfoGHjU/pgxsa1B79EdjiLje/Tcx9wOhw+vBSBZz72en04WktD2wgd0ya8AQT89vz03qa8vds9Yz/GlvzeZ7XmBXcoY08/2ItbUTdugvjhoV3ZlV3YlS3IVxizJV/bZMIqvA49kDObvfR92zM/nXurC5pmr2mw2bZHbcDisly9f1mw2a36LV3FVPdj0t956q/UL24tfAy8Re5tHxJ+b/+K36/NRwFXbxI0THE58mhu3/JLPwo9btoeHh+39izzfskVG9ANeyc+kb8Zd+Bn7F9oN9jPmdXKSe8Ak+Ty4FbhFnxZhX0Z/XJeLX1/hRfapi8ZCyYEbI9mHGgcadyGfxCyOqWib4xPPgeRZHsMUfTwqn3vRZs4r+myezniCOuAEzSta15PzTo7LOm9dI5dDLLrZbDoLKb3oizlxcXFR5+fnndccGOMz99xPc10517iX9qDfxHVgPeaR5eqFxeifN+vQZ/NpmTTvi5UzH5D8aPKzjs+rHl6Z5pg0x5w4wjwW/aV/4HCfdGNdNzeZ4+vnJY9G3YxnxkT5Gx2l5FxDHpmPQn+yntfl2l47CeqBPD4+ridPntR0Oq2jo6MW6OIs0jFUbYMHBxRutI1KVZdwcaCUmfr1et12RS0Wi7q4uKjZbFYnJyev1I+Cvv/++/WTP/mT9bf+1t+q7/zO76w//sf/eH3xi19shJFXmTIoNpJ93zmxZEPUpzBZ+pSXgkI6kOsLZPIZrjONnq9NsuajFIfnWuHSKEOeeEU4MrBTd5KzqjoEznw+70wYruXZThxhpG10acf9/fZ4XSeIuY//M2GUskwS37ppQiXv7Ut89dWb3zvoBbQhAztcF5xKJkLsAHleHlWciTQKTpUE9WbzcAQXZAQ7J0wQJYhKGaXO2Dmkc7cjSIdv+fcl/x/T43yWjbbH0QAIsMWxYJa5//aKHj7LtmfyHLCNTgK60XE7SsYHEg3HZb3jeXZyCW4B9xB37ADgGr+38Pj4uB2nhg450IGgy+SbAYV1AHlzX9X2yGXbfgMW950+3d7e1vn5eQ0GDztVvMqf+wyIrHOr1aoFNNZBk0smrjzn2QVEW9xPzzF+0y/8FjqEr8N+GeQYqKN3y+WyYwftK33sWs5D1+kVce5r+qz83KCsqt8XYrM8jxyYPaYTvt+LCa6urmo4HDai3rqXvsO2Pm03RCK2ip0V1mPrbAJ9J4NckIsDvT4QlrbPf+/KrvzfFs81vwIA322ywwka7GvV9r3FYAf7XuwJ9zrwNe7l/YL2NVUP82CxWDQcxjtJBoNBwyD8v1qt2jtA1+vukf2JsRPDJb7Av+C/SHwsl8uaTCZtpap9DHXmSQHGCuDbqmoLN/iOxImDegeVjAE7L7FlyMvvlAHL8QzaB64mELYfur+/r5cvX9bt7W09f/682T3atlo9vA+VVdWz2az5yel02mwWY0kfj4+PO4teDg4O6urqqmF14xf0h79Ho1E9efKkPef6+romk0mHEKraHlPPTn77fHTEGAf95Uh82oxMjJ9IinkBE20hWYdPNylCfx0nsGoaudPGw8PDJkOO/eJIYdpm/4mvOTh4eG/XkydPOj6MuYF8IDXPz89b8hPSyfHNcNhNzqMbyBuiC+yVr13Ar7EjlfogffCh2Bbszu/93u+1RQvM9SSrTWZ58ULuPt3f329zIXGb5/p0Om3zlXHyqTjEK/f32yPCjcGNOTMxzfOwfeiDsYN10qQ3bTZep90myUx4GbsY63juG/vQTseKxq1+nv3E6xJDu7Iru/L/7YLdTc4xORhstvk9rsvERF+8mXgRPMZ3tpnwPff39zWdThvfTOJvMpnUeDyu6XTaeI35fP4KPqzq7k6dz+ft+WCs0WhU4/G4E5vbLhNvG4eCYc2x4DfMmZj/SX4CXIDvBtOQ8Eyux2O1t7fXjhulf44FLHsWf4GFk4ceDAbtRAz7OZ7t1x2AWT2mYF9zAPyPj2NcjD3wjTwPf2wcbj2k3uTXaJflhz5ZryxTCm0Gz4JdzC3RBnNM4GfqMMdqXo46q7aJPzhcc4nWVfppnt48a84ncz3mOoynLE/uRUdHo1F7BjjLmMn3Oz5wn4fDh9M5rM9up3EJMRsL6s7Pzzu4Kn+Yq8lPma/z3GSsvQCQPqR94jNex0LfUobIwTjLc65qy0H5nhxbyyRtH3z/3t5eO12JPsLLM5fQUWNC5klyZrm4D9wNJ5365SR7xjP0mXZjG5Cd7YTbkPPIvERiWCeOuceLBhzn9uVxHiuvnQTFoO3v79d0Oq2Tk5POChSIEQN5B+hMFBTdA0IHEQwTwoQKg3R8fNyCBgaL44suLy/bStksFvZgMKjz8/P6qZ/6qfpH/+gf1Q/+4A/W06dP61/9q3/VCajsON3WJDKzbq7p+9yOJg1YBlFuh5M1lEwGmdjN9lpZPPHTgOZE9XOyz24r9UEIYNRtrJ1Y8EtzmaAHBwd1cnLSEhS01cGvA8J8to0yAMUJJTtRG6nslxMoVd3VJ/xvsseGMQkcrvd2dSao22Rg4IkOKLBBdekj2WlX1asvrfdvr+rKJKnrNRnqMYTwcNLKATzXO/jHHvhz/1gfvXrF4+P2s5ooDax3vdKOPidkQA+J4nZUbQkbA2D3k7ZaL1MGJped6DQYtNxNJEGseYyS8MDpZ9BgnbCjMglkkssApmq7K9t67+S3x8e67XlJ/61zFIhaJzGd5HJdzBEILRKhJOn39/fbik3bRdsvjuTY29ur2WzWSf57zBJw428AXZnY82cm2yARDSAMUGzfErx61aAXanhxiXWd7w4PDxvpbx+c+p8JfdqdQaz7Sp0+etO2wXPbdaTP7CPoBoNB2zGLHHMeYLt5XlX3Pa/oqOcGdbPSlGMF+whBg/K+dlP67NRHXee6d2VXvlbFdsOrWTnmlvni5L/nM/apqjqJEux8zhHbd4JQMF+2Bb8yHG53okHc7+/v13K5bO3iM/y55xS+jUSFbboXkHDc58HBw3sU2Qlg+85xZ/gAJz3pN0kZdg5UPez0M1Y1fiMphX/gCN+q7iJDy47kkzGC++RxymPkWbjkNptcGw6H7d3hz549awtw0Ad8PCTYwcFBnZ+ft92SJLrAdSR2sXWHh4f19OnTFtyTOGTMVqvtKSE+sg7cYF/EM0gwcvRtVbVdiPgm9NiYif5bJ51App6Dg4NGSKJL6JoT1dQ7n887GJ8xWa1WHVJ1vX5YFDwejzvJ4+Fw2N6dykI1ng122t/fr6dPnzaCwMe3syPi6OiojYvJKWNvr0jnfsfR6CH/o2fgJJMhm83DMby84zPJIdpWtX3v6nq9ridPnrQ4kyT99fV1kyH3GWc58Wjbgi4ZF3ItMmFOQ7gwRsYi6G3Gz6xMN7lj/sIESiZETYj3xe/oBIV40mSe54mvM6/BZ/xt7E8xhkqSy+3pI/p2WGRXdmVXPq54cWsfH2seEFufsXdVN8bjd/Ja1JeLqQaDh6PQP/GJTzTbzOKhk5OTev78edthluT8YPDwKgP7MPAEfaN41yMYxskT/Ca+kT6YU8mkC8fiX11d1dXVVV1cXLRrM062/PwZfycnmRzs3t5eTSaTVzhR81xV2wRl33HCVVtOw0e0G6OzUA2/nHwy45l8SPodfLo/NxflxIY/M59D+815mYdbLBaPJlvoJ+NL/zJhl1ya9dvfW+9IonvhKfeYQ0HHOR6WZ6IbyXHz236f4jZ53lpnGF/rnU8E4bnG12AY4g4vUnW/wOueL+BT8Im5beMi7iMBSrzVh1Pc/+S2jIOc3CaeNUY1X0184jniWDoTgH4eWNr4y8m85EItY8bDfTW29D0sWGAciTu9oNCYliQkMqItfQv3eQ6Y++DgoCWAXbfnueMl2xnnC7xBA33geuut8bXja49/H8+WOQLbua9LEpRVJk+ePGnBGUEKiSsIWANwByw0Lo29lY8t2TZ2rHrFWJDsZPfp1dVVzWazZjQdBFggJgJevnxZ/+7f/bv6oR/6ofr+7//+2mw29S/+xb/oTTj2EZk5IXCsVhLXkQR73+c5SfqSbe4TSQG3zdclGU07s72edB+lA1VdEj7lggF2Us8JI8aM620YMVyj0agRGUmw+8cT3nVgVKu2BBL3e5Kx6sSOPA1kjpONqp0/15ss4Tvre+6AM3hkpY2dFNelQ2YMcsxpA4QDn9sZ+XnMzXSUqUcpQ+RO8oHn0X90KXes0sYMxjNhk5/TrwRsyCeBTl+xzJwkN7lpQ2ugxBgY2NEX+oFuGPinsyYB6pXfBv4eTwgRJ348RrTHRzTzXOp1uwzGcIa0FUfvBQw4K8+3DBwsE4+BScJ0TB4D7oF0db8drJjgNWF5fX1dFxcX9fTp07byE3nRFo+LATI/BqeWW5bNZvsOPV8LeCC4YP5Vdd+Rlrut7d/SRvJjctj6YplmG108F5K0y+usf+4b1wOW0UmDGQdatpsG1NTZR+Y5SPJxh9ZPdNT6iL4QnE0mk3Y6xWKx6CT1DSgzEUQf3J4+efbJua/Pj5Ud+bgrX+tiogLbxG40YzHmKEF31dY+4edMqGAPHGRhv7yzinnI/wQ8Trhhw20zTBgZMzlQhuSg/RlPkHCp2vqa8XhcJycnLaHJ7r1c+EasYRIL0gSih4LcHHTZdvu4Vcvbvpd2IkfvxqMefqedOjw8bEkrcCsBPfX4eDfIuYuLi5ak47hV76DjZA/+p51evY3vAWc4FttsNm2XIonPxCy8w9o78Z08xyeQ2IMAQR+90M2x3WazaQlnJ8/BMciBhDt4l4U2xtq0yYtp6C8xgseJeUKfPJfAKPzfF2P5OD63A5wOEYHO0R4TpZ477O5lzJBVEnY+ltfkoesDw9BPkoyHh4c1mUyanPkB7+Bz4QWm02mnLmTO/W5XkkLIDX1mzE2OOG7zvff3923+okfYJGSaBItxLc/oi20TOzE2tqG0lz5zr/EVfcNmmwzui19on7E3eNLjnFid+ozZPi7O35Vd2ZX/bxcnmRzbYWu8GITPzEeZY8jPkuz33+ZMzYf+iT/xJ+pHfuRHOnXd39/XBx98UFdXV/VzP/dz9du//dsd/GU+yn2Aa2DnKAlNnx7CbkqSGz6JicVxLOwxVqSP8OP4nidPntTt7W1dXl7Whx9+WLPZrMP/md+wL7ANN07Bl+HH9vb2Ou9b9JhQzK/BQdnH4U/B6JYf7x5noWRuPqDvxsx8Zp9lPjZ9nrk0Y3X0Ijen8DxjcXOOfv2AOQbXCQ6q6uJuy8v6ns9y37nXr4SwLoMJmVfgXeM/988L0x5rn8cWjJD8vPljivkPngWOda7Bm0mI5xgHL36kL2BiFpkaoyaH6EUPzLUXL1403TIfaHxqO4LMPE+8cM56wr1wnF5siqzNBTmOSU7Xx1uzeNexoeNVx4nMLXNrjIdPrUxdW6/XTS5VVePxuI6OjjrJV2wisjCnzFh5cQEyNX/r653ARyZpyxlL9IPvHatRjOFzHnKvMTPPtP1mLNCbzNUk3/g65bWToKxsePr0aT158qQ5ARqGIExSoKge7D5C2kQKq4WtHAS0q9Wqrq6u2s4PDPfFxUU71xwFd2CVkw8F39/fr5/5mZ+pqqq/+Bf/Yv3ZP/tn63/+z/9Zv/zLv/zKAHog03FbqRgIfluRbYQ/KuCh0FbLj+dmUsGyzbo9Wd02Ji2fe0I81mf3r6+vdoQmsKg/E1ZMfIg5AtgnT57U4eFhIy9wFpYjxn48Hre+ZyLIE8Jkm/WAz2mfE14mztOR5hZ3OwtK36T2XKAfrBbzrkOPk3XBjsDPTgdKe73yHOeAvHPFCkbK7cMZmQSgzRglr6y2sXRf/CzbBQMEJz4oXoVnEoExMqnhXamp/2l4c2yp2wls+oitYQwBBwYTBnvUZxsEULCeevyqtu83dPLRiabH9Iz5AZBJ/UhixIAtx8VgGABMMTi9vr7urAZFz6wHJoTQJY8xTtsEnwOsXN3fRyjO5/NGvBHEzOfzju01Ce/EmpP21OdEpf0Q7TWAc5sAg8xXA2P7OycDGGOTwX4n8mKxaODHdTCmVdUWHgEWAQhJgPpv64//9hzh7z6wYV10gjHrSbAKXuAZ1GV94Jk3NzeNLGb3hnfBOFlie4Ne57xG9nt7e51dKlnSrmbiP6/zOOb3/tmVXflal/QzYHBW2eI/0EGCPS80qNrOY+rAT/GdiQAniPD/XhHMM2hDYieexbyybXLAZdLDGBLsUbW1F7SbhTBefYwMmJ+QDtxzcHDQSC4+n81mrc8kH7GBPN+JHciNxEBc73dNQiZgU8AyVdWSkhAp2Uc/h9/4NogqJ9Ig7Varh2NhWaw2GGx3xLFi2DIC98xms6YH6BULx0h+MUZ7e3sNT3C8nAN7kzoslMX/IxPvcPRKZI6zNTYgcZsLGcFaSbJ5BTty5/gx/DGLL5EBeuR3pnKkMwSoV70j381m+3oK9AF9ZmzdV5MP1iPvFmAB1nK5fGWHKbtWvICY+c6CBeMQ5M24oNMeI/yuV5QzX5gj6Aw7c0hi2+eR+EbmJpdMFjpuRH7D4bARytgBH8vmd61DOueYI8fb29s2f+iT7Qq6Y1uFvPnbfp7ffTbOmNrEsgmjtE/+mzGgGH+a7DROd8xqvGJ82xc77Mqu7MquuDhe96luw+Gwnc5gDtiYB/vHb9vMvI5nOZllnrJq64uOjo7qy1/+cv23//bfGob8hm/4hvpjf+yP1Td8wzfUP/7H/7h+/dd/vRP3moPgWZkwwy/zXm5+SCoeHx/X6elpwwf4dXCycaR9A/X7PYiTyaSePn1aL1++rHfffbfhZ2SZsjFfYX7LOAjce3x8/GiCgWvxnywMHAwGnVga/4n/AAMcHx83ftZ8m/nMPo40417X3ceL027fa39uHQK7oDPwdL4XzGjuAvmZl6AO+17rpOVtfsU/HkOuMZ+BvwcD+QQaZGrdpR193IHxihOrTm6Z4+MejvWFm+da+g6Gtw6ZY3FC0PEgJ6wxT5P3R7cYJ7hC+r5cLuvq6qpdwz3IPzk5c4rJi3n8GQ/4xdwVbtkYu3keGVOBMc1ZUX/yyhkHOk5KTOb5QILWY88ryhjPXLxrG0wdHjdsuTfBVG1PyUlZMneqqi4uLjqY8rG56nmaWDkxseVifjF1m3vRPT/b+Nfj3qcPH1VeOwl6dHRUT58+be8KYRUMjUZxnbUnUemgzASuBYZg+A7jhhHmCDu2YK/XD+e4z2azzvFHCP/dd9+tv/AX/kJdXl7Wl770pfrMZz7TnmHlu729rX//7/99ff7zn6/33nuvvvzlL9dnPvOZTmDqAfGgpLIbEFD6HFpOCurMe0wCMZlRLBtut4u2emL5+S4murIOrrcjxcj3BWk2CDaslrcNP/dDSgAmMDA+cok+s+o7Jx4Ox8lMJpedtuVgA1e13SFMHzIRyKRKst7JJfpoIOjjmwGQPuKKazl7386cNnrlFf1OY8LfOCSTGYBW6mJeIje3F7klQGE+8wwbWJMXngM53xPEGDw4QWTyyvPQdoTneQzT6WaiyjqbdsAEIPd4pZbr51qew/gahGRiyMdcoae2KbaHOKU8rrbvWmSEzqAPtMPkiXWHawxqKNSRK7wIiBgHJ4g9xvQBMOVEqced+61PCTz5zrK0ztN32oGu+IgP+uKd0KwE3Ww27Xi7HBPbQuuy9Y1iktTkvq93/70yP+cwbc4EMPrg3VV9gIG5TPE9ntsJnqy72HvrhOeI7WHaI//PM90WyxZZUZ/xALYKItcLZiwr6sXGEnguFovWVi9YIaDLgDhBYMrTAUEGJkkqWhcTE+zKrnytiucZds5Yy0FeVbXEgvGaj8FN/8rCQv7HDvj+nPt+x59tIfOW3foU7CHPx9/y3ksvXnGghD1g3nKKCAtijG1sv21HsMH4Gdsb/CO+GNu+XC6bHzHJYdxA/0n0pE3l/UnIB9kxPth/yAIvcDG+pa+QYPhoHyt+f39fi8Wi7Yynz1UPwfLFxUWTBe+sXq0ejn1lDNxGkn0mOtCLqmq417JzzAPOh1y1T3Gb0eOq7bFdjKF3gHpRjAlKrnUcNRgMOkeuoQ8U6kAP2E3NuLJI18dG+X/qPD8/bws6kTO+hTEwWbC3t9d0l/6amLy9vW195Vgs9BC5DYfD9h5d6ztjk3Hgev2QNIW8cvxCO3kvFPU4ngHzGEPmgkVjUfp3d/dwJDXvpDdmNQ4wfiO+NwZCX40DkpCyrtNu/qb+TEwmDvTYIUvHBH14ymQTi0aM27knsZGJZo+V5ZExuj/n/0wGJ9eQGG1XdmVXdsXFsThxlWPgfAVC1fa4ReMUJ+1csOPYKu+cdOzkJOZv/dZv1b/5N/+mk/D7nu/5nvrRH/3R+vN//s/Xr/zKr3SO8qdN9r3Jd/Ccq6urms/njaebTqc1nU7r7OysvVphPB63hKgXt3jhOHaVBAPH5yKz4+PjOjs7qzfffLPee++9ury8bO82repyqOZ94TXMa4FDece8cZh9L3LAX9PO+/v7toCqartxBRmywNoLm+xTzbmZP3Six8ky60WOAW30Z9wDBjJe8NiCD8FI7nOOveUMTiDRmzyPudNMFCFf66d9cCa6eBbPBos6PrFs3D7HDvbrllVfLOaxQUZuX/JGXJ/8r7Ejem7eDp1BluaBjaWSoyTmgoMzT0NfPJ7Jy3tsbGN4Ps8gJkKWg8GgvcKir7/Iwa/t8wJF5j+84mQyqcvLy16c7We6/uSxrGuOhY0Hia3AmI51sLO5c5P2cC1xjMfEHK37x4YSL7hEXuafnQ8w3qY+x8Dui+WQum+bZC7YOpXzw/JPO/9Yee0k6HQ6rdPT0xqNRp1Ei7fU+yghCwsBOElStXWYGDacTwZxvF+EYBejvFgsWvLIg4JQCfq/8Ru/sfXDRpP/qXM6nda3f/u3d5wbdVuRKVbsnEQuSaom4e1Jk0EVMnQQlt+ZgOlLxOakdN+rui+7NllB6XOmfJ4BlcGSDT8BHuQC4IdgHll611PV9p1Be3t7dXJy0nE+GAgIPwfwfodiJkOSsE7jiUzsqG3YLR8DH9pkx0gbcoz75MhKfcva/eR6ABeGy0kEOybrgecO7fNqqAQlaWxcN/J0ghr5cK8dnZ2hj56wzvQlKfM4A+yEV2UBbrx6ELDoOlMmHhc7dreLFee0199Rl8lUgwp+e1WTf6w3fUDBc8tysa6aVPFiCNdj+5Rto9h+2GnlwoK0fXYyJl7s3NDRvh2qCfzcb9+fIJ6xd9/u7u7a7r7N5uGIPuwKgM3P9/2u14W+pF012PQ4QL75JAKSCA4ebJsczPTZSgO0qu7xJMwlyMhsF7JMMGCikf4xp3OsE8im7+A5/t5zH7mZmLR8q7pJYrcbGWI3IN1z0QPjz3w14K3akphOONDn7Be6ZZDl7/2dS5Kobl8Cw13Zla9XMQlhvMV3Jq7sz21nTWIwl5PUx657njhJYHKfa/DhJGeNYVnMwvzGNjJfbWOo00ES+GkymbR3pWw2m3aUuBdbVFXHHhn/2k8RMGIj+TxP0MCWZjyEXExCOClK//BXPJPxcAxVVc2PQAqw+prkJ0SbMRZ939vbq/Pz87q7u6vxeNzqqXrwHywY4XOSbr6OBWEk9iD0CMq5BszjJPhq9bAjdTAYtMQa/cj4gxMmvAjNSWonBzlqdzAY1PX1ddMF+w92A6zX2x2iVdvV1cQhxinHx8cdn8EYQjLwN/Ph4OCgTk5O2ntH2ZGcmNK42vUTT7Nr0zHD3t5eW/DLZ8vlshMTgBmY9+gHnzOP9vb2WvJxs9nUcrms+XzeSCz8Jm0BRyMXkyyTyaSWy2WTA9es1+s273IXEfKaTCbNFjEO+/v7nQXNxs3s1Hb8ZXyZ/AK6RR0QSU5IoiPenU372PlKf5N0ISHrOM0L77w7g+LTY1hQ6jiY+ZfYazgcNiyYeNxxBn3JxR95367syq7sykcV77DDv9mvJs9ofsIkOd/1xXbYr8Fg0HnvdZ7ik7EZrzzBR/zO7/xOLRaL+vZv//Y6PT3t4Fb6stlsiX5jOXN6TpwOhw/v4JvNZvXy5cv2/lF2iJLYdEIM+5s7lkg0gi+9wWMymdR8Pq8XL17U1dVVO3WAtuV45KKkqurwhsnTOqmEH2TTyWbTPa3i8PCwLVTiWm+YoA6X5KTdbnTAuvBYYsIxhzEvuCuxNvcYV5gLsu44ScJYm9Px4nhzMfadxFXgDtpiDjU5JnAvdaKzJJ2NY7gvxzb7lv3y9eiX9c98o/ke5kTyNcYI9C35aHMatg/033Ec/TYeMzd2c3PTsB39SM7FG2NYJOFrbIcoXtgLJ2d9hEsiZmMsk1viOTzTOuAY0TuO0VtKytl64e8tV/Cgd3uuVqt2DK55K8aSa5Cjn8F48h33Ow5Hh70olFjfCVfHzRlXewyRUy6IcCwPbvYGIfrNtck1UPr4eP9+3fLaSdDT09Maj8ct4YBAfbSUSUA6jZARDr8hZtbrdQucWWmDUFhtSiA8GAxqsVi0938iIBsHhIdiQjpkcOxCYG/C2v2gzXyWBpegI5O3FE+CdMKWm41uEi+PDbBBhQPzNCTIuqr7ktuqLrHeV+zYLGM7IL5jdTTP4XtPIsgMy5fneJIhdztQE3XuI2PnZEzKyqAnjT3FoAZSoWp7Pjt/ezLbgdipIVs7oBw7Hw3l/gEMMXBeeeYgHllQD/PJxYAmV4nYGHmFhmVl2Xg8uAdja4NMOxhLAyQ7OjtT6xEy81Fjdoo2igm+cG7e/cZ1lj3PsQ72fW6iLuehxzrHnrb4h7rtYHkG8nSyOuVk2+Sjvtz+BJ4mQxgjy87j5+v5O20659BD8mU/rBu2LU5C2YnzmckoQIqPi7EOpJ5wxIvfxdG3Q5Y2uj7qtI2jzdZ560aCmrS3zG0vVPCRfQmA0Gf7PXxfBkPI1wCkb1zRDeYocy+DJetFBp62t+5fX/F9ff7ExK8/o9ivUp/njus1cOOZPhKaYwoJ4kx+A1ixT31ttR+wTvOdfbXlQl3WCbfVc2VXduVrWbAh9o3gD+uwA/2qesX3ek6Bh9F1L5bIJA+fVXVPheB5uVDJc8s4yQQFNosTRLwwh3oGg0Ejl7zSmeQSeLOqWrIJ/EYA77nphU3IzrsbeGc9MUZVtSPZuZbvqceJT/fbyWf6jTy985HfyMWvDXGf/RyCffp0e3tby+WycyQUsvB7H29vb9tvtxmfQ33ehekj8kha0V5sIau9uc4xpE+Z2Gw2befBarVqSVEH1vhKk3qMBbtEwRQkiT0vHJuAP8ErlrN3jeJTTBpCSOC7WKyDzg4Gg7YYy3MTHRgMBo3YsA8ycTWbzdp7xHi+56KPzEV+4H1ksNlsF0AkqeWTY5hDz58/rzfeeKMThxgD5UII9JgYwzpl7Mm96Cb1s/uWWDFJN3CnbQI6xPfmHPyOWBNdGasab+K3TZjaZvpZzIc8cYTx4H8nBZjH9/f3nWN8mYePkaG2RZanMaB3TINdkrAy1tzhkF3ZlV15rHg3pW2X7SB2HpvrONo2n2K7ZD88mUya7WOXEnYqcWi2b71eNzxzfX1d19fX7V3UtvVOAJhjS04hr8N2Xl5e1mw2q9FoVNPptCVCORIfH+JdWpvNpvNqG3zy9fV1e+c6/vb09LSur69rsVjUbDbrvIMU+YKB8GO0n8So7Tt9wc/BG4KNfHLZ/v5+4/bNQ2R95omM45GX5Znjlzw39zr+Nodi3TGn5rjCeAqc56P3kxvva3fyc8Ybvo52+TPHDOAv3+v+DofbY6Q9rsYHmTyn3j5ugvFNTGI9ow2Wg+tjfqO/1v/kHvnMPIeTxx635ETAit4NyMIAFumal0aWtNFcrDG8ZeHYkXiC78GAyIvvuI5nPparMuYy1nMst16v2+ljKS/mmOvOdud841pzkj7y2txVPs9cH7gfGWb/zEdmW7Edp6enbXGGn2UdNa9g+eTfXjTAd8QC1l3HjdbBqupwefYlLtz/OuWr2gmaWX8648CRCe4Oe6Lwfyo+q07ppN/1wv+3t7d1cXHR3ofyUcaWZ/POmqrurj2UhS3cEBo2shZo398OOk3cJElqw+G2miBiMPkukxKpNJ4sJiYwThnk9CmLJ3Ym6LK4rxQ7AAf56QiThGIykuwh+cFKfur06gAnQ/if8bQBoR+8t4fA2qRBytROhjZjZPpWJzEufStUXGwwSGZ4pzO6Tf3IhL5iDLxKHCNlGWEUADZeeWFCDIPP8xw42+lY1k6acK3lgE6s1+vOLt5MclVVO0orwXGfztNP3gXEc9wmHJeNO8VJZettGm/k4H4ZtOY9bu9jn3tOGlhlOz2/nQBDnxlbOwOTGyaf0ENWHCZ48jw3KPRRu+mcbGsA83Z0Vdvd//7M7WP8IeSoizY7qce9+b8Jy9QHErL39/d1eXnZOQrQSXASkgbrJMv8HrAEnPTD+mww6SSkA0au9eo49M36YXkzn002Zz0GYV6YwbhgZxIMJfDKvlovDYj4HCDpa1yQhfvCGOEPTFQzxl5hl225vb1t/huQ5HoddCQZiC/xMXRV1WwKiYwE7JZN+ru0a31z2X97Pu3KrvxBFGyx8bGPyHRgjr3xLqSqLm6vqlfsPslF++1MkDn4ThtIO/LY96rte0g8Z/GBfG4bAIlGgspYD59VVS0J4nc2GisOh8O2sNK42Lv69/b22o5JPveKYuPv2WzWwQfGz06qmAjxitjsI5iO+yBUvLsB3JLjSf8Xi0Uj2qbTaSPP2JFg+3x5edlJcvft6qNtq9XDjkzirapquzNNeq5Wq7q6umpJICdBR6NRwy7YZRazQlYsFosmI5JmPiHI78nkdATHeaPRqOkaicfE7F6AS3A+GDwkKk9OTmp//+EdkWB/8DxE7MHBQSNCmF+Mj2MJ5ETb8G/X19edZPBgMGivfFksFs0fGpOAGdlRifzs39ChnLvGLbRrMpnU/v5+vfPOOzUej+vp06f15MmTV3YHj0ajGo1GnSQwcuadY54fXEeS3UQLx90Ph8Oaz+fNPjheMUm1Xm8XYSDzqq7PJfkJd2CyD/uA/crYkGdiy0xSun4vhs0x9twDf9JfrnGsZnvJ85g3ics9fvSB3/v7+03+bp/jzF3ZlV3ZlccKts2746u6p3ZVvfqqF/72Z9iyvLdqu2DE/gf7aB7VfLOTs/v7+/X8+fM6PDysX/3VX63j4+N64403mv+Dk6IO4y3aaK7DCSaeb0L9/v6+zs/PazabNf6AnanElYeHh41XBmMsFouO/fWx/SycOjw8bO8MxT+RKPLuRtoN/jReN+YzPgRnz2azhg9J2iIXcE9yt5ZdVRebg4EYC2J6ktlur/mX5JHdbvSB38kv4ZPNJYC9kTfjbk49xz3rpR3orWWQ/Hm2l/vNe5lzNW+ZXKAXY8HlmqtDBz1uTuSBYcH+iSncN+MK9N1YmcV+jCnPR37GKdTLb3Mnxp2Wd/KS/A3+8zy0vhh7eTEf+N7ypp3c781pLFZwQp/TTRNb0YeMObM/tM8L6bgm7/NYgOtcj3XL+si4MLaOtc01+7QRn1SC3nhnd9oK837oIHmZ4+PjznuE3b/kJq0vjvmRgRe59JXc6etn2ocga2Ts+dyXGH2svHYSFEXxzksPIsVBg1dRU3LyYIhRXpTbCQGCr/Pz87q8vGx1ZTDO/ZkBvr6+fuVsb4Rl4+CjrPqMnie877XRpP4+gtpOLB1WGoc+p2aj6CDZbe0LcpIENzjx8xhLJ1Hd7yT77dT7EoUmzbzSf7PZHglpw4FxzwDRxg7nhqPdbLZJUK5PmdK+JMT5zMWOz2ONHOlPVbVVWDgvr85wHf6NvCDoaD/JYBtMdoRxnZ0fhsQ7DngGc87jgoO03j82/gBROwYne7je/eQ5TlxwL8/ib6/05rcXUiTRZoBl+2MdznFNmVN3n30w6POOWvrJPZ5rfc7AJW1MGnKKE/gAdyc+015Yv0268D11Qz7xuYlpgxnuN5h2wMJ8p458Dv2jvQZ8tl9O0DMW2GTbJ+uJ9SaTsAZPEICr1aoWi0VbSGG5ey7YXqf/8rg5qWkdSlDjfgFiWalKwIOsra+5Win9CiAf4MZOngwkLGcDE/fXOprBqueN22If4Dnnz9x+64YBtMcUEI7O2D7nLofBYJukN8A2SEq54R9IhqO7YAoD7MPDw3a97VWCtiwJVjNplG17rJ5d2ZWvZfE8tq8DK3m+Mj9J3pnschCdK0i5B5vsuh6zEVXd93vmqmOupQ/8bYxnX8Azj46OWgLJdhVcZ9vOvPdOAx8NTB/BcibaIKyQU9ob+kPSxTsUnURNe8H/2EFsEQvfEj/u7e21HQTUQRuRAX3xanAWCCHLy8vLDqZCL0gSkvD08aqMFUkubDN4AdIu4xbaR3tZAFX1gAmw0SS+bPvX63VLjJJkdbILzIyO0j8IMo55tU2v2sayJv0gYViZPhgMWmwKKTQajTrHSzNuHC8MBmIXLd/N5/NarVZtZyRzjPnGzkX7uc1m014VMpvN2qtd6KsXf/lIMdrkxZWJTZFJJviZD+Bg3o92dXXVxtdHl52enrbkOc8hUfzy5ctO8s+7USaTSSemYH5uNpt2TC44mPlMnxwvME7Gyp6bYAfrKc8Cp2VcyvxhLIiZaC91U28urqN41wPjklgPmeURecx5431jN7clyR7jFvplPLgru7Iru/JxxXG8MV9V9zVgYCZ/hg114syLtYxbxuNxq9M4wRxFxlW8x3q1WtWTJ0/q+77v+2pvb68+//nPN/9TVe29nl5Mgk00R2GexP2njsQ0VVsMx3tEiTePj4/b4iAWWnFiBElN+pL8OVjImx5YXAWmhAt3IjB9o+XL2KxWq7q4uGibfXiHKO3wQhvkk/yhi9vJ+DkJYn7IfEDy9MZlxirmxJJfSz+PnoDPc8cl7aNk/O6/zUmYw+Aa+9fk9eyvvRHIsQf94TQqnse4pv4x7tTtUz9Y3MXYOeGdnGDiI+cSkA+47+rqqjNWzFPGnDrROW/cQC48o48nBJeR+Hfiln4gA8vM8k89sY5xP/OAha/MFeaNk4bmneg3O6RpH3jbuuz5Qkw6n897+SOPg8fYY5bjX9XdBZ8xLXaA38nVeu6iJ+Bec6leOGt+Ebz+9OnTeueddzr6kvE4vx1TeoGF42zb+uQYnORGXoldM6ZLXUb/Xqe8dhLUL72lgUxCOs+uOx8R447TeYTMJPBqIOplpe/d3V1dXV3V5eVlZ8VCBtcOFmy8mGw5aDYSTAqEm8VtNzHkZ7iPFBO8fUS1iwl+J2AMKmzQDBD44ZmegAlMbED6EjXcYyXzdXzv354IXJ8knJWZyVXV3U1JP7gHUqKqu02fZ3pFC3X7XSsGb6vVqu36yh12OGOTMAZiBgA4fuYCx0gAcEjGoBNc63FltTny4x76Sv+sM/TXDoR6kC/GwwYQ3fJOKgMD7ypNI5L6jGwMWBkv/k9A4HGGeKCY3MDpmASzvuVnTpCn0+ce67adqD9z33Pe+Pl5X8oqwZEBUc4Bgx87eu+MRk8BOdg8nuNnPUZ22X7YEXpeJEhxsQ4ZXCTABUxYLwD0BhY8306bfgFeDSxMZFkvAGKAsqrqrLjkuJnsU18AhA9Ch5KYT7uXNhhdzGKn7eQx89Cy53tAO/IBjKE/fi+Un5GLMGwD3NYkHVNPXPruRwZ5nW03Y5nzw/7LO9odSFiP6DPP8LvmvLjKtso+DpsHmY9svUoQu839zM0cQ/c/QZ5l0mcTXPr8/q7syte6ZMDLnPIuc/sMJ1es/04OcC0BmVcle14xb534wOZCwBgL+W8nB+1PnKyj7RA52Hmv8PXpIrTFBBMxBwtVIKZYzc+K16rq7KbDDnnnnu0Vsraf8QIZxwy5a5W2eWcithyZEWQjN45GSh/PdZvNps7Pz2s+n9fNzU0HFy8Wi3acm3cGMm72w8PhsL0Di6QQuyBWq1VLloFR8S34ZpJu9PXu7q4lbb0I0kQc/bW+IW/kt9lsdwf6XtpvjIGe+ahS5OFn81zqGI/HbWcH9SDbo6OjOjk5qaOjo+Z78W0+FcWkJvqLrqMXJkjQx/l8XovFosXDyHe1elgMOp/PW9xBf9El5GXZM8foP3P/5uamvVeM3+gGR9VeXl42Gc1ms3aE4WKxaDGI5zw665iAeQXWwobQL8Zib2+v7Tz1zhXHD8wjv/LGNqtqu/vb/rmPUGE8naj39RTfv1qt2rO9y9x21TFK8iB9GAEb6WQ+z0yS0fX4mZ4HGatYbruyK7uyK4+VN954o/MOavMP5ledTDF+dHxZVZ1Yz/jACQX8RdWWsDdOqKr6w3/4D9df/+t/vS20f/bsWVVV/dN/+k/r137t1+rbvu3bOj58vV437IfvBLNRzCf08SObzTbBlP4DHLheP7wC4Obmpq6urmpv7+GY0ZOTk3ry5ElbMHR8fNw2gFBy0VzyIOAdNl3Ai9BOMFEmHmg7R+Din/FfmXTD/1ZVx/94VzDjBW/lBJj5heSf6Zd5Q3MiVdsNC36u/SRtgxdxTgJ98XvhjbEYO3OxfXyX++fPwQfmwsHq9rOuA303j+F4gN+cYpI6kZwnGJKxQweMHzNX4MJ1fP4Yp5nYn3nBe+jRFWNI+usY0M8y75/8CQsahsPt6Yd9mNXyIOHNGKKfVfVKjGrunH5513Jfohx+irblXEHf0iYQC5ALo5g/stypx2Pg2J05a1xHfdhb5p1zQMxx8/7Eks5LEI+Zi6aga7e3tzUej+v09LRevnz5Ci9MXywH82S0M3d42oegu7YtjLM5AuPqnL9eVLK/v19nZ2f1OuW1k6AYG5Tc7zezsXFHbBRcuN5nHBOsebXL9fV1LZfLuri4qNls1u414WqC0omQJHktsEwOoCCug754YnjgXPjfO6hszKnXdSQgyO89WRhwVrFnsQLZGOU1Hh/fYwX2amDus2PNtnsCP9bm/B4Ch/46mMsAle9sJDzRcE5JrDG21IkDQnc5ZsKrI/jtVfSZxLTx8/uC2I2WL722o/AKEwfI3p4PIKI4SWxdziSJnYCNn40FzgECwsldGy2usTwBYYwfCQaPt8mm1JMEB7TNpFkCDINfg4fUCTsIg2jrUJ/R7QNsfYsq+J2gpI+UyJJ9tl3KZ2CLDG6d0KJ/Js+Qy2P2xHpkQObSJwfvHkrHhW4gL/TTztUy8dj4OAaDSOpPW3Fzc9Oesdl0d1V6B9BkMqnFYtGAGjL0WDH/0RmIq/F43FZX+h7P9T7bZoIL0MORFe6zdch2ml0lyMuJCuYRiTrbGfSKcfVqNutd6oDb6yApfYbnISX9CddZB0weI3PrpsfYOkI7SVZgG3yEOmQ9dp0+J6lrkh0iNwlEgKVJWmTjla3Zb7e9rzggSZ/VJ79d2ZWvRzFGwKZhN5xoQJ8p6curHvywj+C8ublpOIL7vaLT/sA2hd/eCYhdg8yg7cwd21HvHiWoAvMw57xzzL7TC72cNFutVi3RQ1/xCca7BIIm1tiRT5s56t+L67yCG7ka3/hI0MSMfqcleG48Htd4PG795zf3ZwL7+vq6vYczfc/+/sOxrk+fPm12kCQnYzUajZqcKByXSqIZu+wkJX8nucLzeXf3dDrtkJ/spDURyXcQeYnrsOcZ320223fhQNSRuOU5XhCzt7fXdoju7e21HRg+QQjdYEzYqYFPoE7uA7vgb9AFdnUSK/CszWbTiGdiFBKNxCsctbtcLhthRMxCQf/9meco42ASajKZ1GQyaWQHO1gYz8Vi0fG77G6lDSxapm7+ZtfyYDBoO4gdkzjm8uJSsFRVtb4SQ7A7mH6iAyYOWVDAsxz72Hb0xSyeQ45PM94w/8FCa+/mBk+A4ZLMo9/G/8b2xnYktrEriTOwbyZq+xKiicN2ZVd2ZVeyHB8f13w+7/ApjvPSjg8G25OL+N8YsI+TdLKF4sSHuQ8w3Onpabvu2bNndXt7Wz/1Uz9V7777bn3uc59r7aOYf/HGCPrkBGJVdwef/YPrS2xtzGtMeHt7Wy9evKjz8/MajUb1yU9+sp49e9ZwlXEqBWxBLEwb0pfzU/XA65GsoSBv8HpVtU1FYGT7BrAmvo6EG7/dJ1474MXFLuCv5AfxS/a/yBP/TJvMwTL+5jTAq06UevFSH//x2Fja/2eSqo/jSz4srwNjuO/gamTsRI5fnWFclvMFTne5XHZweibojbkTf1sWWczlWK/NDVt/eDZj52R5jr31LI/AHgy27503J+8EYdXWBiX/bwwF9vRiMn6QhXeBYmM8ZlzvDTzwUR57bJPHuurBdvYl/JABxW1i3KwH/O355djcuBHd8mJN58dsa5lv9I043ItGnQ+hPH36tGFx+u85ZUzL+DiJiY6gP+gW2Nh8MGNrPtb2KeVivpWCr/i48lXtBKVBzuazGpiVJjkJKTYuCIw6MaYkPjkGdLFY1IsXL9pKV090OxsrmInMjyMeraR5Pc/wigc7jj4j65KGx8bNjpl2eLJzvRXMJEe2O42ff5KQ6suim+xJUjoncgZS2V/vSGJi5qRMEGXSCPlke3MXIYbW91dtd1XmsWQmUPyZnRLPZpKTYPR7hpjAkHeQQLTfx9fSTkgRnArEAPrPkSCQPYy3DTWOrs9BIlfIf5yMV18gJ4Jy6xHP4zMnfa1bJEKtr54nbi965xV9JgltoBlvr9TJueU+YFy9giedRx8ASrn1lSQG6GOSRyY2TZAwX3OO85nJMmRhW4YssYtuQ87ZlINJTv9v8O/dhAYPtM12qI/QhpjxuCawrdqukrMt4RkeB3QC0Mu8gITjXuaibQfEGbrFu90M9vKYX5NdADISlznuJqDQ80wcIjv6D5jzSjUn77AlkNQQg32ALOcHz/C89ByEtDRBaP1BHn2ALBN7nj99hJkDHWwa1/YFBv7fckxA4/nDLhQIauYG8sokPUHacrmso6Oj9hzbG2wpdtI7rS2DDPCp3xiEdubcrNraXt/fh4t2ZVe+HgWdZOFc7ooisebAN7GefSqFeWyb6qDW87pvEQoLYYxrvboYnGdMgX2jrez+9BGw7GgjwLNvo2202bsY2dVpe+d303C8EYlaH8tuu3F4eNiObAUbYquRD34TAsM+1TjAskMWJgLZDXB9fd1Z2Y8t4vQcFo4OBoNmP/GvPIvAGf/Mu0IXi0XnvUq02b4SvbLt39/fbyQA+HowGLSjb+/v79v4XV9f13Q67ewwGI1GLcGMz1+v13V6eto5npf+spCIhCe4xAkkywj/T+IRbLHZbFqyH73gb56JHDgiiuPuBoNBLZfL1i92dKALJJfZvcl7P1erVbtnuVw2PfXOXXaDzmazurq66hAW6L+Tzp7X4A8vgkDvjFc4YpkV7IvFosXnx8fHTa+8un21WrUdLywaYLyWy2U7Dnc0GtVkMqnT09MOacn4ktRFFxlj2s4CBZM1tIfX3HBt4jy/8xU9N2bGtmDrbB/B3+gweu+Fr8wNbIfjXscIjCt2MOOFtIUZhxvzGsdjf6wPFMbZcTN19uGVXdmVXdkVyvvvv99sJTFeVTcWcuIP+2mu1PbURDz/ewegMYBjc+PY9Xpdv/RLv1T/5J/8k5pOp/UDP/AD9af/9J+uH/7hH65/+S//ZQfH8pN8FfbWPIRxCp9lcsN42Lit6tUTs/jNMweDh5M3fvu3f7s++OCD+uQnP1lPnjx5ZXGUY3ZkT732e+BnYtyqV48e5W/8umXses2hmXvC34FZSH5wQpnjAMuyjx92wpa4G6xin+cFY+5nVb2yiAhfOJ1Omz+nPsbX3In5OvvMvjjH+QX+N7a073Z8Yv3P/AT95bPr6+u2cNKJLcdJfhYyYeGcY5bHdC75huR4rDfMNy9iN99pXeE+2g5nTT7ICVQwIbJOObPI0BgcnG3ZM3eNY5fLZYdzpl3GV5TMizjG43rmhgtzh/7RPuRmeaP36PjNzU0nznPpa5t5LH/u8SPu8Ya7qurgUfoEf8qcdazq1wC6H9hadMVzhPctv/32221cPbeyL7Qj+TXLw/Gv51Ifv+72MgbOhzhftV6v6wtf+EK9TnntJCjGCQNoY5oOz4LtIwAJQr0SmpdYs5uOI3CXy2WbVHTcxRM7Bc33SeImqclEt7N3m9OwOPBJQ2VyOCeVjTP/oyCp8Ekc+/Psf05GE8l9jsmGn+sc4JlcwiinM6EtGdzd3983Etorw7ySB6VOcOJ67NCSCLJMvQKdAJwEA3XwvccFORnIZHBLPZBrJOORBau1nVT06mOSNIAxxvf4+LgZSvoDOQc4dMDKuHn1D2PCDgFk4aMhnEzzuDnBkrrI99ZF70LguzS6tNHO0YQC99EngycC9T5g5fdRQeQi0yQaDDIMdO2kHjOq1j0bcMpHOa2PKl6Rn47OdhN98VEKeVSrZZpjlAS0E4aMi/vpBQAeH9sj2x/aYyBKPYyxbTH3obPMQfpDHfTJPoUf9Nlz1LJCnwgGOLbu9PS04y+YA8gh7V/KB9uADNP2WZdot1dOMreRpQNIdohYrxNgW+62ldTnaxiXDADSdtBn151B6kfpd4I4ZOX3FfT5TtsJ9ymfgYyduKVeL2DxEZAGmPQLW7dardpJEwn+kdnx8XE7zi+TwxkEedxTVgalGZik/PLzXdmVr0dJ3OoFGGnnTEChx8YZ7LzC79qOY5fAVQ5awT9V3QVAnmcmgSA9PIe80hu7SuLSC2DADcx/21wvOoPcIWA3kUQyh8CefuKTsa/4dOqs2iYKM+ZBHulf8EveoWv8yC5LxmIymbySHPZCDweGJM2om4Ssd0LyHPrmZ3EPRAsLekhgGj8id9tq7Cdj5TFnjIyn7+7u2ns3TYwiIxNgT58+bYsRl8tlzefzVu9qtX0v6dHRUZ2enjbZDwaDtuvX7/CkMKaO21jc4znEsxmL2WzWrrEesCByNBrV/f19nZ+fd5K6yC3JPu5HLpyERPLUc4P7mQdOUiIv5rPfbeZFwuAyYxaS6OggutGH15gre3t7beemk/3UdXFxUc+ePWtHVI3H486uXONRsJV3kU4mk7q5uWmJfY/DZvOwM3YwGDR8YOzmGMs7BOi/E8d8bmxnrIe8rcfJCdAm7B3tsW2mXhPEiQ38ftpMZHoxIs820Wg7b39AHbuyK7uyK48V7JOTIsZa5tCMSaqq83kfJ+m4F9/lBIcX5OGTnMB78uRJfeITn6j//b//d33bt31bfeYzn6k/+Sf/ZP33//7fO7Gu68NXgOHoB883fnOb8XHmu+kHvpB66RP3gl9pz/7+fl1dXdVisajxeFxPnjyps7Oz5nvxeRn/m6dLeWaMzzORpzH+ZDLpcAT2A243Pv3i4qKz65AfL0wyP5RxtvvFuKeftf/ElxGbM4bph3nOcrlsi7CMHZALY2C8lrE7z8Cfgr3s880bmoNDvvxk8gg59/GU5js8vh7LlKtjkPwuubrk7zzexoEs4rOuUpIvMoZI/oa2OFZiHD33jSMzOYpMzeMSfyJ3L2T0GFmHkrtxG5mrxndV1ZnDvp46PP82m02LSTxOlrlP0enjfGxD8xpz8S4ZT9MPxtYLHny9Fx2wcJA66B9tMg9mGcIdPH36tObzeV1cXHQ4Y7ebtjEu2AnqsN1xHNG3WJV6rbupczm3nAh/nfJVHYdLAz1xTb5aADmxmQAY0clkUlUPhoz3nhBkXl5e1vn5eSNf3FEHIVZ2kwEIK9ufwkvFteKZdPbzTYb7WoodOHXgAPoGJuWE4qRRJFiyM2biuz8mXXLyWmGTsPZkyvZlQtdjj2xtMDxpmCg5sWyMqrbGzw6P+/xOpKrtGeq8k5bjBFwfxSS8t7MzjgAfO1wMOd/5egwLQTBJIE98y9aklgl+nC1twFh4x7WPnF2tVs3Zeyc2IMNOCGOWxjzfe4vT43uTMYzDcDhsRIgNcOq5gYaNM7LHbhgsmpjpIwlNCjp5ZUIDeRt8WHcTJBg0ZsLChALF88XfWUfp42O2wboM8DZZmwDSMkL+JokoJq7t2P2dgaPnlh24r0UP0e/cKe2+GgDQV7fRO109P9P5JsGDLqY9yD4BOk0ys/MAfeM5Bmxus4MCZEFbEhTm6i/7NAcffG9AnnpmcGJiznJMwhO74c/ol30Cz7Ds0sc9RrzxfOtr+qe8nx+vDnOgYExA8oBrrUOeo/6f3Z3T6bQjU+MQyGbaCPHLMX/stEGXGV/mVl/f+3TVc8ZzPudHX0kd3JVd+XoV5hD4omprM/LdPBTrfQYTXnzmFfpgF3BKzmcTMZlswB6ZFOvDug5QwYN+Bu0Cn+A7wFPgJNoxHD7seDw9PX0lXrCt4lp2lpIUcuKEdpDIo50cX2oCwz434wEvnsNmk0SD6KGf/k08NRgMajab1fX1db18+bLW63VboEKy10eO0S8vfDQ+dLIOH3dwcNB2MWLzOEqe9pO0dIBv/8rY0jfeQzkcDlsilITXYDBoSU7kjN9kfPif41jtm7HzDuzdrs1mU/P5vCXvjFO9EJRj1hhb5gJH7+PHuZadoIzxbDZrfswr3JlLnlvIjhhnPp/XfD7v+ChiEHQKnHJ0dNTBTRSfKILc9vb2OvgIfQOzsUsBonF//+HEGurwkWLMVeuGbQb1vPPOO/XBBx/U2dlZfeITn2h6yfixcBVZYLvQz9FoVOv1ur2fdG9vry1C5bm3t7dtVzCYCl013iT+Mo4hiex4//j4uINvjWWNrWkP7U9uAnkbs6RdpS3D4fZoby+k9dz3XCLhnjjXttExRh/Btiu7siu7QjF3x//mZ6q6SbCMNbFluViba12cPKI4Pse/UD/+brVa1X/6T/+pfuiHfqi+67u+q95777363d/93VdidzAvmCj5XK7z5oOM4R0Xuk/mg6jXi8R8L/Jar9fNt3/44Yd1cnLSTkrA11pW5gYcN5vfMx5ar9fNl3s8nfDCd9gX8X5x/Nd0Om3H/TPeyTMlx2i5GtfTBv43t+CYwbwOuJv6eLYxrBNNybf4mcYkfm7qnblsxwDIhM/M6+WzzGPxN/FIH7fiv40r3D4ng61vvpYCJjE3w5h7wStJ6b75l3L0nO3j0czNgb1ub28bvmaDgvlq8J25UM8/Yo7hcNg2NxmDpfwdv9LOx8aH663H5tGI7dAvPs+Yi8/NXVG3sbBlRRv7uK++dldVx3bkODsWzeQrC+mY78QyPNcxPbpgnhM76md/8pOfbO8/djvcV4+H6zSnxpxC/ywn66M3jPhZ1kfbesvydcprJ0E9QSkYXQcuSYL6XgJtkh8EPgSO8/m8rq6u6urqqh0HlMmGdMQ2HlZKT8q+CU4drtdBIn1lAD3BuS6Vm8J9VV2Svc+QuG0mUnMQPQH7vstiY25D3tce+kSgmImkPpmlI7XhweDj+C2/bDeyzMDdSTbagMFkdTHEByVXkBD8+/x6gnw7fBtu2mPg4b66nZZnX3LtsTG8vr5usiGpSR0cseVdAozLwcFBW80F8cY8qto6egLj3IXBNQTsPj6JwiovPw+SCsOex2qkcfZcSSdCfyiZSLC+mUCjToAqhJdJjI8yfCYsTFZ4Lqfdcr+sw+lE+0CL7VP+b0eLLnoRAIXjHpATOyMTpPfZIsbfwYBBU5998PhBaPJsy8VHxXG/r+O7BGaMKc/os5vMNcsUWXlXqE8H2Gy275f2sdMGyRDhJnbdX0hLg40E0I/ZQhOr6IrHgvs9voyFiVGPfc6nDDL8N/0xAMi28kz7xPSh2Ya+cbLc+hYj2QbZLtoH8T/j8thOerfH/tj+x3riBA//oxeQ6owT9wDMkyx0wOXPPHYpJ8vxMR+wK7vyB1WYGz5pwe8hxk5iX/EvPrmAIIXi5EdVNbKiaouHCJ4ysDc2Mj5hTjupyFzHVpHEw/dgY6nHx5WmXyJgJaA+OzvrLFgZDofttA8vlOP5JFXAhZPJpGFHB18kgsB0Vd3jMm137Svsj/w8vuekD5K62CtwIsetHhwctAWBk8nklV18tpH0E2JrNps1zIlPAkeCfcATTgoyrvv7++0Y1YwRudY7On3UKv2ibybAWLyCrc7A2sdpUS9tt58A96Lf6AO7RRlL2uMFily/WCw6O545/phdiMwj5EZyD13IhVk+0YQEMzHNzc1NvXz5sq6urjqLGDzHvBiSOcjrZCjGblxLstIkpU/KIJHKjhX77pOTk6YnzBmOlobcRbe8OAFccnNzU++9915dXFzUdDqtZ8+e1cnJSdsVim6DAxiXu7u7tpvFO4c8dibViGM8lx3DJTZ0HEdsRJtz/vQtUKvanlTjo+qwlY4lTC4ZB6Fr3Oc51IfnGDvaiMwZr8Qs6GjGsbuyK7uyKy7JDWSCz6cJ2AZWdRcLZX2PxYXJv4JPwYSOqVk4hU/+z//5P9f3f//31/d93/fV5z//+ZYIzUVnfj71OwGDH8E240d9Ooq5YXyVeRXjSidDTeKb2+SUiNlsVqenpzUajdriMGTrxdLU640SvgaflvGnF/yAb7ie930vl8vGTSbvDjamD8kNOQ5nXM01mFe2H7JuOD6/ublpC6SMzcyfUGcfJ0fdfXE6Y209Nc/Iffk3P/b96FFycslbmj/MBZCWn/tCf/2/OUa3sa+tTn554aDnnp+TWCj77fmZsjUGMy/OeHKcshdbZr7BdbheFuBdX193cGWOe+Z5rH9uL/ez0M865Hlq/SJOSp4MPNin9yywt75QPA6OoZCdx4JnmJdKjs3YnvqxY7mQDvxqu+65wP9cQ3xNbDidTuvNN9+sL33pSx1+vy/Phm3KE5q8aNCnmuQ8JzbynDIf4fjOCztTjz6qvHYSNI3YY4XGewC8kpQO894Tjr+9vr6uy8vLuri46Dgdl3SYfl5OUt9rItXGKZMBSfh+FDGcSmw5eXJi3JKYoa1pyLjXDtXfM0n4zm2wolRVRzHTkKVcXQeKZWBjeRj4ZOYduTLmmUDOHU/8pp9pzHD+BN1+Jw4TjElI8M73BON+JygBv8kJGxaPg8c6x9lEuvXIBqWqS3KZ3GMeWDdNImAUASUYA1aLYcDdJtoKwQE5AchBdhSIpr6Ey8HBQQObTi45Ceo+oLPWVx9tYL00KWPnm3oKwEhg6R261ONiHc/vPEZut3Xa88C6m+OLQTZo4JkmW5IUwdkZRFVV57z5+/v7tvIdO8p4+YgayEWTjbTX71LGpjpBBKGdNoaxczLRY+CkledsytL2kzbxvRP0OMS0vZBdlj96AZhCPw4PD9t7z5ChQSRyz52tnueP6ZL1JueyF5C4/diaPhvKzpO+VXC0Ndtg0OW2UByccZ1Bs3WaOhPU2QbTBgds6KrnomVh/+sAmH673Q4GHIBm8fg7KeJVu8gSvVqv121hyHg8bu+TS5CGflXVK/PD45j3ef6bPO0r9rlpr3dlV76ehbnoYJSSRBW2mWSDEzTMB/ASJ1JQN9ckPvS88WcOVKgXn0Q7aTNt4RhTJwixryY1mF+QSBTjF/ARtuT6+rrm83nDmfgW7BXPJ4EGPgOP8vl6ve4cK4pcMrjLXZ185mvx8QcHB3VyctL8IWSGk322kVVVJycnjUgDLxnXgUGrHuw7q3o3m02dnp627300GHVDSpJ09TFu6/X2/UBgcC/cIiGE/aY+HytqGR0cHNTV1VVHl/ieOljMSBLVJ6lY73w0F/6J+62L/I2/8bGryMILcdBny+Xo6KiDd3zMLD4U/fARUGCBm5ubOj8/r4uLiyZPMJxl5RXUjj9yPjhezJjSsQi6SJuR1dHRUTuSbL1et7HhWnAmPvfy8rLt4DXpxfN4Drth3nzzzTo7O2uJcfgB3g1rLMXcODs7q+vr63Y8rk/0ccxhMseLQYbDYSeOQKZJMJmcoSAv2zwWJfA8ksnGjywgsIzBBb4vX1+Si+t8ckjiU3MT5kKQIc/a4ZBd2ZVd+ajihKF9ML4OLsA2JzlaJwIpjnedILBP9bO5B5t2fHzcjrQfDAb17rvv1v/6X/+rvvu7v7u++7u/u95+++3m17H13JtxYHLCtNNJIPN/2FC4E2Ne8zy+33xJ7lCl8JocFn6Bd8Gqjm3h9swFYOOTy6qqjv9C7vDv7LDz/eazjBUds9NHJ00yfqYt9lNgEf53Mj05N5+Wl5wc11Bn1gFeSN6EdqPDXszZx0Gbx/PzH+PNrK8ZE/VxMMYf5lnyO/eFazymyVt4HvU9w3PPbU1MkZ9n/sL1OgHv+Y+8wIo3NzdtwePe3l6NRqP2OkS335gXvpJ4LdtsWbutie+IH20DPD/Adk4EZgI0MSmY2pgMveWVSy62R9Ylx+eeA8Nh93UWzjvQNxfHF9gqdN3983j5xEnH4MQjzA+w57Nnz+r29rbefffdDh5GnhTa7NjeMqDOxK1w5MbgffbHuSBvYkOvX6e8dhKUoNAlJ64DCDqF4pJIQajembdYLFrgZKPk31X9Oy6zODv+caSjDWk6adeFgNPIZAKwz+kzEb3l3JPVbfA16VD8+zHDawDi9tu4992bACCDpAQDFCfF85nehWYD6VUcHoM02AYtJPFIEmIcqJdVCqyCZvzQJR9bCxGT72/ymNpoZ8LD/baR/ajERcoSY5Ryd930kYmNbpBA8Wpekz98DgBiLBgjgJbHy2AJmYxGo5pOpzUajTrkmxOhgDrf5x87kqot4HEwbwOZhbYxDgZPfJ6EKnL3ccA2mrZjfcmLHI/Ueb5H75KE6Evm9AEJxgz5bDab5jBXq1VbIGIbgW6Y5MN+0k8vAmCs0Am3B3nSR9pG+9AVgIMJbwhT5O3x8mp4+wv6CfHnz/sAoo8JI4FPveg6+occvaPa89Z/W0esqxlQuLiNjK8DGNfho3pcr+VE231MBIlvz/881i3rsY76c8b3MT1OoNtnB/N/6qCtlg1jz+++YAjb7h3uBj08h3qw/QZ0Bkv2c33jhD6MRqMaj8cNW9BX2uOdVY9hhdSdvvn9WLFd8u9d2ZWvd7FddWBKIGN77AAuA118bZ9dxCfYh9sG+LQLbJyJIDBz1au7xfGR2FXvAPM8Agc4sTWdTmsw2B4HRF3Uv16v2447TqGZz+dttxk23PPdyQh8DXhsOBx23oXTZ6tMOqxWq9Ye7nfgyf+0BbtL/1gURz+rqq6urmo6nbY22m4x9iS5PX5HR0c1n8/bblAfi7tcLl/ZjYEdx8babxrTELgbf6GX9ukka2kTOnd0dFTT6bTtuuW4V4gJnkchoUqS3vGE/YeJCS/W9a5XMORqtarRaNRkbln6M/sUFqxB6piQJWnu53LPbDZrRxqzA9RtQxeNE0i2IRPuQY9IKvJ8ErbUwz1cP5/PO8cH393dNR+JT767u6snT560RZr0a7FY1N3dXc3n81Yfcb79v+PCu7u7evfdd2uxWNTJyUk9f/68E3NcXl52dlJyz2AwaDuk5/N50zHk4rkG/uB7k1q0BaLH8ZkT3x53ZE19xjk838SN5xr20HFaLqSzvQBzpr1D5/jecYzby3feYep4ZFd2ZVd2JUueukTxwtWMb5Oztb+3TXPslrxGX3LCeAVbBh7Apv7u7/5uvfnmm/XZz362fuAHfqB+5md+pvEXbruTWu6bOU7jM9pPwQfQZ/uH5L9csg78Ef7HmBieE9+L/8UncSqK/QC+wskn+sUY8U5tTl9M/tg8bnI3yI+SvJf9kDlwvrdve8xX+XvjRvC2uRzL2/I1F2I/59gkY3L0McfTsUjWYf217JGXYy/rAM/3WFuOLuY6rXd9u6MdI9i3J3fhxJnH27Lt46UtJ/pHLJZ8urnl5NSYf4vFoiXzqZcTbcCmLo5V9vb2WjKVOvt4+D6uxvV57Dz2ucCM65zAZxyMO/08X+PXjiC/HOv835ys8yaMqRdeWsbclxyx8ThxpONM+urTelJGxG1XV1d1dnZWz58/r+Vy2d4PyrX+2/YB/Tdezblsu1W1PV3F/Xfere9+dCc3YjxWXjsJ6k71TVgbMK/uwFFZcTlu6e7urmazWUuAekeTDZOfweB4wlJQrlR8GwTf/1j9VdVRBN/TJxO3N4vr9CTgOzsLG9c+Y28DxfNzhYsz/SaVfK5yX5s86e2IuMYO0DIyacFqDY7pQj60x6tq7aitM1yDfvhdP9Y5VuSTUN9sNi0J6hXStDHf+2aH5UnqiWUCy2SHZeeShJdXVhHwmnhEZhg15IGB6gvoSQI7SeQdDDgJB9fWL8gMO03kxG663AEKQPO8d0LTc8grgZAn4wGodB05j+2QkLevS4eXzpLCsx8bI89bxhR55Xgb4NkxmhRxQjTH1Y42wSJ1AW4ZSxMlBqnMLc9rSB23l3cjWV8djACK/Tzvkkwg7WScd+SlXbTzgkhkrPpsKJ/nkaS0h/56jPgegtZJNWSROx6oN20pxTtdbYP79MQLBwy0bUMh7g0IDCTcXuRl/eO6DEAsI+YGtiL9XNo0z8m0Zxmg5JhajuiG6zPIycAk/V4m3xP8eM4aNEH8uySA5bnr9brtEGIhwGKxaMQw7WSHEEDeMvZYO7ChTy4J1HZlV/7/XdBRyCD8vTFP1Xa3M5+D2bH1FDBdBruZ1PQiLPs/8D32wDsJvVDL5Nve3l5bEe9FU7SZRNvR0VHnyGtWG+fuP2zJfD7v2B0Hmuv1w3sHme8EYlzvnaGbTfd1BPRlPB43LAuGNXHId4nzbcNMduHL2R23t7fX3tm0Wq3ajjjkZkyPj+Akievr6w5+AGuwA492gr8hBFlwZR0Cx3h8aENVNWKD52PHLWv7UuvN0dFRnZ6eth2Z7IoEw2Y8kMQqiU7vfmXVOZiD5BftIoFpTFz18K4dfBPyMLFnXLdeb4/+NTYED9nX0m6OC2MXKP/7HaH298YwjnlMcuX/FOTv8fPrJdbrh4XK+D5iR3RvMBjU1dVVPXnypIbDYS0Wi84uFnaGMpaWMUlQ5hF6dnFx0ebZaDSq09PTOj09rcPDw5YIZYeM7dKTJ0/q4OCg7WY2JreO0TcnYMEMtn8UJ5NJrpsQRYaOryzftJ08M/mKxBbmER7DbsaHGbPTPvM1YGYTmLuyK7uyKx9XzKPZbibpbR7HNolEietzksw+2/EhNhke4Dd+4zfqV3/1V+u9996r0WjUXocF53VwcFC/+Iu/WP/hP/yHurm5qQ8//LC+9Vu/tRN322c69sy43UQ6+ClJfPePYh6T/70Y37Gx73eyyNcQw7JwiqNywbfUWdXlrjIJBT68vLzs3fzB/eZWaJ+TGsjDMvNR/eaWEodwn7GLuRPzo9Yf9MIcaHLhiZuNffvqox730T7YfDbFfTbXlryoZWvMZYxrWbpdfTxL7hw2DuBevgcnPzYfc4NG8kV8xv3GQ9ZJjwnY0+PiOeA+oaPeBOCTTjjpp6raa0Vos587HA7bArhMELp4fHxSSHJ1yMqLgftwUsqkT56ZS8EmgCdt9/rGPOXtGJQYi3u8aBP96sP8zitZ17k+udfMlTBW5p1ZtPjWW2/V7e1tzWaz1q9M2FrPzH9SP/O+j+Pss0HYzFwMzfhl/urjyld1HK4Fa2PpMhwOW6AyGGzf4wIZQHKLI3DPz8/r6uqqrdK1geM51MtvBjEJdRtNSjpAFyuhJ5j7SWEQcqJYPn1KnUkX96nv7+xvfk7b+kjYBBI2ZimD7B+GJlfqux3OwFu2/L+/v98IZu6DXGa1MvX63Tqe8KwQJ2GeATv/L5fLRtIwHpAtJhf4jHbb2VOcRDIhgrzQTSd2Pe4pp6yL4hXRaYwcjDv5YQBAnSYo7YwgLzFqPurLAAkigvHiOU56moj0Ge7Z1zyW0vrEEW8+itgkkBMMzD3XhR5xbYIbyzhXn6T+Wo4GTgmi+J5nUuzUco7bFvmIK9uSBHODwaC972p/f7+zI4V3hKL/XsVt4g1dYe7ynozBYNDIXwoODMKyqtq7wZgj6IvfTWRZ5mdpCyChcaJebcRYJDjFmdnxoi+0Ockz6sOPMDf9nATZ/O2FCB7P9AX+3/aJZzg53QdIvUDBq/+Hw2HnPcZ9Tt62J8G+9dF+y3rv+WNwz/O8qpJ+YU/6CnUylj6ix/23PfN8Ru4m4whuDXQYCwdxSXS7OCDNdqA/7KTCTrG6lvvpTwbFmaBADo8V+p5ALuWYmGVXduXrWZiHGeSD8cBKVdUJcvhuMHggXOxbCGax39ggL+LiOh85agLMq/tdwG1gk/TNJIXAUmAgH/nq48bX63U7Vt7E1maz3eXIvJ1Opy0x6LYTu4Cvqqqm02mrk11/JGOQL/eywAlfjp0zmcZvJ194TyLy2Gwedq6fnZ3VaDTqnIDgYNtECHaaJCLyxm/SbhJQeWIKMicRRvxmco/3L6IXtoH2d07OEhs6cGVseJcO/t3vgb28vGzt65Mnv63T+Db7GeMK9JxEL+1jIRk4ZjKZNLm4DxmI+2/GM4/68hxbLpe1XC5rNpvV+fl5w4A+PtckkBeWIT8vYDP2zwVbVVvcxxjN5/OG/TebTUu+ci8yRA/RN+Yb2JVFzWAdHzdvPM68GI/HbTz29h6O033//ffr7Oys1ut1O4mGBKzJGi+kOj4+roODg1osFi0Zii7Zptm2IRvbMmTruI/+5xG19uXgBONmYxUv/PUJWIl9IP2sn0m4G4MYUzEP+NwY27jKBP+u7Mqu7Epf8aK0TKzxtxfH48ucCMAO2Q+Yn6yqDkYxhkxMCVfy7NmzZhsXi0UNh8O6urqqyWRSd3d3NR6P6+nTp/XpT3+6qqqdWuV43v40E3S+hnvMQZkLrOraefN9XAO+cPKK+jPRZg4j42DaDIbDv/bFpMYMHHvLODAGiZfsi3g+fTBuppibSL7dOQIXcwLWI55l32xOw/3hOz43/5Ey9rhb9/J7j0NyMcmf218b0+Rzq7qv66CtlpP7m7po7on6zbkk92Q50CfHcDkefZyc+TLPhcQitJ3nmYv1uHrck/ezjNxuL3xlUSDFi8s4LprFcV4E4GeZz/FrOdA3F893irGz9dcL4Cwr98Ob0ZLLypJxrnUCGXrzSXKTffMYXMg8pl1uh/NZ5m49J22TecZyuWybpt58882G//1864/HG11JXcg5bV2lLmSRXAR9tb59FF/n8lUdh5ugOo0ihCLOkQDCIJ8AiyNwZ7NZZ/AsCE94K6b/tgBzktuQfZRAksx1sXH1M3PliidJljR+NhRJcKcBfYxotqO2cbLcPLFSZjaw2V8Hhr4njQvPYTWWj02ieLUqxLQNE4aCv9EPv9+TJIkJKowjE8E6YsfsSeL7UxYpAz7rI8Nd6AvJDj4zgKx6NYFEn72LwA6oaruSK/tDYX45IeZV2CYiMHRObu7v7zcyazAYNMLBwHc8Htd4PO4Qg7STozqqqiWjLRcTKCaicps6Mn5s/vWBNJMr1rG+8TGpkXPN96fO0Cav5Dfo8N+0yXMSnbYOGjC5Hzc3N/Xy5ct2fJ/7ydi5n+kEsz+0xSTgYDDoJKG5H5KRxKl36nt+0ibv6LDc0zZ5ntM+7vNYJknj1ZgOOGxf0CMCg9wByrjZ1kJGJ6CjDyaPHgPU1jvAQZJK3oWKvedZfk+UwbHfVYIck8xKve7zNS6uL+9nfmcAk/7GPhl9cgIjZfJYYGB9y/657x4PZMO9+ALL1wtLLCuDVXa2+/gS2uWVxF404iA9i2WZMsxgydfnfN2VXfmDKA4C019kEFvVXaxlUt8+2jqNne5b7ewEgOezg0O3AxsDnnS7sO98hk3gfydhq6r5EJIZt7e3bWciwfZyuezY9vV63Ugj+kwdJnCOj49bII6f8Y63+/v7mk6ntVgsWsLRdsp21sTZcDjsHFk0GAxqMpm01xNUbRemHRwctHcnrlarhsfwMawc3tvba0cyZSBJctakADtFE2uAL9frdTtOjXdz0XfjYfTOR+YyDk6U4VPY8cD18/m8kzDySUG0y9iGBS5eIexdDcyB4XC7g5hxYczQWXwCskJOxLjogfEBhWSaVzTzP7jIyVtIhRcvXrQdLsYJPNe7LnySzMnJSRsXr55HdswlsI9jycSx9oOes8QVjgNubm7a+2ohpb1IwfMe3+ddweg7RzqDj16+fFmz2ayePXtWZ2dnbZ6Nx+N22g+LDZDf/v5+PXnypEajUb18+bLN6yTikYnnAr+9+Bf7UbU91cTj7MR9Ynpk6jgik60ZV4KvnQS1PuV3JiCNN0y8Zf/4e4dBdmVXduXjSvKpTjDgA5Nv7IsFHQc76cd34DoWvVW9yrth440Vifk3m03DQePxuPkndk8SY9ofp/92jOq4FDvudvC98asTD5ZXH1edC9ndhox9j46OOiez2NeArbge+Q4Gg3Y6g7krnl1VnWQHWMxYGj7PfI59TdV2I4s5Hkou8DPezQSddcgydqIkZWheMHUj60t9Npdnru6xkrG8eS9/R1/Maz02xpan+0XxIgTqtg76PrCIORTLy9jFczg5V4+v7/FGIss95e25y/85rvm3E6DL5bKDa81HoqPWe05jAfODmROHOcb1XAaXGW8RhyQP5ft86p+5eutz8mLJE/WNE8/hWvIlGYtTp5Oy1iXPGXTN97J4rmq7qJj40HbMPznOq9X2SOMnT57U7e1tffnLX36FC3NxnsZttyzSjnqhX+70tJ3Ofn01GPe1k6AUGw8bbQYaA8cuMAwMWf3r6+taLBZ1fn5eFxcXtdl0X65tQ9GXgHQHU9kea2dfW22gsph04XeSuq9bMqPNZ1auvmCqTx5WFIMJnJHvycltmaXj4HO3MdvM35YhPxydmitq7BzZPWSniU7QVoJk6sfY+R2ymZByIOh2MiG80gSCgP7mqgQXT6g+4qUvwMTQOHnthJ9Xp/t/9IDymM5Ubbf/8wzaiRFmzG0YbIRzntq5O1HKWHEN1wMufR3t84oxP4d2G1TZGRuMGFhaN510y78tH56dgM1AjmvoIzK1rcF5kAx0ezzufSCa+vzD87jWuoLcPbfYBWE7yFgbEEN0GkyY3PIPQYMdiZ2oSRQI1Zyb3m2ddhDCmD7c3Ny8cjRf6jj9YU4kKKVNjB3t4ZhcHDfPcuI35zegwuDHz0ug6X45iLDt8VyyXtM3fvN85ip9MzjFJlv/rN8JlH3PR+3itH1zQj7tgpO1PI/5A9hk14/lSzvtT1M33Mdsq2VIXzMx4GDCc8EgqU/+tPH4+LjtCGOOWldpN7rmMXIfbHNSRx4DgI/p1a7syte7WLdNcthfe+FTVXf+G0/YNlHwFWAz/FkmRJ2YMYnihCvzmiOqq7qndJgYMU5O7AZeIdHC8/f2Hl7JMZlM6v7+viUnB4PtLkDLCP+C7wSr8k5JkpT4oqpqiUIn0IxBOeqtavu+k6pqSUXwFUnW09PTmkwmDeOzcI36kQG2jh2iflcmOIbFhQ6MnVShXF9ft12oxpF+lyTHWNHH9Xp7vOz9/cOxuaPRqGFusAy7PMH+t7e3dXZ21tGF4+PjV4gmxsE7L8GTjB3y554MiNPX8jmJV8dU6D5EjHEX9xhP9r0fFDyEzPAf9rObzaYWi0VdXFx0VrR7nlInup6EHfEXycuMH8BD3vXrsUcHOYIsd+4whugAxwlzz8nJSRtP4oiMndP22P+u1+saj8ctGU68hy49f/68YQ92W1c97A5yLE1f2aWd+Pv4+LgT5/QRZpY9c3W9Xjdd5Von0Rlv7Jh38bpux57MF+spz+X63FWa5CN9T7yETK3P3mX6UYTvruzKruyKY66MX8wNGYNhb+xTMoljztEcGXyx/RW+0wWM5DZVbTHObDZrJzhwZCb1r9frTvLP3If7iY/i9URgX/NsyQVn/GzetqpeeYbxWcqKv8GBxi3+SW6p6uG98JySZ1nTLnNDXuDu780l0T/8WWIY2tK3YNu4H/9oGX1U6fPHVd1NNcZEXEMb4BPM15rfczLGz0ysaIzkmIlr+E0/zZmaI8zf1hHuc6LNeuBYyj/U541mqUfmVPvwb3JBVa+ejpY4KuVuHtHyz3xBjm9iH+r0qXBgpOvr686iMq4bDoftRBljO+Mg66ufzXX+jfz6OJ7kxPr65rrcDp8Kk3F2ysU77Hmuv7f9Idb22CWfap7LdqSPN+6zq7YvPIP48fr6usbjcT179qxub2/r/ffff4V39fzLeW99tO5UdRew+j74TvTF8uxbiP1x5atOgrrBHkQbOAf2EAccfzufz+vq6qodm8M7DFMZ6EgWhGRio6/kJKeNfGdj9Rix6WJihx0lrytky81ty8/dtlyVaoOaRpA60pH39cWfZ+KI7/Mng0UmC2QLu2yQsQ1otmez2bTjnzi6CGLGCUNW+/q4Tp5P8QRnjJgUGejRHpNo/O2x9KR67N4sGIk+fUijZCPNs7NeOxcnWDxuJHRscHB21McKGsgFz1u33aCIo84go5zgYEUa/XGi2MklCkAuA3cfBZWgIRMbWdBHJ0E9NxKgWWa+zm3zfEqdNblBPZ4vfQCrz7n1yRt9wE7yPHSeXcLeZUx7XL+PXGEe0QYfJ/GYc3d/sdcJbKu2OzFzJT0LFDyP0M98Fu23nliXDORMxpk04x50BYe8XC47yTTuS9BCIs/6iI1J+fYBHusI33lOMxdybmMzDcAsK3TXpGuWtMOeAwYdnm+Uj/Jx1uO8hzalDfEcQVb2I66X53K95U3f+4ASttXfeZxscwwE0Rd0czh8ODYPotnBOauQsZe2PbYblmGWlCntTpD/1WCGXdmV/9uCr/TcsK9FJ03KeDGUifrNZrs63u9ZrKqOrceOY0dJMDkAq+oSZPb5th25cCVjBvwQfsm7R0nWOEGJT5xOpx3bRL+rHt7/6ISS+7RaPZzewfsRN5tNTafTmk6nnaCN4gQx7XXyuWq7Kh8/eHR0VJ/85Cfr5OSkvRdxOHxYEc2uOJJRLJba29ur0WjUOdYUjH1+ft7BFE7C0kdjZ3C9+7HZbOri4qL5ThKVJKr29vba7jz0h37S58Fg0FnQuNk87OBgPOk/1yT2YqET+mKsi+/0uzh9vFxVtd2cPsrXWMw7pcG/JqcGg0E7qYNxQm70GZ1wHw8ODjokzmq1aknT1WrVdgvTBnSZJJ99sOMT7wgmwUedjlet/+gncsSfOTlqTD8YDF5JSlOMVdm1izx9HJjjbOr0ArHh8OG9oiQ6T09PW/zy9ttv1+3tbTsGkZ3Do9Goqqq9NoV5iIyeP39eFxcX7chExwaMhxcg0l6INUgix+OpyxnXUthNy/NMWvk6x2zMQ2PotE1euEDJmCbxoecvz9iVXdmVXfmo0keEV73KqTghmt+7Lmy3OUv82MnJSVV1Y1vsNL4V32IexAmqwWDQsAm2m1MGR6NR5+QzfA4nWvFML7yGXwAH4bMc59O35JrNm6bfsy+xDB0j49/M45jj5b6qLndCAtRYKHkKFsCD07zb1Uk+v2Ihxwx/5veGw/9WvfpOv+S9eTa+r49761sYRN99igb9Sp/pxZX8n7FF6qjHLuXtOMoxFN9xv7mYPq6+r60+NcTtIZbJutFNY1tzVuarLXPrpZ+PjjkZzpzznPBYuN+5iDa5n4yzsp8U81ZecMrCzr7YyW2Aw/EpKpYPdXsBqU9SpD28uo/rvDHL49+XJ8hxZ9zQdWM8x71ur3lO6mM+2wbRJidnGTtjT9fD3GN+OIdg7riqOq/U8DON6YmHjo6O6s0336z7+/v64IMPOu1PzpzPk5v1NcgrNypgL8z/Vm1je+vVYzqX5at+J2jfAxhMJ+78Tsfb29t2XIGPwE3COhUrDZpX3n5c0tKGJ8ldG0eEb8P9mAC5DsV9LAH7WHuSVEgZplHyxLQx9YTy5PEYWbauzxO+rw/Z9zT4bvvh4WFNp9POMYPZ3lyxfnNzU+fn57VYLDrEkI/TGg6HbbX4/f19h6AhAHVQ53549WzK+7GkgAty8xEDPl6L/vk661nqTT7TK1ZsIPzeLCdBKRiMdHzuGwSBHYXHD8NlQ9oXcDMe3n3A2LBDwOQk91hPeB5zjRXmm82m2YV00LTFfaCNTqplosIyoBgAONkF+PV9PN9Am/twrqyS93OS1MiC/tsB2YHSLxwWsvGuDeuBHbCJYI9LktQQcgcHB23FVB6LaIBlEssO27aIPu3t7XXeK8p8ZccoxBxtz9Vh9M0BA3rrxBiyBgRBLFOPE8iQjZPJpHNsL0CThDJjmkGFE2zIwoAy28Q9H+XH0GnvJHCdBGgGZV74wTzyWJlQNQHLmKXd6ZvnCXATpFi/aSu+z/YoV371BQQOmP1MPmNXFu3A7tg3A3RYpMFRtrbtPIfr0Rl2kRhkeV4xNzKIx/7ztwPijys5x/KzXdmVP4iCbUjs591MVd0TSowZmXe2PQ54sc3YC/s8rvFcAz94l2GfzbQtruruAnDAhn2nX8PhsAWyVVssyDW839P+yYvNwBr4MmSIrWEhheMe2kMCkQQWSRX7Y4gqY3KwG++0Ojk5aT6dBBVtJoFLm9j5hmzn83ldXl7WxcVFW2yKPOyrk8QBJ+CPvLiFnRocMcd16Ae+1EdUOSkJdgMjMFbgnNFo1Ek+m3RiTEjG4eeNI3yMblV1jr23L08bv9lsX+sA6ce4OolIXRwt6wVBfJ4EpN/NSqKwqjoYjbHgGYwDeOby8rL10+95H41GdXJy0iFRSOxVVee4Wcd46/W6cyKC5xknNaWMjNHRe3b7Ot7nc+wEdSNbf874bzabtqv6+vq6HY07Go3a8168eNHG9tmzZzUej2s2m3VszO3tbWsDu8ghtDgq2NiDBDb6nQlGj9HBwUFNJpO6vLzsJJcz/kJHvIPpMQxGLIwNSmzkMcO+9NlTSh/B5uK4oy/u3ZVd2ZVdcXHMjm1yAg+8UdVdHIy9Sq6Ka5ww8wlx2HhzpWBJ7LFtrnEh9jHj5MVi0fgAcJYxJNfZn1NoB74CHw2eAUOZG6FYFuaxzRE6rqccHx/XeDxucWfyqsmnrFarxq1nHG+Om5jdPA+cmE/3MqcwGAw6C9uMB/2ednBZYn70g3ody6ePsm/04syMxa1TyfFlIoX2MWaWH89wPoE4xrFA+tHk/HheYiWuMe6nePF28m3MG8dQ5tsz0Wi9yB2Ebl/mP9y/5E/g3HNXZdV2gQBj6cWIfl7Gc8YlmfTv42SIVdBb4gMWfXKN5483TXgBXibU3R/02liePno+WVa2bdYn192XvzFGS102/2lsjszM6ScvSbzqsfJCZMuVMWM8qqpzr3UEnpU+9HG19/f3NZ/Pm10nEfrixYvOYkFk55xH2jbaazvl01iMj/ne/sDj0McnPFZeOwmaZIgVF4HhXNj1iRKzq+/8/LwRCBmYWRj5XAvSQuwzUEmy8rkHl8/S4fF5X8LJdfp3HymeCuw+mPx2UsDf5/3U6bYTOHtXKmPBpHEADECgf3YefUafgC7HxIQx59V7xYHJLte5XC5rNpu1H6+O52exWHQmmh21nasdN33jiCQIiEwG+HpKJtuquruy0pA5sZB6ZuNrh0SbaL8TGAYefQUwgjwAYm6rx/fu7q6RB3YQGBZ00WNjo2FiCwIBJ859yMtHMNNv2pROEKBsnTJxinycvOB6y7CqGmlkXbBz9UpB6rAz89zjWUn4IC87OoAeCT4nkk0YZlLTnyXAtx4yFravHkd2edDvvgDEINMyN/mRCUzft1qtajwed8AwJNb+/vY4QO8YJqEI6QjhahLaIIQxcrus17Y/CUb4/P7+vrPLh+PgmCPUOxhsSXPbAtqALHy8Wx/hRDEg9TMcHFgvPUc9560rHue0F55L6WtsA9w+JwBSBzwP7Kvcbvse2yUnT2ij63Hw6TZTp8GTbRDzjIUJAFzjC9uM9AcQ9v6cOtETVhrjrzL5TfsMolMGtLePiOTv/N/tp15s167syh9kYc5lwIfddRCOPzNGd9Betd2xhh83ZvIqU+akMXgerVW1tSfMY57pRBQLYJiz7AADO1Js94yd6C94kKQS5IKDJ9sqn8RAvbZzs9msYS/iIGw4SUjkSn28T2UwGNR0Om14mmD/+Pi4Tk5OOjsSvEqXRR1XV1ct1rq9va3z8/P2QwIIm0qix30zht5sNp1j5RlDjv/lPTzX19ctGeiFcthz7sM3eqGLV1mbyPOuBPqMvnmnKO00vjP+Awc4rgGbWD+cUPRc4HsnuSFK1ut167fnA/eORqOWnPV8sP7b39D3vb29mk6ndXV11blnMHh4H6zH3DtEVqvtrmTk5ySofSf3WO729ejDeDyuyWRSg8H29QfEmBC/3E/i1AsgmLvWK2JV2mXdQ7bgMRLJzCd2xc7n83r33Xdrb+/hHUTgcROmLLTEV4/H45pOp50FjPSbayD7wB8Zq1V1F/45ZrRtZFGWk/zGVSzUS46Adjn2quriLMgkz4mMZY3XHWskr5Gcya7syq7sShbH4xkfGrM95kP5vC9OxD6xuMQcm3Ehn/u4++SebU+TW8HewT/jY0jgEYt5ERsFzEdbuCftq3Fjto3+gkWQl2N4c2TgR/ySY2UKPmi9XrdXy3kxIfKwD4NDNK9GP8yrJXfrY0nxk24P/BGngTj5Db9kvsU8seN08EUmNuxnLVdvwvDnfVy69S15Nfc1Oefk4fr4kORR6HvqQuqlZUi8hBzs98FcXJ/YwCWTQfxtrOU+IBP/9vWO7/w8FpW7La7H3LIxuJ+ZfF4flnEd5IzG43E7Hhqc6D4zh8fjcXs/PXbGC9PMx3iOEU/SZo8F/TSGcrxoHXXb/RmbVMxxuiQvnBwyffSPN4853nId2Dq+B2867jKHnTLyQlLX4X5wCt/x8XF96lOfqru7uzo/P3+FA3Sfqcc2wfK0LuR4ZbHeWw9fp3xVO0E9iUzYEvQz8IB1BMw7QElyJUCnpDJ9VLFxyuvTOH3U934mg2Cj4GspOfn8uQcps/B+flX32ABPFgf8TpLZseUgW1GyXX5mjp+/z6A4iW3+Pjg4qPF43BJutNkkmZ3Szc1NXV5e1vn5edupRT+86oSfqm4yEYeAo6Z9BOnIMsk2X+uJlkFwOjQ7Jt/TR2blpGS8nYy2AbZRs8PsI9I9poyBEyceD+rmPgCCk+HuO3OWZ7GLgcKKf5NKPJ8+QU5RPwSBky4myKxT1OmV5Yyf36eFffG4eJxxWgYKgFlfk6AmdRvZUTc6Sn0mngACPmqzqjrO004JfTaIpk1O4uLgx+NxRy8992wL7Ag9LlXbY/gAi7kTDsKEghyTiIHgMjmc84WCA3ZylXFbr9ftmApIuzx2zzYXAJjPsdz43+CCfni3i8ljk/TowtHRUU0mk7aiyXM1QaLH1TY0E9KWif2U+5SO24tRkKWPaLU+M94uEM300UEd3/t5WawPfW3MOjyX0/f4s7zWzyYA8k4ur/yyzOiz7SQ6m37AzyTYHQweVlMuFouO/tjnOvA1+Dfgy7F/DK8knugLXnZlV77exX6HstlsOkfJMgf7cGQuHORzJ10cDxB0VW2xaq68TkLIASe2A7uJvQZzDYfDhv36dvaRZOV4NOwJSSzqtB9gxyLJMZ6DvUm/ZEx4dHTUeW3DG2+80Z5Pvdjlvb29Go/HrR2bzabzmoHhcFij0aiRg8iNY3B59QQ25e7urt5///26vLysly9f1vn5ec3n87YYyXYH8ojiBAw2EHuF34ccWK1WLcljfMBxtiRvOaaXHQSMFe2lTcPhQ8KNZ97c3LSEH/LGJ+AT8YOOOY6PjzsLotCt1HUnZbl/NBrVZrNpSWL7Jn6D2xhbSAeO1qVN6JGJYcab38ZznGKAzyGxXNV93cpoNGpHL9OHy8vLtmPT+u45xnjj5/z+W96/ab8E9mEnJrjD/guiwxiK+UfbOUUGohY74KO1kI0Lftvz7e7urqbTabtnPp/XixcvWmzCkbjGOugPc+/s7Kzm83nbmTsajero6KiNIzEPyV7qQ2eZ38xB7jO5SH/QQ8cOxs7oEZjGO4yY+z4C0uPjuMGxo2VJHbZXWUzM7cqu7Mqu9BVsCbYqv6Ngk7BdxoFwN+Z3zImQZDHPY1tuXnE0GrVX+9Au29k+Tte8jLkWfJdPi7BdJBHpurHRJF8SZ5hTpFgWyRH5HnAMSUMwFpjGsqiqtohuPp93uD+KuS7H4cnRVlUHM9k/mV+0r7asnWSmDeYnfQILC6vwb+Ye7b9oU197Pb7Iw5wMz/V1j42RuVfLwjgCzGX9oK2P1eExyKOUrRfJdcFNOOZiDmYiMZNA1sfkR8EXxnvEQr6OehwD0BYv6uT7TP6lDIyPUjfNqVnGbpu5VOQPliXvwFxE19wHsD2LLh9bIID83Wd0CBvmsXMM5Xrdf+M080nMBS8ueEwnMtbmM+sBn2MzbE+IL5JLRZ70Ee4MPpsTfOh38l0pK3++XC5bXujTn/50O/3G8kYOtIX6nUxPm4UdMe9nTtd1eUHF65av6p2gJmrpCCtrqqqtTOU9j7yThneA0qnHAPpHPZf6KelwMmGQhSDRSlbVPbYgCUsbuDQ8vrfP8WX7Uql9vdtTtSXq+xwrdZtc7zOKvs8TJyfSY/KyglnRef8MTrtqq6h2epAfy+WyLi4u6vLysnNEGJPO7xO0MSYYZhV8Vb3iSJADn3vM0uC7bpNsHA2FcbCM6XPV9kg1Ex2ZWPR9Njh83jeWJp/og+vrC3A9Lu6rwZYTJMiyz0DgQACgm832/WDpxExYWR6MqedRkpgGJnYMqV/U52DfOuH3WOU4eY55TtnxelVaXtdnZwyS8xlug4Ff6pJJDOsjc4bvFotFzWaztquDXQUmBvvmq4mlTG5WVXOIEEA4OVYfImuIPY9LktKQM7Y5PJfvqN/EjmUDIWUg6XFyMtDzyzru+USdae+8Yi1XOSWoJfHMjnLXkyA6dcpEl4vngPvluqnfY+b55iMcfVyQiW3Pda/4cjtSJyzXPsDgdvt/zwHG2TbV8y/BJLJH17wjzPqGfPsCR9tq5MsK31xYMhg8BN8cE8j7q63HnsMsBPG7F0xgJmZgHFNGKWf841cDzHZlV77WhflkGw8R5cUzVdsEZ5IGxhFVr56+4l39PCeTASbHsN1OeOEfCN4c3EO65Ipa943f2BfvYHPCyjjAybmUkxf1YKOcjGNRD/eRDByNRnV///BuKq9eH4/HLYGLTxwMBu0d7ASmtHM8HtezZ886dpRd7ldXV/X222/X+++/33akEvh7YQgyAE8be6AHSeikP2Z8jP1IjhLsQvywU4928JsxsB4Y70M22geCTx1X2Hbnu5Noc1V1gnwTfnt7e+1YZBYbeQGYiRXvnmVVOf+zQ9fj70Ad+bPgC7KLRWmXl5cNC+ETSbTRHusCGGW5XDaSw3Gg/Zl311pWxhK5kvzu7q4dNcu8MnlsfEl/ScxDopyenjYuwHrEAljkkguaGG/mF2N/dnbW9PPu7q4uLi4accwRyiSywT+M3f7+fp2dnTU+In01cmfOoOfEOsjOmJkxQedsnxyvOHakLSb80P3BYNA5hjjxPH8zRt7p7pJxfh9phh4xnruyK7uyK1mwd+YzzZXyme0dMZZ5Ml/nY9+xhcZSkPLYJ3wP9xObVXV36ZsnABc4DjQfga+lzebxKPTR9dLePDo2k0n2pd6pyN+JbeBgwEXm/8wXgqfm83lbxOv2VXV5DfpHMX7G7tPm9Cs8O9vjOr1oCfxIHbzGAWxUtT05juQz9WdbLT/G0BjZPtNj7Xt8Ldfgw/v03H12PTzf8wDds+4bG1uOPlnKST36m/yKdYR+5HV9fKVjLWTzGD/K2OUC+uSf6At1Gd8yfh43c5vWO89T/k9Z+pmWqefeZvOwKO7ly5e12Wzaa/h4Fz3tBMMeHh62RZXeRV61jQly/pjXynyBE3jWjcRQ1j/nLRKbm/P0ONEm24jkooz1Lfe+8RwOh23xLDyZ5xR2lXiZH8cf4GnwuPuA7vG82WxW0+m0jo+P6xu/8RvrC1/4QjulyXrhWJr6nGC23lrPMz6vqrahJjelvS6+fe0kqBvtJBDkBSuPWRF9c3NT8/m8Ge2qakLNAUvy2M/8uIJgmLD+3PXkJM/JmcRtOsW+tthYVG3Py+bvqu77jpJE9S5H/ncyLHfrJWGcMrSy9MnJ8nqM/HbfqNd/E3jiYDxpcTwo82KxqIuLi1oul21yMQFtLLNtBMpcx6pyG2UmnsfLhtmJK4MiE3I2ulXb1QVOvtkR+l0GtIE+AAZMfGSSjGJnbKdrHdzb22uGGgdqUjINCiuWeTbGyitPqJfxdzuozwk6v0uSFSK00Y7BIMNzy31y29GD1OMEIf6dgLNPru5LXzKCduTOUjsRk4cYeJM1rrdv7vY9l7oSlJpUgiSazWbtKAfI1aougeJxZD74OAOT0SZNmYeeC34XImSjV356buVcMTAw8Mqklf3Ger1uCVk7dwcX1nmPZYLmBBAGj5Ba3J/HjTkAqqoGmqqqHYvhMTZYyvsf81NeTZX6QqHPqZP2G8xrA3r+r6pGzDoJnbY9303xcQAh+8SzIETThnkcHgsSuAZAxdyirgR+XOs+4RcMCllBm34Fu3h7e9t2VnGcoYndqu38ghDtwwgeM2OZxB2JHfj9cT53V3bl61Fso21DHFzafld1jy3H7tqG397etpX0+Atjn8d2VFe9irkdZGNPwR4828kN2lZVtVgsWgBFgMciCy/68u5JyDbawEkl6/W6vW+TdnLqyWazXVWceNIrWtfrdV1eXtbh4WGdnJw0ggubQju8C5dngSOGw+3Coclk0pKjyGE4HNZsNqv5fN7wAu+F8uJBAt20jciR55FkM14Am5CszYAV+zkcDjtj5V2LjhOdJMod9zzfx+hDqJqsMYnG8XYmSq0f6Bx21wkmZE6/fFIAfUavwUwQP2nPq6olI1nQWVXt1QX0mft5dUBVdQgcjmk3kYkPpB3Gr+zOhXTmHn57QapXnoONaAv/Q1oaj5pYAD+QPEYfWSBgn+xYzTs/2PmK/WDsmFNOAvcR41Xb12EgOxb4cQQaeuIdyyRBbd8sK4gidmszbpYZ8kJHHYO4rSR+kYmJZc9xE3LgPZM33G9Sx3bHO+LdDsfQjnkcQ6Wt35Vd2ZVdccGG9L0ipKqL4bx7yLgKvIAfwKeB8fA5LNRJbsMJUONV4xhzj5nUwP+x+MhY08eym4d6jK/ZbDbNf9m3gPlouzlC2mA8ZxtMwhCuz3yKMTuL6c7Pz9sCIJ+g5fEwh1zVTTIZYyNzsAJyBI9l7Ou4PZM07P7yblYvUqYec1HWFcs9C4vfqMPcrP0jeNO4zBjEmI52I5+M45OXTP7Cem094W/6nXkN/HNyS9mWTGimXicPRds9huZg+N8LsY3T/Cz3MzkQ8zDoZmKLzHE8hgtpg7kqrk9sYpx2f39fFxcXtVqtajqd1tHRUXvvr3EvcQsnvPE5fTXnRGzncaLNbl/ON/TGsstY1/9zD3OPOpNbpn3WS9rue7jWsSh18T38V1W1E4b8GhjiROsauuIFB15oamzpTTGM3c3NTR0eHtZ0Oq233nqrvvSlL3VOojGnbB22HPvsgW2IcbXHivblHP6o8lUdh8tD6LSPj+HdM+wCXSwWbQeoDYcHi06kw8nnWlieQEzynFzUy3U22q6vaus0nNDyffQ1DVqf4ajaniXvtuV9nkBpFNx2X/+YvLJdfc/z5wYZfmaWNJJV20QBxE4GZCQRWE18fn5eV1dX7XgsE1kmayx3Jq3Hy4mgdAQm8Jgk7KCj/pQTfXbwavmZ7DOo497UIT4HyNm595UcOxtK643JG8uKvifJ1DdP3B9fY9lgdL2DA6NGAgEgybyHuDHh5Gfb4NP+XDwBoHKiyHOV72g/95u0s0NGdglS3D7q8bMYU8vMiVAb7scIXfTURFjfOCP3PlCCXAyE/ByAM/30rgn67b8TgAKcIZo2m4fdp5CSs9msHZXG+DgA4Xkm3vzycl+D3CFiDe7X63UD/3yPnniHD/I2GMsgo6peeYbnkEl8Lyqhfs9ljn6uqs5uwPQt1hXmfSZ+rRsGNTmH+0BL2ifmHAlAdjZWVdM3Hz3xmF3jd/o5isfNc8JAjHH2nHD96CX99tgxZ5E3ZLCTMdZb+zrbEvtVwFpigM2me6w2BTIWwtN6RfuQc5/sHiv2h74OG8Xc3b0TdFf+IAt658UanrsOoPFJJHDsm0h0YQ+YrycnJx1b5vmXeNaf8XwWb/Edc9ztJeFqv5mnFlCfbTx+mGQRWAUSCKzOrlP7M9roJI99Aj/YQn6TBOE50+m0nj592hJcJJEIRHnfTVU1H827QI+Pj2symTS5cJLKyclJW2T48uXLGgwG7b2dliM4Gz9L4TMH+SY8/ZoJ2uiV/uhQHqdsuRn/kaAdDAaNLGN8SWb6KLC05V7wiC5hS62LTlI7NvU4MQYktK6vrzs7VWn7zc1N53SU29vb9roCLyiyb66qmkwmDY/g11ikxI7J9Xrd3v8J5qMdJADRWfqQOvnkyZMO1vVxr8x3y4c2o5/4pePj4xYv+dhjHyeG7uFrvdiRH8vZmJTxRJdIuvPueXamJi7jWeAdnnd2dvaKDWPemFzieuKW8XjcTqNi92vaJi/y5BkZd3vxn797bGeFY30+Z9yYe/TTuB5yibEyUU1Bb1POFCccLK+M63dlV3ZlV7I4VuN/bAb2C39gbGCumJhqs9l0MIr5YJPpxID2H/zmnuvr6w7vhY2tepV/AlfQHvCjSX4vOqYOnue6zDlh75NzoL3IBxlQh/k1dmdlosN+4Pj4uO7v7+vDDz/sLPLJ2D65RGP7XMhPO/Ap1MF4MBbG8n4e7y7lnfDmDuH/kTnxvPtVteVXzO2Zq3csbflmP+2rje+MIc1/PiY3X/uYP7Uf92fGHGAR8yVZX/Ja5viTbzSfx/h43hhnJN+YOBydTa7T85E+Wk4eO+tUttn67f+zz4xfPgc9db05xmCt8/PzGgwGNZ1OazKZtLlBTMKzyFnMZrMOL2bZer57p6O/oy998a2Tb3zH576PExT7dMtjkeNvO2ddcxvMGWYcBZ5mQ+J4PK7xeNx4XMaemIH782hs8+zYErcHGWCfORXm05/+dH3lK19pnJv5Bu7HLqWtMQfoZK2xLPh4OBw2fs1+6+PKaydBPbEgChGaj29kleb5+XnNZrNeoO2A1pMDI0SxUcrBtUHsKzYAPM+kJ9eYdLeC+387jzSaVVuy2ga0b5JYKT3orgeDzQTlOyYCq5jcVoyGHY6LJ6MnTxLKfk6u6odogUzi2TY2JCDPz89ruVzWYrFoqzRyDNw/7xDFkHh1N+Pvs+etI1XVDD1kAOOWRoyCMcL5pjPxyhI/x/1GPnzv7dxOxFmWtIXv3A4nnaq67xm0c4KIoY/U6+Qrz3CQnIADeR4dHbWdEwBDEpyDwcNRTT76mD6l0TJ4Y3xJdPC95eLxhWSlTvTc11DymIscWwNkz02vFoPgsS5avp5HBmM4Su+I8/FyFNrG8yBRrefYN//Ne4dw6k5eZ7Bhm8IcRQ4+spAxsRNNYM6cuLy8bLLm2GvrDvrC833sXY6p7Us6Pv/PblRIR3Q6AWIfmKZ/Bld973w0+YResXAHktB+7erqqkN683nOb+TAsw0W0Qnaio6j324fsiAIpD70yHPb7ecegkvrAMW+CN30s/PaBFFObPs31+ZKW+uzx9zjZwBjmwBBb0DIOGDzkO9qtWrENO/XSh8BMJvP5y1oOz4+bkcKohcOTNELxjlBGcW2337Nvi0XuFhvdmVXvt6F+Yd+874+H1G+2Ty8e9B+wHY7SQgH8MaHxhoUn0hgrGIb4JWb+BFW8lZVB684IcRc9pGfXkhh32b8i1ywNb7Wi5iGw+Eru+xJvq5Wq5ZMQa4mhsAXVQ/2gaSSbS71ezEXi5CwgZBKjMPp6Wmz/VdXV22RYdWDv7bPxH84nvCO2MShxp3Gw/iyu7u7hgmwd+BDJwZt40ju2e6bjEAWkDTGavTFBA2y5zuCexMYDsTxGeBX3iFK4psdhSYcq7a4ejwet/djoovpCx0/5k4Y5gp4DJ3hf/SC/tt3OFntZCy6cnp6WpPJpMUdJBOR7cnJSXtvGLJm9bffEW+cj+zRY3ZYrlar5ofpo3cTM0YcWbherzu7ej0unofECPTZR+UhFwr4ECxtDgFMik6SxMYucPoIuuIkte2HsQ39Q6+xm2At2mzCDpvqucO9jt9tj/pIQ+5Hbn6GY2njMOMPf8YY2M4Yl+zKruzKrrjkghC4IfMATvRhy4wvHAOCEcFX2KAnT57Uer2uxWLRMJ8TK04iccwldht/5sSM7SGLrRJHsBDHfpwTBbh+uVw2boDj67Gj0+m0LQ5KzJNcjDlh7j84OGgbRsBd5nKqqiUplstlffDBBw3jGWsk12xMZt+UvLe5K/tXY2OeY85wf3+/Tk5OGoYwDjZ36XudvDFfZ07CJ404FrAe4gPxo/xPe83LJNflcWEc3Nfk/YxNkbGxcp+suLZvwWlyMjwjT8Sz/zcOsd/P38YdYBZ/Dm5zcXtSFvz2c319yjTjBOukk+nI3/yIcWHiF3OnLs4hXFxc1HC4PS2H+WpZgrdGo1FdXV11Ylva6Zi1T97mFy0z5wDMQ1tuXGeM36dH/jv7nFjNMbDHK4vnvfMKV1dXtVwu22IGx5vIzONB8QYc6xp9s846zjk7O6v1el1f/vKXa7FYdPg9+msbmeNg/NunT+gK15gzf53y2klQC4lggISTj8FdLpd1eXnZWfGThPVjip2FwfWg993fVxBCEjkopCeY67bzZ5AY6Ey6JLGSxo6SE4NnJVGTMslrUdC+wTXBYKDSV9JYuT+Mlw0UyRnO4aYfDmQBLxyBPJvNGpHsCetdW3xnkslAyRPB96bhtbFxgEhf/dtGCeBEn92OlJ9lbqee8yJXf3kO9G0/d93WU7fZK0w8RnwHGDSA5Lf1JUETwJYjIg0e0CcTjycnJy0plqt2qqojxxw/g54EDk7Imfj0Z8xdgyDX0+d80siyYmS1WrX+8o4IrgFo2e4ksZDPcAKUeuwgB4NBs4+MA/JLPd7f32/j4WNZTQ7aKdMOk3d8bvKQeykG7SYmvTPeu1eceL29vX3FTqD7qZfj8bjNM4Nv6wNzFl1kHHh3ldvAvRCEODwvHqFuVjWRpEP+2HED+cFge5T3eDyuqgewkCA+fVofyDCI8txGp22jXDfXIS8vxHAylp31yAfwZxvlnVu2mdiXDJYo/rvP73kuO+BkzPmcax0cJdj089B92mMC38di9tlx7BZHH1XVK/OBBAlk9+HhYS0Wi6YHDvRYiJBjmDqbCR2XDDSQz4583JU/6ILeMqdMVPXhJQJH/C023iQLn3nHEvbXxIVJsL4EqHcA4nvYdUfxfdgkfJBxDtc4qMaf0z7ajq2BEMO2kBxmh6ITuIvForMAy7aT3azIm0QSCUwSttjp1WrVsdG8F9XH587n89anp0+ftuNCWcABcehinOl3HeKreR6+GJvI+OAzkbmTepCDxo4+0QUZY7dJUELCsBMS8i0TO1VbLOTEb1V14g5sN69cwQeRYDPZxQI+gnIIO/QPjGXiiv/tGxz8gx+JgX30Mn0z4eHj8zL+YB5yj/0D2NQ+FIKh6iHBzPt3wFf2W1XVXq3A58bb6AMLw0x+ML+904cfLwRgLoLdmHPstLFM6LN35dp+0D/vrPVxeN6JhO1BriaeTYAwxsaqj5F1fSdAIEd/bvwOrjSRaoLGixGxLcw35kvVdtU9/2NDPBeRo2M0+sN4eAzpg+NMLyDYlV3ZlV3pKyyuwZ5ik23Dq7ZxGzbIts8JD36DibA/Tooac+a92LFMTOADMiEE5nI78EXmD54+fVrPnz9v2KRqi3Xm83m9++67rX0+CYGTKByng1cyFkeGtI2Fbl7o5zh6Op3WcDisxWJRs9msycv10wdz2Y6dkQvXciSs8WJyReB+8F1ufPDJFJzQ4LiBhZTmzTNxnhzKcNg94SmTGdYDxj93sJqzMIefck0cxbMzxqFeF/v3TOK4HY/xAsay9r/5nPws8TF9ytwDnxs/JJZzv31PjhltN5byNeZ0+d/3+3o/0892bob5Ds9l/JZtNW+1Xq/r5cuXVVXtZJGqLffI/+Z9bHvcHtqbfJS5UcuUvz3vcyxZrEebwPOpmx5D2zHqt87zHC/6tJwc/7pu6w96z3voOSYXGw+nCq/oU0jgUvtyJo5tqh7iE7jsk5OT+tSnPlVf+cpXOouDkU1fQbaZi/E4WbfQdeeuXqe8dhIUpeAhkNSQsexeurq6aruYcCp9CTkrgydNn3Hrm7hc06d8ffdbCXISU6yA/izbC7GSxir71NfefH7215PS9TiIzHbhaDAgfY41SehMXGWbXNfR0VFNJpO2YzAJNRwPE4v36GAEkpSiH17Rk2PtIDOdi8fUdUJ0P9ZXGxMnwV2Xn2G5YFhzrKgvj0OyIXci2cdSuH2MmZ9ph0Q9PN/JAAJmP+sxJ5JjsV6vG4HHva6faxaLRTOACUwouTLQY23Db53jfgMXJ+icUEmyjWvcvz5w4jHum7eWk8kRO110J+enE/Oea3ZCm82mk8wzocSzqBPSBxLViTDq5h1Utmt+fvbFiS/Pbdt0y9XytsMiUOG5kIpcw2p7nJJ3uVCHnaeDKYN87ucdHLYT3i1CXzyf0okDekajUVvp6XH4v97FAAEAAElEQVTkWvpAm0ejUQuEHDjQPuut9QG5WN4eFwhRZGHQYP310W7eKY/O+WiNJLVsj5EJQZfbR0kg7fG277WtBQNgq53o9BwzgDTJSX2Wm3eU0ZbhsPs+FRKU2FGC2cPDwxqPx53kgoNTgzmAGcVAHR0n2Zy+JOVFSd/OdZks6sMqu7IrX89ibMSOKeyScRDzm7ns69jRuV6vO4GQCfjhcNhZTV+1tY/YOdsN21H/b6zFd1WvYmBsaZJ1DoQIjp2gNVlzfX3dkon0gd2BYFivcvWiGLCwV1pjr1hIMxgMOsftTqfTRqBxhOd6va7xeNxs1gcffFCTyaQ9A7lwnCe7QHnXzd7eXjs2l12LjMPe3l7N5/O6ublpuAFcj3+wL2bsGSd8pRe4bDablkyEEEwd4/UX9MH2NckExi/t7N3dXY1Go/a3fa3JKHShqhrZkf7R4wPZZ/wEMYCuIgd8xuHhYecYX/SAsQF3kEjbbDYtDnYchUy8CxkdYY6AxdgxuL+/33Zp4j8hHy4uLtr7bIm/8ohfn5BAW8FVw+HDjlLrMc98+vRpkx/jhO/k5B8vFDDGwHbYBnEMNLs0TWZhQ/yuM+bSYDBo/n08Htfe3sOJQ5PJpIP1wD0kZWk7+jUajdpJJ/b50+m0QzKh/8bJHhcfk8x1YJlc6GRiLkkzL9ygLicbbOuYp4yhY0Hbcu9OMvYxDu3DL7uyK7uyKxT8EjaV4r+dtDJvkkks8x1eGEZSzvGo30NtHqFq60erugvynKiBK8FPYCeTAz48PKxPf/rT9cYbb7TvHecPBoOaTCb1Ld/yLfX+++/X1dVVJ8YzF8Iz0u955xTtBjuDuTLBNB6Pazh8eOc7R3iORqPmV/BHyMIJ6KqtjwBjOCGSSZPkn+FbwMx+lsfVfEnGCpafsQZtwx8jF/Qn+XljA3MR+T5F9BEsCsfmJBHX0x9jWzZ0gWF8aoZPxrM8zNslh2eZ9hX6wd/mRvr6TeFZyZUjLxfmAzpqPtY6bL6S38nJWEfdZsdpxhiJN8wfoYPEE9RnO+NEuzdDWc+su5vNpi4vLxv+rKqWvKOf6BzzyLy09YHrPSdth6yb6Jzv81h5/iXvg+w8b2xHc176f3N9jkn9bOoxb0x7nX/YbDbtBNfFYlFnZ2cdXD8ej1/ZFYrdcmySuuO5sl6v2+lBT548qb29vfriF79Yi8WiE+9l3iLnbMaGqRfmjx3vv0557SRoVZdgJrBHQKzKvbi4aI2geMI91jBPbK7JlZt2eDzjMVIx6+tTck9EnuP6H6vT/fDgZ9CSA+fJkJOL691OGx6TypkMoD04Hd+fhtJt6iPETYIRlLJC3f3l+Z5sfUcLexWBZZpOwwGkA1AbVhdPSgMg6x3PtLHxsVY8G4fuoNbGxHKxcbRsrasmE5NkNBnkdnmHn/vrhA/XQ6C4GCRxj+WShEQaddpsY2xdXK/XjWiAxKN9PiLZ5Kcdr9sDKeEVXdSFvH1PFsvThJbnXjonnmuwa6drosPzOceDMXTyyvpiJ5vkG/3BsPvYPDt1bBTXehcNwM3JwwRWbq+v7Rt/gy/qN3AG8G42m84qQScz0QWIOa+s4zoTrEniJCFkshPSnp20yMPgkUCAgMorOjebTduRbh3g+eiij+MzENhsNp0dobkboc8+2f8lAErfkmPB3DNIYkwIHrnPACH1zX2zXrmNfaUP7Ll47mGXGHPruOuzHTLwz0Sq5Wli3TaKnTt9cvAuI+7hPq5Df3gfi+WRwc9jQIpnWxeSHE+/iz702bNd2ZWvd8E24u8cnGJb+N8rprm3aruyOwNh5ig7xByQch8Jyqp6ZT4nCeaV1iY1eB54ibYnPvICCHwSK/157yIL+kiW2Ve4vwTU2Cov8EiixYtEaVtV9/2Ve3sPx6k9efKkswP15uamXrx4UVXVOXqNkxQWi0XbhblcLuv8/Lyurq4aBlqtVm2nQu4GM4Zl9W/ia9rnXY3G6InnORKXe9lpyBiDUU0u0Va+Z+x4Bkc1myTzrmQSrGBDFhWSQBwOh00HwQFe3AVOND7I9zdZ52gnu3g9vvTt+Pi4JQYPDg5aAn04HNZoNGpjDLYgSWhd8kkixl0uJEIhLWazWbsP/MX4JhHqcUOW9svL5bLJyDi/qtqCVu7FL3IMPYvLxuNxe88t9iPx7GQy6cjAJC5jChbDTqGvLLDrSxJiexwjM29NnLO7xe9Ud7LUsaEJRMaOJC+6z2lXnmNcYxvpGATd6SN+vZuVNlESJ/KZj3XETuURh8ZRWdeu7Mqu7EqWt956q168eNF8GclJ7LsTjNgjH01btcVEjvWrHt4puVwuG/dxdnbWdhUmJjCPVLVN8CTXaLvJ8bVum8n58Xhc3/qt39re3518FwWb//z584YLwTJgTu7DF5s3xJ7TH7Btcotcy/ez2axzYoW57r6kpjlL82p5jXldfDLJDPAZz+B68LF5Kwq+mv75ZBPzjvY1PnaYvjPWjvXTt3mRkvGLuXHjVOJ4L5xM/8k9/jEepH3pP80Pmse3rllWxE3MBe43xrVM+0ry6vn8qmoLIHO3rzkH7mfMjWfRD8cLH5UHcYzXd0/ea3l4ziWPytjyeopMZrv//D4/P6833nij4Xzv+KQQMxjvGjMSd3gO+Lm2Mcnhut/Jb3I9xbg1dde6YY7Z92IDvTPfbcwd+8gans4L9dbrdYsp5vN5PXv2rMXGLHaEWyXGxC4Y8xK/8RljRuzL6WsnJyf11ltvtXeE0idzw5lTSx3zhgLPU+pggfFnP/vZep3y2klQgkCCV45KJACez+eNLPbKXgdDCJ1isoMBtNHn+scI248qOfktJOo3WZEGNImVJF4ZCOpzH9NR5OSlPR5IB3WZYKONFH+XwXq2+7Fn2qFkwEY7MBqTyaQFwE5Ucr8JbBy5r3Pgb6fGpEKe9MsJEcvXhtYONpMD/E7dyYDVSUPL2YbGyV7Xa52gnamz1AvQwJBwP04EOWNseIaTC+6PJz5jBklkw26iYzDoHgsFAOLdA4xBEhiuA6KUhLj7aqObcoIwQjfQUQw01/qoOQgm9Nc6bH2AlLVjNjnpuchYImfqtfFFD9FNG1zrtZPv7q93hlpXkalllm3zsVoQPwmKnPzG4RuIUuzITQY6iElZ2G47ccR4DIfDzk6TXKQAmctRhVXVSCMIL673UXruI7JB92nXaDTqvPPMOw4Yd9pLf3z03+3tbdMNk/3YNsaAOYAtnU6nNRgM2o5Q2/I+kjgL5H/OZ+sI40WAghzyb/sAghOTX/Y1HkO3LYM9A72+sWCMM9FpG5j+hnrTLmJHrYvUxz3WD8YZ+VhW1AMxznOQNTrI3GVsGV/sHu0G2BGssDuE4xYtP2RDWwxqU74OSJHfruzKH2RBf40NmAeJT/N6B9oZFObuMuwRvjF1vg+TG4viE0zIYIOo3z7KC3GScMDme2cZNpdkm+clthKfRD8zGMb3GztyDe+m2Wy278ZyMOwExXq9PT5ssVjUy5cv6+XLlzWdTms8HjeiaDh8OBbtxYsXzeZfXV3V5eVl2xmKvcPH5PHo+F5k6MSc/RHxHMkik370ieeBIexj2bVKcQKS3bHr9bqdFuMFez56DbxIf9ih4Hcp8l5n2ukFP9hcsLd3ifI9z6Wv3m3pxBn4gL4ZK/M8Y078PfV7/thHcO9qtarlctlIDY7Mok3UzRHAs9msXr582XaJeEGk/Rz9dvIV+ZrQ5B7mM/Nnb2+vveZmsVh0dPn29rYuLi5a+5wk5v1LvG+IOcyzuQYbZLvg3z4ueW9vr3NM9GbzcLIHMneMZPIFPTA+Ng6n8D3PhTxFzx2jMN6OVfjto6fpF9ebDzGx7yMbaR/Fq/atu2mn+dt1MFaOcyyjlMGu7Mqu7ArlN37jN+rZs2cd34a/rOpuAvGR6fjPxHlV3eQJNna1WrUFVFXbeNT8bPIvyXXgZ+3zaR92kzYcHBzU5z73ufYueerPpIW56/39/Xr27Fmdn5+3z+ijfRXywAfYJvsd3FyLTOFNN5tNXVxctJM78O/mMfHbPPPw8LCm02lrB8+lb/Zbfib+0ziranuiBpwR7fMOMHMwYHXz6+Akc03okZPiyNu8ELJnTMxhJHdg7sNjl/E4HEYfb2H9YlyNjS1DxpfnJ/9jnMNYMS8yScgz/UOs4ziN+v0cJ73hQMAfuQjbY+fcgvng5FLNk2XcBybqS+pljsVxl8eHPvBc50+SS6Jd/E3/jBXR/dls1t5Za7n5GegvfXdd1O3F7X3PdA7DHDnFPBqySq6P39ZB5mbGnNaZxIfuX3JTxDGOc2mr477NZtMWO7733ns1mUxqOp02LJ9xHnoKdnUiPXNpnsOTyaSzme6dd95pidDU9cSstoGWX1WX+0Xm6/W6vvKVr9TrlNdOgn7nd35nzWaz+s3f/M1OInS5XNZsNmvvfrEzpFM2xDZ0Nmhci5J5QpmIp/PpZFyHn0/JieXJZqNr457Eq5+TTtLkZ06YTIhUdVewV20TYm6THa4NZ9X2/SKuK++xrKjbxtsksetGsUk+mNDxmGFgTdYPBg/HSLC6wH22YXY/IWZyx5qTKxBITtp65RV64r46ycKYmJjInTy0zUYLQ4NTtx47keOV8a6PtvidPIwZBpdrbLzsFOyUvToE+RDE23Fbr6nHBI/fu+N2kOhMAOoxMwC0QTShaaLSyWETMhhjzxUIA+Tstvi9OVxrwGPH6LbnfPJcT/1wMtKAg77a3lguTvTzbK/CY0WMSThsoPWmqloC1PaS91q5T8jYDg2AbJLLeuhFE2lrHaxYfy0b7I53zPAcFkogQ2SzWCzau6uolz56IUTqmefGcDhsBDNgBsLP4JF+50IMxhwZGuDx/pMkkTkCD72BdDbIzaPX3A+DPHTGfihtG9fT7vSZuWKQueUgzMDfICsBqfvg9meQkM/23OYe7+iwj+E7k8roDPrtwI3raHsm762LtJGdL6z8tX9cr9eNvMZf3NzcNGAHuU5SxP0BAF5fX3dst8fPhb4zZhkkrNfr+tEf/dE6OzvrvX9XduXrWTKApiROwS9Ubd/Rib91oI7PcgLS/prdZCx8sk03bmfOm4iqepjHfhfSYLA9FYC2YmuMhUlq2TY7SAK7fNRis6ru0ZPU7YQIfryq2opZJ2/xwX5Xu6/B7i0Wi3rnnXfaYgtkxs7V+XxeH3zwQS0WixZvLZfLtgjV2ISxcYxhO87qXhLEPMvHHh0dHdXx8XFNJpNO/x3LICNwr2MmvweStmFLx+NxbTYPu0jPzs46iVDajT9arR52bEBWkGQzxnQSzScT+RrHXvh1dm+u1+vOUXv4iuVyWQcHBy1op1+QTF7gU1XtmC1iQXYbo4cmMjOo5wSK+XzextRYlWeSeOR1M/P5vM2zfO2Mk9Y805jRJ7dwfdV21yX6TlLYsYDjrPV6u+qaV+LwWhwWMZoEJJnr941B/Jh4Mzbd23t4bxs7T+knOsyqdUibjEn29vaabthGpS+3jGwjHPNwP3ZlPB63Bbg8wwvlkBfxlfWXPpuUov/EqNgNz41su2OlPu7DNiBJsl3ZlV3Zlb7y/PnzDuflBTmOz8zpYbt9MhdxdMbifi1D1eOcA/7Lcas5Kf82BkzOkXq++Zu/ueMXsxiXmi8cjUZthyanEfmkAC+Oy0Qf/o53vBsDk5C8v7+v8/Pz5tdyEb8TGU6AcRqBeS3H/vbVh4eH7TQG6qTNxrNV3Xe1VnVP6HJxfMA1LOJjgZrr9OuAkDOYw9wC+CX5WPtUywb9MU/F/1xvXTPfxTPMdSCzzFfkM603vsd/JzdP+8xZ9vHw1IuM+Rw5In9zxcnbVHW5bdrgGMz8C0lV35d98AJa+kkfkq/hb8vfzzbn5HGl3x4n603q4GAwaLidV4tQt/lFeJ/k1qwH5pr6fty25OO9GNKytiy4FnkbWyY247rk8jJZbr20jaaP5saTawWf8mzs3HQ6rdVq1dnEYq7Si52tL37tFrq7Xj+cYIRdODs7q/39/fr93//9ur6+fsVeO+6nT26v++n+2/bb9nxUee0k6L/9t/+2hsNhfcM3fENVbXfRzWazuri4aERhn5LmJPDfeZ0Tg54gVd0ttiZWPBCefFaCLJ543PdxJGdV16kCEjw5aZsVz21i0HKFvA0NbXdb0uj7dzqnlO1jMsh6KciToBXDZ6DhRIfbw5ix0sq7H514MqGU8jcg4pme7BhqK3mSQcjVSRE7Ur5PGdMOVvVScN4YIL4zKOMZufrDxKINfd+YII9MCOe9lglt8GotzwlKrpjyeBOg04Z0PACwDKRzbKzrqc82Yv4xyWjw5vnlNhlAZd+S1E3Sg2casPqZTmS4jf7cusxz8qdPzjbeyNl2xU7bSbCq7bsq0SXbGcbFeo0zyNWH2Q/bhiR83LZ0nL7GcqjaHsPKHIKkpO+QbiTjmS+QhfgB6yDj46P6uM52JfURgtaAlzFl98dwOGzvcPOchajiWA5OPUCP+uSUxT6PAunOeBp0pz11cGXbaTI1/YvB+0e1w/dQXJfHlnbl/PDYUH8CRuqyHhpsUpeDbI+v2wbItJ20HUGnGHfbdOYWhD0JbvfJAREJgqp6hWTP0idzt3u1WtVP/uRP1mAwqB/7sR/rvW5XduXrWbAlXrlZVfWH/tAfqr/yV/5Ks0nGA5vNpn7t136tfuVXfqVevnzZsX3YWpJHfcEsc5kjLrF9YCXmqkkfbCJ18z/EE8924GYyhcV3e3t7nWQfyRn8kHckGpPaHvi9Tw66fDT8dDptcxxirKraIgv/po+z2ay+8IUvtLYfHx/XaDR65WSCDz/8sD788MNar9cN83qHHoQZdm1v7+GoUhJayNHB4fHxcUtIkuTDnoLpSbLRj8PDw3aEHcQd41jVPWHCWJJrSCSuVtudj9PptPWfXa6MC3X5aKajo6PO+34YA+rhFIrBYFBnZ2ct8Oa52HdWH3txFG2tqraj130i3nXfaNNoNGrvZ3WctF6vW/vBDn7P0Wq1qvl83kgHTqsg3oLoWiwWtVgs2v20FUzuXR9OxKNrjCEELvOBdvoIYerBH3txZOJy/KtxD3q3XC7r6uqqxfMk12k7iWieg78Fz+B7OQHECx2sK+gOfp+2TSaTtqMG/EaSebPpnh5kvTcOS6zCc9br7Uk1zL/EfsZGzAnXBRbx7mZjeZ7jd8EyNn3kpWNTYlETbcbS1LMru7Iru9JXwCrYC9svcA+2Gn+RSaKq7QKbqm0iEntvMn0ymbSNEPi9XLBd1eWOMzbM2Ng2brVa1Td90zfV06dPX8Eom82m+dY+zob63Wba4fjRdph6SQrSHsuLTSaDwaAuLy8bNjC3xH3cw6Ip8DLyS94c+YCd3FfjBX7Tnqrq9DHlZFnA3fAeUy8kvru7q/l83uGz0AfzVbTN/M5wuH0XuPmMHHfzxP7fXKG5WHNDjvVzE5OT1Bnvp24lr+lkDc8xX2ZuK3lW65W/8zgZP8KXpZ4kN0NJDsgcDdxM6m/GRcxxYwzuTy48i+MM63n217JKGRgnmRsDj87n84YzGW/jOWwXMZL5QD/PnK/Hnu/AWomj+vTV8ki8jI4mP+aNQt6w4LHynKf06ar5ci8cpR/YFXAt+ZXz8/O6vr6us7OzzqYBsCnzhwWf7ifzHjkxPlXVYt29vb1666236u23367FYtHajd001+ANa31y9NyzLr9Oee0k6Gc/+9k2CVi1yopUEqBO3PSRrjZ2FBsfGxQbYW9vTrK8akvWOtjwM11sdHLSJxHqz/tITjt9CkGzCSE+/zgD6vb1Pc+DjAJzj43JY0kYP9NEdV5rJ0eQ5uDKxtgEM/rBOHD8FavYGbtcQeAxox7akMnSTOJksRFJo5EJUe/US2doMoJrDARpNwQC19jheZxsiPomqvtIXfl5HwFvR+XEmMfaxsBj7gSjgWYG3XY8tBs5YqTTCbt++m9nmZ8jT+QPwPI4cD0GkX77uAe3FdLQ91pPLT+cMmNi8JZOFD1O0OIxSbkgj81m05Ej1xjU+lgyrrVeui7rp8k5+mv7at012eN7+xYs5FhaP30NwYvfkWUCkTlJ4hEyllX+BpAGRn6mwR3fQXJ6wYVXIXI9pBJy9/vFvDvBARHgfjKZ1Hq9rsvLy1eOPUsZu6Qj9nXZV6/C8/xL8Jmrn/rqNyC1/mU73b78nmdbfraJ3j1ForkPrPDb7bXvJCmJHDLJiy5aT9NHu48m/5GFj8aDbJ5MJm23EW1KUp93SPj5j/key9C/IU+n0+krx3/syq78QRafcgDmefr0af0//8//0wlcbBf+3J/7c/X+++/X3/k7f6d+53d+55UAG3trvwZmtN2q2s4rzx/8Nf4Vn4Ff8L3GnLSDue4V+NhVH4/tBUF7e3vt9BrqdnBXtcWlJI5M5GAPOKbTATx2hN2EVdvj0G7+f+z9WYi1WZbXj69zTkxniuF98x2yMjurqgdterTtAdoJBH+ICo2KeO+FE9Io3nnjhZciiBeCd4LohSgiKKIN7dxQDd3lUN0lVHdnVWZWZb5zDGeKExHnPP+L4LPP51nvjsy34G9lg2dDEBHnPM8e1l57Dd+19t7LZZydncXTp09jNpuVICpBxYgou/+m02kJkBHEYZchO+DxhXjHSSEEnDudTjn+2xm9dmSZe+udwWBQaEJffcoE9m8GFZ2QZkALmu3u7pbdrGRlQ/8ceINfDg4OSjALkI5AJcFt6OtgP/dywje2k/M9Z4wl2yL0A3pzigEnH9kOIcB7eHhY+JPTks7Pz1uBTU7LYXcn9WO78B608DxHbI5L5e9sX+NzOVkOHp3NZkUnGUjCf7Wu9nr1CTLwiXne/bJ9yZU5gJwE36F7v9+P9fo2aHx8fBzj8TgODw9jvV4XwIT5sh0PjafTaXnWRyuv17cJeFzVQ9/sS9VszQzqmebYjfAsc2Tbw7Yv8si+Sfb9mL+coILtQnGCGO/abrMMZRzZz68BcduyLduyLRTLKX7nI8CNbfEZeJhlK7+Nu+UdO76n2cfZYtNEvH6aXy7d7ua4evdxvV7HeDyOx48fF3vAwQCCbzkAadzJdiu6A32Nz2s8C5yHXVTZn6evOzs7cXp6GvP5vOWneqzWddbVxozYTYXu8DH/TdOUJF5jdsZ4bMujo7F7GBvzgH71FQyLxaIkusM/FHQgQRRj29hpfs78l315aJzxR+O6xmFzgrnxjIwZeo74bR4yjkh/alh0Dswaw4B+zLWxRuOJeScwSXK212mbPhnby5ijS/7O43RhTNmHo4/5JDj4AVzIthT9M44Or2aMy3Iirx36TTvUx1qEF0nMddKZ4yMkJvq6ANPftMg8Tdvwpftln9dzlOfCdDeNLLtoi/k2npxt9FqdfEZ/eA+a1PDdjBWDlx4cHMRqtWoFQvOR5tjo5kV+c2IM/htxvcPDw4iI+Pjjj8tOedPcesNzT915rZrWb1reOAhKIwRAp9NpvHz5sjh1FlJMvhcZJYOHmegObuAcoTAhrsELhIdBiFoWgtszgbwIvVBMXAsBj8nBFwO3pgN/U5dpZbpYCbmfmaEttC1oPP7cXl4YXnh3tUHmbg5AIPwstNfrdQFnEIQ8Q0DEwA3KEmCH8ZqREbA5uMFxlrX5tEPI2OAlK0zvcjANADL4HMMI3nBWG7QCeGOxGszzHFjZAbrTTwsmxpydW5SBner8rIMSNcXm8dInxg59eM68St1ZuUPP2v8WXllA8Z37ZUMTI879yoaKjR/e99qBLuZ3GxCWAVZUpi2fGczI9Mn8kMEVF/MkPzZc/NvGosdt5bper8v6AZD0/NqYymskj90AmmmQZUmmV5Yf3e7mqEH64uMzLMfn83lxgDDa884gt+t+40TwDKATOyhy8kKns8l2Wq/XraPqrq6uYjKZxOHhYcnaXCwWRWFTOPYOIDLLg88Cl2zAMEYbPPnZrCsZP3qHenJGWpb1Xgc5eH2XgWy+c1CeI+6sJ7MOdwAwG3kONiBjLcvcT+/gtTPAe3ae7KzaCLNs9XiwEwhM+ngZ6zyD8p81x3mdUh8Owmw2ax3puS3b8r0sXq8GlyJu+fVf/+t/HX//7//9iGjroV/4hV+Iv/pX/2r8xb/4F+Nv/a2/VdZbLfvTa5D6re8dsLTDjy1l/WmAoWk297m4jU7nFhjirhE/n9cqcgcZbxsB3ZGPNnfCiwG+TqdTdgza5qM9B4R5Zrlcxvn5ebx48aLobYKdq9UqxuNxeX+xWJTdATjrOJvY0Tjci8WitI3MdBISYBjH9hI4RGZitzPv2F/Y24A2JJUBJEZsgmI4yDjG+BAO1GEPGlhCnvd6vZhOp9Hv94ujjf1NHTjaJLhlPbxarcrOfSfKknkM32Evktjke86sZ/w/vIeu9XHuvsML3ehkpufPn8fFxUU58rhpbu/+wheYTqeto3YJlHNPj/mfsTE+5hdegA70G/uZXcL21wiU8rntEXwJ3z3GuBgjPOKd2qwd3qcv0M0ADLs8HYDd398vx5l1Op3WccSMh99eF9b57EyBj5vmNmBOsJwkKNvjTk71fffsYGeNGZCxv2c+tx/DujFNmEPbTtCGPntXkMdsGWO73X2ybeaAtOXmtmzLtmzLXSUD4uie7GtGREuveoe+g1LIJWMA+/v7MZ/Piw3i3adO2AE0r+Eq7id2Sg3LePvtt4v/bp9sMplEt9stuojEIeODPI8Mz36vZT/tQROAf/v56DkSaAD/cxJatil90gSFd7APjJfbts5+dA0zMKZmrIWTGNCxFxcX5XQKb55gbOiwiM2uUuzr2lVzmUdsd9tmMd7tMWDvomv5zn5AxhD9velg/8H+i/E//+0AG3SkT+ZXBzXzrmq3712z5hnm3vZT1v20nbEd6nBAO+M8bsvrpxYwy+/6HZ514pbnzkmD/GBbelwZh8w4tr9zncQhMhZOHR677TzXTV1ZznmuvVZNA8uKLD9MRz6zrWb7OI8d/NKxMI/NvjL0MH2MrTlGYnmAHZz9ZpI1l8tluXPVpxvZF0P+88PcW47zLPWMRqN4/Phx2RHq/kErx+komffoc6bfZ5U3DoKyAJvmNuvk9PS0BRDUAo8GFGvgoZ0GBwcioigQZ4+grHZ3d+Ps7Czm83kBc2gHB8cAtR2PiNd32ZgJLVQodm5rQiYiWozncft/Z3h6/A5AWVhDN/fVgozPcUh5xoqagmCxcqf+bFx0Op2i+AzqREQBQsx4BBJwShEQgDY8x3w6AOEFwjh8xBdtMmYCPZ1OpxhmOPAelxWMg59853k07R2EQRGQGWXB4r/z/UJZIfI34AM0sWLMx0kbkMvOOn3Ogja363lFuPEea8bBzbsCMhhtXsvQJCtQBz/M3+ZD83Hmb7fpfnmsBiINEtjAtlLlfdo1aJmzqhgb39WKjSrTrdZPB1+QIYy3ZkzYeIcPfQya6WOlmw1z09sKye3RV9aDgVsbMbQHz3i95f5TzNtZ7hrUapqmgFMoO39vZe3sRfpk5wQj2AAo/M6xh97JAH0B9NlxwB0dnk9kw3A4LElA1gN3AUvuP2PIBkg2LgG/soNhYzYres+t33GpOZGWCXk+6W/WWdZneb17HbguG2uMjbYJlPM348fgy0A669oyzfrb9ojXd3ZMMMoM3MP71LO7uxv9fr8A0nfRNtOYecI+ubq6Kk74tmzL51XsfLK++fv09DR+/dd/PSLa8uR//a//FT/zMz8TP/uzPxtPnjyJXq8XR0dHZY3W7AfbIJZv2A22o2w7G6Rgpx062XIRMIHEDCej+UQJ1pt1erYH0AP+m2M9vaPLcns0GhXZaL3JmHHu8F/m83k8e/asBBt9osN6vY6XL1/GxcVFjMfjODk5KTvnFotFsasdEMtjoV/02TLQMpIAKu9ja0O/5XLZOno/Iorcc7CJJEl0I/3AF/ARbCSSwHfY+MhsbF/aaprbABm7A3GyOTmi1+vFxcVF6QtzboCQXaHr9bok015fX7dsdXZcItM5LjbbFdmWgy6j0SgWi0XLLqGvzMV8Po+Li4tif9AOdgcBaN5ZLBblehl43YlFBhUZdwbB7Auxdrwm4CPoQ4DXOz3gC+pkF25uC56y38X3rHn7pHyH7MHu2t/fL3ez48NPp9OCAxwcHJT5grbMJYkATqxwAkC3exsIPz4+LsltOQkEuxOABj/B/i/0sh1MYoGPKbbdZl89A4H0nXXFFTIc+5z9PMtY72jN9pbxDieYMCc5mLot27It2+KCjrGtZDujFiioBQ6sj4zJNk1TAHTe8aYSy2D7vdkHAzNAJ9j+RHYOh8M4Pj6OiGgd4T6ZTIr8ZAdZTqa17K7hhhlvMX28K8r12OfEjjEeZLvOOtfBMetZn8iBL13zh+2nM5fWV7bxfBrHxcVF66oBY2ces+eBftBf4zdgmxnDph50abbPsXlyvMAYF74D9RpnzL657UfrT/Oo/RfznbGEzAeuI9dnnY0dZv4yrsY7+Aw1PnMxD9mfokBPJ4jXMB+K7U6P3/EQ3s19dnuMwT4F34PbYa/ZvsYuzTaw/S3GQ2wAmYUdldeweSLjVjXf1Txqfnc9fOYTZzKeVrO1MobnPjI/5gf3xe95Tl2XsUH3yf/X8CqP3TxLsud4PI6IKDTu9XrFP3Aigu9MNg1ZdzzDHaG9Xi8++eSTIpcptdiieTFjeyRq2r7/tPLGQdCIKEf3EAClM3lymLyI+vErXqz8D+NagTgTgQGRMXRwcBAXFxeFCOw6tKB0+wazaZN+WaAbPOV/2vbzXji0b+DBgQQ7qhbi1On+1EDjGhDOd3my+Zv+OJgAo2QH1UEXaO0dKzzvLfk4iDjwgMTU6TvUCJZbOTHf/BisOjg4aC1Y7zDNPGSFz+fURX+8/Z7PraBdnMXmOcj8YuPLBhg/CADepV8cf2aa0z/fDeQ5hv7+HJ7AuPGOJQwOKwwy2x2wQQGZBxBQ1OfABu3WsnnMv24jYqNMoZd5Cr40PZgjCz8bVVlRWLBnxWMhXlNEVmaM1UcG5nazHDF4hCzic4O6NtZow0YoNHLWI8kBvgeCHR6eJxvJKB3T2UarDTf4xk5Onhsb0TYYzGesF9MRnuJ5wCVAOcuj9XpdQLfLy8sYDodFKdpAzQAbf2djZzwetwBDgCbkhXnIhtlsNovRaFSAOR/h7TtDOUrDSRxZEVs/GERnHE7c8dgsv7Ix5YC/g2lug3esY3g+G3bZuLCz2jSbXUXOuDQw6v7aAWL8jMF9R28YSMxGkw1n6EYQxGvDc2vnGIcI3rq+vo6Dg4NyrK15Y3d3NwaDQevoQMblIIcddvpI23bKXJh/jMNsdG7LtnwvC7xvOyGD4U3TxPHxcbz99tstgAUZeXl5GU+fPo2f+qmfaumQiPZRsMh/B45Wq1XZSY6PYHlpGcM6Y/2hO2zT2J5FHjqoYLslYnN6APILhw26sNvLtkRNpxGMM1hF4g79Gw6HJYh3fn4ez58/j+l02rrzaGdnJyaTSTmqs9e7vQ+z3++XY4JsD9Ev6OEkQMv6iE0SKYFkgjjoQGQrPwSRkMsEHaETMnu1WpVAZET7aGD6gX9mx9x1ICtJBuR//DfrE8aFPTgej2N3d7fsml2v12WHpYEl9AWFefIOXAKNvvM726/03XrPNOp2u3F+fl7asd3JLlFobF+GACggJ+uL0zF4f7FYREQ7cEVSov0Trw/3m8I9Sd75iT9hcNd0wY+hfejgI6Z5zvyZbXJ0JGtkOByWeTRwyxG97J7Bd93f34/pdFqSHVh7rA/7Hjc3NzGfz8udotjPAG2DwSD29/fj9PS01Wf7kk6IINDKXGdwy2ufeWPuGBvr0b4/79p+gZYO2jNn3tGT7QzG74QA2/NZvm/LtmzLtnxWyT4cf6OD+N94k/WfZbP9Ufu34/G4HGWO3EQOYuvYBnM/jDvRj5p/9vbbbxedhJ5gAw3vITPZ+W/8ouanUzJGEbFJ9sNeMuaMHux0OmXc2BIOTuSAivFQZLiTm2gDPWUsEjpg35EchK5gRxz3lmOrTCaTkowTEa22rDPR1dDRJ3QZb8LuAAet4dzG3Y2tm/72LbBZOE7YuJvxK9uU9MGYTcbh+DGfW6cbp3Cd1q/GyTI+ajzIOKX5xM9Ao/yc36ct82wNk/UadTzANMs4recpr+E8Zv9PfY6L8Nv+IrZT7Q5b+MF2GXVkHBE7K2OE9DU/S8KZ6Wea1mhhzIrxGZv0nOV+ZBw60yrLXMuX3Efzf64vt2Eez76iMQFw6Vo7fH9+fh7X19cxGo2K3+aYHW2SXOsx4ANRZ9M0ZcOdZfZkMin9q8lY09uYp7HQNy1vHATlGCbuqXEHvchgaj63crRTmxc+E7FarcrRBBZC1MEz1MH5z84Epx8ZKMntZmbw/zVmzgEAC8yI9qW4bpu67VhDOwefqCMreDs1WfDlRYVw8WL3d54DO4AeJ8wMeMIcGvS1IJrP560dn4wNOpshUZoei+fIiwH+4dgqjlPw3xYyOPA2BOyQWjnaYbdDigLKWXAIG3+XBZyFvZMEmANnP2WByDjZLQR/OTvOx2OZRqy5nPEN/ekncwKQ5x3D5gEbS3ktZ162QZDpCt/mXYXmTXgcwwa62Jjx2qJOK2EXzwn/07dPU1CUvK4sn/g7zx3GU+bFHPTPNHAbVnD+23QkgxCwx+sX/jQ/e+1m44b6UYx5zJ53+muFz1rICpj5hNcz6MK6taJCgWL8s7sCg8jrrQZE2dEw/3e73XL3FrS0EWpgC9osl8vW/WyMi0y2Xq9XwDVA86xfzCd2GgH7IjYJGvBKXg+ZD6jLNLWxlxNuLLeQaZ7jrIc9x/B7/p7Ps2FmnqFdQHr3kb8NDjJ3nA7gu+0M4kID09aygR/v2rdDHNF2rJwU4qN03A7v7e/vt3ZnmD61Nevf0DXTfVu25XtdbOMgN83H6P29vb2S7Xl4eBg/+ZM/GT/3cz8XL168iJubm3KE1/HxcZHZ8DU6ATnMmoxoJ+Rgr3g908eaDFqv12WdZhBitVqVpD3647vaIzYyAvlIAAr7kPoMstgh9V2GR0dHr8lygCV2tR0eHpbjb58/f152AiL/cEY5itt9YEcCssh2BJ9xWgG61s9Ql+1H25kUyyrP/eHhYdkpib6Dftg69H9nZ6e0x/3eGfhomqY4vrZjGHdE+x4wgsf0zfoj4taO9kkxfGddY3vAtiUAxnq9CV7ZDrH+YgwG3OAl/gd8I+hrXwN9BiCwWCxa9ogBJZ7j3ld4Djuv1+uVgCg2YLavCHQbfMhH40Ez7C/vRoAW7MwlcOp20P2sNfsGGXggoRVeInmA7G/PK7ywu7tbdmHjo2B7sbY5Vp5jniOixY/wXQaqoAv3hs7n8+JT4a8x37ZtPPbcb+aJfhoIzX4YMiPbF9l32N/fb92PBFiHvZoBN9uHTgDBDjIuUbMvt2VbtmVbcsHOQn440EUBP+AISopljXEnZCayEDmPb2U5iO5DXjlxNvukPmLVGNvOzk65W5rvsEeQwfbJ7DfyP5+hT7DfeB8Zz3PdbrfcZ296oI9t90Vs7FvsANvpxl2hISfq+RnaMO7NZxlvI4nw+vo65vN5sTs43haaOlE/44nGO01DaOA+OemS8TrYaVzJgZSIjd2eAxyZV+gz9dvXtn7NtOF3tlmNE/F5xtuMHRnHtM3q/82DHqP76Gdr9RhjMZ/mYhvNPG3syLxn7IfP8zrLdoppbswt12N6RrSPfTZmzP8Z/yMRjRiPeZFivjMdadtJELbr9vb2iuyp0TPbSLyfaWp7Me/EzrT22LNvQxumLc95HfKcg/nG5qCJ58a0MM39POsrv2M6r9fruLi4iKurq7h3715ERMHvsMlJKmXtG4tDbq1WmztHh8Nh7O7uluTfiIjz8/OW/1ubhzzP5se71kYubxwEnc/n8erVq5hMJq3t83mC+RuHhM7lDtnhdOb3cDiMt956qzC9n0NwkM3LXZN2CGESR7ytnCLawtLCnL4yNi8y3jPTetHxWQ24zROS+5vpA4PmCHgWnga7cf5gjhw8hvFz0NV95zkHQaHDYrEoGRM+7sCADe1ZGGAsWHBT+v1+WRQI2LwLzmPHKadeHxFGPx0YhMYAN+wYM61414oVYIc6yPK1088izk5p/m69Xhe62RlnLtfrdTGGOLoJQMrCv9e7PaaT8WCkIFB8H0C3u8ksM1+5n7WMGfMnPMFc5wwv1lMW4l4XnnPGkRVUft6Giw0y85FBuMzHlJrygncskDPQUROsfE77fG55wrzaYHcbrs+75A1c5IAlPMI6BDz0OqqNITsgNtJNJxujlpXepcjaoU8+xjaDzAanLTsoXkvebQuf28jl7mkUo+8Xy4ZABgMNzpJMY8C0posYK1n3PuYsG8MYZjhStZL5A5oCcBp0Mw0z/7ku8x+fW364eP0xRhsJNtozHcxLNZrl9ULw3TIv2wY1PeOkk/yZdfJdxiL9RU86AcsOCgFO0wZ+2N3dbQU5c4YZa5mdpNge9MVOec0RMB3e1Cjblm35v1HQYexMtu6IiPgTf+JPxC//8i8X+dbpdMp9HVdXV/GP//E/bu2cZL1R0DWDweA1O9AyzMlktrfRjaxhjpDGDomI15KAkKvoRWSBkxyon51nBCSRj9x7yTOdTqcVlHSw8ejoqMgCdLxBnP39/bh3714sl8t49epVPHnypATKkFcccdvp3O5IuLy8bAFxi8Uizs7OotPplPsskWE+0pXTb3yVAnrKjjY6B1qRwYvu6HQ65YQJ5KHlMXPOHaUEnJFn+AvMkTOO4RV2WBDgymBTt9stDjQAIoFB5hmdngOwBsqY46Zp31nJGAjK4UMYHDFv2q5ALyDbeTb7t9ZfEbdBOIKaHLXLZ9COurl3h+dXq9sdt4eHh8Uesu2Ej+e1BXDk46c8Xy75yDnWgdddDniyxrFj4Dd2ZwKEM38kBJBURp8BTFg3jAdQnL8nk0kJMLI7tNPptI5spn4nC9r3dIKEE8+4z/f6+jqm02lMJpNWENO2R9M05f46+sJY4R0CvfBttl+yX0ph7dm/IBjsz5lfeNZ2u5NZ4KucwBgRrbHV8I1t2ZZt2RaK5Yf1hO20q6urcipBxlSw4wx6O/EtIspnTdMUuRnRPjGPdu0bZ/8O2Z+/98ly9NXJSgQmkbM5OEXx6XEZ13X/ut3bu8bx8Y13MRbAf8ZjG8Y+e8bFsM+wryI2+htdRP/4nO/QB6vVqnXi3Hq9OQ7fSVK23+EBY5vQ3L49NM4JUZm+xqxdr3GWjHdkLMM8wt/2Teib6WCeZk4ynuKAPW2ZBg7a0q7pbtynhn/UcErPF8844Jgxf/c1J0T57xrG+ml4b62PGc+oFX8P3xh3zG1CJ9vfDozCq5yKQpKhN0iZthHtHdpeC96I4/F7Xfb7/ZjP5586RuNOGQP22HMsINPTmC+0wxbPssLYeQ3n5H33yfxkeQlPeTx8lhMRvG6grXUBcord9IeHh8WeznEcTp7JvMoP63Y+n5egN6cA9nq9ePXqVelj1keZpxhX7v9nlTcOgp6fn8f5+XnLUcmZPxDRAi6XvFgM+v/kT/5k/L7f9/viwYMH8au/+qvx0UcfVRmIicAxRpFGbDI5M1Br4JxiJ8+COCtzC7W7otIOWHqCPHmeRNeZlWpmEitnK4IchMrgcV4EOUCLM2Rhi8KkfgAljnCiDrK/8t0lCBwzI7THQc4OLxmuec5oi7ZZMDiKOK2Mx0AFjnZEtMAq6nRQImIDrtG2M1AsPJlPB/Q8nzmoZOEEqGPABmUAQEJdBGEwIMjwdrDKc+gdUG6XwniZY4Cr3H/TwKAPa81j9JqhT7UgfV4r5lPTJ68fAzAGERx88E+mN/VRvP79XX4mK8pMl6yA/a4/y7KL35aN2SAwfVkDrBPT16Cvg3zQ1aBkNuzzXPOM14fnlvXguYPfHFzyeGwsQ+McGDLfOZGCsrOzU5IsDg8PS9KEwVUC4h63+QRg1QHLmkFD36+urmI+n8d4PI5+v9+aDwdSqTfvNoA2FPjWcqS2fgDsbNSZD9xnO4b0hXcsX7KRZtpb72WdZl2ZeTzTLMt3HE3ok3WwjSjmDLozf5ScRGOa2baw7rV8zM6Jx2rAGyObXToOeFv+ERRHF+X14ro9ZsuiGj23ZVu+V8XyJtvJh4eH8e6770avd3vsKLsZv/KVr8S/+Bf/In71V381nj9/XtZ2BvORNQS6vDvddoadQIB+9AoyhCO2kCvOlEav0d7Ozu3dixHtnVxZ9xCAsqyyzWU7wz4A9Y3H49ZOR+9iJLg4GAxisVjE8+fP48WLF+UIbmgNAGV50O12S1Dl6uoqXrx4ERG3gRrPF+PzTkHvksOG9O5H054Tc6xrOAqWBKB8HCtykLaYX9vTBKKgg8eE/HSgsmmaci2EbXh+X11dlWPpb25uWqeW+IQVH/freuBHJ7o4adK7P52A6GDpcrksCVT4mqaJ/cSIzW5g+Mi2AvXiL/kEG9YedkfTNCXRhlOOAHLthwFeZr41IIoeIgBrW8C2BmAxQUWC6tAJWmNzWm9HRKET97hiA+Hf+NhmeDPrYXgJH4dENANYJAsYPM1HxXY6ndIf7DDAaHxO22K7u7txfHwcvV6vZLfbn/ER+PCRj79F/rBTEz5gvJ5jaAr98y7tDOz7XlvzW6YV7Tg5PdtYFNNzW7ZlW7alVpyAgR+PzWjZgY5Atnv3ICX7X9afEZvrYbARjLtE1AF+dAC2hDENdNN6vS7XL2D7oefG43FJIsNW8eaEjJlwCoNt3pofPBgMWjQxxmbMxEEI9Aj0to3B+JwI56vB6K/tSfQDGGbTNCWBFxvReKnphH6wP+s2jGfYTvYcMZ81bMGYO5gi/9P+1dVV6xo30z37z4w161jzV8baMi5g/ZvxZz9TwwLzZxkT9We84/dcj22y3BfX5e+cZODxMg+u35j6XbaB6ZLXgPGVbI+YHzLuSoHf7sJeeRf/xME5kijZCGJZUNs8wOfYyMbns2+Y8dhMM9dtf9DYjm0q+pXr8WYBvq/ZYqZNjsVg77lf+X3z0V1zxHdOHsEvxv7PfMy84dt0u5tTi66vr+Pw8LDELfgeu9jXA2Z+wt8Cr42IchJVRMTLly9btOVdj5G+em28qY37xkHQyWTymvJzsbCC4HyGoPOizOXx48fxp/7Un4ovfvGLsVqt4oMPPohvfetbrzEog3V2M04QwrdWau2bkTLTG7isBRvpT0Q70OniQI2Lg3M5YGmGdz04NrU6HTzJizaDue57DtA6sGrn3pmttOUjhHLWPMYSwsoBOto0EMN9a5xH78CIhYl3fToIaOGK083i85yb7qazd0YgEMzPCNJsGHhuLCRZjGwJdzt2WN0WQIdBf3YsQMeIjbEF+GRDxOAAYJ2zuwhCG4zM822+MQ9n/szKy4LefHZXyXVl5Qhfo3Bq9M+0twL2Gmb+c5+yceHn8vv5eweTWBMYngZ5arTIxo2NC69JaA6P+84x5EE2Rlhj7h908rGF0MtHFRoAynSE5gC/BrIN+jAfBp6ZRxvrlt/s5qdwpxjAGrsCALEA5Mw7Ea/vpHQSA3qCIBZyhjVJvThE3hmT+Qm6GRj2fPHjI3OcoGHHgPWZed+7OWr6CL6xAY3+g19qhjY/2aiolSzPXKwTqR/6Mofuq4vlkQ0mihNtausiA7g21n16hAtOGWPx3cvwG/dw2X6xfqQPdxn59Ad6uI81h2ZbtuV7XazPLK8jIv7lv/yX8Tf/5t+M3d3deOedd+IXf/EX48/8mT8Tv/RLvxT/7J/9sxKc+f7v//5yZKrr9XpFFmU7wY5pRDt5hOLgi4/UYa37yFHLOvpAWxTkQdM0JWnPmffIaid6Zb1/dHRUHDMfhc4xn/fv34/BYBDz+TxevnwZL168aDl5i8WiFcQioJKdUuYEmYSuInhLYAnb1va2ExiRg4CZ9IMjzzhpgSNBsVXX63Xrjm3eJ3mRurAtkavD4TAuLy9jMBjEYDCI4XBY+gc4il2O70CbdpIjotD20aNHRUegs7i3iueY352d2/tVzVf+26ADdo53chK4t71gm8rrBH2zXC5jMBi0QCfPB/YFu33pg4Er21P2a+FBMqRtU/I84FBuk/XHzk4DKbzrcbg9/DHb/zzLLlsHk722851ABrIoq9XmyD94lnXI8wQVGZ8Dh/aZsMN8NCB/Y+8xfpKzMgiD7Yc8m0wm5XoXywD6wdqjftsKvV6vdcwi9oX9K+Sa/SoHQ+2rk2xg2ygDlcg1zy/2ScZhPOZt2ZZt2Za7iv2XWkAq7wJEL5DIlTGkiI1NmBNheIYd9v7M/cmy8C79ZWzQ8nS9Xpf7okmons1mLTuC9yiMwfeO2252shOYXLaxTSP0sjELF8txkokjNjtRjbFRnHjjDQ7X19fx7Nmz1p2H2DYEXxmTcXNja9Yf4Fv2f2t/5wRJ2/j2zR1Q8fzhJ+Q6bMd6bvjemBe61NgVbfi57HvUcF3+N/aY23N/XLd5Mm/6yOvAtnXGVE0348meJ7eHXWMcg/cy75mfjU8wxjxW2xD+zvPkkjHF/J3XbMa6sKvAllhjBNt8MoZtQ9rxvfMR0cKoPOfIrc8qtrVozxsWMh4FnaFxXru5bmPt5peMMXqOGD80xL9x4kKeJ68H/odHI9qbGvnfNrrXwmq1iouLi1itVjEej2O9XpcrTRyLgCftpxvb94Y0doRi4z9//vy14G7GMaFLTg78rPLGQVAHcBwwqk0Mz0dsjkaiMCn+rmmaOD4+jvv37xfh8IUvfCHu3btXjpKK2ICfZLM409nZRDgsJjwOiicaguZgAosuYiPwnJVAewZlWWwZ1IAWZi6UczYS+D4LzyzEPg2UtrLxdzXFbsHJnDrLH4FBn/25f2gTJqaP+eJu8wHM7WAqnyPEcpAC3mHBcwSTAWrzJELSzrCd0Aym2wCxQoNfvXOTheYdpBGbo8Foyxn2Vh7mQWdD4cT7npnJZFIyzOhbbtuKzFkuPIPwInjkHQIU1g/9c5CiBmga6Mh86exAeNDCHdpY0DOW3DfqqgVAPWfuG3KFuuCjHCCpgQxZ0EZEa8dz/s7j8pxaoTEOxsBOZdYeAB9z4zVguca7zL93f+SsHs+TlTc0sLFio6wGsGTwJDsx8AIKz5mQXkOZV2z0eI739/fLs1a0HEnoI94MJmGEO/BqIz5n1wPAQldk/3w+b+0ocKIHxTSn/7RlRyAHPSk4Nj72G9pnHoDG2Rg2EIcMzGvKzgC0ok6vBT9jYNd0zo4p/bAuJeu21+uVnSGeY+/SN3jpXT7IWCd28F0ticgyhZ1DPobHWb7Ut1gsyvwSzMDZhTasF54ZDAatTFnkn9dEdgwzrbZlWz6vYsffIFHE7Y6p6XQanU4nptNp/O2//bfjp3/6p+Ov/JW/Ev/5P//n+MY3vhFf+MIX4vHjxy07JteDPDCIkm1jnovYyAzsIGw3yz73PdveyPymaSfKeXcB43MAy31DRqCPbWucnJyUXZkE7SJur3MYDofx+PHjODg4iLOzs3j+/Hmcn5+XgDH+CkedehwUEm4AmUiIa5qmBELoF99NJpNynyG0dvASu4AgZ8TmGN7ValUChtg1BKZspxOMhq7eYYo8A7Rkl8HBwUGcnJwUWtufYKd9RJQgLDS1r7C3txez2SzOz8/j3r175ehhZK13XZI4GdE+ws3AA065d+BiB6N74CMnak0mkxKMpp/0Y2dnp/CE/WHahx7srKV/0BMa56CYQR/4BX/WthJzEtFOmKIP9sXgbXgLPRkRLVvJtjo2MwFJnmPendSGvZJtIehPwNu+G2BN3lEJ30W0bReDOtDt5uamJBZwtC1XghwcHLR2CjdNE/fv34+dnZ2yO9u+fK/XK4HQnZ2dcgwXY7VdCs/ZrsR+xmezT8DY7aeCT7ge1jk03NnZKUeLZ8zEfJKxGMtLfvz/m4JD27It2/L/ZjH+aVmODMN2sP/F5/wdEa/JQeN5lnf8bflmX9XtR0Tr+buCXcZn8BuxdfI4jc9SaG82m7XuaDbmZczCJzIZ33XfM+aIzZnlPljEer0upx1QsvxG7+BXk3TF7taMW9FHJw/iC2f603dsHtv0GfMyPmC8KPvA+VhTj8f4dy2R2/S0n22MwTxTi1EYH7PN5qAfpcaHbjcHW/J4ckDM2DvvM1b+tg3qAFYeJ3OV++egqunhdm3b+FmPwxid59NzRB9zvMFt8ZzH7D4wTzlIx9+OQURE8Wk4ItdxCdrx2uQ7cJxsF0VEaxd75pXMe1m2OBCZ13i2vTzX3nTiAK4xPNOQdk3HHJhnTs0nFPu69MPzXePP/L151HzGRpXlchknJydFlhhzNo9GxGtX9jEG436j0aiM59mzZ8WWppgXzbMZ3/608sZBUBPXRMoN1RYSE5cXgpVTBuu/9KUvxe///b8/vvrVr8ZyuWw5HzhABjVzHzIRcqCFiWMyESp5IbrvLnznyLbft+NWczpyUMGOsPvptlw3z/j5LHB5l5KfN5DlBWgFZafVzIXw48eBKwun7GhiCGUDIAP/WZhRt4M4ANM2apgnC3sDbAY7DMQbSIFuPrYiIsqRETmQZUc9F9+X5LuF7MjC+zjs5imPp5YJgVCD3owxCzUUAHdssc4caDLvG5CzEef1YwHOb89lVm5Wjv7fxix98t1OzLdBVurMWR95fVgB5zVcWytWZp7PDOBa4XiN5fFmI8xC222gNDIw6zk0T5sWznbKhmk2Et0XimUU9LNzQN8i4jXFTR9sTBrsybLZx542TdMK7NrBWq83x8K4rFarODs7i+l0GoPBIEajUeE1+mRj3f2BLtybhaOAAwFgu1qtSjYrsqzT6bSOO4NHyfzMc2IdlPWgv8uOQB4vfbbcsIxGZrP271L+8J37xOfQ3PziNZr7l3nXfUWOwcMEs92HbCNERGs3MPIV8DkH1A0qUgfy0fxlHvRazDYAnyPvvJvM7yDvkeWmC3Nx1xzU6LUt2/J5lJqDY5lwfHwc7733XnS73fhH/+gfxd/9u383/sE/+Afxl//yX46Tk5OyJn3sV8TrGcUG0my7soYy8GRZTb3IvJzw5TF4DXsnHXICOeBdd3bmKPlo3E7n9jSB4XBYkm5IpOTuz+Pj4xgOh7FYLOLp06dxenpa7niKiBL89B2lyGr0h/V+PoqWOghikTRIMNN298uXL4sty85T2jdIQGKpj4WlDcbe6/WKvluv12VnJzSAV5gbAqz7+/uxWCzi8PCwJMH0+/04Ojpq2dve2eAgtMG3i4uL1lG49NG7/aAH8p6xMt6IzdF+FCdQdbvdAqhguzk4ahvW9iuZzvg09p+YS8YJP8DfPv3BvEy/OBbXAAd0whbz+KnHvhp6zLav7RXG1Ov1Co0BZvg8Isqxxe57xEbXw6P4H/CLfaL1et3abeMgO8kI9ln4m6BzzaannU6nU/jx4uKi3O+NXTwcDott1+v14v79+yU5Fp5Ddw+HwxgMBmXsZ2dnsV5vkhPth2CvMEfQ27s7TONshwNQO7kcm475RkYyn/Y189rx3DO2LNcta7dlW7ZlWz6tIHuwxbxbEH1iXxA5ZHlGsV1o3MYYkPECYxm854TTDJzznu056znkKe/a93YbtT6cnZ29Rhvrb+pE70RsAqH876QX+4jooG53c+KcsRFjpDWcyacmzOfzkoBn+jpYkpNo6Lt1PsUYYz6NwWM3fpR3Jxo7djvUc3Bw0JpPYwR5Pox/GHvyXOX2zSPGSawXcx/5O2OtLncFWjLvm79t+2QMzv5Rxvtqxe34nYzNZGzI4zXvOZHA/bbdkmM3GQesYRxeZ+5bHmutrYw5ua8RURI9SXgjcdY/xHhcl5NjoYufcUyId8xbHpM3MNj+hX72HzJO6FhCRHuzBP23Xe/Atf3rGq9kPI/37VdmX91JdfZX6EOeb4qxxcvLy3J8LdfHZFnEGBzEN694npChjx49ik6nE0+fPn2tL5lParz1aeWNg6AZoMjf3fUOz9poz8rRTNvtdktG54//+I/Hq1ev4rd+67eKAsHZpvC5+5EnLWKTqWRCRbQzIjJI7X7Sd77LCt3jsQAF7DBD1YoDOYzBTqQFjIV1Hjf/mzmyMZDp76CD710xgGyaZSVi4wewyoEJ+ksAZb1u31+EgHGGN86kF2o+ssHzaoMB55KsqOVy2co+8pyimGjfCyiDaAAFLOCIzRGzFpzO7MeAcFYvwhPQDdo4qAGdbDg5U5sfK22vJc8B4wQgiIhyVJaFtX97vWSlxHO1AImFLsrK8+i1ZKPLf5vW3mlc4/ucLZbnlmey4Hag0AF/eMggAv3Pyt78nw1D+pkNAxsgtB+xyX6HD7KcNNhG2w7ouy7o5355LHm+HXh0koKzLC0DbMjlAJf5x2s394V3AI7c/4goxgTrFd7lf3a5NE0To9EoDg4OSnCTeinepc8cMF7vAuQzr0PLNAN/jB0gDz4wn9uYMA3yuvZ8uGQdxBrgfeiMvstZg5mmNcPOvFHrSzbU7+or/aWPBJmHw2FrvTppIRsr7oNlB2vS47U8ykHvfCKBwWmPg6ApRxvDB9gXpgtrgaxbvs+yIMtR62w/ty3b8nkVZK6PlTXYYDn+67/+6/Gv/tW/ij/35/5c/LE/9sfiP/2n/xT3799/7ThydATr1ie0OBgDmI+cyhnu2HK1JCDryiyjI6K1M46d5Q4sdLubewLRHV6f6FjaHA6HcXR0FMPhsOw6o47hcBiPHj2Kvb29mM/n8e1vfztevnxZZAc2LuP2UU7D4bCMjwQc7E/vguMHkIvdCOiziIjz8/Ny5+PFxUXZPYge93giNrsVCHJCH37YmYcNgqzL91RlX4B3cjIhQbbFYhHHx8flGDrvGmQeqYNj8egjpWaDYWfwHDvx6HsGHQnaUkhsgTfpC3RiDPhwTkIyCJZt1NxndkOa3yLaCT/wDHoFe4e5hves67FPOPmAREfm1WADwfybm5u4d+9e4RPuG2uapvAsQUMHnKE5fhLHCvKebWfaZezMG8cisyYMyNpGp41er32Ck4/Mgl+73W4Bfm9ubspu9vX6NrA5HA7j/v375d5v7EUCmfb/sANY25988kkZv/md92yjEvSHj23/eVy2mQ10ISugfdNsdkk7ucNAUbZJLQ+zPM8+wLZsy7ZsS604eGObzj6UAXMHUqxH0UHIL+Q8+sF2hPFXY605oBYRd8q5iPZOTSfLUL9tiBwgiWgfaXl6ehqz2azlU7svtp0t1/03usPtcqy/700nIIitZbva11uhl9F90+k0Xr16Vew53/np5BhoY11B8dU/xsOwiXMgzfaX5y8Hzv15LRBk3UVxO9hq5g/j+OYF+yA1bNK/3ZbnlWeceO0gqvvhtZL16l1+vuswT/l7F8cS+N/YocdljCHb6H7H/XSyaW7LmEu2W3PfMiZbowN9Mo7rtW6+8HrNGBZ95b3ZbFbsSh8FbTpkzMg+l8fjtmtzk8cD/exjOgHQ4zOtcmDYP9jGFMss8zUxB8tKnslBzMwXNdnqBEcnBDNWx4/yvLhvHMO9WCzi6OiodYolvp/7lmWysXT0xGAwiC984Quxu7sbT58+fe2qQ/928uiblO9qJ2gOftKwie8Flo1tG/s+ZhNnFyeEI6BGo1H8yI/8SLx69SpevHgRq9UqZrNZcUoQiDn7Jws2BIQXn8HiHOhzBjuFdzMN7KTCIJkOmVkyyJxBawscZy99mgEAI2VDwcGULDRrC+T6+jpms1nJGiaLmiwC6nGWtTNWDUxDHzt4BrIsOAEsXCxQbJh4vgmME+wEfEcQ4JBy56j5xQEJZ+9nQR6xASkYG0bMzs5OOYIJXnDQFVobuKJt6AX9EOAYMoyV7wDDqAfBm3dVMBeAEhhR3m1nYMM8Q10YRRYwWell44DvoCdjy2Bm/tuBBa8HKx2v46wUUEReCzbC7pJP7oODXzUeyOsPYz4bB+Zp/s8Kw8rTRiD8w+4QFBngF2AS4Cn9s8KDntArZzVl2pnnoBXfs7YdtCNb0cC2aZP5wXNQk8vwt+nnYKQNctYoDgBBrMViEffv34/RaBQR0XIsrPA9N71eL8bjcQmgmZ4GZ1lD3mmdjZeI9s4IG1xun3H4d9Y95p3M6+YvA2F5XtEDbsN98Jo3v2djm7rM/5m/XWzkNs3tzp3ZbFbAV9dpnYm88tGOni8Xf56dAdML2WNDzvVTh+9UY9fL5eVla8ez1z1BC4Bl9yPzr2lpftiWbfk8i2WBd1HWnut0OvFP/+k/jT/wB/5A/OIv/mL823/7b8suP+tcy/qIjb0MsJILQSGDUBEb3Yp+vLm5KUlmDgYBwEVEC0zjOSdHIW/pi3dRut/2D/b29uLk5KQco2qn9fDwMIbDYenH06dP4+nTp8Vv2d3djel0Wu62XK9vA2yDwaDlABO8Q15zX6Z3RDoZqGlugyKz2SyWy2U5Evfq6iouLy9jOp2WMfCZA7/YpIAFzL8dTuSlj3+nnwQnkZWW98wdvOUjYJl/dAB0dxIkhfnp9/sRcRusto716TJ+n5Mb8CWcjIk9y6kxjN/+DzYovHN1dVWOPsfOZsw+McK87JMCsF1s32BfErCDdgAytAEYSl88/8wbO2CdmHl4eBgnJycxGo3KGHzvF/PE6Rb87yCq181qtSo8a35Cn/nKjryL9/LysnWKDOszgyv241l3HG3b6XQKUMxcIjMorEH4jTFD3+l02rpbt2lu77cdjUaxv78fFxcXhd9vbm7KbmYSFZqmibOzs1bSXQaCzd8E/W2TQ1PkGf3Gjrc9xFzDs/1+v9A37xo1vbNvZt/Ssmtrf2zLtmzLZxVkGwkrTpYDr0V+Ic+RSQbTs59kX9e6Jvvmudifpw4wNerNoPd6fXsCASc9eFxuJ+Oi/L66uorT09NWnVn3YEc7ETfT0P2JiIJFouPQGzlw4wAc9qEDKpeXl+VUrBoujc2BLmFuvMMq+/fYZw4e02c2UPj0icvLy7Lpg8+Yb3xl4xzoo3zqiLFYcIkcjLG+zViEMa9acI7nPCbX4Tly+7yX8THPs/HHnGhu3sptZL7IzxtHgt9cjDXRTxfbnLXv6Tt2Wu6HfSO3ZbzF9r99v4xn3YVzZcypRq+aXUM/sH19tZSvb8jtQE9sqRyANU6Z38k4p5PdHEuCH017zx82nmlt7M6+aA1HyjGmu+SMn8lj4bMcSKQ+ryEHymnfMQg+8++macrxuA8ePChXh9CWfVHWuPE528neaPbw4cPodDrx8uXLlj3ute0TMd+kvHEQ9NMWUg2sNUFxBHZ3d+P7vu/7otvtxkcffVSYsNO53co/mUzKIFnA77zzTnz5y1+O58+fF3DSAQg7bwaXWdg4+hEbEMAOvxe8GcC/+ZxioRDRDuJ4Umr0ykLFDuqnOSg8lw0E98sR8CxMLIgM9hjIACxx/838dx0Pm7P52eVI3Xbs7NA7wySinXHihWojCgEGCMBxX9w3tF6vS3DSQJkzsZ0l7yA2cwkdEaRW6vQDOkMXL0SUvA0L+Nbz73nCYETAwJ8YFzayLNyhVRa4fM/cMhYMV+ozrekHAVMbsOYd12/edKDH2YGmmd/lM8YLTWrKy3xnBW0a2lioKdhsuGTlnbPYsmDPytnt5cB0Nszdl6ZpCmiHXHQiwf7+fqzXm6NCkIXD4bCAkBjpEVHq4n1+O8jtYxuYJ/phoNO7PCkGqm2sw8sZ7PP78IWPssh3bGbZxzsAit4V7MBvRBQn7cWLF7FcLmM8HreOu/OYPV8keUCvDFrmTCobP/7MPGuamNeyojb/8JN3+dIvy2L4gLmFRvwP39WUv3Uqfcpr0PTyWvP/n1Y89qa5BWoXi0VJ4DCNXbf7Qju+v4+6Lc+9nvOODD+Tk6Ss9yI2d4vBawDkvtfLfMPxQwDXWc/eZQeZPtuyLZ9nMb9i302n06JHIjb2YsTt/Y3/5J/8k/gbf+NvxF/7a38t/uE//IfxpS99KSI2x49nOWngIOsmSg5oIAPZLcWaJ3BlGebECZwo7y6MeN0J7Ha7Zdc+csFBIpIwB4NBuR8w28JHR0fR7/dLoOPi4iK+853vtO6m57haB3pof7FYlHFwhCa+io/xRI5wV9PNze091QRXuQsRW5hxRWyOrKeP1G1nn0AwtLTeRp84Aco7EB1Qxm41IED7yEj8iul0Wj5n3mezWevUF/PlYrEoCYa295zwhx/hHQMkkqFXsKNMa/ptm7xpmpbtEBHFSed57yLt9/vlvlLmIoMHBHNZI77DlALvklDJkcL2QW0rYWugI8fjcQwGg9cSxgjcMf8kaEZEqR8fjrthuQPVYIeDxgcHBy2+gkbslMZ/ov2Dg4PSf3Yyk0yH/GD9sq5Yc9i6BCYdBOQ3iQfr9Sa5gUAo/YqIePr0aUyn05hMJuX7Bw8exL1790pCwWq1isvLy0Kbvb29ePjwYezt7RX8gZ2y8Dzjp0/wnpO6oYfXNgUZkE+vgEcIivtuYPtt3pnM+zXb1XJsW7ZlW7bl04qxz4hN4r8DZNb9xspICDIuiE9NEA55jc1zl3+cMa/sh2f/Cz8O/dXp3B6rPxwOW0Ey6vL71rFXV1fx4sWL12Qm3+cgYT55K2Kz0cP1c1IBusH6wfgBct6JabZZz8/P4/z8vBwzb+zNfqYDjMbLHOxjLjwP2FToIWwHbFnjXbW77t13+8TmCd4HH8p4NTRzQmTmDdo0nuTfvFsLrGe8JuP9tkfdrt+jmB/Nx97ckfmjFtDCtjPGnPvpZ4y78ZznO/fLfYYuprUxGeYrX0XC9zVM1HaH2zQ/OgCYn7uLvrl9ivEs5nu5XMbBwUHxHYzrZjzLO5yhV55rByRz34xf1ng24872YZinjBXWcCfzA7zDmsm+E9/7b/tPlIxZ5zG4DfsstbVSw+lXq1U5Jenhw4dxeHhYfAz7/l7bpoftWORRt9uNt99+O/b39+OTTz6J2WzWSgwxDd+0vHEQ9K5AAJPJAPy5F3un04mTk5P403/6T8d6vY5//s//eQFdUKTT6bQlLHEY3nvvvfiN3/iNeP78eSt4AaGcWQKDQbis8Cx43HeDt9mpsCORFy7Oofvj4IPpZqDZC5PxGngwM+bF6HGgkOzw8J4DaxayXtAOcFgA8ZmP1KJN+skzXtDMRy5Ns9l1kIU2ypughHdlRkS524hF6Qu/yYTnf+jmY8kMdKMsc8DI8xexUV78zRzeFWg2r+e1kAUvfOCjxhyohD4EIgEfPH/0FbqaT1gjBi0yH5kPKPSBrHkbnLRdCwTbaHN9DgbncRpksWFGOw4Ked3ZqPE77quN5jwvLja8bSRanrB+cmA795/xWm7k9Q6dCMC5D77ni/ezkcXOBO8wga7QwEYYfSO4A1ia5ScGMGAMdGCeDFg584d585F7WU+YrvTJCRLut3ka3mLOnd0DEOX11Ov1YjqdRkTEeDwuMsmBaOqDv80vWZ7ZaaM/BvutnPOYs/GGk/EmBRpbf+YgXjYqHRxmnDXQy2ufcWenyM9Sl2lHHbU5stxhzczn81ZwsWbEWqfwv+938BxmY9gAPPVFRHGwmaO8A8PrhCxCdjnTT/MkPIIM5BjM7PRYLmZe3oKQ2/K7odjm7Xa78Tu/8zvxZ//sn43z8/OWPHDA6Zd/+Zfjf//v/x3f+MY34sMPP4y33norRqNRKzhpGWJZwVqgZDmEDPWuO9sZ1tFOzMIWyHKnaTbHV1u3E5zLwIydOnaD+x5JZM/BwUG5N3Bvby8uLi7ik08+icViUeypvMuU4kALuoVgIHfFE1xEz63Xt/d3ctJJp3MbRDs/P28FP62n7NsQdKE+B46xb3wEG7Z+tj93dnZKsiFJIMxpBlwM6Dkx1DsX1+v2fWKMH17iNBdsFsZGgIl6nbSJnTYcDiNiE2An6Gf9bgeeY/Dz1RzZhmJcERGDwaDMKWMg8OU1hq3AbmJ0kXW8eRY9BVDgQh8NOO/t7cVgMIhut1v4K2Jzggc+NAACesvBauYUeuY1i+3C2qjtJOl2u3F4eFh0LmvAO4I6nU5J4uM7H/vn9YqNa/3JO6xL+uS5gu8MmhpgWS6XMZ/PYzablR2gDx8+jKOjo9jd3Y3JZBLdbjdms1mhy8HBQTx48KDYrU42gEb2CcEzDG4bZ2COoTFyj/e9Rm1L9Pv9VuKufW3La9aj7ZKaLbgt27It23JXwe93wrUDCeheyzKCZDVQvAZQGy9CplNsz2UMFxlrXBWbCnlq3frs2bNyFH8+ZjIHGxjr8+fPC86ATvQ79vkyluzkZdd/dXUV8/m80LYWgLENTb08x67W2WzWsqHdd+siJ3VjD1jfGgdC39AW9WOPGFOzbUubnH7nuTb+bR8a3976yXg/7+aAjDF0+pjxb3jSuCLz5u9sV/Cu55h2c8m4nOfY/c2YzXfzkwO3ng8XY422xSI21wXAi76uItsCxu+MCRtPzvR3+xn78FrPtDO97YOZjjUcLY/Xz7t/yJ/FYhE3NzfFl4MfkDF53ROYA6POGKbHz5qIaB8R7n5m2WJ5wRwwBq+RjMc5xlDDvvw9bduezDGWHIvIWKXXgX32zN/mtdpcub7VahVPnz6NxWIRb731VnQ6nSID7M+ZX01T4jsEtbvdbhwdHUXTNPH06dOYTCZl7t3vvF7uKm8cBPVk0cCnGdi5I9fX1/GDP/iD8d5778XV1VV88YtfjA8//LA41YvFomSUWMns7+/H/fv34969e/HRRx+1BGdE+24/GMeArBUUoIDve8nji2jvhLTQo40sCO28eMxeRP7MTOndf9DNAq8mUCwsLLAQAHZmqRMFRF2M14Ea2sDRBbzA8YZ+PtqVdsh8ZU5whFHOXkS18cBPZC87293HkfmuGOpkXgzK8OMAKAU65Z2O7o/nGvpg5DmDAbCHjOXBYNBy6KHBer0uYI8NNhzezEPQyAuf9cDxE+ywwoBAsNjQAdhnjA6sQkcDgNRvow5QEoOqtt6zQmYcNsTM9xbo2Uh2ppBBBgt0r0HTLAty15+VlfnQYJSfc58Zp43zbAi4WNE4o859tFEB/zJOjxteMsDL9wCZmYb0jzGwjm14+je0NoiW5RVryUa4jVSvQxvB0C5nnpmmXm826nPAvpYIwCkBgK3sCAX0Q9ZazkZs7pPMToVloQ0N7/pHhpi3zUuZXpScfFOThVleUsyjd/Ec69oGbP6ev+9q59NKdizyuoGGAIeLxaIEDjwfFOtUy0vLUJ7JCTaWv07W4VgUwGQHlr0uOp3NyQLIJUBMdoT4BAlo6+CA+SM7y7RNX79bWm/Ltvz/u8CDrNOrq6v48MMPW84ka4j/d3d34/nz50V/fOtb34of/dEfbdlJrB3LH4plJvXbDs/JZU7GcSIKfSF4yHq2TLTsY83lnQl856AEdxx6txu21cHBQfFVaJsEPNsynOJA0NABGYIiV1dX5e5hH3GGDcl7AF4EopqmKTYx8oqgjIMhJH80TVNOR8GmRx462Q75SRC21+sVOxb7fzablfsJrUet3yPavgNzQyCI/iCroQvzkjObmRuusTC4yXME+E5OTsrdXdAPfwX+zMktOdExA2Lwv31dg4tOPoMW7hd+kG1j2oQePDccDouuXK/X5f7KTqdT7t0kyYv+GIDpdG6DjJeXly392+3eBrrdtn1DAntewzc3N4WHaM9B0Zpv2jRNCcii45lTePzm5iZms1nM5/OyviNud9QyN+v1beDfgAhzmEFZigGjy8vL0ncDrfa7OEprsVjED/3QD8X3f//3l3tRaZtALGv/+Pg4VqvN9QtgFeYLB319fYXlnu3+mk9i3xC55qA3R/siL8yPtsPfFADalm3Zlm2pFcso+z/Wv3znxGRjF/yNjnDgL2KTeIN9gx62HWe5aYwAmWcMJaKd8IQO/uijj+LLX/5ya3cj/eN309we4cg969QLHsY47DfTPnLYWBrtR7STuxmzd9RGtBP4+SHxaDqdxsXFRbHlIjbXC4C12u5GbxqDchAGfWW9ZPuYeWAHsDG7jOFFbIKLHJ9PXbaR8JuzzWhcL28+uEuXGYPKPBLRxnNreId9cWhj7MdjM69krMYYCIU+5Xrcbs1H8loxhpoxUffROJkxT+NaNzc3r50Uwjt5reZ+Zxz1rj5Ql3GPLC8iXt8clLFb09V9NO0zzagXnrZtO51Oi9/jJEDeYw2AfSOHHPj0eGvYW6Yb/aMd99d2tuVZ5s3MQ9A4+9Gu2zim+2j5m/uY101EG181b7mtrBdcPE+m3+npaVxfX8fjx4/LesNnRl6aR7N/MZvNykk5XEdDv2azWZEx1k1vUt44CJrBR4O4/s6MzQKMuHV0fs/v+T3lro3Hjx/HBx98EBEboJnjcphEGHo4HMajR49aSq8W7LJTGxEtRrfj50n2DiMTzkyTF67rdls1IZHroh/OqMpBNd6zEvCCzII1M7EFURaWfGca5DF3Opv7dhAczv51G86csDNqWjorhzEDCAG+cEY+2bpkTMFDBuhow8KMICWgSja2coARpc33dlb9uYt363Y6nSJQ6WdW7tTrYJF3Fka0dy4BIPjILd718WXL5bI4xBRnxgHgEQTIBpv5C0MJZx/APyt13+lnY88GqxUqY8dBJxjrObDDbkFbq99tZwVk+vvzXO4CHnjedMrfwRN5zXhN2pitrTe3jXxjPNfX1+W4Ld4lOIMhCTgDr9iwdD+9Th3sYY6gszP2V6tVOXKr3++3MgWz0mQs0NzrmfE46JsDsQYy+d4y3fyZDd1soFFnPqqlaW5BOeRNvp+qZqCYlhTat9zLBjjF/TRgZ340D2RZn9vKOveuYmMq67CsB2pGp8da03f0yfzgOTZf1AwzQHQSNbJTY8MnBzHcF3iEPlpOIPe9s4m15OQB1hKBDvQMvNvr9cqRgN5xbZkNz+/v71eDoFk+QUfz9rZsy+dZbDtTdnZ24t133y0nR7AGnfgxHo/jx3/8x1v6BcDEwRfsK34olg+WWwY9rFvY+cX/HCOGb2CbcL3eBFZpg2ARxT4J3xFkYecXfUEvWX9QrKvZfYgNa3u25jvYlvDz2AQOtLDbHNogkxgTuyWZK+jloChjRjfSB+5exJ4A6KMP/AZMsPyH9g7oEETFp8EG5XloEhHlGdt72CEOsu7t7ZUjZ5mz1WpVgsgEr+AB6sdeJdjmE0mgB/PuXS3QJvcNfrV+9DG5+EHUDx3xS6Cb++Aj+ff29mI0GsVwOCw7PmiD/nqOsMlZdwCrBhq9JlljfsaAqu1+PvdYyaiHL2wDeJcpQBL1IjuQKTs7t0f+2o5iDlgL0A29mm1mflO3bX/mwj61fUfs1IjbI3L5/4tf/GLcv3+/JGtxDyhJDuz+Xa1W8eGHH7Z4JYPzzJNBNT63zZ6TTLDJvbYoBD8J8jJ+yzLm2Xal5c62bMu2bMublJrO80kJ6Gn0km0C3uM7ZLv9N54nmSSiLac+DVw3xmi/zN/RV/p9eXkZ3/zmN+Px48et+56xGZbLZVxcXMR0Om21i0607kYHOanWOFDGYx0kwjZ2crUDfxHRwiomk0nM5/PyDnZGPj6Xep1Aw3feYYlNYIwh48NO2sXO8HHu1v/UYbvCSfrW0w7M0Sf3B/7INkvGFhijfXNjkDVeMQ/ZXzBexPP8tu1ue6VWp/mBgk63j2J7wZi5+0P70CMn50W0E/hcoDf11ujC375qDdvMG4YcPIOPMw5nGzEHak0f1+Hxe45qMQ6vrVogONtWGV/GpqJAG88TfQEDJ3mNunJADvsz+598n8eeZZRxYo/dctE8YP7yznvmK+N8mW9p38+aJzLf2p7me2hku9pjoCAnvJ6pb72+TXD84IMP4u23346jo6Ni7+I/+LQm+xG0yQktOzs7MRwOC+2fPHlSZHfGFz+rvHEQFOKYACZoZhR+Q7wvfvGL8e677xbHmO2sBqTt8NMO3z18+LClWKnfO23ojwVEBiWbZpNlboJlpc+zVgiUvAgtjD1u6jOTZKDauydd910lf+8gg/tsGtSUchZgPIfgRPg6q8o0zo6yGT3vrrSiYtFwNARgEs6oHUPPnZUB884iISPfws6gR17s7p/njN/Uk4PTFswYKmSqR2zuhrFwA1DB0UWB24DCKLAxwvs44VlwMW4DeRZM/X6/OPSeW3Yq2BkHbMyKFeFEn2zEZD62cstZSdDJ65N6mEfGkAU8x2JlkDSvLxsmNTnl+fcYzNeWZwYV8jqy4L9rvdInwD4HY0w71guB4ryOa/Vb3qAYPF82giKixas27vKOxk7nFowD1KUfjBu65XHYaMWoMs9YxpD4QH9NK/NQNm581E5ElExN2qN9gCLLGkA66s1Bdp5hXXonS80AzckXHoOdiFqgwXTNfGqD6i7gKht+tGd+iNjIv1o/La/5LOtPt0NbNoINyGb94vXJ3/P5vNw1fFd/stFNH5knjxcessz0ezUaemcTz9EXThxAXg8GgwJG87x38QDszmaz1o6MmrOR521btuXzLqxfyyyAe3ZuOchl54tkKeuvmh1FgIT2svNJsRzOCY7slrTOcuJdxEbWWQ+57wRps6NtW5CkMu5wpP/7+/vlKEpkF8EaAjq93u2xq1zbgI6j//TDNIfe2Djn5+ctfwM9VrOlqdv2qwOBOJCWyejAbAshw6Etz9LWer25K5Ugq4PajJGgqufBusegXcRtEBk7mqPUfEpAr3e7O5L+7uzslDtC7ZCv17e7JpfLZTluFUea8dlO8XFYZIg72YaAIklpvd7t7kB20AJAAg5SZ7/fL6Auu4TRDbu7u9Hv91vBbo5d5j1+ADyZ5+vr63LMrXmP+ugDPMVuTHxl04oxWH8TLMYHsT+AbQk/j0ajVtIwdie8je3pXdwRm2ODqTvb+fBrRJTdrpYVBnDwF8yftjG9LpAp6/Xm+EHqZdft+fl5/M7v/E7M5/P44R/+4XjvvfcKj798+bLMwWAwiH6/Hw8ePGjt1AYws/zLQDT0J+id16/HScnJ2fCqjyS2DZX9EvjftNiWbdmWbXnT4gQZZJRxNewBPreNYllk+egknhz0sc+WsQH7stTjzyz/Mh7rq4A+/PDDYushQ8HRalgt4/TfOViTk+yMXzImYxvQ1bhTt9styecRt3d2n56eFowzJ5XTFxfjWmCs1IeuNY1sN7gvBFyx5bAHbL8y58Z2wXAzfmNcAdsy45XYGE5AY/5py4HUjM95vo3FeD6N2TFu6qjxGP3J/GBb0brVGzlse+e6M+7E38aajIuY320z2PdyImrGlrwpyP6EE/cYHzgk48Ju9/iN/WVc0Hhsjrt8Gs7K817HPJfnkeczj/E+n3vHda/Xi9ls1kp0pV+saewsaGKfxTxOvMJjc7vZz/X/xgdph/kzbmVewXaGF500armZZU7GZr3bkr7wDnV6o4DnivnKdLb88hxlzNPvrNfr+PDDD+Odd96JBw8eFDnC5gMSbx0shgbr9brgdMhMZMt3vvOd4j+Yvp9VvqsgKIOkczgmFC88M8loNIof+7Efi3feeacVDLAg63Q6rQWXBfrDhw/j+Pg4njx5UpygrKQyGGsmy86AwR0IaoFtoWQnrSZUPZYaGGzmoT4Aff9k4WllS32ZMTPzwRBZMft7LzAX6NA0TTm60IIKgIK+wdi13VMWxtAdgACDhJ2b0AYg2nOKEGNhuC8OmpoHsoDMC7Jm6PhvO6DZMaVO79bM/H5XvaaxDSHPr4OFKEh41MKNOYiI1hFsnU6ngBXMDYYFIEfOtvd4DOQb2OB/Z3fkYmUMXfI6d/YygtVZ/laeKCev2axEa8rRtPHnFqpZQVsZI2xNZ88va879Nr8xv9DLbVrO5HsirZBsYAIOYrSw24N2bTQa9PKYIzZZUA7y2zDCAAJgYw5s/BpYsyHm9Ve7h4y/AYzN99YJGMfMvWVANsJY6xh58Ld3YPr4c2d/2rAB4HY/rdgt221gmg7mI+jJPOb14Pm2Q5kBetrMvOw+ZGPERkqt5PXifnntZN3sNs2reRzQI4+VpBcSM7JOy3VERMtQtS7JTjYGk4P99MOOuXkh72bBaaRv7GohCcO2D+uK+sxvdxWPYVu25fMsdlL9Y31qXRXRBq9cj+3a/G5EOxmDIyK9LrOtiPy17K/JLLfhvmJPEJxAF2V9s7e3V4KMBsss9wD5fJwr/RoOhzEcDmN/fz8++eSTuLi4aB3J7jE74ENwDdu1270NfHkXqf0oTvVAB3reaIMdnQ6g0leeIxCHDnZiB3Z5t3t7tyMyEZ4AMCEABViHzwZ/0A7/M9/YQwRwCDJGRHF6CTbRJ2QqOhQ+wl5xshf2BHSjTebQACA+h3eQmmZNc3siEXXCW7aRbFf5uF14sWmaODg4KMlY2TbBzsrJmPADu/6gl0E3dCJgDrY/tgo8vLOzU3YvRtz6COPxuHVXFDTHZrEOZSzsAmGszLlphz2awRjrRK896qYfjAeeGo/HZX2QZMq8waf2m21/etcL/O9dltAK/t7f34+Li4vCVzc3N/GlL30p3nrrrWiaJj7++ONyRPXx8XGMx+P4gR/4geh2u/HRRx+1dg0A5vK3EzBsa0RsADbbA6YZvIIvyq5z5o/+275EblmGURdrYVu2ZVu25bOKbURfbYVexYawLUEx7mr/ir+R+w6a8LxxHds4NZzHPuhdAZQa1ukd/vbrKMYJLDOzT0tBbzkQkt9xQMm+O8+QpLNarWIymcRkMmnhCIyR39Apy35sZ+se63cnz9j29Vw5YIGdAF3ADknuJ4ENGwsdBT4GfcEbnUiccXPf3WhdSbsOEuJDGMfM852x+OyfZL/A8YyMy2aMPWM0GZu3jUKx3ZH5ibVlmynHAqg745ces3GSjFVRp+nn/mNLYDMxb8bCsP9YGxmbgV72CzP26fHksbrfOancsRT7SBn7gmd8/ZdjTqvVqiTk+6o56uz1eiUZFjlh2rufmf7G8Wp4j21jY6jd7m1SpX0W8x6/HaPJ/Gl+so9iH8K87zn0d/iIxmUznd0ONK0FQt1HfqMvPvnkk1iv13H//v3iB+LTIEt8XQfyCpubK1sODg7KWD/++OO4uLh44wBoxHcRBM0TnpmCslqtWlnio9EofuZnfiZ++qd/urXIs0FuBxqBTYZx0zRxeHgYDx48iK9//esR0b4XBQI44GABlBd8xOs7MCM256B79xzvOBjo8TPxFhJZmNUWs5ncTmzuU1b2PG+AOANUKIescM34BgbcFgqOe2TyooV2DtZ4p1XEJpMcxU+GPCARStVKlwwLhAAXGzNGFkCn02ndrUk92RlEAUOfWnDOgSZKDVzjb9qxAIO20NfCxvOXnX4rxCwoHfSzoZQDAPzkoI0Fgw0fC7SawKMd18f3LvTLdxHYSAH8oj73PwtS+pMDoTaALKQtWGnTx054fi0D8jo1z3ueeQfAkvYMzHm+4U+vXRtVrtttZ4M6g75e84BTdihQzjYas4Hhuww9B/TZzzho62xPzyGyFmDYIKWfhXfME+b7HFTPwLqD5GT9WKfk+vIYTdvr6+tyt5bv0qVt6qjpN+q27PFadl/MsxiKjN9rycVteR7zMxnQ9RznZ7MRlsfG+zno6h/L+rxu7zIuqMv983xAi5ubm7JjCHrZWUPPOlnCz5gWdrJo24krJIXc3NyUXTARGwMZmju7FH71ZzbIWQNOkKrNVc34q83ZtmzL97rYoclAg5Okarou24u2VSyXsQO8+7BpmpLQY5vddfBcRFRtyojNEal87gx3yykSGpAB+BXYfqxndIN1yWq1at0nTH86nU45hse2D4ES+0Q7Ozut43mxay8uLlr3elpu0zfGCY0iXrcn0DvoUyfDIUcNYFEHQJVlGLTDrkC/5yN9DQLwfy0L3TYQYzHIwhxzggt8wljsF0yn02ID+HPb45b79IWESmwa9AvP4Fzjo0Az6wHsS4+91+u1doayPtApvd7tnbE+3eXq6ioGg0FJ9IQfm6aJfr/fOjHEth405Nh1+zWAPE5ey8fN0zZjJKiIf8duTtuD3KUeEeV6EmwU1nhOVoAulhXmYfqOXY1v6EQx37fLscpes8yfd5swx9gLnU6nHDG8v79fkgsAVLLc8f2x0+k03n///VitVvEDP/AD8fjx49jZ2YmPPvooptNp2RE8HA7j3XfffW3Hd7YB7TtQmHeAxLxOHeS23cb/JEWwZnxEsUvGIbJduS3bsi3bcldBl8xmsyIfcwKV/TrbixHtBOCMe2Vf+9P+pmS/yTgWGJfrNg5Duw4k2Z833mKZaX/X9l7Nb3cfqYuEpKxnaMMJQLu7uzGbzeL09LSFBdkWqdHDNkkOXNjmq+EHFNsUTqBDp2IXUCf2hncIUw/6DBrYHzCu4HHQhucvB0RzsR73fBg/M/6bsUD32+9lHyDzm39TMgbhOvJzxglrn0MzY/cOltV4IGOGfpd5cWGdul7bC9knpA2wQpL0jG+ZX2u4lH/DWzWf0v0x/UyXXB9zZTqaBsZvIm7Xw3Q6jeFwWHYS2kZk/vBV8ZngX/tAtf66j4yP9Z4x8Fq8wbIs+9deD5a1Hiuf8Yxt0hx3o133h2ft11AXYzUOb9yQ33kNWY56nr/zne/EarWKt956q/ivBKh7vV45GYd5MA/Bi8zV8fFxdLvdeP78+WuJOZ9WvqudoB7MXUY1k7C7uxuLxSJ++Id/OP6//+//i7fffru8h1DKSoPAjQEantvZ2YlHjx6VDFu35QlzH72AWXjO9sZ58XFOBjjNzFk5WolZofI99dD3HGQxaJMVR27LArpGbwPIjNvZ6Ba8jtg7E4jvcaYNQhtooD1owOdepDDsYrEoWby+0xKnD9rzOYYCf3ueoBNZXDW+xPm1oLIBlmkWsQHabCBlMNxBELfnOYTmFgAUnsmCw/1B+OEk57utbFBYwJvXDw4Oyu4EKxgbb1ZwCBwbTYwfg8Z8m3kl8yp9NH94jXpNZ2FomluhAFQB5tCO+Y1+0xf/zkZvxOb+o6zsHfQCoOAdKw8rPc9lNqw9vqwcTW8Hb3jO/AxdbLQAECFfcqafnZZsQCP36LMDSl4b/M/uHUAsGwW8a4DTPO01AH1ZxwaB3JbpZQDM91F4fgisOWuNH8BOO0wkblCHg5jmZfqcd9Vn+VdzWrKxFLFJHnHJhrv1WDYmzXsGbM1Td9Xv9W9ZZ0PMcsUGcF4/ma89xx6vjSoMzMvLy3LKAM/As/AgwDTz5Lq8Zt13g6p8hizlfTt6NhwZuwPurCcD6DwPiMm9fVkefBr9azp8W7ble11YLwAZBB0iNkll2Bs8FxEtuXp1dVXey+sUOW97yDLO9eCE+t5xZLJPPaB+37NHIIgxuW7kCDKFQBPtRWwCDAZ2lstljMfjclQqO8TxH6wvnExhPeX/V6tV2e3JMalcA8FYnaiHzMp2ru3QpmnK0bAEgnu9XjkOyPrIMhWbezQaFTCjaTbBadsF7Mbz8UO2w3xsFm0it5Gvi8WiBPVy0iW+WKfTaSW8Iis5/hbaOHmKMXEHNDwBv+Vj2SyjoTvJMXwGvxM8h7bMs5Njl8tlufPR9rVtBusVdAg6yUFNeDdiE8im7gwCrtfr1+6PzesW35v7ru1rDwaDwl/X19dxcXFR/o6IckTvcDgsNpJ9Zx9nx9gN/mCDsHatR6GNg5MRm2QBB+zxBaEN/WYNezc1xxkyfyQBdDq3iRjz+bwlU6Dnzs5OOdpsb2+v3CkE//7QD/1QPHz4MFarVXzwwQexXC7jxYsXcXJyEvv7+/Ho0aN4+fJlKwDKemJsyA362+v1Wusa3sk+i+Umtgz2MDRgPWWQjmIgzet0W7ZlW7bl08rHH38cTXO7+cS2GsV4BbYTus56gVLDINCR9okypsuz2AZ8B64H1kU9Ge9BPlovOaBCsT9tWWzdGdH2bWs4D/1wUr9xrW53k4BmG/n58+dlkwgy3EEf09NtYzPmsdgGM2Zg7Nn4jXHkjGn2er1yigQ2Xw46YycyP5z2gW1qGqFj1+t1y4Z0+w5GmWaMGdpm/MM/OSnLfGIcKeMY5rMa/xrHgyeMm5hnav27q8+eY/MN7XvuXLLdZRwnF7fL/6aL54l+eO1jh0NbY2NO/Ddmaf8vY1vGmLxGTLs8durM/Tct3JbXvWmDr0TSH/Y0BVsXW536Pd/Z9nV/8zx4pzHvZp/nLjzQssA0sF9sTIyCnGROMs9AH3Ax/+9NQMyH7WzTw++ZZ/ncfXLfmqaJZ8+exXq9LoFQ3tnd3Y3BYNDyoWhzvb49xrxpmoL9EhDtdDrx7NmzYvd/VvmudoLeBfRREH4Qd29vL370R380Hj58WO724XgdCx+IikMbsVGSTGy324233347RqNROaLOC80AaQ7O0H+I6F0hdnpWq1UBMHzXCs5qzdEw00MbB95qiyEvBMbHO9DFu1xzm7nYyaSfNga8OAyi0w7H/5GVzHwb1HdGEfUAXFFXt7u5F4cfb8cmKIETzBERAAMeD+PGCHBdHu9dAj/Pv+vOgVErfwcJXLyzwVnFEZsM3+zA2uk26GfBzHf+TZ3dbrcscur3PDMPgBcAFxbaNTrwOQEiDFnezQYCwsY8gUHi3bGMAZDE9wPdZUhkZec5cWDf/Xadns9MV773MV/m/4goACC08ZEdtbZz5mFWXPQjG1t8Bw/Z8KZe70ghKIRhDEBGP5BZGB82SrxLLtOc53zkWO67+cbBQWhhAxSgB5oDBrGeHZgCdGQngg0alB1/W8EyHzb+/XktscYGn48LRGHWeCHPEzrNxgbjr8kKPjPQBh/Q17uysXIdNRnE+3dlOjG/NaPDdLXRbIPK83FXPdlJyOvA73jOmAcnedhBtDyFN+3wsGYyDe00uv8GDinMKXIPwNw7w5qmKcEO7pujP9Ddus00MV3QlQ4836WrtmVbvpcF3jSAxecG4/mMYllhubtcLlu6yw4lDib2LMCVZRzv8JsAGWsxP8+aZj0bqGNN2tZi95tt2zw2ggoEGbBrBoNBHB4elv6jj5HD/X4/Dg8PS3IEspUkCX5ms1nM5/MSFCV4wk4AaM6YSBqhn7bZLdfwW9CrEVGCQ4BcyDuCd26Tkx0iNrKLgC3vQ4/sj/T7/TJmH3Hrvo9Go4honwKBvWzbDx+DoBS7FtmNuLNze8Sr5Tw8zM9isSgynQChdSV8km1N/FInUkF3AxEGgEg8dP229x2YZU7QWz5+P/sHOzs7xdabzWYFgLy+vi6BOtYgQA5tmXc5BYN1yfcHBwexXt8GxSeTSVkP19fXcXZ2Vu5MozDv9+7dK9nzmZ7UydokeA1NbY/zHnrcwUv0MPzDeoTnqDciCkCCn4GvgT6fz+cFPI2IsnbxT2zTsT6hE3fHff/3f388fPgwmqaJTz75JK6vr+P09DQePHgQJycn8d5778X7779f1jXz5J3NyFr7jcy17Wr4AR5AHjnR0H4CY2F+a7tBKXfZg9uyLduyLbncu3ev5RNHtP0r20nd7m1i1Gw2a+0aQhcYHEeXGGPIujgHBZCL2RfG/kL30FfbdsZXXRxQsU6i5IBQ9sWNMdkW9r3aebMOxclf0+m0XKUQsbnahfFhc1AHOI/Hio7IWKjHjb53siI6iJMXXCd4HxuDCICik+zvo28JmjjJmTEYNyFwy/fuizEI5hx6GOMz/mI/xPNDvRm7oc4cgLvr78wfGct0oV3aynNiXwW7wHhxRLymx82Xxmvcnvubg6G8Y4ze+InHYkyStvN4HSwzffIGM+MfvJMxLv/vcWQfLX9P+7RDMd0j2idquC7a4MTJ0WhU/BNjOmBAPpkS3jFu62TAjJ/abzLP5eQI4+H039ctQU8/V4st3EUTrwfT0n4y/TVmZWyQPkBb6vWa8WfG77wW7cOsVqt49uxZrFarePDgQUlybJom9vf34/DwMKbTaUkS8Tzi9wyHw+I3jcfj6Ha78eTJk3iT8sZBUAeePq3ggHH8z6NHj8rCcuan78pBYB4dHZXJhPg4RavVKo6OjmI4HL42OAfZPKksMkAFHKP1el0COnYemHjvEnJQJSsVihnZjHIX4G1auRiAQrBnQNpgCN/nLCkHYD1nvGtmZJFz/IWdaM89NMaBtHOJA+kjUJtmc9wsc09ghEXmez4xHHLAyfTk2B8vPp5z/1iAzH1tHvjeRpkzeeGHGr9DGwdFTX8rcvgcWkObLKgs0ByUYa7oV1awABaj0ahqpFmh1JSlFZnpZiW1Xm+Oe/J9ftCX56zUDUyZv7Oh6T5kQ9VzayADZQXPwLOmjQ0L+pF3/XpnQk15MC7XwxhsJFuxWhFm48LzYOMwKyXatmHsDCsHIh0QA/izkW0ZwNitnGwQZuPMgWE+9/qwg2LZYsOIcXonBO+6Dv7m+WwkuC63A+39bKaljbbpdNoCwgH7PE47GlnBQzfv7sgGRzY44cVsELuP+fP8/6eVzHuZttmYrxn3Ns74XXMg7gLTTPfa2DqdTeBxOBy2wM28k8E6z86R9bD7kg32pmnKDg928FjHOCmCNWTg2kYt8sv60I5fdrRqc2Oab8u2/G4oPkUgos2n2Ey2oQkweDdeRPuOkeyUORiAzCVghrzgWEfq9b1JtoNZPyQsGYTz2sOe5znrJts07rPtUWQE9s7h4WFJ3iSo4yDLanV7jOfJyUn0+/04PT0twNZsNovpdFps49VqVY7xhdbQ2Mli6DbbrARwnMSBrIJOBEP29/dbR6pa1jJu7mjG9yIwvVgsWjtACRzTL9tATn6yEw5fNM3tblWS80iAYq4JDsN/tsWwY6AX4BoOL8HHvDvTPJv5keeQ7zc3NzEcDqPX65XdlTwDr+7s7JQEXp82wTgIUOUdD9CCHc7Ub/8G3gbosE1iW5j7IG9ubgrQDM9SL/NmoLDXuz1Oyvfs3NzcxNnZWemjT6dg3TmBARoCclIX38Gb/HDnN/Ntupv/WPPstjZ9mDvGwLs5EdSyij5Bl9ls1rLNbNN6R7XtFvPzdDqNV69exYMHD+Lo6CgePHgQnU4nXr58GdPpNM7Pz+PBgwfx3nvvxXw+j29961slYQrMwrYYSX+2J+2r0nfPhxMT7L9wv6/9APtPtu+yfNyWbdmWbfmswskIyCdjNMhkdPDZ2Vnr5La7AP2si7MtVvu85s9bX5FMBZZnfAb5l3Ew3qVOYz/GedxnSsY3/J43zngnpvFY45yvXr2K6XRadJJpYQyENvNmA2M7+KDWJSS6+5Qv/zCXEdG6Zw//GJuGUxlIBqbdfFodNj72s336jEPVcA/GaV/dvJSDpLZXnKyXfW0/S3uM0T6BscwaVmJMKhfXzf95rNbRbjcnFjIvzL3XkNvwuxmnggeoLyc5GueiL7YfbH96DXrduH8ZU2INMR/g/NnepC7aJ5GMtZPlA3Vm3I3i72rxKt4x5jSfz4vtis3qjSX4TvYRXGrjp7/wJeM0Bm36un9enzlQD92Nq3t+TEf7VLYVvYb823E01p5P1LGsxB/x3JjXac/X2GTaOc4XEfHixYtYrVbx9ttvt+Jzu7u7MRwOSx34Zq6j0+mUQDa+wMOHD1+bq1p54yBoBvXvKibi8fFx3L9/vwhwH3fHvTpM5v7+fjnT1wODma+vr2MwGJSsYgju4JeFHQXnh3oQ9gRSLBQjNtngAAFkwNxVauCmhbSVVFbqtIsgz/0ww1nxvUkx/VxgOBY4R6j6qDDPtQ0fB38ibgUJx3tdXFwUBYED7GxvH33r+5Ds9Fo4GLhysJTvsuBmUdJn/vYRYzYGciaMFVY22jwvFlIIgbyYrXz8jvvmPvi7msHm5AH6xfc4xHxuI6AmXN0OfJCD8XeNHxoCtjnQmI1Y5s+7PjJYmZU29PDawQAzmIoy8W5M2rSwZpzO3oeeBoC9tlAy5i8nBbAG8js1mkF3+mb+Zaw+og4jj/ZZo/R3vV637tXtdDotxYzhaRANoMkBaQPLjMc7SDEqbTCZXxzky8rZvMpRy9CLtY/CxRB1oNTryo4M9HAQ3GvJiQnwI+vZc2mHCRAV/rLM9fvwWzaI7Vhko82gu/UTY6NkY8hGVAbN/L8BQevcvM6oN+vFLGP4viYL8ru5bt7n/5z44HZWq1UBZnGyoElNx7huOwsG+C2D/bzp67kwbTN/srMmJyFRF6B9tocshzL9ajbCtmzL51ksWyM26wNZaN0QEQWEz7aUHdeIdqarEw1og/WGk++McTvhBm+8Bu1E2wZx/z2eiM1ufOyAbGvazkYPcDIK95PYScSe5Q77m5ubcoR2v9+PyWQSNzc3JQBK4MpHzRqEcmDGbfk4IssV93+9Xrd2DZIRiy3IMaIAYtDTgIQDLIPBIBaLRaEDtvzOzk70+/0W7UkgYg7Rbxz92e/3i39BcMzycHd3N8bjcQnqOdGPuqENQdHVanNtxtHRUaE/Y+t0OtHv98suUOsu35GO/YOMhzehtXdHj8fj1hUhthWgXd6tgT2EfWZb2cFSkgrzcdKmtUGGXu/2yGOSfJjH5XLZWi8GK51o0Ov1SlCeebVvRUH/8S585+PCmBfoB2AKP7KODg4OSnY2NmC3243Dw8OShOudjdi7BMCdAEk/sRtzQgT+BrubSWbwesEGwXdiHXjnbq/Xi2fPnsXbb79dgrqHh4exXt8GnNmRe+/evXjnnXfi2bNnMZvNyjyaptAMHnGmfQaTvNMmJ2JlHMG7WRlDtgttG+ZE4G3Zlm3Zls8q1qPo5W63G+fn5zGdTlu+ecbvjA+hRyLaSbb20/29A4DUaT/Vdg1t276wP3gXRmz7Mm8+MOaTdXjuq3dJWu9HbLBq9C+BY45xd/AAXWWcwMnfBABse2PD0VbNP+Y748zYFdhFDgzis6NLfNoFeta2voO2nmvT2/ZOjf7Gy51Ylk/asB+Rr7YylmV6Zl6o4du87+BZ5r8avmJeyH/zQz8zZgON3Y7/Nt9mzNHPZFyK97BH8DPMW8yN7SPaxgZiHPCgsZxaYin8mvFQgubmL2x+YzCOfzig6THV8Ef+pu5MT/rF965jZ2enHK3KLmbjRNiXg8HgtZ2I5jPzm3mVvy3P7Lu6Do/BO0jpD7zu8ZtP8jiNi2X7D15wYNY+kPnZc+z1ynd5TfC528zxAa8rxv3q1au4ubmJx48ft3zNvb29cjT7bDZ7DRPG5+SalyyjP61813eCevLd+Yj2nRvdbjceP34c4/G4CAEDlicnJ9HtduP09LRcaopjY0FOGywiHJGItoAzyFojOr8NMGSntFZ4vpZVYOHp+i0YnJ1immVhbuXL+3m7sQWXsyU8fjNozSigX2T6DAaDGAwGZf5sCJixeQcFf3l5GZPJpGwTJyv96uoqptNp61hdvkfQeI4QfHzG/DOGDGrZOczC3ova/JqBh7xgvTuBubIiRzl7HqG9g1feWejxueTFayHlIID5gT5QnwWrjQB+G1TxmKG1wUY7/eYx04HxAyZGREt5GdTzsU2MAfC0FlDhHYwBnqdfHg/zQ1s1g9fKyMrQgc2sIPL/BOi9DrPStYFgOrtAR/gyKwvWBYCW6cNceI5sJKKMqdfrxsCPx24AzwE/wCo7LdkAskLyUaUOTFrpeR5sEHNcGGvO/a4ZWl5rjIV142PSvDZoDwDPIJIzH2n/4OAgBoNBa804c4q5gGbeZeM7TFkTXtNu08a3+SXLZmjlQLQdGjuN8Lj5mPddstzMeshy33XzfwZkKX6WsVsm8Ax8BojtILTltQP1POO5X6/XrXvY+I514HEwPzbW6Zd3a1AnQChHKnY6nZjP5yWo4T4yr3YqnbwArdzHNzXKtmVb/m8Wr2343naB1zPrljXk0ul0CgDlE1vQ1dlRj9jIMcAQ6xUnsVl+0CfqchKZ9ZvftaOfdRnPGzjDliPRkoxgBy7oA0d1OjmJz+xMk73Ks7YlkOPWH7YfLTeo35n36FHL8uvr63KkZ7fbbd33znh9PCkgEwkpAJw+gYL+EQQluRE6szMw73iEX6CnwVPm7fDwsPAIYJf1HLR3kJY5HA6Hr+lM2/7wF2OAB/KOSwLZ/F6v1yWpcDAYFDDOIBF8bD+GZDOOcbLNwZz6iPXZbFZoOBwO4/LyspxSwXqxrYZewm6BpyI2foP5G1/N10Awt+i2/f39GAwGxZ/DFh0Oh7FarUpA0SAZQWm+g0+s45hHdhv3er04Pz9vBefJ1uYEok6nUwK/vkOWoHpEO/DJEX72R5gf9DM8PRwOCx9Ql/U3uhuberlcxmw2i9FoVOiCb9vr9WI4HJYdtWASjx8/jg8//LDly2X8AjDn/Py8RVPWhYExaGC5h4yAv+xvwUtO3rJvZ1tka4dsy7Zsy6cV+1LIYhJNrq6u4vT0tJxGgXxDduVAEol19g0j2r6k7cSMPdlGi2gfMYptZLzBPrKxA98/mf1j6nJbNczNmAz/I6/Rv3nXXcQG01osFkWPG/tw8kr248GPjHmZNu6n7Uv64Gehb8St7uVI+Tx+Y+f2AZyEmOlhzM3BKttCTrKMaF85Zb2dA5F57jPGYGzSvOVx1/BHP286ZJwkY3j2bxiraeDYhNcEc0yf8b/M+/QnxxbMb/YTbP/yufEK46Tg/rzrKxqMlZp383gznlF71rEH1ht94j1vMHPCmuuxH+R3KRnvsc+Z38l4DM97V+H19XUMh8Nyao2/w14GH7LvkfG0Gu+aJ5zgZhllfJp64TnLxuwn2l/Pc2H81/3AnnffM79lPqK4X6a36WG+y3yS6WSeOjs7K+0eHR2V7/f29mI8Hken0ymJoHldzmaz4jMR1/qs8l0HQQ3wudSUysOHD0swLGIDPHc6nTg+Po4vfOEL8bWvfS3W63VMJpOWg4LQZYAY+gyMRQbw7EwOg+I1wXhzc1MyZ7PwpH2PF0aCARF8WSHWhGsGgnLgpgYUZUHgdmt1u0/5/zx26tjf34/RaFSEkJ197+CErjigs9kszs7OSvaxGRAHdbVaxcXFxWsKzWNAGVj5M2YEAcARC9VOIsVCJY+V73Lgw3TPizwrXIN0NupqmTUO4jkolIUE/I0Bl/k1CyMLNgAhFAhZK/Q183R2fu8SWPwPHXGm/T11ojizgHMbZJUZcPT8mL9t6GYe8JigPfPhdnOxge3n+Q4wx+2b17JRBE3422uFubdC8PzZuHUxnbyTwGOPaN9jyPPOhLRRb+MRoMo8xVi5rwxe5nJwg5XepUM7Dj56fWRQkL8Bu+BZwFsCwNYnzLNliWlFe96p6s9rQL6dB56x4rTsINGmJtt5xwA/Y3F97neWJ3ZGcnHg33xqIykbVDaiTKeI13ejZ2ezBojV9Eseh9c4/a0ZUHldWvbd3NweJcnahpc9Dt6xTmR3j9epacV8e3cwdxU6wYS5g06eYxw9nHxAbcsPy2/zq/uBbsgORKbxtmzL51Fsg/I/POwdixTWvAOiyL7aaSnIQcu1mmPoQA3yDjnNsz5ZBNvG9nh2uCOiBNVouyaLcHDtgBI0QVbkQCL04e+bm9sjSieTSZEXOGc7OzvlPkdfGWHbw/KNzxkX2fb+cTk4OCh6lDqYF3QDOhV9MBqNip7b398vgadut1synZumifPz83JvKafwQDMnsJDw6AQXJxA1zebIYwOF3W63AGr22Xy/ITKaQK2DPOYf5t4BTmS+E7uQyfAluxaduIVNje1k39LzlYFZAm4cyUtd8AiBOPoBPX2XJ7YS4yQAPZvN4vT0tLWjkD7YHkX3eY1Ql30SbD3mw/d/2h6y3eFduLaBut1uGTPfM4cRG3CLo6Phb4KB7BIeDAbFHoB3u91u2U18c3NTjl+cz+eF/+BP20HUk+XHer0uCVjQ3YA1vA1Nj4+PW3Wzo7vb7cZoNCq+cNM08eDBg3j+/HlrZyx8jH3jpAOfKGEfIfv+yC/bEw4i8w7H7do3xTaxjVPzlbZlW7ZlW1yQ5/bbu91uTCaTOD09LfrPcte4GX42OiLvakJGGmPy/8hlJwXZt6cd6nECVA5yYrdGtANFNTwsv+e//YMN4iRe8Dzjafb5sAGxxezH8ttyH4wj42NOvsVv9pVQGXsENyLZHX2IHuHud/v2Ds5Bl6ZpSnIgthX9M04HP4CPmH7wE/XZJ8iBHdPefgq//bzxRdrElru5uSmnSmRcwpiGdazbMDZX06MZf+E946Z85vqNO9jnybisaWWs0r4N9l7GL7PPYF8IngFTZD1Rj+2N2nx4zWR+N1/X8C5jqiQGDgaDskECP4m1nIN7NR5wX8ATMyboMUBzZAd+TUTE4eFh2VHoY6D7/X40TVOCbRHRwpEj7sbyzCtOkstz7nXh/03XvEYyfUwXz6f7YdnkOI5xeCfYuV5kjmW840XQw/EVPjOedhdvTKfTeP/99+O9996Le/futa4b4RTZiCi76anv6uoqzs7OYjwet/yaTyvf1Z2g2WH14Pw74pYRHj9+HE3TxPPnz4sAhpDD4TB+9md/Np48eRLPnz+PbrfbciCWy2U8efIkdnd34969e4W4GP+UvFicNex+wkAIawRjv98vSs3FAj6ivYCsjOxsZbCFUlO2WcGaKXxsU005ZwFkYWpAKLfDe4AfBkD8DAsVBb9a3R4fxB1Hk8mkPOsxG4BeLpclY8LZvn7HtMVIQjhwRCjF/Of5iWgLFsZo48zABb8NmrPArKiYT/NG5in67rEwH16YzlLOc+4x5b8NQlAyeOXiQFBNAGeFkIMV/gxlwC4B80YO+JnParydlWVt/um7DULvjEDAomAc0MglK0Ro479RtLVd4A5cmKfMM1YKBi68Num717bHzHtWmrU2HMCDXweDQVmHBowBuwDWMt/Rno1c1px3t/AcABgyCcAbEKl2vIcVnY01zyv6wMYSRoj53gZXzhClwBeWCdmwRJlblhocvby8LHTIxwebr2xcdLub+9fM/3YeTBfzv+s0veiDkydsKNXqy05CDoz6Xfcv05Hn/PenrW33LY+9VnjfIGSu16C2A56eM2ePui6vO8bPThLkpdc2ddjQxPCzLrNs8hp2XyynssG5Ldvyu6l43Wc+Rdc4aJJ3H0W0dc6nBTyt5wz0A4jwOeudPvm76+vrWCwWLX2Gc+oAjW0CH4+aHTXq5X8CWP1+v1wN4TFERAFTptNpyVheLpdxenoaFxcXMZ/PY7lclgCo6cJdkjlpBht3Pp8Xn8R2MAHY5XLZOtYqYiMnCTratqaN5XIZx8fHcXR0VHYq2pl0sgjBLPyi6XRagCNAUAMlnmuCR9AdmYlNjQ/AXPIOcwWtAOsiNteS0A5Z2PAfO213dnbKjpSIzekP2Emr1ebIZd8Tazsf2hL8xiagDtsV0Irvb25uj0B2sBVdwfjhneVy2To+kD7jJ1k/RdyCeSQH2/dgXPaPfP8mfGLdCeCJnZSBONa367+8vCzrdG9vrxz3Co94nXiXCHVZl+PTef1NJpMCJsEvg8EghsNh6x5ZeG9vb68cq0yQummaEnRll6v9V55hrp1Ezc5paMBuYN6lcPQtR+XDl6PRKKbTaczn8xgOh/Ho0aNWoNTyEtxid3e3tYsZWQKfGQCErnzOXEBP5sU7XCm22eyn2Fbclm3Zlm2pFWQSvvBqtYqXL1/G+fn5a7hLbRdeDdzG90OnZ3Cfz9EbNfwr+4wZd83+v+Ugej/70fy2355lpPU5z5BM1DRNCzexf0j/OCmEviLfnaBi24HnSDCyncYz6FnsSUrGf9Gr4LDQtGk2J9lhd9Jf264kitlGML5kOwk68b3v9jON7aNTn7EheIqxOxBHP2u+RsbCed50sg7Nc2U8hv7memt8TfvGbfy+9a/1MPNjfnOCp+0AJ0PWxpqxGxfjldkmyninf+A3+xeM1ZhMxr95JmNCxmD9PDYT/hi8hW1PXy0zoJXp436YxjU8HPp67ppmcw2DT7AhOIsNiv9mW9o85bY9Vz7ttFayz5rlXcbOIzb+M/SATk7uhPczPsecer2YjuDu0NmYtO397E9EbHwQt2lf1bin8WJ8v/l8Hh999FFrgwlXZ3AtpuMRyI/V6vZaq7tonMt3tRPUYDTEh8i5HBwcxKNHj2KxWMSv/dqvxaNHj+IHf/AHWwb/j/7oj8Y3v/nN+I//8T+WbGocgw8++CB+5Vd+Jfb39+NP/sk/WY6g8f2Hn9aHTIAsiGEKH6XgxZ6VIozrhZiNgZpzYWFD/RaSGWhHADogZtrnMdWAaX+Xy97eXgmAMg/ZkDAdAH5OT09jNpsVhU6fvKBx9B2UNjDCjxeCjQAcewSOAxc5EMCCRllaeWflCD+wwFgoBspqtLVAtQKp0dVAIO+4WFAZYMw7KMwb1GXlxG49Z41/Fi+Y72wkGlSxQDKQbyea97Kh4H47wMIYMDpqTniui7njHWeGO+POv3Mg08/X5jWP1+PiGSsa/jav+ig67/TMMsAg0F2K0b8BdbvdbgvIgybIO7LiqS8rVhuNtO8MfQrBUOpgfQJKokgPDw8LIOUAoeWhlallio1WngWQc5sAwnmdQRfASstrK/rsAAH4RbQTJeAZr0OAdoDN4XBY+u3kGRs80J+kBILStWCA+R5HxHNmh89yx+swf2/DNfNfBpOhY00+UD7NiPbnNsY8r9nYrTmnPM+uKRzJnLQCveELZJiBVMuTbFBRF3QloYf1gw6CvmTUZoOQMWVj2RlvdwV+szyuyYdt2ZbPq1jv2IZzEiG61TaEed/8j5zCDuJ/7/S0jK7ZWBEbe8R2M/1EJ9om4z0S7SKiZTvRH8tbHDQSisbjcev4T4MN2BLUuVwu4/z8PE5PT+P8/Ly1241EJfQD/6PX+d+nLviebNpFP7L7HRnPM9CcJE4nGPE8xzoBRg0GgzKPOPEEuvIJB965mRNzfAwp30P3vb29WCwW5Xhc5Dvy09nZ2Hf2KQiE2gehL8wBYyEg1uv1Spv0k53AtiHzlQo41fAcoEvO1rYuge/QSYwDOwo7CxrzNwCyE2yYd4BmeJnTB+bzedmlgU/U6XQK70yn05ae5HP4ZL1el6AifD0ajcq8XlxcFMCHY5JHo1EZx3w+L7IC/qVv2e+GjxgDNg5rmACkAW5kAJn2u7u7ZUy9Xi/6/X4cHh7GeDwuR0vz/mg0agHqDnZTP/Q1sMKcsbO43++3TkWxbTkcDuPq6iomk0nLzrB9wq7Oq6uruH//fjx//rysZfNE9m8ODg7K5/AYfJmBddZYtom9Npgbg8fU70TFNwWGtmVbtuX/3cLpDr1eLyaTSdEVyJWI14N2EZurj7AL7S/VfHonr0VscDJvZuHZHNio2Yj0q2aTup28yYXPLJNdPB6wCNup3ulqG5kT8zIeQNISmGn23+kzY+Bz4zgZa0EnGyt04ptxPQcvTF+SnIzRYk86OGebuNvtFhsGfZN1jq9JwJ7hf+MXtuH5G7vbNDKWRD3Mkf1z82qtePxOeMvYn/nAdHdQyO9kLMUYkrEc46kutvH53/6O8Q7TwMFwt2Eszrh6RDtw6Y1ovI8cMKaacSDjXBn3yusIf8j1wBOuC75i85xP6sjr0+vcyRs1uy3LMOPc8D2yjqtR2CBydXVVgnCTyaRl43ncpr3n0f5nxmwzJgwtGAdywv2v0dj+lNchvOGYgWVdXlvGTrO85bPaPDjuw2cZO/Xu2Ux7Pu/1ejGbzeLDDz+Mm5ubePvtt1u2NwmNnMLkufYmi88q31UQNIN6lAxuYOTfu3cvbm5u4v3334+dnZ348pe/XJTi1dVV9Pv9ePjwYUTcKotPPvkknjx5El/72tfi137t1+KDDz6IBw8exB/+w3+4ABRshc0LEIHkKLYnxQCpJ87BtIh2JJ2x+R0zuosXAUxgcMB9yeBRVoB8FvH6xdI2BjwvrpfPYD4L3YODg5LhkDOb6D/GwOXlZZyfn8eLFy+KEKAuFA0KDqfNzi3PWtGbxmZ8niM73nXYoDF9PCfQxcrembjOsM+gjZ36iE0AwYYHdLFyos4aP3iBm7/4jvoM/tOW3/OYrUSzkjS9a7zG+1mRGcQyMAkNAeQc9DKI5JIBgqwI87ow4OjghINTgFcOvFlBZFqbVu5XNhC9u4X2DSTaYHQGlufb/Gx+9U+eH/evZiD4c/piPtjf3y8CnnPrs+HJ/Htd+HMbnOxSyMaiHQISIQDFACEBnewEWBZbJiCbTQsHR8lqZ8cKxwpmejEODLOaw2I5akPVgeHMryhOy/FOp1N4n/bm83lxDNjZ0+v1yn1ogITUn2W81xglOyVe+9AmIl5LJsnrwHxvB8qGl8eena7Mi9koMw+7bfNXrY78WUSUO87Yae5+uy2et0HF/9mwp9gBZf363jO+985n82bNaDVtvR7NU3ZWMz1Nx23Zls+7mJcNDkW8rl8j2nLENo0zYe1MOevUAFRtTROQyE458tPZ23Y40TnIEPS4AQ3XZf2KDB8MBnFyclKCYa9evXptB+De3l6RH9PpNJ49exanp6exWCxK0k5EvAbacQTner1uHb9pmcI4fOwQ8pD+EyDq9XqtI36hiwOfg8Gg0NNjpw3bl5ZJ7KLjhzqWy2XZJWtHnPtBO53NfZ4EEnd2dkpA2AFwaM8cOlhoG9n08mkRbhs+yoFa+G2xWBSw0MFKeJG53d3dLYmXHP/LDlyDnAQJPdf0HTpy16P1+Gq1Kn4Uc8cOZuwKH2fMPHF3mHcXQ5tutxtHR0flWFgKwW4Hf9F/tqF7vV7ZlcKcmp5HR0dlDSyXyzLPGVh0QBTbqd/vtxJCbXsb0DLYhn/oBKednZ04OzuLFy9exHg8juPj45KsgL3FCSUAaPAfAWMHZrn+xgkF2L+7u7sxGo0Kfw0Gg3j06FHs7OzEYrFonfbB3EVEyw5nR+d4PC73n2YQzH6Cd7x4fdpGy3IXX4W5YP1zJ+9gMIj5fB57e3stX513bZ9sy7Zsy7bcVcBbnz9/HhcXFy2/DF2N3LLPjy63nOF75Jv9XfuZxrTQnTmZ21hPzcdCJvK/cSj3n/pcnAQTsfHzcpLxwcFBsRGQzegzB1kIgFKH66Mt9KVtM2xAjylic+IV7WJf8T26glMyjC1mjMq2lnUKv50chn2NbecTWYxvoHOdsGVb3/SlL9hPTng2jo8N57nPvnTmNW+MsR9R030ZB8n+u/nB9Xgc/HbyKPyTn7GNbcyxVjwn3njkhLm71kL+334T73sMplfGeLDnItrJ9diwtTgHa8B0yH3ydzVaZUwGOywiis0J/5hW9t1ym+5b9nkzT5IgyMkk3pHI/ZRnZ2etuuER/53xoewPZRwdOtufrr1rHvDYjGPCY/YTchwl879tR+QPdjv9pQ+mIcUbvpi7XCfrPfOix8Ecrlar+M53vhOXl5fx3nvvRcTtLl2SNvf29uLs7Kzli9OPNylvHAT1rho6WgM4+ZxoPAvIu5CsKHCgr66u4r/8l/8SX//61+Ojjz4qd4i8ePEiXr16FQ8fPixZv7TFVn4zxF1CKAPAtG8F5MBLjTFzvWaALEBoJ6IdVMvP0H87oThczp7OAGs2IKg/MxT1drvdGA6H5QdBgbJG0dPXs7OzePnyZTkWyxd523GN2AgkaOTFyxickZDrgQ4WHDkACI2zU5gVOqUWrPIOAvOujZnaoraRkNuBxnk3ouenVr/BII8vG4EIDLbh+ygH6Er9OdPDxhHjYB3nbCkHHcxTgCHZeHF/DY7yw3NWUNCFvmLsQT+36wwxG6Fuw0rOSsWKNAvjvMOjZrDzfVY+GdTICiTTACPBmZF+jvrNM/7tO7EchGXdYgC7LdcNHSkeO+9Ae69P6oiIAhKxax6wcDKZlGycg4OD1ny5fY/BIFc+Ns9GmAEieBhZ4bVvuW0nysaZ+d/9ssyFL5AtOC70z3wCDeFpHALzNuCb9SHf81k2whwEyHznNZkNIX/OO1knunhN5PrMk3Yes0zMjgLPWGfmPpkG1gNXV1cFoKwlhHiuvd4NLPq4FDuQDhoTAL25uYnBYPCa7QL94Sk7nrU+ZXnJeGq0yXTblm35vAu8iDyD5217ZpuG96xfLV9IKOO7LD8tfy1vAMfs4CLH0C0GD6iXeqwXqIOxeV0j67EDR6NRjEajGA6HRW5H3B5/eXJy0go8zufzePHiRTx9+jRevHhRAlTYMQZ4nGiFb9PpdMouQ9sc1geMvdvtluQk7Grb9r1er9xNk3WcAUqDVuxU9Q4G5sa6hoAXgV9ARe5l7HQ6hW7IbMbNvPk4ee9qc9DK4/X4sHE4Yhb57YAT9ENvkJTl+0i92wBgMCLKHEA762re9d3T1mvUZz5njXDXZLfbLcli9D8HHPP66Pf7rRMw0FPWQdANHh8OhzEej+P09LS1GxB+RW95ZyBzzxjhP9u82D7QGfAJfxt+Y826nw4aGzTzWoUnAZEvLi5aNiF9gkbwFEHO/f39ODw8jKOjo5I01+12y7F7BntsdzAHHI3vBIL1eh2j0ajUyT2+HF/c6XTi+Pi4yA76BbCLfby7uxvj8Th2dnbK0bnMg30w2wa2L+z7OgGT97JPyxpjLKxZ7GbbKjUbeFu2ZVu2pVbm83nBACM22FnGfHJisTFUdGPGuYyJWcc7QIp+yZimsSTXZ9+a5yI2d9fxXG4zg+/oKic82eZEz/q72q5GkpfQj/bvM43Q/+hg7ICM52Q/mv7iq3PyBvZfPmki4095bN4YELG5Do0xQyNOTqB+4/LoHeMfxiOxOTOeBz8YyzVWzHvY8Dlo5nFxGob1p8ec8Uv7ExljMM0ZTy25kjnx+xkLZUx8bswtYyyOJ9g+qP2mZPzF/ojr9bvwIDyW58Y4mbElz7P9Oz9vvrXPU0uczRib++vYgHFJcFF2iOIfeJMPa802GL6ZecHfm368z8kznFbKehsMBnFxcdGqi/fvmifjbd6sYFrVYh9gqE6E9XNOGsk7Zh33cLv0j7XJM+v1ukXXu+Jh5nf42OuEd5mr7Ctnurhur6fr6+t48uRJ3NzcxHvvvVdsfhIZx+Nx2eyQ5fpnlTcOgprJvZghohtdrVYl0HZzcxMPHz6Mk5OTYrB7e3O/3y/Oybe+9a14/vx5NE1TnL75fB6np6elfkAa3rEAq4G+FIM+7iuTDFE9Sc5mdfTboD2FybJT40XnZwwUma585owo3qsF77JQNxCclf1wOIzRaNQ6Qsp9stEynU7j5cuXMZlMYrFYxGw2a4Fl0BF6GARxIcAM/e3YYRz4OOJc7Jx7nO43xQovA2R5/nnegspKNvfBJQcx/dsAoZV9/szv5WBFVsIAYmTNuz2exynP4Bpz4qxkaO5nrfSyUmauzI9+NvMjnwPE8J6NLCterxuey2vAhnbNkMtBavroMbAestK1EuU7G5xuNyueGqCQZSH9qhkAtcJYLBMozCP1YnzbUOA583vNWGMczuiiHis8A8nQ9ObmJmazWdzc3MTFxUU5co0gvXeouk3Pn4OgHqsDoIC3BPrdH4OIEdGSd/lYE8vHms6CFtlQMEBqmU+GJ04PaxTDljWT23d7/p3X0V3z5f/zOoeGNYc0/+2SDTfLFssu14lB4zVSmw9n8pkWDjReXV21dpqwu9Z62s6K9QiOnvtWk9+0lZNFrK9zcKLmlNSMvRqNItp395kG27Itv1tK1uFew17HGZBBFtUcaTvBlotZvrHe8hHn6KRsDzlYZxuS6zEMBtnmsN5yYLff78dbb71VgnvoUr5H/6xWq3j16lU8f/48Xrx4EWdnZ+VZZJmBFOQWdx1i5zqJlGexw+inE2wYq+9D7PV6cXR0VL6zbWvnD9rSHjY2de3u7ka/32/tauMzBxkjNkkm1tNk367X69a9kPP5PC4uLsodptnZd3IRtLu8vCx9MuDgjHN2/bHDbTKZlH77WGHzBeCng+I8bxvONpCDx3yegaqcSNbpbI5zzXaYfSW3me1U6Oi7P7GP8pUlPjJsPB6XgC3rYLFYlPcMhkBfB2H5zgmIy+UyZrNZOX6WYDQ8koO4nU6n7NaFBtAMIJsMftsM1LFeb44W9u4aAuisR+YUfcpO436/X+47oy8HBwcxHo/LTln4n3lyYgE8slqt4vj4OI6Pj8vxgSQvYO8Nh8NYrVYlWYI15nVIoJYgqGUn79ifMiAFPxkMN9CY7RX7u/C1d5VDa8sdr5Nt2ZZt2ZZaefLkSbneBdsLHUgSkPU7NktE+3ol+7G2K+z70oZBcmNn9qVq10dlv8q4iOWtbVr7d945an/ObWM/gREjl41xuhjjNC6TA0h8js3jRHH77OgZbEfT9uTkJPb391t2bNNskskjNgmK3q3ID0EhdBf3TKMvubPc9EHXeP6cEEX/M3ZtrI56Ms3tgxgjZB54N9PdNg06P/OZeSbjdLlkXq3hfRmTqWGZGd/h+druPD9X+yyifTUP8wcvZrzN7dWwIftwpkH292p0s49BX7z2sj/mfkHLGj4CPzpRL4/FsgYfBP7O2DZ14AuYrqxD850xRu/m5oQU4k5N08RoNCrXirheaGM7zTLTdPY68u+cBJHtNmPz0MxxGv82f1o2R2ySD7O8zmuWObd/7f6anrZvXSxT7cNSjCFYB1Dfixcvyjv37t2LiM0VjxERp6enBbd9Uxv3uzoO14PKIKADT91uN956660iUH/qp34q7t+/X4Q8TEvWqgFmdx6BzX0vEVEc9el0Wibn0wBLlxpRWAA4PDCTGTPX7QCXwXY7x7ldZ2zf1b8sLLKQcd0WSN715P9hsm73NsDLHUEZEHewajabFbCH7GSDC7ThYAaKx2A4Y/WCu0sRQcOsnPO8ZYfOQjTTh7+Zyzz37ov5z3OwXq9bGVAOcDuoiGGIEIqI1rFL6/W63OFp+jnzygEuAymc6+/MbI/PBoPnn/7ZoILOBjJdX54fPmecziq3McR7OVBgWWEjOjv13nFiIJFxOWvHSi3308X9sGKgXviZte82XXdNmdoocDG/OwEh8555P8svOxYGoKG9FZszuGp98fzldj1/DjLBJzYozWN5t/H19XXZLQ4Yd3x8HMPhsBjhAL7QwvVGRCuQxYkBNqBsIKMLAHq8Jh1gNk/aMMrGVzbuGSfjv7q6KrsVSCDhO+spfgADCRKbDzwXtO11UuM1nrFuNACZHVHey9l0tVIz6l0+7bv83Js8a3nFHDCX1l+5fdY/wVED0TXHjpKdXjuFBFxZUzyX+5rlDcXP8r3nwDzpsbwpTbdlW/5vlqzrCYZk4AA9k4Gj7LTa3oloO1DZsbTuaJqmdY+hM8FtG1je0zb99TNkh/rORutRAidHR0fR6WyOH0UuEVShTCaT+M53vhNPnjyJ+Xxego1ZZ67X63KkJ/1CXhkIM+0ttxgH8oxTdI6OjuL4+Dh2dnbKLkaSkKClnXc+g3bIMOxYgDx8s9FoVAKG4/G4PGdbfzKZtOwjg3jQr9e73VWJ3qPkwC9+FnrUfbXf1el0ylwSQB4Oh61+wTPc0+OdiOZD60wHsHPClvUEz7IeACvY3bterwvfwgsAh6wHxl0DYgB0HRzm+GSCyPAV9pFtb+jHHZ7cCQnfMxbqa5rNztlut1tO8GAHq9eTwZWcHOBEIgfbZ7NZa23aPnIQ3sAfepyApwF279L0FQSsK8Z0cXFR3ue4XJLxSMReLpdxcXFR+Mv2FvXCa/jKPgYQOZYT8eAveIyEPd+PxnPYqfCVwTtjA7aFzDfwofvAO8ZO4D2OyPUc2vfZlm3Zlm25q3A3c8TGn8w4IzozJ3bzN3LSPrztFT9j/C4D9XyODDVmYp2Y+1XDomy3Uq+TUow1OFEfW8F4g+0t9BJYEoES28HuF7rNGAK6lIAKp18YR4J2+/v7MR6PW3gGdhX0tN3O/7aXbSMYa+DqI+8Ew5bmt+ntXWcZs3E7xkOzbvPcUmzrGdfMWAr8yRxAe96xzwG96Iv9HUrmD/Ol+dPP157LmDT0sU1ovssYY+6Xx8zvvNHG4zGtGHPGjnJfPce1tswzDvZ6nm0v0a79m4xZ5rXLd/Cr1xw0NO4fsfFr+M6Jh+YX2/nmC/gnyx14cDabFRuzaTYni+FDYWvh31hG5TaN7VqemadsE1pu2M8z7aFZTqCr8TTPZN7lf2xk3md9ewe817TXvOfXffbYcpzMSSiWATlZkDrOzs7it3/7t+OLX/xiPHjwoPiKo9GofO+r1D6rvHEQ1AyTQVUvApQa9+ysVquyfZVnIM5isYivf/3rr12gSnY2DIgTxGC59wQCmsGop5ZtmxnHQAZOInUyMc5UZ3x3AeiMKyuCDKDmZ2oBrExXBBR13RX44v8sHIbDYXHqLGQdZFoul/Hy5cs4Pz+P+XxeMl4tQDLQi+NngcMisoDJgprFQ/1ZSHmR2IGE/hlYM72sZHLJ33khe0GbHzMAaOHicbgOK5KsqPJ44XMbJ87wAEDIWe157q1srUBMZxulFs6uz4Zl5sGswL2u4CsbWrRhMIU2Mt2z0M5C18qP95kDZ0C7LzYuzAN85x1i5qU81ho/3cVjdz1jnuV/05d5zNkxXvsGjBgzOzUoft/KDUeGv220uNCW+a22xgy+NM3tGfo+VoHdG75fotvttnYFRGx2rvIZQJANVWizv7/fOp7bmWf004aF10ZtLmuGp5+nPyTdjEajsosG0BtakdEJbQGqaYexUD8/Wd75ec+rd/jSZ4wWF8vorKtzeRO65Dry7nrLlywbDbhlPoN3OR2CAv/kRKRsjEMTr3H+zgkfdgrhNfjjrvsSsnGYS3ZS+Myfu181GmzLtnxexes+21uW7fA0+tg7tKyH4XF2LubTHiyTrVsd4GyaphVIRN8ZeCIwiz1LcAM5RXAVueIAFvf94WM4wIS+GgwGsV6v48mTJ/Htb387Pvnkk1YiJvLdQSPbPq4TmlhP1OxhgnGDwaAkE+3s3N554kAM8p4xZefaGfadTqe1Q47x2+ZBxmHr93q9cic3d54uFotYrVYxm83i+vq63BHqRA9O/SEQCF2Oj49fk9fmhX6/X+bNAWYfabazsxOHh4dF95s+nU6nHCVHH5ygCv+s1+sSoGRuDMrg+3k+HQRlhwaBPAczm6Zp2TbWXQZ9bfNkG5u5iIiy49VgDuNxoBhgluPpuI8rIkoQnTFF3B4Jyy5J2uX4MHgCMJa7UbvdbjnWD/qx9rlHll0kjItgrpMACOJjO7Auh8NhAZAIdkN37Dvbqt7tYpAUfn3x4kU52vbk5KTw13g8jvF4XOaSNWq/mCQ230cLz/IdvMr7lktOEnUQ3O/BV7zDXPK+1zk4B+vAthR39nnNsA6ho49QZp1u7Y9t2ZZt+axiX9WfWef7RCA+o1je2T6yr+b6OS4fjIJnM8iOXZplGfoxg+21d9G79uly4M7+I4lz9Muy3viej9r3FWPGS10Hz1mfMzb0W8Zde73b00B8FyhjRl+5TduCxuZs10yn02LX8bznzFcYeD4ZM/3gHlLjf+aDHAPg8zwX2D3GjZzIE7GxIzO+ljFk+IJ2zQPGLYyX2C7LmHfGAfJ3xnYZs/2rGtbivpoebjtjRMbh3A/HIOxj+T1jeRnPzWOD1nnOsGeZh1pfjDMaW8vji7g7WdzYn3Fbzzl2vn0g8wJJhsZQbRf5tBfTxeum2+3GxcVFyz8EfyW+QuKIecD1mG6mMf3JOJYx9Bp9LSeRLRT4PsuI3AbfuQ1jivYvcyIzc2jcPfMOddT40jKKz2s2qnkbWl1cXMT7778f19fX8e677xY/bzgcRtM0cXp62tpc82nluzoOl4nB4QSI5vuIDVB7eHhYOu97YTwR3/72t+M3fuM3ihMUEa3gJ84ZTokFuCPGMGQOHuYJuetzJoCJxglDCEdE6YMXfcTGkallb1rY+u+aMMvBEY/R4FEWRPl3Fnz7+/txdHRU7lbKzOq55Tir8/PzwnDOFHbJDhifOesdo4n3bZRYedSA45ydzHMRr2dJ0AfTF5pawDuTykrKAZaIDcifDSPTi37idLofHgeL2s48bTAfWRnQL/MDY3YQkbWVgzbmD+q2kqBOGyi13xZGzB+f1/guCzXe8/qy0WjZYR6gXR/9lY2SPBaP36CTj0LhGfOF+cqK0P210Pb6yzRygS6Zf3I/aR/F4mdy1iXPA3JYZmZFaUVMHaxNgCbqt+yJ2IAlWc6t1+sCvlgmGPzudDqtLJzd3d0C7AJcG8wywJTrY94AqDF2UO7cc2ZFb2Xt8fEdfTRNcyKD+8G4OVat2+0WJ4RsMOoGRGd3DcfJMGc2irIcN7352/yf59bzxfpmrNDO7WUeNF/ljD0b3dDBdPFn7lcudxl8vqsNJ4p+AB46OOlgjPuejRwH+LPxbzp4jdtwNJ2sR/LaqAV2+dzAs3cUQYua/t2Wbfk8ivWH1x3y3aC+dZFtJ+qx/ZI/R4ZjL1kuOamNwA1rKO9KjNgkirHWbfcbGEFGElDd39+P0WgUb731VktPMZaDg4NyrNhyuYyPP/44Pvjggzg/Py+2m/0Q74b0EaGMD9sj0xudh9zAx3DQF11CYDRiI6vwuUiK8+4+9CrzSbASGjVNE9PpNC4vL+Pi4qIEPtHFo9Go7KQj6Hl6elqSmxg/fUaeEQAkCAeAhX7muFICXQTJbI/bhibgBsAAfYbDYanHdjSZ/4zTfoNtOLeJfrm5uSn3wgJi2tm3X2fQA1p3u93ieNf0LeCEj5jzzmf7CNbdBK3xuWkLW2m1WhV/jTuJSCiCLrYr4RWy1zk+iiOR0V/2vc3P0HlnZ6d1FydtcHwu/OrrAXh/Pp9Hp9Mpba/X6+KXcp8rPOVApe1i+gXPsh47nU5Jll4ulzGZTOLVq1cxHA7j5OSknOKxt7cXh4eHhfbMhenqv23PMW7ucMO+QyYhe5BbrGd42/6rfSHWzF0Jq6w7B959VBz8yjya95G/3gWb/eRt2ZZt2RYXYx3IRwqfg0PYZ3SgK/vZERusIW8MQP9kX5i60EX0p5Yoje7yZ+Ac3syScbKIdmKv+40d5kShTAfk8XQ6LTrNNi/6ivp5159lGxadgY22v79fTkHEPoJeTjjEtx4Oh61keY/55ub2JJHJZFJOjgBToT3Gmf2CGp4EXcBozAc5EG0M0f3hWTAmB1HRkzlok4M+xukyDmbaG//NOtC4Ue37mv/u56x33a5pUuO//LyxgsyT2a6t1ZM/dz2eyzwe+3Kmmd+p4aR3Fa9n25fUR3u+D97jdMIs/xtLyQm7Ee1AX7fbLclkxpMo6/W65dd53B4rdtp0Oo2jo6Po9/sxmUxKnaPRKG5ubkrCaOaPTE/ajmhfWZaxbOba64gxZLpTT8bp6YNx0Iwf1ng9Y8iMtbYZK2PXmb8c68jr2H6G/QpoZB0DjdbrdQmERkR83/d9X+nb4eFhNE0T5+fnr/WzVr6rnaB2ysj29fdeeGwbNqBq4t/c3MTXvva1+Pjjj1vCnixblE5EtLKUV6tVOS7Azgd9yJPrUmMcT5Qda5whC+jaRMN0OcPZTkxtcVm42zHJJdeZDY3aTifqAVjiGNwMCJsJAWsRVDkLCaHrBY6jmH+s6P0+i8iZHaZLbd5oNweJaD8HBU0b/87Gjh1G6iAIalobqEHxZmELYMg47Jh6LkwXnrWCwxihOCBqforYHLfr/mPs+R4hCx0fF8acWDi5T/zNGExbvnOQ3vzrbEE75S6eHwcqPX82GlyvDQ1ozefOWKMe9ysLeq8D/1/73nOYFZXXFrSp1WUesXzIhknm5Wz0+H/WrDP0Mn+h7FEyNkAxujNdWCPIBStYy2iMCN7zPb8GtdmJwh1RrsP0wwEwwIshT19NO/pAOwSdcsDKvExh/Xp9M78RbWCRfvV6vXKcnJ2ZiChjGw6HsVgsYjKZlPEhT/Kac3s20POcZPlu3q7pOr+T27FMrfGvHQ2ve/fFhkk2Il2X+0F9zDs0wVnN8txj5sfy6y668H8GHOlDRFunO2su06o2PurkXbfjdWre+iyHYVu25XtZkOd2VO201Na9dyXmrE2Ci64fGebEHXSJj3fd29uL5XLZukPUDk/EZvdYRNueYkeawSoHI3d2dmI8HsfJyUkMh8PidPd6t7seDw4O4vDwMA4ODuLi4iK++c1vxne+85149uxZLBaLllOObrPMcaCCcTvhiP4TgPKxmxzh5EAqwBtj964CgLD1el12Rdpm9O7W5XIZi8WiBL+m02kB6pD9/X4/RqNRC3iyv8YuQ8+1g8d2bH1FCW3MZrNyZ47vFo3YONUcM0dgywAQNsD5+Xk0zW1yLXS3L2o+sv1le4W5sqxmXsxP6Hl41TshbHOwPmxv2GazD0HSMOPEVnUgGVvLJ/PA6y6AroCh8/n8tedYE3wGDzRNE2dnZyVQTXvYj4wBIJdgpHkQHmWHBv657RbWO7uHCQCz28f0jdj49gT6oR/ygN2m2IKZBwCg8GMJ+s7n85hMJjEej+P4+LjIgPF4XPw91ja4AoFh82Kn0ykBW2SIeYj5Y0eqwTvq5zNkk6+IyOAQ82w/wPYpgVqPf2dnp8znwcFB4R+Dj/Ql24Xbsi3bsi2UjHta9+GnIa8MzEe0k3XROfbXM45J4Rn7b5a/xnkcZItoH6lovyyinVRt7MV9dpv0wQHQHFhxnxeLRbkSCF1u7LPb7bbsZt9JbYzNmAu2Hke7R0TrPmv7wJbl2JbUT3+4S92nYdB/YzVOPATbMLZt/MKYBadt+BQH6Okxmj8yxmfesL8Mz9lGM76a8Uz7DTVc3LzgzzPm677W8JVaXINnjc0Yg3Nx4D8/b7wij8F8ZRrZl3OfMx7quvN4KMY7/HfGpNyOZUKuJ2NdxkVyf6Ar9idrAp4zhkS/7Y/kejqdTutEoDy3Gf/Na8K+Lj4VGzscKxqPx61TxajbPi/jN+7muEn2qZkbfMrsY9YwKducxm09zogoPgn2tdeuT5yBJpleeU24Hx5nbtcy1rgodft9ywQX+OXq6ip++7d/O1arVXzpS1+Ko6Oj6HZvT3550/LGQVCEIR23MwKDMhiyVsz82SkkM/Tk5CRubm7K8w6OkD3L/zc3N+Wo1ojNws3KNBOdwrN5UnknYsP0ZMUYAPDioD84Pxm0pg0WcG4nGxUWOCh+B3kzY/C9+5QLu7BQ5FY4ng9vfe50OuU+EQtbH89kWgFc5GMpM2jND4B3bYcn72U6u75MX9POz9Geg55ZKVi5O6iIkM48m/uWFSGfZyDQ7Rt4t3GIk++gNkADc2deAzgy+GJDk+NFrDyywWGQJK8Fv2ODkTHYwHC7PGeBmdeo5Qbz4Sx+3ssBftcFHTEuzdN5jBEboCoLU4/Dwjivqfz/XTKG76BR5gN+My8ANvkd09qf36WIDO7dlVHpNQkv5awlz08+tta84MA7usCgEO+jrFGoALccywawVVOWNnQ8BvM7YBA7CeClbHhlkNLzVJsX6rFhz9jOzs6iaW53EQwGg3IcH+AZINTR0VHJHuPdmhHpYvp5Pj0O6I2xQv/hdz9vgyM7oZnXLMcy7eib28lGsucw86d1BjIDe+Ly8rK1C8zyxOPPjrflz13GN8/m8SDj+d/OiEtt3UOLbDDTPycSWXZ9mszYlm35XhfbtNlJoZjHvWasS/JaQ0bzPgU54oAQwRU7esjgnCyCD4LOoE76iLxmbNgQ+/v7cf/+/Tg8PIxerxeTyaRlq41Go9jb24vZbBbvv/9+fPzxx/Hq1atyCgonnrBrjP/RTb433icG2P6ivzjPpme2vexPYAP0er3iIxFQzDsK0YEcY+u7IBkHuyYBy0iSBHDr9/vRNE25V4VxkNyD72X/JyJaQU6+Zw6w+ReLRZydncXe3l5xVunraDSKy8vLmM/nBUT0/Var1Somk0nZScqY0H8OvsLX0BM5nG1Zvrd9D18YoHJyDPXs7e0Vfru6uip2ugGp9Xqze4XAcb/fb52EYBsv8zK8YGCFZ3JWO0dxwYskvcJLPr716uqq7O69ubkpp3tYf/d6m2OE4VPWIr4hY3MQDp5nvpn79XoTrON979ixDe/P7fcYoKReeI228SN83/fLly9LcBL+f/jwYUlmo24CsPBFRJT13DRNTCaTiLjN+rfMWCwWZU7Oz89byQCdTqclLwCbLF/tG3NMd5ab/O/v/Nv2qxNFavjC1gbZlm3Zlk8rtkPshyOX7YdleWJ9iU60XWDbMONP9jFtN1Fq+BvvZfzNPqhPUnBdtheN0/rUKoPwyFc+WywW5QeZj4zGhrMthO3VNE1J3M7+c0REv99vJUZhAzq5q2maGAwGLZsk2+rWX7zrejwfpg+60/Ps0zqMy/t+a+O1FPsK1otgMtb9tGUbgHaYJ/627+A6XY95y/NWwypME7dd83NyoQ2P1e/Rn4yJGIOrPWtaZj+thgHW3jfeAW3gJ/fdtLPv5bG4336PwnxkLJbPPI/eKJL5Al5h3N7Asb+/30qWtZ3DurP9ZJ/Ap5LiE9HvbFdlX4b13uv1yhG4JOzhCw2Hwzg/P38tWcD9o4/Gt/w9/WH8PF+zAy1bcvFapL5a8gB08YklxGiQA7bToZ1PAshrCpvcGKv9fMvrjMnaF3GxnKQ9+vrNb34zrq+v44d+6IeKbU7C7GeVNw6C4nCTsY2AZ3Assl6vV0BuA4IGPnFY/vgf/+Pxh/7QH4rFYhER0co6dbb4O++8Ezs7O/Hy5cv46le/Gufn50XgmxhMPMyUFWgmegY8vQMSR2U6ncb+/n7JvrbQNAN7grLytvCyMPH/Vu70MQtxPr+rHReEBcEyP2vhwhhYUGTG+2JsjzsL9lq7edzwgBkYXvGzeV6YQwwJf57njmLADCOA+gmYWHBmMM1tIDToPwaQ59ACxcWCwfXVgrJWzrTBsUusO4M83lVBXf7fQtFj9PwBxNGu24D3TCfqqtHbAs2KkXYzz+dgVA6oUABKATSyMeMxZYPBwWba8DFXVtJ53eXPvF6yYWQamH41fqjJACvD/HwOQGa5wW/uXrZhnQM03W43BoNBMYrz7tzaGrfy4hnazAH4iGiBO37Oa9IBImQLcoqj+9j94bmErgCzrOdO5xZkGo/HRQd5VyhjzzzmLCfWE/xOmx4v9R0cHBRw/OTkpBz7PpvNWuubBBTAXQz2uwLP2cDORnguWTdk3oIfsmNi3ncA1XX62Szvsw79LEDNYHJ+nnXCrhZkkAPszAWGN0aZ1zP1+m/WlI3KTC/kLXXWdBBjNi2zw8y6sQPgfsBX3j20LdvyeZcMQqBv83qwTuR/bGwH9AwQZd3CmiUbl/Vjx4j3HBDKsjI7XNgyBkdwvvj75OQkxuNx7OzslF1rnU6nHP/a7/djNpvFb/3Wb8Unn3xSjgm7vLwsdz+v15s7JW03Y5/YTmZsHDvqu5ZsZ0VsEgmhJboInYjTiZOKnPQuwNlsVuz1iI0flQFF+mqgAF/n8PCwAAv0i/ERVDIohw6cz+ctmZwBBHQ5bSHfSXyhP9xLhe1Lv3q9XkmcQldwyhDvEVimvRxkgmfxPdEbvoPMei7bF1dXVzGZTAp/Y4/6zkiDGx4DfZ/NZoW3HTC8vLxs6WtoSd/hJbdh2uJL2fZjnnydC8G1nOiJj419yFpaLpfFj2cX8Xw+L34J/aNv+RQF6EOb8Cx+NH1nnRJoZ22SFOVkQWhEnfAcPOWd6D4ZBRqRxf/xxx/H+fl5vPvuu/Ho0aNy39vR0VHc3NwUW45kBnaYMq5Op1PuEmV9EOCfzWaFrqw9nyDCTnCDScgPy7AcCLb/aLyB71nvtMePfW3bVt1u9zV7fVu2ZVu2JeL15H0D93yfAy53YWDWNw6KIv/RV67P9iKfUbJv5hMsar4qxQm2FPrBs9hhBCH9ncdP0jPyHvnq5CXqY5zWkdgj2BdOmjo4OCj6z0ly6DjvAAMHt80AtkJi2mq1KieLYMdB97x7D1sgjxc+sG2PvWLf2v6E67Hdgv7BhzAvYR/nwI5xsoyTuGQMwziCx5Hn3zo269YaxlFbC9CH54275P6bT/NYMl7KZ/7+rj75feMg9t18/aAxPs+Z5zDbndQLXd1W9tcyLbz+TGsH+eEN46LID/xH1o8xcMaWZZPrYEysGwcxTUP6TALf5eVlSYqYzWaxv79frg5hE0Svd3tKCNcy0Adv1DE9zDd53rONxxjy2rA9zPjNh/Y3kZO2ySnGvVjH+eoa2iMgTclzRX3Mk/kG/vC6ypiY5bjXjn1S02VnZyeurq7iW9/6VjRNEz/wAz8Qx8fHn7nhhPLGQdC/9Jf+Urx69Sr+zb/5N68JRw+ISULA1wJPDPThw4dlQTqzhHodkFosFvHVr341/vt//+8FFDCBa+DjXcVCxG3gOAFar9fropDc7zyWLHAcLKM/dmh4N0++hTZgiDM2aoD0XeNkl5KPR7ATycJA+S4Wi7i6uiqZ4XbmmCMrqAyuG3iqKQIrUWcz5bmDLjjWDhBSDO44Y8HjRFiaT2uKyu84eGTH2Q5ozpDxefwRG1DPwItpYeHDO951i6HDfU4+3ov6AVB4n52+HivPWpmbzyg2Rv1sfiYbA6YD82O6GGDNbcLjfG+lbKHr9mjn6uqqgBbZGPI75lWPP9MiG2GZj7Nh77GYZjYMrBAyb9uINphr8ANeNK0MsmUll7Ph7pIJgEwGh2gnOxIRUWSy5xGamh/5saG0Wq3KbhVo4rW8s3N7jN3p6WkMBoM4PDwswI3Xi3cIc1yZHSPAT+9mANw0cFbjD+hrOtjpyLIBmYJR1Ov1yhr1TgvP5dHRUSwWi3LP8qeVLJ/ohx0L+phlrt+n1Na+j/bze9DHz9qA8nq+a01k5xT94n55jNapOG7ITOpwP5gTG0IOlGbDKc8vay1nr2U9Tjt5nDXD1cUOgA3Qprl1OP/6X//r8eDBg9fe25Zt+TyKZbETblyyXc1nrB/WLDLSa5ogkeWG9UtOCjAgQSAQ36DT6ZRdipZVto9p18Got956K956660YDAblZBds3OPj49jf348XL17Eb/3Wb8WrV6/K8bHYfR4vOg39ggxmd2NEtPwSfAdsHNfn0zAAvPj/4OCglZhjJ/rq6irOz89jNpvF+fl5sdtJHu12uyXQ62Q53+eCc++7PCk+tQE708CC/S3mHJkK/Z3oQ+Cy2709ene1WhXgAPuA+7UJEnU6m5MqPMer1e09mGRhR2xsmoiNreRjZJkHdpBiY9C3pmmKDZ99Btrk2GLfo873zA39RFf6ZBzqxyYBfLTPa9oyfr6j7fX6NmGM+UJX2l/0eiLodXh4WMBTdj56DKyXw8PD8v1wOCx/E0x99epVdDqdknDG/LNe6QNAKgljOzu31yCwExNZYj+AksEb5pDdv/avvT4y0OVj1EhG2NnZKQnX3W43njx5ErPZLEajUdy7d68coTUej0sSBOCb5dN0Oi10tT9/enraugMeuYXdAW/Zx/U8NM3tbm58Pubfd4GSQGAeNc4CHZyIznGIBg1th23LtmzLtrgY00HuIaNqCXIRrx87G9E++tI+l7EMY4noI951W+B9lrkR7eBmLXnE2IV1DW3QZ/SR7+M2boD8JPmLHf81OxEaGBemOOEFDKPT6RR7FwyaOikkFaHLfcT/zc1NuaOQI4jRl9ig9BVbkV1tnhtOaXEgqpaIaJ1LP7yxwhuf7JObB0xbfgji0OeM17gPxgfgnYwJ0h94wUGezB85wFrDBXL7GX/xb/OAnzF/mjfd1l3120bMOIqLx2WfzLa6i+cq/+9gdcYXM8Zk/MoJWw5wQhuvX8+X+wqveH1HROuqAtvKmcdM5+yzRETrvtAafuN5JO4UETGfz2MwGMRwOIzr6+tyMk2/34/Dw8N49epVGYP94hpGZ3mYkwg+jf8zRm46Qn8/j2/n+pgP7yxl/VNfrpf+YusiG81rxpjBGMw/lgGUjDWYF7KcznKddz/44INYLpfxe3/v74379+/Hm5Q3DoL+nb/zd2Jvby/u3bvXAuUNKpJ9YifeWd8GMDwBVhAmDIDtzc1NfPWrX41//+//fTx9+rTsbsyEc30GVHIxcR3UYxcRd8x44ly/hWitfvfNgABK1A6MA5yUDDbwvRV1bh8FRr8BCgA6mB8ymFCcLFKOdIChT05OWjuFfByug4GmqRnboI6VgQUVdTN/tfnKIHqec+bNDh79yZkAPnqU763M6U8W9K4vAwjUQdsHBwdFUOLoslYsFDEMGT9b/Pf29srxZIB+zDk03dvbi8FgUPoBqEKxUcnzFmq5eLwen5VbpnEt89s8auVoUCILM/c5YhNE8hrzenXBMPe7FB/dkRWIgbosJ2rr8C6DItOwlgXHWLOMY5x38Zn7XQt+mp8MHNeU7Wq1eg1c9BqlGFgyD1nxWLbSL4xfOw6mFWsEENm0uL6+bh2xR7YVAKODmDUDziC8AUd2MgAeOvGiZiB596llv50cnoNO3DcFyGjjn7K/vx8nJycFgPdcQh/6yRwYdIMuNePAPEo/8xz6b69x5D/zZMPCfFbTb3l+8zN+38/lZ+gLdANkvrm5KTK0ph+Q2Z53O781xyM7pbyT173522N1fdkxzMZ9Bu+73VtQ/O/9vb8Xq9Uq/sJf+Auv0WNbtuV7XTKIkOUjPz7eK6KdFOXkA/gdPeR1lAGFfCJGzV63Y+XjLf1Z0zSt43UtX4fDYQmAAiyR5X9ychKDwSBOT0/jG9/4RjnG8uzsrARArO/wCSJuHWDasCPOkbK93uYIU3ZKYqf2+/1WvQa/PBfY5PyPnsRJBchid5vlno+YR4cCFGD3DAaDlqyDfjs7OwUU8PFZnkvvbFutVuWORALEEVGOHTXgYDkPv1Gvj+KFt7C3oR36dz6ft+6K9N2i9okcSGUMi8WiBFCzvcFuyawnOp1OCeBmO9m2OfpzsVi8di85Oj77R7Yx7SdDayeRYZ/MZrNWfRy3Oh6Py47nbndzr+dwOCxBOZ+g1Ol0Wkmy4/G4HCHlnchNc3t8LOtoOBwWWcHaw8bEzodHudKDYDr2GsCI5wn6OiE1op0sgZ/r44gBd3gX/3Rvb6/4Y/C/ZdFkMonZbBY7Oztxenoajx8/jvv37xdeHA6HZbcP9LL/QzCy270N0t67dy+urq7KnasGAjPfNE1TgrOslewX2371GoIfsu1PsWy1j9rpdFoJDxlk3ZZt2ZZtiWjba+hA+1e2f6zHcxAy12eZZbvT9o+fMXbpXew1vMZ9sz1p2xUsyhtb3HewU7/HD3J3uVyWAKj1DfoMvViTr9Zp6HTwcmNC2AXYcNCLPmP/XF9fx9nZWbENI6IVxMRX5ih348DQlJM1SNKy3e820Vn8nROYoCXFGKHnM2NPNRwBPsiYnv1y24qZR12vcY3Ma+Yb/s74Sg0LqeFcLhkvoJ8OKGbfiPdsy3ssTviurbG7sArXy9+8Z5pmPJI2/XlNHvh5+0R30cC2nBMYjENFbPgHm8/v2f4xBlSLyxgPMl/ZBsZnw5Y2v9B/3gFfnM/n5SQhnzyJzYl9mLGw7McydieO0lfsWyeDmL7Gp01v5IYD0X6ecdjfBJ/F3p5MJq3ERc+TaZl3v+dYQB4/f7tvYGTm2Vqw3ms6f8/GuSdPnsR6vY4f/uEffu39WnnjIOhbb731GkDLIsG5wTn9sR/7sTg6OioZKQayPRCENZ9nhbVareLs7Cy++tWvxi/90i/Ft7/97bKd38BvXoy1kkFOCpNoJqY+OxtmMC+MWrvOBLLAygoxC7+ITSAiKw2DTFm557rJevadknYWWQR2HNfrdQl0Uj87SYfDYVxcXJSs8ywsrTCp1+P6LOFso8d1RsRriph5h8YIqhwocGYyxgbClH4grLIQdZY/wUYLaYMq3pXZNE3JbM88hMABMPC9QK6j3+/H0dFRMTaYT+/WcPAWYec2EZrwj/k4858N2jxXVjp5/vJ31JeNnMzDtJODS1YKPjLFgpT14TZrffa6zAZODlKYb3J95lP/73WXixMeavWZZuZfB8tz4N9BUQOT9Mf3MfjIGXjGWW8uljWuz59lINSOC32Cv2zENE3T2rHLvLK+rPABqNfrdeuoCcAuGzyu3/zltdHpdAp4yFrAwKkZr+aL2lx5DpGTrLfpdFpkLOBjlvkAauxCyLxjpw2eye3n9es2LGdqSSM25Gv6j3ZtxJi2Nnzob03vWibkOeJz8xAFQBF9xR1ruW/0z/MEHwEYosNr9GW8/O3sv7zbw/NQc1gsl/iOO9SoC0fT+sRg7LZsy+dZ4F0HLg3q2D7J75GJnv9nfSHnDfpHbOy3DEi4YFfRv+zsIdsddM07CAaDQbz77rvx4MGD6HQ68fLly1iv13F8fBz37t2LwWAQz549i//zf/5PnJ+fx2QyiVevXsVsNiu2mU9CyTIUmdvr3d4r6D7hSEe0wR/6aP+A8TqRdL3eZOPibGN3e1eYaeNTGwD4rGeYBwJO1sk4oD4e01m+TiyiHo7gZwcnz0Ej5s+JNvgf2OaW0fQD+tZOULGupw9Zh7sf+cQUAnWMA1vdNgI8b/rArwTeqKvX68VsNitz7/VEX/n/4OAglstl2R3opC2vC+aTfsNT+NcREcPhsIyv2+3G22+/HdfX1zEYDGI8HhcAhsA5d6k6GGZfh/7xufUzvL+3txfHx8fFviQr3sc0c0wy9hdJAdALGjsJFNvJSQrmO/jc8gae4D0DN+YvdvDyPFcUeJ1Bg5cvX8ZsNovpdBqPHj2Kk5OT4kPv7++XRANkDDtcsYGon+N1z87OotPplGQF8wRtQw+vQ4/FsjcDYKxpZAV1eK2zrrx7KANU27It27ItdxXsF3RWTQ7ZB63hk9m/jHh9l15EG2Sv/c6gN3VkWWY/l37Rz+w3Wkezez4HqtDHOzs7MZlM4vz8/DUcJic/L5fLEhzhe9NrOByWOrmjm7bQBRn7apqmJCaR/ObEIicrEsx0wBP/GluG7zne0nPFnDopjKu57AMzNtolgdz6CF3nDVGeL/sD/oHPvNPPxfNrjMu4hbGHGr/Yx6AYD7Vd6e8zhvFZxfxu3AaaZNwhYyt53DVc3fyVcaPsv7guJy54rfpZ4yd5XNgpvM982qdxHx3Eszyp+Vf8doKB7VbWMTyMf8MaMhbFWOBFxkkdbK5jN3UtKcE+0HK5LFd6+ArBiCjH4taKE0P5n3Wfg5bQLPOOk+w89+bnjIsbm7d/i+2PLGia2xNJOBUJW9f4pvtuX924dy1p1OM2H9+FJdqnyuvf/YAGYN8vXryIb3zjG1X65/LGQVAG5QYjojjnl5eX8ejRo/ijf/SPxk//9E/H48ePi3HuCYnYZHbCgBAOgQ3w8OzZs/jKV74Sv/IrvxIvX75sbf+vKb27CJmFtpkLUNsOMM954TGhFtZWzHaeAclpy2CEg2158v0dhQXiMXl3Zx4jjj/KHOZBaa7Xt7sOAU1wXp1Vi5J1cJA7gzhODLDH97mxkAx+eSFkJqbwef5t8M2GkrOo8g80RyibX5gTHHGc4syf0NNK1QrGc45hQf8I3GQnl3fdloO5WWBQH8ZK0zSvzTt9cf8QptRjAZoDE+ZLP2Pjy/xZW//QgTWdFbQFvOc/A6C0hzGad456Tgx+su48pqzAKZkXawadFVRNOGfFlIvX9V2F722k2YAwTQ0OWhbwPr+RoxwPB9/ZgMvzRz8MJNtIgbcMsFK366EdA5e9Xq8cQcYcAcYAoqHE6Rcyh/vGOG7Cu1ms9GnTwU6UOGuF7+GrXq9XAq42Ehk3x4a5DfqK8WD6LBaLsuueuXAiBTrr8PAwptNp6d9dJSt2y2A7UpkH/bd1zl2y7S4DOj9nw5jnXSc6L+J149zt5HVpWd80TWuHsNeBdRxzYOMUnjXojANoHcDznp+IaNkedkRy/3PxuuUnyzjkGHN+l1OzLdvyeRTzdgYCsnNiYMg2O4EK3rE+cKDF+svBrpzM4Xqc/Y/cx7bCDsZXsA2wu7sbDx8+jHv37sXOzk6cn59Hr9eLe/fuxePHj6Pf78eTJ0/iN3/zN+Ps7CwuLi7i4uIi5vN50T0R7WOAbNc6e982zM3N7X2CyJGmaVrHteaTRLAV9/b2SoLhzc1NcTyRk7430nIuA2bL5bLIIebOx7TbdmZubm5uWoEi9CxggANVnU6n3G2Jjc2YmE8CPuzKZBy2Z0naw0aAlu6ndYDBsE7nducsu/XQsxxHBc3dppNQLK8N2DroZLA3YmPv5OTbiGjZoN7NYZsLO8rJd95NazCIetiN4hMpOAHm4OAgXrx4EdPpNCKi3KdK4JNjXW1LAGQAKHjHZt5xCJjEbhd4huQ0/EfGTrCVo5oJCDIG6jw+Pi70hLbQhN2trG/ox7MZnAPUhd7MI6AUP/4cel5eXpZ+WT5Bx7Ozs7h37148evQo7t27V4KprEX6tVgsYn9/v6x7fO979+7F7u5u7O/vx+npacv3cqJxtvcNJGdbClrDt1ke5YSrXq9XkgHsT8Lr9oW2ZVu2ZVtcjJc5MIEszskyyKKaX2j8CPljUNz+Y7YfKf47+7a05Z2ifs7veTw5KIvucL3oDI6hv7i4aJ0uletk7Nbz9tupy8lNjD33J/eZgCk4ie3kjF97swe4BHOATnDwArvDc5BxBOvtbKtTt7+zHWq/2DhRDaeDthkfc8nzbD1JvZlv0a35Hf82PpgxUvN77k9tvvL36PSM9Zk/XI91dsYlqMNzZLvJ2JbfcR0ORuZx3UX/jPv6GdrPuK5p6nHiY1APdMj2vjFu29fexGXskv47GOr+EXg2Dsu7jiU4qAl9sZWx+7CDiY1QPzYjn1meYM97jWVM2D5oDXNDftiurK1FinFTz4cDw9DdmJXn0jxoeZ/XMnPh4v44vpAxTOqxXHQfXIf741iBExvfpLxxENSBLTqKAL66uop33nkn/vyf//Px4z/+49Hr9Vp36mRgNAMbL1++jE8++STOzs7i6dOncXZ2FsvlsmRqs8WY9/OCNnPUAicmshnSE54d31zMuLWAa629/H7tM4QBjEO/cuaDHfeaQIOmOMpkEjsAaueKMZBNBA0AElC2EZsdu7xPRhACAeDoLsWWBae/h+YYAQZo6H9EOwjK4kdY+R0rAoNwzoLlO4SNQXYHbJztZePMi9cCJSJaARPfYeN7XKArba3Xt3eycjwSCgDAyOAEPGwn3sdl1ILr2ZHOitOGDjS+i18tzBBW1GF+znPtOfWc22DKhrOFpT9zH2xM0CePs0YHf+a+MBduL9OnRhcXr69MV/exZhyyjplD0ysbipZ58IN3D8xms6rB57ZcTwZKTLs8b/QHYzsbH51Op2QXWbHbiGG9m+a0hVyiIA/NV85mynopAzzeEZ5BZ+so0znLqabZ3LHhtea7CchGy5mcyMzj4+M4PT1t7ZR324BbXn81XVKbQ+ifM65sXPFO1nE2Ev2bvx3cM0+bNuZ7P1dbB9no5jnLWwfMkcWWz7xL35DxeZ0wPjL4zEc4lZZ75uXaGuU5+MBOFt95DpDN+XjJbdmW3w3F6886MwdyrCcpXou2qZHXlkmWVVmmZQCDZBQfvUXJvgPf826v14vj4+N4/Phx7O/vx3w+j8ViEf1+Px4+fBij0ShevnwZv/mbvxnPnj2L9fr2jj+O/cHpJDGSJDRkOrsHOdaWNU3WrO0PQERkOrsnkQm83zRNnJ2dxcuXL1u76nZ3b+/KnM1mrQQk607vmAfEw3cAYOBY0k6n09pxgJ7mqFJoz3e06WOHDw4Oiu50go6BSHQyAWD6mYPlTtbkOdvj6B7oyBhMO57jc+wHn4CDfnKiHjwW0dZ/PLteb4LP1G1ABLvbR/vC/w52ckQsc5EdfuaJoJ13V8L3+AvsHul0OiVgb519dXVV+NJ2JNefZOCNRDPmYzabRUREv99/LUiJnhwOh4WXu91uAYp8ck3e/YKdhE4ngE09BBRZQ+4j/Xdw1PLASZYEHn0HrG1jEuyoz3Yuc0MiATbo2dlZvP322/HgwYMyP8gK3z2LLXF9fR3D4TCOjo5iMBhEt9uNFy9eFF6Cb5EvBGjpG7KTOXQConfNwkMGDr1L3DuxkV0OavDjpM9t2ZZt2ZaIiHfeeSeeP3/ewnbQIdnHRn/koAo617aZfUfjZ7YtnawU8XpwzZgg9WU8NGM41vH0x7Ys+hf7xX4z2PPFxUXRD+6fbVEHJmazWfT7/eh0bk8mcYA16x1jVvTXgZz5fB4XFxetoymzHecrdSI2G5QcMHCSHfYS+t3v+lhQY7PQ2rad/e/sG8Mftn2MFWTs0Dop85p968w39tOzn5L1Ww3Tq/Fl5tFcX/6dMULbpfhFPG/M0jZttg+9EYjPnRxovjaO7bkyvuTglXfq5r7UcKeMpfq57CNmHD4H5Wo4i8dhP8Z+YW0eXIcTFO1HUQ/rP/OL8VZkVr/fj4goyane3IBtBd+DbyMfIiJGo1FZr6Yrc5CxIPOk5zL70+4v/aNfmY/tH3g9GrNEvpFEmdet+QR7kvlwogPP5ISYPCbm2GP0eMxbOUbg4LB527gyMvsLX/hCvEl54yBoLuv1ugTA7t+/H7/wC78QP/ETP1Ecd0+4BQ3v8v93vvOd+A//4T/E//gf/6M4Fr4LBwfDDhXFgtACy5kDLjb4b25uyj1tzp5kEhBaNdDSfasVhJ4XVu6zaZKBaTOfmSUr31q/ECAGpQzO7OzslMAn88ciZ8w+Cgul6SAHi7Db7ZZ7fGazWVGkzLsD56aZQRb+9zh95DHOOm177M7MzgoBwWD+s6D2HBuEsSIyzT0/0MJOp5XdfD5v8U7NQPPcQo/hcFgyjhkzzzrYa6XpPlrQQNtsIGYjg2fNW+Yx86uLjR+ED0YXAIeVMOBfpqvXMELbvJ/bhgZWePxYyVvGuD2etXzIytTvUK8BmLsMhTcFExzkcjv5s3wkaKaXlYXXkw2cXGy4eSxunzlDIcJ7ERswBhr6CFDki49dMd3cNnKdsWQ5yZgB8Phsf3+/pZRpuyb3vcvUawjgCWCOTH4rUct9G+TmB/MT4wAUB6wE+GNdcJ9InmvasbEKvWuAbzbkvCZY316DdgxrbZnv7VzSP/fJjk6WqV5nNlSgk/nActWGDAZf1n/MY5aPfI/us0Ng+sJzllnYMV4bpklN/9eK5Qp8xq5ifvKRk9uyLZ93MRhD8Zp1Ql62vyM2AJCzyvnNXStuy86k5azXa76mwPIc+cB7Pv0D5+ftt9+O8Xjcurvp+Pg4jo+PYzabxde//vV4+vRpcfoWi0WxX5GfBH2Q36PRqBVIoFgHMXbvksWZRz4jF9brddk91+12W3dGY0ch/5x1nIFG9JfvuEIP5OsrsO3RYSTdkK1Mn7vdTcAPB9lBHgNkBJ9sg9AOtqyDWhHRkr/sHOUz6O9gcQ6eMs7lctk6os32GrTzSSz2YdglV3PGmc9s81M/uh2/KeL1o+Q5dpeffN+N7XX0xf7+ftkZ2+l0Cn9iG/kkjNFoFOfn56VN6IS9RMCdNmw75Ttf0cPwNkHznZ2dAgQZiPLJN67Tu5ehl0ETeJqAqft7eHgYJycnJSGXIO9isWgF9Zkn3mdtOVnh4OCg3Glq+2h/f78cU2ie9VqGjvjFFxcX8erVq/jSl74U77zzTgyHw+j3+yX463WAHbpcLksi8ltvvRVN08SLFy/KGmYOvXsHnsjAIvPrZwDpbffA66xTy1UCwua7DEBvy7Zsy7ZQ3n///aIDItonEkVES7bb33LShfGqiA2WlXEG/uYZ+4QZp8n+YMZy/JwxILdl27bTuU3cGg6HJVnHfj565ezsrHUKRg7Q1fACsKjxeNyyD4yT1gIytl+urq5KEg3PzWazlt3NPOGDE/ghkLNYLFqYJ33MNrgxNOxF5p55ns/n0e/3W/cgGjvyDi7PCdgMeIaxO7dFvy4vL8uJFtRj7MP1Zz3u/zPmwW//zfxlzAB617C+mh4132YeN4/kJHjG5j5kvs/9y2PiHebTm4g8P8a3bVNAE953PCXT1vTL8+P/3S/GYLyR7xgHNjkYTo4dmFaZPvBPxnexS1lT9mFrO3Cbpil+0Xq9Lr4odjxt4VfYZyARAf9xOBzGdDqN+XxeeMC+j31C049+uO4sY1hHTsK0bM54nHnDiYPGpAjosrsVGtVK7nf2S30SISXvyjX/uC5jBnmufTKOMUm3hQ3/0UcfVfueyxsHQWm80+kUMJeo9x/8g38wfuInfqIoERPGiyszzYsXL+Lf/bt/F1/5yldalzkPBoMWkbyosyA3EMtntQUasckshUlhageiYDaUvBdXXrwQ3uAMbTqwRrCg5nCZJgATXvzZuWbh4sT5XRsICD6DIF4EOGP8Xzumx2A/pWle3xGF045j6IVGHwFLUM7QySAWn5ENHRGtfsJ/ZHjc5cBaOVqoe974zEof8APgxzzkLBEvvNwHdhab9zxPVp5kxwN0YVxEbIxO6IkxxnfmCcA6rwH+doCzprRtDAHYmY75OI88V7luaAQAagVuBZf7SV8ZlzNlslLN69t8DX3oR0QboLXBlw0V08bAUy5ZuOdioW2+y4I/15mNtPwM9TDGrEStZDEo+M5BozwPmba85/lzWwDUXjOMGeCX51m7pq2P27NCpg6DpegQ2sh3Ufl58yOfIwPNhxhEgLToAXbL+9gXOzzZcMt87HVo3oGWBsTpW9aJ5isDj07gyaUmh3K/Mo/xvw1U84v/tr6lfv72PJtmuT3eyd/xAz1MI9o1b9q4o17LOuqw0Zl1PH1ApjqA7AALcpD3TTfLqkxvf+cAs0GEbdmW300lO/BODkOfI1OdpetiOYbMsh7J8sFyx3qLHV08w7r0sZ0OxERsAmuj0Sju378fERGTySSWy2WcnJzEw4cPo2ma+Pa3vx0ff/xxCeidnZ2VnV3ZBuDYVXZY4u/gfDqhAX3KbkmceoKTOJhNc3vs5mw2K8mi7MScTqfFvkSmsZPAn9tOtU6znkCXMV/oQdtyWe/id3mXmo9Lpa7d3d1ycgl1OEhqf4Rdbr4P284q/AU/ecdoBiqxr5GrjMt2A7odnrC+sx2aaWjfr7YmbD8BqvBMzdkn8JntG45QhV/xjQ4ODuLw8LDYOBms8S5K5ufo6Chms1nLFmJ8TpqKiBZQSn+ol/+5w9P2FXOMDUjQE34noXY2m8V8Pm/pUwexsYUIyEFT22b4DLu7u3FyclIC9MwVgVF2YJIcwJgArbG9GLuPM8a3cz+dAGy7ptO5DXRzesdsNot33nknHj58GOPxuKwV/NHBYFCAJcZxdHRU+vXJJ5+0gv3MD3ZzPnqNNYQNzc5Wv2/Zal8t2zHwk+ef9+jDXfbltmzLtvy/VTKOaFw0op18hn2YAzj2P+2f2l9FHmFvGkPlN7rDMjHbkNkvrGHAWcbZrkRfeIzs/J/P560AaMYCHExEBxsLyf6zaWEf13b1er2O09PTlk2ITWEMi6PoeR/82FfCuE5OScjBDfQfNq6D194Zi43FHdmMC/vTOADtGLPK80W/bNe6TeM15hvmuoZ7uE/mgeyDMN/0wwnd8ONdOJ31cO5Tnmfj6HcFldzvjLXaxqU+j8F9yxhHDha6/95Qk+1k47k17DcH2YwbGm+pYXMRbUzW9gnP5HnKc5D7E9EOvPEOPGebmuOofW2d++g2sc/5cSCU9Yd86na7MRgMSuJt09zGRjhhxfSyrITe2HLmgRwLciKg4z15YwbzaDvT9WGzRkS5tnIymbSCtPy2f+a++Flje7TnBBnzZA3b81znuJgLY/YazXI/x6w+q7xxENSMtV6vS5bmz/3cz8Uf+SN/JA4PD8sOTv/wrgfY6/Xi9PQ0/ut//a/xla98JS4vL8vxOnkAJoo/M5NmxsnBE5gWIW5lQt0155x3a8XKPQvnLMgQ4jC7Hec8Nvc/YnM0RG2i3U+CWARHTafMnM5ItVIlAGDnCCGAA08AFIHOArGDhiLmcy9UnFDohCFiGkAXG1/02+Mm2Mg7pgtBIObdwgBh6yOW8287xPxPOziZ2fCjbc+BA80uBggBQRz4NRDpjGYEj40snrUw8jryfPK+edOGhoEfCxw+c905KMQ7CFffsWBQtMbzWVhDy/ysgQKAPcbI5xjltTXj/ubgOvNRE76WEXcpafcBZWNlb57is/xOTembBjVF72PdMOqdcZd5z8EY0zu3S/Gc15wQ6sxzlcdi3qQO+NEyII8vB/jJVCLbn10P0BvFTT0GBAHmvPYonOvvo+tsqLPGkHnoLWQcdSJHl8tla8cB8hDQEGMiy2gb5ZRs3JiueU27nqw3zQ82cnPmIPVmI9j9o195rq0TbcRnnW1jm/6glwzoGeDDCOVz6G0Zj7y2I18z5nHaanPb6XRa64r5dRv8th72XOf2cOy2ZVt+txSDDzmJz/rSa9T3DXn95/qoA7uU4sSYDG5Ybngt8T/gDnapExAHg0G88847sb+/X44O63a75SjL5XIZr169itlsVn68S48+kUHPvS6MAzrQJsksgGX00ccv0XeCRNw9Cl3RE96BQMHJNmjF33aOLUuxybOdQOAIGxOb08EjzzV9d7JS0zRF57IrFZr5rir08Wq1KsetMh7a4H8APuaTPjvA6XF2OpsjS4fDYXnfgI7tYIJSnU6n2NHYiC4kV9GGTyNAD1kfw9cGUtBTJJlGbEAYAseDwSAiotgOfGebrWb/YdfkICiZ7hwne3V1VYKM0AFwlfV0fHxc6HBwcBAnJyclCEsQ0Sdu7O/vt3Zv0ifAk4ODg5hOpy3QFTr0er1yTcBwOCzrn1NvCKLCC8wVcgQgiQDmdDpt+Un4Yev1JoECQBsANtv+tpdYY/ZdPQfQaT6fx0cffRSnp6fx+PHjePvtt+P+/fsxHA4LHoK88Y7dbrcbo9GoyIpnz56VnTwZ0OIZ2oWnvF6we7GD6Lt3m0N7xo8/znzZ/iehcWuXbMu2bAslA+gOUCCbkSE+fQcZ5qsMbNsZ1/F36D90jrGEjCFQnKhn/Wy7MvuqNX+VY8t98hVXU2G7WUdkbC0HKLzRA3vM2KdpQL8YMz4uSXLIca4x4HhNBxQionUSAwlMJOI4GQ970vqVJCXb1+ge+gatsQ95zpgYegb6eHzYQ/CI7TloAU9Zn+VAHbTO+FPGyDMGkXkXnWf+sK0JP+U6mL8cY8h4R+Y3+m/aZjsvYzXGlD0PLtAnYyzUYdq4/bwWbGubf01j+z4Zo/LcO8GKPlmG1DBB42DGcmrFOJv7x98ZZ7atv1rdntTIGqdPjMvzSX18jh2Mvzafz4tdCr8gw/BLBoNBnJ2dlTE7eJh5xLyTZY1xUicl3EW3mp3L75zYb5yVNo3ZU5z4Qr+M6Xkc1hE58T/rFfNwxoEtJ/wZYzRG6DWY+eLTynd9HC4BtNlsFsfHx/HzP//z8ejRo0I8M5I7gnIko/NrX/ta/Lf/9t9iOp3GaDQqhPVEuFhAuW4mzEQywO8JRcEgkDPB+W1hAcO4TmdY054ZGMFFfXbIUCQuFtAuFoDQ1QrMbfNdbeeaacdORRYpAAc/0Iy5MkiMA+YMZ4Rcp3MblMPRtXCk2MihbisYZ8naSDCdoDGO3mq1au0+43OMGp7xImHh2XjLTrKfZTx2VqF1DkAgWFEE7JjOWS60wb1IObCbjRhnV1MPjrQNzgz4Q1vzSBZYnhcELf3NvE3d5pms6Gtr12vRTrifoZ82wE03l6ww6Jvb8jvuYzbUHGRz8NBGmuupGTzmLxst2djzWKwIrdisgPI4nUyRlZ75kkAhbWHEZ1owZvpjZWk+MX0pft48UwueOXBao4vryvSyLI5o7/RFPvX7/QJyuu+Wucg1jxkAmADl/v5+2W2A/PDOmGy4kwiBTqCf6DvzerfbLXd2+Rh2j9EOEjsKTPu8vuwc2CixoWp+NN/6e88naz7L+E8r5ovsXFC3v8/vwjfWCzVeYA1kh8jByWwL2E5A/kCrLP8sl3jfMtVrqkYDO4QE3HGQ2cW0Ldvyu6XktYoMsJ0GXztJqmmaAqzwjvnfdiHBJNYyoJBBNJxD2xOsNY5WZS3RpoGVbrcbjx8/Ljs+OZXk8ePHMR6P4/LyMs7Pz8vYVqtVCR45CDAcDkvyFrKD4F7TbI7HxUaw7UkAxo74ZDKJy8vLOD09bSUeIq8cfLathlxHXznQl+UfOgr7fj6fFzCsFtSE/sPhsOzyvLy8LMAA8+BxotsItPmEGc+3j7Jar9dld6CfY7w+1SHrJdsLBFaR1yQdEdShb9RFdrb1NTyFXYQtDf3hBweE0dPoZt6h354LeJlgc9NsjvcCeARsZXcv80vgj/HkBLasLzl2a3f39m7a1WpV7ivjeFn8CmjHvBwfH5edqPABO559vQdj9IlDti184k+v14vRaPSaLQrdfXwyPM/6gH7gCnxOH3ieZweDQYzH4zg4OIjLy8vynec7HzPrI54tr3yVQ8YsfKQg/19eXsZ0Oo1Xr17Fs2fP4stf/nJ8+ctfjpOTk3I8McefMZ5u9zZwPRqN4vHjx9Hr9Qqg7eQL5GDT3O4Ux7f0Grdf4HVt2c36stxmXdq/jtjssvJx2NuyLduyLTV/yjia/Rjsu9p3EfUjDpHn1vPGJexr2Rfl/YjNLnhjqsZg/b1tCv5GLoKpGLdF9p+enrZ0nW0UMBv66MQhJ7xiP2Bj0U+Cosj32WwW5+fnxbayP5zpjS20XC7Lzjb7yNPptIUJk3wFzZ2og20VESXJyhgatpZptVgsSpvGN3xKmOeIeTCWaXwGemL75OBJxsGYS553ydiF6WL8MhfrQGN02TZw++aZjKtAE7/r8WYsLeMKGTOBLhmDzBh0ftdjss0OHYyNuC2vQeYVuxf+qAWTbddFRGuO7NMYt/LvPDfQ2DzjZ3I9nhfbz17/1IvdiA+Q5zHX3evdHm99dXVVrkzABqbvPmXFtnemvfnctlnmBW9Mo3+MB/ueO+dz4p9pZTnLGjW9u91u2eRGWa1WLT8b/9ny1UkvxoNrMhhaGVPkM9431pl1g+fRPMoYLH/eFGt74yAoFeMYNk0TP/ETPxE/8iM/EhFRslBgAk80gQYG8OLFi/jKV74SH330UTmLPSJayiaXTAw7Bv4uA5w4DQRAHVGnDpjBbVGHHTa+c4Ak98vC08o5Az+5uO+eVGhWe94GCv2hzVowiAuxAWEIIHCkj4VM3g1lQeZxAKQYvLFw9RhMU4Pdzi7xD/PEAstjdTDaithBXh+r4ICIj9P1jli+o3hnGd8boMhBVgN7OJkGHPJcA7hxFBX99Pt28HHeASxqQoJ2LMCz4jAdrVDtSPsZC2ADngb9HPRZr9dlvTnjBp6wUot4fSdoVmY2kB0sYuxZBpgXM6jqH2cMGujJ6zmvPffRoI/7k+lvZU9/vFZr/M9v/23F5Pl2kM9tA9ACRmV6Z/mS6WDw1QaQ1zcGLoa5FZ/nzkrXgTraNY29pllnlqt+HtAMWQDARV2Zx00v313X7d4e4Tefz8vdnX7HOx3YhXpzc/MakER/XC98gu4xDWzYZD5hDDb8a3zJc7Xi9VGTGfnZ3K9PK5YjmX9t7GQHwoaODVODfy7ZSK3tArL8qjk+6BQXA4fWcw4CeG17TC7oiuyUZxmwLdvyu6WwNpBPlCx/KDVd4TVhQAw5x3fYem6bwvckonQ6ndbdhDidXBdgeQH48uDBgzg4OIjJZBLr9ToePHgQDx48KMGSyWRSdkCShGLnaTgcFnuzaW6PlMXuoy3kDseK+dQP6ENglYCIT/ag3YiNc9s0TTlqyVnE6DoCWhGbZNLsk9iBNQBheUciBoE8H+VpmxEdb+CL3QjY0wRCkbF29DnKeLValQRA+usg82g0KvqaXX30hbZdL/2zH4KdQP8BM5grbHmexV4lQHh5eRmj0ahFM05pgI/RMbav6AvH20I3jmiFL3xqRfYb8CtoiwKgQUDXiVsOYMNTzH232435fF52dUZEAWmYO+zxbrdbbJZe7/YKGvyPpmliOBzGZDIpwTz7pLzH3HvHCvPLLuqIiPl8XuwhgqvIEe7n9L1EYAyr1aoc0eygO/N8dHRU6II/dHNzExcXF0W+GAegfngFG5p15iQP+oCtRx+YL+zD+XweP/ZjP1YSMMj8Pzs7K3YMvH1wcBCPHz+Oq6ur+Na3vlVoSx+9+9j2E2M0/2eQncLaYfy2O/2D3LkLj9iWbdmW/3dLBrmx5RyIidhclcA7Ee1deZ+Gf2APOoBq/NT4DjakMTQHR3yFTUT7xALkpNvmXU76MCbR6/XKKQX265GZthsjNvrH+IKDKu4TtpKvc0CP+E5tdKV1V9M05RQA+mx7MCLKVRK93uYEj8ViUXQwAdHBYNDqt3FebAzPXaazsWbmz3NGvcb5wJCgBXPJWLAFsCuNPbku4xemTcbEeeYuDC/zYg2LqtWXsT3z/l39YJwOTHlNuP7Mv3kdmA4Zh3MQLWM3xnToi3GYPPY8Rj7zvHl+3E4OUtJ/x2xyvdSZsSPPkddq9oEy9pRPe2GsxoLgQ+QA683Pun/QGxvcCa30iXWF77i3t9eyoaG95yjPo3Fhxk3foLexdPDdiPa9vMQ5HAzGFseGBLcHM+NzEv9I5rNMZwxs0srryfPHGIzD+Vnb3OYh5txzYFqzHiLad4W+CWbp8sZBUB8JhHPy8z//8+XuDoMF7lwWMufn5/E//+f/jK9//evFcSFT1oyQgYUMGlNMGC9ILwQUCpOBgEYQ0UYGOqmf8WMIANQ4sJQFHvW5ngw2ZcCUYhDYwsGL0wLU48aZc+CEvgFccHQVzraZ20C1A6MGZHxUgQ0lB8esxKE1DjmLFHAlA98+Hsr3AUBnsp8AWWwkYUDAFzYQOO4SxxRAhH7RjmliEA/jhu8BPwBuUPIWek3TlF1lteyYXq9XgD0rJfO5HXTvuMOgok82zjJv3sWLORAHX3nnRg6A0lfmn3VWC0z6mAH333MKz9s4cKAkBy+91nnXCjEbXnyWg428S3+ZY8ubbHRlWeHvszEDDXge3vT7VhBZkVtG+HmAEh9lRZIH6xP+95p0caDfhgbFzgbrgM/yEQQoYfgdngDgQd7agDA4Q7FBYJ5jHDYgLQcx9Bk/P+4zbeW5RMa5T53O7b3XBme53By6s/bpGwC25SE0tsx0ANXyMfMr6yAbETV+9Xv5d+ZP15ELNMKwy8ZWfjY7vTZA4Bl46S6DNRt+gO27u7sF6K0BdfTVgf1s5DuYkB0ZiueCvnj95ICpjVKvi+ykoxc6nU5rrd1F+23Zls+jZCfDQQPLxGwPOziFTLNMYH048SDruZwskO0U2ul0OsURs/Nl4OHw8DAGg0EJguzs7MRoNIqbm5uYTqdxdXUV0+m02FuHh4clYIRNT9DG+iXr4aZpSlASHeMg54sXL8qRt9bNBJ3sh0AfgmY+xcU2LP7Wzs5OKwCF3Wldi82MXYu9gGxdLpexWCyi3+/HdDptybfFYhHj8bgc3Wr9lZ1dHG7LNtrgb9uTHBvFTsTd3d04Pj4ufMIuRuQjAWace/PpfD4vSU7wphMDd3Zu77dkXgyq+U4f/Jm8e9N8a/uWoBVzwfqxn4QdRNCT41LxVfDN4Il8OgBtoi/NgwZXPQaOgZ7N/n/s/cmOrElynw9bROQUYw5nqOrqkaRIoCVoQ4ALDdBCG92AoHvSJQlaSIAggBBBcBLUIHtQD1VddYY8mTFHDhHxLRKPx/Pa8Th1St+C9WeFA4nMjHhfH8zNbfiZufs8fve738Xt7W2Mx+NGchZrjWNovZbRldhPvV4vWq1W2dEILziAztojMDibzWK1WkWv14uLi4vo9/txfn4eo9GojMdAE0F/75bsdDrluD/AWoLK2Z6yv8F8YfeRmLbZbMrdZQ7a2581BmAZY9uEYLnbv7+/jzdv3pS5/Jf/8l/Gj3/847i6uipzdHt7G/f39+X+3OFwGKPRKH7wgx/E3d1d/O53vyu8zXzYfzcQbX6E7+AJ1h3AFjIcWQD/wZ/2U5xkciiHciiHEhGNu+6MP0Q0fUrv5rQvZ6zLNh56k3ccAKUO43m0j9yy7LJtapnnAJt1RH4fmybjw5w6MplMSsDAtqZ9cCfNcWpEDryafrZvOcIencfz2BPGq7GNaM84nMfEWCKi6MPHx8eGPTqfz+P4+DiGw2EMh8PodrsN/QrNbQODXaGfoANj32w2JXnRAV7T3bao8UtjlaZzu90uVwaYpsZxsv9g3qC+jDH5HdOOknk9/50xpBo+6DaNA/K/sXPzqPuf+8azOUZizKHW14wpZhvCGBT0ynhr5reMM7lOeMTtOzERe8VYO3/npFO3YQzQ75hn+AFnzcG7jC1GRMEPWVvYW5ZPGd8ydk9CrK9mcwzm9PS0cf2VN2bx22sdeeMxWr5mDNT2XcZx6SvzgmxEVpmG/M2YWe/mZeNdzE2O9XnuzJM+bc2fGxvMWGjmY+OXxiWIz5kmH1s+Oghqh/zh4SH++T//5/HjH/+4dIqB2DnkM0fu37x5E//rf/2vmM/njR1i3r3nRZ0XpAFNhI0XlKPMzj618P3QD0SEISGwjw7wwsjCLmcUuc6sHPhtZzcLRL43mJ8DSZvNptCS+qGDdzziJDFfjCmD014MZmzOvs60abfbJShJm/CLj6TNwU76ChhhgQqdI6JkiPueHZz7u7u7xi7bzWbTOI6I76nXBpYdSDvaBld89JiDJNvtthwJgSMMoE5GF/OEAWOQizk7PT1t3KfD59ADhxvnHnAFmgHgU2oBRs8xdHfQyjuYvA7MZ9nRtlyAH6ysrCiRA8w/azYrWStA84YNXIN2Fnb+HNo7cQGDy3xvejno5HH5b3jHfbbMy0ZLVkiWCZlOrBfTzGCYd2Gy3rxrBP63sWGQFf7Ljob7nY0kyzbasIyCZxi/la3Hm3fsORvM9M0BPq87dg/gJGSDBcNgsVg0gmjeqZ6zM62XMOhZ7xg4+VjEHEzmXdMmB93YbeI16PmkX9RBv6yL+DsnNvBczWDOzqRpbN3kdzzvea6Z04h4Twbkdlyf++Hx+Vl/hi3g7ziyB+CYfhKMtgHqdkyHiOaJBOhG5LZlj9eS1w31+K5risdI8R1nh3Io37ZieYB+tl6zPWoZgF6yrM87urJjY5skA2fINoMvtimy/MGOwQ56/vx5HB0dlePEnj9/HhFRjgnlGFcCXpeXl3FyclKAKOw/7Erk+Hq9LkE7bDQnQKKP5vN5XF9fx3w+b/hJyALvxrQMRy8TrNh3Agf9s02N/It40jHYl7xHVj2AgGU391X7riuObqJ+bAzvhsMOHA6HJfHIgIB1HHY8dmy/349er1dsWWx8dmUul8uYzWZFv8Nf0MC7UuEF6zEHk31MFYFqQESDcfgVDoCbD1erVUk2w9exfQw/+b5RgEfmGR0A2MgcoeOcIDWfzxvr0b6hC5nm/JyensZoNIrj4+N4+/Zt3N7eFr6AT3in1WoV2sMTBKn5HRFlXhw45i5TeM1JSPAY/s/9/X2Mx+NyJLLHNBqN3tOfR0dHZQcrOn29XsdwOGyM1XLEJ9HYZ+M+NyfLzufzRmIefI79xVpEBnrdIddskxwfH8dkMolf//rXBWf4yU9+EoPBIDabTUPuGOQ6Pz+PH/3oR4VGXL8ADaA7vGLQh88yzW3bwqPe2cpnJD7wHoHtQxD0UA7lUCjoU9t3xkQsbzJg7eCDgyPZ38TGykFW+0sOchqwR6/b3nDfKMb8jB8TYMMGwCYg8YYrBWr6N+9yjGjemQn96Au6D910f38fr169eg/vcpAoY5PGsi3z/XwOCrERA7vFNFiv13FzcxOLxSL6/X65pseYjOcOXelxYVM4kRC/2sGbbLtQPzYQY8kBK9qr3S9r3jAWYd1X4znGk7G+fdid68jt73vWNmLG22zXZ5+oVueH+kcdbgca5PXK38a97V8YR3O7fGcsju/yfEVEww6Dh1iDtGt7xX5WxiUj6jh2jWb+zL6n6We+si3qsWZ/La8H/59lgn1f5gHcOa/RjL85udG4L9/zLvWv17vTAJ34ZtvVvp19HtYHcsXJmeahvBEK/s6YIHrC68p8Yvwff5V6vYOfOXHyn2Vsrjv31Wv1m2BuHx0EhUAcSfWnf/qnMRqNYrvdBb2848cT2Ol0Ctjwf/7P/4lf//rXDSIyEBdAhjyYvEghFAAGoAhKnImmnvxD2fc3wZnct33Cfd94XFgkDhjnPjGxLA4cKJg5T3ReLAZoeMY7MTkijOOJDOIznwQFaNvgeG1eYGoyj3D+/Ex2yhgj9ERoesclzhrZFPTdzqMza8j49W5UC2z65O3jdnZxjHMGkQE46OggGwue79j9SSDWWfwYRQgBQH5n0ud2mFd4hv/dTwoCxYrFv01jz4mVQ6ez24kLb+W5zH2m7FtPWVkbVHAdCDvkC/20orBipu8uzI2FNfT3DlrT04aRf7v/pgHvYkR4bFmZ7zMGeQdD0EkDpnk2nnjOQDbfA4ix5gnOA/rlbMN9sphxOdAEv1oewKPZCcjHRXg++J9+2OgyiAMvcP+VFSmAVjacAXfa7XYx1m1YQN+aYrUsApTiO/iI/0m2QOdAL/M1OggeZWz0KTsN0DjPPQZC3n3j52wQZ11p2fN1Rj318n1ug+esC5AdjLtWP8+5T3kc0JXANOOpZXrRB2yAmtFM/cyd32FOnADidWSHe58RVnNE8to9lEP5thZkloNEdj6wCSOaziHryHIae4615GQ5ZKrBGNZWRPPIcJ6lDT9jGbDZbAqIM5/PYzKZlOQVJ8Oh925vb+Px8TFGo1Gcn5/HYrGI169fx7t37xrJJ9lpPDs7i263W8b28PAQd3d3MR6PYzKZxGw2KwFBBzfs8DrD1rajM+sBk9jNBh3R2diE/Pg0FzublGz/+GQVQDJ0HrbCYDAoepNAaK/XK7vaCO5cXl6W8RJ8BHDLNuHZ2VlcXl42bC5sX+zk4XBYnHOfRgDd+T4iSr84qWGz2ZRgJTztHf7wMjs/PP6IKLtGSaqBRugxduyht1kzDqZxekS32y00gua1wLjtX2gI4Od7NGnr8fGxJH7Zp4Of2Gk7mUzKLkT7MQZcuFcTupFkxtUcvIcscFIQYAbrneSws7OzstPUY+YZ7sW9v78vRxAPh8O4urpqJHhCYzLRbXs62cnBaoptKSfOIRPYfZptZ3gwA0fYtpZdBhgJ2pNYsFqt4ic/+Umcn5+X+eNeucViEZ1OJ549exbn5+fx4x//OG5ubuKrr75qyETjArY1+W2Q0cCk5TmBf2MwzBF2kunESSeHciiHcij24yJ2ejz7PvZrbaNl38eBB7+H7YN9aR8r+6/GpuzLRrzv5/GcAzj2W9HTGY/k7kyuwqntTENHoxfASq0rrNsjothdt7e3cXNzU3QPuo2kboKW9oFtK0MfnovYJVVbNzrwhC1CYjjBX8azWq1Koja2DZib7TjohV2YA0nsaOUdYy7Qw5hA9pdNE2O/tsPtp1MHxb5Ffs4BXHjAWFXG8zP+Z2ymFjuwTcd4PFZjC7ZRbWvmOowluR7zN38bj7XvRvFntfVgmud63Sf3wc/at3Bfje2Z5rZzjJ3A+9guNTq7TtYauFie44wrepz5GdYvvG882dhrxhH53xugzNtO0Mhj8hiMH9M+m6AyXd1n24Dwl+faawyeitjd9+lrIaiD/5E17q+TTOANjynTjbo6nU5Jvq3xVc2WNY2MFZuPjA261LDNWvnoIKiP83z27Fn88R//cXFUDCzCGLUAwO3tbfzN3/xNzOfzcqSQhUDueBY2/j4LKTOwJxnC5oDH1wVsvNi8uPYJ8Yh67m+l5gABAABJREFU4JPns4CIeH83DuOFqczsGVTN4+JZZ4p6LqxUHWSxU0dfUZI+Yor6DQ5b+XkhYRT4/2y0GDCzAAc8Yu6gjUEFaOGjnnBELehMRxsXDjRFNC8xB+igXyz42s6nHDjK4L7fsdBkBydgAQHmDALWeCorQ2fN5+ASz1GvaWfB5X7b2LJRkY0GZzdnheI5yP3NiszGmPvkgJH7YAPC9MqyAv7KRhF8bx6x7PGa8/dZLvCsP7cj4HdrCpd+e11bsLseyx7WhQG6bMBRF8FCgMmaksvGhuvNfAftcjZPRBTFluUx4wMAzBlWzI1pTB9ZozYQyEBEgXc6nQLmMQe88/j4GDc3NxER0ev1yu4TnA0nFjCXOWiL7DZQTRIGusFyIjtl9IvjhcxX5gEbDvztXdeW5dmIsvykfu/O9bO5ZP3qtWle8v81I9f11xwHFwN4Xk/WUxhnTm5xOwYpbRTZyHW/HZi2YwcPZBnH/+g/H9vjNes+0FeeQTabHodyKN+2YrvOCRIU1kJ2AC0TeI9EPR+5aZ2NbPK76CAn4xnwcbYoz9h24C5PglIvXryI9Xpd7gbcbrfluFXsWtc3Go1is9nEzc1N0ZURuyNZ0Rn05eHhIV69etU49ta61DIJnY/uQ0bY3jOYxX1Ptn0i3k+qitgdfXZ3d1eODWNXoJMWkTtOaMz05hjU0WhUTk/gjkhkYAYQbL9gxzoI5XHRD4Iznvt+v19A0rOzs3KssY8vRe+jt7N/eXp6Gt1ut9AZ3Wq7pN1uNwJD9mMILsJT8Dl1kfQFTzh4zHfQyjrg7OysBLBJqIIfHABHXzOufGypQRjWDsfU2s4aDAbx/Pnz2Gw2MZ/PGzYfgVp25DqgS/AZfh4Oh43Au0/iQbc56RnAhmQBdKXBbdYp76zX63J35nK5LLuE4UXmznqY43E5utZXiXinzHb7dG8nbftKAuxXB/XhDZ4niTfbpPa54S/sZQcEfvCDH8Tl5WWcnZ3FP/zDP8T19XVJWOj3+yXR4Ec/+lGRI9kXsMzNa5/5cpKDgWR4keA5/M8uduYQGo7H46qtdiiHcijfvYLcMIAfsfMPfYqOfSHbPGBufIZcyjiBQWzjc8ZZDJDzm2d8Yoh9Se8upFAXuteYIME97nTHnsr+YsZvcvJ6xoBIRp/P5zGbzRoYA22QzITdbFsp41rYBuzgsj41PTudTtkYxFhvb2/LcfVnZ2cxn89jPB6XfqP/sZH5bX3MiSroK+wf+pwDmXn+sp8BvTwXxlSyDVPD2T33xl6MOcMHtvGN42WeNM0zfp19eWMDXifGn00bYz6ZPz1m6sjPw9c52ZDftk/dRm28btvYoNfUvkCTx89cZlw04x85JmAcyDaW14nfyfir5ytjt64X3jF+ar+KOpzw6E1Oxgkzr7AuO51OzOfzWC6XpU7qyfTIAe7MR8a+eZ46mHfsYNt+niPjpq4jY+227TNGyzPQLvM+/GmblectDxlTxvAp0BGZZvpkzDEX2swY/seUjw6C4qA/PDzEj370o3j+/Hkj09MTm3cFwcy/+MUv4he/+MV7Dr2ZODNELjUg0QILx8sgs4FU6q1NJH3hd42gWZib0DWgmPb4saAx8G2amDkyGOL28oLyHUF+nv4TBHU/PVbAHjvkFiQGo/g/094ZXhFNxeaMYwv31WpVnE6OszTQYnpmIRexcwgtbHHynEm7b9ymeTb6oEMGswEuED4+p9/9ZcFDDwIq0MLP8pzvYsjK2tl2zLWVug1OlwzwG/jnOwtIC37zIgZdBkBtuOYxmcb5Ozv9FqS07zHDfwYgaorQitVzmpMOch/oh7PBWS/mQysP15cVf+YHgNraGmTOGLN3gPt5z5sVu4MxXiPeSeedGvBABqT9vnfSU3x0n9/J6wba5Z0Y9NX12Vg2PTzWiN0uAIO5lidZXrlkxwNA1UeOQSeSKTabTZGHAErwE7u7LZccBPc47TSaT1h3GZz19x+iiRNZXB+8wVhqtM/GBcV8y3uMzf9n45U5zkaWs2XdbjYiszEEoNnpdEp2LvV63rzmPBfmsX1OB/Rywgt8leVl7t++sfu39Xy2eQ7lUL4tJa+dnHhQSzJiTeD4oWtqdjTFdjd6x+AXcsC2ITLMSXUE2+yo2vbk/k+vSwMrBA7RJ6enp3FxcRHtdrsETvFhCOg8PDzEcrmM29vbmM1mBSizjuO3wZdMu06nE8PhsAR+eH65XDZ2f3K/EnrKNgG6laRP6IINyqk7w+HwPbuw3+8X2wn9iTwmiGUwz3daOsmUqyDYOQg/sBsz20beHcg8I8ext5DpDw8PJaiJzWL9GLFLSrHdaNCQwJ2vlvDxwLabnW0NPaFPu707pQWeRZ6bb+EZ2rLjj218fHzcAEeYl8wvtIHtxXrA/oXn4G34/OzsLAaDQTkF4+bmJubzeaHr6enpe0f7ctwv8+DrRbCpeN7zw7sGqRzc95jgaWSFA78kGZD8apnT6/ViMBhEv99vXPfS6/Wi1+s1dLr9zLwjhrlmZzBzS8AdGi2XyxKQJKPf/jf9dwCbdc88ffXVV2W38Z/8yZ/EYDCIP/mTP4lf//rX8erVq2i1WjGfz+P09DR6vV786Ec/iuvr6/jNb37T2OmNzLEc9jo2LzJW/Ep40okFjAc5AZ/Ds9DpUA7lUA4FHZwxsogdeG/ZuE925M0f9h1rWK91PDLJtpN9X+MYGdM1DuC2sRmQ5VxVhf262WxK8g8nBtB/9FbGGqGJ9Y5xjclkEuPxuPQt61X7ylyNZfzLbSGvjVFkW8Knr7gNdMpqtYrlchmDwaBBV9t99BE7lM9JlDItsQugXy25HNqhk90GfcdGyrxgnyLbVfYbPoT/MUcZP88YE+/bV89BHOhOyfhWxp4ynppxwdoay7hvxrUYr+ma6eIxZvyFz7yJKvOn58a0zSXb+rlQH2vnQ/2DD+Bj+4fwsjF1J5wzfs8Lfd6HT2WeMUaYT1zjt3FG05PPwFxJrrPcwr4zlud5YQ1m2tkWxPaHL1ib0BVb2GsAehizYszQ1n2FFvjB7mNtfi0HXeijE2osv71GzRPUmQPFWW9QLKfNbx9TvtFxuA8PD9HtduOnP/1pdLvd4lB6lyXOEgILIs9ms/jFL34Rs9mscbwgE8dgPdAMRO4rZmgWCYCHM2VMTDNvDWim3vyZ+5LBdgswP+MF6Pap08Euv1tjOmhiIZWFtoWtgXoUtUFnFBIACEGFrOj520ENFokZHUUNuMCdQF589IvdPlwObhDZY2chejdWjTbUvd3ujszNQUjog1OewToD/tRVUwBZmUJP714yz7h9doE62OxglY1LA2me48yDFvQ1fkd45jq3220DOPJaZl16FxRJD9xvRDtZ0Zpvakqektc3At3OfVbKXgPOrqK+DLb67qvaPLo+8xK87Pn3u9DQOx4cTEMG2hDEAIe2phvPO9uQefGdRPTTss5zzlrkHfrlzEj6ZCVkJYwBbLqRdRQRBUxizmjHxQa66WH6GTQ2sFgzYFmX9IMAJXWY1vwA+tFfdq2jy6A38+a58A/9JTPMx+Bh3OXgGWNhfhy0B4D2jhe3x/8keMDLOYiO/syy2nIoB9ehZ82gsEPmkg0z+JK55V2erTkkea0ZULajxnw+PDxEv98vvG4DOffHOsH86DnIMsyBXY7i8/p0ANd6i/7aYKaeTGs7fbnfh3Io34aCnM262DrWpyrYVqVk24P1mPWLZQZBsYhdgpUDTBG7u/d8YohtN3TAYrGIu7u7ePbsWTn2Hb3ikwusPwiYeLfn1dVVPD42r1qYTCZxfX0dk8kklstlGRc6drVavSfznRyK7couT+9mc8IEjmJElCx/ZBTgF8/aHuBd77CE3r7n0bafbQLP92q1KjonH5tmG4656vV6JVCKHiPQzDxnmwja+577iJ2dH7GzNQga0j+feoJ+Z4clstu2BHLaJ6+gG9n1QN3mVY6E5X/f+QmNst/p3YYOQuEXGXQyGOIgfQb3GOPd3V0DfMS/YT6226cg6MPDQ5yfn0ev1yvzzNG6gGYPDw/l7tGIKDsUDZIsl8syRvQgwTRsQu67tOxwIM53dzNeAm70m+e8Rh4fH8vO7evr62i32zEcDqPf78fV1VVZ09xjhp1qv4VxIGOQYdDffh2JBvAd82v/DT5xUqjlH3JgPp/H27dvIyJiOBzGZ599Fv1+P3784x9Hu92Ot2/flmSKFy9exGg0ij/6oz+Km5ubcmoJdgrr0LKKz/nNujEwB22NMRgwzLhF3ll9KIdyKN/tYj/TeslgvHVfBp8tX+zzZxzO7dlfy6B4xA5PsB3gujI+Yzsgg+IkKxmDRd46wJj7XAtcGOfAVmi32+W6BHSa6yIBzljuZrMpG428C5JArRNkwE6xMekTiWDQEYyCfnc6nXKt2HK5LHbYaDQq93EzpoeHh5JMaB8A2w57FJ2JTQiuQiDd+IxtAdqKaPoaxqdtR1tnQxtjr/CB+cc+h/WfcQn3w8V8bz7Nz5qvPNbsE7i/xpnoS63e/B3/O1hm/uM9v2uMPo/XyaT2/7KfZ6zaaz/3M+ORtmNNJ7eTsSv7fsaWsK0dDHU8wjY3c5D74zF4DrBxM3+QjG+71bal8W8n4nF1Vw1nMxZqewy7r0YbxpLlrWMx9rH5bl8dPAdNsCFN42wrehwZV/Pc1taN58Br3HThPftD1GGsLvN3RDTs+hqvfah8dBCUhofDYfzhH/5hA8TMC84KAUfo5uYmfvnLX5YO28FyBk3E+zvFYD4I4gCPhb2VjeujmIlpxz+U/L+DHJ4c70wzjfIE5v+hl6PhBtFhUINOzr4yGGTFAB38v8Go7XZbgJiIiG63W44yMMCfAaqaIwWdAKMcZDGQwXcYFyhvghF8bmPLtHSgA1qg2M0P/PaYs4JttVqN7AzzimlL9rlBbp6hj96ybT6zQLLyBeAC0OM7gnRWQKYl/SdQzTi80P0ZdDAv8pmF7GazKUZMzqKwsMUwdODUgtY0NjhnvnQ/oZdpwDP7QFb6hJFlg8zzYkOYZyKiAcg5YOS5j3j/zlB+2+AwcGij3OOEnw2AZYVgYJi+u2/wGDKSNWClZMA4ZxDZyLHR4kxx81GWg8gA3yFm0CVid+eDjyAz/ztox98GOp2sggyER+7v78uuFDsJ8BTGG4aIFbF3nGSZCM+x89w7svM6t3y1E9JqtcrRugDh8I7HQHt2lszzngfa9Rr02vLcW9/4exs3Dg5Td+adzHOu123W+uB3mIP8rHnUdoHlArS1/LfxCc/YQPOOJM9J3vWaDTX4f71el2P0qCcnctmesXEG39ppZ2y2axg3Y+WdQxD0UL6NxWug5uwgt7EPs73Kc9ZZ2FIRzYQX1of9BsAjPndyJfZCPrqT0m63y31EAETI5PPz8zg5OSnfe4e512qum4DGF198EZ9//nlMp9Mil+00t9vtktC22WxKoCrTtt1uF0CIbHrkHvLT9EEHekcnCYx5TugTwU5sTOjp+6pNU4MWvV6vQfft9imRcDqdlve3220JWFLyPTzQAeAOuZ0zzuknnxn045n1eh13d3dFR1s3nJyclASZo6OjOD8/j4goAB/6NgM8BOnMe+yMg8/gVwNxjMWy3sfcUmwzs/vw+Pg4ZrNZmZ/ZbFbmF/uAteZ+o+us7yJ2V4OYD6yPoRX35KIb7ZPwmXd4+pqOHAClbZ5n9yyJAiS7ep22Wq3GztrNZtM4no8AbT5WF590s9mUIwQJyl5fX8ezZ8/i4uIiBoNB2a2EDGH3MO0zNs+laYiO5qqVo6OjuLq6Kmt5Pp+XMdpOY76cuPDw8HTv53g8jlarFT//+c9LoPb4+DguLi7KsYjcwzYajeL58+fxve99r5EMTME3xI61vCURj3Vj+8K2oueYurBxWZsEoA/lUA7lUHzMunVfRBQMDdlifCNjp7YzjG0hO/2s38+Atut3MMO4CqWGyRrvaLfb713XRV3ZvsMOyMEJ6rath63Vaj3t9vc98w4q+KQxMAjsOPutGasi2Y5TSaApSUzYl7SHDWZ6ea6Ojo6i3+8XnekrH2gLncIRodSB/ZOxf8ZiGmNj23/w3FCnfWaP2xib55H5sO3ja4doI2NIrju/737xufWxsbJ9ddgedLvGJulTDsy6uF7zme2x/GzGpI1bOGBlzDLjTW6H5528Z//N+J1p6LVmenm91oJsebw1PAwbk6SwfGem7XjT3zKshndG7E6bM/7HGuN6QGjMXBuH9Zx1u91ybDS0492M9XpOaduxm1psBHuZ52p4IjxmO9VJCP4eLI+27Utl+uaSdYDxWLAAr6c874zBstsYW5a/XkfUUdMdH1M+OghKJ3/4wx/G5eVlQ1DTcQvuPMjPP/883rx504joZpD264oJacEOEJ8Fg0HemrLMwpDP8mRb2Vl4ZGXrYqZwHZlRWESebAMCpk/NAMjtemcRCgyGQWkBBKCw9gmsDJbQlgO0BnJoH6U5n8+LMYVCdiA0786jrjyPGAj00U6d+TDPq4EMBy8jmsCGFw5GAILewVYLYWhiECSDX7k/CM0czHQAyY6pAwQWfH7eBlxeQ8wZnzuATr8wXKjTIBh0MI9k5W+jjTYwjt22wTs74aYR9KGP5m8bSp5X09zjMuBjYZyNXht6BpPMg1YYjM+CuWZEeUw87wCxaegf08TZ7V5z5gMCzw5qwTe+n4r/M6jmBBMDu5muvvMLwBrasHZxjmxsMN5sBObPMkBO8VrAEM/GKu/DLz46LxtTKHt4lDvJ4HEHUH2fGHLMzoqBdD63Ee41C11zIg1z7mB1XmeZjt6FCi0BXs3rbts/2Uiq8a8z7DI/ZNp/TMlyJxvAuR4cRDJMbWS6TvfZgRVkMv/nhIR+v194AF5ljqGtjUvrP+tEeMBrNzsWHu+hHMq3rWT+dOa1nVfWoIOG6Abew56t8XoG4COe9Adgie/etE4wmBKxC/T4WH7WGjsHSfBDRhDU9FUL2+0ucEifcCw3m01Mp9Nyh1NElN2hTnDxbkbfz0LQlXase/ibsWUZaOCKgCk7+NBRHNOLPuF4Te9qs72APvART8g0xosu2263JQHp9va2HKMK/U9OTspJQNvttgRPkLHW7Q66+X3mdzAYNGSl79dEl2Y5DQDipDjeZScFehw90Gq1StCxZmf4ePysfx34pBgsYe3w7nq9bgTG1+t1DAaDaLVaMZlMip1AH+Bz9A/66/Hx6Xg8AmPMXQ2gpp++qoDg8HQ6bYA1rB/bIHw2HA7LUbMEWOmrk1bhnQwsGhzie0AQB/jsX/juUYOsrEXmkiNdoQv8Dojb7XYbwXHmnHXrde/ENY7Gpl3kAXfEzefz0kcDT3nnOvUuFos4OzuLN2/exFdffVX6c3p6GqPRKFqtVtzc3MRsNit0//GPfxyvXr1q3INrWWn+Q25BX3wX29zQ2XiBE9FoA3+UcR7KoRzKoVCMC2YfxvLQtotxNXSx/V78Jup0Aiq2g+ukZDzFn/kZ15m/Zzwk4OBPe4MHv7Et7PtRB7+Nz3CyE7v9sU+Rz/x2oMLYKrYY8t6JLxljcOINdo53hdomQS9hxw2Hw+h0nk7xwM7bbrfFNiZREB2IjiB5x0ccO8BIHyOi2KTwiXW6cVTTzrzB+B0grM0n70DLiN3GKePtxiP9Ps9krHFfsDRjfO6XPzN/ej24PdqiH9TPuznI4+Ikd9sLmQ7GKY2h5GSpms9mPoLn8nzk/mbfw8/AH/Cl6cM4PAf2Qe0Pun/YfD66mvqoE/rzrufAbZoejIe1x7rDxqY+83wNW2OjRC6eL/rghAv4Nfvg2+22XA/FtScOSDvJwFhwlqXQFPvbpyMhQ8Fb/Q7jNE5t25S/Mx2ZF7DKiN1mGtqEpuCb5gEX/5/XEfV8LC4Z8Q13grZarfjDP/zD6Pf7RdlZWfh8dTPsdvt0V8Z0Oi1H4TK4WuDIBKZYIVEASn2sVF54CFULgI8hkJnZ/bRzUiv7AlIWTAYE3F87PDYYqNeLIRsJzjIACIAmx8fH0ev1irPIcQ3epWQGR1E7cGUBDriRle3j42PJZl0sFjGbzd6bZwIPCJUs6Ny+gxqmYf4b3rBjSx+t3OAf7/J0O+ZZ0z7vijW9yLjH4UaY1YSH+Yk2HLywIYFRgIFgQxE+qSlQt8EPzzlYlo0vG4c5oAK9Tbua8jWf+q6wmuGX17jv/DGP8Z4D4R6z+5Hrz/TJCpS1lpUwfc7Cl/d4xyWv60xj98Nj93cG5hwURMaiQFjnrG2P0zKZAsAEkOq+OBvTxx4zVo+ZZ23okEyxWCwK2GWlyhFt8A7vWZ66DXaAuh/whYNhEU9KFSOAz82jWXYDBFEnynqxWBSD3/SEblk2AeJCC9a8+cIGsR0h99VGivkr97vGf4wnO40OCvgd+lRbKzY0PDfQqVbMy+5r7ncG42jDn+U2TWscMgdNkLmc/EDAFl7Mu8g8nxFRgE7mzLoLG8by1EEJ+me+qNkrlqvWgTWZciiH8o9ZbANZp3rtI08tN7C7SA5hHduWiIhGwMXywnYJstfrmkCD5WSWN9h0yOGHh4cYDAYxHA6j2+3GcrmM6XRajiWzLeCgITbKcrmMN2/exO3tbQmokiQT8bT2l8tl2Y2I3MjgTq/XK/TKQSPkECAX9ETn2YZwgJa/T05OYjAYNLKhLeugGeMieMTzyCXf0egdnvzvoCPBqO12G4PBIHq9XrH1HVxxMNP6zr8jdsePr9fr4o9st0+7T9klig4geIlzTGAU3oJWDjpCVwK0Ps7Wu0oZI7R1Upd1iIFH6wWejdjtSEb/5IAfyaAOtEI3AnXY/vf392UnIgF1J90wNu9yZtzYXgZrOMbZR/ayDshwJ6B/fHxcjqOFR623AIK63W7RvQY0bTfxHmNHbkBfeBG/lToIBvpIXftR6GonccKXHO13fHxcPptOp0XXw7fUTXDWCXDMdb/fj36/X95xEoTtWeQfu2gIhF5fX8f3v//9uLi4aNgEyI7FYhHD4TDOz8/jk08+Kf2kXuRE9tvgBR+Lnf2M7A+7XtOTIOihHMqhHEpEMxHOfqMTqo1PoAPQvwTKInaYovW/v7PthK1je9O4o5+jGLdxsV1ozAz9511hxspsmzqYQn+zX4ncXSwWMZ1Oyy5NbD0nqDggkn323A59czAGDMf2jm0Zn5pxe3vbOGq+3+/Hy5cvGwEjTmZA1zp5KSJKshnJRk46w4Y0rf29P8O+p7/eNEPAhd/wiPEu67dcTEPzQrZzjAtn3zyiGXegTvNc5jvew6bh71pwzXzE83lTRsZ7cuDWfOx28o5qB3GNyxhHqa0fz3v+ft/a8/o1fp77bN/IgUOv8yxv7OvZNzWOwnMkk2L/+jtoYjobR4ZP3RfLNddjbNT+nK84M65MYu/JyUnxJ7P/YJo7qcBtOzkuYpcI6XlALtgnNk94Psz3+IgOoOLXWQ9Y3htfh47ui+mTsTN+Y4/nJBifsOpNZp5z45t5Tk3DjynfaCfo2dlZfPbZZw0Dm8Gwsy9nciCcF4tFIaSBfIMDLgzIQtWLBIcvZ2bnBeoAh+v+OqHqyfLfNcHqhWZmc1Ys/anVbWfUAYa8rd6KPAtvt0k2Km3wPcFrgxIGUJgPnFELUPoMIIJzTMBjsVjEYrEoi+fu7i5Wq1VjzmkPR9H1eoEhxOwk8wx12cjyQnNGgnkoz7l3c+a5N9151waHgaqIXYZDDcj3/FhRRuycT/MvP8y/gRiAgzx/rjMbZpT8v4NJfI+xQrvQif57bH6fvkB3PwPd8hrfbreN48QwsLIypy4Mrtoas3CsrXP6ZUXm7CzGwHfmRdMOnspBEhtDNYVteuRSM0Z4z3LPxiJ9cR9yX2oyx0qRQDcylPboozPDcvDQxoGNEPpLZiX6ILfteTMQ6f476yxiFyRHwfMe/OP16TWQDUH/hm60NZvN4vHxMQaDQQFXoSu8An+Yf2zgOaiWxwHfefd/luVfV+gD7RqQs/GRZU12NM33NaOyFrzMutX0zDIRmtXWkdvKjoLXaD4O1/0zf/l+QGRjNmiZHwB3Au2+3wSjy4a4Db7spOR5y98zjszvh3Io37ZiByI7O9kxtT1UWwPWqzW7AB/BSQl2eFmDToqyvcFz6CgSZzjKs9vtls8fHh5iOp0WOY9cOzk5Kfcmojdev34dNzc3cX19XWxQABvruXa7XU49WK/XpR2KT7OgOFHPCTi+bwYQywE4H1FKQtx2uy12uLOgHfQw7aGZg3gEfNjtRmIIshV5yHiw0bC98SfY8cDvfGwtAbHBYFB2r9qOb7VaJYhHvxwwXa/X5Y5G28K2f9DH8AT6F16kTu9MgCYGGcz7fsY6yTqWeTKgN5lM4ujoqBzfaicfvwe/Gf7ZbrflGOVsY8A7TgDwdSCMz/YJtLNuz6cbwGfMB0FmgqEEcpkrAunwuq+LgNdsM0IPdhcavEFmMC4f7wf/EpQmoIt/4Lm2vwifdDqdePv2bYxGoxgMBvHixYvo9Xpxfn5e5uPt27claQ+7wYm2tm+xabvdbgyHw8Z1LvYdAZAZJztV5/N53N7eRr/fL7xkexmeGI1G8aMf/Sh+//vfN/ri5E/LXZIZAIxMF4PctlvsC9XWds3GOZRDOZTvXtlutyXJBh1rfzPrJwdeDLZTV0Q0/C37VA4G2l8zJmGMoIYnZMCf59w2P8a0MnZgvARZmGWoAwJ8x4kN+KokvjlJhe9om/Ghl/P4I6Kc3nV0dFROzTC2yvPoEp/gxOkg4BlgGsYK0Pfr9bo8w/dg0r77M2OvBEihBxttsCGxvSJ214JhC9meoA/G+KEjO2pt00BT+yDGyG0rZmzEhc/sxxg3MOZhfuO5D/2f8VX32fyWv6v1z2sNm8hYkMeQf9w383SOJ5j38vMfokMNS87Pwd+2feEZ5tXvZvp4DTpm5DHiV9knslxijG7PiRDZXzI2aWzadh/30eNbwKfQhT70+/0SF8kYq30M94nxUQfrh3aMAfI//la+YsW8xdq2LMfHIhEzX+timef4V+aD7P/XinnNvO01znOOAWVe9bsRdcz7Y8o32gk6GAzi2bNnxXBHcMJweQefFxzMGbHL3mXgudM5MJB3PxG5toLZ12cHInI7VtQfUwzKwHgZcLDDUgOdrYitjL2gfcyTF68FKP3JW4u9AzQHi3zmO4XFQkDEWRQOwngs3AUzn8+LM0n2q8EjFhp1M3cWZi42VAwiQWM7dv7cmfbQJfOV54xFlu96yX/73gAL4ZzB5aMsXYfXAPPtBc47Dmya5rk9xu7vEXpWHg765oA9z/jCchsLdrYBxTyWHACzY88cMUa36eQBG24ZqPLasXHrAIkVlkG1rMj9v+kHoMMzXg/56IJagCgrVtMkK1KPxTxb4zvP+T65ZMXKWkb5ue9WSPzkICWy23fg7pOp2dGxUiQQdXZ2VvrP0XQGiA3S5gz1zWZTTgmATqZlVsjwNvI2H42YFa0NBORhvmMJ2eTdRA66mv55/cKnOAkZWM28wThsBJlH9oFRGAbMF/IfABDHwTznOcsy8UP98buZH7z+av1mzRlMhq9MD3SEv2eOAEcJVmR5AO19Bwhz4DXvQIfvwLZe9r1k5qFslEEPZK/nLs9Z1lsfmtdDOZR/zGK9a53HdxHx3prx5xHNu9lti1kWZdkUsQOxkJmWIRE728m6HLmBvAMkGg6HxabNiXmdTqcR6Ds6errX6ObmJt69exeTyaQEYxiDbVQHfubzeWMXunWi7UEfFYxtz3fcMwMABKDEcwQnkaPIO9ts9KvTeTrejOQQ5Kh3WRq8iojo9XrlaFscdYLIzAtz8Pj4WI5P46hXgs+ApdxzGrE75tg633xCEBa9y3gdICawCsCwWq3KMeY+Jtc7jdmdyI467+6jLtu6OP3wkO0vAykeC4Ep60CeZ5y0Qd22x7DRAUQ2m02ZN+tL8xRjtT7OiQQOgNrPAYw0AA3wSlteq4vFopwmxJgI/nlnbrfbLXzo4PjR0VGsVqt49epV3N7eFp7BzqePnhf0qdee/SvGy7ql/36Od+fzeUyn0xiNRjGZTKLb7cbFxUWcn59Hq/UUAL66uiprGACIOYRGrH/bdgQMB4NBudcT2WJb7+7uLqbT6Xs7XGwreT3c3d3F1dVVvHjxIqbTacn8t291dnbWOGabfiI7PafgJQ6S2v4zjzG2b4KFHMqhHMo/3YLc8LHtETtcwbIam9D+O89ljMOYmk9XwNbIGBHPGtOx3+26jQW5z7aVDKTb/6Wf3gDgcWTg3zvZuLcamZ5xQfpNO06WRmejX7HlLJfpB2PEhgRbxd8FE+c0hxcvXpTxorcpGR9hrgmuYt/xLDZMxgeoh6QeAq7YfI4LYLMb87TNlZOo9vndnnvrMOMdxqboY/Y5PPf7fJI8d/vazO/aRjcWkeMjtvNMT/7OGDl08ecZj+VdY9YutJ39trwe/K5x50yrXLfr8P8et203r/2M8TIPGYPzuOmTN1z0er1i27kN08drDFpnPM7BR4/dPvB2u7sSxDsnTTPsZdYC2J1PAmLdORGf8douhm72gR0Xyvgnn0Ezx3tsw7bb7VgsFnF6elquamCMtTn29xm3rtEq8wWfM2+M1bs/jVV6PWRcnzb57EM8mss33gna6XRisVjEcrlsMCMO53A4fM8wb7VaMRgMGqAtzhuAhQWHn7MApi0mzgTKUWD+xslyBouZqzZBftfPAqLkoAkLj/drdebMJUAJM4TpZiMiR8PpT40JWCwRUbLjnQVtJYoz6ePHABgsOGByQGmAJe78tEBzQIoseSsk+rDdbgtAk7dxE6ShTgdOfRRWFsjmoRyMytnDEU2BRbu5GMDI81cT+LUFmIN8rmuz2e0AtnHkeXYmlUE3Z0ZlQ8LGmPtPHw3U2cjDoWe9wBcGTBxYMg2tjKAvQo2++V7HPEYDsTyf109N6NFGNrrhP3gYfmdtoNw8tjwWl9x2BhasjKBpNt4zj9iA4TMrGSsXB/1418axswrZIe8gJc/SL9OV58xP3u1jwC3PhQOLlhesJxwfdoyvVquyAxonix8fg+ckD/rD3/TZtDDdoFPmD/prQ9nGPrJvOp3G4+NjOVaNefK62m63BShl5wI/yClAq8xblpMulrv8b7nh+zj43o6VDaDMr6bZh/g698+8DY94JxNBYCdBsdYyz+ZdOC52NOk/x/Ll47KhQx6zg5Y29AEVnSXHzhfrBgr1O4jDOKBNbc2ajtlRqTkkh3Io/9jFOsrrnv95Zr1eF3vS9idrLu/YRj74PklkleUXa8wAyXa7bdhFPOOgEkGj9Xodo9EohsNhCVZhR2XZ7qPM7+7u4tWrV/Hll1+WwAPjIPhjPUIdjBfg6fb2ttjC2b7MiUlO2HBgCJnEGCKigFqWW2QeOyBHpj6yjjtjsLF5Z7vdlsAVVzgY6KE99Bm67e7urhyn2u/3y72GfD+dTsv1FxQ7qcwdx60yNmQpv6GLA6lZ55hXHh4eyk6HwWBQ/BjAuNls1gDe2u12zOfzODs7K7rbdg3gAzTPR7bZzmBuOfbX4JYTyZbLZVkzHIeFXc1YcqAY3nU71Oc+sQ4IcNreoWD79Xq9cp+X9TZ8Sd/zveu20bCXqZ+jdZfLZaEB/f3yyy/j9evXxZbx/bxOHoiI4iPat7A+9c5k+xPQC9vXQdu7u7sYj8cxnU6LLCGIf3V1VQKZ0JKgpTPokS3M1XK5LGuQ+9V8N7Gz9AHHF4tF8ZuxCT3v8BTH5z579iw+//zzYtMwr9DDCXe0lWUdn0OjbHfYP8k7IWqg66EcyqF8t0pNn+WgEP6crwaI2CXkZF+JOhwMMdhtGWoZR3+QUU4kywEm2s94bMZysSE8pozDWG7aV6VdggjoHPrgDULGHvDRF4tF8XUdbLEepz3wK+p2kNgJQRFREtE5scBH86N3sS+MiRqX8FzjG6PzO51OuXPb9jrz4aCj/XvziW0a08ABKgr63RsojOEan7KOxGYxVmOcy/Xnua2VjMPlktvP7zJ3uR5jCPazqLOmi518ZxrvwyI/VMw3mb/d568bm//2GjIemW07z5VjQS4ei33OnOhF//jf/cbW9y5pjyfPqwPM9DnjdPzv03Kov9vtNhJPbYd1u93YbDYxmUxKfcaxqNe4u8dpHmINITOQR8Y1KTybbUmPg0Tcm5ubYpvmzQWMA7mZ8QH6mmMRnnvT13hulsO5XmPL+9Zt9ic/tnx0EDRil3EcEcXxpoNHR09njg8Gg/cAz4eHhzLxnU6nATDkhcvAM0iKY4Gj6+c84SZOjXG/rtQEXgagc9+sXHO7KA4LeStufjuCnb/LY/Sz7s9ms9sZxl0mCAEWEv+vVqtyETYLzkEHngeEdnawg5u0yXwagLIQMdiFA09bBrZqQof5c6Aszw8L1gvOxSCRFYQVjdvPPOB3PPfOUMEwycaA+4ARwHPQyoEFDBAbB3aeqcvGpT+DXlmYeK25bx5vTXga/KEd08uB9yyoInZyo91uN8AMj8FCNAdqPOc2CE1Tr0lnlhhs8jxTh+/Iot95HdsozoZxjS7mkWxkUn828vN7fndf+9k4tsIwHT3frFH3xT8OuFk2eL49Xq8fFBXGZ6vVagDg1M1aNe2zc2Qe4DNnn3r8lssGKzON6SvtYjhkxwOjG2dlNBo1+sP4bOBZPsHnPGeQE5ohV5295rULLyCHkRumt5Mj/HzNsP6QUZwNU5csY8yXmScZu2WNedgAtturtQudWq2nQDLH4QGoMn4n79B2TrTabDYlCcgBDPrEkZM+GsiOYi7WO6ZBlvW1vw/lUL5tBTlKQh9BOOtRdIFtxIjdemIdOBnR9fKdZWjETtaiJ5AP1EE/0Blea8jZ8/Pz6Ha7JQBKNruToEhmQd5PJpN4/fp1vHnzJsbjceNYbGexR+x2BeIwQjNOyzg/P4+IKCehIO/spLZarZLMwQ5M+t/r9WKz2d2LxBGi0B95h85kDrJtT5+Qg9a9BFojonHiC74A9x12Op2GI+9MZQI55+fnReY/PDzEbDYrR7TZnkVntdvtGA6Hsd1uy++Ipt3iRDvojZ5wlvXj42PZuQpYwJ3e2cl3QiDjQB9Tt+0bkvQA0OyXWufxPscuM1foN+aI76A193did9rf5fdqtSrrgHapi4BrBq98Pxun/Vj3E/wcjUaNe3GxS7L9hI0IwAs98Evwc9hhSiY5yW0REfP5vMwRfiinVUB3QFZ8Aq8Vr2/uVYLO8/m8cdqD7a5Op1NoCE8zpqOjp+Pw37x5E8PhMF6+fBmj0SjOzs6i1+tFr9crfDefzxv2C/Obk0Tb7XZJ8CYZgKAqGAnZ9fAtthl8QLsPDw9xcXERw+HwvQROfGb4wYF3J5o5Qds+EWvAtgjynjWXcZRDOZRD+W6W7NM4eID8ysB7bcNAxM5Wsk6kZB+QumzT8L4DDsjeHBh0GxnHMX7oQAnf1XR+xkOQxavVKmazWePqLrBp9JwTmiJ2wTnbgu12u9gL6IvNZlN0InYKtDC2utlsot/vl+sS0NnguugGY4rY4e4vfq8Tq6A5iU6mE7aDE+3b7XZJtuNEEOhPe8YEmGv0lnkqIkrQhpM6ajgVxT6K8d+Mnxm7Mj5nnvcYjU0aT8m4YF43Gcf3+8aKjDVnjOVDmEEtPuHfvJ/rpDhJ3DStYZkeR67bdK995+BnDQ/nedrGrs7087xiwxE8dX+z3IGuTsLENsOmreHVrFv6bWwO2xXa0Hf6gx1LH22TtVqtclKNj5uFBzL9PX5vkPLazvgsddgHsS/gNrDPz87OSsIoNiw+rRMlKfuwdH4b57Nt7jHmOpgDB1hNd8dBvHYt45zkkfv5ofKNgqAoMoSaJ+Ts7Cz6/f57SqzT6cRvf/vb+Lu/+7vGAPICwrEyI0MUg+DOVDHzZtA8LyKc7BwQ+bpipY6z6IlyXy3EMwhkx9YGQQ5WZKEDLa1ETD9oAXDre3twUikWRAgdCsqO51Dy8/m8ZIITuASwYbGhPN03Z9AyDuji7PiIppI0EOK55Rmyqg2ImYYUC6oa2E5/4GODbwbjDHSbjrnYCc8AugPLzmjhp1ZHduwzb9QWuvkcmmVFYF4zTziARmZJVlo2grMgyzT2/DBO1kHO7KJ/FJ5x+znwlQ0SB18sbDPfYYwAAGUDxDyc27QxSt/8Y9lW4znXm2WF+2C5lQ2wHHBy+w6+WW56PphjFLf74TVh459nPS81AyUHwLKi43g/5IUDtx4XRm+Nn0xbK9S8jpxlhKNG/73z3GPDScAYY5cDR8wMBoMCxlvRo5u8Xg1Ic2easyrhv9z3mlGXd5qYR7Ius7zKu5A8X7U6PG82OrL8M8jt4nEYiK0Z6zU5lsfiIC+GoA1X36uV5SpzxPwgUynoEniF0yKYG2R3dqTgF8+X11geg+fAOuFQDuXbUmo60IEZZA9rIOucGmiQE85YjxkYwlbFrovY2de26Xx0GnbN2dlZvHjxIi4uLkoAi8AB/WHHlmXuzc1N/Pa3v43Xr1+XnfreDehjTWkLmWBaAXa1Wq2SKDOfz0udJK0QsGTX4nA4LDInoqnL2SHJHYIGZpwABEBFnw0QMB+2z9G7HPmLHLPPhVNtG8q73o6Pj2MymcRXX31V5pQESeumu7u7EuCyzTuZTIpNgSxHNh8dHRV6Mk4CUfygx53RTbAL4BBeoe/WOQYUGS992W63jbutIqJx7Jz9KPt16A2Cj1lnAaTwvBPFGBN9yUBA1qHWkZ576x/4lnVNAZwxeOQfA7X4f8zD2dlZ2cVKPfAwfQQoJQDJsdTwvuvDFmQsALTO9ra8cWKp74910i1jht/YCcPVLdvtLsP+7u4urq+v4927d3F5eRnPnj2Li4uLska52xaQm6Q1+ufTL/Cb1+unXfLsCHc/2WEaESWgOxwOS5B2MpmU4DFH9U6n0/K+bTJjCfCX7TDbPqxn82NOWsROtm10KIdyKN/tYpyD/7EL8m55AmnoG46dtw2YA1MRUfTfdrttYJXokuxboTedmJUx35pMtA2CDrWN6wBo1s/Gf9GVJHz5BAMnRFMvOsPYjbEN28WMmVM8InY2KWPmNKPtdlvwCPSo7Wm/h72F3qYO7E9jKp1OJ/r9fvGrwYBzcNQ0xu7iBMiIaOAtxlSgvXEo5sdtGKvziWFgwPAU9K75LtnvYJymxz7czX8zt5lvMn/V/vZaYr73+VC05d/mPYp1f14j+3DFHOjL+GTGFvN7fOa+5jG7n7W/PW7HIbKcyTKCtQtPsA7gLWwi+ux5Mr3ptwPqXrPGhfFBKLa5sLfxi/jeSZWcmoM/kRMZuB/U8RfTxH6AC/acv2e+ndjpOu2LO2DKe51Op8jqxWIR8/m8HM3NhgBoDF3st2WMfN/aME/Qnzxeiv1PZKOL59p18F2NRz9UvlEQlAEgsFutVtkCzDFODoweHx/Hq1ev4r//9/8ev/nNb0ompBc39fCZiZoBSD638+XFmolJ/WaYTOwPEYvP6TOOFwvGgoxSA37tdBsI8hFGOUjlyTUg7b7zmZ35Xq/33pGJ7ju7m3A8TQMyb2azWblPifl0lrdBIYNDBrccDGDx2CCAprTNQssBUr4nkxbAwndHReyyWqGddwDWBIoBc963QVajtefYwjwiGmsiYn+g1AYZn9noM93g9dqRjRYSNf7LQCNjrvG/++e6PZd5bfnZfcaowcwaHayssyHgNnKf8/9e//QX+lvJe105sGQ+oi4DiV7vpk+uO4/PdPH3Xgf75oC++HMbof7cCt+yhLYioqFwzXsOtGHcPz4+FiVP4DJn9PA7K0LTONMcuqJDUMD033IxB/0896Y5tLROqClk1hJ9QB553TJGHx3oYDltDwaDRoIBffY8USdHyG82m+IU8ROxc1TME1mXGajOhnLmH/N3Loy7pu/2GcaeE/MO6zsbKNkYyU6kgwjucza29/FPlhPmeWRN1uu2WcwbfhZA0/LUwR0b7c5yrdE/4v0kjTzHh3Io35ZikCTbPV6vyLVslyPLCDZm8CuvyZyhSj0+2sdOJ/aYnz87Oys7uY6Pj0sAtNPplDuRHGx7fHyM6XQar169itevX8e7d+9KgDCPw3rOQFe+ugP7Bv2ArOfuF+sAMm4ZI+8TPDk6erprkIx+23x2XE1jZBBH3LZaux2U3KdJf8n8JwuaMbATlZ3w9JvddgRtvGthPB6Xo9YcNGYcBIVwzqHl4+NjzOfzEqRinL4njHH5+3z83Xa7LceMQqPZbFZ20CHvDT5kvUc75imCyPSVNg2+8W5ElLl0MNQJi64XfeiESNstrVarXDHj3dS8b383Jzfab3ZyLWM4PT0tu2l9FytrNiIa8zWbzQpt0YlezwRBebfb7RbeWq1WBZyNiDLnrGdsc4LG7XY7lstloRsgMPQxuMQYttvd7mDLIgdFSTzje/xBbLBOpxPX19cxn8/j7du38ezZs7i8vIzLy8sCMPf7/RLQvL29bQQ27+7uylr17mRsLL5vt9tlLcFzPlIcXkPGzefzxg5j5sbyeb3eHVfthC0n/tmGYvy5Tv53cP5QDuVQDiWi6W87+OXEE59yh+6y3Wg7z8kstu0idoG+iCg62LiYcVc+/1Awy1gEfY14PznJ+pbgCjYkpwjY9nTwk4AjcphAnQMz2d/DTsi4EHqDvqxWq1gsFhGxw8K5Wxs7kzHkPprGxhdox3QEB6b9xWIRNzc3JZnPPjN3zvvu9na7Xe6Rt01qG55AJvrG+EfNhvG7HgPvwoOZv2oYmTFeeNq0z/67n9nn27uY/7bbZsDV7/CMfansWxn7yHGQWvFzWd+7f3ksfs82Vo0mecy8V7MX3IcatppxHeqoYahu20HoiN3VRgQssc+Ny0I73vOGA3iW4KavEUBOOHDocbNunGzq4KIxHnwnfDIKPte7d+8a9DbWZTlr3xQ+8f+msevzXOV5MH2QVePxuMg2Ti9xYmiWs+63ZRD1Qj/HH7KvUltn2VczZmAcmT5Yvmcs/2PKNwqCGhykERiq1+s1mOzx8emYor/8y7+MP//zPy+CO+/2pOTPciAmg5wWkDVgNaIJyGbHoFZyHRZw2fGsCch9fcgAb8TOYfG4/Czv4vg4G8HtUScZPLXzvQGxyaJAaXmxPDw8xHg8jtvb27IQcCo5NoG/6bcDy1aWPnbHwjI76nzPZw5gOEiF4829e4BXGBS06cVQmwsvoLxA4NlcrKyo80NAduYLBCYAGIaj58lzb+DQR2oiGD3n2Qiojcf0NECSjTArUwNIfGYlTf28x/emcRaaNlizAs3Oueuh2Ijle7+XAdUsrFkHfgcaOVib3/OPx5INh2z07DMmbKD7/2wgeFyZp3JbZNx7rdMn866BlzwvNhYBdubzeblP6uzsrHESgN9zEoTplgE9xmKZR7YRcwzAZQCX/juRwgkltewo6EK9KNwMBnldYVjRLqAXDprnjYQM+BLe5Dn4C6cKUNDgdy55XUJT6I3xl3kKWVwzoLOMyDqctrJhbMfV4/PfrBvqNS/Tvp3oLBc+pIvpI0kgltk2eJi/bB/Qhk8EoH0nmZB4g25k7IwffnD5kGPiUrM3Pua9QzmUf4wCv3ptW+ZZZ3tNW4ayXq3vHRiq2c1ei8h2yx/Wo+8eevHiRVxeXpaAo48lI/gwGo0KsHN9fR1ffPFFvH79Om5uborOMGjH2O3frNfNexAZh8EZy+nj4+OGbc2uyNVqFdPpNFqtVjmCk+cjoiST1nQUwUCDRQCGHIk7nU6LbuHebXbfMc6IaNwNTsYvY6QuHHt0GYGp09PTcp8igdDHx8dyF6iPNO50nnYSoCPPzs5is9mUE2VaraegH74IwSHru4idH9Bqtcpz7OybTqelzclkUkBE7nq0jkOHG7zDv/LRc/CYr22AnzOwud1uG9dwQGfu1YRXqde6Bj3E3D48PMTp6el7uzTp43a7bdwlhu9jXoA34CEDnayJ1WpVgnesTf7mGGlAXXgPHoG+p6en0ev1otvtxnq9jslkUpJkAZWwVwgAYqPaFref+PDw0AiMwseWH9g4vOuxwrPUZZ/VtrDtX497tVrF9fV19Pv9uLq6ik8++SRGo1Gx3U5OTmI6ncZsNis+Em3B67ZpR6NRXF1dRa/XK3M3GAxKPzkZxDtdmEPmyvYOaxtZzNHf8Fy20+BddvzYX3OAP/tDh3Ioh3IoEc3Tsyj2/zOwjjyxTeUk44xzOLnNMgrgPNsutjOdwMx39jUjmraabVjsPIPpyEVfU0AyC30yLmH6GBeO2MlfY1LGsY0zEoT0UaCmLbjdcDiM4XDYCFZiu6DXja8aN7Qd4RMXNptN4+5s28DWmxHRSFbDPuIaGfQj/TaGib3gDS7Gf2nPfoAxsn14JXQx75nPalhzrezDIWyD5efze+4f79b+Nh5nnKSGM9YwBmOs7ovbwnbKn+3DHexb0Qb1m4YUJ6lmG8J4TB4b/bUdkucp4+z2R12Hx4LsgB/z+7xbaxu79OTkpLG2qcP8iv3F/96QZbub35yeyYkoGUfq9XqxXC7LCSt5Ht1ffFInDtTWWUTzigNjWfx4Xlz/YrFoHKP98PDQsN2pL8+3eSPzFHKI8bhkPuUzxud+1nSQx2K9Yzw6t7mvfKMgKI5FdvwBrjudTnEUbm9v43//7/8d/+W//JdyJ0k+Ushb9yOagQyCdjhBDNBKjpIVnQGXzBA1weX38yI2uEPbKGk/T58AGfibtj0hCB0vIoJiBvJzwILfzow5OzsruyRzpjrgjc9vN6N0Ok9boDn2FmcwYndUBUf2OCgRsQt0+mgKA2P0D2WKgvcCcoYHc4VTbkVAXQgMwJ0sHBEUBtFMNwtH5hTDxxlatJ95kvrplwOuGAHmG4AdducaOKMOCzaPhcz83IfM9xaGDn742AvT30LeRsM+RW6Dygo8A0ymK31wPy2ceCcHIQ20mJco3m1nvoFG0CGPNSuqLIBtTGfeZD1SzHOmUzZisiDP8sS0cf+9FrIhZzDW68IAspVbRBSZAH/mOqgbY9wGuXeFAOZyR5OzeOiHd65kQw+aMNd2RBwgjIjyv8F4nrfiZj3ldpzNleWNQcwsezxP0Jt7rlqt3b1wAIPn5+eN+9qgL207SxbaAoB5PrOhQF30z7qWdWBDKesLBwxrvJoNSbdn+mYw3t9Zznr9wIteO3aIWdvZMLaxg26Ef2k3B2ScdYusc3KO33E2mvmfseCk7cuszXxN373mob0DJ7xreXooh/JtK9aTEc0sXAMyrLlaMiPyykcKYePyPXKg5uAjUwgk8Y53UXU6nXjx4kW8fPmyBBB8VCXPXlxcxGazidvb2/jd734Xn3/+edn55XUe0bxyoqZTbVPbxkAHIttJdMPmxq5nhypyrdPplN2XHNuJnkUfImdI/EPn3N3dFfnjz9jZip3uYCGBQWxQApKMb71el3dJemIOsLmZF/TgYDAo4/WuTHgG2xeeYFcdsh5bjnnwzrma3cbn5p3lclnAwFarFYvFIrrdbhkTfab/PjqOXavUC2+za7Lb7ZYdiugm1gX2Ev2Dxj7i1Tphu902bAcDSTyLvshBVPsA9n8BJ3wUF3338fD0kTntdDplngE6InZ2InoQOxKw8ejoqPhJgMSnp6dxe3tbnicRwaAFMoD+cHSyacMc8x59BNgFuHUSn32xo6OjxnFg7AA1toDtwXusTz/D8X/X19dxe3sbP/zhD2M0GkW3243RaBSDwaD4yQQxjX9Ao/V6Hb1er9xVDB3AQfr9fuEf+kHCAKePDAaD92SPbTT7C/DO8fFx6VeWbd454KRAbEnz46EcyqF8t8vV1VXc3NxExE6f17ATY6H8bwzEeC36235/xkqQVei+mkyy3M2YlrGpjMXZd7Mvad1j/xnffjweF72KbCUoynumSca6GIvta8ZBog7vuWAPkcS0Xq/LvezoGm+mMF7kO1Pdb8a9XC5jPp+X4AftOakLW8BzRNIamCZXWaCHoHnGyGk7z5n1FLTKQVJ++x1jIsYa/H+t5CBQbse2Cf9nDCtjJxk7yu0br6TkeESuz20wj/kzf8e8834OhNKm/THeyXiGsUXGxTNOtsq0oz/Gi/PYjJeY5tCC+TeOkn0A+mqsDR53rMjxAMuibKN3Ok/HQEdE8adow/2OeMImB4NBo05o5iTK9frpjnjW6cnJSYmt0KfhcNjot9co4/a8MNa8JmmbvvA3n1My3mmslARI5mO73d1l7yRm+AheqPF85nP6Tf9sx/Od7VPPjWmQfaaMmXqsp6enMRqN4mPKRwdBcTToEAREIZC1+bOf/Sz+63/9r/HmzZviTPj4Fy8iiOSfiCiOIkSpCZ9csqDJE/Khdyle1FaqOBgRO/DdgiEDo9Rh0NT9y4CT20cJc0k2NLAiQZh1u90YDAaNy6u9qBy8RGEhPGazWQGPUIS8y05LZwFbSblfmbYWcHZuc+DBNDKgnxUD7eG4Yni44NzWFCfCEMVggwnjhLYN5PC++dVZY+6zF6eFL8CIAyEG4yOiZPjbgDMwQ92mu4EQHx3KGBHGKJFsFOa/3bYNCisJnslrxHUBJFrBe+26n3nNu17mySBWzhrJfbeBBK1qPAdoBA85UJHrqBkf1JdLjbaWEZYPtX5mI8nt5N/ZcHJdNaNq33eM3bIWY3s+n5cgHsqUtYfhm4/K81pxFj6yzLspbVxl2sBvzh6Ed7KyjIjGDgoKCQ4oXQNIVsheWzZoPG84BBQn6HA3lsfu97NxjYyGbnlesm6wMZNp5fbcFmPNxi7PMKYcFKZey0sHnvO6yvzLZ9aHTm4wYGsj10krpot1t4+uzLLgY9ZOppXncrlcll1N9NVykDqshyOad5rktW4j+VAO5dtesiy07MDejIhGtjyf5cBoltF5fZJw5sRIdsJhj/mqBuywdrsdl5eX8fLly+j1eu+BITg+o9Eo7u7u4ubmJr766qv4zW9+E69fvy4BAgqyGNmIfEXWYAtbviEfsU263W7Dv9lut427QrH72u122T1HPbyLDp7P57HZ7AJW1s8Eb+/v78s1Fegddtz5mFvmykFH5sFJYlkWOymNwORqtYqTk5NYLBZFfkPvo6OnKzjG43HRFehd/BLLd/SyQQPe4T5J5oMMbWQy7cMT9NW8RQCN+UHXWj7Dcz4G6+7uLk5PTxs+EAUdlYN79MN3kTIH9I+gVrZBrH/hkbxTlbHzrG0M0wn6QTNsJ9vcBOnRc/jsvM+R0jlByyd1rNfrGAwG5QfZsNk8BbGn02kJ8C+Xyzg5OSk7tZ24enZ2FrPZrAEMW1dCR8ZOABl6Q0tkAJ/TD8so+mg55WN1WUeMD1v48fHp+OxPP/00Pvnkk7i4uIjT09M4Pz+P8/PzksWPj8x77BJgty1rnDUzm83KOiHB2HObgbUaTgAPImMyGMW4WR/MMX/XQEoHCrKfcCiHcijfrdLtduPNmzflpIKIHTaT/SBjdhkLBcdBxqOnSPbxDjTasC6wP54BfL6v+fDGw8BG7T/nAB24BgU8ER1hfMEy2lgGuinbu37GtgX9c/IveCC2on3TiCinw2H70Sfomf1OxoTthK5qtVolKIPPDU2og/nBPiEA6mQ+Y4MOTBtDILnPWJvnDp5yQo5pzXwYO3MStjH2HFypBTqp17rO9uE+7NB9yv0zXpHr9nM8W+PjGj5XKw7kee3VbAUnMOzjzdwv6oO+bm/f+OgXPF6rn7pMOycfUK/Xl+0X2sTWoo/GnOx/+gQS1rhxYPoEL3Gi6Xw+L76iadJut8sOUN7Np7DQNu1x/Qd2sDG309PTGA6HjRPIPA+sjRoODO3sv9m+g2bGLakvrz/+Np15dzweFx8vF+oxpm9eMWZpPsy2p/vhvro4FsI7+P1eC4wfzPBjykcHQXFkfG46jiHMcHd3F7///e/jr/7qr8pONIiHQMqC0I4KDE5mtB0DFy8WK7z8HM8aHLaSZEHmIJMZgt8+kiEDpPuCOR8qBCZrO6qgb67D3/d6vRgOh40jrEwb3+cJ7clymE6nMZlMitKkPb4n68nBSxsZHq+zFzyXbttj9oIAEHFw3QLA80qdzjQznU0b84GFkvkWIeJMcepBcNC2hZ4FLL89Ru9O4h2Px8eK8jxtOlBh/jJvY1TaAMhHTTl4VFsTNd7MQjDPu0teu/4+B6j9WTbecvCP+YcWWUHvGws84X5YedUMBvOV5Zjn0ms59zP3aZ/Bk40SGyq5L/xt+tacC77L48xgkvuf+2dHxUHnVqtVdlPYAXE2/3a7LXeOcb49WYSmKbwEkGbAmT4g852MYIPZQXXWFbtWbAwAJrkgZ5Advt8qz4nn0jI5B5jNa/P5vACDvovZtHMQkboBBxl7PoajxnN5rZnHMl/kNWhdmdsxwO++mzbmRwdYXR9jy/XZODM4Z5lvfmXuHYjcbrdFJxE0qM1fpofrZX3b4IJvCHowX7UsykwP2wzuT21+DuVQvu3FtvSHbFjbZdhTtulxKG2LROzAGwNnzvR/eHgoOxQjdncXGjwbjUbx4sWLsgMf+Yuze3l5GVdXV7Fer+Pm5iZ+9rOfxRdffBHv3r0rQZiTk5OGbWabg4I/wxhyIhZZvOi9bP9AF4Iydp6RQeyqs5M+GAwa8wBdFotF3N/fx3Q6LbsufaSqHVvbzPZfSJYzDXDKOeEBOcsOPIKck8mk4Tv1+/0S3EFOD4fDEsQEbABYbLfb5V5I6GF/iqAloJuDsPYVsCEYtx1g3kOWs0vCst92hoOwzCn0xh4keEUwFlsp+zXWYdafrAnWFLSARgYl2MVpUIM5hE8yCBIRhS6AqdgUjAMdhQ2GLcSdmZx0gU1HHwg84qORbd/pdOL8/DwGg0FMJpNy0s1isShX4kREOboY+hN4dJImdKO/8OF6vS47I20PsL6yffvw8HSPKXzLvWmsJcCQzWZTkrW9Rhmb7QaCqcvlMm5ubuLy8jI+++yzePHiRUkAvLy8jOvr65jNZo3ge75jNyIa9+XaP2Y87Xa7PI9Phw/IOrLNBX8RvOZ/At22Fxlrq9Uqfr1512uoBm4eyqEcyner/PKXv2zYIthKxvsi3k96zT4m71AArsEOCMjZB7e8QofYd7Pez3rYMgz9lYFy9KJxH/qO7MM+2G635cQOdJdxFv+YPh6vaWA7it/U1W63y4kdvifd8pndqbld7OnNZlMSmRg7+uHh4SEmk0mhk+34TFNwzIidznayd8ZMmCfbLp4DJxhTr7Eg3rUtnv182+t5PqmHvmcszHif+5brz7EE+0Pm69wHxmPfyW2bRzNm6Dk2lu62XXfGhHOgDL6FZ/I4oVONBrmPOWbDe5kWXi+8l9d1xkSwv3zyYq7PNKz11YE2297YfSSoEmuBxth8GaviRI/BYFB8L8bV7XZLcp3bcz99emlElDjMixcvotvtlqtD6De7qlmXjo9YdlhGZLmVg86Z9xy38PihE/a9+Y35eXx8jMlkUpJeM729pjIP53mz3eq1zfM1vWEZ5XWTZXbte065+bry0UFQBOVyuSygA4IRZuh0OvHy5csYDAZxc3PTyPLxojLjsahwcHFYmBQP1AuFYqL5cy88T44FicHWiGbWRF6w2flwn2pCJvezRk9+Z+CfvvA9zIFiGgwGJTOVZ1AwMDVzAx1Xq1WMx+OYzWaxWCwK+OuoeT6iKoNh0MDzTTFt/Bm0YnwOaLDI9hWcRe/e890BDibaQbSgzvNm0M7z7kVlAe5C+3ZSXX8Ohjojw2foWzAZsGJ+/Rn9YG69U8pZ7ja8vGvbwi2vD9M5ry8Hgqzc8txmQ4P2eRdhbQPFoAY8wfs2MMxLgD25DzYaKABHfs6/s7B0wLimQPI6Ny2ybKnR2J/lsfr72rv7jAD/ncG2fQ5J7reNXuTAer0uPLparQpo4ux61gsGt4/KRakDDrsd5JUz1DOf+x0cAY8XwyRid5wMATKKj5uD73geepl3DX45ScLHcmf6wTccvbbd7naFuj7LSerqdDoFeIyIIoe91iwvrW/yd/yfk2b26UvoQJ+yDLd897s4N7W1yRhNz2wYuX6veQDh2k5a8z6BUzvDfOd+m1ewKaCbE1jg730JI6b3h9Zxlikel2XyoRzKt7VY7zn5KDv6BkEsW2oOCe9E7GxCH4casbvLmmeQL07sQx6fnp7Gp59+GhcXF8WBnc/ncX9/H91uN66uruLZs2cREfH69ev42c9+Fv/wD/8Q8/m82CF2HG2/+UhL+pkdMpxosoV99KmBlYgowVz0JCcnYJN4B6ivoMBuwfHudDrlmCLqcwKf36N/1lXQjh+CSw74ABBgM0Kr09PT6Pf7BcCCZrSFDEUXMB4H7+AN2oRH8Aud3ZuDNtAcn9PABYEyg2qtVqvcqYp/il50QNv1REQ5onSz2RQAJOsL08rz4Ge969aBaZ+ewTihEe9Dj5r9ic2f72zCD+JeTo7wpf67u7uiR3PCEfPmu5SgT06Ac/Iavn6/3y9jYD2cn5/HixcvCs0MGBP0dMIX/gtjpJ/2xaAb68y7n7EHWLfUSz9ZD0dHR0XPEyA3mOwdPt6lZJsCHl4sFnF7exvf+9734vLysiRenJ2dFbCr3++X427hM+8oOD8/LwFv6O/TlhibE0dt5wEOWXbnHdGW45ZLXq/mceiN7XqwWw7lUL7bxclsEe8HZ7JtZ721D7NAllEX8py/s11BXWA/TpwxTmYbxXo1+5HoBHBHJ5oYb/aJcGB3vV6v6FVkMQFGZCp60vYXtHQQ0LZ2RDRO1eJ5bDTGwnhNB4IX0IcT/dDx4DXWeehd7F7PNwX7j/asT/IcWSd5TozHUCc8wLyat8xfeX6NNVAypuFx5O8ybgI9c9CnVownG6OyPUl/cnwg27QZY864guc542F+zs9HNO0VY1vGp/NaNG34nr7ntv19ThA3rW3LZewnv+Ox53pyvzIGY8yfcTPvxu/gfduwTry1v2SMG97kVBXGbJ/PibTGnugbcQLW/nw+LycU0ZavH5nNZsWHsJ+a7TXbq3nDDglx+4Kilt/GU43tZsy23W7HcrmMyWQSl5eXjURmr0tjip5LJz3UMDL67v7ymftDPMs8RP0Zr/Ca/Zjy0UHQk5OTmEwm8dd//dfx7Nmz+MlPftKIrvPMH/zBH8Qf//Efx5//+Z83Mm0ZtAlsgx+nAOHsBeVJNLEsFGqgjEsGNF2yMHOALAttf8ezGXCHkS14HYBz1rGVFTRCUZkOKLt+v18ycSksQhjaC57j/sbjcbkTycyIgMBRtGKELg56ZAfZGUQ2KBgDCz5nY7m/tBXRFLLZwOp0Oo0MKb6nDtrPCiqDD5kHGIsFfxbKObhBewZyLCAIeB4dHZWjJgBpDBD4biLmnjlBCDt4mNeb+2l+w9DLAjOP3X3OoJ4DH5n3XVdWYlYmnkdo7yB7TUjzuYPI2RDJAQ/Pv8fide/+Zj6x4ZGFNnTKdXyoZODByj7Tah/oYIM6Axr+XZNtWTbWDJI8dtPWgTocEUo2SgH7uMfp7u4uRqNROQXARjl1AYgBqtJOHh/9cvIChR0yyBPzl3mG3dcep49hxEB1tibt5GNz6IOBZB/jR1s2XDIfUa/v6cIIqhkYnq9MF/Mr85YDpJkn8jwik/bJRhuClgWZ52y42omsGfs4bshPxg14CzBt2e0kGGSqDX0bishYA+A1A5y+Zhnoudu3Ri0v8+528/KhHMq3uXj9WMfbFsMGyfZ7rsdrElsk4v1Aq22XDKzYLsSOffHiRVxdXcVgMCiBQjJ9Ly8v4/nz57HdbuPdu3fxy1/+Mn77298WmUp9rHX7JLZpPS7sAwKYg8Eg+v1+A+gjaGYgD7uXMZ+dnZXj2jnujHq4i4lAFiexrNfrkmyK7It4Cq7arzg+Pm6ciMDcEeDBBkUWIlNJeLRORW7h6J+fn8fFxUX0er1GkBV6cV+mgTj7gw4oMS6+9+5g61N2CxPkdLIU7dq5dYAP+xqA0J87gc707HQ6jVMAAEgcVMw61fYydHXiALtb4AdsFwJf8LvXGzrQ80h/eN/Xo3h3MWOwrYZPbXuI90w/xsspTgZt2S3cbrcbgGjEzm/1eun3++U5AoKsfdYQbTF26EcSm20qgyr2CxgjyQH4mO6n5wPepW5kjYFkeIGCLeeg7HK5jMfHp2tkxuNxfPLJJ/Hs2bMYjUYxHA5jOByW97EBDXjDj9zpBuiNHDGvwL/QmKQKzy/y1n4adDCW4IB/tgWznwZtPpSYfCiHcij/9Av6yAB/TpKwTrQtiFxxkBPcDp1H/dThhGcHL9G3DmiAo+VNB96Q4zE4sEYwM+L9IC3/L5fLhhzFLmLcXFvgDQbuJ7/te/KDPRQR0ev1otfrNepxMIvPbfdZZm+3TwlAs9ms4CnYTa1Wq1zLcHZ21rgr3ok1LoyDMaPzwSh8rQBjsZ6lf7YBzT/QN/sJtge8c7fd3m0MsW9Ne3kO7bsb/zJPeqzZ59/3bA1Lye3kz2t98PdZx9aesX733New1oxbGAOyPeD2jK9DDwcD7bPtwxFNf683b/DxWPyZbZ4cB8i2sPEp+u1Au21d25H5fV9FZR5yu+bZ4+PjckKPEy9rfknGyDixrt/vx3w+LyfGkbzKsxwzbdvOdKzN9b7vPRbWH/3xhoAsk5wwYZqylufzeRwfH8doNCo0on3LSgeDzWO5WId4Q4bXnuU0tKG/lkOuy35wbW3WykcHQQeDQcxms/hv/+2/RUTEf/yP/zGGw2EjSNhut+Pi4iL+/b//9/GrX/0q3r1799TI0e7OIDuREc2743JAxgvMApa2LBiyMOB9C3sLUYOiLHxPmAWQj8MyqBvRPKs8v79er4tzaqFO+36ecdUUM4DHaDQqO0A9Phals4MjnoIENzc3MZlMyhnXGXgGEPFxWfSfvvo4IfrIAnDAAPpQlw0mO4Sui+LFk40omB9DxMdqOmvWQUQHFqnXO2ehKUYGBgS8yDjzcRo+U5+6ctZTu/20WxeQAiCPe2LgK4SfjR36ZEMvK0Hzr4POXkPU6QC237UCtECsKWO/54wb8wLfMycWbDZ6DW6wNp2Fl+szn2aAxMesGiQwj1nBU2deZ1b29NljtmGaZU42AHJb/twGAfWZ5qZnlgM2FHNbWXYyBx4DzxvosqHLGABvbJgDItmI97p3X9mhY6DUd04AyrCmbHQxNhSeZS/95gSCs7OzAgACJtsBgI6sDfiH+nyEGPS1fLN8Md9mZ8+Gy2aziYuLi+j3+w2gM8+xnQiMMmRTzdg332XeM685a5NnsnGS+SMbHlmfZr3I/FnG43zm7GEMQ4+nJov43HSHP72W0UMkS9EvZ0KSEWuDnnppywC7ZSX9ybuWausk6ysnw9jJMRh8KIfybS2WMawTn2bhUyp8hGu2s9Af5nkDRchkjqtkLdnJpA4y17vdbnz66acxGAyKw7zZbKLb7cbFxUV8+umncXx8HO/evYtf/OIX8atf/SrG43Gx1SyjqRsZgHMYsZP12GKAd4PBoABAtp3tYCOPqMNO9OnpaTn+fL1el6NhnfTCfYz0GfrSZxw/dC+fE1zDsfYVG7aHARqhKYGuiOYJHox9NBoVHesdFPTP8o7xox8NaKLHsX3hgVbr6aoUbHz6bLCRQt3Y6NjItkEpzIeP1c12LbS3PcK4CeARtLOdZV8CPrKtwbwzd2R6dzqdxn201os8D7/bbsPPY14IumNPOZlwu92Wo17pFzyLnWH/B13qACnBOMbp61IMuNAuAfuTk5MYDoex3W4bR/FR8L2YMzLPOf7VyZq+ioXdziQ/cWRu9rlsmzOu7XZb7nilfu/GZS0bvII20JykBdtxDw8P8fr165hOp/HmzZt48eJF/PCHP4xnz5417kn1MWrcgbzdbmM2m5Vj1UiC22w2cXNzU3iNAK/liW0Q+px5z3Y435vfaoAZ9GCe2U1gm/BQDuVQvnsFuwlZUdO1yAzsA/vg1onodPvMDrjlzzNeErGzT5zQhSw3rmqMhH6SJJVtzYjmJgknpNAG/cAejIhih5H0ZKyyhgdih2y323JSFraY7wjNNjEJe7Z7+J+Ecye1Yc+Q3OXENfrPXGSbFjvr8fHpvnB0FrYJ9qBtAmOQ/I8Nlk+jY/5dPHcZh8LOyTgxcwtN/b3tS/sgGdek7drnuTjIkjHDjNNRbw2rNT6Z8Uf6wXPGTPMYct0UeNi4mvnFNkJu29jIvnHVxlbDuHJf83f0y8F4r1XGkuuzf2rcFZ6wH2r8yjSPeIqLcN0C+LvpEbHjI2xw5Nxmsyk2qe0p+7z0xxvLOp1OTCaTePbsWXS73YKRgv9xnQj1GDdjkwj9MM5mrCnjbnlcGXfzHHk9+zPTeDqdll3r2feyHDC+j+ytldqcm36eS39mPjCP5Dn4mLUd8Q2CoBG7Yzb/5//8n7FareKnP/1p/It/8S/i+fPnZcDb7Tb+6I/+KP7oj/4o3rx50yAwnbPCcwCLSasZ9V9XMkH+X0oWCAYTDCzXgiUWDjnAYYFsMDsvXApKgM9PT0/j4uIirq6u3juTGqNjs9kUcOru7i5ub29jPB7Hzc1NCWBAbzuYzpJm3D4W1xkP/j8LzQzS2/CxIVQD5fNC4u+IJlgPsICTavoCFPGsgayI3Z1U2aBinsj6BSzIwBB0qQU1oD9zcnR0VLI+mEuOjWJ+c7CG40Rt1AHQW+DZqEFAYqh6TJnf8tqwsMvKNRsPOWiZhVVW6rV2bBAb2LHcsPGSg3oGd2xo5aAs4zVf8j2f1QCBPG6XbKDwv5/PcsH0yL8zcFGbG9PZxcf4UVc2snKb5p2agZbHxy4AjF8fAWPjExp4rRvoAsxhJ413asDXznBkvLRjmcGaZn3xvLPqV6tVTCaTArJhSHg3J7IPXmG+8l1hBEl9BwdK1oG6nO14e3vbCJgaaKI/OB0AbQD6Ec07r/K6g3fdd+hl+mcD4EN60UFGF97J7zIeBxPyHFFslJhf4cPMq/Rjn94EqEWOIkMJyqK3vIPDRjagpu9gNVjoAh3zujKtspypyYZsAGY6H8qhfFuK5S887yP3cehq+goZgEwwYON1GLFLHLCdbScP2b7dPh0x/sMf/rAE5ciufXh4iMFgEJ999ln0+/148+ZNCYDe3t4Wh5L16YCn1zYOKs+enp7G6elpjEajksBI0Ah9xfsGfqwb0SXY47Yf5/N50afYk9B+tVqVQKiDjiTJ+BhNZKsd5IgodxEiow3UGRBAtzgIQsLS5eXlezYwOoaTZXzcqH062/gEZjebTXGe7cg6mJn5yPYxdRjUI2GQMfA5/bm7uytBResmxpHtINuP2BQOVvIMa4B3CSwyH/AavhVBePOd6W4dSbAPf8EZ6wYIKdgKXhMkEXinNXR0Qhf0Zm47nU65b9Z3WTr7GpAXfjOY2m7vTsfw/becdGPflGAufTPYTH9YB3zHaUWbzVNyHbtXqcf6lvlHrni88DkyjjZtf7KGso3qeeYo7pzo5ysRAKnZ6c18cIUE979dXl4WkGm9Xpex22ZibdT8uey/WKb5uSyHzf8O0JvfDuVQDuW7V5Dn6F1f3xKx82usR4092QczZsU7Ee/vTKde15lxL3+Wfa2MzRm7sh5FdzlYi39pfz772dh22F1ghegjdEGWscjvTqdTMBAKOi4iGjrQdhHBmIeH3f3wEdE4PZF2oDv6C71JAdPxDkvsLfSmdQFBX+tEYzjGJXyiV6v1lOQGD9nu8RwYR4ZettdsQzuwaszLfTB2YB7JvLYPB7O9WcPGMsaZcYLMhxkryBiq2+YZ42u5vczfxjDos/HhvDa99hynqNkGxsfzeI3bZSwy/w1/ZTq7z7Y5Mo2yvQJNc3DQuJTtV+pysj60xr+Ft51AiA1tnrDfwjUf7i/rnLqNOS6Xy1itVtHtdht+3Hq9jn6/H5PJpHFFhOmdfRePI9PI75p/zIOs44ho3FVaWy+0vV6v4+bmJq6urop/lPnIPGw+yzzhdUKxjMj4uTFX+4t5Dfv0gY8t3ygIGvGkpBaLRfyP//E/4i//8i/jz/7sz+I//If/UEBcCPLixYsG8EsHmRgLBJjYxMyLqQZG1kom9MeWLATph53nmqCNaO7e8RiYrJpQQ9BnoDwL65OTkzg/Py93j3gx4AjizOIQX19fx9u3b0s2kDPiEWDOZMiCln47SO2Smd4LM6J5H4xpaRDgQyU72XaOvaPMvJHph9DjWQdREGTetcB7Vro8x3ipy8AXNPaCNogBIIHhsS8AwHcOZCKsbGzQj8y7nkvTpTa/fo+xuE9ZKTngbGDBSQJZcNsI8bpwINq8nDNIeM8CmL7Axw6CWjE4MOGSaZSVRP6/xpfQB2M3g1NZCWVD2rT3b7dRmzfztdecDRj3IxuJ+9arecufMT74zXzC+J3Fb3kHfzCXBEMfHx/LvVUGUXMwzU4GfTWdzUOMDScHueggmGmbjdqIaKxrO0A4FTaCakeLUR8JGtBqNBqV+6EcMN1utwVk9n1cKHDPbTZusgEAbQA/qccgVo0HszFiXrJ+tpzKOs/ywA5NLqarx+T26WfW++Zj70BC13nOCVw7m9F9RmZleW16WwaZl7P+Nn0zT7lNO/Ufki2Hcij/mMXy33oBfZITGqxDrA+RUZvNpnFfOUBaxG4nWr7bKKKZIETy3/Pnz2M4HMbj49PdKoBXL168iMFgEKvVKj7//PP44osvYjabNfrgu5UIjNJPB7OQ/xxt6XsrfeS6A2P2bwzaGHjDdnl4eIjpdBq3t7flTuvNZtM4no1jY1erVTkC09c/AGDxnoOc0JK6vAuQBEB0BDsiGANBq1Zrt/OAu65arafjTZl7gnSW+ySXIHfv7+9jOp3GfD4vtGD3G+9avnY6neJUW/87EEo75kc781lHm1cNOvKed/gDZpycnMRoNHpPx7Njg/esbx2ARU8ACKLz4R94AzvBNhbPsLvX94Da9nl83N2Tib4zf2RbcLvdFroTgKRe7qP0jlzeJ4BLMBl67AM0aL/T6cRwOCwn2dAWNk+3233vFAYAIZ5D1sCX+DvsEiWRAFmAnLIeX6+fToRAjhhfYF0ja7AzHRC2Hc0P6zj7POPxOH77298WWTIajUoS7Gw2i8ViUeZ+u92WAO1sNovRaBRHR0flrmNObbJcZs05Adn+oY9CZg0Cmht0zn8bvMOXOwRBD+VQDqXT6ZSdTMbvKMYAse0c0HDCGHrDycj+PCLe0yXGXe0TWu7ah+P7jMGi/9lRmO2Es7OzkvRsO4+EH7ftRPqIZsLxev10TC9BR3BB5OhwOCx9wHc1BhnR3JjhQOB2u43pdBrT6bTIdBLbnLDtIC3FQSF0rHWq6dVut0vSUr/fj4gomI3xSePVGT9lDng+Ioq963mGjsZ/sPv43n0zBul6jJNkPzzzh/0ZYw7G/eyne67dhuve59NnHM/4R8ZR/LuG7bquGu5k28Y+mfvntZaxCNPUWFsNz8Bez8dX5/HaVqGPpjk/ttdcFwmpuX3jP67f7WYsK88x78J7lnOsLdaIecAFG52rWRzkBauCp1nv2NQcg82YOfkHezGiiePmuTb+ynxkXrUtaHzVmCElr9/Mf/7NBruLi4vis0FT8yE05nv677rsq5jvjbe5b7lu/CH8lq9bK/vKNw6C0mEY5le/+lV89dVX8fLlyxiPx8VBf/nyZXS73Vgul43zhu1Q0FEHlSBWZv4PFQuWvPg/tvjdHAC1cIE5c8CS4km1MuId121FQR8swAFlrq6uYjgcNvqRM5Qjdsff3t7eljtMUO4OaBpQd3sOLrnPzJuVP3OYg1AwpOlhoco7pgeOP3ViACCIMGQyszsgnQU/xhm7wrLgpD8Rux1dBmgMelmB8Sx8wh12zDXPA7gR9PFRU9RDPxyshWbsADDgRF+hHc9i+NQCEeZng34WhjZqMGwIhHm+3G5WouYBC60c9M0Ag/nJQKhLDuiYvxxgoa8ARQZr6bPXYBaaHzJs8jOma1bI+/isJt/2GWy1fphvMq9n5ZBBavfBzzvL3e2aF9hVCQhk2huM8fhZE8w/WU/L5bIcA316eloMd3jTQJ6zfzwOOyRZBvquJXZI2NjKtPL/ma8M/DoxhDVHnZb1yFzWOoCl9YidR3ZJAKoaPPWc8a71JrxnWpkW2TDIwJY/t+FoAzWvIQeLoVNeI6ah9QP9dn2ZX70ubBDzHoEC0wAewfBkPIDzzqiF/k7ugd7m1xz0oT2ez5/ts1Py2so2waEcyreheE16/XvnW3Z4bKcadLKsQr476MFzDvwg0/kfcP/q6qrs/HYy32effRaffPJJrNfrePXqVXz55ZcxHo/LsbIGlpzdj2ymn+woPD4+jl6vF/1+vyGPAI6yve4j3bfbbcOGJVGUpI37+/uYTCalf9iPtq94zvYqtI6IRmCEYHKr1SqJIPQBPctOxFarVYJBBENJMIqIBp2YR5KWfAw+7aKjsj6K2O0e4d5EdCEAKfxEMqeBBop3sfI+9DcQkj9zkBfaYj8T9PXd3bbtDSjSNroLu7LV2l2f4WNiHUBzkIy5gMbWDwR4bXs7AbLb7ZbAo+/IzjYi9wtZd3k927/bbDYFuKF/BBXZZUzCJ+91Op3o9XpFh3a73XKss+83ZX1BTx8hZn8CHjk6OmocbZ3XG/MAX0AraM1uGjLqzT8kEdg+cX30mzq8Fu1fs8vUvgX8yFwRqF6v1zGbzeK3v/1tuS/0k08+KSegwDOMBdqYvwH8oJV9TtZNtpNcOp1OkTfZP4EHzT/Z3sXf4ycf6Xgoh3Io361ie8JBCmN8/GbXk/Un3/tv40oRO7ws4n0fKgenLNf4PmOBlvd8DwZXw6BISvKOSsvrPA7rNOOGtIlthi6FjshUjwmf1vYedhy213w+j8Vi0Uica7Va5V5wH/eOzUNbDnRyEgd6wKe6kDDX6XRiMBiUo285Gt3H2kJjY7O04TEwL7ZJ3H9+o9ewLe37+1QsY88u1oX23WuYm2lO2YcB1vjRPOjP8t81bDTTKPfDfbFv5Xcz5pf7m5/je8dXMg5oHKmGS+a16cQ95tPYFm0as7atwWeeI7dpHBtbyPS0L1qjT7aNLKdYf8b2Inabvdi85M1m9NXzg1/A8xFRfCZ+qNNJk6znvPM0IkoyIifaQQe3bbnlK5vsS3rclpfIFWxp1p3H5/nJfMtvkolvb2/j6uqqJDuaF3Isxtii59M8ap7KazYX6sMP5PQat5nX1ofKRwdBYSA6+NOf/jT+9E//NL73ve/Fy5cvY71ex/X1dbx58yZOT08bAR/vgGHCLEztTH9IGNUEzv+/xYKtJnDyc/5+X11f14YdXr4340REyai9vLyMfr//HkAN05CNMJ/P49WrV+U4SBxBFhIOJPVkRzOieUejvydT3zR3MM6fw5i1gAxAgsEiH/nkBYMhQKZwxE4AeterwWobRdCSZyy88wIl45mFhDKmONhjGtkAoU7aMlhkelMwUGwAAGR4bWTBYAfZwEfNSMhK1/xoOrvAIw4I8A58kANepqeLQQULSuY1B1oyWORsQGhuxYQidR9rMsLGL3210e53963hzFc2vOAF5uTrdn9lY8Of14yYPD/mYfpgZZ+NjkwjA94148q8wXqjLQePHLTLGVPO7qO/ZElydCkBS9+/ZQOFOYL3kF08w3x6fn1sD+sHWVgLQNmp4X/omOcBfoTeOBoO3gOCtlpPO0zG43HZXcRxhnlucSgAY/nJMshGkeeU+ckJC4yDZz1+jy8HhCn79CL98drOyQ48n/k7z0F2nNxf6nPQhV1JANzmy7wrPxuAjDvTxMk89BlZZ57znO2TEX7Gz+5z9A/lUL4tJScnUFgL6/W6cXRXdkT9btbTyPd8TG67vUsUsX9wfHwc/X4/nj9/XsCb2WxWjsF9+fJldDpPO6d+85vfxGQyKcfJWg5io/kz/A2S1LjzE1DJ2ej+H1/m7OysgF2np6eNZDfkSqfzdLzodDotQFJ2aEkGioiStBgRJUHIcpeAMfYlfbXzS7t5HgmUcswrOst0YccfCUQcyUnxySb0x3MIMHB/fx+3t7eNnRDMgQE6drTSl9Fo1EhYwWfEcd9ut0U/+hQJ5tLBapKrANJoP+t0+DAH4a2HHBCys+7j1w0Mu03G4uASa8E+AYE9bAsDqAYq8BXwWfxM3jFpsMagDUDp4+NjAV0idnfJ3t7eNsbpH+/4RRYAAM9ms4ZNkPm33d7tdvWVLtDl5OSkcZ8o8w4PWdY4yNnv9xug/Hr9dOfucrksn/vOXAMm2HDMkY9Qy5npttsYA+Ax/EcCwHw+j/l8Hi9evIjLy8uyK5QjEx34B8yGvweDQYxGoxiPxzGdTgs/0C7z6V0K2aYyeAxv2FfOAQx41j7NoRzKoXx3C7ICuUYiNDLVSRwkgOVdfPa/Mt6AbuUz2xF8huwypmhf13oXW4C/kXPerRSx06foHpLVjF/4moJME/uC2e4iEBIRjUQv5LHtXh85bxyHv9+9exez2azYbhG7oz3tt7ZarWJD8gw7OY3lYjM+Pj7d94keOT8/L/gLdhnzyRVenMCScaEc1IU/vFkFjCSfGIZ+9QaVjK/xnLFaz6PxKuOg9reN21BqOAWf89t9cb1+J/v5zK3LhzCQjLv5M/+fbUHXWcN1acP4Z67T9WW6Gq/N7VC/sVpjNDybfUPWTj6Fyzxh7Jl2sHMz1kc/88Ye093yxX2u4Wrt9i4hFtsdvslBQtYU4+l0OtHv9+P+/r7sAiepwj7U8fFxSVokwdA27unpafR6vcZVCOZDJxxG7PBxzzNzz1rPa4H+G7vLvOWx1vifmMzNzU1ERElSznyTsVk+N56X58Ml86BjAfZ17R96rX9sIPSjg6Dr9W4Xz7/7d/8u/u2//bfxySefFMeaCWB78GKxKIyCwKWjDMgD2we+mkieZBPJ75hoFDMUyo92LSCol+8NyNeKAxJmPhaWlZrHknf9mRYwxmg0KgFQKzArQrJ5J5NJvHnzJiaTSQFcHPxE2VrZ0DeCnA4oZeCXLGT6Z5A+g992vjECfMQsYD/v5sWRnW/fw8nfzkqjT1lh5h0MCAQ+A9BiTpyNBdgATewQAwLgiGfFwt+846O5TFf314LIRgQLnO9MK/NdBvD9nWmb14n7XVO88HBeU1noek3SNoIeOvh9A4I2ZnMQNK8199f1Wc5Aewc2eB7l5c/y7tyIaCjPrDCynHGb7id9oC4b9zb4soDPY7QRYqMlyx5/ZrrAN14z5hXPsUGS7Xa3+9prHXALunndUoePkfF69rrjfHz0B/fnAgZiLJhn9inD7FD5OWdV+pjcmkKlv7VgvOfaMp4x8Y7XLYA8/N3v90uCUHaKWPPcY8aPjfzMTzZMagrffcz6jneyDMvOhGmQ+d70x9kxvzoITn/3Jd/QX/4ni452oAegZa/XawTP1+t1ce58/KEd0bzzCJ0asct6Rt7n0w8Yk4sNeNdZk1V+9lAO5dtYrBNsi2Gvsn6cTGT9YrlLMC07Oz66lKBKtod5/vz8vBy78/bt2wK4vXjxIs7OzmKxWMS7d+/i1atXMZvNigNKwAP71zYu8oGjOR1gIHBHNjy6kXGt1+sSuORdZNbJyUnc3d3FdDqN8XjcOH3FO76wE87OzhpHpbdarej3+9Htdkvgw4EgCjLWOsQnDyDT1ut18bWQ/5xo4IQ85oQdk4yXjN/sZAOI0gd8utVqVX64L5FMaeYXxx85aP6hH/AZOyDdjoEAQEeDnvgp6Bn4xTsiIqKAHOgO+N42O3TDD0A/Y1farodGyH7ecaCWMXms7Xa7BCKdOW5whz4vFouyRhxA3G63sVqtil3F3EIL7B90ElnoHPFrO+j8/Dyurq7eu3uMAshAvT4+8OzsrKy/rBfBBWwz0M+a32cbGj6Ef2zrYnfwP9eOHB8fx2g0KvXf3NzEYrEodKIQHGXeCeyaNwx2uQ3ozZpgR+3j42OMx+NYLBZxe3sb3//+9+PZs2clCY52HYAkwApdnz17FtvtNn73u9+VICkyjTXDOJAdrAHTFB50gNMBDGht+x3+OpRDOZRDQXb7eHZ/Z3/JGFvEzhfKtl3EzqfOfrR1NTLMcs34n5NgM6APfsHJBcY/SJIiSdnHpdt/zfiIMQ6e4X9jR75P0LYjddhmtO9MgHK1WsV0Oi1jtLzGtkBn+IoJJ8N784f9e+6sph9swMAexnawTRMRRbfZXsp4ozE063Hqto1lO9TBZP+uYZ78nXHLGg5pHjU+XeNxt+nnbC/U2ve79nPyZ9TFfPC59a7xRddvG7yGR/gZ1gH12//yOHJgLNebaVrjZfuAEc2ESBcHFL3OHBvKeEvur9vyM5kfa9iqZQ7P+6QLYhKMw0l+XlfQFnsqY5K+hzfTjbWBrUhSidcsPuB4PC79tUyCxp6bVmuXIMuaou/YptAAW5Z67N/yeQ6sZl7znKxWq7i5uYlWq9XwHXP90NRjdds13vN4ac/Ytb+jfl9jkvv7ofLRQdDHx6ezwf/Nv/k38a//9b+OwWAQX375Zbx9+zb+2T/7Z/Hs2bPo9/vlbotf/OIXBQTG+c4GfC5e1P7t7z70Xh58bSJrk5mBc9dHsaDOoK2FkAMPdvIjmveM4fBmhybiCeB99uxZPHv2rJFd5Xap8/b2tuwAfXh4aBwBaQAF4cT/Pl7JTpAdTNrMwsnjsWMfEY1Ltx3oc7a1zxOHhuzGpI+Ab7X5zULc0X8rGp71rkxnUvOsA3UAEB4Ti9XtMEbTBnDGx05ZGbkNC4mssKFB7V0bih5HjR9NOxusFnx5XrNi5l2PGd7yPACQ+H2ARfrm9ci9SPTHWc1WbN6BnoNr/GRFboHp/2tG7oeMGdqheC72CVp/xvP8mJ6M1wBQLs5at2FhY8A0Ne1qyo15y7xtpZplZq1+G0FZLgIM1UArt+OjDDiym50e7Djp9XqFVsi1vKMP4C+P32ubwBdHqdb6bwA572a3EeW2DdK6js1mUwBarx1A4IhoBHk5LpDiZBf6aXmRM9PMC4wpG4rMgd/1c/xvcBFesYGd66zpSvNLbY3m+vx+dlgwbtA1Ebt7m61XoJtBWPeRvw0Um99ZUzkZxn2sOVBfV1jbBqIP5VC+rcXr1PaT9XvE+3d4AMYjc63XkME4nz7+nPcjmgA/u0Cpi+OCLi4uot/vF9l1e3tbdl/l5D/btaz/4+PjuLi4eC9hjsDYZrMpAdVOp1N2iXJEKfYddi622v39fbn/j2Ageo2+bbe7+xkfHx/L/S/QAbrwmU/QIfiHE40uoi30K3IGPeAEQHTyZrMpbQ0Gg0Ir6rb/ENHM4o3YJZY48Yf7JiOigIDMO0dM2TfAFsdxxR7s9Xql/4ydzGPGhzy1brc9AKgILdgZCd049cW2vneY0LZ5lGN9I3YOPG0SUGy1WjEYDAoIsd1uyyk+7AC0nUeCGWNE57K70UHGiGgAN/AEc8M8R0TjjlePISLK8V3YlehL/FHe3W63JUjohFLbcFz5ERGFnwmE3t3dNY6W9o4W6uBd3qHvjJsd4CTeAVwTnM9Ale0R+1Uc28VYkUvMMfyHX0oCBLLJPg47or0TFB8FX4z19vr161itVjGbzeJ73/te2RXKiSDZHmcNnp6exieffBKbzSZ+//vfl1042E4ObGbMBDraZvSuYcvZDwHD9msP5VAO5btV7DeR0BXxfjIs8gj9bIwoB2QiooG7GaOzD5d1c83HdB/sw1sP9Hq9hr9M/9jI8O7du/c2RzigSckJ1g608Dz9RUd4xxZ1ZPsJHcZpfpy+wSkNDij4TlPsHnSCrzZAV2fffrVald260LfdbpeNTd6o4lNRsHOw5xzoMj5AwbbERiMZiblFH+GDGzupza1LDfMyb+U68vvG7GrYgNvOcQr/XcMuasE3t+e5h341/CTjk7lfeT0Z84Wm+FmZJhnLj4j31odpYvxuHy5orJm2s79AncbDjIlCT/wiH0VtHLdmj5jujrvQZ2/syO/ZN3Vw1u/iM8Hn3iDBerCMitjtAicp3zYhyZAkXhwfHxfb+PFxd1qO/S+PE3pnf8/zbRyWYtnIujUGDS62D1vOawH6sSN0u902jsbNOoK/mSvLw4y1m58+pthWd30fu+Hgo4OgP/nJT+KnP/1p/Kt/9a/i+Pg43r59G//tv/23+MUvfhH/6T/9pzg/Py8C/fj4OG5ubhqOqzuUhQgdrwmNff/nkicpC0ovbj+bBWdN+GVwPffBE80EmxnzQnK9pgcAy/Pnz2M0GhWnzDvnWDgPDw9xc3MTb968ifF43Mh+J0AV0byTk78zCJ0FgJ+nfw5u2HgZDAYNoYmTmAUp7diQsNC2QeUgSs7AxvG0sOUZt+PfKPWssK3YLfwAgixUARUQ3g6eOljMLgOe9/G//Lg9G4QIJdZLplueE8AT5pP6sxGXeZi+mv/8u0YrC0XoDk+47xhO3vHhNg1A2OB0sM40hlYoCeqpGS42Gt1P6GQFZvpSMh3hU6/p2trPhoMNFINYlAxG0mfzIHyAMeoAsMeb1yTF4K8DaAbvTJ+s8NxW5h0bceZh6uWZiOadbLxvAJrg5GazKcehnZ6exmg0KoAcOsW7T20gGBCyg+D+R0TZ4cNueR8X4TVjIBqeyWs3O0TZkIPnGBt98+4ndvD4GG7G42QW6M3YDfp6Hs3H0Ccbde571pG5Ds+33zE9stFu/vQayH97XrJMg14Aenby7ETleYA+HO0IX9r4Y0z0x7LM/fe6z5mqH2Ocm5eGw2GMRqOGc3Ioh/JtKuhc6zHrf76zE+9AaE5ytG0XEY21yme2c3gXsGc0GkW/34+IiPl8Hq3WUxZ7q/UUUGq32yXQiJNJ9jt10cfHx8dyPx939CF/bX9gq/M39vfJyUkMh8Oig5A3nHjDMWjL5TLG43E52naxWMTj42OxzXF4AQ2tI3u9XsPGZ1wGC2xnAky579jGTpwkUMS7d3d3Zfch77darZjNZkUfeackthxz0+v1irNLUAm7fDAYlICX7XUHLQl+whvoa3hpPp83QDrmEfqxa4Fj9NmhsF7vdumi/7AdvJuEz6kXPUEg2cljOfHMiX/ocebLuy6sM7APfJTsw8NDOa6OQDnP4zu5LeaO/1kjAEbYGa1WqwQO6ZfvJeXkDcZD/1arVTm5Cb06Ho/j3bt3MZ1O4/7+vgRI7ctzXxntedf1YrEoAVf4F7DVa4tAMHrdVyAgF5zYtF6vS1DbsiqvYT/Hevfu2Hb76dQRxjubzYoeh/bYDvSX8fsKhwyAtVqtIlewOZABs9ksrq6u4vLyMk5OTsoR3g7W+2SKFy9exOPjY3z55ZeNTHfbUOYxxggN2UXr/tk+5T143n6X192hHMqhfLeK8TiSYQaDQUQ0gyUZo4nY7U431oksyZjD/f19SYZCTxL85F33yb4epeanYiM4iZ4TEDqdTrx7964EZGezWfR6vfd2oWa8N/v79vOpFzvUvqbxTWwhik9dQK571yX4T06a51n7oehisElsDvQhQWHspZz0NhqNCh3Qo9bF9gloH92Ijt1utwW3cYIy4yeRHVuM+kgCy36C/XV4ze37fX7bT8/YFbTP2EfNlzemnJ9zMX5OccKbv9uH45rfcj/cvuugHuPgEbvNE7YbTauI3alvHgNtQLeMKWf8cV+pfW+M2bio1wi8io3I+soYsXliH33sY2JfGqcGl7ccMg9DI/sOOShn2rDGqMcn5mEP4td5lzan6LDesC+9yzTznWnIWva6cBJwDcOyXcc8+Nhhz2HuA3xhfmFH6GazKSf9eNd4bR3nxOfMN1nG+3+3TzEunHH4rysfHQT9sz/7s4iI+Nu//ds4OTmJv//7v4+//uu/LgyEw4FCe/PmTQGF6SSdMoACETJTWxiaQDXh4MVZmzzX52dcakTLYK7byX220NgHMDt45kAA9R4dHcXV1VU8f/68HA/JgoFBcepvbm7iq6++eu8IXN/V43F4Qfj7vIB8zFPeeecxIERywNNgvt/NgVgEXGZmZ2Xzt4F/FpBBOT634+r5QdjRH4NPFsg2cBCWuU4XFqaD3AAzNuYQbHbo7XDCD54jG5fwiUEweMqgHQaWdx1ZcNmocallqFvo19ZSVjg2EG2kmS8y/RHWXlfIDNrw/PB/VghuNwMSFI8FfsnGiWUHfXbbee49B1meeUeB2898Zj73mKCP6WBjy3PggJDBvn1GleemNpcuXmPQHoMVfqR/gF6WGzmA5HGaN9EjOBHIMkBX1hR6xuPNRpHlXTbooDVgr8/vt2G6T/ZnfVJL7sHAgWaAYNPptOxEApDjeYPCgGzz+fw92Ua/zQ/ZoKYe5iZnhWZ+yNmYmW6ma+afD5Uaf3nM9DXrfvoB6GdAGNAWwLumx+Al5KDvi3PSCH3KfM9zzgTMznfW//scpM1mE3/4h38YFxcXVTlyKIfybSg14IDPkSFO6POOfNsyOIURTcALsMS2DBnrBi7YkXV5eVmCnnd3d41j0tGvJLIQdDHgRd/W66edZP1+v+wyjGgeYZZtcGxb3sNRdQLD27dvG3cQPzw8lOPVZrNZsaXph/UGGcIEsyKeMvX7/X6x4y0nkWOM1ScItFqtkswHzQlaEnBlVytzSZCTgKB36dJ+u90uiRudTqdxdLBtfIAl5CF1s7PB9gNAB4FH+uOAou1HxupEJN4n2fL4+LicrsARw55feMJHF9uunM/nDVvQc2WdYp0On9YSHFkjTsJx0KndbhcfjvXG2jo6OorFYhHb7e7aGPrNzlCfopPnlPkggA6Aja1GwM28vl6vS9CeufAu6vl83lhfvgdzOp0WABf+YSzUjz1PhjuJCNxjhk+UQV3o5qAr/JXnwmtos9kU3ojYJVCs1+tGEJN1gjxj7ZG4AK3b7V2iL/OBDZHXTpZ72DbT6bTIB2yRzz77rGE/Apaxi7nVegpoP3/+PO7u7so4bDvVfBPAT9vgEVF4judZV8wT68L+96EcyqF8NwvrHzk8m80auJYxP/tmAP0OZBoncaDSOhNdwfO2P/GBjSPhwyHTnFjVarUaOynRkdQxnU7LHdY+PYgjHSOaV8U44dqFgB66zP6scS9oErE7geHh4SFub2+LTkOH21c3TmZ6oUOMoRpbw8bo9XolqGmMmNO30AU+PQA7A3phs1unYDcwHnQp82+siHftb9tXsC8OD9CvvBOY9z2v9h2wNdDNGVfkGc+vcaLMe+Ydip+HN/OVZxkrynNjnMbjquEluR8ek7/zeJzQnQt1wIf8bZyZvhpPzclpLg6oZizFgW6+z8lVNYzK8oOENts/tOP58P/QwbYuYzWWn3Fm23DQk8AmSZ2Wf8aIbVPhA8CjOUZjmnEdBn0nQS5jyRm/t1zNwVDjU9mvcaJcxM5PRs5mHq7NuecOf+/29rbIUeaPPjjRLvOacTX+53fmp9oaqfFXxmY/VL7RcbifffZZPDw8xN/+7d/G3/3d3xVnBCcIJ2qxWMTbt2/LRPvIl5px7YWdhVztnSwM8v/7DHh/52ccUKPYkcnPGjB3f5gcMyJC2YvNQKwX8HA4jPPz88I8Ft4omuPj45hOp/Hu3btyzBb9s7LMWSAsUv72IvQzFtgG+nGOuA/JCs6BBRaF6ZMBJwP3FljUYwWJ0vWihMkdUPGCz0IWWvg93yXD+AG17u7uCjAQEQ1HPAdbs+Lo9/uN478IwKKgqQeFiFOOUjLoTn89JugLPTxnzGmNNz2vBnycMWYetRHjNqBTDXCk78yr5zcbpH7XASEbkjZmsnIyX2WBaEM5G2QfMkhq8oc+1eY7812WFTbSLGMsJ6y8vdbdP+8WtcKqKTn+zvzhHdU2rik847H5b8aGss6gYTbEvLvDRkJ2oKjb8qrVajWOFQQ0IzjIevD85+M/yIazweMECstTDA0cgnxnmPUC4D20tKNXS/6gLnYLsebZjeN1zZwfHR0VQHc6nRbQKgfgbMh5zbsPnpcsG/jea5J++/9cZ804yUYS6yQDdXZUsg7I7Vh2eM17p5Gft1NouWCjyYa1dRj8b1ls2ZCdqJrRVivtdjv+4i/+orFD5T//5/+89/lDOZR/jAKvW76xNki8yDaXbVnW3IcSRnyMK/cy2Z7h7263WwKgnHJycXFRAkTb7bYRLPI9y2TVbjZPwTnrDvebNU0wi3EhewGQ8mkMr169isVi0QDhIp70zWQyieVyWWwjbGLoyI5QCnLHu/YjdjseCUoyHuYC2UZgxElvjAk621bbbreF7timtjO419R6GnrZr+AZ2vGOSNs6Pu7WgeuHh4cCzuE7wnc5oMp8oAeYb+Q0IJ0DUj5u1Pqe5C0nuAFkug9OYENfMV8AGYPBoPS1pidt/xA8NFBhu5q+1YK+tvVsrwGqckcY65Mxsd4AVg0i0W/a9o5idPPd3V2cnJxEv99/74oV7CTu34XW1tGdTidub2/fkzP4Rf1+v2EX0A/v9AU8cmIn31n/R0RJjmi32+U4MmwmdC9zYcyCddrtdqPf78doNIr7+/sYj8eFl6GJfTMDd7avcnIHn0Ev+sI9aaPRqKxx1rft59FoVIIQ19fXjd3qNcAr+9a2FQ3Y7gOJMj8eyqEcynevWP/ht5BEY53vZy2PHZzIcsrJNMaaIqJhg0ZEw2Y0rpPxAwcy0BGWiSRSPz4+xnQ6beiqVmu3e5+dTOgN5LETpWiT5BhkvLEZ+6bYLfRlsVjEdDpt2Ms5OIDe9slq6BF/DzbgxBzjgSTf2AYE+zR+4qsbut1uPD4+XX93cXERo9GocVJGu90um3SM7RirzCeZ8JwxNvqL/vNz6Mi8c9P4u21s6n58fCwJaLZfqcPYhvtinVnDwIytMt/Mp+eQ940nGs9wncZwbPPxjPGVffX4B75zwNoYivvmejP2mnEvY58Zp3Q9fJYxJeO3xmIyhpVxV75rtXZJDfgzjJO6HaswX2OLM56cmJFtd9OJ/1mD2+222Jn4TxTbcARLqYvkO641IOmAtWv/Y7PZlF3lWaaCMTqBwUmWFPrqz43D1X5yOzXamP/sr/ObxI7tdlsSU3neO+ONITjphPVlXrNc5Lncn7wG+SzHgfaVjw6C/vSnP42Hh4f4q7/6q/j5z38em83T1lcyftnCDICSgWQzl4mwr1iQeMAuWeDUQN7a8xHv32/nZ/idMzot0LPCsUJ3wBdnxkBPDTDmOCnAcQsg+oJi5hgiZ/Da0LCzTj+8g8jMw6I0o9IuAT0rPEAUZw4b/LDhYfDGwicHJlgYDjDy/3K5LDTiCDFnpFugOKMpA+A2GHwcA44e/Xt8fIzlclkAK8AEiufSoKANHe8y49gxjqlyMNXOrMcfscsY81zZuGm328WoY03VlI9BfOp2hjWgkpWlA/c49Kxp123jy7RGMNpA9Oeug2LeyYE69xuwxwLaBpX5l/kzOMGz8C68YQM31+vPbcDlYuUNPZk7j5FnMghhYyRnsnkc1OX5ph3ze67f4J4N78wvmd94l8+htYNRlruZH2jXc+xkAMBSDGEMGd+bdH9/XzL8vVvy5OSkyELfXWIj1/9juGAoQmccBWQW6znzmfme+bJRkOfOxjUZmBgKHM2IjLQOYSfSfD5vzGV2Lm0guB+msTMsM69ZluWxmhf8OcX9MB14x7xqPeD6TB/ztY2iLM8ZN/WZh5FXzK93r1nmWE7YoDR4zXiygei17T5mmWCjLieHHMqhfNtKXp92pL0uIuK9dcT7tglrOhDbI6JpczlhxvcqAbw5uEgQjoAODik7rghs9Xq9GI1GRZ+4v9hXPmKVYKmT/gCtbm5uYjKZlHs/LWOxtxm/j2oFXMMeRy5Z1medC91Wq1U5+jfrbX6gifUDeowgIbblev20q3Q4HJYdrtjBPi2F+ys5VtxglOnL84CHBFd7vV7ZPTiZTBpHsvb7/RgOhw3bF8ffO16xGThdYrVaFbuUecMX4X8KQVOCqNaTBN8MusHnPnIfWkMjTqCgD3zO3wQc4THaYt202+3COwAG6DV4xHoeWxvaUUcGTvPagwfgOZ8MxNrkXY4vNggDPbm/lZ212R/IPMn6dZKcAU37Cff39+UoaXAC/CRsn9FoVPrA9/Az9ODOUWx7As2MAV+RvlvOmPbwG8ArvMx4PY6IiOVy2Uiasw1GgJb1Af2ZA8/N8+fP4/LyMs7PzwsIjV2DbT0cDuPq6qrcuXtzc1No70Re+wLILp8YgkygH7YfbX9SWP+HciiH8t0rxjjQkcvlsvjPTh7OJynZz8LusH9H/ca+7Df6yFSK/bfsQ1kXgltSF7YRgTFwAoIb9JkAB7YImGsG4NF92CXZrjTmAn3QRxwrzF3ajNXv0S/sN/R1DmyZntAP3ebdurQJPXneuxexW7BLrCd6vV45Zte2Mu2jl4zXobcZg338nMBjnJBC4hs2KboUHWw7JscJ6INxOGw7sJs8X9Z92b83nTNuZyyQ92v86dgH/IPd7XgE+ruGEfizmr6vBbiMm/C+16k/q73D2NzPLBegh3nLeDtlH17l4FyeM/cF3ichANsHnN52Vp7HWhJFxns9Pn7Thn0r+okNaNmFTc965Tc+wtHRUYkteG3wvbF8aJxjKtjC3snp57xL23Ps336Xz5GJnoe8tozbmR+9Dtbrddze3sbj42OMRqP3Ntb4vbxuLBPys6Z/Xn81fZD7+6Hy0UHQ9XodP/vZz+Iv/uIvYr1ex4sXL2K9XserV6/KfRoGs30XWhYMFnw1QDQHSL5pyYubz2pgaG4rt8vi9gLguQzc1tq0kPD4yaLGYbm6uirZxQZNac9BTT7HUcoLIgtE2uQ7GyIWcLTNfTUIHGdce5HYwc7gjmnuwvuAAyg0nstGBc97sbJgEIKA3b5Q2dkrBM84PhFFznP0mXni4uLT09NiAJKJBT8gTEw/xuAsaUAh9ytid+yaATrzSL/ffy9w7v8pVoDmTc8xcwRoCKDA/Nrhz7RDCTrTxTzvAGdWYvCFhbjXRO6faUBdOeM7P+/xZkPCcwv/0B/zJsrqQ0rR/Gh6Zjp7vqiXz2kzy8JsJNJPryP3E/6xwrUCYXw2GikONtootKzgO7/nZwCLkEE2zj3/HpvpCQ1Mm5xZSj98DMdqtSrHvOCs+J6qnPGYg1I5GMWPdwFFRGPXJj/MiZWuwchsOJv/eXa9XpcjAgHKAdngKdOD7FWcs/z9ZrMpMi/L/2wAW2baAaVOZJ+NDMs7nq0Z+Lkdf+Y5pS4brF6zrvNDBgzBgW63W/QovG4Qlu8ASKFNDobm3eYY804c8jgss10+1ug6lEP5NhfLRuSGZR7yALAqYqcPbe9ZlvCu7Veed7Y39idH0KIrCJgQuEF3kXFO0BS90O/3YzAYvJek4/XPOwQ+OOUEm49j0yaTSYzH41I/9XANiNc9QdmIp2AJTmtElKM27eBmnelAEe/i6DvQw/iRXcgkADrv4rMfRrsRO1sbOZeBJeY5g1xZfhp0wq63TGUsDqbavjHfYcujfw0IOIjl/tZ2fkAvfpuPydK2fUTwCluCeQJwMe1sM3unCr85DpB3KdDAfgbjpC/wFXY39IPmvmOV72azWZln6274B0DGetVJk9Ce8dlXwM7j/dls1kgUY5zMHTtTydi3bwVf+g5UArVOcJxOpzEejxsJxL1eLy4uLuLi4qLIDNtDea0DUOGHYUN5p699ONYP7yOHoBNzwU4A6oYvbef2er2yZuAj6LpareLt27ex2WzKSU7L5TKePXsWl5eXMZlMSjKHdxW8ePGikeyHv00b0MHyxDYVdqaD/F6/GaexLXcoh3Io371iPGC7fUoYmUwmxW6qBd1quBMyBfluvMl4DHaHNwAY16Ggy43Z0QY6zwEd63SCF/aFjf3wPclwtfbsS1KPfca804mNKz4JxP6mbWHLXXBIkqedJGUMjTmIiPKcT3fDDvGGDQf/0G8ROz1BUhJ6JiIKZuFESW/8oF+bzabMNbZcDQNHv1k/wkfgzRFNHCLji+ZR6zTaqPku5k/myDhExgzpl+1iPvd8uK2sN80ntJkxGdOG37m+jBfm5/y5n894a34/t20fJb/D+nHQj/rzcdlev/A7faLftjvymC1H7Hv4BBjiTfCzsVmvE/phu585gRctE4zxGCdzzCUfbWu5Y8yMNUkSpvuKzMCvMw5P27bFjLf76Grjvi6Wb54rfBN2i3sMNVwv80JeS6bvZDIpSXw+9cm0zHzrNcH/5hPjrJ6/jEl+0/LRQdDXr1/H3/7t38Z6vY7Ly8s4OTmJL7/8sjj2DmLg0EQ0gwIRzUuzrUTyQvumA8vADSVPflY0ebFG7MByZzjkflkos4g80f4uZzFlUPXs7CwGg8F7dyYBQADK8zxC2UeY+ugaBxesCMjuxEHEmTZwwXFFON5szYZ+zniOeP88Z2juObZRYCXLwqevDqTy29mo3hnGDlGe5QdjBOXMHPjILubEitlKz8aZFbXBFNObehCQBgU4bi0HPBFMZJ3xGQFaBwzdDxub9MsKzkrJysAZVPTFABPr0qAa3yHEEP7UmRUOY3a/oa350AINHvL6srDn+5pzb4fd9XleeNdr2eBjVm4GeDJfeJyZ5y3XakZFDrJ63LXydQGVrIy81uHVLFsxHuClLCeo1z+uLwf8OfPePOSgqtt3QMq0Yz4AorJTQdID/aQf3FUFzxPYBwz0MXw2mukDNObdiB3IiuPhdceYMo9l3jUNbRS7DwRD2X1k5W9+7PV60e/3i/ynLgBQ5CiBAEoNvII389EZyOcaX+c1hcypGebMv3Vp7pNlba4n10XfGHcOOjJ+5jqvOesTOzh5LNkYx8ntdDpFB7rU5My+8nVr+FAO5dtUssyyHnSAiLWF3OQZnyBhPcH7BuxZuwQ5sB3Y4XV0dFTknu9Tubu7K8+vVqtyJGy3243BYBCnp6cxGAwa7VpH4TjaZqO9iF2S0KtXr+LNmzcloMNOrYidj4NtHtEEFPAFnFSBLUgg0LYfNqx9CGQHdm2r1Srvmo7Y5z7VIiJKAAtd4UAwoBr2fs1eJuDjdzyH9qMMilnGn56elqNJbS/kwBPjXSwWpS30NHzhYnDBR9qjy/l7sViUu2ShLfQwkEIbBCmta6Edux+cvAh/A0QY5ISvnZjT6Twd9Wz/LvsR2Nj2WQAx+d52FXyJ/QCt2dUKbbARzAf0l37YfqW/DoyzK9l81u/3G3XS34id38B4mBvvGqXA59AOUIaxHh8fx2Qyievr6xgOh3F5eVlsNXYn+V44dpHbLnZxgiTrl78NFsMX7G6G35jTfLrSyclJ8U3tx7m+zWYTNzc35VjEy8vLaLfb8Qd/8AfR7XZjvV6XaxAmk0k8e/YsBoNB/OAHP4jlchm/+93vynzaFrGss7/DHHh9ZlCSAu+DB9jXP5RDOZTvRsl6t91+SkjmPnMSkrkPM+ObyG5jqrYnDf47iGAswfdP29bA9rDcRc5b52CzkpSGrrQvWfPtSTRxchVYKH03dsL7Hi/4y3Q6LXaUbWPkNAEM+uKdZU52wy5w4DRjCpvNpnGtlu0E44HuC3VF7GzGdrtdroLghA70loOdDnxZF+WgIvNFW8wBfxt3RPdij1q/2WfIuL5t7ex/7MNoeDZjirYVPD8uxtyMd2ds0gEfflMna2pfUCjbLNlecZ3GjvKY3EdjrLn/HpvbqGGheUw+kdE7KHNMBZvIyeXY5tlOMYbjQCA2uX0EbGSeN/33zbvpTJ22F+3T5CvbkG/c886mBQo8amzPfbZ9ho1pDA56eB4cpM28ZTvTtK3Nmdtwsh1tZb4wjm6a1jBG5nqzeUry22w2MRwOG0kV5mPHhrx2bKfmteQAqOfQQeOM232ofHQQ9Fe/+lUxyIfDYVxfX8e7d++Kg8JEswgseHKwKSs8K9CPBRhzqb1vQlmBWqhZidIXO/gUT4o/M5N58ViQ5P5ZgJ6dncVoNCq7fphgMmn57fYAFLrdbiMY4GCRP7PS9/ssbham59ILAaHi8dl4cAAtoil4rOCYA4AsA1O+v4a6Hfy1QidzYV/WCc+7DX/vI5EMhtkxjIjGzkcDL1a4Nb6j3oj3A+rbbfO4WdfrPnprvIEa6szj9OfMpwOAEc1ApwVRVpYW2IBFGEhOePC7XgNk6ZvnzCc8l9dO5h3Tk2eyfLAxloOl+WgABLB52QrBStlK0MV8ZV6w4Uq/PD6UJn/7N/Xymeco04Z63Ld9Rhrv1uSg34XXMlhEe5ZhNiCOjo5KEA+g2mCWDaA8Bq+dTBPPEcaHZRbzxlFmBK3IVGTc0Mntuy3zEiAX4C3yiN2lmYbwEjLC9M7jNx1tqHA0HjK4FnQYjUYxn89jOp025gAezfWahvuMYJ7JGWLQlfWf112ug7FlY8iyhbYcbKRt1+H5yLLA/fU6s5OIrPSzOI7ZmMyOSE5QsCzg/6wHPlRqcupQDuXbXrIjZvuNYrmT14jXpteyAQ2DMS6ATA4c8S4BAfpDMHSxWJRTaIbDYfzBH/xBsYd94kG73S4259nZWZEJHLnFSR3caTKZTOLNmzfFDmc3WcTOYcbOYWc/NMJuYswAWxHNu+UJPhJkRT5mkMg6udVqFT+Be60IYDq5DjpZL3n+IqKxm4wgsGU7Mo/diq6LwJrtiCzzfAyvr+1otVqN+64imkEvApMG2KC3T6QxmIIvtN1uS+IQACTHKPf7/fKOeRddT/3mcXja/qABn5zA+fDwUK414Shk7Al4vN3enYTg4/tdh3VxXjd+D1ucOeeEDPStkzaZU3iKOphHQF/ao9/QZ7VaFQCc+bC/xzqyDdXr9RpBXfrlIDpHF3IHPPyA3QevQDMSYX107Gg0isFgEKPR6L0jkvmxXQg9kQPMU/apoKVPOuH0DpIE2M3Zbrej2+0Wm5R5Zseq7dHT09Oyg/fdu3fx7NmzOD09jaurq7i6uorvf//78fnnn8ft7W2RW8+ePYt+vx8//OEP4927d41jsmuAF749Y/RuZvs/tlstww82zKEcyqE4ABIRjeQp7BbuXc9BBPvyBuxtq0Ts8AHbhMYL7ZtRv/vHM9h0ti9JvNlutw07BN0SsdPj7iP+P3psNBoV/WV/EVvVNiD6dTweN+wxku+MhWXbyrgUSWy+dsjjty2R7W/Tl/rQqw6G+lohHz/vOfAcYs9iq9Ev+wvY8OhtX1NmbA0bAqzSWEg+lSTjY+avGhbN/7YlrSupKwdS9vFjxjhsZ32oZB0K79FPxwtyG7ndWmDHOt+YSsZZ3XbuU8Z0/Exea7X6MpZLcXJcxl4d6POmI+iek69sP7p+twsOiM1JHCrzUMY4sUmNb+a5MI5kDBb7FP4FK4eufta2vk/CdBDYuBS8iw2acUuvCXBI0ziimWjInHm8NV6oPW/bMfNF7T3L3Pv7+xiNRsXH8rrOO9AjmokLma/28ZlxvKwjvq58dBD0N7/5TXE0bm5u4osvviidJ0s2C2gHnQyk5EAUiyIDuvydP3OpCcIaKOuM81odMKz/zsA9f/u3GT0iGgsbsIBiIUwfOLqLOh1IBoCnjwRFcXAvLi7i4eGhHNtFvRYmFowAJhz7ZSPDY8CBBCTBaYXBHODymAkAoCAZKwxOv6w4GRNOuYOCHk8+ljAHvqxAGQ+8yTgc7DKAglJnl6wVJ8EIB1SsJL34yKKygeTM8ZpxYb5gfHZYzXv8712lNqLMX1nhZSMr8zAlB8z9DsKbdj0HPO/AjJUkfXMANoNoDqjUBFkOwuT1nNvxXHtOam0xNtoFSOU5Aw21koUzf+d+QC8bDu6/f2rBG9a+n+fvTCuPjfqycqkZOTxr/uIdt4dS22w25USAXA/v2XiFX3FITBvWH20xx6wj9x0QGsXq+3c5NpEx5ABjlsvQ1Ds4kN8ocmiZA3/eMZj5xbTNMtCZnQbsKThh/X6/gPvQCj5GVmQZUTPO9+nOzLfmHfNSric7p54br3s7XVmfUw99yY6w+d595S4SnF7mlJ3CyHx43oEZivUY871cLhtrLKIpE3P5Ojp/E2PsUA7lH6t4XVpXYsPYfrFu4t28I8p2rm0nghGsRxLZWGPYpj4yGzkH6IO/gaO73W7j/Pw8Li4u4vb2Nt69e1ey70nIInhGwCwiSpY7Qbi3b9/GmzdvGvcEcpQm9ilBGAc56SOyx7s6HZDBLo6IxrMGuXxUK3qJo20JrkVEOVYU2ngunEjJcbroL+twdAe0Ztekn2e3KvVyegF1WPeaXwADut1uzGazmM1mJYmJ8QIaZDvQgMdqtSrAK32HzxwYcxIpyVm9Xq8c2Qw/QFP7IfSFu7OgqXeNsh6y/QN/M7d8D+AKkAn/Ygt6dwi0JRDsrHP+JhhtXsR/8nH5AAv0C9sEm5Zxs+OV//2beWEXDP4bOpE1AU97d6t3onhXB39Dl5OTk7i4uCi7rNklzDjhO/s68Bc7LQnuTSaTwifQmJ0s3W63rB3oxTPoetq0z4cczAmd5hfaIKEN2WB6wa8GygHD8dlXq1X0er347LPPShD/6uoqJpNJtFpPO5q5x/fy8jI+++yzmE6njR3y2ddmjK1WM1EzP5fH5fW3z9c5lEM5lO9OsT+42WxiPB4XmwAfK1834mCaP7cczz449WETZN+Uepygb3+Ydo1xYPfhL6IjbbfRBsEMfMeI3UkbyEcHv9AZtI0+IqHH8p738rGdtIPusixH/9BH+sLmkO122zj69+joqHFanjevgMf6lA3vkvVOTGNdzD3vOxDq4Kb7wTyDz/hzeIU64BP0sm2ejNcaF3awivqND8KrEc3kr4x3+W+/Z1u5hnfk/uTvc3/cvvGM3OdvWhxMdR8yJupx2c/z9/ndWuE54zWZLvYD/dv4p/kavrPMgA9dfz7Nwnhaxjnxj8Bxjak7McExEsYDPyJn+J7PkB/Yj/A+fmOv1yv2Nf11oJJxtVpPiYu24Uwvxumd2MaMsUuz/8eVKe47xX0yFlnDsTJNMlbt326fz5mX9frpnlCSUbHt8QmyrKdP3sgFPcxHllM1fvvY8tFB0FarFc+ePYv1eh2ff/55bDabkg3kIBdM5c7kAKj/dhArgyhZONQmoSY8+N9gcFa6FGfQmPFy8MnFO3f8bA1A4rsMCEc8ZSFzZrIVP5nnPrrQgAyLjcV9cnISo9GoOMgOYOCAttvtAhKQHetMHgoLwoLb43RAG4MF5exFbjpiVHhszLHvhHFb0HLfAvWxEQ6YIDDonxcadLAyB2AB4MHwcLvOAHGgjPZ5Hqc3862zvwgaGTCCVtm4Mw3s1NKOAy45SJAza6jHgFYObvkzGyJ5HdkYZK4imju4vGPUwgt5kY0DxuxAcF5T9IfxOxjo960goAWgkZW/58r95G+PFd7PBg30caYQ88330Mi7RXJ7FBtqBvz4n3Vtw486rWxrSop5dz3uR5abll8Y8DyfDVOUnYEU+mkljfwwEEiiAvPkdZrBHK8/+oIMabfbRSf1er1G4BRakHDhXTnQzwFYaOW55Hs7GDYuTW/Pu9esHS3fkeIj82wUrNfr6Pf70ev1CmjmNgDhzCtZFpgXMfDycfVZT1Esx83b8LB1f83Adr01p9Z8ar5lHvbxMkao+5Z1D995FxKfOTmBsdgW8a7SrH/2feY26a8TVLLBeCiH8m0qXnter3ZE+R89nMEI1jzriDXnIJkBMdubdrSoC5uWYASZ8Xd3dzGdThvJb61WKy4uLmK9fspA505OCjLFdvB6vY63b9/G27dvYzqdxnw+j4goMvL+/j4Wi8V7+jLv9o9oniCBLCcYyLhsBz8+PpbdddYnBGoJ9ma7iL5AD/cJ4M/BHejBcZ7QxEfHUme3242Tk5OYzWbFL/Ec9nq94je02+3o9/uNaznoj20f+IekHgNuzuJttVpFJ9In12f7l3HyrhM1OfYOncI7OZkTu822B/N6fHxcruKwnqfPthOsdwlSG4i0nYgfB+gJT9AOdoJ5jnFw/LJta/wp7E90Gu0RrIR3AG3gDesx+uQsdcZsXiNZiCTSVqvVuDfWdvnR0dPx1p5b+xvYa/P5vPxPMgBzBp+dnJzEeDyO+Xxe1rEBJ2zB6+vreHx8LEdkD4fDGAwG0e/3S/Kv7RCy1B0Mtv/N2gJkhn/oL+tiuVwWecW6cTJHp9Mpvnur9RTcRJ79+te/jvPz89LHq6urmM/n8erVq7JjFLzge9/7Xnz11VflblGD5+YN+ynZj2ae8w6IbNPWbJ1DOZRD+add7LvZBmm328VGYhchmJZliX0t+9PoBHx52op4f+ehcVmeMz6S8T90FPd6csIHvqLftY+cT8JCRw4Ggzg6OmoEbJwImHFjTgawDWj5y98EMvOJifZj85jRyQRRsfGMfRmv4jc2H/4uyU22o7ANjVdiHxu3gHboZBKQTQcnikW8j9P6b2wa7DWSqi4vL4u9ELFLVrZfnf/OGNY+DCf7OO57xig8B+ZN6s/rxbyYP8/9ho+gXw0byOughvu53/BOfs7BIvchY1b+zJ/b9s1tZxrlfuf+1foNH0AXcC0npdmGzvSyjWIsh3rAyEgQMA7vIGimceYRvs8n2+R4A/4ddq/XFfXj03Y6T1dk5CuvvFagSW2evP6N+RujM70tlyxnvI4zH+R5Yxy2M/PzroPn5/N53N/fF5scnmLe8O9s0+IHmhdcavG6zHNfVz46CIpD/POf/zxWq1X0+/0C3tIJE9eAbiYMn9cMbj+X/+e3F0EerAHHbPS7vkwgO7IRzYxKBwLcHwtgxpuFAU6+lQGT3+v1YjAYNI4TtlObg5MoDJQtC4f3csYngb1ut1uEAfSzs0wQgqCEMyOgRS2rFyPD2cpW7GS5MybmyjvsnKVhoMABu6yUGJsBuLzgc/HiMg/4f9PMWVTmB+8odbAGOuAYR+wCr/C7M60BcaxY4KG8S9o/PO9AjOeK/tSCxxbq5tP8HDzrHaymvYOBXqdZKMIX5jn6sc/osMLO858LY86Gl7PHvDOjpvyzgrNSgQYO8ph+zFcGc21U23jOBnQ2pDKfZ4ODsdEfyzqPCV61YZ/pzPz5x+14HlDsJBhQr2VRxJM8sEGbj6PgN+AjRoANbOsPr3NoaNrzDrLPoPVisYjBYFCCoeYvzydtUp/5jvrZIcMRizlLyfyX5VXNOF0ul+X4oPV6XeQN9AD8BqTnnrvFYlH6iPGYExnMb1lHUmc+asRzv6//XiOZV7K+ow7rTvexJpegf3bszI+W84+PT3d+fShpBLqze2xfcN084SQhPs9rsAYKWv+b5odyKP9fKZa3EU1+95q2E5SdEjtWea0ZUEOPecchz7KO2RkXsTvFBEDq4eGh7PiLiMaOwX6/X4Awy5zj4+MYDAYFQBqPx/Hq1atG8HO1WhVZjYxxoM0BPwfF7HxH7IJ2+EjZnke2ECTBH7i4uHjvPiR0LjKJnQXYj+gJ2kcXYld7J6JtV3bfAWaya86Ah3cuAEYtFoui4yOi6DLGmE/RgJZZx3c6T7vpSMwBHGi1Wo37uKBBxO5+zO326ehbfmyTQlNAOviF4C3jYu6YV8+PE2To7/HxcfFj6Bv989Uc0MwgIfrBawkeMYg8nU5LYJzvAT/JPKc+6MwJNtCX+WPOzXvYpw7mYdeZN1qtVrFH6AcBcOhFwG06nRZ/hnbOzs6Kf+LdlKx161e+w29yYrXXho/nJQDa7XbLOn18fIzxeFyOimUH8vX1dbl25vLyMvr9foxGoxgOh2WOKdgrk8mkAHPwbD4pyAkdvjKEQOdisWjsHqAe7F/ow5G3n3/+efzgBz+I8/PzuLy8jKurq7i9vY3FYhHj8ThOT0/jBz/4QVxdXcWnn34ak8mkkXhh2WwsAlqSKFizX3gOGYjdb3/+UA7lUL47JeNPfNZut2M8Hsfx8XE8f/68ETAzfuX3kLMEv8Ai+S5jEugjb6BBL9lfM4bCripkmY+3z/aRdXf20zjeNwcL7F9mTGu5XJb76bF3HBRm3LaPKOiEjFGCu1APNhTJX9gsJHzZh86BTn5Mz5x4DRZDcgzt5+AENECvGx/nOfiBPkLvbCO2WrsEvM1mUzbUoLvsy0MzY5K2KXmOPvNs1l9+p/a5/85YpdeGnwV3y3zvZ2o4pvtMP43lQNPsZ7lkjDS/a/yt9o77699+hj55nilO9K5hO/zeR0OPETvfAXDHHCibzabYZzVMNuNUTqDFpqG9jI06ydH99C5v/Bd8F/PJZrMpfgJ+FX6g2/JpSJZReX681rMfwff8zj5Lnk/eJSH0Y+w7xuRArOty/blkHfL4+Bg3NzclGNrr9RpYXeajHPzMmGPGcTMvfEz5RkHQ3//+9/HVV18VkNZZJxRn05ooOajh79zZLDwyKFt734rWRHEd+XiG3D8zlIFYK7H8rpUDz6HcUSYOfnqyAGsAPKADuz3zBAJqkM3gPqFcUD4oSZRevkvP/Wi3dzuysmAz0INSRbnxfjYk1ut1cf5YiMvlsnEUBc+hSD1W5gqHmDlhrCxeB2cQSHaamQ8CvAiqbNTBv9RPZgYBFYwPB5a8VZ86CBgC3kBbH21lnnBAkPFACxsmNpAyz8EHpqt34+Z1kBUQ75lfMn0cLDAQZQfZ68WK3EKTzwwger6ho4WfA1MZTLVQzvMKrRm/aebAcTaivSZqChuecuCTUhPGftd8ytqy4swGHf12HfC2FQUGn2li2kHTPPZs5Jkm/u32WZMYz9A4H3Fo/spKyUe10VcfVWF6InsAv2jHhrTngXbgS4BDjhHEWcMgwdHyGM1TFB9pB2Bl0Bf5mwvP5Tk0b9jhqxnxyIJerxdnZ2dlF33WrQacTQv/bTmX38t9zMHpmhFN/3jevMYz2ZHJWX1eb9DfvJsNdP/tOfTOFctJzw/zb0eOHWrWqdkpNA/XDD1KjT55R2mWN4dyKN+W4vWS/0fe5juX7RSz7ijoBycVELxk/aEPfM+i9QXPdDpP2fPYV9hQ2+22OKWWLSRpzmazElS5uLgoO/xub2/jq6++KvfuEbggcS+iqX8NqliWMnbLetOD4AwgmO3Ms7OzRnCHU1UyTXge2YZM8SkH1L3dbstOuW63W+5AdWIedWy3u/stN5tNzOfzuLu7i+Pj45jNZsUXQb6yO5Rjztgt4SONCRQ5AEZ79gvR7dvtLrgEjWzHLxaLEmSC7wA/CIaNRqMGv+LPME+8RyCTuhmXedS7Z53oBF2so2tOt3WmT7zxuPHluKPUfMa82baxre9TH6wrnUjb6XQaABH8SBDMNhjr1LwNP8BjrC/A1dVqFWdnZzGbzWIymURElB2c2DPYuv48A9HQPNsg2FuWE8zXxcVFybBnvbAz/Pb2NrrdbozH4/eOIyQ5bzKZxGg0iqurq3j+/Hnxl52kuNk83XNnv9GyzicMZXuKo6vhY9YXdql3FTkY/fDwEOPxuOwI5R6658+fx3K5jMViEZPJJBaLRXS73fjss8/i7du38eWXX5Y6s31tH8n+idcitrBtL57JvJuxmUM5lEP5p1n+5E/+JH7+859X8Tlky2q1KicCRDTtpYzxIIuM1WADZJ/IQL/r43cG9nneQUP7f2AMEVFwK2/esV1Kog+yNAdfcsDEG0eMhW6325IwxHe+ZsH0ob+MwxgTOsJJTT5+HqyAhGDTngQz6jLOw1xAf94Fr3TAxZgr39kPrgVLjVebB4wLGw+hfq4UMx1z8iB9My6Y5yZjZOa7zFP5f+NA+/APt2fs1byM7eX37T9kW8s0zTik8dhcjCP6M7frfrqejD3uq9OxBq/jiGjYyZmu7gdzlwt1U49tJOIHOajPs/Y1jPvQD/uE2PnYP/C3MZ4c/4mIYgf6xBXmmzXJOrPvaF8GmxZbHVogn0igc8Ki5w1/1xsf4Kd9NMX/yjgw3/vzGraVeabGh7aZPd+5ZLlPMHk0GhUf2HrC859lOXOS/4YH4Y8f/vCH1b7k8tFB0MViUY7BZUCABiiVTNSaInHAwyBLnlwDCp4gMyv/85yVkIszlRzAog4YpgaI+/MsYHPWPALZOy4NlNAXnCUAJQpZCg4mMB4+tzPphdTv9wuQMBwOG0aEhUwGtnAQrYgySMERWaYvCs4Z5mS/zmazhpFBUJQFiSKwkKCf3IniC86zAqNueIG+YbBZ4VoIOxjg+cyAFvNj4879Zu4N/FtQUV8G4rOAyMregsmZ7fSV9j9GkXvMppU/Z6zMO+07KED/825K+p/XRq/XaxinXlO1oII/z054Xm9W6DXjINfrgKD7b4OuRr+aQUAxP/I/Y8rAmPuc+TiPoQYwZCPMAFY2aKAdsi4bH9C5xiM+kiAryTxOGxkE/Z21zx27jBcgkGKFbVDMsjIb2xlo5x3T2XSKiMZRKw8PD0WGAXh5XnKmo0E51h1ZjQRDSZLwThmep16vJeqB/rSFg2YQ2Ls0Wq1WMa77/X7JMGOOvHby2vJzjI9dRNDQa8703WfQWvdk59i8Zn7JTinvU7/lbnYkzS/uC7oL4xE6RUSR3Za5tjOspy0j0GvwtnnNhr/lkmngv03D2vgO5VC+bWW73TZ0AeuWoCPJUqxD67WI949393fZMc12Jv7D3d1dLBaLcqeLbVxkRr/fj+12W05D8ekErNXBYFAS2uyTzOfzcpTkbDYrd/khO5A30MHHm1pO81kGBBgr48Q/4v/j4+Po9/sNO93Xa+Sj4wHnaAf55eQ+7GhkcA4So+ORb+wcIDDkk1i4ezAiCm048hPdRKCYzGh22dEm42U+LKdNN0ADbLNst3DslHcV2K+cz+cxHo+j0+kUmqJPmHN2J3onYrYjadN3XN3d3RXQhGQZ5p7jV6Erv+FX2xOM1wCJA5sORrPerBOdZW6AEhrDJ9gazI31P/3JPjNrljbheb9vm4yd1AZmqY/xWb8RuAYIxddst3dH6fE5Y4+IYmf5vu/hcNjYeQJtWD+Pj48l0H9yclJ202Zf+fHxsQRup9NpRDzt/Lm8vIzLy8viG7C72Dae7UL76fYJkTcnJyfx7NmzGAwG8e7du7Kj0z6r5+D+/j6m02lcX1/Hb37zm7i4uIhPP/00Pvnkk5jP52XdTiaTODs7i+fPn8enn34ar1+/LnNsOctn9DcnbDLf2OfMNcXzn+XboRzKofzTLm/evCk2UcROZ+UNDfP5vJy6hB4kaQW94P9rfrCDnsacwBHQwfbdMj6EfYB/bMyZNowBgT8yNo40d/ACuefEMWPUJI3ZHuQ7fiODGZuPpqefDh5jZ2M3+UqH4+PjEjDwPeDGF7GzHFSgH67b+LZtcvrtI2iNH0EHdrfRfqvVauDX5hv6btvAgVknuDH3OejKPJvO+7AK7CPsJfOafXq/7+fyZ+6b8R34Nr+becB0zphJ7f+MsdRw3Ix3uT3m2/Vm7CyPK+NAxo5ch9/LWEjELrnQbfMb+z5joB4z/AV9bSPCY8gA+6aMy74gcqE21/a5ONnG69dzgZ+Evc54sdvgN+zV1WrVSK7nBBfiT6YDawWanZ6exnK5bMwJ/OOEQfs4/G/+9/h9UowTCL4OizKP1daY42CZl13MN3kN3d7exmq1isvLy0YCBGvLfUE2WEf4bwdkHx8f44svvvjg+CgfHQT9/e9/H/P5vOyoYSAcdWpAO6IZuMgBTRPLGa/OkPFCyQArxDToUhNA9BFm8PvuXwY7c2CHvz3hXsx2fHmW9iwE+Y7gAfepMGkc6cWihQ4GYEw/lDU7PXEcadeZ114oLAbfxclzCAc7+QAbZIYbiM/B67u7u2Io0T8DLxkkQzjgzPoCbgsxL+yI5vGSBpwcTIOu3r2aecdnj1vomg7Ul+ugH+32U3YWx2b6ffOYs43NkwbnEZRux8KuBmgwFwaXLBSs6Gib8XsHFTxko8igi+eNetwf5ioHtxl3Dgh5TO7ThxxuG3BeC16T9M3P2QDP2UKms+np7z1u3nWigd/PxW1lReu5c9+t2HN/vK4JnOXgE/W45CBoNqTcL/427ziLMSLKbnaUrEFK7iZ21jmJE9kYw/HwPHqNGhy2bPIYzEsOeGGULxaL4gSQaOG6sqz3XHi8rBkCqovFotw3Yhmfx2Da2oCu6ZHMg8wngdx8GoCD15aJtfnN/2eedjH/1Iwvv0d7jMtOjPVpdoZMj7yWs7HuAhCLLuUZ3kFmOVuM9yKiAULW6GKQPgd3Mu2+rtjo/JBsO5RD+ccqttUd+HCCCzLVx7XanonYZWU64clyyFm0yAiftMGOrogdiGS5OxqNot/vl8CAd8bbrthsNnF+fl6Op1wul/HFF1/Eb3/727i5uYnlchnj8bgEORxYJMiFXsIGQvdCGyf6ZfuUdwwccXQrWc0ZlKGgM9nNxi5RxmmgA92I082c4XgTDCJYbIcemWgAgGAMgWbrX2doe04JFgGOsVuQQJkdb0AA5pRxmrdIrMoJtN4ZS3/n83nxGZgbA1MGaZgT+kyQmfk6OzsrCUgAr/Cfd4zW/EkfPdxqtRoZ3bZFfOyud+8ul8vGrgyeOT09LQCQ16d3aMIPDmh5XdeAMdplzdhPZdweP8ltJCdkn5+EaHw504fxoZNZP/iL0CIiSsC93d6djION43VIwBNfdD6fl93LERHD4TDm83lj3OyyJhBK/6fTaYzH47i9vS27RAn4suadMGD6OBEYHoWG6/W6HPfFGuJed/uHzM/d3V1MJpOyS52jsYfDYbx79y7m83nc3NyUU0FevnwZo9GorHHTm7nPYFLEzhayH+B1kkGtg81yKIfy3Srv3r17D/vgqhnbHvf39zEej+P8/Lzct5xtoIzTOIhhvNfYq2WWAyTZf67hzU5W9hHtxgkprVaryFOe8dGTlo3I2IeHh5jP50WXoCNs12y3u4QzjynjmhHRuN+T9rAX0M/oVWOK0G+9fjp6nwQ2J7mhZ5xIxwkUPAf9jHPSlvU516pBf8aX8TTPe8btPd8ZF4NuTn7PGFkOKBpTNE14vobl8b5/78N//L/7aF8m25rGIhlP7fN99Vv/5oCw28t/U3KcJOt523muJ9PAv2t1m8YZX3ZSlm0T4yDGyfJ4sj1qWzljc8QN8Bv27Tb2XLifg8Gg+Cv0F6yTRAR8gMy//sx8yPpzkuNkMonhcBjD4fC9HebQ0ieT5HkwvxkbNe2QzXlt+xosy9D/l5L5MMv8zEv7cEgHidfrdTkBxTIuopmYnPmv1jfmoXY6X618dBB0NpsVRWHnebVaxS9/+cv41a9+FaPRKK6vr+P//t//21hkdMxgooNUORCahYYDJJkpfEdPJjb/O8jydcVtUnI9NaHp5wgIWDnk4GoWVA40mdmttLNREhHlSCAWaVaSBoUzWONjrMiq4ChXFPvj42M5UowtzGQquN925HAWGbeNBeiRHXJokgUKfQeoyUCTz8P3ojZfmR6AMKaJBY5BirOzs7JA6Z93aNIemVcGTPL8WmA52Mv4a3xmfrZwNf0seF1cRwauvB6tGFAofs5ZZjY4I6Jh8Fk50B5KiXegmcEVA6asmw8FP7JBmQu0YM3QvkGsXK+NJdPGfchGkMdi+eO5yMZObtd/57lyMQhdM0KslD1H2cA1fWrBNhtIpgXf5axG1oOz+vieHSzcGwqg5XYtT/P8GmgCWOIdz4eNle1227g3jn4jy+7v70v2ZqvVisFg0FivyBOK5zavZzsVyDjvdM9rOjsFfE4gL/MhY6IuaM4xbT7CzO9nY8RGJ3OJYQa46MLz5psaH7sN844DsubdTEe3m9+hrn1yALlEAINi3rCTGbHTBz7qKAdp6B9AL2A+fXL7H3IOslzKYzmUQ/k2FmQ8MsVJWlmXZFuWNWk7APlNfXzuzO9shwAwkeHLOj85OYlutxuDwSAiogQfbHMil3EiOZWCem9vb0uwA73ksdNn+yi2y71zACcL+e2ALnSKiOJke+cCQRM77RG7u6fp89HR0XvHg9mxI9sfuZfBOfwzB5qgk3WUg6Cr1Sr6/X4J9lmnozdMJ5IuTRfq5q5r2uaz8/Pz4qhPp9PGPZ/YCYCtvlMHfrC/QVImd70ylmxHmN6dTqfha/mIdOxF7FDb+4zBdh/zAg9lG9kJaZ7HHAS2TQl9ASoNqpgP0bc+kcl+BfrMa5r3sx9m35HPbZtj00GD0WhUdqSMx+OYz+fFfgeQgrbmAXgkg+M5kxt607f5fF7udOI4QNbgZDKJ6XRasvKx83u9XmnXV/is109XtlAAc/Ft1+t1DAaDOD8/j+FwGBFRjn10INQndsB3rAdozjP0pdPpxHQ6Le8xJhJHJ5NJ3NzcxO9+97v43ve+F5eXlzEajWI0GjX63u/34+rqKj755JO4vr5uHLsL39gu7nQ6ZdcSc2w+gqdzsCLbOYdyKIfyT79YLvM/iS/eXdVut0sgtNfrlQAkegK5DsBvferEaRJWjavxvnE3Y8HINdsytle9O8tjQrccHx83Anu0hR1pPU+fsTV9AhT6gPFAN/rIOJCvxjbpj/vGCRjgJcYwjNehh22rewzoIb73iY3GTyjUATaMXQRt7+7uYjabvYdvQSvjYOi9bOsbA4lontzlkyWMPTBW6JNpZyzZ7fjUtBxw89zYnzeeScnYmUvG7Nw+72bsxFjs1+lX22TUZxrUcJmMXeZnPXaPAXqaFjxrDDvHQPg+0zFj1t7o4BhHjf4Zx8TOzbY9fcI242527FbHHjLWRZ8c+9hsNiVRjcTPWlJY3u2MjELO0Ucfl4vtxokjPukoYnccMAkHs9mswUs84ysxTC/HzfK8mh+d4PH/WmrzluW3283FPIgf9O7du3h4eCgngbr+jEtmfsW2z4mFH1M+OghqBxFm5JjTv//7v4/vf//78f3vfz/+5m/+Jv78z/+8KISaEMjAqAMKOXAFwbzwrAy/DlxEoLPosvDNxZ/7bztp+XmY3AEGt5+FpxeuFwcLJgslHFw7/xFR7hS18qIdxuyLgK2oIqIsfgsH2kHhLxaLmE6nRfmTFQsd6Rtj3W63DWeU4sxuL0R+fKdNztTCgMi8YQMjO22dzu787AyKe7yZxzqdTsmUgrZk5Nd2Q7L79uzsrNDc9+DUAENndFnBWEkhUDze2uK2MnO/GL+NDLfJs2SboSQyiON6oZuNTvfLbWN4ZWMVfrdyt6DLCjKPi+K+5IJhCs8ZAMqKsCYsreht2GUjIgMGNaH7TRSNaenscvfT8iTLikwvfiwbstyD3g5M2+DgmYidAnV/ssHHb3663W6sVqtYLBalHgeuqMtJHKx3jHYD6e5bHrsdBdOT76kTxckRajhvVqa1+rPxScDM+gwwzM5ZTW/ZEcy0jdgFQblLwHQyMGnANMsB82iWGTzj3+jTmqOW6zBfeH24H4zXfFSTYW4nr7VcPCaAyLu7u2L88jl0hh+QdR6zjcnMw9Yn0IJgQy1wnP+3LLQj/XVOz6Ecyj9GQRaxS9H2LDLHoBA2m5Ok7CiTbOZExYhmAiC2nu+rfHh4um+y3+835Bs21nq9jul0GpPJJObzeUTsbHwfo9ntdkvi3mQyiS+//LLoIPQcd/cRILFdGrE7ptN95W/LTN/NiR7r9/uNBLAM1Pi4pIgoOi8HgrJ8wl5H9mF/z+fzBkh3d3dX7gb1PLo9dnBuNpuSyMdOOOQUd4qidw0SUg86k2Ibjp1wHIkLXw2Hw9IHjkSiDQOe/PZRUvg16FiO5bWehMZOEoVvSZQiSEsbBBltW1rfuG+mITKeuWa+sk3IOrDjb/8Ef9A7P73O6DeBOvMp/c26Jt+5Cf1ICFqv12UHtG1F7E/oA7DNejk5OYnz8/OYTqdlvj0n6N2ab0zyAPYa7cD36Fhkh9cn/SDQN5/PYzqdNvCDdrvduIPJOpc5z77cdrstIP18Pi87xS8vL8sRhL1eL7rdbkQ8JQtMp9PCA6YbY8E28RFuFxcXRY4xj/AS9+++e/cuBoNBfPnll3F5eVmSIZAJk8kk+v1+9Hq9ePnyZfz93//9ezYTAeqMe3id2qdizli/NT/1UA7lUL57BTmL/ZR9mXa73bgblO+NP0VE+Sxil8Dl+mwjUo9PYeAz4zPI1ZzA43pyn3iGI8/th0dE0V3GodAZJFAj640DrtfrYnNBF2wfnyAQsTs5IgdasUHQidYrtONdb9SPTYidg/72TjT8Xdu12HHoWtOL8VIYV97F5vccmELfo6+NWVBHnmv6TF3YcdAn4/45CGoaZ2zUGEz24Wu4WMZH/J1xihq2ltvOASOPm98ZX8x/ex7yWnHb9sfye7bV89qsYRS5LmPsGVPi2RoWmjdBec0bx7QdnTFM5jpjssa4wX1JHvWx0BFR1qHHaHpw6gm2k+1/iuMbrVargSPlTRjw4mq1Kr7p3d1dSb7A/3Lgvt1ul53dk8mkwfvU6ZP2wLuyreu5se1NXbbRPwaXqvGL8b6MbWZMLc9Xrnu9XsdkMomHh4cYDAbFh/b8wQfG6TJf5X59XfnoIKgH8vj4WI4ARMguFosCSpyenpajaBygyqUGMu8DSA3c8pkXyL7iTN9cZ/5deyY/ZzrkIAht5fPUc//yuMlmhpEBXADCfScJ9MUhdN8dnLJQscPnAEVENBQpypFjxqbTaaxWq7J7yg6baWIBSB9sqNAfCxWDynmxYDyZDgRn867YzFsOrlqZIhwBDHzEk8ED08SCDJAGQM6BCM+7d5oiVC3sP8SrgA0GHzJAXwtq1BQV9fkzf57rgFcQKHknFc/kNqw4s0GQnWzeY4wOhmLoGIh0G7Wxf8gxN9Bq4M+GjbPiTBMrZWRSNnCyEt6nRGrfWUG4TmhnY6BmXGVjEBmc2/AzDna7b97dwZqkZGPJisggmpW4+8jckqzR7XZjPp8X3cB78J3nm/Z5DrnCEeLm10wr+pXnje9wKqbTaZErAOeW3bxjWW8Zy3Mchf34+BjT6bQcRWjauX/7wKWaMsd58REZ7JypGRqMu/bjeczrM+uN3J/MAx6TZXoueXzoAepi/vcZnLkAxBr0ZA59lHptjaFPLd8tg2pAoMfujL08Nj+X5dWhHMr/V4od2Yjd3aA4Wtl5RIdEvL8TzvYP3+M0Anagh30E7XK5jMViUY4pGw6H5agcr3nLZGyKbrdbkp+m02l88cUX8fr167i5uSnHkQ6HwyKnnS2OXCbJjzGwm8DHwXpXILKZABPv2W4kSSPblIzZgRSfJAII6F2o6ASSFL3b0za/QQ/miKDmcrks88SRmxcXFyXgQ1DOegHb1vqD+rfbbQnUsAsPvmFOrFcAE62vzDu0ZTri8EM/+kCgiT7UgD0Hme20Zx8u60X7nbZLrGdqn1nHETxl7myz8HeuDzuY/hs8dSATnsxBaWwEAnAOQMOvtBsRjR2bpitJEZ6P2ulLnU4nZrNZI8DI8a4AP+zWxM90smtElDWCT3Z+ft44OppjraER/E/wGB/MY/Q8IocIyEc0dwIgg0ieeHh4iLdv30a/34+Li4u4uLiIfr9f7Fl2u7Kbl/ljfdoWhC+5jqHVerpPbzKZNJL6fOLS27dvi11Dm4vFIh4fH+P29jY6nU45Xg05YxseTMC4iuc887j53PIv26mHciiH8k+/oJPZIR+xs+ssD5Ax2AsOeFln8D6+ngHsHBTLSfvGZdwPB0boM/YZxVgQ8m80GpX3jVUaV/TvxWJRdLZPzsA281GT2LjGB30iGfIe+9fHd5IYQ9IfeLuTe3q9XtGH2GDYsdhZ2Evb7e70ENs6zJkTztA/k8mkYXeQ+LPZ7E46wD6xjjD9uKLGtkjG3qA7do7x74xb5MCr58s0hm8oxu9ygMaYZcah/T0lY3HQ3vzpZ/PfNRyR778JXuA29+GONX1dw3Xys16TtXHva9eYr9cGBb/BmxRq2Ko3ZETs7qenDX5j63hu6R/rpdVqleRO6ga7zMFV+mI5NhgMot1ul8QG5IfnK/sKrEkwSOxQY2TYfiQTemNGxE729fv94tuZP7LP4as7vHHE6z2f+pHn7P+15HHVeCXzVy70AXnonfCDwaDoEMv/3L7jPd+0fOO3MPgB1WEKjpc6OTmJFy9exOPj7h42OmshkwM3FlI5iLOPcBYG+wrOkevnffri366/QSiBFIwnTzwK3kre31EnTlcNVPLCdKYwzB4RxYmin1biVgx876OOUIAoR5yn5XJZ7lThomAUfxZEOUBlAZKBbPrpACrAC+977Dy/Wq1KNi/AFzxmo8ZzY1Ddzp5BCS8U5iHzEEII5U3AB55HuNIewRMHgPnbYA28YdpkPqNOL3rzkutzQCHXsd1u3wPdbCy6mGeyMo9oGq48bx4y7/F8DiDQL+bGa8HtZ0M09zcH28yLHo9ljBWYA2sGn/JatII2oGWhu8+QyGUfzfP/XtMYqeYhDOWsZLIRl2Vc5hvTMB+7YlrYGMzyhb+RDfTNc2IjM4O8vGNAG/DWSs3ywYBelhfQA8DRgKn7bpB6s9kUwImjcTheBrlAOzm4SL3mN+QsYJV3JhhUshGYjSjzG+NmniKisRvG9DYvuE7LwGwEM08509Z8VPu8Vgyc5fnwmBiP+1Ora59h5vX3+PjYSBCqOSIOhjs4gPPlnS7UyZqrJaTUZHYeh/neMqb27KEcyrehWD45gOlAGvYQ8pd1ErGzC7fb3W51B/N4xgEU26a2ZUiyHAwGMRgM4vnz5yUYQgCPXfL5OC/kw/X1dXz++efx+9//PlarVUl+w3bzmAGJeMafERS1LiAbn12GHHVpuc7u1m63W/QUcrbVapUgCnLB2f0RUcAmdojN5/Oyw9O726GFg4O+ngHfx8mQ6BAHWtmxiU/AmKAHQZiIKMcI++Qa+k4Qy8cEwzPQgTt2IqIEQ8/Ozso40PGWyU46pN8ci8puQYJM1gXQeLvdFmDi8fExut1uASkAFK2fmW+PgQAyQVnPH2PjN2sEmuRsczK5sZ+c2IPtgt707hUASewkBwUp6DwnjpE4mzPBoS/8YjsC/yvvGmH9LJfL4suR5T6bzQqQC00BjQmSMs++CoA6sdGZF+YDP4wdSfCJA9uWX6xN2xLMW0Q0bCjmmF3p+L7spuYI7eFwGM+ePYurq6sYDAbR7XbLjkv65aRd6/ys94+Pj+OTTz6JXq8X7969i+l0WtYaO68mk0lcX1/Hp59+GqPRqNxp2m63SwC41+vFJ598Ejc3N4VnKRwPDS84UG7ZbFssf3awVw7lUL67ZbPZlKSV7N/Zz8E2zMfaOrCQscN85HzGfSN2x+jb10dW++h3+sr7GRey7cDdpQ5SOlnE9bFBxUdX8o59Uexa+6MePzrZR1yi6wiYeqcpdh9Yxmg0KraVd3La3o6IYuPVaMN8oS/Rq9mO5FS7iGhgA7RjP5g2sg1v7BYdZDzJm2qwNZgD++3MnU+owe8w7ssY92FhnlfjV+ZjPvd7xjr5Pr/v591GrifjKq7HbefCusvtu37zPu3X+mkaZXz162iUx+nnjTHah7Qtncee8V5jnvaZsFE9BuqlTe86d/3YmfaH4EsnKrB2vWGs0+mUpFDiD2zgYPzmYdON/iC/LOsYD2P1aZz4uPf393F2dhYXFxfx9u3bhv9aw9ls15tnvKudNqnHsqzGn7W5ruHW5jfa9pphHvbxt3mNn4eHp+tr1ut1DIfD4nta7mbcP9f3sbbrNwqCttvtkhWEEGJnhbNVzs/PY7FYxGw2a+zQMBFykMKLZ98CjqhvJc/f+RmUCMJ5n7BxoMwBn5xVuU/IOgPFE2Dgw0GAiCgGQw2cZiFkGuHwRzSPC7DSdd8BU7y70goXp3U6nZa7P61gawskg7p2vAyGQVcKdVEMTrdarcZxStAUgGK5XJbgew56Mj/QxFkQ7gMOr4/YYD4YM8acnWNoanAPQwoaW4lnethQMI/kIE/mg33BiBzgzeN0kCAHJP1DXYzPAIh5EfrmPu3jCT6jL1ZKuT54xTxHfQ6YZJ7x2qe/lileB7SdnXob1e6/Ew/2tU//zM+1tbyPXh8S0HmNMKbMB3mMnjO3wedef+4ftMmGmWV2NrIMgPM/Misr1zw2Hz3L+oYXfU9bni8cEZS+HTAb9KxV+Ie1nnex2ODxTnOOYnCiQ5aLDh7aEPJxNeg/+gA97CRhvOxLZqgZIt7JmNcK/eC3dzrVDBYDhPQNnnBduXyd/MnFBpFLHvuHHBjLA69VO5M5yQQaZIc3y7nMy3zm8WdaZIfEY9hHg32G4KEcyj9mqTmvtcA9aw+nhP+tc7Nuww6xTe6MWttHtEkyy+XlZTm2lmADQTQHKgl6zGazmEwm8fr167i+vi53FdopxRkdDofR7/fL6QR+JqJ5Mgn6CVtvMBgU2xrdQ1AlYmdr+lh+2uU0AwKkHMduxw572EeHArZRCExbt2Db8hlBJ+YKuUbQkM/Ozs7K9Q/8BjQADDg5OYm7u7sCIthx7/f7jfl2QNlyFz4Yj8clCGhAwEco838GCuwIO/CN/ucdeMR6Ej5F7xKktI7gf4MftqsYC7zCXHNfJUALQTEnUOYTT9x/xsDaeHh4KIFenjWP2PaB7n4OWkVECUjSbwc34WH6Yp/AuxRZu/CS6UrQf71+OtJqtVo1fE77dAT6rE9rACzrHB1+f38f19fXZR581C8+sOeFbHv4iXUBj9EuZbvdlutfSLalfnxP7kC9uLiIy8vLclwu9UK/zWZTfEQAX2wU2t9sNo37d+fzeaONy8vLmE6n8ezZs2i1no6QdpY8SeYcmZttWtamAUX4MdvzFMsw1hA4z6EcyqF8dwqbI0h2sQ1nrMGJnjk5Dj3KOw6UoHOy7Wh9almNvq9hsMi37AdnHARb0smxxjjtF3NygXWzT8PwvaDWubRtO8m7RY1V8tlyuSxj4AhPTqdijNgy+dj/bDej6xzocQLMdruN8XhcEuoyPsjuNWxd6sY2dGI4NqhxA/OKbTXoDn0Zg4MzxmewkzIuBY8ZizLGkX32jCdQMubleqCrece/jXkan6OOHATM62YflmCbg/67X3kcbrvWxxp+VMMM83umX6bnPtvBOEr+LuMh2Li1/hnHdYIbfJKxrEyvjLNyUgx+IjswI3a+hK/CYD0R02FNWo5h35ovbU8bN8UvIZGBPmJTXlxcFL8gIhoyp9frxXA4jOvr64jY3RuKD2IM2n64eQzamfamlXGy7LvX8Ko8b7n9/APNaryW2zCvbTabGI/HhXZcI2Hs0bKL+XKs72PKNzoOl514OIp2hACwN5uno18uLi5iPB6Xu1oysFrrYCauP6/99juZ6BE7cMTZLBQzL32y8HL9LEI74Q6Kur0sJJioDA5Z4aNMnc2D8kKZovy9iNwWi5aC8WDFC6ACmES2KZm1KKQcCDHgxLiyQGXR+lgLLzK/wxiz84+CZzFBAwwIb2PPABq86AWeFZGPVjKw7qxYaIyStzKEL5gz3zWUA2I26jBuzDfmFTvvpnsNUMyFtnk+B7qgFTS0YvG8uC2/53bMz/4sG1E8k9ckdKQfgIF5Xj+UsJB5ybsK8xj4beHuOUFu2ciuKW8bS+Z3f57fzbR10JS5stLwjjnPaZ6fHFisGX+1vuyTv5nXshNheWiDxM+wXvyZacM8MX47Oq3W7qgcG0YoePdns9kUHZMdnPwexRnwbsM87DoWi0UjK9ROCfzCugWot+LFKeB/jlVzW3ZIsgzwczbsPK95DjI/u7ge8xbtee5rutdl3/dZB1CQdbXPs8G2z1Fx/Xa+LDMZM+sDvnFmKfxiue7j5E0jdlCww8WOovuf+2td7L4zfuvHQzmUb0uxfsh6IaLuwDrBJGK3K9A7D0mQzDtCc2HdGqBvtVqN+xw5sQQQCtBou90Wp5b7P7/44ot48+ZNCULZZonYyVMAnX6/X+wS25EGtlqtpyDEYDBo7JCzvYl8we7G7sN+b7VajQTGdrtdTnXxvVGcToAfgNwwAEefkOnD4bChVyKiOOrW+7Y5CBCxmxWAAH3sY0PhB4J8TjbMyUQAhE5KMSiIP4FN6kAlfYJn+Nv2G4Ek/B3u0Nxut4XnInZ3zDLXBDNJyt1utwXghcbo581mdxysfQP0B4FO2qGv9gO4axP+hg/RJwSXzDc+PovAH0E8rhSg3+zWZW1kuweaeF05EAr/O5AOIMR6ZExOdva9tADD7BSGzvQJ+WH/jSNxvaOc+WWXrmnNe+wkhUdOTk4aPq/XHGAwxTaGT/nI/j52g+WF/ZrxeBzT6bTcS8z9xRz5bNDatGbM+AK+4uDs7CxevnxZ7jeNeApaj8fjckcSO22hJ7vlOSp8MBjEu3fv4uTkpOxcsh+Q7WjknH0T+3Om+6EcyqF8twr6j51PNWw24xJOOkKXIv+yPKUN18NnyHD7a+hPB1l4jrbcDraJfW70cX4uY5TI1pz47O/RZ7absV/Qi/nIf2jkY2zBftjcwr3T3lCBLHeAzPgHNoJxamiH7rU+YGz0jQCPd38a1zHewt2vbt8BFObRp38QbIXuzKOTraAxbWVMMfOMg1QZMzOf8Z71vDFV2nSwljHlea/hoTl5uoal5Hnj/YzxGlfIayXXv2+M1vnwgPvsgHn2izK9vU6MU9WK8ZOvK5kOFM+Dx57lAfPkU+N4Lieweo2xlpbLZYkLOb6xXq8bNiVjxq6MeDp9Bl+TDWSmv/k/onlfLja8MaH1eh3j8ThevnxZ+mGb7fj46fqWxWIRi8WiIXORcRHxnq/KXENj1ov9U/PKh/zzjy3mfa832+SUD2GNeZ1h95+fnxc8wDSi/oyNf2z5aESOI1rI4DTxYCYmqtVqxWg0isFgENPptBCbiSAKHxHvESYrWxMylwwWu2w2u2OrahPsehG6BjLswPh5CywvNCshA7R+1nWaAQ28ODsIR9vHZFlZO/uG5y2E7EiT0QxQNJvNypE/d3d3xUgwYGshmoHqmkLJc+NjnNxP5iwDyTkglfuSg9mmf3ZqrdwAjwANHIzJ7RgMgbcRmPAvzix98bnezhLPSh1ey9lvNu5MH/+f6W4+Nt9mZWv+cuCBfjI32RC1cNmnsDx3/pv2HBjyGKGJ11KNl2w0Wbha2JovXTL9rDj8uYFe98vGcQ4sme8wOh1syXOVlbqNrdq4aSMHQbOB4vfzPNSMrdwv5sb1md6WzYzTAXxolOUgNDP4ajCUgCg0y44SvIOuMV8b1DTPmregB4oXo919QT/YqDMw6oQe3rFBw9x4/eX5xpnxfSIR0QgUGBDLdeQ1bBnCPGSj1+ChDUTPfzbw/c4+XnQ7+4rryjaC+0E7bs/j3if/oIPXJnxqfuO5fboi/n/svcmSY0mSXq0AfMAM95gyK7v6J5sLrrnhW3HJPV+DD8Ln4IILUoQi3cKuqhwiPHzA7BOAf+FyDOdqGGKo6iE7Cybi4u7AvTaoqenwqZpZNO9Y43/4GlAY/Zt3QWSa5s8zTWjf6+BYjuXXVLK8oVhu2/G3zWn7wjaQ5Yb1Ss4a9ykcES/Bo7dv38ZgMCgAT0TzSHDApG63G8PhsNyh9+OPP8bt7W0BZXwEqm047DgHRH0HE8eWcUw6OyVtF2fZu9vtSraq9QVJNBF7uUR9DnouFotYLpdl5xi2KICRk4aYC+toaLXdbj+5+9jzRt847aDVapX7V5F/rVarfGcbBz+ERBF8BgNa6Gl0L7zCO+waJVDqHYzr9Tq63W4MBoMyN05sQkfabnFQfDKZFFoTZLSthT+QAR3bfQ7wt1qtop9zUMjON/xsmrNr1v6kT0yC/wg6QmMScNBBEdHwXWgL3qR417GPAcaO4R3mCJ10fn5eeD9if28sdXU6nRgOhw0+Z0diu90uthhBWnj8w4cPJRCO3ccagOaeK/Oxd4C2Wq3SHjsnkQFOlIWm+MvUT/9Wq1WhU0Q06Gi7Gp3POLAfO539cbrPz88xm83i6uoqLi4uSqZ6v9+PwWAQJycnMZvNYjqdlqOmGbMDy06wvby8jNFoFHd3dwWsA3NhPKPRKK6urooM4gqiwWDQODbNa91yxnPPunWxj3TItz+WYzmW33bBPnLAi5L9Rl+XhU+LfnZQI+LTo7ezTcczTngzLudNC/a/3b7xWLAE7ijPpzk5UEDbDlJSJ/3mRAX6D3bqPqI7vNPSdgvFuOtoNIputxuj0ajIYN8vSHAZXCTiU7vINjWnh9BXks04GYWj3KEVth/jZrMN+s66lmeMG9k28pxmrIs5IbiEfeFdfp7H7JNAY+uuGubrtswjxi3Rocaz+M74Fp+Zb9xexuj8t3nL/ajhuIcwFuMhh3Sy/ZCM8VF3ft+f13As6G38xqWGAdae49mMGZs37B86Cc39dRuOv3huM+aUbRnWIIE1gmr4YyQu2E+1b0sd2Hjtdrtc/2Ca2s6DrtzlSx+on5M/3rx5U3w87E58jNFo1DgxD/ucNWn+sC9hvvbfEZ+e+pHnPPNQnrv8nr/zuPnJ8sDP19aDy8PDQ8xms4iIkrScn3GyzCGerZWvDoKu1+silHEOWTgosNVqFbe3tzEajaLX68Xl5WVMp9NCEH4QPF54NaWWCW8BYwbNiiziZXLIzuS7GjhLvf7cgs1CAcaG0RHGfE5/7NA5aEMfYGIygIjMo6R3u13j3iHonRXQbrcrCtfAE3QgE3y9Xsfd3V3JXPDdJQ4SQtdM5885RShRZ2hl58oCrrYIPMe0Z9An844zzw8xvEE6dgp40QOG2cjC4aZgoPhoCeaI+h3Iydv1Pc4c0KIt0xlBwRhxzrPich+tCCL2zi+GSFaKVhb+zIoWmuY5t6A9ZKRkHoE29M2GAv20QrNCrRkEBka8XpmPnA3mYmPMfYVWNvhNg9w+bTmgwZo3r5sGlmHmBX/PukGm5uzszAuMwX21Usv15z5ZkWWDyLKKep3NZxnntf+5bBzePT8/L2uAOp19ZQDQ2V7OkjIf2dlhnl2QJ63WfqeJ5yivA69j7klmB5DlvGUWPMD65TvLd2S1s7D4vxYcy30EsKOtrPBtJFp/eWyZb9A1XssZGGOOv2Rc2MnI/TEP1P7OztIhPocPmXfvWPD7ZNGRtQd/OGBqviXZhbbQpU5oyf055JDU6EI7Ndoey7H8Wgprw4GFbMsArLuwhnKiE/LN9WTdjf5HBk0mk3j9+nWcn5/Hw8NDwxYyQEXgcj6fx5/+9Kf44x//WEAe7Ed+W27Vfrfb7RiPx2WNskOT3ZHYPAa7fAqFr2lA5ucTRjqdTglGEbCZTqflaDIHDi3XfNqIbdXn5+eyY3Q+nzdkVkQzGz/Tnl1ljI+EnYgoes47NH06DYAZervb7ZYjpyx/beNFvAS3AAIA2ZDJ1OckKt+jQ73QFJ3p+10BCwmMUy860z5EbaeJi4EYgoG8A9BJe9b/gJ/2Kwg6m9+wMzJYax3EGrHdwfv5GGT6R7DWu2F5x2vRdiP2VkQ0AoL0AxqZ75hj6OlkCOzDfr9f7ix9enqKwWAQ2+22cfw069k+nnkfXoCX6RNJY05u4FlOn9put4XfDB7Z/uPYWydB5KSnnJi83W6LLXd/fx/v37+Ps7OzGI/H8fbt23jz5k30er14/fp1DAaDmM/nsVwuo9vtFlrSjncfR0QJ8i4Wi4ZfBq3YicPcPjw8NO6yN1bhXUc14InnkN/2UfDpnWRxLMdyLH8dZbN5Odkv40cU+z7IwohmIrx3J1HyqQ7GTYyHWkf5qMjctmUWbdr2wL/NgTHjsshNfPSaP2lcgLptizHOnChlnIS60Im+VgFa4Nsit+lzxlgo1pcUkn2wPdCJzBOneTj4Cf7rjQsEfG07Y3fk+aAP/NhGyv6v8RNjacadmB9sOILfed5dtzGyHFvgWWOuNZ7KeEnGKHKMgDHVMD3XbzzOATq3k/tnfW5sxbybbbVcHNc4hAnletyHXDINKP77UADNfGSf8NCceO6gt31F44bUW5vXHOjDX9tsNjGfz0sQlEAoawZfzOPyuj87O4uLi4vo9XrlVJCIfXCRvmw2mxiPx42jpL02W61W3N/fx2w2K8mobJwAH2XN3t/fF96gb8aNzffmFcfdeNZXlpg/c8nyv4aH5bmGznn+a3NUq6/WHhtTIqJcQWE9wVp0kvbXlK8OggIkejeelQRK7O7uLna7l7PXX79+HR8/foz5fN7Y7WIi2PnJC7H2O+/4yRkkLFKyI73DxkGNQxNvYesArxcjn/uoKCsPnFE7tw7osQhxgnJAl+CbaVMbu8EYCxNn/axWq7i5uSnH6qBkoVVEFBo5QEh7XmgWwi4W0H4/g+D5OQtf0y/Xy+8cYMn1mwd41ln8vtuHQlZ6q7W/q5CShTBtYkAYHMx9dkZHVsRetLTD3wjFXF8ODGYF7XpqSp++5zkwP7h/1JUFdgZQzAu8mz9HKDl7v6ZMbVj4Oc+35wGeze9kumT6mC4oJT+TebTWV9PGSia35Xlw+4dAic8ZIzWjLc9tzcCxUjT/ua/Z2KjJePfFuytRPA5yO1DqsWIIAPhh7OeAr2nhICayAtmbd5tAC8Aqg4TwIf2xPDVwTrYldMJ54Ex/H2noLNGIfXDSshu6PD4+Nu53s2xz0kIteMh3/DZIm9dKTjrIxoj1kHkHfcJnXkfme4P/LlkW+v9snOUkmVpw0HqDYoePcRLYNG1875Y/B9Dkfx9pjkzju0xjl0NGoMfEb/f3GAQ9ll9bQUdERIP/rcNt/+W1j/2ZbeQsz5HxORnK2f3dbjfevn0bo9EoIvb3QBNoOT8/L3bz2dlZLJfL+PHHH+MPf/hDyRSl/9Rt0IH+si4d6IvYH3dkEKbVahVwzLa4dT5HZ9NHJyyenJyUABAO793dXTkqnTFSB+1Z7z4/P8dqtSptskuD9rlSAx1LuxkAgG7WFfgM7Xa7OOGM1XO1Xq8/cUZtF2JL4sOg1zj2lGAY80LAD10O7aA9x1ZlOU+/kOPcvehrVzhxyLztBCLG7HbhUXY/OIBOPaaHiwNxlvPMHf2lTeYHevjeUNspvioAum42L0fYAbqgs+GbVqvVCJzm5E7aZh1hyzI++8zZfrAPaR5FjwIOnZ6exsXFRdzd3ZVjXllXk8mk7HAkeG7fxXfYclwxMoKdj9gqBBahK30A3LJNU0uWppCEAG+0Wi+JAgaKsFUZO0AaycY3NzdxdXUV33//fXz33XdxcXFREsLv7+/Lj4/GNb+yvnu9XgyHw5II4PmDRuv1urEuOM6Qu6141rZM5k3WRT6NK/N7lnXHcizH8tsuJFcd8n9ccvIWCU4RTTzLGzrs+/o+54h6ggbFmEY++Y53bGda95PU4Xf4e7lcljH79Agnf6FLsNccjNrt9ld5GVfN135xesP5+XnZ0eQxO6Ds+zjpe8adsMfOz8/j/v6+nGKA7CfhiHf6/X4Mh8NPEst8mh3zlu2djAlRB8ff29Zg3sHn8SuwWbKN7dMvHPDNGH0ONvpz+p1x3Pys7RrXlfFYvjetM95Z8+cz7mdfyNjbIfyWdmp2yufwzUPjdXs1euZ+o+szb3r+cz+MM2Jf0laOK/B+noMc0IKP3L+M5/E36521z2feVOU5wc5lXbD+uZMeewr7y0dSw9u0xd299/f35RQi0wFbGN7OmwkjXviW2BnywQnJp6enMZlMSnDUPEYMCL/Fc5cxOD7LeGmND/7SYt/BSQ7Znsz+1CG+x+72jlDoTF21RIkvla8OguIgoOBwejODMxHfffdd9Pv9mEwmMZ1O4/7+vhAiZwjVhMGXQEaKhYqFJ05ZBnKy0jRjmBlqwVkcUYSJwW4XK3gvGgf6Wq1WuXPGjMLuT9rNAtNZqRgCfA9Qs1qtyoXm8/k8ptNp4+iiDLrXaG+HHkfQzGom9m8Hqfhxe6ZHDpQxvjw3dgINpNecMgs4gyrwK3Pp45MQIjk7nDF75xYK1oEGO5vud+YPxu05zUrShpuNQd6rKUErlLwD1DQyKAb98nEnWYG7H643gyM1xe4Aod/xewbhKAAeOajiZAH6xRrzEXFu2waZjTln2VAsG7LRx/c56OlM9FrQykal6ZqNKc9zNgT8HHXSvp/JRof7UDPwPGc5KOv3a/Qxr+V5zfzqucy8whp0MJ6/W61WkVcR+8ArYCB104cM7rD2kF8ZJOZ55pW1x3rn+6enp3LMO2ApO2cAn71jFYfLyh7ZgbNBlmVtnmuGsOfNPGMZEtFcc/yPrPMcuR3L7DzvNkzt+GT+8VrOut311gLHdupy+17Dfg5Z5rXMnKH3c9DDgQl0YZaTBr0jmjt5a3ZJXnPZFqBOnvlau+ZYjuVfqtTWrf/mO+Syd2XxLPLTddmmscPLO9YR1HFxcRGXl5dxdnYWs9ms6GjuStrtdkUnLJfL+NOf/hT/+I//GLPZ7BNbJ+LT9Wm5gj7jvj2OBUWmOAEQO8/Z8Z1OpzjLtEFgjwAXdT8/P8dyuYzFYhF3d3eNgIplVUQ0AiLYpcghAkfQy3Ie2UcgxMl61r2AXoBO+Bu9Xq9kHEMj0xJ7kaOCkcM+3h1nHBnrk03ohwM1BLE4tcf+Fk6v52m32zVsPfS1dwsyB4CBPp4NEIIx2/bFv+v1eg1/xXae9XLeAeMdmN5JAThD/dCWeSfQ6x3A8I3XmYOd0N87o+EH9BrPYjf5iFfeY+cGwK59UHYfMvfQjCQj+5LQ0UHYdrsdl5eXZY6wlU5OTuL169fR6XQa6xbZgvzwXWLskvGaNv+fn58XYMwn/Ngu89U47L4hEQ/+tD/tRGWvh6enpwKYe2fs/f19uV5mNpvF69ev4927d3F5eRnj8ThevXoVNzc3cXd3V/gVGQPvgpN0u92yk9S2A3KK/7FtvYvBcto2BzLJvMI6s/1tmxJ7KPsFx3Isx/LbLejwiHoQks/RjyT3IquQ0U4q8ZGuDgBE7G3QvLPf9ksOzti3rOE8PlWh3W4XuRnRxGg5ehx5aRvRiVfW8dhRJJ6AiyNXHbDEN8VWrF2PgI6MaNqsxiV8qgfvEnzkZIXFYlH0/cnJSdkVSkCHACg6jdNE0EecmuckKtud6HXTiIQg+kTbxtv4juIdfMxDxtczHp83lphWFM9Bxh5rv/OPsZLc54hPT5rzs37H9Mn4QMYAMq6T68zYXX7uEHbnMWZMhneyzs/9sn8R0cRA83v+2yenGGszDTJtPTf2jdxPrwd40/xlbIr14x3cbsOnGdFPcL5+v1/WK3Y6tjs2MXY99iZBufl83tjJ3e/3G0F/+kabJIkig37/+99Hv98v16JgM/f7/fK5MbAab3jOmMOc8OuS5XEu+b0ar3yuGOd0vCPjDK7LbZqX0U34ag588ix88jXlq4OgBjQy0Mcip8PcDToajWI0GjV2/EQ0j2yEIRwkyEzvRWaHid8WdPSDY0ztPHkcCMpaUBQiWkHRjgNUnjTTp7aTtCagUB4O1gFMWOmjoHAwUU55UQGucN/nZrMpThJAhYM1OJd2sqz4TRP/zsKrxivQNwdLM3AODe2sQUvv+qFfWejluUDZI8Qi9kGMHHiCHvf39yWr2NkkNpiYRxswGDqMN+8CsyPJjw0QGwAR0djBRP0RTRAqByzzerHScbDZyoDvHaTyOrBQ8dpiLcHXngfX5fXgfntdZSMEHrCxmcdkmZAVppWeFTfGdw7EHjIcKP48gwCmaW0++O2jUcwTNoKsmLMhUjNMMk0snzKt/G421PIY3Rev11o/eA46kw2fnRM7KDaccrYfawJD230zb2Ew2CBmTRFYRNG7MA7aQUE6eG3ZwFq2M8L4yOR/fn5u7BriiBvzcI0vGDvGpHdV5HX4NcZ1jUcoyE/mqrbrGzlhILvGnw50ZCPT/azpBstpr/9DJa8R6gBw9HfQEbDTmb7IqmzIA+5yf5kdFctv76DIRlXmGfpSm4vPGY/Hciy/hoI+y/oZWcgzyPZs+/C9f2enLK9D29Q4nm/evGncT8hdjziY2Miz2Sx++eWX+Pu///u4vb0tAI1tIf4mOGFbiaROdj5ylySyGF1DcAhZT+CCQIVtCoNwEVECktPpNBaLRbHLDazlJDxAKes97EAfHcq84Bsg62xz2PfgczLx2dU5Go2KXYvtudvtYjgclrtuAOAI/ninnoOP8Ittd+8S9p2E2NoUgoG+fsIgB98bDLTs5l5N7sjEdveuAPOhfQknQaEDPKe06f5yBDDzDT0ZM/XYvsiJnvaLvUOUZ+znOcHAfnC2b3MdEVFATPjOx6nCg5vNpgQSM3gEgOu1SgKAg9AO9Prkp+1227gXnbXearUau27w2+Ex1h3ALIFH5sT0NR/sdrvSN9sMj4+PxT+kH9h4mSbwt/mCecLHdrKeAXqOt57NZrFYLOLt27fx9u3b+P777+Py8rIqdwG8CIKyDrgrDrvY7e12u3L0r21xxga/5Tayfc98UWzHR3x6WtCxHMux/LaLQfpasRxCbrEb1Kc3GBfNwZ28KQBdx+felECpYbb0lx3xti9cN/qNI9Aj9te8obuwtbDzMsYbscefAOOxJdH70MN+I8FH46E5sOeTLGjTmAE7LsEa7OduNpvGLjGCKq1Wq9hN3LNunAI9b5vXpyih+yI+xQXBpJk3Y9PeaepAFhgnuhl68T47Qkmych2ZTzwnPrkk86lLDfOq+fbZlnJdxr8y5mefqIZhUafjJbk/tGN771AxDfzs5/p9iCb+nrlkboxp1fAZz2OtPy72E+HFjEsa23I92Ngem+NKPhkujzvTBVsYvmSOdrtduTpwOByWACf151gVQUxk35s3b2K5XMbd3V3ZwQnW6A0f+JGmAzu3Ly4uyulBtqs5XcWymf6T5OE163nDzss8wPzWbLxDc/g1ONbnMGO+y0HuzxXeJ2YznU4beJ1lxLeUrw6CZiDPnYaJITRB0OFwGIPBoFzqauM7A8T5xwLv0MLzgqXe7XZbsmi59waFm0t+/9BYaduOpgEhlBT/844nJwcGIvbKC4DFTr8dEDuKOSCD8uPYW47csYGB4EDJ+ocFacVrp4qx4mjneeFv6J/pm0H4iOYl6J+jf42hcyYONIrYB0A55z7X58AVGfAOwANI5cWEA0ndKHgccu/6ou4MjDnLyU4l7zlQaoXsYI0dWGiXlYcBfIMF8Bq85QD5drttZI9jUORSm5ccTLQizIYFfXbBCHPfDYJl3nAwlfprtPGOWAcyoH1N6DJmK0+Pu6aYAS7pP88b/LKgd0DPxUor9+drSs4Iyu0YqPF3NZnqftfWYKZfliPUbwDWMrAmX70OzKMYDqYHa8LzSlYm69k7CvKxePSZNg0cR+x3DkJXxgvYTP3oNh/TiFOEHqI+OwH8pm4cP9YS/Gww1vNsPsvynEL7OE/Mac7I8zrLxrtp5fZyu3z3JT7xXNtI/ZKRhRyFLu4TY80BWWQmQRPvIrZsMtBLgb+y7oZmbjevoc85GMdyLL/GYlvEMpq1TmDHyVisLesV6kKHZ11GRisy2d+dnp7Gu3fvyg4xMtu545F11Ov14uHhIX766af4+7//+/jw4UPp/3q9jufnlzsqLeeQDwTKIvZ3YV5eXjZ2K9rJRuYjRwH3ANh41voDmXB/fx/z+Tzu7u4KUETyBQGeiP1RcuwW9R2TDjJmWmLLO8sZnRERjR2aTlxx9vDj42O5q9A7A9gFSBIhOo257Xa75X878taxtIG+tL0csd/VSfCt1+s17mFF9hJohF8si+FP86t3wWLvEmzE3ncfs41EMR0ZF2P1rknrbOiA7bPb7XfqYRNAJ9YUwIXtZ9ahAUnvrIC/vfvRfacvvt8z+9Xb7baRWJDtAJK+bBc40MdY4RvsDNMdG+fs7Cwmk0lE7E+KardfguK+k5NAu8dPO91ut+yKZAw+VhYg2kFSzxHrhLp53jbJ4+NjIyEWOWHbAyAa3kZW+Kof5uL+/j5+/vnnxjGLr1+/jslkEoPBIK6urkow1fYLPj+fYesiW3wXrQOZOXmaz9vtdrFNXcxzlGzLOMB8LMdyLH89xbhnLvbdWq2XY05Xq1XB3qyT0S98hm+KjehTnXIgK+O73kyAXcNzj4+P0e12o9/vN/xr6zaOmN3tXhKX2IiST6JC1qL3aMPJWchU9KXpEvGi44bDYbmX2ngbiVzWoX5vt9s18IyHh4dyhLyPrYX+xrs8XicU2mZ3oLnT6ZSjQNkBik42nmPb3vYkxSctROyP8GX+GT9YNH1wm7bvjK2aH+hHxnU9Psa72+2v8DN+5/qMzx3CIrwO7PNnDCDPi3kiY2u1kt+p4XTuc62d3O+a3q/VV6ONsatsJxtPdzlkT1AyjWoYbbarqSvze8Z+XDcl437G2ODBPH76TSyFO+Ppm9eg+0J73W433rx5U3wbnvO8IhPxC/HzptNp2cTFBi6e5bSe+XzeGFNep7RjGRjx6U5e+msaf005tFYoNV6ibq8j+DgHwvm+VnhnvV7H7e1tTCaT6Pf7EREN2fS5/rl8007QPKC8uHFcEHibzaZswb+5uSmLzUTghwWVF6if+Vzf/M75+XnJHmVRub6vKRa+drZzPe5/XmwUC+fszJydnZUjqLyLBcbIdwY58MNlutwvxIK1sHVxYMDAhBcvzr7HmTMLaovNwsPOlYW+d0ExBr9TE+bQwfTLhboxgFCqvA/Ig5BttV7uETJ9bFTZ2fc4ybZgrmibo4gApwDVeIe6mT/qzcGczGPmKQuyTHvPFZ85E8vfZ2GP8MSgsWFE+wbs+N/AjYMLnksr8Lx2DKTYIDoUIHfdljsR+4wp122D20BODtpm/nV9bsdzloWshfshPv6S3Mn0oe+HnjN9HcivKbNMw0O05DMfwWaj2s9FNI8xJRhsOgNgAvYZZKctgCuMHQKWdkJyooaDhDmJAHDLd0U5YxGDxlmiEfugmXnAYN5utwfHAalwSIbDYZE9rVYrFotFOcqNcbMeraRzHzJ9898UO2l8VwsqOmgIzc1HlnXZwHWx3DB9+M78D40d4KWPXhuZvzNv8q71WdZBposDEbRl3vQ4HQBlXrPMQQaSLOOjimol0yePq7aWj+VYfg0l27AZyHC2qtcna8b2DjIgB00NvvCZAZTxeBzfffddCdKRiXt6elp2Q43H49hsNvGnP/0p/uEf/iHev39f5EJNX9buSImIGA6HRWafnJyUXQwuu92uBGY4knUwGDTucdput+X4pIj9MZmz2SyWy2UB2WjfyTE+8cCnsZBtbJnlAFR2/m0P8A79zcE+/CKcefQgd2qin5G5BOjm83m5YsPAHf4djjz9MI/g4Ps78xY07ff7DRuLnQDwEzv8CDYRACSAjL72ccWMfbVaFToa4DM/AqxYH/gzeBq/LSI+Ocbfc5x9QU66oG76DAAJ/zhJB7/QwI59RwDGs7OzRpBru20e/Wp6YBMNBoNGkNTHDkdE4XsfNWxw28lDAK3tdrvsYiaAzvw4AA5gbr4AxMg2un05kigcePURvT6mFl5zggPjsL9V891Zs15D7AClz+4H/bZtZ1vx48ePJcC6WCzi1atX8f3338fvf//7uLm5idvb22LrGNSjHgDq0WhUeAjZY/DL8tZ2E/01D9jOMZ8C7md/6liO5Vj++soh3MKfoz8Wi0WMx+OGz4dscqApJ2UZ4zOGYjmd68vfocuRadZPDtaQfHV1dVXuZPdGBWSfMSrLUtvA2D3ocd49OTkpiS7ZJiVh3mPCZmD3P22BW6xWq5jP50XXR+yToXPACD2NfQGWgy9Lm9gS6LnBYNBInMPvRZ/b38dGNZ7hK9wc0PSR7MZtsIOhBXECvnNCn/HpjGtlXc485zHWeNn60bZSDXepBWIzLmJ8yn3EpnSw6VB//LntSGMph4Kxh+oy9mI/qYat1krGSzMm6GJfsVZPrrNmlzBG/s64jzcmsJ7gUduKHqvtO9tLxh6ZT9Mem3GxWMRgMCjxmvPz85LAZluNPp6dncV4PI7xeBwRUY6lNu151leMdLvdWK/X5USQs7Oz4neBJ45Go5jNZmUMtWOyGbP5Ezlbm2snBNbKt3xeq8efIbu8Fsznh+zNjFHudi+BUGQbfq19v68pXx0EdbAkFy8inBmyaxxQQXjauTXTM2EGXNyGCevvHOhAATCpLjmr5EuTbrAUgX1oghzoqykD+mxAYjweF+WDgsbBJDMAZUBW8G63K87UfD6P2WwW8/m8KD8rawSGnXvo5X57fj1+xkr/fEREDdjN4LT74vFZuNecNGiXmbgG0vG8A6AoVc+5AYRWq1Xul3KGtQWBx+dMd44rhq7URT20BS86cJ1BwZyh5PFZwZqGVm6ZhtDdhqcNHb7nt43THFRyXaa9Awu19WjwwfNZ4zcbGDYOoZ2DRPQlGyjmcz7LmfUZpLOyyPSsyQP6YX6gn57zPBem45eKecP9zEZfrWTeMZ97nDZkPY/0MbeX5UGtZIPHxm7EPmBogNNHlbNWrR8c1GWdWHbZ8fBxd9l4tDGP4ZbXlIFEHJJa8osNL/qJk/L4+Fh2hY7H4wLaUj/y3mtit9s1xm2ws6br/L8DflkeWq/m57I8ZZ3xXY3neBfQNQdV3ef8TkQ05Lh5zA4lc+c1ZYPNPMWc2uHwWOEdklEeHh6qOylyOx6/QXgCBz5dwTaL+a5WanryWI7l11bQt8g+6zg7WF43FNaPAXWDGId0EoUjhC4vL6PTedlRxlGsZOC+fv06Wq1W/OlPf4q///u/j/fv38dyuSwy3UCDgwmWjcho7DXs7Nr65D7G3W4X4/H4kzvHkemDwSCur6/j+vq63AXjrHfrNHa12n7EprYdiK4jkOQ5sg6xz8F4sPXpA88gD5FpvV6vBFY4NccyvtV6uTdyPp/H7e1tCeJAOwNb3tVIkIi+MEb6yW4D7kn0naoR+3tMHXA8FDi3H2kdvd1uGztIs0222+13jVCyze9kKehJ2/noWngPPcP4OSECGnjOmEPGAA9gD/Eu+tO7hx30Ozs7i9Vq9YndDs1sZ6FzCVpi/9mnw2938pZ9UmhtwBeanpycFIAIvUyA1jtuCFa7b9CMdcquUObdAfeaLWMbxeAvwWdOSILm0BnwGbuQ46LxmbDx3HfmeTweF1lFH2xXRux9h9vb21gulzEejwsg9vbt23j16lWcnZ3Fx48fY7FYFDogXzh6NyJiMpnE5eVl4SfmjKteGHveicEPoLZ52HZ1zabMOMyxHMux/PbL53yaXJDHJP+CNRjfiWjef5mxKweujC9Zv+cAh/tqjDEHaIwHOJDigGFNhtsms89njMaYJglmg8Gg4W/abmTc6Pt2e39XqU9HWS6XMZvNyhVB6B0nGFvHO/ENvY29Zdqt1+sGzoXtxfP2aX2HOO14Hhm3bRifPkL96BqfyIVeIWbAqRSmEf3Ivof7kPUTz2eslN/GR7Jf44Aqz5hWnk9jkBTmJGN4tSCsMUPjCtkOpV7zeG7T2CV9rvlpPOs+ZRr72RxAzGM+FAvK9naOMeTEAvts9MfYjOtyENS4fPYxbSPW5pH6/Blr0hsxjCnd3t4W/6nf78d4PI7lchmLxeKTNnKCXr/fL0kXpnu73S6xnogowU9O6MEfMkbFFSas+UwHz5HlbaaTebG2eSbjjv/UhfE45sFcZBl/qLTb7Vgul40Ymr/7mvJnHYdLsTAB1O31eiWoEdFUgM4GrS06Om6h5b+zMe72cQI4WtbguAuL0IIjEwumqDEGznwOcLr+7NxlOvT7/ZhMJuWc+DxGjqnCkSbaz9bo6XRanCoHJmEeBz9ZyPmYII/Hgij3NY89IhrCxeNmoUKD3A4FcIGFz/h8xJefz0YUu7x4d7PZNO7ng5YR0QASvHPBwcmsJN2WgzS8SzGohJBxwBUjJPNxjSYG8jAisgGWAyM12lAQItC5NjZoAk8jcC1YbSRkPs1C18/CB1b2LtCInXusVxvDKBD48JAAtyNvnnRg1dmHnxtPNngZi8HGbGRl8Gy73TaAPZ7J8+hx+jt/np0Ez71pbyOIerKxmY3F2px4bmjDgS/onA2WnHnOeAFmkFEEsLyGcVyoj50DGOHOjjSICA97LQDq+RhDfpCHAHgeh+WJ58DPUDwvz8/PsVgsSpvb7bY4QQTOWH/b7baAyDaWvNMVGYrMqukY1hS7XvJc1Obfaz6P4RBfWGbY+aoZ4v7JgVJ4KBs2Nmq9rk1zz1M23C0TmFf4ClkMHeEN9KkzaLP+R27xLO8iT2yEuy0nWniM5q+vNcyO5Vj+pYodR9uHfGb5y716ufAe68UBUMtR6wB0/3g8jrdv35Zs+vl8Hq1WK4bDYVxcXMQPP/wQ3W43fv755/iHf/iH+H//7/+Ve1FqZblcNtbZycnL3Z/9fr8B2FguZB2K3djpvOzIQ0bZLnx8fIzpdBp3d3cNm9VJnzyL7WAbNCIKTZFTnA6DQwet7evwHvqQ3WHQ23Y0AS+CSA7EEmAmeZB5sY70UfTQg10Gq9WqAHWtVqscJer37Qf2er0YDAYxHA5jNBoVwIFxYqfxGTQisGrfAt+IgBN8B68RQDa/nZ6eNu5ctM3CewZQDB5ERDndyMF2+MWgX7vdLmAjes8AJ/y22+1KMJD7qSP2J65gs+Y+7nb7ZC3byegj9JR9FujhY2BtL0N7r3/4BBCWumwHwF/YPq7bABZH+CIjOC4aEJU+gCP0+/3G8Xm2/eBH5pf34R37n+wwxhazLdHv9xsnLbHrBXoS+FytVqUvTsjznGX7NCJKX/h/uVyWup6fn2O9Xsfbt29jOBzG999/Hx8+fIjpdNqgIfZlp7PfNb1er2M6nZagLG0i07Ana/YUfeU7eDT7+bYlnQhwLMdyLH99JWOvuZC8hkyyvDHOZKwl4tNkWicDRTR3ZKHj0bE8g23D3cl8j35DV6G7IqLsqt9sNp/cc+6rvzIeZPsPfbvZbMpJJdxJWkvI8yYL+sI4qGu9Xhec17st6X/2kx1IQA9CM/Q+z3PfJvNFu2CcTmiyX247wn5uTjbkPdu50M56En1LgnG/32/gfzwHHb0ByUmatotqWHPG7w7FFTIta1ig38u61LZZ/o7fNdydmEXGPI2xGDeoYcE5hmEcJuOM/twbO+z/wZvgdhm/cJ9q5dB3tlPd/0xj+zfZ5sBOof+MH3uX/zPPMb5Wq9VI8syn1/A8CZTGDOkL15kQc+BEycViUfrKrmawKNYQ9iL1R0SxP5EPfH93d1fsPfxPkiG73W4Mh8O4vr6u0h7Zgk3OHFvm+OQj0/NLGPGXinnuUD2ec/Mp39XwxUNtMK8cD3xxcdGIiXxN+eogaK0TAM52Hs7OzuLy8jJarVZRCFZCWfh48X2pvfyZF7zByFoAsqbE3bYN/hy4sdB0yUGiPK6IvULid7/fj4uLixiPxw1FwQLnmKDdbtc4YvHh4SFms1lcX1/H7e1tUZYoLoQ4jltENBjdAsXjwWmyILQDi6PO33ac8xFiLLSIvcK08+w7biLik+wfZ1VloYagADhxEIJ5sxDI4D28aaUBoJ35z4LXdDLonUF9Z4AbYIDvc7vm22wkoiANgnjBZ2fb/O3n8rv+zsAJ/G5Dk764Hh8b6SBnrb+Z77xO8lr0Z557A4sIataJfzz3tUBJNmb9vWmaA0Y2Wi2c81wwH7mNQzIhGzPmefOFjSOP13X57885KjVF5Hdcrw2qiE+PkrBizX3K8twJBJYplkHMM+Ata8nv2IhhTdk49jrPQDzAGu8bqAXg4xmP07traD8HhGmbIxXpBzttDEoBFnP8oPVolq3ZMDNds4P3JQfVxSBeNuprATrmKgcMLesNxtlpgt7m+9o65Lva/9TlXah+xnLDzrcdN/puXvF6Nk15146U78bjGTsI8EhtHHxWo+2xHMuvoRyyF+y02k4BdMrguEEQ646aTmT9nJycxJs3b2IymcTJyUnMZrOSWdvpdOK7776L4XAY0+k03r9/Hz/99FNMp9Nyfzvtk3BmebPbvQRI2G2F/Ebu+x4/AjqMK8ss+rvdbmOxWMTNzc0nQRrvPqdeACHbSq1WqwG6WY74Xnq/y45VgzUEAUkwIuvfMt66D5+MvnS73aKnfJQ7Y8fHYF4NPsIbDu4yJicjRex31QISshuUU4PQ/bzLvPgIsSzrCVJtNpuym5S62CHpz9ABHG3uICr8A0CYbWn0d0SUe2XN58wLc4XOwG/bbve7L6Ed9MmATQaPqZ95sx4maYA70ABI7EvZH6M/fE+SGQDybrdrJAvsdrtCW8bk6wWoE371EcXMEUFOTt7J97Pj69pnd4IC9XgeoQfrwPrZdieBfZ4z7fAj8ZmXy2UJlNIHgpC2eW0ncm8qyQWWc/aNmQPGs1wu48cffyw7Ot+9exej0Shev35d2h4MBoU+jHE+n8fr16/j4uIiHh4eYrVaxXK5bMhe+0mM07xlOc86tTxmzOZVr4ljOZZj+esslgHGk/ifv9GpfJ9xX8sl+2LGsyKad9VZ/2MPUAcJIhHRsAtdOp1OrNfrxgkRk8kkPnz4UBK27Hvb77aOzn7c6elpOcEkYm8f2Le0L2t7mFPlSIhZLpeNfhBEhQ7G5JDTjM0BG4KLttHAipnHHFQmYIoPbWySfmMLGVfhh6Qs7DcS2e/v7xt80Wq1yumHzJPH4fHRR+hoXCj7FPa7M27l9m3b5cBn5mnX5Xnkc+OBuU8ueY14Hl1y4DNjaRk/4X/7KBnLqPWBPrtu63ljj8Zj7Su5fCko6vdpw/YFbXnDQMaMc98dW8j0s01uOrkunvFpIw745pMJbR/hQ2J7c20FJ3Li33j8jGc4HBb/D7/O1w/QN+6eZy1z3PjT01PZherkW+zs+/v7Ytf6JDgnNOS4DbQzfp/n7HPFz2Q6157J3xs/59m8aelQu55PdoQSW/uavkd8YxA0KwpHt8kyOT8/L1ndCHgfh+iddDXhTt2HwNLP9Q3lRrArg8oUCwzeNUjhC6lZWN6hx0+euIj45PNC6JOTGAwG8erVq7IDFKH+9PQUs9msoaBRFDhN19fXcXV1FXd3dwVMZzFaiFiJZQfbY+Y5wGUfNWSaUIfBEMabtx7n4ESeU+5p5X8YNSta+uedN3ZgDfA8Pj42jpoEzMpGTL/f/6QNBJQNCitnaIoQ3O12xZBizARVMGiyocLYXAyw13iJvmWn1IoJ2hk0w2jyzip4NgfqyIb3PBpwMg/kv73eHAzOxiP9sVC18uN9BHleS3xvmmRDxHOYg5gGTQ4FIQ4pZnjQY8kBlkM0sZGYDYiaMVIbW00JmR5ZZtqIy/VnWVRTDrU5tzGPsZDrz8AcdLIjAy3df2QYaxhQ1vxA35FNJycnsV6vy+fmNfpGO06E8Jy6jxjrAHHmYQONNsiowwY7hYDqZrOJ8Xgck8mk6BNohcODvLDCr82TjdKchPG1OtK8512QX1NMa/rqe6TtcGR94zVnXqdk/Yy89P+UvOvBbVOXs/aQcdYnDlxmXWOZSSFpx0k3OWjhcWab41iO5d9SyfooB9siomFv8A677pH7vOe/7aDaruJoVIKHBCLa7XY5una73cbNzU38/PPP8eHDh5jNZp/c7bfdbsuzyDmALgNkPp7Vet12GPKaZ7wr7JdffonFYlEyf21Hkahnx7rVapX2+CyieUcTvwky0X/sZebCdyg6OJ11pI/udYDLIMnZ2VnZAQoYkO/Kfnh4iOVyWQItAFsR+yNLX716VfrJfYz4MwBm2P5cATKZTEoGNb4VfBXRTDh0ApFtDCe82PeCp9Cb/M14sNm9YzDvUqEP9A++YBcpz6Bv4H/PMXyAj4xPAt8TMG61mhnp2Y6HDxxYRIe3Wq0S9AT8sM/tYBh9xKdk94ttOwLK3Oxz7LkAAQAASURBVDXp9eVjubxz1+CK/RivAYOc9A+fjF2h8A10s92z3e5PVgHgwU+G5owPfQ049fz8cqfmarUqiWo8A08T+D09PY27u7uyY9M2DjwGT8Or2X5jPn0C0W73Eij1epjNZg2b4/HxMUajUXz//ffl/cFgUOaW+eDoak6SIsjO2rAsM79lmz77Tdk/yjL7WI7lWP76Sg64fEkWeCeo/STvYkRG2d9C1hjXMH6RfWPLJYIQ/oxTHyKi2G/If+oCZ8W2MhZJG8YOsFWQt/1+P4bDYbTb7cbd72ALxq58EoTr5r7P+/v7Yr/lIJY/xw71yVrIdPqOvYdtwt/eCeprB2wrYscwTuty+/3YqOi1iGjYAcxvPhEN/qBf9vNJlLJ97mI+cMAGG8Onh+R3chArzwX9z8W4Wsbiavio6zYv18Zjf8gYs/nN68Jtu1340rh4bRy57/TR3zvpoEbH/L9tNNeXcVGvbfw/t+O1i3+CjwfPw4/2H3M/vX6ciGmM2T6ok8Usr7IMw06yrbVarcpzg8EgXr9+XdrlN3VZlg0Gg5LUxlULtV3ey+WyJDg6gYH2bFN6PRiHNkZlmmVMNM/1X1q+VEf+3rQ2r2Us/lA9yO7ZbBadTqccGfw15c8OgiLsABYeHh7i+++/j9PT0/i7v/u7OD8/j+vr6/j48WM5Jsk/mRCHQP+vKSxGssGzM2oB4EVem3xnm+Sx874dZwPiGXS3s9Hv9+PVq1flfiGe5c6P+XweJycnMRwOS1b2ZrOJm5ub+PjxY9ze3hbgxYoYWjJWg8V8biHLWFAcvjfIQLKz/C1YLMxzxpOPNDCAFLG/IyfTt8bcKEmCE547KwD648UMEODzsiP259H7B1ogDPMOgHy8Ls9i8HhnKQKSfmSl5bbolz9nPDyPM50FdVa6BistQF0PRk2NVhHRyMI3wOK+WelbQMFfGFh5Dfh9Cv02rfP/9Ce36UDQISWcFb7p9rlSkzcYe9mIoQ0CWfTJa4xiOWAaWCFnXs5BNq+z/FOjYURUDY3PjTM/mxW/x5PrN2Bog9PK2Yo4B9Hgc9OcHSFu14C8ARzLK541/xu8pA1AP+6S8tn8HrN5mrHVsiF5j6NsALYAs5CvOcjLOO3s7Hb7I9wwtGxkM+4vOaXmvQxoHXrXvGW957mrrSu+y8aYv7dhbz7w97yDPvPpBtazniPrxQzs2XD1fPIbHcjuIe8wQVf7bhP64VLj6WxfHMux/JoL+seOsQOaloPWt3Y2eIcgk21I3kO3dTov9+oRBF0sFgWoGo/H8ebNm+j1ejGbzeLq6ir+9Kc/xWq1KuuL9e5+Rbzo5MlkUpLjAJj4jt1h9AXwh4ATa582ptNpCaLc3t6Wu12wAQGYoIltSeu/fI9iu90u+od+Ekil7Yi9rUCQFKALmeQgE7TxsWfeFej5ZNybzaZxBys73AiK+n5I6n94eCj3P3L8e6/Xi4eHh5hOp+Uz04WAYKfzckcOtrQDfiQm2bln7uiXAcDMv4wdecw9puh46rUuYmzoJUBbgxkRL3YygWjAmRqowLisB6gfGwNdAlBhPc337JTFliDhkzVlwNEBftpgZwdBP44xfnp6Krt8WaPsjLavyHG41PP4+Bjr9brYMQQeoTV8BjhkOULSG3TMd6Rj6wCsRkRJeLNvBd+y9uBJPo/YBzbpz3K5LJn08LiTojjim6O0WFscXQtIhY3I+O13MA/eDeyTbLA1Wc98dnd3V+w6EqX/5m/+Jnq9XuNYxIiI2WxW1uvJyUn87d/+bbRarZhOp4077eAPg/LZJsr+DDya1wf9/ZKdeSzHciy/nWI84XN+YvbxsEcsO8CykPf2ryKap+85KIfscnDI2CI6hyQ32vVOJ2wkrheLiIb+ZEPK7e1t2bWIjCQhzb4qdsFwOCy+oTf5eNwZ04nYn5749PTUuEPeSc3Yacb+sAFI6MEntR8OHbEf0fX4xhH7I3GxD0k+w7cnqMpJA8yXsT7PhU/jsn7Z7XaNKxawT6jb/rLrzhhsDfPKSePGE1xH7fkapnYo+Pk5Xjd+4/eNb9f6zbuuj3472T5j1cZceM9BLScF5pL7TDuu07TI/pTH/7mAGTxhbL2Gk2SM0v3wBiTm0bZ7RDR8iowfGYc0XWp43m63P9XDtHSd2HCZZtjO2JWj0SjevHkTFxcX0WrtT4ChPceisDF3u11Mp9NPsF2eJTkQv4h+OEkOu8++HTLQsZUcZ8k2nmXzP1XJuPOh7ynQ1thtxswzhuuCnJzNZo1Nhl8q33wcrhkJJ2y73cbV1VVcXl7G73//+5hMJmWyrq6uSoDPwLEXsT+rAbBfWxxgNeObGa3kIvaAhftnMN7Aih1y6uO5TB++Pzs7i+FwGJeXlzGZTArzR7w4eezsJGPb99zc39/HL7/8Eh8+fGgExGrM7d09tUCjA0f0GRAmM5azt310I4oWQZUzgfLxUlmgUw8ChO95B6PCAsTZTRHR2AEAKGLjAfqigBlfdg5rgt/jgQ4GlrbbbQmyE2TlHQK8Ng7op8duJW+aUzyH7ifftVrNy9jhdws9Z2kjMAG0bJDSBryahaDnz8FG84P7DU1ynz3XXu+ZX6GPg+4YtvnoU/oMKAY4CG/yPuPybgwXnjlk3PC5s7hNM0oOijEPlBqwbFoYhOMZ8x6f17JbskGVP6PPOUhqWeDfbo86bCh7TH6GcbH2c2ZaTsJw3wDi0CkAdQZCkUlejz62wuvW9HZ/Pc+eP9MIYJZ5Nu8yp/wGCPXaAXwFxHr79m2R/TglppcNda9D6yOvBT7L+upQYT3iSFEyP/BsNj6YOztTNs4/9252pLNM8XPMC9+RDGPw2m35t41d1wXITB98Z4ztDNack0UcsHGiiNc47bA2LJuO5Vj+LZSsYyKatrLlLbzuxDGvk4i9/cG7thctl09OTuLVq1cxGo1is9nEfD4vwAsnpjw+Psbd3V28f/++HJNLsezdbl+y3i8vL2M4HH4ScPAOS/qLXYSjTSDF+ufm5iZubm6KHEKuo7MAwKwvGLcDr7vdyykiTjJ0wgXf2SnFmbXvwZ3SyCiCidSD0+zErZwpzHv4GxSCU71eLx4fH0tb2FfIz4gowaHxeFwAwcFgEMvlMtbrdQk8c3Qq99s4oxkaQBvzGfc1uu8E3rADIvYAKnSnTU6V2G63pc/00cksEc0EP4J97Bb1XBjg3W63pc/sYnZQkHq92xe/oZZYQL0ZjMGXcDCNOcS+IJHWvO76XJfbIqDJfBCoBKjEd0DnE6hcr9cNX47xsj4AnPFPer1eAWsiorQLqOsgI2OkX74ztdfrNeaM/g4Gg2LXsAvUfoiTFHa7l+QyAu3008eTbTabsj7gXYLQ7MqkD/ArPOhAopOybLtDr6enp5hOp8Xu5aocEgpOTk4KrejbfD4vPlK32423b9/GbrcriRkUxm1wHP/o7OyszC/9x+7JO3yzv/CtmMyxHMux/NsrtqsOgdn+nL+d/JN9oew3uU50AIk+6KuMDRlT2+32VwCgh7BH0T2bzaboI/SgdTgy8eLiIubzeSNYav+03W4XGwaM0MEY4xjGnnjXupekHOS1sS10FrgnASDjvtgD0Ma+MXqcnbDU5z6ABdgHf35+LjrHGAFBUo7tBIe1rUYh0cqnCmKv0Bbz4r+hHzxkW9V+Pp/Z13BgKeP71s+05Xpy3eZJY2e0Y3wD+jmg6eJ+2IfKfO8+ZGzB7RurcB/ta+QApDHBjDdBF+OJxlcz/gPt8ud5rTPe/H1E83qzzD+eM+O4yB/W/vPzc7HtvcvZ/qYxPpJLvSPSfOI1m/vLGs7YqnEmaLVYLErMAT/HmJTn0CfPDYfDWCwWxaZ2EBd/C7u32+3Gcrksp/Y4NuM1ngPDmSZ87k0Nnn8/71Kb/68pNcz50HOZVh4f/c6YI58zPhJx7dt+rnzzTlB3cLvdlsDX3d1d/O///b/j9va2XOR6c3MT19fXjYXpLB0zIYxuUDtPholUK74YGkFVA4gd0LGzlAWx++CFSNZ4Dei0MGq1WsWxITOd7zgDnsAazsl2+7INejqdxsePH2M+nzfAazutGRi3cjBNDe5aePKdxwUglAM8nhM7UwD+KLaI5n2RPkIBocFv2nQwy2Ok7XwkIYFHPuMMbrLMeY85dWAMoU/GtANlmb/ImsoOtXcT0A+O94Kupp8/83c1IN4Kys94kVOycDOwkg2CiGY2j5Wd+T8HRelLNjBrAYlDa9nAjosNbAdEHbRnzvK6R5Zk3vd6NU0dlP+c0M/GkQGkLJAz7Syga3NbW6c2cHNA1u84mGQ55f8zgMZ8MdeZl/jemX6Zb91ulinQwIYY/AGYbCPAQBdzB7+yUxwQ0mPtdDrl/mAH/5BbmTcsr6CdM/9zIBllSR9arf2Z/U4uyeuK/jMP2dhlXu/u7mKz2RQdgIHjBJbMX05YQLFDF8vurG+8dsyPljsGRj0Gitepv/PfBvh4x3yV1z7PuF0bbDhMtM3YdrtdSXaxse93+MyOCX2zXDNPeWen9SI/0J0j/s0z8BztZJuG+njGYMDn7JdjOZZ/jWKdk9dfTWfzTkTzTnZkGrLWOg75w/pi1/VkMinO3v39fTw8PBR7OeIlYHJ1dRVXV1exXq+LXGZNGVDxDkCCBz6GzABNq9UqOxkp1LVYLOL6+jpWq1XZDeasfMsTywEnpNkWw1bMO1AZg4Oqti/tc/gnO9hO1EBe+X7LVqtVdri22y+BVILP7Dbcbrclu7jVapVjhZgD5D3HpTLnyF2AyLu7u5jNZvH4+Fhod3p6WtryLkD7kBF7cC/LZYAF+IvAsMdHfdCZ/hG0A1jlWQK7NbsJcIV2sNEs03Pwj0A+tFyv1wUwhM8MVlrHM0Yfd0w99Mf6kMAyQUfWJDrNaw0+4ag5CqAL4/TOEB+JZ0Da9gXryX4Uep9x8BlHDRJ0vL+/Lz8EF71TxMfhZd/Cc77dbkvwDx+aZzOP5OMIs3xar9dFZmCHoMtZF/jhgNjW+/AISXqsafvEq9Wq+K6Wn7vdLq6vr6PX68Xr169juVyWNTIajcrYOdKR3c0AZJeXl3F9fV3Whn0o+CknJtqfNc0s3wy825c4lmM5lt92+eGHH+L9+/ffvN6tK9F1NbmBLjHukPGq/HzGpEh4ycljlN1uV2wR98/4MM9jH3U6nYK5Yiecn5/HaDQq9mXepIFsdd+yHY1e5CQT47jIbehGIpUT5qBBt9stgdGMNWEbEmjdbDbFHqT+PCfgHRFRTkoA07evjg6BhvQdew5fGVuO/qMHjQOfnZ2VYDn2rrET41nYScYxqN82tukPBmD6G3s1RkId9CXrfmjlOeB3xjQzJuoxGTM0lpb9LvNO5hPX7brM7zV80NhJxox53/4N9HAdDmDmsVGX114N6zA9PY4a5mn6G0f1PNOek3I9d/ByDtC6DeyejMcyHmOn0MG4+W73ciw2dtrt7W08Pj7GcDgsCba20W3DE8y8uLgowVrmHD93vV7HeDwua58jvpF/yCj6T8IscgC/EDp5HrAT7W/+a9t3eX2YB+DLiHpCjfmeYPnXlG/eCUqhkzBTp9OJ5XIZ/+f//J/GTi47IAY5a8ouDywDMLVnYVILxBwozOCyhaQJl4NTFpK87+Cn38tZShERw+Ew3r17V86sx0kE7Gm1Wo2sARTzzz//HO/fvy9ZSXZGDACxKE0vO14GwjN47P76fysL6rQCMLhsGns3Hs9kAWNjiLb9bA6s8By0y31k4eJY4ghnPqKPbv/x8bFkZFho8L2DOBYkma9MY+88NT8iDBFQNWHjwID5Pq8BeMF0NB/ngIbXmceXedfgPfV6/H7Hc54VuY0UK0E73bkPdsT9LusCvnLdngvztmnhftn4yXTNNM7jdfCLH/jpW42hPO+1QAq0MCDBuxmctpGVjaDMZ8gYg0iWo+Zl+u12cgA/ywGDb9m5yTKaelHEXrM8T1+8Oy/vMGd9ZX1k3rOeMG3zcwYoPS/O+KR/rs9tmA6M00feTCaTkmRioNLGelb49DnLMeR/5r0s/2qByMyz5h8bbJ8L2mUdjgzPvFgzVqBZrbivdlayo+C+MVcAxjaK6YPXkXmR9y0b3Df0i3k196cmt7Nd8Tl75liO5V+r4ORbvrD2cZKsM/xexF5eH7LRbNsZ8BiPx/H69etotfb3aQ4Gg5hMJqU/j4+P8fPPPzey572OkPcE2Ha7XSwWi+h0OuXYS5IWsSWx05DDjO/+/j5ubm7K1RPeQc66N9iTA0K2MXjXu2D5DllCRjP6pXbnEvNgGYQzbNs+IgoYRR+5h7LdbpcdDASCR6NRTCaT0lf0lv0cdmUwvxFRAqBO4CEw8/z8chQRf7fbL/e6drvdEnTtdDolWdGgDPMCvR8eHkrCkPVnxF5PO7GJuhxQ7ff75d4deCHrcvwr23K2sZycRuDTPq/tEcBJAAv8kW63W46uQif5qD0DN+h0g7DexUzxdSEkb0U0wSh4Fn53Mq3nmeBpu90uIAsAAkFR+6jdbvcTm852jk/rsC2cA2rr9brsSGS9GRQFnIEes9msvA9fMn/sziFpdbPZNPiG+YB29IUjfpEv9lGcaEDS72g0itFoVHZxegzMFTyQwVfGZ5kKnxGInc/nMZ/P4/T0NMbjcXQ6nXj16lXpH7txCcL2+/2YTCYxGo1KWwbPs29t/MM2GsU2tO3Iz9mBx3Isx/LbKt9//318/Pixitd8DijHlnAyRvbZsVt8nKt9buN/Tth1webDTmm3P73LHZ1CP+hbxjp2u/0GDGwo5PpgMCj2CnLXWJZPPXHwhD5ij/oo/4j9aVG235DZm82mfIc+Rf/yg32FjDdeaVnP5gzsCQdYMlZozDafKsAcsGPXR89jW6Mzc1ARfWTMgv5lHIR59kYj6nPiku0mt+e5zRiY7WXGk/GQjBtmfLGGsZlnM4ab+T7jVNiQtjsyVmN/LOO0lIw3WG/TXsYgoalpn3Enr0US7ExL1ryxoIyVer743n5mbQ6gj9/FT8hYKZ9j41oG8XnE3l/INlGeJxf7vfY77PeNx+M4Pz8v/imJF8PhsPg88/m8yDICnqvVqvik+LxsjKMdJ204kRY/EFpl7DXjUxTGneVpXl+mRcatapherWQ+Mj0Pldx+7gP+hmNFGY/jGY5J/1L5piCoGdRKpNVqFSfTu7ZwYikG+3kuf19brC5ZoFEnbeFQRDR3JGbANk9EdljsrNQCb/SBzyywO51OXFxcNI5BhIkNEDB5LNzVahW3t7fx4cOHsmi8m9V0ZwzuqwUT9OQ5sgZ8/xE0YvwwD3T0OHHsaMuglheFBbYBbPedhU/7Zl6D0wZl3EcrE4Qczh/PIzwMZphn2VlFPTjPtItBE7FX1nZeHx4eikA1DxtQIviZAxV5vLRhYzCD81bgnU6nGH701QrzUMlOr9vyHBrIzHOa15DnzPXngIPXH99ZofoZ/jZ/83lNKNb+tiHA51aeDvTkeXHhe2fx86yVhvuWAbTcZwMMGM02PvwOvMT7GKc2+jwevvNvaF0L5LmOQ+9mvnTGlY0szyvP4TTwTAYz+Q7lbtqY53Mf/b0z2A2cZfpDJ+YS44h5IJgKIOjMyZxBz3uZ92oGckSU7NHtdlscq3zMHb/hBfMY7QLaMVb4IRuPeR3a+GEesszmbxtP2fjn70MBYBcb7plW5rHcDsXAooudgQxo+7jhrPft4HknUl6rWS4bkPW4PU7Tn/4BLvu7YzmWX1tBNjjxybZARFM3OmsdueTkLgMTtg28LiOiHFuLXOM4UQcSyJ63vUOgptV62c3J8ZcRzbulCRTsdruyfgG0sBuRLzc3N+XqDmxHg0HZyXcwF/3Ns91ut+yG43nLOE4w4XnsRPrjoy07nU6s1+sSdM3HcuN3EfQkGMtcYOdDK450QwdxpKvnGVox1+hDaJmTTLhfMutbxvzq1at4+/ZtoT16ljsqCaxCH4BFniXQCh2t75kDgnv4Y91uNyaTSSPw5CCbAceIvT0FHRx4xP+x3cIOkX6/3/geHga4ZIcnx7Bz96btPfj99PS07LqlbDabcuxVXqt8z5jv7+8bdh66C77yeqdtX+PhoD9AKXxqIDUDcba9qMNJCMgK8w00g/Yc3wc/2kclqEpQHpoxLoK7ZN/7qEGDqtAdgLvdbjfuC/YahV9s9zFeaDCZTGI4HJYkgLu7u+LfI0t9OpXxhcyLg8Egzs7OYrlcxtXVVeGn4XAY/X4/Xr16VY5Nm8/n0e/34+zsLNbrdQyHw7i4uIjLy8sSaM+2M3aOMRLPt8H7PK812+xYjuVYfrvlf/7P/9nwZylfkgEOQmAfZN1q3xibAT2GPZiLfbKIfRDUOB+fn52dxXQ6jbu7u5IIRhAS+ZdxO/BDPiPJJiLKiQV+FrsgIj7xN42RLhaLWK1WBbvBnjo9PS0nJlKHA5S2nRk/9grJcvZ/0Wu20wgKQRN0ObYGbdofNjYAfoOdiT47Pz9vnKDCnNt3oK/GU6AB/zto49gAetKYvvHE7HvkABX2A5852GnMyn9DQwcwac9rwBiIfRvXc6jU1lLGRYyv5faMjXldZGymhiPW+kJbvIPNYizPtDkUq+Enb8ii5HdNaz9vnN7vuS/wrpNKPSZ8sWzTYmcxNtfpuui3bSg/7/kimRQ+Mh24EuT5+bmcbMRRts/PzyVBj3rPzs5iPB7HyclJTKfTEqPAnh0MBiX+wJr0lXv0zT4Ka9y+qOWc4x95jjKv8tm3lJr++NyzuZgPHccznmYM2/17fHyM//W//tdX9fPPCoLSQYhuECQiqsT0T8Sn2QMMNC+sWskgeEQ0hJ4FpR0PvvPvDG44EOMxO9DpcXhcLIDxeBzfffddXF5eNiL0ML5BVxb5/f19XF1dxYcPH0oGU0Rzm3pewNDRzA+9nRVuwc7iqDFTnue8uLPg91w7u8f9cB02FOAXlKV5xgC3f/IxveYFGxhe4LRj55ssakAl85D5wryLEWTADVAA2vq+OQc4bKh4Fxh8lelsQZb50cFSK3zPH4Zhnk/PK0LPYCXj9pn+GcTM68d8YaAmy4na5/yfDVLqA8gwjU2LQ+ODpx1AcoIGRmrut9vOpSYXXEyH2npysULN9DTwluWf15MdDNPSiscBSq8nG7tumzZqNMjy2+PKY8/GRj4JINMpywBnTEXsFbf52rzGM3aEvK4y3/KOjTYDx6YHOwAApdix5HroD+vQOzY8Xpwi2iCT1YZnNoJZf9TjY2QYfw4S1+YuO3y04SDg5+bftPZzmT+gpXWp36sV0z0b1SSrZP1gfnRyisG9vFZZP9SbAV2ATwcOkJXs/jJwWBu7S239Hsux/NqK7TI7w3ZC4V3WBmsauW3bwnxvvWanNCJKljrAD/IC0Gi325U7JgmEYe9yBcFwOCwywEEVnEjvDOTuSpISHx8f4/b2NubzeXz48KEEW+2j0C/LRcbLcUY4r4x9vV7H2dnZJyejOIhpGQYt0Vs4vOhRgoLs/CORkR8HwpCDAGXol8ViEa1Wq3EPKDYt9yMyn9BytVrFer0uQUofi0ufCTRjUxPgBCwbDAblnkPAOMYN/dB52+3LjgbLe9sG9As9m/0J7pd0QmOv1ytHw0FjfITdblcCaQYjCVzaXvR99xHROJ4/Yn8/bQ74M/+LxaLQ3jQCYDX/cs8rvMc8Ma/wtxMXWJvQB75i/dn26nQ65d5X1gZBSOaVYKSDhT5q2XKBdQtwSTsk3cJLDsRxlCHJvvgd8BjzwNiwewBwWNuAwp3OS7b9eDyO0WhU8AD4Lds/JFtQJ3YeY4W2lonYX7YdWq2Xe516vV6MRqO4ublpJDA7kMp4DEwx7svLy+h2u0UGrdfrMrcA5ufn5416CcY/PDxEv9+P/+//+/9itVrFx48fG3KYsRoU8w5925sZCLTv7t/HcizHciy51HAi4xL2320bZh/K2BPPuA38Me69RB6zI+vu7q6ctsc7xkmQ+8bRqAc9jbz3OzxDMAKssdVqFb0eEWVHP7LfyWTGZNAn2BLGAJDLxmuwkRgT43YQx9eaoSdMeweajfcRiGQcDpL0+/1iP6J3nIwWEY33fXeo55E+Qz90Ug6AMgb75dkOz8FP+sBv23wZ4zgUtKzxobFs4xPmG8aW66nheBTbT06yM6YD7YwPuS3ztdcHYzRuWcP5vB49Pn+e12qml9/z3/aj7PfZh6rFB3JfzavQxz6TsUb4waf84DdhH2dM0Dg0PJ/xQOo6OTkpV10gJ7ieIuOgERHT6TQ2m5cT4Pr9fklkw6Zstfabc7rdblln2JCOW5gG7pMxfOQRdM4JA9ja4LJe47W5y3P9tRhWDX/71nJoveXYVfZ1vrXNbw6CUrKDlSffgtGLI2cTOKjlAX+peLHiXOdskIgojOtFQ/8yaOvxZcfJoLqdYY+z3W7HeDyO3//+9/H69euirPK9KRbQT09PMZ/Py71HAD0oRjvXTHbOOqB9g7Y+8gua8HcO5FKPM4NMU9o32EI/aC8DXyhj2vazpivZwvkOFc+Xs1Uom82m3OFCnw4FHp1NgsLxsYkOSiEkcZ6doYVxgIMOjR1oNWjF+f8GHwCmDAQZKKPvebHzd+bTzI8W7OZlv2+Ak7ZNKxtzNiC8g/lQgKOmaCP2gKKzjT2n0JV+eG1aKGfB6LVhQIY+GpQyL8AH2XjIxd/nAHwNEPA4cn9qCgYZlo0plDayIssvxoYSzUBGNjKgg+cuG0/uP/V7/j0G82E2yGzoOuBIvfTRu6YjohHIcr9R1qxbG/8eO07FZrMpAUbaoj0nlLCbO89Tq/Wya8ZZrdDv5OQkVqtVQ15G7BMoasrYOvH5+eVYN97DkCKz0oC5+4ZTw/cPDw+NXaDWh9At71520Je2qBsjFbpngyfPMcWOhmVPNqT9To1GtUCp9Zv7Y3lFwcC1sUQdzH2u22OBpji5WUehS30/qW0Ay1HqqznZrvdYjuXXUOwEZefYPG0dgozy0V+Wrdib1ukOnBLsi9gfT4kDx9FAlnPYz09PT9Hr9WIymcRgMCiZ5d71SV3Ia+TrcDgscnG5XMbd3V18/PgxlstlIxiV71Cx3jIwQ73oQwJArdZLEiKyotVqNe65djKkbQqfEuP2CYCwk9X31EdEw05HByLPCSijLwlK8SxZ1dCasRL8gifu7++LXcu4/JuCnur1euW+Qo4qHgwGBRxDBzi5dLVaNRLwnKSFruIHW/L8/LzUic+BLt7tduU+LwKhzBN850Qr3uOOSebSR/VCDwMq8D/jYi4y8ONdFYyLueBdbBrrK+tAAoX8Db/A1/QN/nKiI/YOxX6IfTt2SmIX8Pf9/X25m9X2mW3RGthJvxg/88ZdRw4y93q9csIFc4JNw9/YPd4dDL/O5/Oir0ejUeE/5p3gI/yRrzlBBtC2x4JOJwCLvQqfRkRMJpMYj8exXq/LMYgEWQGObQ92Op0Yj8dlV5Dt2Y8fP8b5+XnpB4FjeJ92OYL61atX8d1338VsNmscrW0QMgPBThzJvGg76liO5Vj+ukoNq/hcyQENfmcdaXzBOypJ4MnP8RMRRfb5Dm5kNfbJ7e1t0c2z2axsXKjhPf7fGCInQXQ6nXLkK/KTZGj0BX3YbF7uffaVAE4+sk/KbjFO0UBPQwMScXySgO+8x0fHdkL/RTQDU5wM4ufBVLA3chCY4Ao+L4lb6F70hm0PbBF0GEk8EU1sxIlArVYrlstlsRmtb7DHveuVdjIulTEc8xR9MD7huciYP/3MQRwHWjK2kNdIDtBY7+Y15c/9net1fzIuk3FRPw+N8ngynprp4H77u9z3/FnuW6ar6eWAlm16b+gxVpnxHzC5HKz1HNrHQdY4mbYmDyzjMr9g73K9hRP06IN9JsY5nU7LjtDBYFD4OvvZ+CP9fj8i9nf02mYD00M2mY+N2TrGZDpZJrte1v7XlMwXtfItduOhemr8l+ebv3Oix7eUrw6CQkicXjsINWHggVgIRDSzfGDy2v2CGVi0oMiOBMorg6tWwocm2Vncft9n1tN+RFNA4eB0Op0YjUbx3XfflYtueQ5BTtaLwZXHx8f48OFD/PzzzwVcp12cEgcM/K6BgYgoYAM0xhm0U+7MIRai6ZUDR9CBxeeF5qPCHMyMaB4ngbDIjOqAsJ1+xuagtnf3LJfLiIgCLJEhi2J1kJL34TlAM2fd4FBSL4CMFxfjdWZXVugAGPCz+Tvv7nOWrcdJPQYU4SU+Zw5dAOVqysF8jjKwoLax4p0TXhN5PWZF5fXov6E5/cVwMuBqhez+2MjxujPISX+z/DGvsqbgIa8vywgHD61APF4XaOP+8ZmNdj9j8MU8mwt0o9gxsLKHFhmUygqD+a/tMs0ZcwZ3aCcDs7wPjf0df0NTAzKZf8wvzIeD1YCSrFPLVNr38Yima7fbLfIP3vcuo2z82wGzMQW/UC8B0lar9UlwljE6k9Hzx1ys1+uIaOoYzx3FdEDW8TlgpdeodZVluOVCDXilXb6DV6yHDExnvnRQ3E6N3zdvmy7wCu8bDLTuNo+b31jjEVF4heMzcWCRzbSLbrADat70D/zBM3bqsxw231ieeKzHciy/tpJ1Qnbks70d0Qz82HbxM4D/j4+PjaSUTuflzo6Tk5OYz+dlBxif56Ap9+5xBwv38iHD7eijX/v9ftlhRbCStu7u7mI6nRabG4eYupAX2TGP2Cd0cdyYbT1+Qw92EgBoIVttf/mII2RUq9UqzjY722p2ArarM5J9fBsyiiAkgWZ2xGZbc7ValV2sBJ8JvjInnU6nBJtsn+52uwKcDQaDQn92yhGw9A7ETqd5vLFtkU5nv9MtYp+k56NqGRsgIG07eEYAzEfNYpNCC8BG2mY9IPfRJ+hU27QAlOg67CdsEeaTXR88u9vtGkcJdzqdwufQljVBnfg86Ef4y/qJtqGhg+62RW2TwgcApIz//v4+lstl9Hq9wvve8Zt9bNfndiP2wXraNgALcMw4WTO21W1D4nehXxk/wPLZ2VmsVquYTqdFFpydnZV++8hi389Uu8KHNnyKh5Pj6Asyo91ul7tDl8tlXF9fNxJ2I6IEN1+9elV2fsNjrOmbm5uyJl69elXGAQ8akJ/NZjEcDuN3v/tdzOfz+OMf/1iOxs12ufmANi33PYf2R7OOOJZjOZbfZvkcwG17sPY88hEdbFkSsU/0BfRHv+U6jGMYg7LMdftnZ2dxe3tbTjQg4NFut8upI9n/Ak/jehp0e8aSnGRk+wB5zakiy+WyJA0hux3keX5+LjIX7IDPoauvhrDt6KBHRDR2URo/cJCEOtB32V7GHmIO+KEt2wsRexzTWDr6g74ZP2bcGTOHRowXu4O62OHrhDbmy3o38xW/jYUYB8u+fY2njY3wnfmB+k0j82deH3mtQJPcHn/ndeBCW14T+dk8ltp4PK4ahmGMLI+fwhrMth9jzHT2/NTiQdiRbg/+9TwbS6u17/kw3+VkCY6s9XOMCZ/O9hBJesZ9Mv0yRsRY+RmNRuV6i8Vi0aAnNiUnf/C+583zYfssY8WcbOJrLTyHfrcWH/uc/Hf52uf+3Od5xziE7Wi+N29Ax6+1Vb86CPrq1auSQe1M0wzA1ho201iom4HMbDUCuBhkRMDXFnL+rFa8uHIbfO/sE9ftwMBoNIq3b9/GDz/8ULKUcAJhUMAWFtjz83O8f/8+rq6uivOLcWDBwWeA/xa4VlxkRLPQrRB53jtHD9HbzjTl/Py8Af5aaOGMosjcbzMuv+mj27NDjmDjt+mGgYWT7SBMDvK6n1YYXiB27lGw/HZgBNrVjJqIvVNvEI014kwlnnfgAWMqO9/8znwMLzD/mb6AUVl5wScO0JjPa7s0qcNgHWOy4cZc53FnemfAEh7IRoaLAzkW2tRjgBC6IqMccDdYw3jgK8+p6W0FnGWK16HH5u+pwzTwWK2gM63MH9RhsJlnqCfLMr7LyQeZvtn4yKCW26sZUlmGZ0PbQWLTwzQyDbPxZDnjQK1lDN9jYPt/8zzznEEdr1vTjbbs/MBfWb4wNvqT58j6IuLl2Md2u112Pvl9/nZCAEYQsh7etQzyeHjXQWjPada5bjfThv57PVlWO0kGfUVhHvjO8sdt5T4Z+LTxk41h+s472QDCwYvY76rhGXQ7xyjyXF4HDqQDOjN+imnsHXIEgNjlcizH8mssrBknBWagybv7Ladth9sOor6I5i65wWBQAlMOdtAOdrN1eLfbLTsMra+xAdDj3K83HA7LnS0PDw/x8ePHuLu7i9lsVo4qY4wGjJA7DuAwPvsB2OyPj4+xWq3i/Py8BAsNTGU72jtEHRAj+54gCvY0YJd1tOtttVoF+CMIut1uSwLI2dlZXFxclKOWGCu/W639Lr3tdluAQwKlyEbbO5bzT09PJTHWd5LSL2jIfKKz4DP0KQAEjnvEfnesE1Vs43iXMHwDiIDs9a4O5pY+Itd9fyW0sQ51IJzn8T8A8bDhsS+wT3a7l+B7Bm59b+Vut2scd2yfwLsuDAbAu9AH28A2g3ejorPwQxi//Srv7mC9A05ic9jfs28AHzG33sGKzjSN6Ad3mbLbxIXAY5ZPBBFtL2DTMcfQiaSHiP3x3RcXF/H27dtiSyE/7u/vY7FYlLHhp3IccD4e0bYAfbPdOR6P4/T0NKbTabnmBjqMRqMYDocNIBu+YH6vr69LoN5HETPf3JmMHB2NRvHDDz/Ezc1NSS6gT6wD+uo2mQ/zTPZDLPOP5ViO5VhqxX6+7cIsNzKWkoOU1nfYZuyUQr+gozn6dT6fR0QUuwz5jz2ELqJeZCq2g3Esj4V20C0ERDabl80Ts9msJHc5eZgxcMQ5+hM5nhPE0aXGF+gvQWPfyekdqeh97AD0cUTzujjjnBH7Ewaw3bBrbKOit5lT453Qm0KQFzsGG9C2jX3+iCjXBUCTdrtdsGQHR21/MmfwjrHrHG+AJsxltqMyP9aK+ddYeNaJ2UbNJds4+X2/m20fl1p/rbd5L+MkGcvM7df6k/tkzNC4kPtv28y4GN/lDRXGQplPbGTb4sY6GYNtTdu3xks9LmRIt9stNqaTPKEjsocEOexE+un2IqKctoKdCKa02Wzi7u4u7u7u4t27dzEajeLkZH//p9cbtCLRt4YvZx6zb0Ydxl9ZB/QlY+n2G37N9l3GKLM8yNjw15SvRuT+y3/5L/Hx48f47//9vxfGymD2oYVvp5OJpIPeWYcSqk1CBlwAKxCW3ilSKxYEXkAOHJgZLRgz8Mq7OMr9fj9+97vfxffff984ssBghQEDHOcPHz7EL7/8End3d0UgeFy8Z8fdwIiDWlYCDqjZEbdzFVEPPGfFwGcoQ4Mvp6enjTOlI5pns9tZtHBGMUJPFijvc7eP59IOWgbYcAg9Ls+fhSX84vk0Pxrko6+Z3wwiWTm7bwSkoYV5LPNZ7oP5Lge2TCv6YKV/SDB4Hk0fC36EufsIfU1D98+7am0kZUVlg8lK2ELaxTSzwqRPzJV5nT7YaIvYg00oAOQXc21wzQEw6Gk+oj8O/Hh3K+/kgHY2+izrDG7yfs1Io23qrBV/brnlefc8OrCYeeiQYeb5MR+5vzl45Trgd8sD/29a8Hl2mJjP5+fnxo4c5FHEizHOMdbONM3ZjrRpII1+5jXoXdjU8fDwUABx10MdmYaWzex+sAwH3HLw1WAxfbQjlI9YNE09dzU+Ng0sz/KPDf9D85UNK+SITyjIOjb30Y6VAyfZGLdMIUHDySymO+vUssy7jAgYWF+aTjif3v2Ud1nkNQItut1ubLfb+M//+T/HZDKJYzmWX1PJMtC8jy5zIkHEPokNewTnkB2X1g0OmrAmAF3sMLK+HQhDzhEApV1kHvXZD+B+Pu5tXK1W5cqJm5ubohdsByCzCQQh2+14MxbGZb3GjrkcCI1oJq1FRAkoIZcI2tketLy1LQwICH2xo0mshKabzctJCL4bB12PHc9vB6mRi+gk6iLAulwui54lwMgJKnweETEcDmO9XpfEj36/Xz6zQ46dzDG/8Ar2dLvdLvrdQWt0I/QimREanZyclKCT7Vk/hzy3vchuY99XSkFXOLHVIAl/e7cCdG219oAkuplAKraLdbezxxk7fgu7RykGPbzW7GfQP3SedTD98m7t2skp9hGgs8ePf8kaRRYwNoDsiD2wCZ19j9jp6WksFovGEdduG9mAzuY904h1xlx5nHzODtfhcFjWynA4bNgB7AzFhtlut2X3uO1324nYIsxdxMsxuZPJJKbTaTw9PZWjepmHHHhEhp6cnMRyuYyPHz+We6gY9+npaSyXy3LsLsc4v3r1Kn73u9/FbDYrc265Dl8SfDYoZv+R8rVg0rEcy7H8NkoNG6x9zzO2iRwQ4zNkZMTeB7Sfii3GLinjhpat2DXgqRFRTnK4ubkp8t4nC+JPR0SxsyKi2GoRzSvdMgbEeHLA7eHhIWazWbnH2Zgw9EF3LxaLBs6y3W6L7rKesK8MnbHVwGD5mzrAQEjiabVaRW95p6llPTYk9duWypsHan46ODb2oxOWnTyIDjfOaxsP3sF2BNem3YyfGKPKmC+8xm8H0BwYy/ydff0aZmUa5M8zPuvv+Tu3a/vLeJPx04wJGu8wbuj+Uk8OMOZ+QL/cL/ct04O1lHGObyk5ETAHHSOaa9E2rNv2OsTvywFCrw9/hj3Je/hG4Hj2tfA/4LuM2dIvx7O2220JhoLjbTabhj8SEXFxcRGtVitms1kDS0I2Yn/mawyzTY8tSJsnJyeNcTh25ACu1yWfUTJff03J+NzXvp/XWG3N1fSRP8trxnj8l8pXB0H/23/7bwWo9d0auUOfG/ghwjrIlDOeDaqbAQ1+cqxNDez9XH/sEPgzK0NnvGRAmGygd+/exe9+97ty9wiKLwcCACCen5/j9vY2fvnll8Z2bGjhAIkNATKtOd7Ln1NgdAt8ZyVnRZKDcSwKniPg6sXGgs3zgTNHm55znDFfIEwd1GdDx3XSR4NB1I8Q87xjSDjzyYaYFwkOqwF+AAC3Y8MIJQ1tPG8eA9/hyNug4x3zKu1ZUJm+8JB500EiC/hssGWAxevLjnhWpvw40Ak9c9ATPnbd8EAOejD+bEyzBt039weAkr5AM69b/824AGdqQhIeqMknG1dZWXgu+Z85cxC1ZqCZblmpUswf9AUZ+bmSlYeNLCtsl0PGpmWwv8tz6j77O8tA9yf/uL8Gy+Fj7+SDh+m3A2X0gc/X63WsVquIiLJekZ/O4Ld+idhnUxpMZM1ZZ+CUYHh4Z6aNtqyPOO4mYr8jlCMELUOso5BN8Bc7GADccMQ8z15DNtBt/GTDhTrsJFle+zvTzbsfcewy75g/3Kbroy3kkYOp2WkwP0Ezy3PLfNaYQcDVahWbzaY4jQbo4cmIvZ2B/va6sVzw+Ogzz/+P//E/ot1ux3/9r/81juVYfi0l25mH1mzE3jHE1rF9jGzK+td6APkJ2OE7lWx/OJscYJ9AK86kj0QHWBkMBnF5eVmOLL+5uYn5fB7T6TQ+fPgQ8/k8Tk5OGjZWRPPOamQgax65wlrOQAS7FSOi9I/AjHfEEfy8uLgo92aSROYEjogXsM5+EXQE8MMxhiY4tN5FYADMR206+OeEMmTb8/P+TieCZtPpNB4eHspxbznZkXeRnei31WoVvV6vBE2tS5DxABDc3UWA2HYx/cqBLJ7nmF1OrGFOPDcOnNp2zX4BQSP4er1eN2xhgwrwADrK9qbtBJ5nDPwNX3HUKX1GD/Fuv99v9Cv7CR6H/TfsJ9sC2U9jreLXIwfw+TwHfObd4p6b7XZbABnkBzKCBCISGBgPO2q8rtrtdkyn07J+oB/94Dn6Zvuv2+2WOubzeQnS46+fnp6WqwRms1nc3t7GdruNwWAQ4/G4HLededB3uvrIaWhL8Jw1AB/Sz263G999913xHX3ctAP7zCO8sNvt4v3794WXvvvuu2L7RUQsl8tyn+7JyUm8e/cu3r17F+/fv48PHz40fGXzbg0gtKyHxsxj9uuO5ViO5Vhyweaw7sj6yfIuYu9vozftkzrxOB/rilzdbDbFl/NJUMYejdn6BI6MS9Em/bYPRx9ns1nRIdZd6HP+xk7FHjTOgtzFHnOfeZb7AbHPkOHZXuU0EpK+PXZsJDCGXA909BUCxlRcF3NAMpvtHurBTqJP2A3YBMZnPY858Qw/IccW7F84uTJjTLYVMzaZYwPGlDxPh+IHGXeovZf9KH+en8n+En3yuOif6zJGlvEeF9uptT6ZJ93ut9Ag0zN/Z/7IGGTGdHjeAfP8bMT+1EvsUs9hppfrd8Eu7Xa7xa6Dd0i4cJusCyfvuvg+3Igo9/tSx3w+L/7emzdvYrfbFRvVcRMSF4wvZhrSt1ar1ThJhbVMsgJzmuMdngdvePqXLDX+ifi6IGrNHq2t78+Vrw6C2oHE4K41nktewAZ4vXAR6g6CWpkYSMnKygEv2silBvRCqNqixFGwU5IDbp1OJ96+fRvv3r2LwWBQ6iETibb4m8zfq6ur+Pnnn2M+n8dqtWo4tvTDzhRjHA6Hn4AXLAQMA9PRYwBAoU/ZOIEOKB76YQPEji7z4Kx6gxt87yzgp6enojxp2zySg6AOgCDg7MTlo7yygKMOB1WsZDabTUPo4UQ6QOagsIUEdEPA5N0M7IrA+IEuCNUMONInBzJzcMBrgXYNWkDLzP+miQOYDgLWDDDzCX/jvAOqkSVjkDO3Dz2zYvTcM3YbEZYB0Iw5Mu1p1+vUMiXX7zFi4PI7g5wGceiXjTfPWTZqTEfeseGa5yYLbgeparLVdM3rGZpYSRi0y7zhz90/v+M1wVq30WSwljYxMJBnOZPMdKIugzJuzyBrxD7IyPF9ue8UA60nJy93QBFwxBlinLVEAM8DejDThTuokOdZn+R5tG6L2B+j0el0yprKY+Fv74DOoBt1OoCa++J+5CSgLJM9l5Yx5jPG4nEbUPfaoA3Pe5YHOGfmLY+tNg634d0/5pcsBwkerFarmM1m0W63S6aw5Q80zAEG+o/OyvPkuSAAkul9LMfyr12Qtaw9A1L5ewrry9cuOAmC9eI1moNQ1gkGW1i/OIrff/99dDqdAvJ45xw6n6z+yWRSgm7z+Txubm7i6uqq3NfkJCoSYWhrs9kfU2aABRnvZDro4+NWM5DCDkb0A8dfchQS8sV6E0fVdM+gEN9hp7darRJIYncBWcgcwWb7i12jpju2OUFDgETqINCyWq0ashCn2jsv8FfgBeaUo3oB5byT0CAg82A+Yx5IwlytVgUYJCjuwJLtQV+XYr2HDLedSbuuJ4O10NK8YD2HL4bvEdEE2bAd0DcAtPxATwo6zTrTQTL6bz3qJCuvR8ZAMVBkH4d++yoXg1P4ZR4XO4ihOzQwUGpZwjigMcFLaMQcwDfmOQNRBsEM+NgPZyc5AXrobHvh/v4+ptNp9Hq9uLi4iIuLixiPx9Hr9eLy8rIkK9jeZBcO8s00o13uf2dtv337Nnq9Xkyn07ILgO9s/9q2uL+/j19++aUkUYxGo3IsogPqJycnsV6v49WrV/H73/++3JHn+YUffGef7bkMXtrGOpZjOZZjMUYS8SmOwXfWF/bFIpqnalg3ROyxi+zLg31ib6APsE3QOdRt3fn09FR0ALZCDpQYB7I8RG4+PT2VAKixztr7/KDbPO6I/bHnxjew97ChsIugG/YYtjKnN6BLOdoWGxv9wM5PkuuwMWjbNg42VvbZaQe7AjsSfQLN2ZX68PAQi8WizBXzir7LeKz1i9t2wBxcxPxhnQkPGXOjHdtf/p351/UZV879+1yfXZf/xia0P2Xesd71MzXcNPfZ66yGsdkfy3TPfWcuc1DMazLHaRwQzDZEjVamf+YB2yPGYpgb5oVkOgfCoaVxGtpyUNWJnNiSHHnLUbTEVDImBBaOf0Wbjn1QWAvIAuTCL7/8Eqenp+V0sOl02qAJbUdE8XMcdzC9Pa/Yxo7deH3SP/sh9L/Gw58rNfmfefNr6/nWd2o8HtFMRPma8tVBUBvENSDPk1ErFmgOsPGdF3BWiG6DScOxB8hAcfhYGephch3coniXTcQ+UMJicFDFC5R7dv7dv/t38ebNm4bT6GdNs5OTkxIAvb29jcVi8UngqdPpNM6WR4EOBoPGEbjcT0IhIwn6sXgGg0ED1HEGkQHr7ERDQ7IP7NQ6oM3xWHbiDRhBdwe4cyYvfcHRtSKrOfg2Crxo3XfaMW8RiM1j8s4esi88194l5CCoHWyDHbUx1daMgz1WRJln6Uve3ZsBeAQ8hpGDYAY2mA8Dd/CnDT8Xr18ELIrH9LIStgJlDqzYvD4onnPWuQFVP2cwxkFxG3eMDaAPx5/5sZLEaEQhmgezwZWDpsxjBouhQw588r7lnIO01JOz3y3g81rFKaAe1juAh9dCzUBxMMt85pKTImxgAvaaLtTF5/lOJYNWlv/mmVqwFxmXAXTokUFEip2Tx8fHkhWKcZ8zG51UwrzZkWPM9KPb7RYnKbfNWDyHlg0cafbq1auic3AgyHb1HPCz3W5L8K52rB7vWPdarliGtNvtuL+/b+zG8djN/+ZXG4t+xnyUP8sFevM+9w9no891OlhjHfXw8FB2/tbsCNY7oLf5gnr8PDrfhqPr5XM7XozVfczr6ViO5V+7WC/zvz/LzhTr1ECGbRjbFqwDy2/LPIJqPsLM+pDdcdy7tFqtSkY573Gc7Lt37+Lk5OUY1Lu7u5hOp/HLL7/Ezc1N46gj5CX9N2gSsT/qy7LSOovPsXuxQXJw5/T0tNjtvV6vZOPnI8KQ7wBf7JTDTs3BH2Tkw8ND494/5olgjeUZtigycbVaxWKxKD4Tdjy0ZY5J1Hx4eCh/A7TZxve9X4CFZGkT1CR51na3ecN2HvK71WqVcZBY2G63y+7MzWZT7gHDzmI3hHfWul7rMgfUIprXedhfhObQ0+APfMs47YNCG580Yhq5HvfX+pnvHCSzHs1+FvYJwS/7VPazrYdtv0VE2RU6mUyKr+ndm2Suw+sRUcBX1hnjtW6FXuyGRad6lyl9I7GBRFVAbNaR7R6C4IwFO8HHx2IXsm7pE8cDM/52ux0///xz3N3dxWAwKMkL4/G4HJvb7/dL0gBzAX0Gg0HDT6b0+/1Co8fHxxiNRtHv98sOa8A8A3YUePTjx49xeXkZk8kkdrsXwPnVq1clQeT+/j7m83n0+/149+5dTCaTWC6XDb8Ifqsld7ZarcZR5NkHt344lmM5lr/eUsPdMpiNvsoypOa7YTNkIN42F8flRuztQ2Qbcsl/Ww5fXl4W+evAHG0hx20P2A5cLBaNY9rpg7EhdBG7v7DJeMZYKcX6CN3NjlcH/CKi7K6kb7yLHsXWPD8/LxtzjF+Be3B0rq94yT6v7ZqIiPF4HP1+/5Mdlj7NBHuH/6EV8+YgJhiYbS5sAJ/aZnzFmKWxR/sN5jFspYw92h/JuFLGmiOigflknjHNMp7rz0wzt2XcLWNzfjdjcuZXB+NzPTVe9trN7fCeg2L+nW1J1+EAb17D9B9+JmnOdGZewFLcp7xujLfa54Sm8KL9SfqeA6G0Z7xxMBgUnvZGL9uKrVarJF8wN/hUtEmSJv+TNHd/fx8//vhjdDovJxjho0VE40Q5+M/4PH6OaW5b3MHTjFN5jjL2R1Lrn1vMb1kX1J79c+r/3Ge0DT2+pnxTEPTPLV/z7rfUD/PjZDsAxW8b7zloQMmBKb+T/2aB4KiPx+P44YcfYjKZlOCaBRHZSg8PDwVcn8/n8eHDh5jNZuXII5iGgALOILsIUYYG6iP2O0yI8FPcRws/GyAG0E03BITvnMmgTxYEeXdorU4LZQcn85zwLoIkZ4oAWrge5tHjidjfd0JBkfIewTEy3x0AyUel5aCr+cn9yOMGlMBIMRiRg7xZ2Js2Dl4g7OEDHztlesAXNRDSBXoe4nkHC1EUWdF5DK4L2lkh8l2NB/MPNPLOZ9M4O+JWxLTPesqGA7S00DTNfTSI+/855991+B0bcB5D5pUa77h/BpzN64cMHmhBH6jXssFGop0Z6rACNR/xvrOgPGfUkwFBK2qDVZk2DvLXDB3LP9PbbZtmpiv8PJ/PY7FYlF2hzDsZmATODRhaDkEP2ucYbYC69XpdDBVozRoyn5g3MYRIfuEzxsv648c7g0yXmmxx9qSDjaa7edHGIm3478wffG+nxqVmlOT2Pf+Wq3436/OaI8Nz2Ug0EGga0m87ou4fOh3HNOtcivWjv8vOyrEcy6+tWL5YX0TEJzLYDq13FGV5gZ2enXQnTUTsg25Zv/jORpJEIqIcE9nr9WI8Hsfbt29LtixH33748CGm02kjUGg724lVlo2bzSbW63VxcEmI9H2DBDzQp9DA95eSPOc7I7HXGBPvdzqdcpdoRDQc0c1mU45wJ8nNOzWhJSfFEFyyzYbTjN/ho5WYXx/d2em87Lz1Z8yFd2PYEY9o2v8AHbbj0KkEtExP61Fkt+Upp6gwd/b7DJBsNvsTXngPOrBzD5vfPA1trdfgA3gXnweeMV8zz7vdPokO/rdNbrDByYQeA+M0LaAPesx3otkusd1j245gZrvdLsc8E3SExwy6+shlxsT4n59f7jkDwGFuKeY9+1tOzINfaJt+M78kEQAIeQcnd4j6JA/v4nWigdfrbrcrvLHb7RqnNGEj4BOym/znn38uu0Ffv35dgqKvX78u6xQZQ1vwnOebI719BU632y33F0+n0wZYZlnMUYGLxSJ+/vnneP36dUng63a7MR6Py5HV3IE8Go3ib//2b+P6+rqs4+yX2L5hblhT9jWyP2Hb7FiO5ViOpVaQY9Yrh7AfbBeSUtAZTtrgxAvLRydv5Q0Z6KDLy8sYDodFF6H7sDHsX6LHkHUku6AXXAc6BtsO7JSdpowPDNA2ALqD8YAznp2dFVuPnavoF/Sjx4d9cXp6Wk4vqJ1KgB3e6XRiPp9Hu72/I93XUqBvHBRiHBF7XMe+NHoC+wP7wNcSROzvYXUCO3i3bRjapr+2f5j7jO147uCf3D+eRf/a38h4Zg0vzRgD5RCWl5/1+9anlExr62s/U8M+4Q/XX+un7cKM2WUcjf+9SSbjjaZtxgszXd03rzkHszMdsi2bn6v5nt7s5fgAfGG/wu/aX/JGO9YOJ1liR2YbGnkU8cKLHAeNbYpdynhns1n88ssv8bvf/a4kzE6n04iIIg+hKxv+GJcTPDxO2/rQK2NylkO0gTzNduK/xZKxzc+Vrw6C/rklC5H8ub+3oON/CwMKE4qyyIIDIcnfua1a/e6DFTaF5x4eHmI4HMYPP/wQ33//fXFmHQxAoSDkEPA3NzdxfX1djuWiXgfFCHzmHUoWlg4QOBBAe/yuOTFmDoCnVqtVAKbtdhvL5fITkBel4buF8sIzPbMhkj9DYHguUK44xRgNDjRmulmZWahi4Ng55n3m2FnhADsGdQgw0E8rY/NZDtZ4jFkZ5QCFFbSBAY/RwTDTKhcDhw4MYFTUlB1Ai+82tbJxsMljyQqUPnvteO3asMxrzPXn9ZgFc624r5mnoKuDEFZ+FI+vpmytPLICz/2oGUrZOKAf0PAQkGyegnc99+Yb+JF5daDHYJ3pmQG+LBMzPWvKJa9909m8aH73+OEB6mJcNkacseW5tAHm+ctGmcdgXn96eipHJQ6Hw+j3+9Hr9crdUdYlXtsRUQBKxkRwGXmPQ7fZbIqTxjNZJ7ne5XJZHBRkIPLFjodlNGCYdRHtUXcGquFzyyl4wLzndWSe8+fMr+nk5yyP8prK6wVedz/53P07ZFtkmWV+Iqid64yIhoPrgLvHx67/HMy0Y3ZofBGfJl4dy7H8morXXrYXspzncwP3FNYU8t9yYrfbNY5GdaAAfQUIhLzDAaQ/2MRv376Ny8vL6HQ6cX19HYvFIn766ae4urqK5XJZ1mV2mi2PkM30xTYmjmyv14t+v99IhuNvsu595Jn1cKfTKXKDjGKCkScnJzEcDoucIVjB7rWajQldAJfYETqbzUrgiKCUg9kEHReLRdFPHicBQgMSBKNI7GEOAAOQeQT0GDO7EOjDYrEogWT0r3kG3vLpKvQtYn/tScQ+SXK9Xpe+00eDdwCP2BfYh8h8gmJkpHNqTvblvMOQtqCr7QvzN88ZoOWYONtG9Ada0EfGSLvmXx/HarsmIkrSrYEQ1iHrxjR3Aq/XO7znq0a489JAp229TqdT+BG6Elj1TlDbgswPIA9JZLzPeOAHjhXbbreFx1xOTk4ax2Yzh94ZbRA7YwU8613p8NFsNourq6u4uLiI169fx3g8Lmsb/5HAsGk8HA6LbYm/xfeMp9PpxJs3b+L+/r5xupJ33cxms4iImM1m8f79+zg7Oyv3l3INw2w2K31gd/zFxUX8+OOPRS5ZTsMDttlsX9lm+lpQ6ViO5Vh+e8XYj8shbAZdlt+3z8Xn/NjHBPv0bkoSjb27EL84Ij4JPJIk5wQs62pjOcYT0GvL5bIcP+ux2q7yySQO2nqjgn1I9LzpZ7vNp3o4aYj3z8/Pix3J0e1slhkOh41glX1+j3M4HJb5wBa1X2us07syXdCj1gvYsNikJDRhR/ikEfMItjCf+bo9xoKetH1nW8LYGbanecu8ZpzT/eFvB5eM7ZpnM+9n/8htZnwz+1G27zzm2vNZT7vtjLMY/8h4pnHo3FYOGDNWr+FMW+jmgGM+3cQ0zmPJ69Ljzr7lISw4rzMSKoyDG//0WjceyzusPew8/A5fM2K5ZdnGJgjsONuZPH92dhbL5TKurq6i1WrFaDSK7XZbfFfoiD3IiXAOtjohgPkgWGqb2/aug6SmtU9nNV8eKvn7Q/PypeJ+/FOVr+3LP3sQtFayQPJntc9rgspAiRWtg4Cu00KgBpRbqDiolydmMBjEDz/8ED/88EN0u91GVg7KGAeWO+e2221cX18XkAYAI2clAWQTlGLRGaSgnRyENN2cLcD/WSD7KCBADWeoEpixwIGu0CiiCRxbGXk7t4EoZwVnR56/fZSr++05QrD6PHD6Z6HuIAX/syOAzxkTdeadQKalnVs+N/8wJwZvyKKhXw4QmMehO3Vlg800wrjIxqRpaqPA48/BBgwdKy9np1kBWVGY59y+5yAbC1mZU5fp4zo9NzUDg3r8O69xGwasIc+XgSzXaSO5Jgtyyc8YLDP9GI/pwlzXxuXn/H6WkeYvaMfatwNTc2Joz4qaOg4FAfP8Wj7Ac+YjeIOSFW7ul41fB+osG8zPluf+nv+zTPE7gIs+v58sTAcSnUVmI4h6oPfz83OR5YCC3pVsWjF3rGlAco4xszzjfRtATvJA/5DIko3ImvGc+T4btn42rwGvj5p+zYDbl9ZR5m/zbnZcqDPPJfSBFqw11iN9AnSlDQxVgGHPq41WdkExZ3yXZVTuXzbmj+VYfi3F2d9ZRtumsYMZsV//2VY8JPMdROJ9Jyadn5/HaDRqHJ+OrCMjl3ovLi7iu+++i81mEzc3N3F7exvX19fx448/lgxc5KODkhHN+1vItHefkfnIchIXCXiyKxw7HV1rnUXJ9pttyoi9zIaOHE9Gtj0yZ7PZNI5lMk0ZLzqEJJ7dblcCj53Oyw4AByLR04CNttNpn2QcnsU2daIJgAPPwg/2WaA7dinjgXbME+PxHAEM9Pv98ryDqfaT6JMD6dzTCV/B6z5iF3rgH9i+hy4AgowFWvGuA8jQKiI+sYlZV+zqze15bATmbCNwdCDBQdavfRd0GLxjneVAK7sw2UEJvW3DsSbQldTF2nbwmd9PT0+xXC4LP0dEyYpHVzohjf4gE7jbF12OPMBfAHCF1+BBfGVoZrt1u90Weyn7IdAGvvP3AFqAu6yjwWBQdof2+/0YDocRsb+eBnnqU4CYe/oI31JXt9uNq6urxnHb9InjEP/whz8UWcmRt+v1uoB0t7e30e124+3bt/G73/0urq+vS6DUPgB8kG0+z322z22THcuxHMtvt9Swi1qxTAFXQu/wWU4+tX500Af9gc6hfmNd7Xa7JMvYN6btp6en6Pf7JUCIDsnY1aHEYO4YtW5vt/dJO/QZe8ynmtjHR99AC2MR0Ab7w0fa0hf6YDsLvX96ehrD4bDYNnnOMpbG7lR0EDav/VYCKg4mop844vfp6akkGlEv+jf3N891Dsoaz1itVnFxcVGesQ1prKlmT9N30wDda5vFWHjGVGt8ZszS7WcsMvMVz0U0A8puJ2Oj5mPbjzVda2wk05Y6M35o/8R1Gz/NeGde/7Z9/XkeT267FgDN/c1YTu6PsSH7obYt+TxjUPBwxJ5fbWta/hgrdT+xp/FBnp+fY7VafXL8dqfTKfEUxuIEC+r3tYdcTdJqtcp1CpwIZ+wReYjscbzLtIZ2+DvQ33In0xus81tLDRM89MzXYH8Zn/ya8pfYov8iQdDPESV/9rWDtrLIddR2W5gBHYCrgZK5Hyyok5OT+N3vfhd/93d/V45WQODbQUNxAJo8PT3F1dVV3NzcfJJV1Gq9HAXQ7/dLtjvCG4c7A8m0Zyc0B21QIM52xoHDoWRhuu/OmI6IBlhiICwiGk6zgwIR+0t9s0DKmah2OFmECCk+N4DC4rYwADgClKKvACM+rpf7eXivdjyi+5+FswUdwPlutytAGMeFMR7+ps9WmJ5bKyjT03PusXt8BpkiXkATG1K8n5Ut3xMMh+5WjgYGs1Jx/dmgyHTzmstrjfGbj7Nha17JBdq55P7VDAnvCrZBztzRHwMBzElNxrj/nxP61GmDMPct0z4rZv/2uvQ42+39bmfLkrz+ssGSaZmNP8BVr3fqdT/Me9mZyEalweOcKIHMoC4MefrvRAjTjbHkucPZsHGMHOCujMfHx5K9PxgMCl1xsOAJJ0jwY6fAwCFORKY1gB98RVsYRuymyMEIg2Poi8FgUOrmvr2awWzDDNo5MwxjKb+f+ZDPMnCY5UXmJfqY/4cf4AE7LTnIH9FMWOE5O2Huj+nLDzyRHQTrQcax2+2KrmHHVi7QxzrCYzuWY/m1lmynZVslYr8Lj+ciPgXAcoKb11iWo53OfndkxEuSIXemRESRxwSrRqNR+X1xcRHb7bacsPLjjz82bGzLA2QCsq12x4t1bbYpsKM5ehJHGJrkDHrsM8Aq6sZvgDaAauzOxCmPeLlDELvy/Pw8ptNpPD4+lizhx8fHWCwWsVwuy3FtDw8PcX5+XnQPQTL0Jja25RHPEITebDZxdXUVs9ms2LDsUuCIs5odBt0A/WjTST/mDydJon8NJMGP0B9gANCQYCD1rVarRkAVfUewk114tAmfoW8ABWkfAIE68vwyp+hkdBEAI59hg9lmp08+1pbPqBfesh3R6bycLuGkQeqzDmbs2DS2UyjYDPgt3vFh3scvYq1gN2Oz0FfTHwAIOwI60R4Aj/sLsM3OGfh3MpmU+TNtVqtV8YV8Vxrvw1/4qAaqbTd4Jw/P276t2ZqWJ9zTya5M7v7kSGzojw9u0BY+hRefnp5iNBpFp9OJq6uruLu7K/xnu2O9XsdoNIrf//735QjE6+vrwruPj49xd3dXgqB/+MMfCg0zH3i9wdfZ9jPw+7UYzbEcy7H8dRXLkYjmBoia3LGf6P9dHzKHRC10R0Qz+cbYAMeXo38tw21nkRjFd054c4Krx0If0V3IcJ/QwPPUCyaRT2rCtnNyVS2Zls9JcKvhAcats4/uAEer1Wrg0E6+8maWVqtVjld/eHhonIRirJT6fY2aacRn6O6clMU4sO/Q0+x6Mx2x4Wyj2H6wrZmxBQeKMkaZMf+Ms7numv4zNpJ9/hxkdKnxpd/9UvE80w/sNPNQ/tu2o/v9OYyHv91W/sy0tZ3Dd9mesJ2aMWSva/fXfTaGRWFdZ+zXsRrsVF9Zsts17xNG5nhc9Jtd6Oxy9hUl+GGWF954lZMKCa7OZrOCTbJTm6sQGROfsRZq+BoyCDsQ/srPMq4sj/4t2nd/SZ//7CDo5wTBl4oZ2kGVLHhqdfEsYGR+joVRi2ibOSzMvZCcJW3AtN1ux5s3b+Lf//t/H6enp2U7tMFwgyo+YmY2m8WHDx8ax9ygfDudl23WgB0oesYEWGPm9tGZOcjowDAO9nK5bGSx5qCD6e9ji+iDgx58zhgQGhH1e0Lcdwf8EAI5uOfzt509YSANPrCQMOjmbHYLD9+TxPPui4WzM7otGPhN0NA8wjtkaJivDJhtt9uGImc+Ec65rayws0A2ALPZbMp9Pw5QecyuKysXzwdzbKWYjZI8x7U+22Ax2MjYed7r1EGELKSzIOdzJxfAj8yLA95WDrUATQ7o8Q5ypWZAue+Uzxk1NiAzsGDjjnWXjZ0sL01fZ1/aCLABb3CPenwECX00P5rX3adDQVTTB/408AlfIM8BiSynqdNJGzYYffwNuyNcJ+Pz3Rhec+ZZjJGzs7NyhxT97ff7xSgiYAgt4P/NZn+MC8f2QE925rC7k/Gz699BB69TdjpkMNHBXmQH9QGi2eHy+s1rlToB+ZBN1qWZ17OT5nVuY99yxDsgXJf5jYQMr3nLxaxLshMB/9uxy/KOtuB59LbvbmO9sJbcb0B+AMkMlOZ16jX452TaHcux/EsW6z0DLZbZBq/sZLbb7cZ9l072wTY6PT0t901yxObz83OMx+MYj8eNE1a8m63f75f1yjM3Nzdxc3MTf/rTn+LDhw9lvTpoaX0eEZ/YgLaDDdIgF7i3j4AMx1+y1nPQl88MBEa8yAYCmw7CPj09xXA4bOyKJHBCf7nnj6OYHh8fY71el89I3HF2s21CgDp+DPzRP18J4fe9G4PkwBzQtnx3AIqCzkR/epcqdLR/QBveuYu+ZzchACLfcfoCc7Fer8v/2A6W7QSF4XFfv2F/h12n2Z7Nvivrg7Yc2EW3oV/Qc7ZnsFHQVSQK0D58S5DbJx2gv2yb2vaBRrbNmBMSN/H98rj4wWain7631jYMa97BZ9aeEwYeHh4afha2NUd1YU9tNpuYTCalLeYFWwU/1EcPG3yiT7zDPNCndrtd7D37iV67jJF5s1/y9PQUs9ks+v1+TCaTckQ3iQO9Xq8EhbvdbqxWqzI/HG0IbzMnJycvd4i22+2Yz+ex2WyKPXd3dxeDwSB++eWXuL29LXeUDofDMg5oMZ/PYzwex6tXr+L29ras4wzu1/jZAYls52T771iO5Vh+uyX7enntZwzW9pX1O/IDO6eG8WZsw74bf5+dncV6vW5ct+AjYrkiwbvpjStTz2azKUeu73a7xjGXthOyDclvdldi92ZcBTsi6zRjayRteaeqA5YEA9H7vM/GD9djvxu7Bn2NnuR0BXS5x4Qt4T4bH/GJG9i3PjmDeSeRKF/lZn8b/e1kNAJKvgYo+/HW35nv+O05sM1mGzjzcMatHFyrBY94lr/zM24nrx/PUW63Vne2O3ku15uDtZlGTt5jHt12LRhb649xTj/nsXi9uM+5ndo4D9GTd/ideQNbj744uJ+xMBd8Emw8497gQMa+vQbwB7vdbnz8+PGTe0D9nn1KbxrYbl+SMu/u7kpi32QyKXRi41an0yk74I0/gS1hs+HDGnfy7vzsBzhO8S12neeN/2u4+NeUQ89nHv6nLv9kiJyFy19ax6Fi4eYM1ojmoswLGUHmgCHt+T0HCRw5b7Va8fr16/gP/+E/lDOcXZ+zWvIOsqenp1iv12XbNOPggmjfJ0IfttttOUIxIkoWD3UaMMeZoj8+zjFf5o2S8aI6JAgZQzZcsvCjT37Oxgr9c50GsyP2xx4Q0DSA5C3jOLguWYl4p5bnGNpYCGNs5H5bgeegV00Q1xxGG1kGUxwMrY0FA4RnvUvXfOCMKAcIrFBsUNkQ4TsMkQycGIRxXf6BtlZ0eW4NPpg2NkoxsgyAWenkoGnuv2nn7+iPZYFBVRt7FPNszRDw2nM7WSHn+lw+J+i/pjhIk+Ul4+E7B7CQAQ72e90wZted5z5n0nmuc0a/nR635fVnI6HV+nS3KrIevsdA9vjcDwcHvRPaQD1rFbnlwDlOA89ypNn9/X0Bmjgi1zQ3f9TmxbzZ6/WKjMpAlGnhjHz3k2cs0xwAhL7n5+dxcXERs9msgHY1oxLauE34zDs1Mi/wvkuWrQRma47Kl4rbs+yyoU0fag7Gw8NDrNfrYit4bbOOccCcNODsWJyxvDsC28P2AbLGtDzUt2M5ll9r8frOOhv5yHeAGBHNo5/4bfmCrUF9ZMt2u93Y7V4CH5eXl0U+3t/fl12HgP/dbjcuLi6i3W7H7e1t3NzcxPv37+PHH3+Mq6urxqkk9ImAgm2qiL1jSuDRR6LyPvcrccQrsmi3e9llT/Co1drvHKWvjB/AiiRH9J6DRMgqCn0joIEsenh4KImUBD6xZ7rdbvT7/WK32nZ9enpq3OfJ/KG3mS8HzbAb2XVgexGbNNflQBiyM9uG2CQPDw+Fvua9DAjZRyCQhN1IgBvnfzAYNPQ+851ldru9P2LNR+VaV2Wb2smijMNAEvNvEAp6A46iJ3Lyp+8rI3kJWmAjAcwyRw8PDw17CBr5yGgAT191YYAHwAcewt7BpmAeHEzPa5p59m5X8xTjY+34ZCLrTCds0YZ9AUCm5+fncqUMvMBucRJ8/a59SfxH62l4g7/tL2afFRur1Wo1+g9fWmYxz8PhMMbjcZEvzI/tWO+aZrz8fXFxUcCx29vbAmBvNpuYTqfx448/xps3b6Lf78fl5WU5/YOf+Xwe/X4/fvjhh/jxxx+LPWceZKy19ZfHz7xmO+xYjuVYftulFjz4XHHABnmCnLNN4YQrnjVm6ITxiP2OSHQPspwjcLkr2jLafc9Y6na7jel02jjJwNiQ5bKPkEUO0leesc1jf9JJwLbRbIcxRk5BsF1Jgniv1yv9tL4wrajLOCs6lvocJOFvbEr0qm1VJwnj+/r0COtH2nEg0SdaEXg2hsmcwR/GOYwrQc88Xsbs+THv2mc3rfm+9ne2C03P3O7nSg038f8ZcztU3I7pDlZcqyfjlH7XY8n4qvtGcVwk9yv33XPB/7XgKfObMUnWl5NWvcbgQ2/ewPbLuC7Pu5+MA7seHo+Ixu5L6jKm43FB17Ozs7i4uCg2at61bJ+GOj1n0Ofm5qbYiuPxuKxV+xyWq45f5M0CttUzBuh1T31OeP1c+Ry/5+++BvfKfP01ffinKl8dBM2LJ393SDgcqisDsP67Vgw2IzypywyR37cA/dzC97sGlNvtlyOs/uZv/iZGo1FREHb2CFiilGgDpcMxCSwUnFX+ZqGgAABBrFxxlhxo9e6fx8fHmM/njbPs8y5S74xcr9cNYAJhYvqw0PkfRU4/Mp0RJnZuzTsZvPbiRel7F5IDC/TfThv9q2Wmo0gNfkREIwvKitV9RgA6EMl82OCAlgQLHHCzo+jAGfMBDayYHTzI/Gr+NyBv2hqwqa0FC5XsAPs4ALKwrAgduDQ4lOWClX02yNyuQYic1WWl7X54zVGnaeJ3PE4bpQ4IWSFmp9994HeWM6ZJNsZq5ZBsy8qJUlMCBuNYh96VaFlnHrcx6jFlXrPssxyCLp5zgye53zZocmDV/WKXg5NI/D68QTsAdw4A5rm3QZXXjmnEOqEuz62docViUXbRTyaTsqvTfMD6t8HH2nadjBUAM2eYmUaAmRz/w/Fz3HUFbSwjI6IhE/v9fnHeagZ0nlfXYQA2z2l2+NBPDth6vVgGUrIx7bVcM6g9h7x/yBYxXXLBqeU0CSfx4DxBM+s5G5YZKIWOXjt5zF9jDB7LsfxrFfjfa4z16R1zrDsn/NlBzDvPLGsM+tze3pbjby8vL2M4HEa73S67Hgn0kPE6HA7j4uKiHFf28ePHRgAU3Wig30BVRNPBsl4iaEFgE9vcd0BZ5gPkIEvY0Qh9ALgI9KHb7Hhn8Mp6+enpqaF3HAzNQI6vX/Duzc1m0zg69ezsLPr9fkRE0Q9+dr1el/bQJw6mMh/r9br4HYyFU1zwY6gzAwjQEjCNjOndbh/YjIhPdI/BEuS1M7uZL8YEiGB5Tn/oS9bZPsLWtgSBUtvIriPbArZr6Yv77mCfg57007zgXQ/2Y9DPgMpO1txutzEYDMrRyAQ3DUrDd/iEJFriGxE4JbBOv0kqoJ8+dpi5tM+FP0Kd9J1EXdMRXmSs/X6/+GseO3O2270kUzi5wOuYcdfkHHqa/vvZ7P8aZPR88JxtIO4E5U7P8Xgci8WiJND1er14/fp1CVaSpGxAnrqQM5PJJFqtlyMMp9NpWbvL5TKurq6KHOW4QtvrJJtcXFzEq1evYj6ff1I/xb4D47J8rAFpx3Isx/LXUzJGc+gZy1D74NgL/smJacYe+Nz2mzcuuB9giJbnthv42xgbAQtsLPpj2yFif/WXsQTrt4hmIpn/Nn6FznTdTq5FR5Aw5B/sG47wzAlH1kPGB9zf5XJZdC8JgNARHY9+NabU7XYbd6x7bnzKlu2vnICF7rCdjM3KrlPvBLVtjY3lk0HMG8ahjLXWMIKMCdme4H37P7Y7KMam7C9lvDZjU+4nv/08pfb/5/Bc12lcszbuQ7jnofgNfbddwfM1rDTLiM/9X7Ohcp/ZPew17OdMR+NExqJsT0MD24zY7bZxHWOyXDLe735xTQi2Fv6bEwTpG+vZ+D+YU0SUHelgnh43c9Hv9xtXXpmfOWEpn97Cs+CbEfs4Bp/9JTjVId76NZdvDoL677zwDy2+Wl0O8EXUAU0XCxSEYi3Qlv/OxcBI7lMWAq3WyyW1v//97+P169dFebhdHwVlBYgDwl0lZGqz8HxvnBcojG9QKaJ5drwzsTnudrFYxGw2K4vHgQAY25mydmRQUgZwWPCm/263aziuBnkdwMiC1cCHlV9E85x02uZzg+/MncEAxmfB7sANCtaONln0ric7f87QqvEJfYUuzJvBNM+tecPKxMAJdVG3jRtnkziLzkdXOiBnIJO6oG0G7x0whYY5IEO/coa3jYVcsiHm8UVEUTTmb9OkVg7Jlhzgqxkz2UDMdfr7XBe09FzZoKAPvPMl4V97pvZOTZ5mA80AtINx0N78atp4XAb8aMO7gM3PBk8yGGK68ZyBafrhNr3rIAMyAFQ8awPYToYBcBtW9DdnZ2aDmb5lmWiDY7PZxGKxiM1mU3aFetcFchGDgj5nPZUTA3wfntcgWWT00wC2ZbPf8d/84MzlAJ8dE2SAi+VAzcFwsO+QcZt5xrzh5yh2jM2jppeLedbPOVkFHsvH8qBDzQM1JyDvTrGu9/rMAVGvkTzmYzmWX1vJOsDyAnvWu/8imvLezxEwsPNGAcC/v7+P6XQa7969i8FgEIPBIDqdTtkVidPG7263G69fvy7yfrFYxHw+j/l8Xmwuyw70uANfHCeGzR7RDO6enZ0V2c54KTjFHIfpaydwfglC7Ha7cmIAyY70Z7t92XVgPUzAj8REdnze3d0VGeYgyXQ6jYimjrKc4nnmixNnOHYMoJD2n5+fi98AbXCk8VPy8fC25dFx0IlgovU+8tcJlNiwBPRarSbACV2YR8BD5ClBt1arVRJRJ5NJkc8EwsyfPnKOAOR2uy3HFKMLsdvNw4zFx6Wio5gbHzeV9aoDoM5Wz34eNDFgYgDKya28Q1vn5+dF58PX2+22cfwW62C325WgMzxsvwF+ZxcjPGgesY1oWw19SMKvbZb7+/sYDAZlHA5YQ49er1d8BOaRnb/eaem5tJzBDvMuHs+HZQb/M+eU7BfZrjk5OSngNLKF9cIc3t3dld2hPrKWo7VtJ2JPGFD2Om6323FxcREPDw9FLtzf38d8Po8PHz7E999/X+q/u7tr9H29Xsf5+Xm8e/cufvrpp5IQ56C7fWlkCz+2Xw7Z/sdyLMfy2y4ZD6qVjG1k/AQ7wL5YxmayH4Y+sZ+LPCdB6ezsrCSgsAkkonkntWU/vvd8Pm/gr5zIwZ3v2EQU6yu+b7dfEvcyxmEbiTaxC9AdERGDwaBcYYNdCdbsDRhsmDFegnw25olN5w01JycnMZvNYrlcFr3jJDnbE/S303m5m9AnerTbLyduYC+gB3yKhW1raMb8Uge2KPRxcMo4j21F+CdjAowFPIh2HCDl2YxHuGS+pQ/Yd8aQeMbz6r7WfH5jiDne4b7lsbkenvkchumx1DDE/E7Gdw5he8YZjZuZJpYRrstBdc+HxwW9TcM8Ltu6HlueC+pyPIA6bf/YvqE/JA5yFRVxBD9nbBCfjaR51url5WVst9tyEihrGsyT5MWI5lrxaUL2Xb0zfbfbxWAwiMViEYvFotCVd7BlbU/yzCG8znZ05uEa/9TW0dfg357Tzz1rHv7nLN90HK4HbWYwc38NyGcFkYOgNebOxUFQ6vPvXFggOOBZ0OB849y4TxcXF/HmzZuSWYTTGPFpBJ2+onzI8txuX857fvXqVUTsgzYoDR/TyqKiX53O/sxpHCxAkvV6XRaBA7Q58MR3eWwYCB4//cuBCwdWKHZ8qcfgEMUBGd5BiDjIwLP0m/mARrmPLLgcsMTRz2A1dM1HV9mQMGDicZlvEYwGNSy0HfS0EwsPmidzv+EBGwIWSOzUhP9ME69BG5TQGR5w5rqBQeYGwetxeXxWfqZhlg20jyKyojR/W+FSFwLc82ZZcEhJ+vssF2pZ4QaXXF829rMR7v4zvi8Ja3jLYNOXns/FRlDma/rJnJv27nsOhOdsKd+jgYHq5732cuDQBojXnnUHitlrPa9Tt4cMhIessDMPAZAZKKQ938XhfpqmnnvLKu/SJ4DGUWfe/QBtAKBt/EEH5DmAOjKdsdL+ZrNpBO9yUJL//Q40pk70E4adedwgmOeH9ZeDmJ/Ts9DIDoP7WHMIMo97zR0C2bKRzpjttHgtUxey1+9nwJHf3v1huWaD2kfsZkeC9mtj+Br76FiO5V+rwLtZF3oNZPstyyLX5cQp1hPyhbvq//Zv/zZ6vV60Wi+Jetx5ybvc8dRut+Pu7i6m02ms1+tGUMb2EnIXMIj27ZAj37GrObLS47Hji0x3pryDGBEvuufs7CwGg0EZD7qIQCL6A/vGIBJHKOE0k0nv+6RwyAkAEsRDf6APaYt7o7hP1Tqf/vl43Yh9wJf7DLfbbSyXy7i9vS0yHiCr1Wo1rtbgaNWIfdY1beerS9ATBMwBFi03HRyL2O/GzUmH2NkEnAwg8B3y33aEd/rSN4J/vO+TUfAdHCDFfiZI60RZ7CAfW8vaYB1hl7AzgztjCTYyp9kupR38He4YZQco6xddzrPwEP3GfyWh1v2Ef5xk5rllDOZF1gLHE3Ldy+npaWMN2O6wbWH70/cLw7/L5bKcjsEYsx9u8LMGfEJvArTYcPTNRxhTv/0fB8TZgeTgOCDXw8NDrFaruL6+jvF4HBcXFzEajeLy8jL6/X6Mx+Po9XoFRGcHjJNAWJ9PT0/x+vXr6HQ6cXd3V9bszc1NzOfzePfuXVxcXMTPP//8SVB4u92WtvPRw6wJeJ65zf4+9k/GUI7lWI7lr6/UfDiK7Ub7ldZl9q+yjkM3540VNf+w1XpJmgETRWcaC3OAzIGJLGex7WazWcEKSXamLeS/fUb3BblrXYSutk3MxhiO8cd+so23273sBOMoWTBgbBTaoU4S1XxKibFKaGI7zYmGxjQ9Z+fn58X2Y37QGbRNu7zHqVf2mzNWi34xDoHtANZu/rKdkD/PuIBxEgdPM06ZMWg+s44zP2fMyxix/YaMnWT7LeMptldc9+dwzhp+VaNNXosuud6MWxhvdH+Nj9kmsg/psRoPy20dmlfGljGuTDN4Hdve9dVwSdZhXkPZ912tVsU+HAwGxW429stmN/eZdXB6ehrj8Tj6/X7M5/OYzWaN5xw/cBAy22TY8zyLrzkej0sf6ZMTIaAn8gJZhB3nAm1I4jPffK4c+v5r3uX9vCa+thzSQd9SzzftBD30Y0D+UDFzmfiug58sMDxQFKPfMQHNQDCElazbzIvFgdnN5uUi6jdv3jRAf4RrzSHw4vfxQp1Op3GUIWNx1L+2uAnkOUt5Pp+X+5A4/tYgAXU5MIVgAIxBuUdE47cDDDmTOKKZVcViJTgBYG96QxMWOvRB2VIvx0C4LT+bz6+HfvQJx56CoZB328J3OKi873oJYDqjAiefgkFk3mS3EXe9wlOf27GcAwWHgjFeB+ZhB12cwZEDZDm7w58bkKBYmZp/suLxHHtM2cgxzzgj28rJRkgeg+eWkoET8wQl98vBQAfgKHk3RS3o5PnxMV1Z4GeD5hAdDbragHb7HkOWs3yG0uJvZ7nb0bBspR0+c0KA1xl9h8+yPPR8eD3WgHEbQ3xvZ8GGlOUDRjWfYTQDHFEfx0AgL7x7yRmQ9MngXja2PI/Iiefn5yJzkd0c48h6Zw6Qi9vttgDGWTmfnOzvXcOBQf54fVGXj5vh2SznM2C72+0K2Ec91pVO2KC9bKwyd+ZpzyfzB515xrvkM3jm/tiYt5Hm553cYxvCMpT/3baBawxIrwsfj05dztLLMgr5Qb12Dm1ceu2bp47lWH6NBRnghKiI/akNeZeUZb/XMYkbyASvT2QY6xzZxLrxDm1sOO7Fu729jffv38fPP/8cs9ksOp2XTHUCiD4WnuQ5xhWxl2vYqYPBoFzBwO5IBwcJftluwSZ9fn6Ofr/fkJUGYEhWQxb4WCSAI2xy+glwhVNNgA595qAw9Do/Py8Zy/g71gscw+nE0ZyYx7gsWwkQ40wTnCb45Ls3oS39BKSjHoKb1jftdvuT00AovluUui1vobd1KvqFvmJvWiabPpbhzNlisSh60omQ9gHsI6Gvbbc52G4bg3FxtynfZz3pHc0ZyLENAlCBvcbaQz/5iFyCe9DO9jW8NJlM4vHxsdzJS18MujI2fB30NM/iC3LSjtvt9XrFnyUbHnnAuBxYPD8/L8mvli+Pj4/lWprValV4BlowfwC+rHXTmd8kJjBGeAr7gKO4bYvCE/AOu78dKLb8MfjsdbRarWI8Hsfr16/L7lCOm3YS9Wazifl8Xnh6u93G27dvo9vtxnK5jNVqFYvFIm5vb0tglR0IBrKYj9FoFB8/fixrlznN/oJlZgaoMk5zLMdyLH9dxX7ZITmQsWFkI8feG7e0bLE+QNYi/ynIoIhoBCiRtRF77IJnkcXz+TyWy2WR69hmGWfCz+92uzGZTBr+qMcTsU/Wyth1xB5jAZ/g1BNjBmAb1s0kjqGfjCOg26zX0T/gEthp6ALsTAdxnIjkayyMrfMdetXJ1MzR2dlZ3N/fF9sYejMvtmXAUvO92BT6B83gGZ8MBg/YVso4JnaRbYuMKRizr/F3jRauP6J+Zy3f196xPs269VA/83O5/7nU3s1YnevIeOgh7Me4n9+Dn+h7DXvNuCVtm9YZW3J/My5tbJL5p/2MCWHjYBM5UGg/yDgUc4U9zK5zx0rwJSKaJyNhf+NnnZyclGDoYrGI6XRaMCnGaJz25OQk1ut1Y3Ner9crfiCBT3Zqr1arBiaWkwwzneln5jPkrzcI/Lkl8xBt1j6vffYvVb5pJyglO6cm8KHihWgGZYI+Z0wjzHBOvcOPfjjLvFaXGcz98KJye91uN96+fVucRJyIiObZ9dRrgU8GKN9bqXU6nXL0FBnv9MOOerfbLZkwz8/PMZvNYrFYxPX1dVHiPhYIOvDj3Vs1UDnv7sqC2YLGcwV9ATBwkA2a0RfTmGCFgSHqY6HnbFsUOcU0pW0LMOqkAFBE7MEJBzBpyztaEWQeM3XVAg52JJnjLFQMYkBz+NfZ03yGoDZNmA/o5z4469trIs8h2VAIdo83Kw3PYx6LvzMI5R2wNlqtOBmn5UEGGA715ZCMsTFUW9emSU021PjA7WUjwkrd6z7TzUrJz/hz+n4o+JjByTyGbMR5jWbZZocCemc68I4zJ2uG/aHPDaRYvrhPrF/oV1PQEVGMfO8+skyN2BuNzqQ0P5qfcHhqvGKDGXkOOG96sauD+9OQrQDNrHHWF+876cI0Ma3y7iDT2sE286ADdt7hYQCM4ACOlNeD5908WZtT0zLzjnnIxXc8832Wj57HTG8/ayf4ULH+cEapDUHbCHmc5gV4M+sHgjPeTePvssNO+dc09I7lWL5UstyJ2Acta8+SPct7yEzWj3egRTTlHTKTHZMEHHyHZavVitFoFGdnZzGfz+Pq6irev38fHz58KPZrv98vQUXvCHUQz3Ymx6Yhr7ERfb8lwQfbc9hZPANNfCxaRJSdXAahGJdtQZJpHh8fS3AU2epTBww22FbwiSvsEsBepA2fpGG5zfxYJyHPyDru9XpFn5LshU7lHU4x4F4a9B8B5hzQs84ArHMCFL7E2dlZAUmXy2WR4eh+2oFX2UGJfRyx92+gK+1w5DBt4X858JoDPwZlPQf2LwwMQh9o5FMsnDFO/Z5H3mU9ZfDH+hKe9q4Q228R0eAB+u3AHHPB/Nlug7dZTxxhu1wuG7afbXV2f5pnGRvz2ul0YjabNWQLc5Oz2umnE+SYO3Q0/FyTNficjMG7ZLwzhpM9WPPUxw6YDAqdnLzc9+srCswr1G9gDVsB+3E2m8VqtYo3b97EZDIpaxq75f7+vvA/Y2q1Xo5+fvv2bYzH41Ind4Vy4hTHhNMWvMI1Dk4s5jvbrJ5f+1E1H+ZYjuVYfnvFvpp9OL7LP5Rsb6Af8G+9U67mLyKTa0GP3B562xs8rFOzvcP9n04Woi1sNieW0e50Om1s/IiIklBn/M96wj4mdi5BQuPH0My6B7zOth7H/npTCTYSCUHQzFgqc2Ccyf4w9kOr9RJIyqcdMo+bzaZxAgv9cmJ8xP4kMXS7x+GEI/gKfuBkBux2Y58Zu6Bv/o7PsPfQbfTNmCm0Mm/VkvXzGsg+vDG1jBO6HT7PeGT+vsbvxoJtA1KHd+5mbMU4tr/zuvPntWdsa3uMOdYCff2O6zTulmnMfPMu4zSfug1jVBlrcT88Fvtf9k2o31ia+cT/Y1dhxzo5mPUI79v/cJIe1658/PixHN2ND9JuvySusga5SvHx8TEGg0FZo970cXFxEYvFosy5Y1K215zEib2XC99lHsm4XaZt7bv8eY3nvoSJ1fD4Q899zWe18s13gvp3FiKHShYOWWl+qV0rjLzb8NAC9gJiUWVQ1QziwBTKajQaFWaiOCPcgtbOIMwHMxkoioiSVWAwmfq63W4DdF2tVjGfzxvHN0APHG0EZAb33S79zMcCOKshMz0CoQbcOzs9GygRnwJqBpQAT8iA4n0yfaERtHOgKQcV3Q6fRUTjWAYEEoocYUT9Bvmyw50zNfLYMRoYC32x0M3v22F39ooNDkotIGBHFb628HI2kd+jDQeemF/q9XrzfOZsp9wHg3juuxU2dQGeuh82CGvGtvuQi5VPNhJsbFsoZ8OIObEsy4qUPtg4o61D43c/DgllGyt+NisA097FoJcNpvwMY8zvHXJIau19zhGiDdZyXq9+Lj9jfnKwPvObEzqoA+Ddcq/VajWSA7bb/Q4FnBXPOWvhkBPFD3ILObxer4scQhYgxwHBuCON9yxraR8ZFbHfnervDaD6njLzLu/QF69N5MrZ2VnJgjWwDp28A+aQzs/Fc2e6eT2aL6xnXW/mg5oBVVtDlrM1vocmHnM2EO2YQ9MMCro97yoyP9Tsmmz/HMux/BqL1wN8n5PbkBcOcBqM4N1sL/A3a73b7ca7d+/i/Pw8lstlwzaJiCIv+/1+TKfT+PjxY3z8+DHu7u4asrDVapVA6NPTU8zn82IL2CZqt9sxmUzi4uKiOIPPz8+NwE9OmsPZtMPLOxH7Y2OdyY996yCDE34sC0hiBDizDHPgxcEoZx5TD3I9gyMkUmJvUSfAHckhOPIETCKiAGPs/kRuYy+j6wnW0FfuQu33+yUQa3sX/kE/ExwDIPNuVRx36zB0aqezv+OVvtE/Egufn59LoH2325Xgl+10ZDc+HzIc/oYHnABLO+gxdECr1So79gx8MB/sMGQuCcBmkAfeInEUPrbfQ7A9Yn8EHuOkn/AfbTvoD2gMfTebTTlGt9XaJ1vC94yBQJttmN1uV+q23cE6xI8kkD2ZTEq2OePabl+SIvr9fgGm2YnDHU5kvNtemc/nJZgOgOy7XbGV2PUNHU5PT2OxWDTWpf1d8595AR/6/Py83B3sddjpdMo8e14NqD0/P8disSh2GOuMu+H6/X4Bt7Pfylw8Pz/HZDIp9c/n83h4eIherxeDwaDhW9p/GgwGjaOLbedlf5V3s91+yI85lmM5lt9G+U//6T/FZrOJ//t//2/B0iifw3uzbMjyAhvAdqWDiBH7e+ONK2I32MdFD3rDBPqcetEz6/U6lstlSVZy2+hK3kNfGh/FrsA24QQAY7DGk6AFO8cYV8ZM7SPzvwN5trOxp3jGp3NkzBFMhOLACRgGOgvb5+HhoRy7zhHAjI12bOdDe+YZWuc52+125WoH8wR8wFxjM5IY6CsSrI9quFS2OdDT9CFvYvF7xieMN0Z8evVXXgP2gfx5XiOe45pPxN/Gm+BPY0W5YOPARw5s1fDLjPfU6Fr7P9PAvJvxGmOXDmxmPNj4YMZOXWq4ZMaoaxil17jfdcFmrGG3fIavZDnBVYfD4bARI8GPMsZlejjp4u3bt7Fer+P6+rrIJRJQ6ctqtSpyCN9rt9s15nkymcTHjx/LZodsx7EuPdeWKZm2tSDot5Ya72T++Evq+lw5Pz+P//gf/+NX9/+bg6D87R+XQw1/CQg8BB66frJ0fE9aRPNI07wYa/3Pz+HoWTl3u91yz4qdfpy6HDE3cGoBz8J3dgwZUXasBoNBUayPj4+NY27u7u6KgrbxAM0ANwyeRzQz7yOiHPvFO3ZkyabK9Gc8jIP+GlxiPAZIsjCPiMbCdSa7+42hkTObvXABvNw/aIPgdRCT9wmK2Khz9roVlwPN1GkFYLAFYwweqIHr8ISFK3R3m5k/eQ8etoCn3xbA8GlWbnxuo8X9dJAgKxmXXK/XNXNhANQOtAM7np8cBISm1JODKbUCTa1UHdTIaz7TxnPucfJcpj8gmOlD+3kNZuWe/zefeO4czLZMy8Fi/1/rq5/FWci0zIHi3EauO/MxhTrNa/QRPjU/e45tTHnsfM86w6CnT3Z6ACN5PztEBhCR1zkDjee22+0n9/8iI5lXskvZ8cEuIx+b4fn0GoAmOWBgoxyZQv/sBNqwtvGfjUPPnY+q5P3swFn+npycNHbPuj+eN/rjebGR7H7koKLHfiiQ6Gdqn2dZRl3oFvgRmQk/ORDv8UGTfMJAXnNeK6YJz+Y18pcYlsdyLP+cJdsdWdcjF3LSWAYBWPPYIwQXfMQ0AcmIKEdSEhxljYzH45jP53FzcxN3d3dxd3dXbDevKXapUXAcWX/j8bjs2nIWf9a1HguyHfsQPwBZnZ1I9BDH21LHbre/wgNdYR2MPPI7ONnQ07a/bX766kQMZDV9Axi5u7sr9zNGvNi9k8mkYbfZrvfRvIvFooBgBFbhBfoN0NXr9Ro7H/EJnN3farWKH0cQFL2Or0SAlqAcgdiIPahBwBH6Q1fm3ToUUMx2aOZTAmgRUe6vRPfTJroT3sBG8NGsJEPBg+gg+gYvWA/TF99dypww/95RYZ8B0AX7Bb4DsOF5Hxdn+hBYB4SEL9GRtjE8RtaD5YF9Yvw071Ztt9sliAqoat2Nz4Xu9nq1fQot2SnJnDJm1k0NCKOfXJ3A/7ZF8cUBxDnu1usH28jjNw3y3ZuM2bS4uroqJ0KtVqtYrVbFRru4uIh2u12y/KE/4PPT01OMx+MYj8dlzToR1rYtO9EJAOdEO9uBzJ9tm+w7HsuxHMtvt1xfX38CtlNq698y3H4aes+4DMW+mhN2MnZKsWwn0Qq7AzvDupV3Hx8fy5Hilm/INGwt+mufzTYX8pH2OAWAcTkYiw1E0gv6C3wh6zp80e1227gLlXax7zhFkIQ1+96MC1lu+qGr+BsdT9/6/X7ZrerrBDabTSwWizI27BpfM2Qe8N3a2H/GJewnEFzC5jf9OHGCJC2PMWNIGfs3LufPc3Dd+s67a/kulxquxxwzLifxeV3QF9dtG8+6mLaM8fC314/tRvjIfGM+zvgK9M4BZtf9ueLYgv2o7Dsa8/bmooho2KzYxRTWZg3jND1MV5/sYbtvt2veiRmxxwWhn39Mf28KIMnPGxum02nxY3wCSqZ7vvqDukejUXS73ZjNZjGdThunybEeZrNZSWrAlsZfwf8YjUZxfX3d4Af4EduPNYttbX/KR2G7n//UJWPw31Jq2HytPD8/x4cPH6pruFa+OghqxnKH8u8v1UFh4Xi3hcFav2MA1zvzKJkoHnxWynmBAH54QeJ8k9XpAEwNPLECh4nsADtoZ4OA9vr9fllAy+Uy7u7u4ubmJqbTaeOuI5QLdHM/Mi0McJsmNUGXwZy8kBGWFhJWPDYoDCpTfCyZgwM8byXp44P43kdkZP7Jc2rgu5aN4UAwPIcAMChuo8XBbQwtFE7Efru8gSl4lX6bHtlgoU0MJ86/hzezcQjvsgMBIW3wKytAC03Tw8rVijgHTxwYMH/VgjIueT3zjAW5M+Y9vx6HlWkuXuNWnLmfPgIsr2M+g7bU64AG4/TYvhTg9Luur/aMgYZs2NUMt8z/9IcxOwhj48p9zcYL68DryX3MbbmPNvL43s8AhhoYow0bjrzr7+H3fLyb+5KBcWiOAWYgzA5Szg7Nu5+yjHIdtM29Ijgoo9GocbwFzpNBWtM7G/E5CIxhhCFvXs7zRB15vdCunRQ7TLyb36Of7rsNw8yL2WA371nP1BwE1oFp5Pp5NrdpfmVM3K+FjWEn1Px6aE24LY8jy07qzPIwg4b/XIblsRzLP0XxWkCe+nh/f+dkOAIhlsPIKq8V1sfZ2Vm8ffs2hsNhRLzsYrq8vCzZtq1WKwaDQcmSvb29jevr67Lj0OsJYKfVasV4PI6Tk5NYLpexWCzi5OSkBEDRrbzvY2jJpCaoFREFzCEI54QzgjgRL/rj9vY2FotFnJ2dxWAwKLYfuoAAHpn71rEkMNrhPpSoFrG3WwD97GQ7cRB6E8DkCMyzs7PG8Zu73a4R2KF9EvwI0DCH1M88EXjNgVwnxDloSsCTe7CxCWybYk/TFgCGdZ/tc0BDPw/fegcC4zO9sTMjopHwCk8BnHhctjfxH6iHcWMH5fkFpPX/+BfwhXeIegcDvMdYsaPwHZkX+KXf75fTL2rt2M7ld/Yf4BkKY7RPyMk+8AO2HOs079KxvMBX8q4Tkgnsd9kX5Lgwdh3f3t6WccMnyCn68PDwUNYM30MH+M5rkEQ224b0m/WMPcdua/udzuBn3TqQzrvb7bYc0cgxaWdnZ9Hv9+Pi4iLevHkTZ2dnMZvNGrt4GdP9/X1cXl7GeDxuzEu32y0JF/imyGIDy55z9987zu0bZJvsaNMcy7H89sof//jHr342+1LGHpGxNT88Y5d+Dt8SDC1in/DT7/dLHegF60dk2G63i9lsFre3t0XvWD+gGx3opU1v7MDWMbbx/Pwcy+Wy3NuHvmBnmPGI7Bs6Qcq0c+DWvvNutyu7WPnO9iy2Kzo4X8lFwX417kZd6CTrYPQ+No6xHJ6xT0+7PoXBOoP2R6NR41579D19NHbLnNTo6GCndZF1LTT074x1Ujy/NeyB+rPdZHw3Yx+2m23DO+G+hr8at6R+YxOZTzJe+zUlr8PPvet2TP8appPxGY+H99226/Zx2RHNTUy86/WYcao8Fs8hNhpJrZ4r1+l1AI5EMBLbz77sdvuSKIdswp/xuFgXpjtrvtVqxevXr2M8Hhfb05undruXU4NGo1EDC43Yn2Q5mUxiOp2WgKdp0m7vj8Klzznuhkwwzemj+bvGF8zv1/BenpdvKV/7zmaziffv3391vX9WEDQz+5feqxUzMYoJRzODkjhudnZz/Va8lEOK2H0wIAHjotDIiIE5HCTxhNBfFDbt4EDlRRYRBUixsJvNZvHLL7/Ezc1NOebHxQCQFTdjs/BwH62knGHBQsiLBuVCvyx4DJLwP/NgIU6QECCIzFqD7gZLbBS4z6aZF2wW4M52NihtsAp6o2hxyvO9R61Wq2QJM/+AYQgdzvY2nzmIYkFmYeqx5HljXvjcPE3ffEyVjw/zWsCA8zqgTa8B/88c58AI9Dbgb8M085mVtZUSz5p3EeR2wvk/Z1AzPujj/vs5y48scK2YasFI09wByUwDj9O0pZiPc6Cxxtf0jT7YaDRfeCyUXLf5kLVqRYb8ZO1nQ6VWv9ec/3c7NowAw5z1ZVCPo05sxOT28xiok8+yTMhBQOpEoSOPer1ekasYo9mpol4Dr85M5XM7BLzLDprNZhOj0aisU+QFsoaxWl5l3spOm40p87rf5znPeZ431q/XunVBdlYpNqQy/3p91ID8rGPM79RpXqjxoOfWvOti3jBga16x/Mh8nPtsoDTzqbML0ffelZJtnz/H8DuWY/mXLNgAEc1gGsU2nB38LActp5CdyIbLy8t49epVtNvtAuS3Wq148+ZNCW48PDzE1dVVXF1dxYcPH2I+nxf5j6wi6SQiinPHcZKvX78u+pNEiIhoBOpsZ+H82s+wLiKwgAzkeorZbFYChQBRw+GwkTXM3Z/0vdXaZ9v7ZAHkJuActMfpdQAQenuHAPXQZ+YHm5XCzlESPRkrx48ul8uGHsfBb7VaZScCdPCxv85ixo9iZyhHlNLHnOwFH6GTfdRaxN6uYO4MeFmvYbf5/pvFYlH8rXyEm3c0GtwC0LO9TL/R3+z+9B1jHCmbgS/7YPDZbre/ixSbHX58fHwsNOOILPplv8m2mO1qfDT+53mCll7v6DLm0D45bTEH5kH4yDID2phu9kuxidbrdWPHsH0N+KHVekmGIAueoO5qtSqBV/riwLHtda8t+JyAvZPJnLxg2w/a+v2zs7NGcJk2kTP4ZPAjAWDPLfTETkO+/fTTTzGZTGI8HsdqtYpXr16VpF0SoqG9ZRHyKeIFW+j3+3F+fl740ommDjjbBso+kX1X4wEZRzmWYzmWY4nYy1qK/cXsB2bfvwaoGyOwjEK2IaMp4Argqdy5h16iP/hplnn25ZzUR99texA0zLYi9izjQl8bl0En5F2OlrH2+9vtdiMBED2D3rbfnm1zB2Q5CQ9MFvpSN1cSgH0ap4D+1hnr9bphOzAu+/TG7Ln+ADvs/v6+2CLe8IFec2JbthP9OwfZ+ds/9vGpx3herWR8w5he5vlD72Us1LT0JhnT1rzPPNbwD8cWeMY0ArfI4z+EQ2Q+9dg9B3mNekzZjvBc1DBE41Sec56NiEbiHrZbtvUimnd35jVhH8FBQPgu46/M6fPzy9UFd3d35b56fAnGyV2d6/W6XEnQ6/UagUrbYh47a5rkAAKd+FY8iw+GXCKRAhmBn0UQ2UmH2Z9nnMaXzR8Z9zMvHsKh/y2Xrw6CGvw7JAwOlWwwO6iB05qB0IjmgmcBsBiycxnRPOoxg65ZUPG/wQHfKQIDWwGaDiwctvKjOHkHhjcAi8BGEbRaL/cHkbn+yy+/xC+//FKysOmfx5ODIhHNc8uhWXZU6C+giLM+s9BicWWg2gKNd2nThoCzpzLNcLDpB2OyUuIzxo+it1CwgI+IRsaud2g6CIKDigBptVrR6/Xi/v6+sc3c9+R47ugXAs5jZJwEO3y3q7PVrKBqQWHGQIAVoQT9MDqsMN0HK1RoU1tXVrQGMVyP+Z/6AKmyErJyrQXgc7FA9num5ef6S7ExZEPA/TP/5WBZVsZ+N8sN09nBN6/PQ3Rkrh2cznSAJwDaDmVM+t1s5HneDJAdCjJmo8p1e/zInDxO9836IQePeM5gnO/odJaijZqcvJLXnJU6c1JbtxQAII4t9JqyoW2HwztXPX4H6hkTfV0ulxERjXu6vLPI/TQfwQfWcR6r26Fd+gkdanPK3wZoM49kPc1aB6w3KG+eZV5ze27XbXpO/E62L3JxXzPf5b/tTObAjt93ANO0y04X9OA7so5Xq1UBYy0TaMt6+1iO5ddesMvsYEd8emy914ptRts05n3+Hw6H8ebNm7IzcblcliMiIyKGw2G0Wq348OFDTKfTRia/bV8nWtCP09PTGI/HxfZaLBYxnU5L4MAAEesRuWawhufYeeZddJzUgkx5eHho3FPInaU4yuxy22w2BWx6fHyMxWJRfAf0ymKxKLK11WqV4KGP2IK+3N9EcNKBKp7zFRwERvr9fgyHw0IHvuNOQQJMz88vRz7NZrNGENknokBz6AXdCSqNRqMYDocF/ELO+ihY9Av3FMJ3tpPMk/YT6APBV/rT6XQKqMfcASDwPDsDrbsNWDJXOYhkGwPaZjuA+gzqQJ92u10SsexHO8Hr5OTleGcHK/GbTHP4F9+TMUS8ADPoP+wd5g+a5Duz4DEAG4CYx8fHht2CrWQ/2MlcDubyHm2z+xo/CtoyH+hR0zn7jzzX6/ViOBzGdDptnLQEDQ1SIcNOT08bd6nxDLwb0Qzksj6YJ+at2+02EgAAqTI4y3w4IQNexd69v7+P+/v7WC6XZec4c312dhavXr2KyWQS3W63yEuviefn55jP52VXKkfqcs8b6xe7kvnjf9uO2HEO0Np2y8HTYzmWY/nrLhlbynLBWCGyhR+SboyDWQ95NyEyj12EToDifWT8Tz/9FHd3dyXQhtxF19ovzDrL9iF2ST6BpNV6SdDB3vRGHp5D7+YNGfjQ0At9RTIVCW3Qil2gTqyr4eCdzssuMttSYEmmL+MiaTvixbfF9kb3zufzQlNsWewdbMtWq1V2jaK7e71eGR93VEfsr1igv8wFdgI2BPgrdoFPXjH9M44BzY0fmbdsnzkxy/6Eg5YZE6vpu0MBwVq8wP4S7Wc8Iq8nr6Hch4xz1t5xP+gXNPE79tXyODPfZ7zRtmvGSzNOVMNHzcOOMWT657rMq61W6xNsOmM4tEVcANyGOrGRW61WOdkN34HkBvrH+6xvX/eBD9Xv90vSn/Ex7NscQ6GfJNFil7MWON0If4l1iH0+GAxisVg0eBz5YlvRAdIalnYoUF7jDfPH15a8Vg6Vv8S+PNTXWvmz7gTNQOfXdCj/74AFTk0O7llIkKWCo5INc5e8qHLfDXTCKBZWXojOoqbPDsaSpYqTgSBFWaE8eR5na7vdxmq1iuvr6/jw4UPc3NzEbDYrWcw+jgal57tgagGjLFA9T3a0vQh5P4NbBr+ckePMK4NdzEM+ugBaGcTIQD2LnDnJ4DP06/V6jcwGZ9L43hyOjIJnmEcDSza4fDwF800GNoYTc3l6ehqDwaCMD2EF75yenhYjAGFih5KxmNfs4Ds47awMKyCvH8+V6QYv5syb/Lcd2mxo5DXlNcG4DPxbqLs/OZhjfoA2zD3KoAZyQjuPPcsi99EBG/fNPMhzXt85uFwzCg4Jcsssf19LKIDuppkNe4qNt9pcZ3lqAye/x5rJRiC/a/NaM7zyWP3b8iUbg1bKljnObvR6MJBoAIbiXZKeX2QmNM3BU68tG2/+DPAamUMShTPOoHG73S4BRtrh+Ixutxuj0ag80+v1inHFb4Nllq/U7/m1cZTn3k5hLdho/ZANWs+H33NdTshgfr3GzTPQNSc5ZR1w6PfXlkPPWw9bbzG3GIFZ3/joH/MevIzT6kxeO+WH+vitxuKxHMu/dLEdZDlgGWB5FBGfyHEcxIhm5nWn04nJZFJ2gXIPHiATx0De3d3FdDqN6+vruLq6Kpn1ln8EcbCTz87O4uLiIgaDQcNGIdhKwouDFMhjfrdarYaT6IDafD5vgFGWfdCCIKmDgWTd4+O4kEkPHZGVBIcAtLwjAJ/Fbdq/YMyMlQDkZDKJwWAQg8GgHM+OPiMoNJvNyhGa7C7dbl8CvQR4GFvtyLXxeFwcf4435k4adq5ZH+SgM7Y6AB0gg9+hHgN72PUGOeA7/uduU+x9xsUz8BJ2kRN9oJWBP/uY5ksnPuY1tdvtig+XfQN40n4SgWzf5WW7wzaO9RU2BmMhcEf7+fhlTuZgPvM9m9Ddut87ZfKaitgHEuFB5gR7ivqgJ/R1EM73rDJfvAePc58wax7gHF+01WqVdbTdbstRzIPBIJ6enmI4HDZOAYqIIkPYbUrQ2HPP+gJs9m4j5h8bge8ZB2s44sU2XS6XRbaQLPH+/fvG8YevX7+ObrdbaEa7q9WqJGM9PDzEaDSKzWYTHz58iIj9LmD4xQl2rCvb2/zOvOnPTQPz+bEcy7H89kvNl8m4h/28jPdFfHrFlu3JGn6CbEKXoNP8Y13vI9WxRX0naA37Qj9ht2F/+J2Tk5fj5yeTSdHH2JeWo8byIvZ+83b7ct80Ni348WKxKLbw8/NzDAaDonfQqfSF/43hgC37OGDqcj/ZXOGEI2jqOST47KQ39IHHScGG4LoD9CZznDEYY+Ot1v7aAido8Rw0ckKUMXnje7ZrmFPrOd7zFQ+mYca3zN8U+CljGK7P2I3jC7nOQ+25GLfN2KCL64IOGbur1ZMxR/t5NXwz40TMVR6H8R5j0XlMuQ2vS8ZR80ldj7E/j8PyI69jbBf7Et4hbtmBfxIRxR/CzsRe9rV/EVHu+by4uCgnYTqW43gMflvE3q73bk92pHJ3L/albWjuBTVubj8UHnSsynNmHzKvb9M6Y9O1v/1/lv1fKt+C/9Xq/lYc8ZuOw82Nfe2g8nMWXDA6QtLv8EOk3bs2KVkJ1gIuDiTldz3xEVEcLAf+cEhzv3HqYXzG4LvIEBgEx/r9fjw8PMRisYibm5v4+eef4/379w1AxJnFpoezaCxUP7fQayCvAesaiO6seT8HnVGQWcg6KMo8u9/elen5cNsGzJy1ypgAEQxU2SnECSZ4mx1YB3Ux0g7dkQLtHKQCSEKQIGBw7i20EM4O1tb41zuIs+HjYB19RKCh3D0PGbj02jBvUBxQcZs5sGGF77Wax+c17M/cDzLQmN/Ml+bVXOx4W6H7fWjioJnXosHQbJzYOK4pXLdnGtbozTsO+EEvv2vQDf53P3LAjTmp9dn99BhqwUjq4Z2aYeJ64D+PzwafZUkO2mWZYtCOevP80K6/g9dzlpPHlI0fnjOISTsOhvIc8h5gFYfBYDAOmccFoGg5vlgsylFr+W4t6z//7TkyqAqffE7x2wDNJesWy/TMU5lnsi6oldr6yAY8PzX9xa5br9VaMQ+5X6YDxeAjchMnzW2gF5DlrVarOJE4Zd71wzo+OTmJ+XzeaMdj/xqZdizH8msr1vcR0bBJ+N7Fd/pENLP/I17WQrfbjbdv3xYbmB2U2AHIR3ZF3d3dldMCrEOtk7ABLy4uCjhmfXFy8nIvKDu/GAu2pE98YU2Tlf7w8BDz+Txms1nZgcX4kFHZ/kduEITBNkX2oIN4Bt2Ao2/but1ul11h+eQR28b0g6CjHeyTk5NyVNJkMmn4QtxPah0ATSMiVqtV2U1msIiAM0GZiCjHm3JFA3Saz+dl/ggu2XbO9mmr1SqAGn4UY0f/oj9y8AracSwoc7xcLmO7fdklyZG/zE+n83I063q9LgmUBG4ZAxng2Sax7sb3IIgHoGHet19inWdberfbn0oAD9qOtr8B6Att8D1OTk7K+rJOI8EW/rJfSPCNoDt+Fv6VfSh8OgBXxmBgyX6XfRf7WPBC7eoO6EYgkDVj23m328VgMIjLy8tyryZ0ZJwARR4HvuNmsylJsfAjyRDsggYs9dUdtim9UyjbceymBmCG3ywz2dXJ8wbL2VUOLdh1NJlMyk5w+grgf39/H+fn5wUQs33Fb3jTtrsBsbxbxP4Rc/E5MPZYjuVY/rqL8VgnGdd8TJ5DZlPQs/hqXHXgZBjLJuw/7BrksnWRE61pw/6ok6d8dcJgMCj3/flucWwSY6347bYNIvb2iXehPT8/lysV0M+9Xq/0xb8jolxPkE+KAx9nPG4XPYRc3+12jcAt85UxE8bg+7epe7vd34cYEeWUEV+xYJvJ4wA7Nw2YC+xk40ZPT0/lyiIwEJ71/EMLz635iX74CH9/X8NDzM/+PuvFQ7EFrwH64L64TrDNQ3iM+5nbNLbi/uaxZaw/Y/B+1tgzxXhqjpE4SJ7nwON1MDtjQNTjvvKcA+qmp5/xpiv4g/aMRfukECdj2D/geFn7mvht2+22ca0XSRc5JrTdbuPm5iZWq1W57x35QoIaeCPriTgCdirJEYvFovhytEGiJIkT3W637CTPPM36yDgg6xraeG3+U5Z/TnvRddds1s+Vrw6C1kC82qAONVwzot1Z/+93mGjfY3FIyHnB8b+VE33OgKkXHSAI4Dr9NahCpm2OpuPQkdGJMwxYcX5+XrY1X19fxz/+4z/Gx48fP8k4yLTOQGruvzOCDs2PnXcryQxmUZ8FuI0ElEgGvL3Y7FhDXxSB59599JyyMKEdDqiFLHXSNwc0c0AOEAAHnzuoAAbML7QBePD8/FwMAOoG6PDuIjvzBgPgJc+fjULPDXSAhvBFniMrKWev1wIghwRPDk4YsK8FK3J9tOGjuWo8eCjYSP0ZTOIdK9LMV58TcJYhDtaaH/xsrd+mRS2IYaOrNlaDSxTTyMElyx63bbmSg1A5yFebewf2TEPTPQMknluvfffXAUfPV5YF1GnwyXLS8+5gtQ0s1ph5AyPY40M3uB8o8WyU1XYwWA/Ap+gO0wMakMGIk0UfLOPILgMYvbm5iaenpxiPx41AHD/Z4Mh9Nu3NX9mQh0ZZPntus/HpHwdhzW85085yOCIa68y85b56XfG35YP5mfEa9KzpCvPboeK1YYcb+e71hEPJ/4DhlsN+nkCF6ZHXYk12HMux/JoLssZAjGWJ9b8dZicfRezldav1AuJ7FygBLYKYXE0wnU7j6uoq7u7uGjvwciC00+nEeDwumeIGkrDlscXI4Od4NNs27G60vL++vo7r6+tiy7ugO+wTROwDwcvlstiXyBiCs4yF44vG43Ghdz5FBQcb+5WCDkOOYa/azkYuZ/sR/TSdTkufOc6Nelqt/X2uHKtKYHEwGMR3330Xl5eXZUcmMpK5arfbZYca9gMBb+ic77IioOmsbwKgrVargJsR+yNd7QNgizsrnbESqCKgCD3YZcrYkevQ1D6Fg7H2N/BVSH61n2TwBL4k0Oo7t5h/Z5J7hzO2BjSmXna9wBPPzy/3zxLwx3dptfbBRBK7HJg3aNnv94u+t+3GmB3Q5I4kJ/AyH9D6/Pw8lstlCTiyFvM4sQ9ZL17z2AROxLDt2uv1YjweN4Bf2vE6zOtiMBgUeeCkAnaOOmGANQAwvtu93Ms0n8+Lf4gd0Ol0GslyJAc4uAj9ZrNZkamsMYPAs9msEUjAD8U/9p13tqUuLi5iNBrFdDptzF32g7ItaBvH+AfPWgYebZljOZa/vvK5dV/Dm3JSf/ZJ/a6TTSyPTk5O4vLyMna7XUkssQ+GTp3P58XOQPexUwvd7kRXBwiQ7RF7u2k8Hhfbsd/vl8QkTsmgbwRVqIu/M2bi0+V2u5ed/PzgexpfBA+BZvQl4kUG9/v9xpUEJMKg0wjW3N/fl4QvcGtjLw4oY7N0Op2SSEV7GZPAxkN/OtDJHPneewcujePaFvDcwj/GwozVm5/8nm0wYxHwb7Yj0NVZ5xv7Ms9iV2TsNmNqGdeo8b1xCYptKQesMpZinW9cy+PP+A40dV9sz2Zs0fQxTXzyhYN3xo88VmjrjQ+2u20LZ5rSR8+FE9ltl5o/jdHzLvyEXc+JRNRpn8VtwZ/YYU5GtD1fO2p6vV7HYrGI0WgUFxcXZa2Q0DAcDou9HbHfDcpa5MqS2WwWb968KfwHfUj2GI1GcXd314hfMW7zjL/zuuZZ+Mk88KVi/q79nfnhc/V8zXO5zT+3fPNO0C999qX3LQwimsZ0BjUt3GpZQkxoFlx8X1OyNvaz0M7PIZBhGu7ZIOOF/jMGsnTYKs3dkNR1f38f8/k8bm5u4sOHD427kPKYTSsLKDuMNhAs/AwQOMsmZ+Y6kzwDwfzmPfoDvVxfLVBEv7IgpV7T3GC5M3ihMcIhA/Db7bZxDwsCzDtmUSJWEBa60ACBZkfZOzTzjkXmHBq4fpzu3H7uUzY++MxAn8dbU1DOKmMuskNrwM9jsCDlh3m10crc1uYsH/lR2/Xq+eU7r1//7XVgA8aZ68x93jHtIJh3bfFMDhbl4j7wvA0DaJXH5/cpeS34c895nlf66vFmQ9o0NE3dB9MmGyY8l8eQDZc81xmEsjzw2rID4D4xhhwQzQYifa8Z36wv12GZlA115K77wRw4oyoHqhx8M9iJsW8HxTRg7iL2RiKgIEApu5Yw4nBibFjjWDHPWRbnBJwsw20gmQ/ynMODNurMl5mvTOd80gFjtsynn5ZbNZozJvqeAw/mxzyebAjRrg1K6GonwvzjQIP51e/Z0WQuuecEEJvitvk/2z7Hciy/tpJ51H/XkrK8tjLQYJuo2+3Gq1evSpDF9z+enr7c5fn09BTT6TQ+fvzYuHfT9gXyn12l+TMDLtbl3EvU6/XKToLT09OS3d/pdEr719fXcXd31zgKDZls3cZn6IPBYFBoANiEI4wtjr0JSOfgCDrBQbhWa3+vosED20ymz3q9LifZ+PhZgpIcFTefzxuByO12f3RuRDSOfT8/Py/j4K7P8Xhcdln6vix4gvtKASdtrzEOAAPbFk5AQR/4jihADfwD6Ibs9nGznhOAQIBR6vfuQWi+Xq/LvDD3fL/b7RrH1/MZgVkH0wmAeeer/Qi3yw8gqIFU1gjtsf58x5bp7n6jo3e7XSMgyZrB5+L5fHSu7U3bJ61Wq4DGyAWCvD7Wjsz6drsd8/m8JCjwg31AEBGQmX7D014H+GP2fYbDYVxdXZW5h3cI4i+XyzIvJycnxfYjEYGgO3zGc/Bbv99v/PYuIJ5n54CBN69P+8MPDw8xm80avp7Xotf4YrGIn376qfDWZDIpvM5uXPh2uVyWsU8mk5jNZnF9fV34Edso2z9OdjGugtwywGmfqGZTHsuxHMtfZ8kYS9adxnien5/Lsea2b/B3nbTB8fq+55xn0Sl3d3clCevs7CwuLy/jj3/8Y7E7LKdsP9FPP9PpdMo9zOgB6zv6yzubzctR7IvForTBSVHIY59ogZ5Cj6A/I/a4B6c5YEvyQ8IYm0TQ82dnZ+VYdOokMQobjTYypglOAmZNUIfvjAnnYz/5nGAQuDp9o8/QyTt00XnGqZkPYwCuzwlvxlmNkcFz9uVrAclDATtsnZyI7edcvz/PeFvGYFxs+/m9jGt43eQxZCwot8vfxj78TK1f/t/12r/LgWH7ShmnNt4Jvu/Ar5PdXAd2sDF2+NGxh+x3wiO0AQ+u1+vGxgrzo7F5+N92pk+Ss13nZF7+h99MRydpjMfjcn0IdpwLc8oPO8RZ28SVmDvWz2AwKGM2L3lDSI6jZb5BzmSe+9aSZcTnSo1n/5K2vqWev2gnaK2hQ4POTOrP/Vl+jgVjQ92LB+GcI93877+pEwfa2/mpw5kAFsSdzsul08PhsCgBL9j7+/tGJqh3lOKsAvDc3NyUY74y3Wp0shBGeQBQOBiZAyYRzXtjaMfC1sEiKxDowdjtnHmbufvM/zjA0NpOp9vJSoM2UdTMAwrUW/AZGxlOCFXXjbFhWuRgekSUDGXAh6yUoDv8kXnGQemcoX5I2Xq+c8YtbXsHmIuNrwxUWFl4DmuKysX9tADMa9z1YvTYwMiBSXjA82wAxPxmeqNs4HP42OsYuvO+aZvlyeeCkrlYxngeLXfy+q/VdSjoaofgS8/m9zLoAJ1ztpy/O/R5/jsDvBl8Zi6hfU4+seFio8brEhr6+ESvH4DCbDxRLJ9ZFzagLdsYW5Yn8J6Dlw7Q5iQTA//wJO/7fk9nX2E0GQDdbve7J3a7XbknFNnCWN1+1nfmg6z0cyDXYJd1hIOXlknQ9pCxzm8/Y3oAojIX2bhyPXzmwHU2ZLKB+7UGlWlkAzCiCUpmGey5gxa5mL9N70NHhxxyRI7lWH6NJet85A+OGDISW4fC+rH96d193W43Li8vS+BssViU44Pevn0bFxcXZRfoH//4x5hOp5/cz0J/JpNJTCaTct+nZRMAjOUda44gH7vx+VmtVrFcLuPjx4/Fjgdoc2KEE1SwIwHxALjILM4gGbYndTlL3ro1Yq+HbfuSVGn5ASjk3apOIsR+ROZPp9Ni5z4+PsabN28ad3z66onFYlHkFTvOttttCYD2+/2Gfb/b7Y/XpY2IKMe0OoDMfPmEl3a73birkSNouUZks9mUu0y96xT/CluEO7ip9+TkJAaDQSyXyxiNRuVzdlYSGAbEtL6F7oyl3++Xvll/oeN9ao3tUvjEnztAbj4lIQobBd7A3sp2L/VkG9W2B7TmWGPqh58J6jJ3jNn9g+62l3zE3vn5eSMAD0hDP+gXfYKG6FOCt9TnNU9/bXvYZ+BI3A8fPsTd3V25GzOimQhHwLff7xdZ1el0ys4a1jvj8q4VdjuPRqM4OTlp3GE2n88LnZhjwFPWNL4r/EOSgEFAJwew/qlzsVjEH/7whyIT2aHU6/XKGt3tdrFcLqPX68XT01MMBoN49+5due/XR7llPynLe8YB3bNNmEG2YzmWYzmWLD8imlfw1BJ70HvGMrBdIvYBSewY3mm1WuXePJLWHIBpt19ONuAECfx03o+ITzZMnJ2dlfvTbTtRHJhF/pNYlnfjOyC42+1KgDTbDug59K1phs7yiRvGGLGjeYf+ogsiomFjsuOU0wtog5MbIl5OMiFhL2K/CanX60VElNMaeB67Al1kfAGagZHb52a82DHuT6vVagSV5vN5OZaXsTKPDrS7TessaJZ5MGNjFOydjDnWfjLmlHFurwX30diHn8s/rivjMOZJP2Msz3aUv8u4DO+athTXbVqbBjyXx2kcxlg89j22RA5quq/GeG0X1Ta7UHIQDz/E1xXajqZuMO1s2wyHw8YJKthzjAu/ExuXWA1JtvR7sViUBIfvvvsuXr16VejDc/AT/q1lopMA1ut1IxZ0fn7eSL6A7+1zMUbPR8YcbYv+1stXB0FzOWT4fg7kywDLoXr8HM6lt7pnI97Cpxb88QKFeXJ2B997MUTsnZd+v1/OXI7YKxaccRQRGTqcHc/3t7e3cXNzEzc3Nw1l4AAXi8QCwIvf/TRzsmgR8tAIR7ImCOgr9LAwtwCogeH+viYEWbCATty5YgV9CMh3ZrNpg/LK2ccZ7InYH9GGcnYQI+/A9LzTL7bGG5AAzOl2uw3hStuuz3ORgTj3x0EOjxNa1AICtfn33Fn5OShzKBju53P/KAZiEJT873XGOFEsBjLgY9/ZlbOPrfANBHmMBjdtwGSjoRawzP2tFRsz5g/ey0FaGwU5qEl/czE4ZsWfi+vMAKLn0UaEP68ZVplvaD8HDnNx2zyH8oUncjLAdrttOBkuALg2uiKaa8fzabmeA1mMA6VuY867MmpBZ/Mr/2fgxwCjj8R2xhgAmg1OnsPhQ1ahDyKiOHfmuWwoen5qgUqvs8wfNuq8jmtAWB6vHcrMOz4aBAPO9foEBc8xcoKS7QXqy8bsoTVyqNAP5sj9Qz8R1MnHYxJ4QNcbmM3y2gZ0lrGmqcd3LMfyay0Gvu3owsMGBSwfKHwfsddNnU4nhsNhDIfDaLVa5QjHh4eH6Pf7MR6Po9V6Obbsl19+iT/96U8FuKIddPdgMIjJZBKtVivm83kjQxy71LoaYMvyl0TG+/v7uLu7i59++ikWi0XRHwaEAOgoeWxO9kHGAAJBJweksk6z00lgDn1kmxW5RCY+/pADURFRbG2c4Qz80HeO6KRPvOMAD/LR+rXb7ZaAHqfeEFRFt/R6vQJw2DbP4I6vrnBgGMAM+nBnJwUwk+AtfbSu9zUkJycncXFxUXatOqAYsT+xwcCmQTN2s6L/2d0Jz9GOTwJA/0VE2X3abrdLIIod0egaaARN2EFpu8PBz8x79A/7Bb1Dkqj9GCeyRUQ5mho/0Kcc2YaJiJJJT9u8hw1EQB6QNWJ/0gIB2+12W/pAOwaRmKPFYtFIfPZuW05h4FjC7fblaEAH79vtdvHbTEvowDtPT08NvoYnSGbwGgFEwo/hns75fF6OIbSMxAaBVqvVqgRB7ZPUbF4Kfu9yuYz3799Hu90ufjU2ymQyKWuFNbLdbmM4HMbr16/LTmivtezLGWuwzZnt4ZzkeCzHcix/XeXQus+4ScYv7b/iL7OpBJ8auwQdx/GRDr6hE0hCYVc9QRECI6PRqNwxjy3gYBBjabVaJcGr1+sVm4Z3kM1O1ImIT/SKbYt8lL+xIu8utb4g2Gk9TrvobhLv0JXQ2jae8RJsR+if7THuNmRTCf08OzuL0WhUcFzsA+iMfrXNb9xjtVo18AUCQ9RvvNQYBIU6Il7sDmymVqtVEs6cDIUutY+d9Zb1Mu/VcDH6ZbzCz+S/PU7qO4QhZfyG+XWfnPRJ342VZOwzB59rY3KdhzCejJl6rObJTAP64rbzsxnTiYgSC7ENZHzf79ba9Ukn+Bweq/EfY1P019cWIDc8Vx4H65b1lDFzB0WRYdiavhYPGrEzlKRSnud0GujAZ8Ypa1ggiQvcC4pPQqJnntPsy+bYgYtt6trc5/Kl73OxPvnWd//cdyh/dhDUi/7PeTfiU2FhIeKAlo9IivgUSGRCWaTeHZcXZn7eApy6YTyCYD4CF+WFUwMIztEObG1mUfl4L5Sbs1RQkgjwDArDuDzL2FjkFgBZuPG9x5yDHQ4mGnTxbwD+vEhoz8IAmp+dncVgMIjBYFDeR+HbgfJcOADtxY5wY0ethX3O8IG28A19y/crMb/Pz8+xWCwaAs9gA30wb+bt9P6ebDC2uXuMVsR+32CAnX7zrQWe1xDAWD5ewLQ7xFMoCxsTzCHGknd2WoHn4Ib7asVhJ9uGksfgAE4OdqFs4BvqM0/XBKh53UEzr/nPyS9/x5w7eHnonQwM1OifExMOBXnMN9mY4ntom9e9MyutwMxD5gE+t3zItPOzbr8ma/25eSknWLhP5pOawQftnAlmAy3vxqsFNvmc9xw4dX2ms41FG1KWPQa0DJK5Tgo7mO7u7qLVasVwOGwYmHns3hHi+izT7dhQ0FOew8z30MxB0txf06HG4+aLDABSrCOyQWz55/55Tfw5gVAKoCoBCu98srzLzobXnB0IFwOKtin8Ps/VgkbHciy/tgK/O2hXs68j9jI22wKbzX5nXUSUXaAAQgTN+v1+XFxcFJDn6uoqbm9vC7hiu3A8HpcAqGWh1y8gGfraCYnD4bA4wIvFIm5ubuL29jbW63Uj+xebPJ9ggdNsPYdMIThipxyn2qAcz2W5gxOMvLZTb9spH50esd/9icPb6/ViNBoVWUagkuM78WcIrLXb7UZw8Pn5uQRT6Fu73S4ZzIvFIubzeQGo0HebzaaAZa3WC6jYarUKyOYEJ+aQRFFs4fV63QDW0OtOpuJ5Am8koljfGyTjb+bN+rLVerkDElACHUCQGB0BrQBB2IHC2JkD8we7IQna5bXlY/XpE1nc9heol/dp1/zGd16z1sUAKxH7xN6IKP6rgWf4z0fn0Van0ykBOerPwUvmwPYRfAJtoBfBbvv5DuY9PDwU2mN3AU5jT8IbAE0ESAF/Wq1W6Rt+Ev48CQU+ag9a+l5QimUggdJOp1MCjc/Pz7FcLsvRjPAU649kC+iaQX3mDv7Itt16vY6rq6uCRbTb7RiNRjEajRr3nLOmIyIuLi5ivV7Hx48fGyeTeJfqbrdP1Mt6ADnvZIE/F/s5lmM5ln/b5XPYSc23sw1nvBWczjuZjFkhB7EjCKDxLPLu7u6u6EDbCtQ/mUw+OToe2wK8tt/vlyQ95LaT6oxr2j+1X0i/0H0kIBkLgybYDfn0QPS7E5ftl9fuBo/YJ0I7uGn7mb/ReRFRdrAOh8MyFvSK9TZjRzecnJyUZCj0Xw0bc6K0g5eMw3gzegUdCK6Jjbzb7YrNwamCvs4hxxLsrzjZL+PmLua5Gk5h3uG3bXP3xXVmPMT+lMft+jO+4t8ZIzX+l8eUcSy3n8fidmvt1wKsNawo43UZE8Jm5HlseXgJWsDP5kWP232xrczaAYunHttd2JLw0263K0H7s7OzYmMybvtljC/HEohNGOckgcC8hw9DoupsNounp6dyTdb5+XljlyoyzTLGtiLjenp6alzVaNpjo3tMGZfmc2iT5/LQejhUDvHIX1q+VN+3tvdnB0Ej6tlAhzqQAVz+rgGs/h7lkJUo3+UFxXuHFmctUHRoYUa8OLIO5nnnJ9m6OCwwNQvx9vY2fvrppxIAzcKT7My8O5JiYWBlzHcWhpTM3DYaaqUWUKgJQytqO+x5Tg0uOxvCAsOAvwFjFLEddsAGDCWEk5W1M8gZiwWihSxt8SxCy0CKjRGDWQ5SMCc5eA2dAC7gK2cx+4gM3nFwB+c3ry/4FGHKfJuvc9DR68Tzah7JASyvHwtPjCCUbuY1ryHPKc8Z9KMtj5HvacPZ4p4L6qW9HLQwXfjbzvznio1xB075G14zvei75QbFhlEei8ddU0hes8yRQS/PKX+bb9xH/+33rez4znTMctNGrXneABy8bFnNXBnEYz6Qf+bVLAspro/vkS2ZL3ObeQd8RDR2WDD3JG3QLweJ/3/23qQ50iPJz/fMxJYrllrI5p8a2ZjJdNBlvom+sc666iSdJBub7iGrCgUgkSuWXP4H2BP5vI7IYpHN7iY5GWYwAJnvG4uHhy8/94iw0W/ZA59st7tjXizL7KzgJEVETKfTWK9fdk6we8LglB2tHHDLdXrHRm1dtlq7uwP4nDryOsq0zmsVuZBlAP21c2h+qRnplmF+3qWmv8yzdq7zM8yl6eNxetcq/6/X6wbQC2hruciuoLOzs5hMJqWftX54rRzKofweCuuGNZl1c8ROL2Fr8YxtBXZvHh8fl6NnCVJwvBVZsTc3N7FYLIpD2u124+zsLC4uLqLf77+ShZvNptyD5zswOb2FgB821Ww2K3d+zmazxv1K1EWQlkLdyLxsV6B/2JVJabVeduJhM7NrzrKA7H70Cr99dC6/kdH4G7SBLd7v94sfknesEWxyANRy1oFFg4XQDj54enqK+/v7xp1T6Kmjo6PG8breGUl/sSFOT0/L7jXq8o592w+205lHJ7oCeBDQgu/wE9B5HKtrsA1Z3+l0yl07HLtmvQkAis+Bjud9eCL7pLZ9mI/tdrc7GVrYBuPeTvsYvGcfxMF18xj9ywE0gzjWh7alc0Ip47C/km0L10/QcbVaFZ/Z9q4D7fAaOpq/GTP1+mhk/GiOlQXINVjGO+xczjYVAUkAbSdZb7e7YDhgK7wJuEYf4Wn7u8znu3fv4unpKWazWQGMPa/wnhNQ1+t140jl7FcyJ4vFIv7yl78UwOz4+DgGg0E5jhA+Rq5ut9u4uroqx41DL+rMyYNuL/u1zPmhHMqhHEoulg3oFgeVIpq7zCn+zLIGv9h4ga8GwBbJfr/xJhLguDPa+m0wGMTbt2/LLi70rDExPkP3YyvaLn5+fi4JTJxOYJ/VuIsT6iOiIa/toxvjQD9iEztJDzuS6whM18FgEBEvR9yyS6zT6ZTgK/YOuotkNmzV4XBYMPB2e5echK0a0QwSgX16vLaV0O22B+yX+4QTbCQHQbMe8j3hThYH7/GJY5TcX/qRcY6MeeRSC94y7+Z312E8qYa98Izn0PUz7ozj5fZy2/uwHGM90GZfrMClhmfWYgY1eVDDf43lee3SJ9djXC/bto4z+DoV1i/P5L4OBoNy9QZXahDkZ77cH9tFxhAjdhuuvLkNX4g16kRVNsutVqu4uLgofbAvCU+RoMp1CO32SyIhp9UY5+Qdb3DDT/M88Lwx0304ecaHayV/tw/L/a2UvyoImhfLzwX4spCxI0j9GXysFS9CH49q4cACJHhGe0xozoKEWfr9fvR6vcb2fzvqm80uu4ag4Hw+j8lkEh8/fiyKl0VBuwZmcyaIn0EpOvseIMDZShQvegv4vAgwAnJwCMXiYAcKEoXkQKPfx0hAiAEM8XcW0mRcO+DEfLheBxNY5F7Y5h07wRgHPqrYILuP6vKuIGcaW1jaUWfLO8fjUp+DJdkIZEzm7yzcHTDkM+bJTr4D4zju5t+8NgwS5ACK27LwwxC0MObznHFemwcrCq/HfQrYiroG3vi72t9Z8dtQ8HOmTVbKFvJWbKa164SGuf82OAw+uX/OSjP98pwYfLIC9pp2IMjyjs9rgEoOztKnXJfnN9M5G2TUZdDM/MszrAkDrq7PBq3nnr9tFBqIdj3uDwYEoDdyJ/NJNi75jB/3yYkGPJ/XoOUezo377uQKZEleD8yJk0qy7ED+Ws5Y92XDlIQej9nrLMsM09I8mder6eZ3cvEc8a4BZNPF2YE1x7JmH+RAqu+AYKwAjgRNkHW8h7xH31jn4AyvVqsSvM67it1f9+VQDuW3Wrw+cnIh9jXFQRPey7Zqu91uJBGyS2uzeblDyMdJfv78uQBIBA4iIt69exfD4bDoCtuGXlfZVrWj+fj4GDc3N/Hp06f4/PlzkcvesY9/sNnsdk86EYXsftOKvhB0sd7Lu0CxqyOachNnm37gRwBacZRwr9dr6AP0OoFPAEI74D6C08FTZCsgEjbvYrGIp6enklHsuSDIRdsEi7GFLy4uiq/EHFhnA3B5FyJt+B5K9D8ylWRT6Ibvw/f4Q+gJ5DKgJLtAfBQs/IG9Dx3zqSgEFbGxsevpBzoBwCXblMyv558+MVfMV6fTKXd8+T3WGH6cg4i0mRMG/Tx+K+vX/YOO9p3Nm2TFY7NAS+tsB2LPzs4Kj/AePGFwF74xMAzP5rVDG+hjeBbeIRDq4sQCxgwdWWtnZ2cNwBd+4f3sz8IT0M+ycLValQDw2dlZuQ/u7OwsFotFTCaTgh1Ybtnesr9oOWw+4P3n5+e4vr6O4XAY33zzTfkOvsHvxYc5PT2Ny8vLkmyS/aJasX+A70b/bPv+XNznUA7lUH6/xTKrVtDDxqp8NL7xP+qzvIvY+ZBcleC7+NDVz8/PMZlMiv9P4V3wBXTQYDCIyWRSkmPevXtX7oNGtxsrxZ/2zks2M7ALFSwwoukvIo+tO9EP6Kx8NRQ2FfRwkhBy14lw3gFGO4x5vV6XDTkEMaHJ8fFxSZjDHiR4a12JHUrghfeZ44wVMtfZPo2IYvd3Op3o9/uNxCLGat7A5gaX5bPFYhH9fj9ard01brRh7AZ6QK+Mf9YwuayL+TwHIKGD+T9jLfvWh/GBGl7iuj2e/HzGiemr6zP2lXHJ2rtfq8eNLeZ+Z/p4Pk2TfTibsSTPuwN1OZ7g9jwmY8gZy8S2NE1InOW0ImSL6ciYuPbBcuv09LSx2Q07joA+PLjdbqPb7RY7ymt/vV7H5eVl9Hq90m9fz2I7mV2mXAHBONjZbcyMvzOmbWzTWH/GMTMmWSv58xoOm7HBWl1eP/5de+5L7X9t+auCoL9msUHND8dYeUIyMO2dTEx2XghWuhnI5Bk7NtvtS4bM+fl5DIfD4szjSAMKoIxRetvty5bqz58/lyNwnVGOknCGAu1n4Zi/QxB4nHaOs9A0OGXA3oEclGjtfHVnz/o7+pcZ0xnEfgajIjt9fO/jeZhPnFvGTkCzFrSIiIZz7bY3m01xPCN24FJE8/J1nvdxDyhpgzIod2cN2SiiXgSbM/qd1Y3w9TgZl8EcxmRQBh7IOw6gg3kjF68t+uNjsBi7d/vaiKEP9Inxmw+ysLSg+pJxUHPKc5AkosmLjMNGt/vijCvWr+ulXfO9ZUceE216LJ47r69sAOR58Lx7DedgnJU3POps9NyOZQK8mmmTDZE8ZzawchCsNqf+H96wMcwcWkbV1rKNpZ8CZugja8L/b7fbBsDoNUu/vE7tYBjUNM2pB743XeEjZLSBZvjQx6bngN56vS5Hcvf7/caazLLSd3xl/gNkRd7VMvwZt3ffmvbmP/OWedC8YL6BvtYF0M062LLbazzz577i72v8wvfZEc+8amfafTENMXgB1pljg898Znpb/n6tc3Eoh/JbKfCs5T+fs7YJ5LAOfIekwfder1d2cXqXZa/Xi16vVwIR4/G4ZMAib8hc91FJ9M1+AX9j05DhDlB2fX0dNzc35UhX1if3IVqWkQG/XC7LTs6IKAHQLwEQOdGN5y2jut1uIyCCTkd3DAaDcj8VQJYBMPwPPoNGBtt8FyJ9JfDH3LDTjQROA1LY3HyOvwBwx1wDDuZj7dC/BF18bQP0oe848wbKDFDAD4yXYC7fM9/Y0+yqYDeng2R+z/cBYfMTRLJfxzjh87wesl1DHewuYR2hH9CHtG8bCDoZfM33aAGU2l7jDiB4ONt7Dlpm2xP+gyYOVnvdYUdBF9rEJrKdQLvYGt65yxp7eHgotpJ3U2ebzseaESzHTyF4yXo6PT0t65Z1wNz5jm/78/Av9fqYXHiY52x/Mq/w1WazadAPHxLQ/c2bN0XezWazIuvgE9uWBNuZL88nAdblchkfPnyI//Sf/lND5rTb7QKUGUQ/Pz+Ph4eH+Mtf/tIIkFqmmVc9X+bv7D8cyqEcyh+rfK0vVnsvYz+2JbEXCApkP9a+LcE6dAi+FoltNzc3MZlMyjULNZyY0unsjtU9OjqK4XAYEbsEat5BBtcS/JyEkoN+TlDCVrIs9yYFAqA8j16iH7Yzkd8kevmIdmMU/IBXGu+iL91utyQQ5V1xzBH6lLnh9AL7vNDF9iQ04bQG+s6JC8bYoIXrwm5mTMa5jHe2Wi+Jeuhb0z7zn3mPeXTiFbaTeTVjarWScZF9PGd97O8zrrkPF0Vvuz3PVQ2rzG1H1HeaRrxOzN43nhq+UktEzZhQbSx5XLlPpo37CQ9mbJO15qC9bUev7Wy3Mf/eRLFev9xR3O12iw+wXC5jPp/Hw8NDCV462RUbGXuuFl9ykl6/34/hcNjAxqDJ09NTfP78Od6+fRv9fr9hIzrJjWTAfr8f9/f3Rf454QTbFX+JfjtZ1/Exz7XxuL+m5DpqeqWG3f09y1cHQWsE+bU7bGcyYhfwyIs9T1gOAiBc3GcDCXYIKY6An56exnA4LBkrfP/w8FDuD/LRCDDcbDaLH3/8MT59+vTqDHqD9AbrHYC1UxKxO/rB9PF4yNLFSfQzjDeDMd5hw2LxPT5u1zT1vNgAQDBZMObgQAaZoJ2DbYAmKF8WO332UVnU4yCBDSnzkgO9mYfpG38bUEFYACbRF2hAcBMHl8BPRDQyNeAz6O3gkoF0aMizOZDPmAwiOavbgU8bnw6WGlx00MfrLAfCadt8y/fQ03PikhW4n/G6tYJ0vQYcMhjrOXSfv1RygAawxeOLaB55m4OSGYg1EJWNr6zYTRcrn0xLf+9ArnksGzIZfKJYfu0zFHPf8pF9nj/zVnZyKFakfq5miBlc+Rqlax6mv85Krxm/BvAMrPneCQcvnWFoQMljs87hN9llNmoMpEZEA3jlXUD+29vbciQG4zKfGGTDkWSuLJdwvKAPtIfWWQfVDOufmgvr6qxjvK5rRlD+/OfaEdZDtX65/6wZy2/3GT26XC4LqGtH3XcxuH3kBvqi2+02gqDWhYdyKL+nkuW91zqyGhlmGYocdgCLxA4CKj5+lqNWI6I4mtZnb9++jcFgUGww7rNEPtt+p7/svjo5OSlHUX78+LHcu4L8tT6MiFf3RbVarbILkx2gvv4CmZ13RGE3RTT1HbY28t6BBuzHwWBQki8vLy9LcMc7BqyfvUOdfgOuMTcELvMOXvpMAJQdl/g/0NO74fALrC+wg7fbbUwmk3h6eoputxtXV1cREeXuUPqTAUvv1oNeHGHqXYfW+bb3oTnBYpJWvZuSnRHYAcwn/xMAi4gGeGmbi12jtYRL6qR/TriyH4pOsH3lzwgAZ/1kXjKAYTDIQDPP4y/Bb27PfYMG3p3qI2I5LaHT6ZT7Uy0P7MvgE/I+33kHLWuEgCB9AuRBTvjIZ8BdytPTU9n97MRNByPR43d3d7HZbMp1NT7Bh7UPiJWPiWZdI78Ao/DtDIrTB8YKGAxPQw8fW8aR+/kIXOQpn5nv6AtrarFYxHQ6LeODThxD6IRtdhnA1/a54Z8MkNXsONYk9DmUQzmUQ8n4jj8zfuJiX9kYGLYeMhYMzbtAF4tFkdm0Yd88Yof7vHnzJq6urkriG/qWXZ3oL79DnfQT+xZsMd/V7cCIsbrtdluS19AD6BKCFch8++6Wy+g74yXr9fpVUJB3fMLDu3fviv1LP41Fegcosh09xU5Qjl53cIldZ9vty3G1BE0ZK/0z7og+4q559LQTy6EjSYg+qZH6vVPV95fDS3xnH4X5NEadMSPPZ+1z87L1ovudeb+mKzOWal1rLCtjpfv0be3zGr7mz6zHcwwhjytjmrk/2KR5zLk/tbY8btu/yAbv3HT/HLzkc3wY/BUHm92u4xrYbE6Kb7dfEsdIHphOp41kONtq1OU+2hcmZoQ/bEzSWCM+3PX1dbEz2XXKeNkMQZJnt9uNu7u78j2+kOfBGHn2KVwsO34N7OprsL6faz/+2vbmLw6C/todyQEbM7AZhH5kYekFzf8W9ijKPLFZ0fT7/Xjz5k1cXFwUhzAfzRMRBShAEM7n8/jhhx/i06dPZVcPis0BDWcoZDCXhcFYcuADR8bZMzh7+wrvGLgyeGKH1QYAv535nB3pWskCzu3yWcQu48iOdkQUB3i73Za/Ud6AGfQlBxgQJsw7AiYLY2fo5gAt48P4IgPNgL950EF1ZzOT/WzB7MCjQcIcSPB8Ipj53mPy2LOisxPtunCifb+Rg7CMIa8zeNj0RfD77tOsyLPi9DitLOz414SvhbcVkP83PbxWqZ+j8njPSQJZvu1T4FnuZZAgjzfzfe15t+Xd3szrlwIqrs88mmkMf2TjwjTwe+73vvHxfw5umueRK3ZMauvT7Rk4zGO18em1A1+7bsbv3zmobHkM4EyWKsecAnJmXkGeRzSPrDPNABD528foINstbxeLRUREuSTdQTv3gz5DBx8bw2/qz0fBMr81Hsu8mg3nTIO8tr80dzVZTLEhWzPOagWZkQ1z993yMRvs/iEwbv2C7DWNoFne9cm8eO2aLodyKL+XYvutJi+zLMx6nrWGjBkMBtHpdEogg7s6LfM5BhQH9P379yVQsVwuGwGawWBQdHnEDiACLGm1WnF7exu3t7cxnU7L3Z95bdv+iNgFQwgeAJDhh0RE2SHpIJntRLJxbasAHtle5YhgrtvgyFAHGi23I3ZBDXQHxfcfOnBkPwPQCbsPncHYmGd0KDY3QBM8wfiwnQlico9rt9stO96oBz1J3T6RxeABc7FcLsvuCNu10BseIRBEMBqAc7vdlt2fBsqyvcr8w1u+U9Y61TtRzN+2gyk5iY21gk9BfdgK6Hfv2PMawwZghyR9eXx8bNz7CZ199Qe2knkT/rFPBp+2Wq1X92PazgZcAlgk2IzudqY6IBT+xPPzcwkk1+xD2ys5eAwdGBfZ8YyB42z7/X5sNi/3+gIKMfcRUUBa5nk2m8Xbt29jOByWwCggGLag+S37Sfy2z+tAKIlVBvUBlnmWHbE+MYr5MK9AB/gPO7XT6cR8Po/b29tir3KCFmAZ/I4MYCeVbeUMXprXc+D/Sz7doRzKofwxy0+B2RHxyvfx3zmxKGO26D3qBx/05ofBYBCbzcspJBzzj02JjneCEfWQ7EW7PnEB3ZUTQHjWOp6TAG0fIXN9YgE62zTgOH7jntgh9j+tVxycpA4nsDAPPuliu33Z9elNPJyIYP8UW9D+NrT1vBFgdNDIgentdlt2ys3n89IW9x/yLkcPZ5zCJy06mIUNDA8Q3GE8xsVq4zCvGpvALvJz9kUyX9pHoNjmg6bUXcMIa397/jM+knEL4xcZH/F3GZ/JdMjjyb5bDTusJXpid/Kd+2A+8XgyBlnrm9v1+CJ2yVzZPqWw/lijrDPsbmzsbOvY1nSfjdMRCKV+/FXjh8ZTbbvhJ52fn8e7d+9KPeZZY4oRLz7dhw8fot/vx/n5eUyn07LuM17HHaLIyRoWhQ1tGWwc3XxFXxzkra2BXGoYem1u9z2fP8+/v6bNX1J+1eNwf6lBnAGUiN2xnPuOODBw7kXpCfNCtIKz4IPhycS+uLiI0WjUyHhBocHUBivW63VMp9P4t3/7t/jw4UNjYTj7OG/Dz8Iqj4OCA2llAZ0MMGThgFJEcfCDMZCFeBZYphk0RYC4r/4N3VmMBqloB4WFAmZ8ZEqQcQ/9DLjw92azaWQBOyDA/OTAsIUfwjsDLPSN8TogSGCE4CZjhk+o36AT7RrAYVzOXmZ+HcSzUs38jhKHdg7WQxPWkIM0OanA7RkkNOhAseFKf2rrKgtS9zuvuSwks6BFseR+QLccEHbWj/mNfrVarWKg2XCqya1aIMaKijazAVFb29mg8bOeY7fDOw6ybza7Y+dcj5UYzkYNsNiXFABwlY2KbJRlY84y1kZR5n/zgYE52nY7mT41fjKdkMWsVa+vzAfwux0V+m+A1MFNxuIgZ8QuaYM17x0BNf1iWYhcc/Bzu90WYH88HkdExPn5eQGzGAeA5tnZWemvj7qwI9lutxvgKTIK3oc3oB3rwgC+eajGu8hw86vnx3/bIbK+N++av3jvawyd2jPmV+8EtYHoMVnG2dFEnzw+PhYgl3Egj9jN5fsbvrafh3Iov7Vi59ZyM+uNiGZyCsV6GYAK2y5iFywg6OLTTEajUXnHd0E5mBbRPHFgMBgU/T4ej+Pz588xnU7L0aG85yQGbB5+23azvZbv68T2ts1pQMiBRsAbg1/tdjtGo1EJ5lKcEW9d4vuYDD612+0CPuX7DCN2J+k8Pz83grkEP8/PzyMiyhHF9Pfx8bH4Ow5ocV8riX7oyslkErPZLMbjcZyfnxeZ+O7duzJu+oO8NX0jXmSp72q0jIbOBHqth7Fb2DW6XC5jOp0W2vnIZge/4TfvbKUP8L91wnq9LoFZvrfOtf3N8/abCIwxHvwJ6nJQi0Bc9iF8Gg4+gwOf+H3oK58Sgc5nHcJP0ImdK1l3WUey9umfA9fZLzQv21aynIC/zNsGaPicuXAyQkSU3bze3W2b0BiCd1Rn23U8Hsfbt2/j7du3cXV1VU5Ysv3g4KXbarfbZfclsoBjeEnqwE/MiQaM1X4vNLG8tb3K2scn7Xa75VhcjoS2HUjQmrl5fn6Oq6urePv2bXz8+LEAg55f+BoeN+Be8wEO5VAO5VAidkEFy0PkvfVvxhXzSQrHx8eNO9AjogQzI6LYKNggHMtqbCzi5ehJB06R271eL+7v7xs6x9iZcQTkua9Cy0l1xgsYfz5dZDAYlP/Rux6fn8Xe4fuTk5MSnMRmwTZGJne73dIG9OQdbFrq5rQNn5JhPJ0CXszYsLXY3blcLsvR7NDC9od1uf0J5t7JXuhp4+cRu+OBzUut1svGI/xx05I2vIHH7X8pqJPxwky3HKuwTRDRDMxlPNS2FG35/bxeKA7GU0/mGc/bvhhM7XNjVZlOmUbGKY07GkPJtMiYXu6n5wzMzkmCxgAzFmjM2f137ICC/Zs3ZmDjIwdYDw6Sm0a9Xi9Go1F0u924vb0t+LvfcV+xg09OTso9vH7WY0E+YU8uFou4ubmJ7777Lt68eVPWhm0xaJrvO87JuPClfYtagp+/M5a5r5hHfm17sIYL/y3KXxUEzQOuEeHndN6Gv4GEiJ3DZoGaAVID7dSFoxvRBGid1dlut6Pb7cbFxUU5/gpnBOAYZoY5WLiz2Sz+/Oc/x+fPnxvZnBbiEc3dk/TTCzw7vPTdxyfwvbN+azt8IqIYEThFjNWZVqZdPnueeljkvG+QOBsPPjYyB3NNFwwKB1B4x3eV2GGE3t5ZZWXlsdtxpg0MCd6BnmQFo7ipy5lYEdGYW9PToJT51P3bpwSsaGwYmH8NotC254g5YfzUbSfbvJ+VrvnTfTfQVguGQV/qyUE0GwyMw3Sprd9asRAG3Mi0Y55Yt/k708Rj8G5Rimnqvue2TTfTPmc5ZoWF0uUdG12WlTUjxIaQFYPnyIaSjQfWd27DvAufMJ/75iEbNpbNphsyk/66P+YHB9/57bE4AMnnGRCyYZjljtcXQCRjdgKCAUGDrAbTHHA039vwc5DPQGEG15kTG9z0iyxKsvZNN4Bq+NJr2e3As7RpMDkbqnnXKXVlvsz8YLp73jBCM6CZ55i/cYasS2rFfLgv2Jj53PrawWA7HdCMQLRPJjDdzYPUzd0ovV6vAUgfyqH8Hkt2bC1vnQTC+sW2itjZXvzPiR+ANta9BDkjohx5e35+XpyxyWTyypm0PUe2+2AwiOPj4xiPx3F7exvX19cxnU5LJn7edUoQybZVBja85h2EiNgddeZdhk7CwfZGng8Gg+h2uyXgSyIT8sI2CzKaAI+BQ2xR+yXoAbeP0236G+Bj7Byjtl6v4/7+vmTxE0zcbDblaGGCPYCPtEGwZzwex83NTaxWqzInDw8PjbtZ85GgyFgCkswFOzj53wE2AFLrGOjMfPt0F/Qed45CE+hK0grJRu4X/GLbOYOdOeDnnRu+P/X09LQElg1IeNeFbW7v6CVJFN5iZ7R52LYtoGGn0ym7Ar02WbPWwfaxbKMQBM92AImszB98adlQswEoub5Op1OOlLd9zBxAb8bw9PRU5jsnpPE9AWGCmoyZ3ZnYgxERd3d3JUDMMd3sDDVwyjx4jcHT+JDsgoEfnHjJHJo/PVfz+bzYfk4AoB379+z0eX5+jvl8Hj/++GMMBoNyxy50Np4B3b/55pu4vb1t7IquAYnMUQZimZeDnXMoh/LHK38NoF3DjIyjIDOwPazreD9il8RvfYl+XywWjUQgwHv089nZWZHj6KeMcQ0Gg0Zil0/qQO/PZrOYTCavkmgctCEAGLGzCzhNIKK5C5J3kbvut2UpspW+Y5dkWxU8EBvXuCC0RNf5GjcfOc+pd7aFaQv9QuLbZrOJxWIRq9Uqrq6uCp4bEQ1Mlzkw/Y2DGNdx4jD8gY1t/WM7EJ5aLBaFtvlI3IylGm9i/nKxPWn7w/xJsT7MetH9zPoyP+f6jJv6ef/2mHJ7fs+f+e8c2LLeN55njMf1GHe3D5j7mjFQ6s/15To85zWMB9uf77CtMg6HT+nn8b04ZQjehtfAzagDmw5bmwTG09PTeP/+fRwfH8fd3V1Mp9PGHFMftPR98NjW5kknLNqGXSwW8cMPP0Sn04m3b9+WtUvsx8lqZ2dnjUQJEo4tA/g/445O+uS35ciXitfFvrVSK3+NjqnVVevP15RfdSfoLyletCgCHPeakPLiQpDyOfVFNCP4+96lnJ6exuXlZVxdXTV22MAM+f44nBO2LF9fXzcy2e2weWwILhSOhUUGuin01e+ShcuPd1aS8W36mcHdhpU+hoAdcZSOFb8Xea/XK2O2QLSAo6D46bvnLGKXfWrhgIJnDPxGqdpZRrh5HPTXY6RtnFacT/roNuzYWoDQLnU52ENbCClAdTvy/G+Fax6gzzngbH7guaxUqStndVv5M39WdBG7gLCDWtDFDjH8gSEBYJV5l35lHqkZew7eZGPYAS9/z/wAYjmwlMEX5s07TzLNcuAwgw/mVxs4WQ7VhHA2qjJPmF6mjT9nDvf1x8a5jWAb2TYKXHLQm3dqCo5Sq9PGDnzkd83XHpfXRR6X58nZfdlINJ2z0WhaeF3B22Q0Itu9w8TBT7JR7TxgOGQjHYPK8p61BzjmefBujPV6Xe5Ye/fuXaE3v3EAHUR3u/Ajffc6r/1dM8hr/5uv9vGtSzZks06mnw5g2xGlZL7IcjAXz7kdSmfwWs9Y9piXPbcYp878xaBeLBaNExZ+LePuUA7l710sO3OSV8QuUx/nkXfQGzhqlu8EIVhryHHbROxO5NhK639sPNqhX9xJNJ1O4/b2Nj58+FBAGvrjhB4+Pzo6atzx2Wo1j/3C5nACDsUOLmCb7XISKgGBeKbVapXAoINh9BFADtlOkNUBKY8DUMpgVUQU3URGsO1NgoK00+l0yu7ZyWQS0+m02OroKe7FIaBJm/x/c3NT6AMNZrNZsQsBLwmo+XhgdC36uGZz245kLmyDE+Tq9/slOEhd6G/mHDpmYIldJdCHuvmez6nT9ltEc2crY+l2u42EVb9DIC5f04L9SrsGX2t+mhObsu3J5/xte87BW+vy5XL56qhp2672Ib1O/B3+s8Et2ynWx06gcsDWvgo62EE8+zhOBANQckDbgUPAVBIIWMPt9kuWP8FLAvaPj4+Ndch3gE3edb1avdyry9zm3bI858Akfgu+KDuaZrNZSYRg7NTBroJer1e+4075H374IbrdbuP4NvgA+fD4+BiXl5fx9u3bmM1mhR9sU1ouwT/mLdu0h3Ioh/Ift1gOII8djLP8M16CLLVPbzuA5CnkJO9wFK199MViUXZBdrvdGA6HDZ0RsTtVC/sAO+nh4SEeHh6KPn5+fo6Hh4dYLpflWP2cRJvxEgcfct+wg9hVulwuG7LUfj12sk8OsP7huVarFRcXF6/sW2OKYMLMAXang48OhGaMbbvdljvdsReND2HzzOfzkkxEYNJJg8y/dT82Bn3AjgB/B6cjaR3e8qkejJ0xkTxHW4y9hhPkQD1j2qfTbOvZ1zGW8CWfn+fdnvtWw3X9LmvDGCt1ZXyeYhu3hhXW2s39tQ3udqG5+5rXOH0zfYwLUo9pY/zfifn0o7bphB3NHoOD5sbhZrNZ6Tfrw7YMPGV83PyLfU57w+Gw+DKTyaSR+LfZbIovOBqNGja1+5j9LWw17MjHx8cSCD0/P2/YhI6ZnJycFJzKcw+NoH3GXo3R2s81n+4rGR+u4YQ/Vfatm3343k9haxkr/KnyDwmCGij3Z0yQ72exkPD/FtYmtIVVxC645mcdHDk7O4uLi4u4vLyMfr8frdbubHIvPNr1fTQ//vhj/Pu//3sR/GZumBSGzY5gBoOZOCvtLIDsfBP4AWCB0QG9M9jLYvD/NlScOWoaWuG4n1aaVm4oBrIVHFj0ArNCcSCS7zabTVFo5hMHvbyb1wuGPiFMMo+QGQ6NfYQxu5A4noqAcq6fvkREMZSglY/sYD5MW+jrzC47/NSN0efApcecFan5PwearIS8Dugnbda20XvnBHPODwqGOa4Fs3KgAzplxWojwWOBFhg6zlLh2I2aoM6BPvfVPJj/N6+gMDPYZQM4z4XXTg6M5bmi3RzUNN14xm1YhjIvVvooRd49PT0tRqzBZdOFelGi2VC07Moy3DKN93y0jGljOjhwCp1c3B/qM0/byMr10J6NGeQTf/soaYwfy0AMH/jO4Fq/3y9rxgaE1zh0rAUpOarMgJzl4nr9ckfodDotO4lYY6wHnA/Lc68v5gNedOYtNMj3a9DfHMD23zmxxIZsBqlzoLXmBHjsXkO5fc/tl4p1J31CJ/Kz3e4A+uwAoWvNd2Tm2dGHX7zjyokKh3Iov8eSnWSvN/N+1gPILd4x2OG1w7PYTUdHR3FxcdFwJB20ArRirfX7/eh2uzGdTuPx8THu7u7i8+fPxZZBhmd72vKGzyi2Z2wvR0QBx7AdTQ9nB5+cnMTV1VUMBoNCC47KZpwEL5Hdp6enRbZst9uSwIh8d1Z8q9UqOwojdgFP5Bv9zmCa5antue32ZUfobDYrxy9xxDp3DEK3p6enEmCxrAbIRJ/NZrMYDAYxn89LHxgjY3CABhADu5U5cfDPOgOgjHrgJfQi/gEy3oAGvGRgLSIa+p0dicwnutB6ETrDXwCFZ2dnMRwOi05FT+MLEiyzXcLY8T35zrZRDj7yOWsCuuWTawwu2QdmFyU0zUfnMi9+3uAQu1iZf06nsI3opFTohb7lc2wH3mdO5/N5GTd9AzBFPni9uj4SALDpTk9Pyz3E+GreverEXNYlfiFr7/j4OEajUcMXhOa8u92+7DKdz+cNUNT2NvNq+cF4oC87OcfjcUyn00YAlDlhHWLTw7/syOZkCpIWNptNubONYwTfvXtXrvDJgJflu4HLmtw8lEM5lEOJqPtu+IYRO9sR2ZlxKssY9GbG+CKi+MzoyMViERcXF3FxcVGez4E4igN52Cfdbrfoofl8Hp8/fy54rJNnCciu1+vyDkl32HbYOWwUcRIYdq3tUPSe7QB0ipNl0Mng48ZUbQ8Y7+CahIeHh4Y9bX894z4R0TjOnbGZfhFRdA/2JPNFv7AbKIyBOcFWN06Yk8ppm6PemTvwZ/jAdkXehVeb/4znZlzO72cfJ2OqfJbrcj2Z91xPxvQoxhCwGTNmmZ+1Dgf3cDuZFhlTNGblsWV8zX4e48q4oG0Jz4N9h9yfXPJ4c1J9xG6N1PBJ44OsKU7mIIaAzUXcgjUFz9t+M/7GVStHR0fx/v37ODs7i0+fPpUdmCcnJzEcDhtHVJtPI6KBk9l+9RqKiJhOp/HDDz/EyclJifc4jkE/8M18WqSTPiwz83ywlr0p4PdSfgoP/FL5h+0EzYvFC4asn4imIMjvZ0C9Vhz0zEBxxMtZyoAWEc3FYgXDexzDc3d3F9fX1yVab6HNWOyosXg8lgzi41D5OWdEU6fPxkc5WHBlJjfYD01pE7DFBgm09XnwNmRQxggfMrPIqMoBUM8FPwgc+uCxYQTgkPp+HJwz7xC1YDG9DA7keYe/UNS8y5w4+JWBMvOsjYpWq1XAc5SC5yIriZwFYzqZXuY/B5aozztja8FFB4BycMBBPQep6GNWWh67jU0/Vwts0Te+xxh027VAIOOq0QQ+NCjEGsVAckDP9HXGOX13Hdnph+Yek4NNGfz1cy55HX1tySAIdTEGG0AYtNCu1q6DZK4/GxCuM/9QLzLHazmvnTxWg3zOZsr09biQC3l986wDmKaP68RANn28g8+ZlDb2PSaAscfHx3IkGeBdpqOdMQOS8CWZ/5Z5gNnIofv7+4ho7tS2A8QxNxmkwjCyPGB9ZAPW8qK27nPBaKvRmc8sB6EHdPV8ZwcFOtXqNe8atM3P+H3LaZw698dA/z6nBoCfHWr9fr8hk87Ozhp3PsADDqQcyqH8Hkp2zpE31iWWM+ZxO5CWzXYuvX55//LyslwpYZsIeY/MIGmx1+vFbDaLT58+lWDBw8NDAYisB+gHAVn6AZCEo0ig08eG2SYmsOIdfNQ1Go2KDOBKjdls9mr3OboSexk7lnFid0M/34lqWYROQgY5Ee/x8bEkSDJPAEn0x/eMErjh5AGCoLbH8E0InjloBz263W4J5s5msxgOhyUIhYzFXs3zgR1g3cN35gXk+OnpadkFTOASWuTAJTr/4eEhtttt43hg9AF6BXp7bniW+fBxvAbeAB98FKuDk7arvD7YyWofEFrBN9mPsJ5Cxzuhywlw2Fe2P6B99gHsD9JH5gPAluAiQCR/A+LyP6Aw7UNX7CTe9XjhAe66zL7o4+NjAzjyb46d9hF81u0kJDDGDE5CLx97OJvNiuy7v78vR287UZsfjmiMiMInHIFme432mT9sC9uOES+7DI6OjmI8Hpe5ingBuofDYYM38MNns1l8+PAhhsNhXF5eNgL60+k07u/vS8L2YDCIt2/fluQL+xbwM2vVuAJy8Ut22qEcyqH8vkte11+zzm0zoA9rflUOMPiZvCMxIgoOGfH6WNt2u924+gvcx7apT+rj6HvsScvv5XJZdjISwEO+ogPBrpC5fEcwdLNpbuDgO/SI9YB9YHQi76DHCHxcXV018FbbsdjM1m22reij8VAnfnvDBScQEBxiLsHNqAf9zHvYHp5/5pc+Ye+gs43POzhLwHOz2by6SsJ8ExElgSoHUbGzajoq46PZ59n3TO27/DvjWLX4hTEKBx6N0xhjzcG92pjsr1AynpL7b1vbmIi/N/7mNZqf9xjgzTz/FPuGGb+lPu9wzjis1wt8Bq9njBL+rGF6xBb4Dr5nR6bp6gChYxPEjgaDQZydncXnz59juVwWf5D6LYuIcWFj2f+bzWbliGjP52w2i5ubm+JreRcrvhjJpiQO1mICjMn+QOYh4/XmgxoWmPmqhnlTfur9n/vdT9X7NeWrg6AGNSOiAYrUGvw5hrEZ1oLc2a8OTLh4YfpZ+gdDm3lxSPv9frx9+zZGo1F5x0EwxmlAO+Ll/pAPHz6UrHXfAwZDWQkxLgO/ZsAccGFBsvAQ/ih5By2px85exC5DOAtOSqYNQsJzSpv0jfdR9BwXgfFAtrAzniwEoZGDjVacNgosTM131EkmuY0IC3PT1rxiMMLzxLMYFwDagHIYSz7D35nPKHPzCTS2oUA/eLbd3h3xQH94hu+tHN1XjyELAejluc8BDvicnQpZ8Rp4yQCVM9p4xll+OUBiAIf6suFg4Apn28qJ77NStkwwoBPRzBzK7yEL4Gm/w294JoNBNooM6uY+ZQfAc5sNDX9nPvAPJY8l/52VeOaZbNRYUduIZD37GebYx0h4HZp3soFiXmB82XGq0cht+zvzq591XfnzfMQ2QBRr1LLTc4ush77IPDJJOf4QY5w+MReWSz5uG/ne6XRKQob1LUH9o6OjArzBszUDe7vdNow76jeYBTiZs0Itlz1PeY15LXjusrytFfNBNs6zMVWTF5nn9rXjtlqt1/fcmj8JhrPLyg489AA09ykByCaCDmdnZ8U5zGPKdDyUQ/mtlhz09JpzUMOBQJ5nrSLzvUvMhWDecDiM0Wj0So/Z2eWozMvLyzg5OYnJZBIfP36M//t//2/c3d0VQAun074DdklOdLHMpa+scewb78Bst9vR7XYjIkqWP7IQ+c9Rr6vVqjjJ3uFmPcBOLmQKcsRyzkliPtoTGxvQyrsIeA+/BNlGsI0gJTKfxMWIaAR3AfM8Hsa+2WxiMpmUxEdsyLu7uxIsIhhLIUiHj8cY4CcHIQ2KYWswnxE7UJPjdc1TJLtgMxIUhDbY+OzoJRgOjxIsXSwWDfsQ3W++Nn/xjPUSz5ycnJTdGAAwtgccBGWOPQ/UZ9CVfvX7/eKncaSy7yPjN+tpMBiUeryLkWP74DlAYHZatNvtcmcldLP/RGLYdrs7YQGwh7EwdtskzAnPYnO3Wq3G3eDwjm0T6kP3ck8w7+bEVmiRA+Dr9Tqm02mxDVmPs9ms9M3AcbvdLvjB+fl5SWrYbDblXk7zgG1z+sCcsMZIUoB/IyL6/X6Rd9gVgG32y72b8+7uLm5ubuL9+/fR7/cbNgkgf8RLkPWbb76J6+vrMibvonGCSAYcbVNnuX4oh3Iov+/ypz/9qciFDKDnYnvFpYbVou8zuJ0xDvv61AO4HxHFbmq32/H27dvodruN482xSelX9gORm9gky+UyxuNx0Xl8jq9Ov4330AfGhV1Bv40dYluiB7ExnDTuJKaIFx0BDnl1dVWCosbH0L/oNPSTgz45+Er76EROaPFd4ugCzyM4WE56tA1Bu04AMy7GO+12u3Ean/UzdndEFD0H3ovdTnvGUkmGyxhSDYMzzxmzz3o667aMYWGTuL1aMa6XbRjolTFB864xmYyR5L55DMaAajQzBpMT9XLsYB/eVusDvJkDkzxvbM54Xa67RkfqdXCP394wZR/Ssoixk9Dp+SDwz5hsHxojI/ET+UA5OTmJ77//vtji+DjwuOVfRDQCoMzzYrGIxWJRgp2s7+12G+PxOEajUfR6vRgOh7FYLBrj3G63jVNUzf/4u6xvY72mi2M2X5L7Xyr7dELtmZ9T377itYAvwjViP1W+Ogj63//7f4/FYhH/43/8j3h6eipZxnmQP6Uw9z3niXBALwfgIuKVcszFgTQD7Ha4Obbq4uKicZayx4RTjkBYrVblyKjpdNpwSDNY6wVth9z9tzDIk8xEwrg4SQZFTA+3b2HlI42ywnVAB1Dn6OiogO55weBcM3YAA34yyJyPNqA/Fo4YJbzrrHGEDZm32Ql2hm0tSOLAZJ4fCzkKbeVAy74AHP97d6aNLwwPg1EWmjX+NV9nRYgwdiYc82rjjHqseOF/vmPcOXBDFreVVB47/fL80m8roJoQhec9xmzw1oxkB1W9pjF+DLzm4K1p6Pk2jTyf/J352cfJ2jgxmJUDZ55Tjy3Pd3YC3I4Nkiw3zKvUx9pg3DmRwPNqOpqu0G6fUcizDnhbdub5c8AtG8V5fH6f+rJhY3md64qIhkFnMNT0zX3hxwA682xDx/1YLpdFFnpnc7v9kp1qHYGsoP/0Cblj+nnHYqv1Akje39/HcDiMXq8XEc3jnu2cZJ1ivmZnAE6Q6e71QT+z8c0P/MlaNjDrNcR6MP8YADSgVjN+LSv8WS77HALoAK96PDZKDdQybmfjAaRDI+uXiN2RmL1eL+7v78vuC+h6dnYW//Iv/xKj0ehV3w/lUH6rBbvNa9OfWd5G7PRWTmR0IBK7CHuQYKCP+2Y9Yw8eHR2V+1em02l8/Pgx/vVf/zVubm6KDGWnNvYguwPZlWZ9YkAoYgfQESxjNybykndtn56dnRVHmADOdrstu+UsP5EFTkAhwIC9Td0ETanXcp6gqk9fWS6XZbwGkDabTTkSkwDodDot4BwAHvQzEEPAiv4YfIt4ka8+wpcAMI4/gT2cb/plQJM+YnciW+EFB6CR7SQPdTqd0pbviqVdeJF32d3g/lAXdfuEBO8MHg6HZczWR8wtuyms43mWOmyT7rMh2SFh25hgGmAKvAhfdzqdcjxWRDSC9PCKg7ReA9lmRKeRAJDtIOwUkr9arVa5H9NzbTuLegBwqQc6RDTvant+fi7AJ7s2CWZ6xwf8MZ/Py3qC7yN2QVH43cXBV2QQfeP4Qvjy+fk5FotFWaOc3MH6eXx8jNvb20Lf9Xp3/LN9HcZNu951iTx0m/P5vASySf44OzuLp6enOD8/b6xf1il0p0/j8TjOz88Lv2PT+GjE8/PzOD8/L3eD2o7yb9t0zF3NXjuUQzmU33/59ttv4+bmJiLqflmtGIPKWENE88hMdAyf+5mMY4HDYpuRsNRut+Pq6ip6vV5JZPPRj8YYsQ/B38BT1+t1zOfzcpKI5R+2FwlGPr0BWY1dgf3ittEpEVGOOMfGwK7C1nNiITod+9X4shOq0XmbzaYk0DhA6Z1ijPv5+bnoMPqPHol4sTNGo1EjYQj9bFuKz5hfJ3ZZr+ZkcHDmiChJaLbJjHMa/7Z+y/YDNCJI7s095tvMhy4/xd/GQMyzxv+yrZqxrC+1levPmEin02nwk9vZ19+MGcJjlNy/vOZsn7Jm/U7GWPxZtjNzrAi7yO9lewM68zvjq27bfduHD3kdYLdj79LOw8NDPD4+No5fti9HgBH/oNVqxXw+j1arFf1+PyKiJGa+ffs2ptNpSRalHduKm82mcV2esTnsOtZJu90ud7/jkzhZg59er1eST5EPpm32+Zwc7Gd+isd+qwUav3nz5que/+og6KdPn8oRShD41zCAzZwRUTKWLWSyYt03ORZu7NTAAXQUf7PZxOXlZSFSBoRzgVmfnp7i06dP8fnz5wJ8u++ZJhlkzkEGO53eMcrvfGm4FZzrMOjNGKnbwIMNE5SYjQQHPKkXwwA6PD4+xmQyKY49ipVF7X5SZ22+rOwMvBs4c18jdjufPGYEu4UqtECp0lcLXQtCz7vpQntW9ga+UU4G1jHsMr/6N32xceH5o48OdrIOTBOPMdOY/rgeByCgp8Eh87Pf9+cOdFBHxE4Yo4wQsDZEvQ6pwwE609bP5P44AEMdBlgJbhisokBbrwX6DD+6v5lH8vdZ+VNfNkLon4OTNuisgHK/eTa34/n1+HKpGU7Z2KK9bIAYuKEtB45Q1t59QV0eb+4LBflXk7s1uWFjiHdycDoH3gAMbXzU6G+DhLXvHUw2gJ11GfFyVMVms2kcyYYRj/FuhwTamJ/ZncLZ/chWCoAz4GOWhcwRfbL8op1Wa3cE7+3tbePdvCvUc5nXfeYPvst94e/sGPM3aw+amoeyYfxzSu155IITSSJ2u7p8FCfPUxfv2hH3zhacXwxQ757m7//3//5fA6g9lEP5LZaa3rdOc/DCPw4u2BayTWDQYL1ex2AwKGvVSX60gU04HA5LUOPjx4/x5z//OW5vb4sNZhkEoB8RBXBxIiK/Hcx1wLTVajWOSCe4SL9shyKzbQuwIxAbHjmS74anHv5H7iP7OX53Pp8XXWM9wiksBsGgAYEibMynp6eYzWbFGSdpsdVqNXQMYydwhL7kHQJPJIRmP4OjgB3gNWDHvGfAjrGjtwlu8h279O3PoV/gqcViUY5bxf/LOyNMG+8URNcAfNAP/Dw/48A+x9wRDGd+sM3pL+vBgWfrR/jKdDF9nDjpcTjgbZ+IHbGcWMGaZHey1zpAb82HsJ40YEmAzp9DEwfis0/KGOBr1pzrA/zxXONLIId8TQv1Ayjz3OPjY8zn81f2OmCT/VUwB+4bbrfb5aob+jQej2O9Xhf7brValZ2VrFloPxgMYjAYlB3s9oXMv/Z3SKSC/56fnxu7c7rdbvzpT38q/bHf7rk6Pj6OyWQSP/74Y7x//z7evHlTdq1TCIaenp6WXV+0Bb3hVwdyM1BaAxwP5VAO5fdd/tf/+l+/6D3kLDo/Yy8+kciJcXxmOWO9gX2E7I6IePPmTTmC3/qPkwsc+MS/jogik7FpSKQx3mb/3gE6bDsn6/Ac9k2rtdsFyv/dbrfIeNue3nDQ6XRK8g5BUm9+cbAPbIDEOerkOfqPHef7PcE+sQegU0SU0+9ysb2LncNJH9joBEd5np2ejK3T6cRoNCqbWqjHPgQFXeljQ2nHm3kozM1yuSy2AXxFO7TF2I2zGqs1XpZ5m89yrMD4ZMYsXKfb9bz7PQetsu3ltvbhvfkZ484UJ8QZOzf+zPvGsLBf9iXg18afcUsX45e2bd1n5jAXz4Ftbu9Mhm+dgJflgjFA+oo88JWArBXmjLgCvOxjalnrg8Eger1eXF9fF1vU/gR9YhzY6shJfBQ2qGGXTqfTsgMeDNZzzGko5jHmxPhaRJRTanLJSQS/pJj3v6Zkvv6punkn17FareJ//+///VX1fDUi9z//5/8sisCBHzrzc0FKF+o5OjoqQjXXmQOItGvD3gvFmSoUFshgMIh3796VyD2CPQenqJPv7+/v4+PHj+UoKdqrLVCfQe8x8l5WiO12uzju/HicjNXCyoA3is+0cgDUQq0mbHDKAUVYfHmn13q9LmffGyDIi9oBVc+dhZrBNBRcVrYIshy0pR2DIaazBbrrdMCF8VmA0x+Pwe3T16z0HMQyD2Jo1HjFxyl6nuAH+gMtfISm59R953k+Y87oD31gTgiEUrwDzDTMQNC+IIO/dwDN32fQkjHb6LUxzTM144C/a3U7wE5bnuscXPVzVoi0m3dPuy+WF1Z08IQNX97Lc8xnmSfy/Ob+ehzZ6CHjh6BbliHZSXFgLQdseYZ+WpbYmbGj4qCl6ZT7mkEuy8ks+91P+ooTYkAoK1S3ZxlK3zxeeMVOW6a7wdL1el3uVONoxNFoVEBVDClkZ04OcUDOICsGHOsfw+vt27flvikb9qa5+QUa4rhwlMZyuWzwnoFq12H55vVJ32v6me+8DuBDB1YiogEimwdz4PSXgm52IJH7ZBfb+cW2sbGbZSwyHcPbR0aSBQg4TkYrO7Zygs+hHMpvtVi+Wk/bVrN8zjrb2fDOfEVWA8yzozGieX9nxItc6Pf70ev14ubmpgRAAe2x6bNNhJ2Kw+5d+hE7/8ByjiBIRJQ1jQ5wclXEDqjwPVS5MA4fV0uixGq1agQuI6LscgWUwxFnxyM0wkmmDbKFAfdIpEGn4nwT+KROdJyBPnYxME8kzEREoTfyz3eHAgpAW3wIeMD6OP/Qz6enp0bwGd1Bm8jYbGvjs0BD+JF5Ozk5KcfEZj2w2WzKTmSCUE5wQXdCW+hiH8YgGsUBbvtQ8DV8b3vKesf2cKfzciweyafeEQBfs+YIJtJm7rP90lpCjnnca8f3jkFnPmNeAU+Hw+Gr60psWwEaw3f+n7rwXW3TbbfbRp+9DgjqdTqdmM/n8enTpyIjCExmX41kJXZ8n56eFtsN2nu3EKAytPfRjByby3jPzs5iMBjEmzdvGraafSnzo+1iAGQnMCAvLi4uIiJKQJb1i13mRIrxeByz2awcIQ6uwI5tEpw5Wm0ymbyy/bLf4UDyoRzKofyxy9eC2LVnan6iA3UZy8zYjHEL25Ykz0VEkY1uixMDer1ew4a1rcKJdtb19MO4CTrOSW0OnJhOTm6htNvtcqclCdXoVeQ2NiFBQ2yr7XZ3woaPgDU24RNO0Jckz/i4XnCEVmt3zD1YnxPPHIx0sIsgD/YFG4d4Dj3OaUjoXPpHvcxJ1nvYWOYT2znMBXaBbQvo73Hyme/tNp+a9zyXxoTQhcY2avgyc5IThbwGjIHW6nHbtbo81hzzqOFzXg+2OYyvUIxF1ehaoxnfsT6NjWQsyjaXecZ9z8HpjMUZG+Zz40qOJcC38LvXNf1BbrguJ2ziB3HdFRgebXKFCPVxBYITAGmDRLP5fF52hdIm9iU+ExsNjb9HRJEd+Crz+bzgV9jItgORUy7mKWxA+ybmn5yUUMP2vrZkDPaXvvu3euerg6BeOI6I/5LixW5mxgn3IAyIZiDDTGLh4btzYOpWq1Ucie+//74EQGG+LNBZiDjKbEMej8evgicZLLYSoVjwZwFEYMuKMAc19glNduCRPVQDpC28LOgyQGUB8/j42AjaIFQ4AsiOnEtevFlIo+DoJwIDJW8FZ+GXlTPtmC6muQVxLYjh4AdZ0Fa6zKWVtPkRwZuDNv4uB80QNg5ceE7gh4ho7KzbF1zgewItpgF10iZ8YoWRFY3HQT08m/vgzzOvUqcDifsMBhsJfnefkZn7YeM4nwfPHNip9xxBIytdPsuZ+sxXVsT+DU29LmwM0H+PjTprhl0u2SHhb8CcnJ3l/rlfNeXoTKE8Tp7he0BJ/ve8u68UZyrm+nnXO+vpP/0yH+YMy4jd8WY2uDDorQds9JofPNdO/MCANsCeQT3LIvQMxhRgdMQuyzMiyu4d1gB3bNXuusAJ464t3r+7u4tWq1XqxKDL85ANTT6LiLi4uCjAu48ntEPnYLbXQa4zt21njXrM61m3mO9tSP61xUY/zmw+xYG/AUFxIB3cwACm3ziqGJQ+9o9sXna0MGbz8aEcym+52Fbi/4jdyRuWmQ56Gpg3gJ/tQjJk7ZwjIxeLRZEzvV4v+v1+jMfj+PjxY/zwww9xd3dXgA4nOeU19vz8HJPJJI6Pj8vuLXaGMhbbHxx9SsCALGBsC5xM+moQyuAeNsdisWgE0vBv8m539Cl6Kx8pCw0JXPo+YnZedrvdGAwGjV0LPhYWG5pgk21bZDi7AADumBfk12q1itlsVo54RT8ReKFe6MFntkOgtUEwbN2Il0xo6vTdPJ5fdoyaF7vdbtG/8CG0AJBz9ja0brdf7rlkx0FElMAfxePJNj06zsfc2Ybh2NhWa3fEso9LxicF0PDn8Jv5vKZ/8cnsQ/EMvAG9z87OCoDjQLrtR/tFBEBtW2KTQGPzNM+br6Cz7T8HORmbZYTtBZ7N99WaNwwkzefzYmPBW/Q/B1ezrTEcDgvvUyd8hZ1k4Ij5JghrG4lEhsViEZeXl+XuVrfH+matO3G52+1Gr9crCVXYa51OJ969e1cCoRl/AARfLBZxfX0dl5eXZaz4gd41c3p6Gm/evImPHz+W+bDtbRCROc8YjHXFoRzKofzHKzkYgT6s+T3WnZYdxmuz/cn/nJAxHo+LD2a7bLVaxWQyaSRxOTmKnVT4gXzv4CPjcT+wV3xEvU+vQxZzIoFpgk/pO8+xgUkGRC9jK2AP+1QLBxvR6dgUDw8PMZvNSqASXAUsBEyIcTg5zfOGrsAm5nsHm7GnLi4uyjUVDw8PJQgasUuy8uYcz7Hxx4zlGq/E1kbv1DBu41LwlpMjsYkcUDdfYg87sObnMsZl3NH8bhvG4zLeZFrkevM6yX4YnxmHtg9lHJVn8++MMe7D6j03xm6zXWBsFJvc4804esY5Mw5s7DL3oYYj1rBo8zT9iogGxo+PxHPEPJhLx5pWq5eTb7guATtpu92WKxU9v0765DPud7+9vY37+/uyBuFb+32eB56L2O1it2/IfJh22OEcG47Ny7yxXqk/46S2e3+rxfLiryk/C2lkMn0Hy76O7fub9+xUwbA4iS5mBAsIO6xZkTrYYGC90+nE+/fvy5Z8HGEWhoOsOL5kvNzd3cXt7W0jc9sOL+3mRZ+DWzBvxIsyx0HlzHg79pnujDcLZTv7ZmCEhRVaxA7oRwj4+APTMwcGavNtkJf5slDLQTjGxVx7nIw1BznslPFMFv58b76wQDRdrNxpz4HDTGuKeZHi+hzYpW8YVwBpOVAX0VR0zoZzoMXt8b0DP1baNij8vwMvpjOAlpMFTH/zpIM97kNN8XgcrDf6ZBDQChOB7vc9Fs8LnxtEtDGQjzGhDvOEjZ4ajSyPsnLKux1dL7zvdrIxYWCoFvzMa8HvUrLRYp7yXPC/aWuDzPNovq6NK8tvg99eSzgkfAYf5XVlY96yj/Yte2wMeWzmF79vXkb5AxTlOYE+eazUjRGBY2FD3DqIMeCIIevgbwJkPpbGyTMeixN66OPz83NMp9Not9vlqDPGhNPnsTAGg6oR0bjzwLsYIuIV0GW+qxkdWT9kBxJZbyPLoCvfwQ8uNcPdz5ifsgHPu7RpOQFvGSSFHtkpgnY+6sR2A+uHZKbpdFoNTHvdHMqh/JYL8sM2se0NB33Qm07keHp6iuVyGY+Pj9HtdsvdlScnJzEajUowDeAo4sVR5Gjxk5OTuLi4iMViEZ8/f46PHz821pV1VMT+O3jyca/OnEWOt9vtOD8/j4uLi7JrDNmAbERGO+mGgByBVutKjmqjL9Y7gF53d3flGWQiGcH0jzE4sBcRJeGCQBfzgjxaLpeNwAryCSCOfkfsdhRy3LdtnMfHx0aiIMW79CjWNQRiGIftENfB2NCRR0dHjfuUDay027vdGHxP/bzPPZiAkdPptPgftA34wDh9lCq2uu1cxkR/ACMZM7zBeAAq6Lv9AvjQvoMDjdAV34y60E0OAGI/8j78TAIWNgRjgF8AVJkTeNw2YEQUniYjnrEbUG21Wo2MdvsGBq0I+PKO58R2ne2d7HOY9xlvRPNuWfQ3POi1z/PQBx8cmnBEbKfTKeA0POEd2QbyWMvmA8Ap5ncymcRgMIjLy8vodrtlxyl+13w+L9gAfeM7kqoAtaj7zZs3MZ/Pyy5nJwgy/vl8Hre3t9Hv98tY7+/vi3ygDfrl0yqyrwn/2i43IHkoh3Iof4zyS9ZzlvkRrzdtIL/z58YI/FnELilnvV6XJBIH5zLmh+9G0li/34+jo5dj4ZGVyDD31XhW9mexCSN295KjS/ht3WR/n/GAJ5+cnMTV1VVJYDZ+4pMibJ+s17sTPc7OzmK73ZbxRUSxte3jGzt5enoqARHraHQtNuTV1VV0Op2y42y73TaSwR08JKmGH/S1sVho7AQ18wL2hnEXCjtKwVGxVX/Kr874It8b56JknCJjHOCRfJexUwfNzHvQP9fptqGL+Zw5t21hnMo2qn2yjI+ZB4xnuV/0LWOgPOP29vWfuo1p+jlsNz/vgLFplQOk7o9tbeOm9gGoN+PHzGNEFOwOvyZjem4fO8trmFNAwXnstznukpMYSRzsdDpxdXUV/X4/bm9vSxusVU7FybY048KeHY1GxW/Clqaf9JUrnjJGivwkEMoYvF7NI8yN56OGAX5tyevcZd/nf0v78mcFQQ0y1AZiQVLrdP6M52AOwGJnb1hRZrDfwskAQMTOOaS+4+PjeP/+fbx9+7YIDQMSHh8CDWDm+fk5Pn36FLPZrMEEFogRTaFnx87PIehQNP1+/1UQM4PV7puzMCj0HxpCUwc/vTA5Zou2UFwoMrIj7BQDfniBWIDUFAzFgAu04jlvMXcwyzzC9wa9LOwzQOcFXAPu7KQD+lhYZhobDASIsGNIOwh2nmMctOn6GZuFnYGeHKhyQB+hn4NbOSCKMDVYZYFm5cUcOzOF990fZ4kBNuSACTTzfDAPXiM1hZeVsOfR82ZHPfOLecQBFssnK3CeZUzmm2wQ+3MbmZ6vbBSYLrmPNpR5LoO6OVhXk0FuN6+bGviYHRBkhNdxdlRsbFk+ZIXtNlkf7qN50XKasWc9kfnEgXIHtCzL3S7zjJxyXe6PaVcbu+UMzorpYrkTESUQCp+SxcXfOFL0y2uRfkEzApbopKenp5jP52XHDP2mrX3F6x+5PxqNot1ux3Q6LbtSKd7Fy7zndeLftc+s45kvr0H0A33PQGw21DPvely5fddj4M79wKjNO73YNWpeR+fBMxy3B/+TCetMu7/GYDyUQ/lHFOs4r8+I186w9bILa4r3cb7YfWT7k53u/X4/RqNRrFaruLq6isfHx7i+vo7r6+sYj8fluSybI6LIRss3Jy3MZrPGbtDtdlv60uv1YjAYFMBsOp2W+ixbciCMtc97phft26bGr5jNZjGbzeL+/j7W65d7RTmdhuM1TV/bkLTvHXL8j55brVZxd3dXjoVzZn3Ezo7LYIFpinxzstfT01PZfUrAlnoIuiI3Hx4eyhGeTgTCXjS4gJ+2Xq+LT2T7wklL6AP8pmwLGHBz0DDbGFnfExh0fQSq4GfvtrStRh3ssDQNbbPDL4AP9mHNZ6aj55VnDBjhk0Q0k5d4HnpERAFhOfUA2sCf7OrlKDH3yacDQTsSaLmH1cfrsxaen58bR/0xXuh5enpaAGJOGfIuVdt/5qPsd+LXsj5Yr9SBb5znmnV6dnYWj4+PcX9/X/gxg98PDw/lWOJOp/PKdqOv2MROIGbdHx8fx8XFRXz77bdl/AQ5OQ6NOe50Xu5D7vV6jaz+iN3Ogk6nUwBw6AbgPx6P4+zsLL755ptytDh0555g6n/z5k05IpIx+1nzvfn6bwlQHcqhHMrfv9jWqP3/pZKDUMZi/IyxsIy3uRg3IBHEyT8UZGwNsxmPxzGdThuYRC7YH9mPt18J3mnMkrb5joCddScnkRBsNJ1st9AHB1iOjo6KvRAR5TSC+/v7oruyDYSvCo2xQznhBF1vn5U+2s81vmKsxH4yOse2Bs9ZPxsHNA/Yh7d/jf+QMVvbrYzVJ74ZW/DRuBG7Ewd5NyIa9mKe881ml6CZcaGM0dKObcK8fnLbrtfrxp+b9t5YQZ32DdxW9pPy2s3YScaXM568rx7oZfun5h8aw3ZwuUbH/HdOHs92qLF2vwPdiHuAc1K/fcW8EcDY7GazaWw2IEGg1+uV9QSvRjSvsso27Gr1ckTut99+W3zA+Xze2LwAzZ2MScGncUyGdUHfIqJccUB/jGN63dl2hSadTufVSTz/iLKP3/z9X1t+nTPnfmbJgsROcC2IloOhLCAWnrNwnTFKO+v1y1Ey33zzTTmCi6xJC25+DKq3Wq24vb2Nm5ub4qBEREMgeYF6p+PJyUnjOKtWq1XOeEdw02cLBEBa/nfgwSB5Fny1jChnxpI55PqhA4sWpuNd73Z1YMdHE2QAm0WaM6Wt4MzcBpFzQIu5NS8wRubZBg+CpwbcmzZWyM6syWCfecOfuT2PwX0D/IJGgGbQwdnrHhcCDmXE2jBNM+iTA2eeB/roHRQ4txhu7BjAsbfAdFDGIJKVvQEtfqA782oDyvNp5e86s9Hk7B8r7rxz1UAHdebgmteR6ZkzGOFB85CBDvcpg5WmgYvBPPc3P5MD19DAtMuf1QyvGmiRDTnLUnjEctfjyTKiNrasvEwLz7UNI96pBRU9f+ZHG7xe8xhxpoPrcR+zLso6KNMPx4t1ggyib5at/Ab8HwwGMRwOG4YhazDzQAaj6CPrHsCu3++XO1KYO9PFzoFlE3x9fHwcw+Gw6EX4wXrQdPT/5u99hjjjqBnh1JXXXeaf2lrx95YhOdCdHQuvXdsffI8DG9EEldEV7GjJ64554hg7AMXs3BzKofzWS7YzbYtZZ2Oj4AhGNO0m7M6Li4vy7nA4jE6nUwArZBP3BVGWy2V8/PgxPn78GJ8/fy7HiEbs1mK2S9br3V2/rVar7NT0cd/39/dxeXkZ7969K3cB8mMgCl1HYMuJmrYVHeg4PT0t9j6yg52eq9XLEW7L5TLm83m51wUaLJfLcoRuPsGCIBPyhR19nU6n3D2NwzyfzxsB1larVXaaeeen5aWT5byT1E4/u9SYY9v02LoEophb7jddr9cxm81K4I16AJgIzBGMsh4guOpgPPTMgCZBIYOrTvSETr4rCt3rI9fQzfYRI6IEvQA78QMzeMGxvrav4BPbwrwDn3qnbqvVahx9ZR8Gm9A7OEmG4hn43Trs9PS0HJ0LXwJ69vv9QgcDNtbrBNvoO3xKO2dnZ4WPM/ATsfM38YeYBycb0Yb9YuYaWvsKCPrM/ES87PQkcAi/GDvAD4dGJH/Bl7PZLDqdTjl6MSIK756enhYaeHekjxd0wJ0+8B71z+fzuLq6KgkYFxcX0e/3y27P1WoVo9Eozs/PY7vdlqQqgrnQjHtCuQvU9BmPx8WmefPmTQmcWu7OZrN4+/ZtvHnzJv7yl7+8svsp2Wb2c18Cqg7lUA7lP06pyQlKxstyAAdbxBgbchvc1LtArZsjdifOoV+Wy2V8+vQpWq1WSWjx1TL004Eu5KMxCWObvjc8IkoSj7E6cLTVahX9fj/ev38fz8/PMR6Pi44yFkt/ut1usVUGg0GxOQnicK8gfcEOZDMJ46Yf6GZoZ53mACl2XA6WWM9BX+Np2D0ELD2P9sGZQ+Mk8EHWzfgexiuZY+MWrj/be/YNMq7tumjDgW33y7hEzSfKOIXXAP2p4X9857odMKZ/xj28NvgsYzO5r6b/Ph1tTJf+2s72fDlQ6vqgdw1rMd5nuhgz9ZpwOzxvbN085Gec4G78mM8cC6F+/EIHR+kD/g60e3h4aKwPEvZarVY52cj0cUIlvlnEbg21Wi93iW42myIX/B1yjvbgSdZbxIs9zoklXjubzaZcEcIcYG+zG56+4AeYZv75a0oN2/5blV/a1j8kCOqF7Qny4q6VfYa5F5T/jthF8L/55psCvETshFxENBxOBA0CYT6fx7//+783HLOI10el5n777hDAAjIxWRwwtgONlH2BNgcSad/ZOBylFRHlKCoUA2On/4AbFvbUZcfOWQdeKNDXgo1Fh8Dh84gd4GGlS/CNxWghxVzS130KImetWJA54OgAWw5+YECY7p4fjrA0EEh9PkIMsIi+8pyFF46zBaaFj3kyP+f7eB2QymvCRgCOOHXUDATqAkhk7KZHbqMWJKvVZ0Vqg4a+mZ4OXFNnVpzukwOgpocNGop5x4aC56AWJMu8QpvMr+WFwVPaorhP5gvGmUt+N8ub/Jn5JAde8hgN2pkGVn7ZyPIaycFyeIr6vb6zYs3OjRMZWq1mYoP7QD2eI2cF+jgw847lZK4vB1d535+bZhHNgKTHAT/6XWj88PBQ7iHZbrflSLRMD/MEcg39sN1uS3YWTsfT01NMJpMC6nk+GKsdh8xn8DN9Qn9k+cu47LDxvg1Py0XzJLTwUXrQ08FE6AAYzBhszGXety7/qWBjnn/v6ncyCaCys4O9+wmn/OjoqOg1nE+OxmSOsmw/lEP5PRTWmHUKn3uXpe0Gry1kAc4jwE6v13u/fH4VAAEAAElEQVSlQ5Fl3W43hsNhTKfT+PHHH2M8HpcEROwH65qI1/f5GNywnLB8RaazEwt7hwAe7/oOJ54j0NZqtYr96jYjdjqCXZ2z2ayREPn09FQCRRE7uUUA9OTkJB4eHgr9kTUEmtjRRVDU7aFrCHyiQ6AR9dvmIlCGH+as5nb75Wi55+fnkg1teUvbBEFbrV0CGp8xFoLim82m6CxAPtuHtkUA7ghwe6el7bFWa3c/M3MAEMlcWddjO7gueCLvgLXPBf8QlG+3240TAQym2CbOgVNsBsATgnHwqu04dLgDkMwX+tHfc6Sqdz1TJ/yLT7DZbBr3kUbsdCq8zY5YAvcODlL43nYA/qTtdmjJGvMxuzwDv0REuReYBAGCl+yeJMOfuWIH8uXlZWw2m3LHMOOBZ5mD7K9G7HxVH2cNnwA8z+fzBngOf9neQUYiH2wr3t3dlTuL37x5UwKiJGNsNpvo9/vR7XbLkdSWUT7ObTQaRUTEzc1NGQP+P+uWHdmsQ+8wXq/XMRwOYzAYlOPIM9Bt35HPqOtQDuVQ/njF+MBPFdtZEc3jtJG/2Y5EBpHgZV1p+5OjUb2xgjawYdDFyOfb29u4vr6OxWJRbCQnHeOHui367OSWHICwDiWJzfYo5fT0NM7Pz8u1CIvForzLGNBnxg2w8x4eHkpy83K5jJubmzg6OipXNhD8tH0H/dDnFAIg1keMB7vFGE0tGMa8ZnyG78G1jd/6e3jEOAq2ATrESWLeaGN+gg+wFXjeCWnmXfNyxitpE32X8Vc/53fzXO/DYWvvMcfG8PnfGJ3XC+Os1e1xGcfI+F/+P//OWKD5yZ8Zq/PYjZsZazWtHGcwxkSCma+a8iYTz6l5yO0ZJ4LGzCX9QE442R97yhuWnHRpG/P09LSRCLBarWI6ncbDw0Ocn5+XTXY+WY9+mk/xTfC9vv3227i7uyv3zrOejMN6nTBv2LaczmNfDFlIfax96A89jfmbjx1TMY+4/fxd/n+f3vD7X8LFau//2jjaPyQIGtEMYsFoFsYR9UAL7/p3Lgh2lOf3338f/X6/OCk4nVaoOHksGBj0/v4+JpNJA/Cmzw4WebF7W/LJyUkMh8NG5nZmOAAHGBiGNZ3sgNlhR0gQfOMYHBa5BX3E7piliGbwMGJnlJiOLOgchKT9DDKRHQEdoI0XEArGQFgGEGgjC1QDb1YM9MXZRHZ6c3DNAZZaMIP+21EkgBGxyzi3cDLgbf51ICArGgsK87N3sjmIkfnQwJ5/XKcBGejg3WsWtlnQWQmZ3xyAAEBgvqnfc22whT7bkXZQ0POQA1XmS+bZNNkX6DGfWvZQt+vPoC/P5TrpC8ra/TDtasUAXJ77Wju5b9DJa4X2vqSIarxXa9v85gAfO1zMk74fi3ctS780xpqhmY1YG385wOZ3oQF8aLmceRu5xnf+zXxaztL/LEcYb54P991ybrFYxHq9jtFoVAJpEdHYXZqBcQPZPq4GcPn+/j4Gg0HJdLVRSCAuO2kAyjiejLfX6zWSPWwQIZNyoNFrN89xln/mefOEQVw7o34uy7q8NnK/Mu8wbq9X7AD0hO+MzeOxjrE8JzEFfcOumm63G9PptNH/X9uAO5RD+VsU68zs8Nj2q4EcrFFk7GQyicfHxzg7O4vz8/PiRCI3DX6dnp6W+1Imk0l8+vQpxuNxI/iDrIh4faUA8t/r3sEUAirtdrsc+3lxcVH6i/1qYAybm/b4jnUPIGU7hsz9z58/x3w+L8GIp6en4jQjn/khADocDksSCIEMZDvAF6BWt9stuuP4+LjsMJ3NZmXnGHoD2cZYOKHAtqxLp/NyZcd8Pi/zZNogJwEVnVXvHa4+MtQnzxjE872r+CfY8uzOow3qIInI99AyHgfgfH8kCSweq/0OgmjIfwfBsUuhH7R0AN+2hhPA4EvowfgdMLXNy3252baEF6kb2mLv8J3BtezjkN3uHcwRUQLYjPvo6KiAOsz/+fl5LBaLYvM5EMa4OO6PAGxEM1kREIh5Yy0QtAUsdnIVY/Bxue12O7rdbmnf/L3ZbMppDKxT5A70ycFcEvssA+ErB8T9zna7O4KRu9rs30M3B7+hBzJtvV7HdDqN6XQa5+fncX5+HldXVwVA973D2H0G5uFbdoSyXqfTaZEx9/f3JZCKfGVHMCBgt9uNd+/elXuKbbNgC1kfHIKgh3Ioh+LiIITtsohmEjv/owsc3EAXWuehx9AHGR/icwJ919fXcXt7W+T58/NzLBaLYhtwBzg6kONnHYRzkr7xIPvAHhP6znYHSbIO7liWEqxstVrFnkOvgYuvVqvo9XrxT//0T2WM0I1Ce9gDEVHqQvegx33UPL/drxrenv1XB4kdYLH+y5gn/cTmsz9vX51xgXPYRkFHe/4z3ut+ew6ND9Qw+xrWSD38zvrQOJr9I/pkv8GxA+OeGfP6Et3zM56HGqbJGJ3Ahx3iZ0wbj832FOsjY3D87+CoE1WNmflZB0KNefleXK/H3Gf3wTgzY6Yf7Xa7+ExcuWC723Po42QjXuSG7S/7xd1ut9iGT09P8enTp7i4uCi7QrENWRv2WU0nEigvLy+LrZbnxvOD3MT+73Q6ZXOdfTOCo5PJpBF8Nc+ZLzOfOV5Vkwu/tfJL+/dXB0EtIL7UkdoC5W87CVkgZAFmwbGvLT4/OTmJi4uLGAwGRdkRhLFTg1PFbkQW1Ww2iw8fPpSsYJgI4eCFS785KgFHlsxtBy+hB/3IQsUAMAxvpeKsVXZ4uk9cgu0AHovVzpv7bcDdyo3FD6BSK7xrIIQ6GUvOiqDPdvbdPn+bf3z8ZN4+nwM/Ea/vBXS9DqTxnMEu99/AFwLV7RF03m53GfsIm8fHx8bxGqa/Fa+NEI87Gyc1wyIDOp5bhKF3kMI3jAVaOnBkOmXeMI3828rJR5bYILZyhQY1JxpgLSsqFCOywcowBz2YIys86Ma6c7ZiVrJWDtnQ4HkHvk0H6On3zZ/IEwMJlns5eJSNoGwgmZ/8vWWt63Gfc78jdmfaM3/ui5MBDOCxnpGffG7jCVlL3QYf6YMDXaYjc5n50QaGaWh+yEYU/ctt2olzIokDwchW+mBAyn2lnezgPT8/l12hw+EwRqNRGSsJCQBruQ6PGb252WxiMpk07hGhffgCWQTP2yCCN2gHIDLLYWeL2knlb/OU5TgBcQfHPceepwzueU7NC16f+W/zuccH/7CDx+PG4CPrD2fLO0wAWikPDw+N3SuUVqtVjtfEAHXfDuVQfuul5oDlhKgMGmSbHLk6m81isVjEf/pP/6mA+oA1TvwjkYNdk7xrPee+uP18hCx6ApucO4+w8ficJBKO4vXJJ9bfOdDi4Ger1Soyg52PJCROJpPGPcsE1SJ2p5Sw+4u68BewkZ+fnwug5R35tqN5jt2fFK7lAHxiPLPZrBzZSkHfOFES/wVaM0bPNbt0rWfQEbazmTuC0a1WKxaLRUOXOpkK+xT9QtazdT42t2Uzut0JNcwhn22323LvKnML/9AXbJXNZtOw+aGndyMwF9g2/PAs/aIw1wCl9A39CI9TN/2Gf5g72/nuH/OafVTqo09OPPYxedvtthHoBNDBbvBdRQTobbNz5DW8io/HPBDAjohiazBu38PpeeJ/gvfsDraux9fHB8MeJRnM9OQdxmgbEPpT8IPhFXicH4LvFP/vnePZJ8WHiIj49OlT3N/fx3A4jHa7HVdXV2XOmVP6btvNSWvv378vO6Du7++j03nZ8Tufz2M8Hsd3330X5+fncX193dgZDT1Ho1HDxnESnW1jy2P7oodyKIfyxyk/d13b/su4EDoioonzWYYiJ2m33W4X+8NJ1dhh9v1Jbvv06VPc3Nw06t9ut+UuZwIU6OAcjDE25frpt315+oJexL7M+LAxPmiA/rauwt6JiIIBYIMZp0OXgGu0Wi9BVGjl53LSusfN/NiOyRha9vX3zbfHZv8AGwwauS3rEttfnjd/znjyiRgRzV2G5h+eo+/G0zPWTd9tf+Sx1mwqt8czft62RbZJaSfjwG43Y4J+t9Zn7F+fiGMb3fNl+8m0zImkGQc0rug7WY2b+rOMuzMXTpRwsDbLHnyfLAscHzIuaozJ9RPridjFLLz5wImFYLVcc2K5ELELQhObwHe9uLho+E2mNz4bMs+Y3Pv376PX68XHjx8bSazQ3/Sy/8UpM3kDXj4Jxrga/QHr8ry5DePk+4rlwJdKDc/+Nco+PPBryq+yE/SnFGVNoPh/BKOFhgMEft7CzMLIAp33OXqLzE+Eo4MiEbvLkp2NvFq93Kdxd3dXjvNCOeZ+uV0W3tnZWdmibFA3BwkpVhowvR0vnLWI3S6eDOZnmjj7PAPKNfDKghka8l4+PiuiuXsn05J5NViB8LPwJDjHfBOU83Z0A+S5Lgs3Mz712fE1qO/nLQzMZzZQnMXheh4fH4uT7rnKgIMVmOtnDqkbY8CKwkI/GxkGf3IwwXNbW0s5IO4gDfNnWrvefYXxMdascLOiNi+aNpkmBr9q7VkAWsi7mP/4gZ+ccZ8NO7eT10wty4mSQVQDie5/NiwMarkv2WmotWulT9+szKCvaWFDzu157s2/Ea93kWejzZnvOZMv99U84LqyEcl4My0Yk3eJRzTvzvL5+jagcmabZQHGDX2CDl4rgHI2Mky/bJjTXwwVdvtcXV01skeR3R4rBf2AbgHkuru7i++//77Bp6Yn8+UxOpBvcJ7kFMsk6oJ+TghygoP5KAOLma/4nr6h82oO0U+Vfc/Y4Gac+Yd+ATYyb9yhwBjNC+z2glbIbd4bDoflTi47oYdyKL/14jWJbLYcdkAnIhp6ITtqJB1cXFy82tnGbzJZHx8fy+6t7IQTpFmtVo2AgAOidlo7nU4JuJHgACB0fn5e5B87q7xTDPmELAbg2m63ZWciduFsNisy1DsgCfZmu8K7zlutl6Og1ut1OcLUdzhaxiJHcHjRwRwvO51O4/7+vgRhj46OYjQalb5T0C0OoKFLmFfr9U7nJdMYOWg5t9lsSkAOH4G5HwwGZV7xiaCpA1n4AOhbB41yUDQiGroGX8jv2DauZXzDQz7dBkDC9jS0ISi32ezug8wF38R2NrqSsaNHnQAHDe1/waPz+bwcb4zdQN/RRfSV9UCiL32BD7CNeMY2DonBBnhse2S/jSAgc7ndbstxYqyzHFgkUJ2BZ9Y+gXfmyeOyLesrVSJeEpHQ2+ws9lixjZbLZQGTbf+aF5gT7z7AfyOJgJ2Y9J1TH7zWDcKRQExSlIt9bINwx8fHMR6P41//9V/j/fv38fbt2wJuQQf6wVwyN0dHR/HmzZsYj8clWY+7R2ezWazX63I0pBN7oT0nWGQfw36F7dGfwn4O5VAO5fdZav7Xl9a75QX/Wy6h35CtNbyOZ9HT/X6/6Hj0p3E29Bt654cffoi7u7sGZoZdxmaFTqdT7D/a3ufH227jO06K2G5fThokac14Fr+NhxojJSGv3+833t1ut0Wus2MS+e4dkjmI5OQrPjOWzLPYO54ft8HnORCK3WI8w/aLfQXoRbDZz6Jfec5HAxsLs75xoBed7UCqMTBj6DzvoBfj8el3+xLorZ8zhmJ+N7/4bwdj827njFV4Xvy/7XE+84ahzFuMx312ncbj/IwxeI8/zyltuD/GyYzTQWfPHZ8bR8tz6Hnw2D1+7EXWsN/3mDINI3b3BhuLxQ97fn6O+/v7WC6X5aoOJ/Bh/8LXphPfLxaLeHx8jKurq3LCKLY7eJv5xJuhHh8fo9/vx7t37+L29rYR+GVsTqwkgIlPnE9+4dqt2WxW1vGXsGNjtjWezKWGGWcctFaMOe+rOz//td9/DVbo8jc/DjeDsfl/g545SOPi7yyIc2YFk9Dv90u2MffIsCCcRQlYT70A0w8PDzEej2OxWDTazoC0P+t0Xo6Pok5nAuBw5IUHYyKQENgwowO49M2LEtqwGHHocBZZcD4mgLYNzDJGBw4s4PJzVlC8l4MmBpdxgE0v+ositHD3u3knFM/QF+bWzG9hST3ZeOC36+YZ84WFV8Tu3ibzC2PLdHLwgH5nUMFzs08RWyFY0BjgoVgws8Ys/GoGh+cemtN/+uAgk5WujSBnWXm8+fNseDmolefXn9N3A021gI/b4X36kgWvFZvfz3Ti82wUG3zL8+h+eF4cRGOOsmHhsk9Z2IDIfTNNPW+1ucmGg8ed5yIbTwCzjDMbLci12lzzfG23o4FOG87+m+fhT8segDr32Ya/243YrV3adIZ9li82rGjPaxQZhgNmw8Lj5mgOAo+Axqenp1UaZH2FI8Hu/+fn5wLK5XXN/HgXZF4vFB8haJ7O/fFcm++cNGIedEDc9LNMzHqlpr/+2uIAqOWe+SjrE48f+rGbF/6nv8fHxzEajaLb7RYbwmvoUA7lt1wsqy3X7LzyjIOQ2F3Y5hG7DF52XrLWXBeBQHYxjcfjOD4+jouLi3I8JolxBAG92411S/Cl2+0WWWq7xY609SFHpRmswzfhODZoAE0eHh5iMpnEzc1NAUsArywDs+1DX31KjMEr7FYSZaz/6AtzQrYwcv3h4SEWi0VENI8zsu7kuFzLuU6n0wj+2m5m/tj5Tns+eSIiSuYx/tc333wTb9++bRy3azmOb0HQjkAhbdp2wybnvQyu4W/Z3sKXsq5brXb3AeF72PmnfuoFYGC+0LebzebVPGNPmPfRXeg9eBd6HR0dlRMabEcTHLZfMZ/PS13eqZv93+12W9aTfS7b9vTH4Bx9ZscnwXXoadvI4CF2FjTnOFx4k/qyrUx/ncFOEqwDtcyVd8oyHq9r+Jv+srPGyRPt9m5nETT0CUOsFei2Wu2uf7AthH1HgPno6KgkCbAzmnr44X/bD9DD91F1Op0CxGEffv/999Hr9cqdq8y9k8U8N+x8f3x8LOA/R+J2u92y+5zjtrGXz87OyvxBA+/8Zg6NZxzKoRzKH6sY4/klJeMKrsv6ke/wba3DbE+6X9g1Ec0jdT98+BB3d3cN3xM5jc5AB0+n02J/0aesK21nGAtB73C9g4O2+Pr2sU9PT6PX6xU9wGfYLBxjCeaAbewT5Ah+OBE3+9T40dDHeGbGHWyz+LfluZPN+N9tZ3+WuchYkfGBjBc4mb4WgDPGTX3+27ie+QO9iA3vuaRN3x9fG1PGuDM+6GdMA/M1/XWCm4sxKffBwUrPdW4POvBMfgf+MZ5hXNljMd97zWX81niYeSuiicXbnvUzfG6fyjaR6eJins5HZLP+6Kvt1pxQT10O3A6Hw3Lay+XlZbE1Z7NZwz43LuU5sp8R8cLX19fXJRHUsSj8KyfOm69J/uh2u/Hx48e4v79v2K1OckDWPD09Rb/fL5/zGVcxTqfTBo0zj3Q6nYIZ2u62DP+jlr/LnaA5UGHGxVHNoCOLKGKXOe3JsaI0wA8AwhGD3IORnUwWB9kqdr4BCSaTScMZd2Aw7+jESUbZ0cfssGVh5Dr420CBlSnHBmVaGZQmAOrM1lpAhTFDeztQpjlKxYIyZ6cYgIpoZnXtC8xQF+22Wrut4Zm2WRlaaO4LHlEPxpXBmqyc6DN9JXsiYndvEn3FMDE/YsggnFBGACZ5vikIYQwxB+oNThmYqxkzzKcNIYNu1GMamG/cbwOE0DGDVzWllQ0IBzMcWLAsMM9babmOXLIQz2PPxd/bUOLHgSbzeH7PMiYbLXn85tcs+3jGxlSmZR6rn3f2Ef10EoWdBgep3IdsyNUMLbdvWWwa5OI177ptiJq3Ms08ruzIfMkAZdx2ZOh/pkvmH/Oe5xzwk74alDMQx3cOClIX7wP2Wra676vVKm5vb6PT6cRisYjRaNQw0M2nvq8A+c1xiZ1OJ8bj8asdBxQ7jqah/7c8dhafaWp6oq9qmWPmCYrXE+27Xep3e79Gcb1ec9ad3vFjB5N+ApwyRgPSritidyThyclJTKfTV3rsUA7lt1yyw5plpItlq+UlNh2AO/IC2Yos7fV60W63YzweF7v79vY2ttttDIfDOD8/j/v7+8YOfvpgmykiygksOIToR48L+W37BxCK02PI8LfeZb2TIMmRspwU4/4QOMC/WS6XpY/emXp6elqCFcgXBy5s49peyvPAe7YlCCxhv3JnJYEPbDKCj+w69O5TEkIjomQpM8aIKDvc8H84Nuq7774rmdDPz8+FTjjlPo6q1WoVnUXbyF70pgE9+xoEgtjdxrhOT09jMBhExC5hCf4EIGi1WjGfz4vPmEEh6wD6QFDMdpD/B3C1jUSwDV+AscNf0Iy14efX63UJaLLDeTablaBtPrnAycTMi203/KGcBGDQmkBkpj30o23qs49LUB9ACdsP/cl9otmHg3e4Q9u2D8FcEh+oK/eHHec8S98cgIXPDPwgl2zDWD6w05m6rcORa/iG8BpyhbVC8gd0yffFMt/w4Xw+L+sZH/S7774rOxOYGwP3yKf7+/vYbDbx7t27uLm5iefnl/vw2MHU7XaLnIOO4AbITuoyreBp7POaLjiUQzmUP0bJuMHXPOvgpnV2Dnwic33qBbodnQDWxrMROzwBXYkv+sMPP5QTOdCfbASxX4Yu8BVhs9ksjo+Py3UMxhJp17bIyclJDAaDctLf4+NjactJKBxPy32E6ATwPDARrluDjnyXgx2mqfE1PjeeS79tq1GM9bhNB3lqvqptnoxF2jZzECoHKHP7GQOi5MAttPVntkHQS4yF56wfsw6Dl8zjti1q2HmNfhkH5LM87oydZSzWuAM2TeZDioOUxi1NO+wY98MBZON+xsKxc22b2CbmGdto0Nr2UeYf+1LUYTzffGv70DT1b5+AyPziW1IXa78mx3KchvU4GAzK++fn5zGZTMpOcuJJq9XLlRS9Xq+sbfwtkhe3223c39+XYCe+4Gw2a5waAi2xw1j3nU4nvv3224iIItva7d11fMgk5FmeJ+Z2OBzG58+fGzLBSZQOrDrWUUtWqc1rrezDiL/2/a+p/9eq6+8aBM2BBZSgBa+LhRkFwWClaCWHMvPRAXxvB5H/YQAACJTSfD4vQUf6YFDdWbY4V4zFggYGt/BG8Vt4ZOCX/njXJ//7WC87I1aWzliI2AG22SBwXy2ArFg85nwkjwEa0zcLOJ7LBSWE8YLARmA405l6+W1jJQdLmHeClIzDID78A59ENO/TsRB2AMcBj1arVUA8gwG0jdNtRQXgQUa55wtQx467aWdFbjp7bbk95jOPNYMfBi8NQpl/czBju902eD4rsfy/+0ObpnE2BNxeVvo1WWLB6OBNBmg93w5g5UCf2+Nz851lD+8bMLDBRYGWnicDu3n+TMMcHHT/DB4ahPO7mQ/MQ+ZnfrxOXAzGml9cn+c0K0QDavTFRoDXc22+3Hfaq/Xz6OioKHvAKgwJAF/6ZhnMMw4aepyWMzW5kpNYkAu1tUD99AdHq9/vl2xR9w8ZTGHnhXmDozxMQ9PHBnJtbm0gYVTmefdxiv6+Zvh7beW5tNxmLs1//u6vKVm3OThAYIPsQuaetQc/sEYMLG+3L8cWjkajRkZuxAv/9Xq9ctE94zuUQ/mtF8toivVEXrPZ3qOOo6OjGA6H5VjpnKVOwHE2m5XkQ5zE7fYlIHN+fl6cQNanAQLW52AwKG1F7HQKzxF0NMhg+UQCJMAV4yG4tl6vYzKZxHg8Lju1XIftTHSAd4k5CMKJMQREkbMEQAkaYmOxe4vdg8yL/Rt++DwiGrrHIBX9YowRUZxp5DmOPoAI80aQkeDhaDQq4+DoUSeIcOQ7NLy6umrwWNaj1BURRWdH7E5g8X2Y+EIks15eXpbdlujrbrdb9PVkMmkkjRGcwq8BDKHtvBuCZwESzF/ZNjFtPS/Pz88xGAwaei7vCGVXJP08Otodu2p/GT1MQJUdzfhU/J31DvSzrejAPWsPXem+MK7Ma6wh6s9623ep0zaJyAReHfjDDnGQEL3s47D5nGNcmV/7j6wb6uMOX9Yo64SgqeXaarWKxWJREiOQHRSSKo6OjorseHh4KMcacjwaa8rZ/8yN1xF9eX5+LkfYwl/v378vc2E+d8LdYrEoa+X9+/flWGXGcXFxEd1utwTfWZvYlRzR6KOH6a/p4jV8KIdyKH+cUgOZ9/lhGWvKPrD9REB3/FMHYCxfuAM96xjXiU/8ww8/FBmHnMSWMhaY9SD2CMlEJML6+FQfnXl2dlaCHshagiPYaRcXF7HdbksAlAQz+m/8DrmdsRfsq+wTMxZ+sMmo1zgeNgNt25/O+se0NW6a5zXjNQ7Seo4I5GQsYF/d5iPjoRnDYhze4MPn3mFp38Q8VNNZGcurYcN+1hiXx+YxGKs1fpd52M9mbI7P8rrIdPM47a9l/nCdjDFj6MYveTbHJsyn/oySN/DkMddwIGM+/E8d/MbehJ72F1qt3ekspqP7in3E+3nNEdj0qaERUdYiyRLs9CYWA5af1yayiES7T58+Rb/fL3a3/QLPCfONHDs5OYnvvvsuPn78GJPJpPTV8sNYnumEX0hSG8FZj42rNviBtvTFcrzGt+bB2lrIuOM+vvlHlq8Ogn4NEJkBb/+fgRMLU09MRFOg14JnFkD5exwqHIl+v99YTCyUmnCI2N2XAyDNgqn1Y7VaxdnZWXHEAQa8iB3VN6jOwkUh+Wg+lDgMDrNDG9/VxmIxIxpkyo4di8jCFUXtd6Czg56eP8aT585AjJVk5oWsYKjL48AYYWHbAfe8Mac40gb3ERAWGvSTvtBH5g+AnD4h/CxMnQXjPlmgU68NkMzD9MWBcZ/3bcFaC6KQhVIL0EK/nEGVjR/6Rj/NC37etHahfhsu1MXaYb1gnJkn6IMNHit3/jcP5UB0rsv0Nk/Z6DGQ4ed4lnoMivBebjPTJSsJj83yMGIXGM3P1wx308Tjox85+Os1k2lEXfmZrJhpK/MLQBPryuCIFStj9XEVGLNeS/THsg5aeDeHx0Hxms/0pD8+lo/17jl1NqTlmufYxlSWYfk3c0Bd8IjBQusLAEd2Q+CUmW9zsD331wG8HLjNc5dllvvLe07U8B1SzqKzUZrXoHmhlshAfTxL4BUd9TUGl+2AWrt5XcMvDoaiO0iCgbeXy2XpO+/CFwQ+THd0Ns7mxcVFjMfj4ihnp+BQDuW3WFhHBlKsgyOaYLiDigAkvP/+/fvodDoxnU5LwkbEyzoCVHp6eorpdNo4npF1PRgM4vz8vNx1ib7h+6OjoxgMBnF5edkIKqJfcDxJSmi1WiXgRN+dnb9er8sdgu12u2QAPzw8FFuQAJh3nvkaDOiBP2HbKx/ratDu4eGhBB4JJNI/H+9K0AuHnKRN3su7COiH+xKxO8IV2c7/jM1zShCW3bnY3ARU6BvB7MViUfQEdcE7w+EwLi4uii1IgIyAlO12+27MEbq73W43dKTtz/V6XXavcrKLA2qPj49l9559LfjL94w6QRM5T3/sz9kmtR2CnURADj7ZbrcxnU7Lc9Z59kvQVYAW7Xa7ADb2j6C/ARonHljP0nc+g6YPDw+FNvSVdQENt9vdaRk5Kct0pu+sXdtGli3t9u7OXwLT2PjMAZ/xnhOWvDY4tpn5Z4eog57MoXEA+zG2e1kX7NghyMnY2XHrnRC9Xi8iotzNiTxgDmwHI78Yi8E+6DyZTOL5+Tnm83n86U9/irdv38Z8Pm/gGZvNJiaTSUyn0yIz2LkNP3BUNvNvWUy/vNvbtj16wfZk9scP5VAO5fdfaj7Tl4rxAfv8ltskidlXNa5FabfbcXl52ZCTGQNBzl5fX5cEM+OVBCm864livI36I16Sh7m6BHun2+2WgCani1AffjLfG8smuYeEPMto7Db+zpsQvDvW+hE6m070wzYSctvvGsNzYJm5cnHb2Zc2RmmcmXfMNxk/MXZs3e52bY/QTg4OeQOQ2zIG5XfyGMwH1nvGGkxDj818zri9MQH+zuMy/l5rx3Rzu9gHtoWpJydsed7y3GW8DL6hPdux7pf7TT1eM+Y7r3f6lIPVxhk9dvtH2MDGEuEbY9fQ1fMHXzqx1WvP/gT1OOZhetJ37EvvKu52uzEej4uv6M0t2LnYqjxzf38frVYrzs/PS8Iez9lftp3MFQXfffdddDqdmEwmJW6EbUYy29PTU5ydnTXwW/yH4+PjRhIxPMX81+aBsf81JfP1r1Xfr2lz/l12guZFaGI7OOjn87MOLnmxuh6Mfpg2A+POQDGzsxgfHx9jMpmUrPR8HFVe3Kenp+Us6Rx0oR3AC4O0CHcvAjKK7FDSRy9onrdiYaHRvpk7ogm0Uy/OKn2x4HU7CDeD9hZmVt5Z0DI+g7+ADdTFc1bYBsgd3DEAn9umHoQBc+KdA6YdAtP9sKFhwQCAw1FMDppst9uy88oBSZxswBHTw04lDrTHbnCjZiha8Fvg24CAdxzUyoLDtLVCqRmorD/Xb3CFZ0xHPrNhVzMkPIfuW82wysWywbxEW9kAy0ESf+Y6anzAd7UgauZhjwEegl7whwEvK2jzl/uCgZUNnEwv0zAbWLXvmYds8GWZZnpH7IBNv5vfz31kHJb51MeOjs1md19TzXCvGY185/lAL9jgsnFn+ZqP/6Cfeb2axz1ukiYy35i/s8PA2nAwuN3eHZ0GndjJQt/QKfTXGay+N6Q21wbhTCd+yP7nu33zaVoxFvRMNpZNe7drhw59zbi9JpmDmtOVecBj8/xa3lhXZhnP8wZbAREd6OQ56Ef/zs7OYj6fl3GTlEUQ9Nc03g7lUP6WJYNTXjNe07nA49jjg8Egtttt3N3dNeQAuyEfHx9jsVjEcrmM8XhcEs4idqDQ+fl5TKfTctUDwbPT09N48+ZNCa7ynoESZOvR0VGxr52piz1MgDQiSiCIwAO7CmwnI3OOj49L4JOESGT74+Pjqx2DyBvawW7laE4HR7AbcHotT9EdBHR95DAyC2AQW9j6i++gCf3kGQKeHJ8JEMAdV09PT0Ue0m/q4Ig56MSY0C8467yPbW2AwoCGg2TwGLYC8nYwGBR62f/ivhyuuWAXoPUE9MigiefDPgzHAGcwhf4zJnQaoCjrCB7gHft9jGuz2ZQd1BT8hYeHh8ZuTvwTkg2YB9YXZbvdlqRX7vKEl25vb1+BPfC3x86OaeaCeqBXu90uAVj7zrZ7SFSAZwnoQY8MEvMeupl1aJANnvFx26PRqPj00J+AO2uM9YAsMKjHePmOOXNigQP4BsCRKwYM6buDpuwYss1nP4KkCCdLRERcXV0V/mT+lstlsXmRD/C9+10D0LHpvBPKstyYgAv1HsqhHMofs3wJg6Eg+/w/P06std1oIB85ybHg+NS2GbHBjo6OYrFYFL1Bsot9MttM2FgG9rP/iu7CPjg6OorRaFRkOHIXvdxqtcrGCXxy9IoxDu/qRP5CCydKua8ORkS8lsP22/2+N2dke8r1oAOyfvbfGeszXmu7Hzq7Xy7G1fycE6wzfmfsxqco4I+bn5gTeA5a8Bv+sV1ju6eGF9pPNy6XcS7o42KbJNPAY6R/xkIy1pvnwnXRbg3noOQxee25H7WAY8Z7HKjLOIbx5hzwZQy04fczb3jcGUuFVu4/3xm7qWGr0Ja+mH+8TozXeYzb7basY+jMnerIINtH0Nl+HXJjsVjE1dVVSQLl6hPoCBYG7bjH/dtvvy0nHWV8ktiD8VH+xlchwQN7PiedOpZQm9efi1/lZ/fx8T+6/N3vBDUx89FOVpIUC+eaELKAIiMHxoCJDIDyvwNJOKEcxWWF6n5TB0fekBnN+/TVwTUYi/+9sMlQBYgAdGGBbbe7bNuIaDCoFSlON8WfsRgAByKiEdw1MGKBUFPWBgpw8t0mBo2VKXPoYkAIulCHHbgs+Azk8793xZqvIna7gmsKx4oRg4b3nFVt4AlB6eBUBqbybjeyoBmnnzHIYFqYhhE7pWrDx+siGzO8Y9rTbweMzdd5jdaUI58506QW/Pb/vlcIwMMKJhsY7ouVaK3PvGdaZAPF/JmDU64v8yKfQ68ckMxBMD7PipNCvX7GNOc7rxUHXjz+WqGu2nrJfanJ4kw709WGOf8j71hfAEV2VrzOspFpp4CCvAHMYq3wfB5XbT4yDQw8eT15rJ5zy2dkXUTT0Oc5ZwAaBHRgOCcjeJ5MDxuwNpqgoe8qgVami3euZCPX85Hnxn3OAcgM6po387q1fMrG0r61meUYdDDP0H/zUG2N7dMp+e/M4/wALnrnBOA1PGPDM8tH717FiD09PY2Tk5Po9/sxHo9f2TaHcii/1eL1hH3rdR7RBEOc9dpq7Y7subi4iF6vV7JhHTxirbBrcDKZNO5Hsp3U7/fjzZs35YjJiJdA2uXlZdmNbTvNdyU6EMHuAK4p8A49ghzY5NPptNiYBEGRsegq1nje3UdCI/YPNPXYDNIh/5EzvmcGmedgCsFV5oUxrlarklC52WxiOp3Gev1yJJL7QZs+6rTV2l3tQGB3s9nEaDQqmcsEOheLRcPef3x8LLvf6KODfOgYaNvv98sxTchZy0dkKXYF4AZz62dzkJe+4Q9aF8OLBleZt4eHhwJq4gu4bYL5+Gf4RNne5XPf1YkPhU+w2WzK/avOymbO+Zv15J20PjbXQX77hgZ1bXsA5nLqATuP3d52uy07qkkoBeRlRyF8FvGiRxeLRcMWNAgM7ebzeUn4dWCWOniPK21ms1nhDcsZ5trAF7LISXQeD3V0u93o9/ulLWwgfDQCzL6zCb4lYOlgJDKAXbo8g90C/3G1Du/6eGtkCHzsI9bsa+G3m9/ZMcU8sna9Nrgf1zRjpxP9Yj1wZFo+4cK2LnOKXjiUQzmUP1apYQ2s/S/5MZapGUuhTu+UQydZ511cXMTJyUljM4P7ZPzBiSjWKehRB1LtS9oX53tsmdPT07i4uCgnCpLkg5weDofluhrayTvrfa0VdEHnZAzRtGWclq+2VXjWQT10Xw3HNYZle92BO+Mdxsrz3NRKDjjl4JGLsaYaL2U8hnk1XSjwGfWaPq7DuIODcMazXT91GWPOc+PnsL08hoxT5HnOWJixDn9nnuU5j7uGl/p/nsn4h/uSaeTnzG/Ms/vi8RkDY35cp/tmX9I87DF4/txH9z1jT55L+NABQ3wS80qOL+XxY7P7RB+fLISfFBHFXkU+YStj99Lv1WoVt7e38fDwEG/fvo1ut1tsesd+5vN5eWc+n8fJyUl888035Xmf0kmi/XA4bMgW5FOv14vb29tXcpldpLUAuufB5Us4dO2Zr3n+a8uvWRfl7xYE5beZ11mn+4DKGuhSIzDM50CTs3MoWfmweHwMlQ39x8fHhvI+OzuL4XBYjj/AGTRzue/0yeD0arUqRy+YkXnXO8Y4/stjp38ABCjNnA1BfQbAHTzMQcqcBeuxWDHYgPE4ERIOAFK/28g7CHk/K1K37fl3n+0A5wxfgBSAMIPaDlS4uF82jHgOcNt94TscQujrrFsH3b0eHHwgm9vASqfTKSAEbSGU/cw+IWYa21jIitgGSqZDrtfBE/MUfXCQwHxoRZCNgAxyRLw+1tQAS83YMK/kNrJh4Of3GffZ4WfcpqvpUzNCvHZ5z9mCGBhepzZgoTP1mYfznLhtB2ssc00Xnsv17aOPeQRHAiDM/OVgkd/PwWrGZhpGNO8xc2aXjRj3Nct06vtSYCzTxQE/ZBQgMfIdHmc+DNJnmUh7Dgp6TswrjJEdUHZaJpNJrNfruLy8jG63+yrJJ2f9syZz0P5La4E2nfyB3EKH8n+WJ3ks1huZJpY/plNENMA0DM0cHDAP1xwMz3E2wPfpM+bQoC7z7+PwHYzwsYeWA/AuO4CoC7A/B5IP5VB+D8XyiMAl69BywoA9emU0GkW73S53XE4mk3jz5k30er0SmFutVuW7xWLRCJjRfrfbjeFwGN98801ERAlosa7wJ5CDrFP6TMCHOr3TiT4/Pz/HYrEo948S7LHcf3p6apzsYRsS241dpNZt2+22HFfrTHZ0oI9sYxy22ZH9PvWF43OxJ5D/BHGQqQTQ1ut12bFK4HO1WjXurULXAhThf2w2m5K0iq9koAHasRM2IkpAy3oCenL3Kbvg6Ger9RKI9XHo8ADHvAI4ol/oF/YBNHMQh3p4F9k+GAxe3ZVjnsDni4hy9Um2z+zXQTfq6Ha7BUhFjzhZDB1CIJaxQkMf28v8+qhS2x4GM+BZgqPYAOZX7q2ETwge8jdHCFuXwUf4rvYn4X+Cgxx1zZGE+GUGqL3W7fe1Wq3o9/sFBHaysYGfVqtVxgAt4VmeBVhiLF5H8M54PC47aGmHXZUZyM6JyRxDFrGzKwzecqQiddo+Ozk5KXKMNQwfO4Cb7bTr6+vodDrxT//0T/Hdd9+VY27b7XZjPYE1cJ+dbSp4lcQH3nEd9uWyrWW7MvtOh3Ioh/Ifq9ivrxUH1oyR2pfEZozY2S0RzR3rBABsA202mxK0tF5CLmEXWZayK8uJKcPhMHq9XpFl2IDo7YuLixgMBo0kEQexsI2xoWyTGDvJATgHOjPeln1tksOgecTrHYX2k/0+xXhifh4bh8+NpUR8+T5M45w1/vDfxv+o1/ok12HbwFhFtvFq9KvhEhnLq2GiHptxrDzuGiZpzNt9cd0ZCzHt4Ifc1xy4dbu1fmea1HDBWjFuiR2ZaZttA+bByYOeJ/cfWw0by/2oYfMZv/VvxmMZ43YJVvpKFeSN6Uy/nFCLDUbhO+hDElzEi7y4u7srSbAEMukjp9Ks1y8ndzw9PcX79+/Lznfjp+4PtDo+Po7hcBgRUWJTxrG2221JyrWtjEwznag78wxj8waxP3L5mwdBawszYhfss9DPSsULwYqG/ykY9Dg3PJOPdIl4nbmCQMWBJPhjRvGCwWkn49sOkTOKsiNMxH0ymcT9/X0sFotG9im0sBPNGABKcNwcbKB/BlwssBysAsAxUJWDFxl8gQYcEeH+8rcDZp53BwgsRAyqAUowTiskAGjPgQMJBtkxZBxkdVaSA3ZZKVpR0BcbWtnQYbwIbgQgPOKMfYIIONYR0cgyPzs7i8FgEIPBoMwxDj9Zwj7KyHMX8VqBQw8r7TwvPJ/pzXiyAvLcmk9wpr2bohaIhd6ATZ5P2rRS5jsHoA1EOlAI0JadcCt3Gy/uo4NwmX5Z7thAqwX5I3ZB2xyIMlgM79g4dZso5RqdbfyaJ2vzXQs45pJ5yAGubGCYjjxTS5rIsol6oZ8DyjkRw06Pg3ump/sADS0X89hssGTamNcsN81D8Jh3qVpOUgwsMVaDegaZMt/TR4OxjIVjVJGP3W63PM+Ys2Plo3kBfDOPMz4n4NBHaA5IiDysOTfm31yXdYDXj+fP/MV71mXcp0W/oO8+W6DGq9kI92eeK+v8dvvlvkIfQ2d6AJAyp8hAAgesVQIO2CLo/EM5lN96ybYPayWDIF5/ti84MQXdjw15dXVVrpHAThuPx4179mgfe/3+/j7a7Xa8ffu2HBHKSSokJbA+T05OYrvd7WrCvqdPWc/yvQOXq9XuyE9sFoIKj4+PJZBJ/fTz4eEhFotF2T1gnWLbkPqgHUEa/nfQjD4zNo7Q9e4zgpM+IYB2eY+ds9iT1rckblA3dgpzQBAS+Wx9AwjJOOABdo9SP/LVvg3HzfF/3j1heRyx8x2sa1arVXHy4QMCZN75i944PT0twWDv/MPmxE6x7kKeG9i0LWeQFn4nYcljxl7Fhnh+fm4EoekDIAb2dbfbjcViEa1Wq+yGtg0M4EFyAP02KGx7kXnDHiFoTjCTvjkI6CQrQBcy2AFwHLh7enp6dQwrzzrIR7LxZrMptMA+ZH7Ru61Wqxwfhp/EOmu32yXISJvoW45BZkxOhu31euWOW/xy+yy+G9Y7RLH14QfkHnIn+xusZfjJO9IBtFgntqlp3wHS5XIZnz59KuPodruFBswf7yN72ZVPUJrrE0jOoK/4pcZnbI8bF9nnZx7KoRzK77cYMK9952KswEk+xljzs7YT7UM6GQgZ6CtefHKB7ZiIXbJORDSS8ghkZp/bd/ldXl5Gv98vOhX9xDUJtGXZmfE+xp2DOsasbP/lAJSxAuwAP49tYcwtIhp63VgAzxtDo+T5oe/+3sXjMe5qTMTBo4wT2IfnXf9tvzzjrZl34A3mmff3YVXG+42tZ8zK9pTxIRfTuVaPdb7n133PdVGH15xtxowR5jVTo6P7WcNdIl5fLZUxyYyV1/w8t1XjOYpjOrlgU/i9bGPktjw24/z2Ezwu+xzY8rSXeam2Tu3z2KbL+JoT8+7v78sGCsd15vN5OZljuVzGDz/8EH/6059iOBwWu9t4lX1E7L1+vx9PT08xHo/Lrnlw5uyr4x/R1zwPxuGgTfa7vmTj5bnm+RrPf+lz17ev7NM9X3rmp8qvGgS1gxVRzxSkgz5CwO9/qe6IZjDMwgbFkAEOv8PfZmScQRwrjoeh/xQCVRyXh4MEWFEDByJ2oMB4PI75fB6TyaRxn4pBX2/Rx1GDsfmBFjiMZKw7MJPBZZzEiCiZvvnuOGfe0xf+h9Z2HHnGQBAOLtm0/jG47/cjdjtvyA62Y85z5g2es3A22GAnF+ACx9ygloU97SPEeJZdUD4GDfDDl3YzTt815XoxrBwI4jmMPrKSPS8IMQeRobOFJZ8z/w7E850NLNaEwRYbC6Y7PMjahm60Zd6xEeZ1y3s+ZtI7pqCL+1YrNhastL3DAiHOWoefACb4n3atDKGBZVYORjIu6GDAzOuF+rNQtrHk9QQ9aoZJNm78jA0X6mdNGiyzMmfe6G/uH+OqKR0HNP2368ry3mfW5zazbDafWUazNrJ8y8ZbNj5rDoDn2vMP//A5uxAcVLXR5X7SFgZWBlI9Vhwsr2vqMYjPWh+Px4VnuLvOetBGjxM+DNZlXnQ2pR2Zdnu3c8JArAE/5IUDiZ5PG6jmjWzEQi/PW16j9NVAtNvzWjL/Zr4yz9EGz/luPRKFaOvs7Kxx3D1jxoaxs71er0uClPXm2dlZcboP5VB+DyXroMz7FK895F7ES/bpYDCIiF1GPcHLs7OzsnZIDrTus5yktFqtOD8/j9FoFNfX13F3d9fQjw424OwxDnZDWWetVqti77P+sbPZJWdfgu/QdwSYAKSWy2XZ8Uob2MKmTbZN6JPtZGzYbOPSV9qiD+h85oydX9hil5eX8ebNm+I88y46FVs22zAGJGkLu5F+Pjw8FJ+o1XoJNHMqC3qk1WoV+TqbzUqm9GKxKPxCYNz1QwMnS1reetcsR0Khsw1qROxO4CFYjq6k78wzgS58pdVqVbKvmcMMulCXQWB8tO12l8Rk/uF5AuYcXYrPyJgfHh5iNps1gmu06ba9E9VApUEe/CPmEdvA9hP9Yt4AnW3Xw9t8TmIna8RHgaFPOSoYu4ZxZ1DO7WDDOukIe8Q0oH6DWtCSRCr64YRn5oHrbQyCHR297BBlVyfHPUNv/s5YhI/Atr18dHRUdtfSju/hZT0RHCXYbVmbMYBPnz7F7e1tfPvtt3F1ddW4W9QJz9vttgRau91uSa4zf1Av8uPs7KzIbb6zrXsoh3Io/3FK9qMpttmQi8h6+0H2ifGTcuL9+fl549QO42zsrEInkBx0f39f2rdvGvH6dATbAmBvo9GoHG2LHYgPTH+Qy8YOHYDxvdmmS0TzairrWQcjariGsSie9xwYg3CytzEqy2m/b7uStp1MbtuZ5zIuRp0ZE+R5+ubPM0bhZzImhy3sz/y/2zbek+mLHQXWjp1qevinRrNMizxu4xme64zNuVDHl9rDFskYnfuTcZ2sm7N9VeMn9z/zjW1J05U+5bG7Ds+t7bs8buOIeS5rfF+bF8Zo/CsH343V8643WWA7ZRrmuWC91LD5o6Ojcl/7/f19TCaT8i5+EDIDu/3jx4+x2WzizZs3xS504l2r1WqcfLTZbKLX6zU2a2Fz4wOAoW2327Khyie9RERJmONz8y/0tOyulTwv/M0c1Obpt2Q//uqInBcV/2dBAwPghFh5mEFNeCvKiNdbzH2xthme3zl7hUXnI4EcyEOhHx0dxZs3b6Lb7ZYgK2AJbXvs7i+O2nw+j5ubm7i/v28cGevFlvtlpcJ4WBB870xNaOwAY3Zw6LODW3agaZN+18aUi8HzHAzDwcRQcF+gG8aDg6w4XxaAeTFBXwsVL1gfjWsDBV4AJDk9PY3RaFTO+LcQtZNO2wgX6smBfAJZq9XuTjjXgfMNjS2AzLtk6TLn2RkGVHEQnn44CAitbWzmAJ3HxzxkxezMMyu/DJp5DJ43G0OeI/NCNpa/VlA6MOLgiYEK5isHi6CHM4fgW68nlB71WblbIVJMFyvAHEj182QfZuPKyiQbGp5HSpYl7oe/s/zx+s+ZjDl4ZNr5fYrfs9GZ++dnvT4ccLbzwvy6nVZrB5hmJyTPZaa5dZJ5OmInd/kc/scpw7AA8MtGlNe359+7MgAPmXfzSMQOzAcE9C4G6zoML9Md+cO6wFhyYov52PNl2hiYr/Et/1sHWYdlnUw75sH8Tk3e/1Sx0cb/2ZivFetNLrnnuBKc33xconUv/7Pzx/oawB89cCiH8nsq2RH2Go9oZon6NBTk0XA4jHa73QDSkXXYFMvlMu7v72M+nxfAKssCZO1wOCyO48XFRZGL2ak2MOJglJP1CCwRmAMAczIE47Cj7LWPfMUuIMCLnLU9Tb0EBekfiYwGj5D70BU6z+fzGI/H5S5QB3uwZemjE6qOjo5KAufR0VE5yhQ9ZlkPfZl/nGTTBJpapluvYD8QTOa5xWIRd3d3xcG/vr6O6+vr6Pf7cXZ2VmRvxMuOj9FoVO7wBBTFHiDIA89hA6D34IeTk5Nyb+xsNmsEk82T9uegne0u25XMEf6H5w5eweZ9eHiI7XYXBOVzg8EGadmJaXuHgBW6yL4VY4Gm8JbXELYBv+E3gz8RO9/Gepf2vL5t01i/E6CFlzKobBvdNFosFiWxi7tu4T+eg4456x06khiQ9T2nOfg4XgB11iZjJfhIvfiIyAmeM5/nxEv4Ktvq2GwcjYtM9JFlToYwppGPK7bNen9/H7PZLG5ubuKf//mf409/+lOZC34jB2iz2+3GYDCIm5ubEgiwvc1nrBnmNdtW5rGvsdEO5VAO5Y9Vsi+PjrFNBv5mDM27miitVisGg0FD36D3jo+Py86qiB2OdHFxEff39wWTpU3/jS6lX/jaJI2gH5zUQ8IYchu/2zLS+LLlocfDeDPGRDv2qdGbGaOwX23d73Yc9OEd12vsBzr4fWMSxgWs72zve3y1AF0OkPl/29LGr41RUYfHkoOKObBd6wNYTMawoWcO7MBv5mtjpO6f6+Pv3BePKb9rPW7a57qcwJ71rPsITVy36eRx5P54Hmh33yYI08QBWreRn4fHMt7s92oB74zpebzmBc9Pxo/MN15Dtmd8lZ3XB3zppDvWcsRuI1im52AwKHcLk7DLCSP2sfCT2Bj39PQUf/rTnxqbsOgHp32YFy4vL8v9omzKY9c648encMyN8dufcAKJ7UH8qlrZtxbyfP4UDvdT5efU8TW4n8vfZVsCjMSPg0dmVJ7NwsACLDMwn/u4HH8e8TrTxEKe6LmDoDB6v9+PTqcTo9GonCfNcVH0EUfcoAafLZfLuL6+jvl8Xo6cYax2sJ39bWWJo2cG5HsCjhbkWRllAedioJaS6cpzBt4dxEJ4OIOfxcR7nkv3hXlkR4B5wvONUWUHkMWKcZUD0tvttnE8ENnsHhsO9fHxcQFhLKQt6BgToJjnCqFaA1e8cO3sWuF5RyfHWJl/nXnGOxaCWSllRWalUwtURex2ZeddaVbCDpqxbg2m2KDJ81xT/FZmtSAZ/JPLPuGWaZENKPffYBW0Zz3yLmPwfGSDn2J+zoCm2zc9Mg0iopHg4H64OLvH813jhZoyt7zNoBX9NO2zYW/5lANmNePafeIdv5vnznVYDnouMn3YEeLkDeSVn80GNjRwsDMbnB6P+QL5Aw29LqGRaYyM9F1sTrYBsNpnMDPO2WwWJycn5VhcG6zQyAkkAGnOIIOGzLWdEOuFbLAie/Ma8JrKtLDDZkfPvJCDv9SXjfDMlzbS3O/srNWK+dprdzKZFMcYuZiD1D6Wjnacfejf7AI9Pz+Pz58/7zUmD+VQfmsl218ZNHAAxzv24HsyVw3cO1AQESW73zqbuiN2CVz9fr9kvmK7XV5eRkQ07L/tdlt2n3HVwGKxiO12l/Boh5E7pSJ2AR70MDvycU6tMwgSIB/t39Ankla2222hAWAdTi19xhnluDXb1d1uN6bTaUyn0/JeRJTjhp0A44RG5D73DuIfsTuRwA7jtrxFt0EPHOZs05HEx7ihATSlLwSp2FmHvc/8RrwkEHIPJMFerhKhPY5Cpm1AmIeHh7Lz+Pz8vOxEIZBKcA0eQ76bXtDQR5szVnjW+owAMbtXAVEBOY6OXo7aZWcstHPAzPdQM57ZbBYRUZIyCYTZPyNhAN3ke6qhd8ROZ9MnxmW7iCA9Pi/rlDaxq/BhoG0GvG1rci8uPAit6ftms2kkndI+975CR+tS+gAv0n/4Fn5GFj0+PpYjnJkD5pC+c+cq8sPH0bL7lPuLGQNglhNLbc9CX/uy7Xa7JEN5V7CLd2bbnqZd/kZ+IDs5whe5+9133xUeoF/eLRARZfdT9hk8Bid95sLYoJWB1kM5lEP5fZd/+Zd/if/zf/5Pw2esFfuHGTuMaO5wpPikHGxMdI5lUsQuKPX8/ByTyaTYZsgbbCDLfmxO6xVjLcPhsJzoB/5GGQwG5coAZCLJK+hW9EfE7morYyvoZHStfVX7xaYh9MtYbvaZM535zNjdviCUsXTezc+6Dd6pPWdbwyVjWsZpcv3GGGoBkxqu5PdrOESNBsb+8vOM46eK58Dz5TpMq4yFue+5GKfyM/gV+X1/XsMoc1seu3k60yJjthn72UeX/Lz7WcMl+c44Mv00DYxN1ubOPqX/93NuN+Ol0N54Y23zDdhQ7XPsawdFud+z1WqVROBerxefPn0qdhp18g7jvb+/j06nE99++22xTek3ssaYYUSUq/S49mAwGDTwQOQPshWZyxi8Mc++tGM40NH2Hn3JfLJvPWVeqj1X+yyviX1zTAGb/a//9b9W+5HL3yUIaoDDhr2DBxGvg5bOPvdCcBCJ92yQe4FRnyfHAUQcI0AH3j8+Po7Ly8sCUABSIIBwpryYyBzFmfv48WOMx+PYbndZps6CsfNAMYPjJJvpIqLhRAPAuljRsZsFBwnjAGbKEf8cmPbiz/TMmcQ4lQZE9hlGDiYyzzzrrGPPGdnODnZsNptyrIbvaXL2DyCKM73odz7Ggv6QeU72LG06I575NJ8TtM4OJHTEyXUwCQCFLeumH/11oJFgRZ7HbGxS7AjXDCnoZgXhec2Bhez0WgFhdGaDxMIrK8l95UsC1cUC2f2ynDAtLYdy1pflBzTJgEUeT83Ach9MNwfNsgPhI/xcbzaGTB/T0rIkAyy1eadeyzA+Qy54vB6H/87fuV9ZgWZZlftn3qZPAHWAlZb7Dtw5oEedNn6ysejANM+w3qEfwLGDfOgH1gdHkCGX2+12kRPQlP7jrFnOG0xDHm2327LLyc4UO5giogQZ7DxZFngtIuu8G7TGGzmY6bHmDFTGkUvWaVn/ZjnlIKznIq/N3F5Nv5g/9ukfvrPdAH8AwjIX3N1wf39f5LplJHZARJRL77Mu4/hPdlYcyqH8Hor5O+uCmiMCyM6uPJwuyxMHLFgb3OOHbHFQisAYdhH2HfKs1drd4+cjq7vdbkkqa7fbMZ1Oy05vgC/kfE4ItH2JvKZe7ofy1RvYZ7yPv4B8x25Fl5mei8WiyBT8EvwR3iOYxrg4Yni5XJYTQyxjLdOOj49jOBwWHfX8/HKP6Hw+L/TFLqT/1IfshyboRwek2MHLeJBvOYmK8XgX4Hr9spP39PS0ITfRBRyRzBwS6KNuTkEhiZGk1Yhdktd2uy1HyWebsAY4oT+ZI+YNWnnu8AucCJttHB8zTNsE0rbb7asdytaTvOM7Qe0b4m8AJNV2nLhd+oxtQv+Zf/Q7fA1PEEzrdHanIjDHrGv6yDOAPbYHmUM+97rIicieBwPZ7Xa7JM7SjkFs1g47zCeTSfFvLIeYt16vF4vFonFvHD/slkaGEbQdDAaNJA7vdmb+DH7TznA4LPyDz0pShnef2n+3fW17CJqx8zwi4vPnz+UI4G+//TYiXp8ItVqtYjqdxuXlZekP7dlntf+DLPd9wd6h7p3rh3Ioh/L7Lzc3Nz8rEBLx+hRA61DrW+S4g4lgpL6P2jpjPB43kk7tsw6Hw5hMJuV547XIKPowGAxiNBrFdrstyXHodq5aQM4jB0le8TixQY3l2genb+COGWOt+aXYIF+ytf13DUPCFuBZ+9M5WGTsI6KJUdr/r2HU2b6j37aDazxjfMYBdo+FPmZbxrzj8dfayXSiLr+773mPk2L+rc1THpvpn0uez330Mi1yfbV3eT/joPQ/95F6voYXMz2oy3XXSn7HPGk5ke3e2njyHLD+TDfb2NAHmzbHkIxfY+NjA2c+Nh3sx7pdfFNkF2sJWXFychI//vhj3N/fFxvUCcIkuHG89/v374ufhJw01unE++FwWE7ewVZFvtEWp604efH4+LgEWvOcmiZ/61JbJ7/0WXyHDx8+fFV9v3oQtCaMMpCZg2CZyc2wXvQRrwMeTKqztnnPDnEORgA42AmhbbKEIqIcHUW/DfTTdxiYjKS7u7uyA5Q29yk/2iWjOAvWLOhwXtnhYxDdwR7oQ6Z4BlZwfqkT5cm46K8DhzZi8k49+kBWsoVcPkaC+XKbzhZGMPAOc8puTYADwLaI3X2a0CcHvXgmormz0UFYvttut8WJz8LaIEA2QnwsJsV3nMKjdva9+8n059g0Z59beNmh5718BCf18lwGJQC52L1sPsqBdvNVNvb4nO+gp9sxP9MG/XR9NcXtsk8g+1grHH8bUKwB093KESXmHSg2Gi1DvM7cZz5z+w6MMZ/mSxs33o1RM27oR/4+80WWmZ4jZKTXhw0GPoOP+D8bDzaQ2+12A4iqBez9bq1vWW5F7O4vtkGcjTL3x/1ize07dod+Wl/46DDTnTHyt9tGxuLsWD6w+wOaA/TBa4wR+chaZ6cA6wiwN2IHPEdE2f3q+c7JP9YP2XExTzAeG5a1tW8e+Rrjlz5YVrpeA+Jek+aDmk2R9eO+/zESa8Y4c8K4I15AfHYVMU/oGQO3gLle2/luZb5jN1C32y1zdyiH8lsv6DCvQ+vFvKaQYxEvthY2HvLLMod1MZlMGkeZoR+xl87Pz8tdJpvNpthFtDEcDuPk5CQWi0VMp9OI2O2QRGfMZrMYj8flDkofWYts9C6s2g4oB1/QFQR5nSjonZHYeSSRYKPa5oc+3ilqG8cny+Dc2nYm+JdPFqD/TvKbTqcl2IM9MZvNXt2DhV4hEIQOWa12xzZl34ndHfa5bHsRsOJoV76nfuQ2QSXL1MlkEhcXF7HZvBydytgAOpfLZTmOnFNfjo5ejjEliYX/mWP6af3TarVKnezYw65mDjgqF15HN9CHWhIoV3NsNrskOOzUHOBjnrNfAU8y7w5m+k5Tn87iHZuMNSIa/JrBadvn1vHY16wpfBTahE99n6ptMWjG9waFeY7kBNbBer0u9TpBmTF7p2OrtbvrcrlcxmKxKPfzPj4+No7RZR33er3ik9EP1svDw0Mjcx7a0N5oNCrPQWf8AnxzbC7sc/iA04fyLk3aynPjgCO8vVqtYjwel8A46/Pjx4/F7v3Tn/5UbFLvWGL3+2AwiOFwWIAzBw5sE0N/ADP4gPHl5M1DOZRD+X2Xv/zlLz9rTVtn1WQmeoONAznBvt1+SS7BlgPvQnbOZrOG/KWOTqdT7hJ3cg9yiWd7vV6MRqNyIkLWG2/evInBYFA9UcobBOzvMaZ9NDB+xFj57Q0YtjNzovE+P7tGa/vp/Db2UfOj3Q7vGIPLGF8eh/HEjJvk92xbMFbaM+6Qg4m5PupxEpbpnLFq08b/1+o2z+eYBM9mOvNsrd+mqdvPY8v0z8VYITYBJY8/jzPHHfbxaeblTJvaWLIf6O9r8iPjTrW/c4Ax4508b7zU/fT8GEfyu3zH5oTs44IFe6OSf3yiDz6F60Z+Yee3WrtTQj98+BCfP38uWBF1Ye8eHR3FZDKJp6en+O6776Lf75drFOBJzzltgMMac6be1WrVOOXENt7x8XGxAeEX/Af7Sn9N8Rr6Oe/8knoYx+fPn7+qnV8cBM2LZJ/Q438mJGK3OxFiW6lYmNTAyyxQUSZ2rCjOvuZznJWIXcY2YOh2uy2Z3mZ06ipEO2resdJuv0TUufPm+vq6IdgoGVQxk1JXDgRDIwtxBz8jdoEVAzEGMnA+bXBYeFnJm97OQEDwmu6mAwseZ9ZjtFHhrFwEGYuYvznuEaADEMIgc+YNeMpHmzEexm1BgAOcA4wWuNAPp9GOvvthYegAE/3zeeJ2llkfDnQy3s1mUwAdz7nHZvrRnrPYHZB1MMbnjANmMH6DgvCds7VROowLB9jrkrWYlRP9cBJBNvJysJHPqJv/nTzBd7xL+6x9Z7rkvtqZz//zvD+DnwAdWSc27ujT1ygPGzc2Vpz1yPcZnK0ZUVbipreBT/OUg345qO91k/vn9s2XnkvPPWvEAW8HUmkPo4QsfOQW4FE+ms9gJvNkWensddpBBlEHfYE+yCwbhuYRG4us+YgoRw4igwCGDXRCU/OSdZPXK4AqspB22GXEDhrGaqeK51nXzM9gMCiBB+SMkx6Q36Yh8pG5IXhpnZ7n2yWDu3ZQDazV6sm8mOvdZx/kv833lkE5eA6wSdDCQZ1akpDri4hyXCef8ds641AO5fdQ0Ke2iQweZD1nkKPb7cbZ2VnZlbVcLgugjpxbLpdxc3NTZBFAFvYhWfluw+sHOc273imI7fj58+eye57AHbZ+RDRkZKvVKnbhYrForN+zs7Po9XrR6XQaSWN51yc+g4M2yE6K691ut8W+xJY6Pz+Pbrdbkh0dQDMw6DFjN/McCY8OgBG0jNgdSUqfSV7E3sWh5ghb9ADOue+SsT6GD+Ad5tNZyna2nTDmwLEdcP63LoYH0R2TySROT0/L3LDTjjqzveaAl3ed2N/xfHlHKkmy8I7fXSwWhUcJVttOY6e0x4NfwnzYv9lud8chE6w22OK1QD2sJz6HDqxN+In7Lwk6ewe3bUyDvbazWq1dsBharte7+8ufn5+LD2P7j+fgBTLiI6Ic+UwhGZV15aSvDJKxZr0znB1CBDTxJZ306YA3da7X68YVNthg9tFZc6PRqPA29HFSL+9AQ/t3+Jhk//PDOxkw5n/42TTAv/vw4UPZ8cTR0A4isH47nU6cn58X3mLcFAdy7Sd4bVhH7ANwD+VQDuX3VX4uYJ2xQz7LGLBxFP+/2bxcBxWxO+mu3W6Xq0nYjIJMBPMF/728vCx3siOn8dkuLi5KgBW7EH1zcXERb9++LTrAiXyt1u7KAvQmmIAT3G0TM2bLRP524NcYGe9BF58ikLG/iNcBwYho4KfWs9a1/n9fgIg6rWs8Bv73ZgLjJrZbjEv5HYrx7Yjm6SG5Xbftv+mv26phBaZXDqgZJzVNa23Sn4xp+O/ctuvzs8bjjUHkdeQ26btxJ39uPsw0ynV7vkx/vss0yHW63jwev5vbz33J31G+hBV6XowRZYzT7XhNmtfcduYF4+b8xlYyPTzu5+fn4rcib/if5LnT09OYTCYNe58TkbBXt9ttfP78Of6//+//i36/X9rJ42RtGQt1YNZ+RP489x9/iD4+PDw0Eju/ttT0R40H/pr6vvT9z7FDf5WdoDVm3/e9g0d5EsyIdkbzovOCi4iGwHe9CNd8fI+PZcJJhkk4IgawgDac0U0bPhJhPp/Hzc1NOcLJjiJ9sEKIaIIh9MPjxmEBHDGggfNNfRmgZ6HgfFoBme44qbm47yi7HISzYnbdAATQz8GhLPyYMwAdv/Pw8FBobEVXUxR2Hp3FYQcU4wKDx+0CUGy32+LEm470B1q7X+4DQhQ+d9Ddl7AzH/AhddEHB/ZtEFkAYoDAm8wJffKzdmbhT7KhHTwxD5HRTH/huWwQev3ybl7z8Lef9ffm+RzgzIrPytLyge8cSCLAbAPQAj3v/DMveRwZeHFQzeBFxA5ksxJ3Ya6ho3cjwOPmGz//U8YdfO8gFnTBcHfChQ3HPFZ/jozK7+Q5rskE86ABtX3jQoY4SG6+tBFvI9yGvfWEx8Ea8911PO/geaadx+ExAsCzw+Xo6KgA2PAWdAMUZeyu00YU9Nhn9NGH+/v7hg4y0Gh9YCMHgNjynH4gezxuB8/dn7y+vbasC/xczdCFFg6mut5sxOZSszfy/9np8dpmTbAekP+np6evjN3sBGd7o9XaHWvO71br9U64QzmU30OxHY19Yb2GzAHwt57l3kqCGMgejvxvt9sxm83iw4cPMZ1Oy3MEQjnC1bLISTasK+y9y8vLuLy8LLs+J5NJ3NzclJ2KDjRi/zggE9H0DyKa9qllN+Oh3sfHx5jNZg17zbv6cWBxoJ0EiH1PUJKdi+hAgDnGbxmM7YrMpX6OJaXvzA2ONwEln4xCkA+AsdV62WE5mUxiNps1Mp+tr0nGoR0KOzMJLjFPOPfQlACxExItW5mb6XRanHjzpfU7O0iYFzvv8DB1A4TSd+xyB3WdzIk+tS/pXckEnq2PGaft78Vi0QAmbZcxp/A7+sTBagKh8AzgCTrfR3HRD/pC/7DnfUyfx2cbfrValWOXAUgYo08JYk0xJ8yR7W8+Rw8CtjgAB+0Zy+npaTnCGlAbHoYPHThfLpdlbOxatv8XEeWeUOMH+Xjas7Ozckxutnk5ftk8CM29o5yxMHfsUMeP3G5fAG7sRTAHdoMzZ/xNncy/+cu+frvdjh9++CG63W78t//234rfyRpA7rRaL3dWnZ+fN3xeeCkDpAR6kb/2R38OoHUoh3Iof5xS82GznEAu2ZbhBz+cO9aR7ZzsYNmEXgRLwlYZDocxHA4bd2+3Wq345ptvotfrNfRAxAsWd3V1Ve56NqZnjApb19cJUJdtEcYfEQ1dF7HDOdx/3kHnRTQTUOzropftW2e/2vV7HDV8y/aFdQi2Pc8bm6ZN/jeukDED2vBY0F813rA9zPfGfHOp4QC2zTOta/GEjCnX6JP7apzINMx9ME09h8aj8vyahrmYb40/UtDtXmu5T/7O/WbOMy7Ds6ZPjYfNG7YXcj9qdPbYHRvhXeNgmQ8yfXnXtLIc4Pnch4xheh7Ml9vt7goX+wG2n437svay30Yf8B8+f/4cy+WyjBEbC9qNx+M4Pz9v3PNuO83z4KTDGg4I1pl3rhp7Y9xO+P9HJe7/vWzKX/U4XAux/OMMhny3yj5wlf/3gaC8l4OgdljMKCwSQEkAj1arVRwbnFLej4jCWGZ4T9ByuYzPnz/HbDZrCFwX9ysiiuNG9m0G4DOYHLHLkOJ76mScBhAMigAEZfr5qCRoY+fKzxM4jtgFgCxAsjBxZrDbIpueuTXIxB1O3onkgGumq4Wy/68JOrKIAWYiogG+AH5zZBi8hVClnwRnEEgIFffXQo+2AZygBe/joGbawRcIJRtU8A9rw1nvFnYOEEXsgkfZ6KOY99rtdrlfhvmnXUqrtbsD1vzr9e75cYFXt9tt4/jkbIB5LnPgkbot2DM/WJnlfpg/bRzYkOK5bJBZ9tAW7xHUgW+zQeixOZmBNWwjw7Im09VGKrySjSvmi0C/g37OHKolSeSCMnW//Jlp4/5moMSyynXzGxrlu9RoC170fGeZXGsbgA9gK4Njrse0sBGW5w/6uY8OwjNOB14NnGFs5LuJPQ7mkV0vyNLlchnz+bxx5Ll5A7DL846s9c6jDFgC6FLoc5bb2ajcZ8DX9ETNSXI9WZd/qdQM7lx/bps5tCNKX7njaz6fF2PVu2O8rrKTgS42CA7P1QK9h3Iov+WC/MkJDrbrkWMGz9FrOHWdTqfcSYKDyA6lyWRS7pbkDkuOTUMfWtYb3GHHqe/p/PTpU3z48KEExbDz7cRSJ+PxGkdeYzM6+bDdbpfgLHoE+hCMioiyozTidZY+9HPACLuYxDNo5jsjCar66gecczuz1kPIfcZDsM/BQ9/hiB5BvxA8xreJiBLIdsYwbRvMJOiI78FuWmQkesv6FyefQC5zTTCOI+vQpwZLfH9j1rsR0ZDFTvRDH+Tds9AQO47AHzY3vsrx8XHRFQYdzbcRu2NtbXOgm5hPAzn4Guv1utxny5HCBN15HvuBsfB5Tf/arzCYa4CGdn1iBv0l+YBApU/uYd6tA/nc9gNt2z6B35m/TqfTCHZiE2Y51Gq1io9LabVaMZ1OS/Dc7+AvWfe32+1yqgZH6JIkip213e7ucLVdikxaLpclwZbnuH8XHq7ZrJ3Oywkd8Do2CG0gg5gPjs/OPovn6OnpKf785z/HaDSK//Jf/ktcXFyUXdnYkrR/eXnZSERh7Tjp0JiIfSGDujWw8lAO5VB+/+Vr1rWxGesf8B3sAk64sC0ELmzbZTgcRsTudACwNAftkEUnJyfx5s2bckT4aDSKt2/fFnnJsySnfvPNN43dVdghxmXyUenYWehM+/nGjYxHU4wj1PCgiKZ/alzH9DfmwLMU9Djv8503SPhzy3AHadw32yMOMNnv9fjyeHMfjcfUMDWPkb9rz7j/rjuPjf9tA7lkfMefuw7T1AHU2phrujA/l0vGPo31eW7sj3lcfJ/b8Wf0Hfoyjto82R40Td034yi8k3Ezv+ex7qNBphHP1mI/bifzUi74HB6b6cbfHkNE0/ZxQNA4pXFNCp/bRieu0e12C+Z3dnYWnz59iru7u1d4EfU8Pz/H/f19XF5eFgzQMoJ1P5vNSl9qsRKP375CxrFN9338/NeWPP95vf49y9/0TtD8N44XTlJN6NUADzOaF5eDbbRBmwSRfJ8LGRMOsrVarQKgoOisxHJAKSLKGB4eHmI6ncbt7W25j8j98AJDodlBZwz7gl2OxlugZcUQ8dpRwZkyMEJbOGPUSTaqhY0Be57xnHkHjeeQfrCjdrPZZXT5zh765F2I/AawyYrBwE/mF9pyMJL+YCQZQAJwA0Si/97FS6FtACorW9qyM+zgI7wCqETgG5pasXmnAHzGfLktg3SADrRJP+FDgyxk7QMwcf+TlarHDD8ADtooMw3MCw6Q2xiGhg62mVdpD570PPO8A3gW4OwwYRxZ+bMzOWfF5Xm0vMlGpw1uK+isDPnbfbEBmgOCyCTG7EQG3svKKxt0BMSt+JAfPF8LUjsYSd/2GSfZWDSo675mWvK+ATkHGq34s+HgQJiNGPqMHAOINA+5H55v1hl0x/nhPTs20JH+Qz/GQYY/QKANVfgdvqUOwDTvfnByCfTKQbPswDC2xWIRZ2dncX5+3qBdzgLL+qPb7TaO5LOsMIBM/3nGNDVobufIWat5veVALX2w3LbRmXnnp4Kilqc8ax2VHaX8PLuI2JkBYGpZ7OAJNPV9zOg1r3XvLDqUQ/k9lCzz4GWCX070sezCtmAtoJsjdoFEZCEBnfl8Hq3WSzJiv99vBO5s1yFv6Bf6H7vx/v6+yHWCRz72HF/AMgw5hnxi7WdQCTsOeccRu7bF6Cd1Ijt5hh2yEdEIFuGrQMuTk5MYDAbR7XbLZ5Z9+Yh1aE3f2XFJYO/p6ancd8xuxIjdlSA43hzJBP1brdarwCk0QdYfHR2VvhI48tG3tuMdzI2IRjIe8tb2H7QgyAwNmUdsiVbrZQcJuz6czUzBZrGtjP41T1lXshOPwhzPZrNXgT4nOjFf9j/QMdhm8C286J2otsmpw3aQbUDWCHRAZ9nGsO62XW3bPOt3xmW70v3nx7xuWxgbw7ufM5DkHcb45d6taD1OkA7Ah+O24QPq9I5Qkr04AYM1sl6/3L8ErW0PQrNWqxWDwSDW65djoE0D2+0RuyRDrwuu1oEuHisyCX9ws9mUwID747nCjyFgmcE50xYe/bd/+7e4vLyM77//Pk5PT6PX68V2uy3HnG2322I/MsbsA+T5NwhqG+1QDuVQ/mMUBx6MWdo2QD7YJorYXUfj50isss5hh/x4PC5+aw0/wnY7Pj6Oq6urchQ4GC2yfLV6ubv622+/LToyYod1YWegD+m7/WR/x/+2bzymjJtk/NY2qMfjOkxrP2esKuPlWQ+53tx2xv1ye7Zv3H4eb8ajoQ3zhQ7/kv9uTMh0sI3ktvydx+ygTQ5+uf8ZB8iYlbEpvs/veUzZbso2l9/NtHbJ2AL9qOG0xjZ4N/Njre+1eTD9v4Sj5bF6/P7bY/MY/W6eT9M+9z+PpVb8bG7HGJPnJAeY8Wlr48Mfw67NuKppi50MpuX4xmAwKDYgvhB3WOJTRkQ5PWSxWJTYhekS0UyuBL/yiUI8i9+VT4A5Onq5xsObHxx3cHLpPn74tUptjfwt24v4GUHQGtPVHKv8XXaCHVisDcyBNpQoxYyNs+jv9y00GBogEgABpmbycfphXgp3pjhQBuByfX3dAIDzPXYoYN7jJyIaCgrHx+3yP8rMuyuzMMTh53ucdwcUKFkhsXBQ+iweBxczoANwkgOYGBMEz7ijh3t0nBUPDUwfHFHoQdsOlPiHsVnhZuADAwlDyIG66XRaaA4wYsDmpwJOgEimAfQn0wMDwsft+hL36XTayPwejUZxdXVV7kiATuYXaIgAtYEFCATPsF7gT98JulgsCt/wkwPT0J966IN5wQad16T5G3CDehxMoi0UkAOIFMsF+JdxGpgxmGXwEP5xEM0BT/eh1maWY9TpdQCNeYb3fSeYwTgUac0YdXsoMQN7eb3xHPR2QMzKnWeRgx5rpjl1mgY5GGejzWtvX8DJ4E1OCKEN5IDXH/zJmloul6WezJeWBdkY8lw6AMw8GczLzgB08H24ZLoaqDd92CnRarUa8oK+m/7MC6cVwN/IJRtSZ2dn5di34XDYAOLgF8t+xsCuJydPeN6RAQCKpg9jZwwGew2MMQc1vjSvOQhsXnMx/X/KDnHdFPOXC7xnWcOY+eE4Pu/KabVaJciDPuH/x8fHcoQJxql18qEcyu+lWFdH7HaKW2Y52aImRwz0852DAsjg+XxeTulA7nW73RI4QDcTRHNSGnbMZDKJT58+lZ2Ek8mkYXdtty93wdteoD/ZRndgCPDMR6d6hyTF8mWz2ZRAA7TM9hiBPWQjNiBtEcjgtBLG7OATf9Mfgpn9fr8EVggG2dbjHexQ3qWfGSxhHL1eL3q9Xgk+DwaDOD8/L0FQdsBhFxIMzTYa9TsBzLYpu0VsIxDQen5+LjtnR6NRw5+03dDpvBw/G7FLhMsgG8/BmwZI4Df62el0iu0BkGDgyDaz1xA8bvvGOtP2YrZL2AFrPeyjYek/fMo42fnMuAwqeu1CW+xz7HLsTIOM9K/TebnPFz5iLdsv8ZzYf2RuaJdgpenM2iMb3jav7XaDUPAjPj5Hy2L/kFRm3mi1WuU6kIhoHH/LeouIEtCE/k4igEe9qxZ7nM/gmXzije8cZVd0q7U76nGz2cRkMomTk5NyPDhrwPLVtpmDAuv1Om5ubuJf//Vf482bN/H+/fuyG8t+aqfTiaurq5hMJnF/f98IXDjJPGMz5qt9ttmhHMqh/PELcnZfgMPJrcgO4zS2CTudTpHLJJpRNzo+4zIRL/Lwn//5n8vmFO/c3G63cX5+HqPRqNgo2HetVqskxETsNgzgg9fshFpgBRvBz5gm9oXtl+/zeRnfvoLtbfnrgE22YVxMsxx4MI2xQ3Ig0Xon97P2d22MNawp0+VLQZHMA8Yg8zvYZRmbrNHkSzTPWHpENPSl58L6MfeFkvW3x2Js0ryWx0vfbT8a88m2bS0AmnHNfbr8SzEf08jP5nVQq4++GndzXT+FSVKMw9Z4L3+eaejYRPZns5+ADZp9CtPS64bERPeder7//vtotVrx448/Fju21WqVYOZms4nb29u4uroqR4R7/NjBTrY/OTkppyHZbwbfM55Vowdj9lUwptWX1knmjS89+48uv3gn6JcGmQNRGNw4CDWi1wIQTG4Gih3EcSAvonlkpqPzGPwGzmFCMk5x9B0IPDk5aTgdR0dHRcmOx+OyPTmieaQRixHnv9VqvQp+ut+MJwsp+pEDlyw6OzymnwMgrrv2v516AyRum7q9O8h37njHI4EKMvojdsdO0WecLz7LjhZCwM/AD2Tx4lxCDwe1rIhMI+rwbjD+B0BAsOBIM05nIpNxb6EJnbyVfT6fN/jKtMShJvuecSyXy3h4eGhkzLGTwPwJr9Nnxmr+83pxoIjvfKyYgScAKZ4BZMjr8ejo6NW9ss6m9rwghLNxRn05eMK7OQBMvzw2Bxls8DBW78yyYc5nlht5nbFeskyj5GwgMvqtwA2A2WhC/niHGYqVdzxvzKsDTpan2fiyXISW0B2a8oxpDp9meVMzfnL7/ox2+M686ufz7iK+85whj0lCIehnww/DPfMXtGAuDKzzneUA4A98YdkM/Q2Iwgc2bBhXq9UqO1wGg0HZPerdRpYJgH4GhHnOTgk88/DwUAwknvORgeZj6NJqvdyjglzzHOd5BIA2vS0DoCfvZ74w0G3eNFDIc+Y983amL/V5bjIveu5rxWCs6b3dbguAPJvNyppxexiS6CnGcHZ2VhJr4KlWq1WCOYdA6KH8ngr2Ek5TRDTWLp9ZjmELsr442tFXPzixwrpwNpuV44JY685+zcGJVqsVd3d3cX19Xe4KJADHTjFkbdY/yCHvwIqIYr9SOG6X+/y8c5ITRSw7GDP6B1sV2niXl4NeEbsrGnIQitMuInb6GoeX9iaTSRkfttrT01MsFotiV/C/Exnpt5Pder1eAQsp9I1dG/yPo35xcVGAOY5tta3Kz3w+LzyVbRn7bNAA244584kqx8fHcXFxUWx3AyjwFLxjfsPHQI8yj/AV72InEABHP1uv+BkK/IRNzpwzPtYBPIwN4UCn58xXuNhvqSUxwQ8ZbPF40F30xSepZFsPG4BkH4PSzA398w5deIm5dnDTazMiGv6NbTfah8+hu21Y+xur1ar4VHzPmmBsBDHNd+h8dhvD78y1fSTuFDWg5L9tN3pNGavgmFzWCMc0ttvtxm4D1gjfI1ewuRi/d8Tahnt8fIwPHz7Ev/3bv8XV1VUMh8PCT9RLwsmbN2/K2PBjqDMn9tlfZWzGMg7lUA7lj1v2BbXy99gixjH8DDqQJBBO1MP+AguL2OHK2a9HTo1Go5Iwhm5BRo5Go2In2Kd3YAD5jF60XRrR3G2HjCSQgB7NGHDGMij+zrSrYVA5kGZM1nTJ2Axt1rD1PIf5b7/LZ9b5P1U8HvqWA6cZ//e4/Jy/d4CK+nNw0HXbhsnz4r7Wxl+rIwfU9rVvne85zthXxkv4Ls+5+1Prg7Eb84bnoZacblrmvufPqc90dL/yfLl/+f3cVi55fmy/+3vTK/ezVmeN5vkzf+45gRb8j9zIVzSAz3nsfO+kBdOw0+nEd999F61WK25vb8uaxRYkDmWczz4i9h+738ExsVlN7xrNwaGNn+WE58yD+3C1v0XZN7c1vPnnll/9ONxczAg4EyghE9KOA+95YAguHGoDtbViYBzFaRAVo55sIZ4xyGknjeN0lstljMfjcs8H48pAfW1R0aaDjhZ2PBOxAzrcrxoDW1HXGIE2vBvGQs6AjIGtHBiNaB6rtNlsisFxenpa/vY9SIBLrt9OPM9ZQDvL3QrS7wBI5YBKDYj3/JBV7WBmxA5MysFCAw+ABA76mr7Mv3cT8x7PwUsAKg4uQi/qMGhSU/4IVYNUXk8AFeY/B4ds5BiQywEwB+z8mQFFr61s3EFL998GlQ1H1+1+52CUnwHQcdCEOWNeoQNgAbQm0A8vZEPUijUbL9DP/c8gQDZq6CNygO8M7GYZBF09XzYwsnFgI6hmlHkuMmiYDQ8KPJ6dAeZ9nyFjmegg3z4lXDM8vL68S8CyNzsXppXpY55kLpwQ4TXw8PAQrdbLTgF205j/rL8AqmifPnmnEfUCInunvn/op+fZ85HXGc9NJpM4PT2Nq6ursqZtsHoePYdnZ2dlR4LXqmUajmTEl+/0YB14PdFmzoDL48r1ercQcs67SzKf8TvbDX5m3+fus41KDEMf7UmAxDqUH3jYiVPWS9RxKIfyeymWBci+bHPZubcN691r6GXWgpMHVqtVCaRxNC4nYdCu9Qyg/dPTU0wmk7i+vo7pdBrL5bKx+/D4+DjOz8/j+Pg4bm5uGvoA/eEEE8sCB8I4ftVBmvl8XmwP7A+cYeQeR8P2er0SKEKPIlscRCao5wSdrGsJwrBTISLK/ZzcFXh8fFyOtrRMdfKNE8bQSYPBoLGjk6Ae48M27XQ60e/3GztCue8TGYdM9BFO/E2CDvouy35f50Ayim1haLPZvAREz87Oyg4SfBAC6U4WYo7g0byjMGIHvnY6nVJ3p9NpXJMCjdHr8I8DnIwxIsoY4B2DVQC2rB3m2MFQaEq/T05OYj6fN74zD/v9bJ/A4yTewcO+C5V3WafQxSAPOg69xn2YDrTyrG2wnBiJPPCuToK46Hu+87hMZ4LuJDmTEIA8gGedqMHx0O12O6bTaXkGmwy+JpnA8s8AFMmqJDoYaGQMx8cv9xzbhz07O4v1el0CtowNOtM+dXU6nZhOpyXRgTm1nKJkP+Th4SH+/Oc/x3/+z/85/vmf/zlarVZJgFitVuUuqX6/H6PRKGazWZHd0APe9Y9tJq/fQzmUQ/l9F4Ph/J/XdvaprJv9vnVADvLxnJOMXC/47GKxaJy+476s1+sSGEBmcSz+drstJ6vRRyem+Bod7DP3z1iKMQr0D3Ua30WPE4SIaOJgtXdNN2Mt7nNtXmqBqDxn2C05UMRnOeBW81NrgZ2vLRlLoj5/Zj2T+5n7YWzIdRsX47cxJWiT6ZMxRX9ue97ve/5qfc3YSKaFx29syc9kvKT2vf0u98vtMf/2n3g/4+w1/Jxn4bXa/Gfsxbhipsk+meI1kucgxzfsA9T67HqznMqyw/ap7eRs03iO/Dyf5xMhnVSZN7sxXn/OLvWzs7P44YcfYjgcvooHrVaruLu7i8vLyzg+Pi4n3RjD53+SVLHTsZeNV+UkkExnZI+TPTyGfWUflvxrlsxLv7T8zYOgZlAT3N/ve5bfGWSJaDLSvkUJQ+JEtVqtcjwrDraZ2BlG1Ikz0m63Y7lcxvX1ddzd3TUEip05A9NWjDh+teKFhcNeC/TaKc11OUBBkCeiqdDcF9qz8CAYAD28ACjOeAW4whE18O2glQEmHF4WJQ6ex+hMI/7HGMqCEBDLtAJYYNHinEMPaO6FjUNL8YLPGe3ZWHP/yWxzwIGx4wQjHAHJfEws/d1sNmUrO6C7ed+BqWxgWbEZcDBNUVI23Jw1n+tz8WdZSMKXVoZu05nZrivPn8dpACMLPc+B6W0l6j7Y2MFIzfzmNrKRmQ1WByldsqyycjHPZQMUXobfsnIy8OX1lecszyn1eA1lQMnjy8q/ZhjZOPd6ccnrm3azzPadmjYkXPgOoJNgn9/xWssGjQ0z09/Bcq8ldsRTMgjk5BRkp/ktOwzwP98Z2HNbnievDXgg6yfGMJ/PYzQaNdrOvJ3XI+A1d/KZLjnjs6aH8xrjuYjXOopnDJ56juEn66BsKObnbSD/lCHEmF0HdM3gfd7twxzlNWVZzA/1cbSnA+z7nLtDOZTfYrEuhb+9hmrJAJaJdrasg7wWsB8ICj49PcV0Oi3ykmNySbjr9/sRETGbzeLHH3+M2WxWsvdtwyOfOQL38fGxBD7on+UL+tZ3Th4fH5ejaSOi6GAHKSKiJM3QV44czzv4LVe8kwt6EIwiuEpQBPvGO13Znc/OTgeasJexNTeb3Ukm7XY7Li4uGkfbMmbui3fAKINNjJ2gD9deQP/tdluCPIADJMDil7g/5iO+sw6C33LyGM8CkDJ25tb85vl1UBG+sX2wDySxTrYdmIOQ8CA7HtED8A8BbYN9rdYLCGsbJF85QuASGxAAhOC5dSpzxmfmA/gMX8V9cnY7fMSatF3pBDiCfYwFW8iAi9cletR2AGuKwLH9aOrjPcskfHiO510ul+WeYR9Hb7uG9U7GvP1IAvXwtvEI/AWe538H4HnHdim8h33jZF4CuPAaNGfsTkqez+flah7WDP4hdXr+kYFPT09xe3tbZOXFxUWZX+bj6ekput1unJ+fF3lCffAN/cdGQ044we1QDuVQ/mMW9K2TM+w/1XBFJ0hZrh4fH5ekrvV6Hff393FxcfHKNuA+Y9uP2I0kdfgUDeRYToSuBf6Mw+4bF9/ZJ2d89rddjI3VgpC5eBd+tsN413i4bVX7tPbv87xBm4wJ+zu/V+sv/cm2HHTK33lMP6U/0OHGxffhES6eg4xx2TZEl5pGGb+GvnmcHkeNLvZ3jH2aDrbXMkaXn8v4aQ1r9TuOuWRsM+NTfsa8Zf6pteG/Mz7sz/13trlz3W7D7zJ/Ll4LmW41uvCMNx5k3tzHZ647xz2QWZnHkBFOjqfP+LbYmN9++23xzbAv5/N5sU9JqvSOUPu/2Z5lkwOJrchdZAV9IYkkz0GOZ+RS48XfU/m7BEERLky2wewvCS9nnljB8lmuywWGdvZlq9Uq4ISPH3KmJ8VBzVbr5c6h+/v7GI/HhaFwaAwCe7E6W5h+2EGh/hx9N/BeA2Kdmcl32VlxIMlHBtVozUKwQKDvEbs7UTAWcP5Y4A4GMMcsQBaOlb0NIYQFwgEn37tnDBg4wzoHH0yDWnGQwmADwmm5XDaEGZkU3qXl4K7rYF4ybzI3zAn8ZqfahgbPsguVQIX7DR3JYjM/8BtAwwrJRp13T1IfyQEOGjMfX1JWBpdoj/HCv/A9tPOuMfrMOjHYRTs5MGeFlD/zejAQlJVuzeiwvPL3VuoZGMzGQqaRA9UG4Ax00D9nGwLk+TPWVM0odbsGjPy512NNaWVaZL4zfX6quO1c75eMXtpwQNI8Yn730TUeW+YfzyOygp3+1JFBUgBWwDRogVNl2cwOnhoIZcPCPOs1zD3Bq9WqgOc+Epw2rJO8tiJe7rS6u7uL8/PzhpFu/q0Zn+yq4n46njfd0EmWmfAddHEg3Dyag6meL/qSjXvoR/CC9WAnz07KTxU74Z5jy3XbElnXsU4NojIWHGzXHfFaJ/8eDcRDOZSIZmAKHW07yzZS1vUGF1jnrC1ArPl83thJiSwaDodFHpLA+Pj4GDc3N/Hhw4dyfBo2JLaN9Qu2LI4lTqHtBtYwASXGh27GSbS9yTjtJHJXJfav6YBsgH5nZ2cNP8N0RvY7gY17Px8fH2MymZTAq3fx20dw4ItxtVqtGI1GMRqNotvtxmAwaOyUjNgFfCwzsevpD6extFqt6Ha7hf7eBdzpdEpAh8Cu6cIOVoOB6Bv6z+ecSoO8tb6O2CUtMW+8j6yGxgRtclIkx/saDGNXKIEn+nF+ft7ga/tC0MO2nO0l6Jf9orwThuAc71GXj0BmByfjY77gV3gm77KETk6q4rjV7XZ3mg1z4Z3VrAfbTByv6sCqfep8VCu2F0Fd20g+nQT/hV2etg0oq9Wq2E7Pz88xm83i8+fPpS+A6dAWHw+gnQA1Aeterxf9fj9Wq1Xc3t5Gp9MpSRTwT6/Xa/SDum0XIOfoR7/fL7ZM9ok4ZtvJC/jS8CdJctSHzOKueXgQ/xi6OllwPB7Hx48f4+LiIkajUdzd3ZU5h8f7/X45gq3GgxkYzvbfoRzKofxxSsYVMl6b8QUXYxfGyjIOiAxErvnudfTa4+NjSXYyXtXtdiOieYQtdV5dXTWulKH/fG/cMaJ5GpXH5zqNNdtuM45Xo4/btq1XwyqyzrddYH/Z7WQsyp9nvMhzZRveJ53sK7k9F9s0tnkp7pdtINsuNezWNGY8noMv0d16yjircZNcfx5j7V3sp4wP2tepBeVq/TVf5LVUo7Mx4C9haeYdj8/t5mcp+/jS9HHJvGX+rOF/rjtjYv7cddXadJ+M4bht6sjYFp8xXq+rPE7zkv0kZIhtuYgoiW3eOBURjfgFflHmWe9c505kb+qIiJjP5+WalvF4XOxuJ/WyTvBBoFHulwOlGTd3cp9PrMkypMbT5oevxb7yc5lPv/TsLy2/WhC0JmBdILaDcXkQBny9KLOQysGnDMjyN33hqFPvuvMRSA5K4ewDQhwfH8dyuYzJZBKz2SwidtubnQnuIKwFH847wAiOX1YO0I7x8R51Z9A2j9d09g4yLxyYuqaAHHAxMNztdmM4HBaHG2fJ27QJ1AGKUI93zGDQ+G9oz9gQKnnRW0kyXgseZ2NQH7wEDWvb0dfrdXGgbYBtNrsjVvnBUVyv1+XYWsAE6JmdwBzcBhxACEOjdrtdsjt8p46/z7S0wIZGBtQM6DMnHov/t9Fl8MZzkY25HGChLgMgEbvATaZ/VrrwHf3vdHZ3iGVDw89E7IDD/JyBKebGAXRn5bhfNrCozwYNvMN43b4NLNM9G7+Zlq1Wq7FGWF+mqemT5YfnlTb4zAZTbo82TIfaPBk0zDyWx5brMC33GWEAk+bH/B598H1XWZa53/nYj2xcwnOMhV04GDasAwC2LFN9vzXynaQBnndiifuWaYvsY2y+V5Z6qSPviAB8fnp6ivv7+7IbNJfavFkW5OC21xK8AjBsADq/44QDA7LQxu9kQ9S/zav0pdZu5u+aIVWjBXKJPuagDoAlz6MTXCxT+d/HIALkZ8P+UA7l91KyDDP4X3Omsd3QWQaXckLb5eVlzGazYnOx5njWuzSxzT5+/Bh/+ctf4uHhoRxHaVugpoNwULm64fn5Oebz+StHmcBFxG7XGt/jCPrEkG632wi62u4kWZJgr+uz78D48Dt8iklERL/fj+fn5xiPx+VOT/qe7RpstuPj4xLoJPiJjiKAyd2eBCZ9Ryi2I+AkATDetyy0T+Fdisw9bXisrdbL8ZvsIoTu8I2ddeQ+xwrj8FsXPD4+Nq7iIGjk+xXxFdGtTvbjN/X4KFLfZwmoSkb1er0uO/occIUX+N82If4nYC863LqSZ10v76KzoBNzDp9AM/sIBH8NkERECbSxluGriCjBR+wR+IxxrVarEpRHP7OjkLViP9H+kf0l1iA7g63roRtzaDAHe8089/nz57i/vy/zT/vQk3WCf88OZtpw3Q5gkvQMJgAvgGnYZ2I+LNNarVbhRWw+6JyT3dbrdZFryDzLwmxDwo9+hjVi32W9Xsft7W1MJpM4Pz9v9AfbjN1T9M3JLtmvYq6cAHMoh3Iof9xieyn/b0wpYhfcoLTb7cYRsTwTEY1ro5BZyBV0z3w+j4gXneVkjYjdtUi851Musr2FbLcPus+WxXbMPhz+rXV8DnT5MxfbqtmfpL586oX7wmf+fJ9facwiB0hdsm1vzMxzmvucA2duy5h4Dtz53axfTIfcv4zhZDoY43JCOnaT5yyPxVieeTfr21oAMmNzuY48Lo/H/YYuplO2I7EVjGnleYhonmiZ8bfc/0zvzFcZv8ql1tfamGvBssyPma9rbef+M+4sj8xbtjd9+k7t/bz+HBOhbtZIDrriI3kzF1gh3xvDx/dxoh3PHx0dxadPn4rvAqZEkt53330XZ2dncX9/XzZL2Qdut19OQuLKhZyIAl6Vk2Cxt81HjC/LSc/Zvv/NB7XyU7jYvu9/DTztV90JWmNmC5XsMFDywjDYmZWSjyPAMYW5nAnAJMNsdtp912e7vTvWCucUoANHZrlclki5+7nP+Cd4Qz8ykMy4ACUYKwGniN2xmBHxagFaOFvwWlEaqLLwMK1xfDAyeJYjJAyOY7wA5nh3EsFSjBL6hICAjlko0S505NhXslOdcc/c0x51k8HseqArY8Y5NODBuw5Y4HDCL4A3CATmabFYFMAnYgeIMG+ey+fn58ZRHNDdis7ZFw5COzPdCsRC1yAdn+dAgcEEhDBjdJA0v+fgtDO0s7GTlStCngL4mBWGjQpAUQQy/GeDhWIFyZoHnMnrmb46IAYtrYyyU28jxQa5FbfroW3LmX1zZgMN/nS9TsCIaAJP8JZpzt/emW4ZwRpERmZeywau15sDPNDcxnE2xrKc8efQ0hl0HpPBIMsy+mYQKPMMz3ju8jxA95xQ4jvKAPQiopGI4vGytn1MY8QucSEbRRQbEfAM/Hd0dBQXFxfx+PhYjnSDlsguaL9cLl8F16h3sVgUkMuyIweYM//2er14eHiI2WzW2CEBnUzbbKwzN07usaz385n3WW/MNWOyIZ9lTrYLsqNNybKjJnusk30vWr4nzmAyYC22TMSLzp9Op2U3CUGAzL81p/hQDuW3XDII4HWPzLMujmgmENnedYCBTH4HfEiywIEk6Mfn9/f38fnz52Kf8yz6xbogIooOtWzBHtlut2X3PWuTn3yUp3ddkgDpnQi5YNfjsNL/4XBYaErQD3nknfDYrKvVqgQ9AQG569B6nTbZtdbr9eL8/LwkfkIT5D3BSQd00EvWtbZ72+122Y2LnGRcOVDO3/h9BFyxOUiY7Pf7ZSzwj3083kf34rSjn6gnIsoRvQb+mCuDD7a5Gb8TdNCXyHj+Z/dur9crQTEDv9gL+Aa2a1gD7Xa72Bh8jo7INqHtA9aSfalOp1OORG63X46lxTaAx6GjA2G2q6AF43SQFN5E97NWWE/2cegz/eIEnWwLQVMnVroNkoSZG9Y0dhH8w28nXbJDmmOCPTbrXvsqPnHHtrPrJWje7/dfySmChgR5nVQFbfy3j32EniTXElRlXnke3oqIYqe5r7YpLBNsQ7EGPn/+HJ8+fYrLy8tyYgj9eH5+LrvDAeFsZyHTqJPxwvMZ/zmUQzmUP06xvM7FdqH1me/czL4Psgt7AnmL3cDz7PJEb/7TP/1TjEajIrvxpfHth8Nh9Pv9BrCPfMLWoGRMNX+OHLXOqAVu7OMayzGelgM4ma7GqTK2Wws+1Oq23Of//DtjMl8TSOAZ0yX74Z7/rJNqeNBPFT+bcab8vX88Ricn5bhDxviMK7muGs7pBPp99Krhf9aV7nMeT46J5DpMB9djf6uG9+T2fu781/oFPbItQqG/xrxrtMptZZrUeMdjsn2XfYCMYzrxnf/53ng746r12215bqAHvq79EPrVarUaV5jg++ArIQ8Hg0E8Pz/Hhw8fGr4B/bq+vo7BYFCuTYnYxXXwjfDvclzISblg18jUzBv2h39O+Rre+keXvyoImoH4fYBvRDSCAzVB7mBdFhzOKKFkAz1it0PGDEsfHTgzwJnHg+NE8HM+n8d0Om04ijBNjSEcgLNQ4G/61+l0GkfOwqw5SOkFiCA3HX0fB32yo0x7zmI2wLLZbErGFBkMjMHzm4UriwgwwgC5AXsLfBxaO8++HxTAw/RhwVsRuB0LLvgsB2I91zilEVGO2GDerDiyARWxy1ZbLBbFKc138VhRe9xWpoA3zBV8ax71+vEu3bzGHOClLXaoAk4Y2DewBBhm+ni+a7tAAQt8pBh94X/vdnaygY2ubLQxzzmj2s/lgBSF5+BL861ligGeDFh47ecgKDT13cLmb3g1B8P2GTOmhYFX+Mu7CKGrg0HZGACgciaQx2+gjs/gWwAQy7OcBeV2/ePPam15Z4TH6bHbWHHdNrqyrGX+nDyQjWC+91r2GgWIr80N800fkYXIrtPT0wJOMzf5GMWIKIHKTCuCvXbeAN4drOQoQRta8FvELpmC/lPXeDyO09PTxlFpAK70D56FFsfHx9HtdmO5XDZ2wdboCj2yU7LPeHXgucYP1GNHp2YYey19qWSDPTtllCxr7Dg5mJ2DmXxnWRARjfVrvWV95eOXDuVQfi/Fctgyn7WB3WYbJ+sQ5AD2DgEry2UH09BPDw8P8fT0FD/++GPc3NyUJATkFjIVp9KnKAyHw2LjoE9Z69i6HOeJPPWJJhG7uwOR2QSYsG8cbMqnFGCLOXBK3yN2x6jbZrK9ud1uix+CbCYwzPvdbjeOjo5iMBjEYDAodjw7Qe3ko9cIZtoWZH6Xy2Vj3r17FB1Hm63Wy9HFDm4R9PXxqMwpfcaes0/l3ZHWbZbHrdbutJbsL8GjtEmAmnmyTIYe5gnm0UFj5LZBHsbb7XZLeycnJ7FarWIwGBT+8q5VgskkOEVEsdd4H1+IQBi6xrzNeOgHdPXOFj7LQUv0k4NojBdfkh9sM+86tW9ne99r1jKAdYcdY2AIOcCatz+ZA9AZ3GMe2+12CUZynP/JyUn0+/1SH+uSE51sMw6Hw3INin0CdmEaCIO3jo+Py+7XiIjBYBDz+byclASdDCTZ9vDOVQdm7W9gC/qqBoLdzAeBWcbIXOG3ZWwEms7n8/j3f//3uLy8jO+//z4uLy9jMpkUnsL2Gw6Hjd0Lxidsi2Yb7eeCZIdyKIfy2y0/5d/5Owc7kZn5OWSIZb2DDQ5WISPRR6vVKrrdbpydnTWwGF8dMBqNCp4Jjkm9TgTPQRHL3/xdxOvNJMj2Gs7D9zWM2rTzO9nO8PvZf7Vf6X5aHvN3zfetYfa1MVjO576aXl8aG+PiM2yufQEx63jTroY17aNx5ju/Z0zHGAdjtL42hubfpoNpWaOr/89zlHnM9kZE84oR98F4Qu6L8U/319+bpvbPaN/FdHG97nvuW54jj9fry88Z267Nae3/XHdEE1t1HCCP1b4mY842rjel8Qz+XI0OmabtdrtxtYDHjk2K7ws/Zgxws9nE+fl5udcdm3qxWES3243pdBrz+Tzev39f/AHTygHdiJ0diC1Lwl3mGfMzz5pPviTXat/9VPmSHfklmzLrpF/S9l+9E/RLHTTB8pFIEc1t9u68BUGt8B7v1J5lolG6VgquAwXqyYdpCYB654cdYwfUGEM+Poa6fTcHfYbxs9DMgsqBBZSS26zNAQvdwTzX60zu09PTAkjhgCEEeI95zEEdt5Ezv3IwicCDA6AEf3DQyURgbHZkTRP+pw36bEANAA3+i9gFmBhf5kkrGQeLHfzjx0qNcdMutMpGiMEXA4LwE/Rk56TvtrFjbl5gnrJxZFAIOluYWznYwYX+5t9sGOTvHOSgLx4vWcTwjHnWz7D2ec7Gp+fG75q3s0FRM8zz+vGY7NzXBDPtZ2CA97OCdWJGFtB5zRPMBgCxjKNfNVkFKESbBh09dx4v/En/DUY66B7R3BWXaVEbi+fBAbuaQ2X+zYG+Gv0NmPF/HpNlFe95pw/1Gaw3z9QMAfc58yvAlOUS/A5w5bvRGKeDa05cAQhGP5kvPYd5XuFvkjsuLi5eZbT6Ha9DZEy32y33EOS5Rl7lXSOmHY5hTjLK8sHj8PvQM9P8S3bGvpLbqxXLd/OEDXXL+ohogINefz66zs4o806m3aEcyu+p2A6zbsx6gu8ISHS73SLXSByxA4Y9wj2fDqRhM7OD8NOnT/Hp06fSju3iVqvVCLj5pAt+DKTZaScY6CODGNt2uy39IuBC/ZaLyH/6nhPkrEcjojxjeU7ACplycnJSdnxy7O/j42OxLc/OzsquxOFwWHZvEdAcjUaFxhFR+sRuCtOGoC93J2632+j3+0WGE/QlsYaAKDrYdu/R0VHM5/OiJwhSYU9Tf/Z9DEh1Op0YDAbl2dls1tAPfO4AFfR2sMongpydnTWCcQQRfYoLctufMV/wgsdr+2CxWES73S58hr5bLBZFX7bb7QJUOJgIbdAjBMrgBd/xCP/zvE+EWK/XJTDLD/4oeuzo6CiGw2Gxe+yr2ifYbl8Cb7bfbNOxJuBN78iF31hb9inIcOeIaAN98Inbc3CX4C1zin212eyunVmv1yVpIQfJWUscuX1+fl6CmpPJpFx7QP0U6DGfzwtNWc/T6bTUh46Hpu32y6lBrFf6b5kBTeBZ3mXHJ7YjfMX3zAv2hLP+M3DH2gB0u7u7iw8fPsS7d+/i8vIyLi4uSkIJcmAwGESv14u7u7uGHWX7mPZ+Kfh0KIdyKL+Psg9n9PcZg7HcWK1WjY0wliPYgCR88C62JL5rv9+Pi4uLch8ez1qvkQCDbKqB5E5ycqDEARLjdw5K1LAo23HGmGnTNDFdbL+6Tgr15DqwC1xsl+eARi3o5P/34Vz7Su27r5X/NUy35vdnDNx9t+3kZ9y/jBs41pDnM/fFNpCxSCdNG9dzO7ZT/fk+HMP6s4YPMk7HHWr4rvG7fW0SZMc29RrMZR+eZ76vPZNxUuYlJ0L6/RrGVlsHtb7lNQetMg/Xks+NffGe5ZNjRra7vLnDG1XMd+YhbC/mMPOOEyl8AodxQu4Ivb29Lf17enqK6XQai8UihsNhdLvdcp0Fc2tfyXi1ZZtP0wOvZLzIGWRmrfyath90y3P+tyy/yk7QLHz5zkzkAAwlC56aguT/7NBkwls4mhFzYAdBYEeOYodzNpvFZDJp7GT7/9t7m+XGkiQ92wH+AgSTzKyq7prpkWSmzSy11p3oIrTRtWinlS5CtyGTaSOZdpJmpruqqyp/SBDgL/At+D2B57wZYGZ118x0lo6b0UgC58SJ8PDwn9c94iAYrhDoVQIlYJ0VSb1EC0Gs283neqFnQMpzHaR5HgDHMQB+/ymL2e84yb7aGJhsHADwUbIO4gERXFnMvQAi3m3no3cMtHkuAcocWBpcIni00QUM4P9MglYNFbZBO8aCTNG2QS8bGKq7+RtHEL4ZWLDzh6zf3d214J4juCyrvd0WXpOuaLHsOMFhWfPOT/rCvPo5BqLSeeN3yqDH6oSRlZ6TVj1HrOdwGkTy9362f3Ov1yxyarnN+/Y5t3aMGIOToOmE8yz4xzXINfPvhJrv43n+PNtn7l4iO9GuiqP/jMc7EOirqxXNTwcROUd87nlPQAWeOCnlcaXeTGeh97/HajnZRwn4pHPONbk2qmpQ/ABfvUP04OCgFWY4UVY11B08m/UOyIe+YW0jM34ma/n6+rqWy2UDPPkePV+1O+6Xed5un3dH3d/fN8DP81u1A4STJ3Z64XPPkX1JLmkDnjtgQvY/l3K9v0ReCw4YJ5PJ4L2g8NzHG7JOPH70KPPJHL3kSI400l8qWc/hP+E7ZfCe+j6vI8AiGUIQhr7jHtbTfD6v5XJZ/+f//J/66aefWqJhPp+3HXNpd6p2MYR3bfm9i9aj+MEXFxet8NF+HX4tx0eSmMEmu5huu90lZ+CdC/NsnzebTXu/KL6rQT/0EoEt78I6OTlp45/P5+2dhZvNpiVGGdfT09Pg3Yj2DbkfAJLf8G42mw2OcKJNEqKOjaqqzQ02xIVMeawu8zCdTuvs7Ky2292xoyRP0b/7EoT0Eztp+0HRI74Ku0INSnDkKDv/+H65XLY4hvvhGwk/Jwjha8Z99gmxmbYBJLttw5E7YtTb29tBfIwvgW2E99hL+5a2mYyBI0+Zf+4nWecEaC9JmQDi4eFhO3KZ+JG+kTQ34QOxToj5iNsYG+vCvCchaF+VHZgcBfzNN98M4kDW9uHhYa1Wq5YIr6q2Y+jp6antXDYAhDwggz72l77wLibvUkLGfLKSX7NjWWOeiIWZO+tI9wd+wOtMpm6323bKkOMJx3h3d3f13Xff1d/8zd/UxcVFLRaL+umnn5p+hsfn5+f19u3bxuf05+zv9eK1kUYa6ddPtsXGJo3bGTdI7INriSldZMYGlMViUZeXl82fQafjL52entbZ2dlHRd3GL1xcXrXDbohpM2mATnN8x3jps397PP6/xxvH8MZXs+3EiKuGp/IZ+/X3+Tzu34cVGh83nrePuObnJNOyTxk3ZOF7YgXw0huN8hl+Tu9z+0zG/z3mXkItsSp+7Me6z/YDk+859pQJ+uU55fvEVehvYqbur7GqzHkYt8h+mS/uI58lRuf1g0+bcp2Yoe/Nsb5E+9phHCnfJH99H7z22OGNT4lzm1U10C083/gj9yRu7le/OM/DvKTu5Dc67fXr17XdPr/SYDKZ1HK5rHfv3tXZ2Vl9//339a//9b9uz6jabaxwDsP+e/7tscILx12eq8+hn3Ot77F8/rntfQ59dhL03/7bf1vr9br++3//7y8qoFQ+DMoTAPUExp9XDV+2bYXFd1XVkmZWOA40DD6wIAzUIpQEZOwCXa/XgyCzBz4TCNK2QRYvOtp3laYBee/YoW8eqxNZ5pmTFuZJBqrmfSpsH78ELxxkAijkXBlooa84KQR9PpIpdywaOLAS95FaPAvDR5A2mUwa0ETSerPZDI5lI9CHsroYmcnKsOSpDb5ll8DfQTq//R4jJ5ZRKoAANnZOQqNkbVwMSvUqwbxu4KmTsHzuH76zsXLFecoSz7G8GKRxgoi5TmVsHrp9ryGv01R8qWPcB77nt+cuE5x2WHo7BbkOIMjt+rueE4Ley3lh7ugLz3Oyh7WOvFr5GzCzIbOz5jYMrKQzk3qRNWVn0+P3fX6m57Ln6HkMjIv2c0cE93jXMM9iDlwx6qQw9zsIQo7ct81mM9h1DXld+DOTbRG6krXcsylV1RKhjB1QzWO3g8Vz7YiY3w7MXMXGc9E1t7e3dX5+3uQEGbfD43vp0/HxcS2Xy4F9ou/YSPSJbYnXvotBDATnPCRo7L89t5Y1y+s+8ndZwNNbU/QF+8/zuScTOZYFz21Pzkg8/+3f/m0Dd0ca6Usg1gpJLIj14uKhqp0+8I4q1gK7tlw4hN+DrfJu0cViUU9PT/XHP/6xvv/++7q+vq6qqlevXjW97lc8WM/Ttu2I7bjtLtfxPk3Giz+WvrYTD1U73bDZbAZJLutpdnGiUx4eHtq75Qm40T0OTu/v72s+n9disaiLi4t2agtzQAKUo3NJalpv+pQXdjmSsKS/jNu7Kf0eT/t8JADxM+DrdPqcfCSZyvG9titV1XZgZjy3WCxaxTS85Dr0JjLo6mX+NyDFGPExHMhzr202NhPfAV+Iefb80+fVajVISnrNIFMuyuSZPMfA43S622mcMRjvgiWGdvuMBV5h6+Aju3bv7u7q5ubmo53S7Bz1TkW/A5t3cSZv7Gd4fftEnOn0uXiTpJyT18zHdDqt5XLZkr3ET5yqAO+RXZLjzCU2d71et6OvHWdXVYupSM5zH3ymAALdkLGei3Pxk9Av2+3z8dHEud75OZvNWkGCfSJ2XNM2OpFiCp5NUQS7NFmjyJhjY/MX3rNGWQNeL2/fvq0//OEP9e2337YdVCQcKA549epVS/hb3zk2QscY7BtppJH+3yGv+8Rg/BmfO64zNsW1tgMUZV1cXAz0sguOZ7NZ0/22UVzDcyg6oh1vBkjs2f13cs4gfQ+3sI/A/8alE8+yj9jDl4yrgTPQvvGtquGrwhIn4Hu+s1/DM/bNG3akh915HB6zr8uxcU3ieG7L/PQcOKnua41fek48X8YI+Z9+pP9mLBNbmliQ8czsh+c6MbaeDBhf9Zh7GHTe28NDs+3ECBMzwz/JOTQu47Z7z4An9N08ynY8phx/9i35lzJD3607zBv+9jPdV48ZvWOc23wxNu3CMPDE3twYNyLest9nrNVYleWdnMJvfvObmkwm9cMPP9T79+9bLHlzc1Pff/99/ct/+S/bSTz43S4aNG/NG/IY1gWseXxM6+1cY/tk2pSffQrD8/c9PZH3vtTWS/TZSdBvvvmm7u/v67/+1/86UOy5AA2c8hsHvqpfPZODwHHnM0+YQX/+5zuMHMGkqzoRBgxJVQ2qle/v75vx/PDhQ11dXdVms3u/EH1xhYOBfAcY5oGVlA0AhCF2IOE+cQ0BtBN2tGVFboAekIPAl6DcCR0vPsYCYJSg++np6cAYARAxTtpmt5MrrFAuBv85HhAwxe++wWlJnvE8koHuK300GJ0ABQsbxcY7mZx4yrlCOXse/b4/H4/kBKKBdHho0It2UUCAGCR54JkrppGBTH5kgFy1O/oMEAT5cMLNxhWewYvpdLcT0O1zXToQjNc8TwPne33OeDqWJjsCdgzoY17DWvJvJ+qtsHEIU4nzHXyykXVizobPiZp0qpLfTmI5GcR3Bmf53g5Mz3HrVYllIsvPMb/tQLhddmXAA9rzWDxG5tPJ4d76tyNuINtBDAAVbSOL6B/WiXWBx+o+M25kAdAKIM7Oh2XJsuU557n0BbkEXEMXeGdE1bOenc/n7XsDYA5ieK6P9Xt6emqFOU4ywF9sEs9arVYtYWn9A1jGTgM/z2AsNnG73Q54D+hq3ngdO3nPnDiZ6wR1OlLp/LnoozcfPcfH8pz6zWsg1ytyzZwxTjuumWixPuBag7DwkXeS9fyekUb6SyZ0npNMuRb9NzoCHw8dQBDIkWUkaUhsoBM56vXw8LD+7u/+rr777ru6ublpbRL84evb/yN2wB8lmYJv6pM8WP8kEauqHdNpvUtiIP12F7q56NIJNnQa9obdYBQKumhwMnneffnmzZs6Pz9veuz09LQdT4mOYTwHBwdtF4TtreMW5s3JZniMPYBnPK/qWXflMZvoU45M984KfAXbRBfOYIt5tyi7Kr2zlwSMbRo/3sUHeIpP4YIt3oOasRFyRsLQ74iEP5B9NghbQRGli1+wfQAPXI+9Yw6wIU7wUoTo4gDHXBwXPZk8J8Wp9uaYYOY+Cy8BiJk/5tL84FmMnViWxCHySb+m02l7xQjy51gRXtqfto/FnOPXkpxkpyZ9wD+0PUaHUFRkX4wx4FsRVzJW3hWK30SCHnn18YroOu4/PDxsiUDHtFXVksfoBGSKz9n5aX1jHxWZQE69a52iCNYD8fdqtWp9NR9cPOE42vGYZfXdu3d1dXVVf/VXf1WLxaJWq1VL5N7f39disaizs7OWBLdeoe+Ob0caaaT/98i4BP87nkI3VQ13W9lvsP4wXvDw8FAXFxfN/hMHrtfrFktTPOV4D2zARc4uCMdvcdycWCN2A9tnjDbHz/X2T/y9C54/RfkM9ys3P/B9LyHH3/ZHoOxfrw/wLHnie3LzTtVwQ0ZvHPuelZSJmcT1uDdlxz4ONsu+lXMHYDO5yYG2bDt7mF7KvJNmmTjO8ffm2bgIn2WyLq9PucznJNaYfafficEmVpnz5Gea7+aj+2SsJMfbk9EevpiUz68aHnNtXOlzyBhnz69xvMSP8euqXYLT8mMcKl9RkrGH59zrjPV/eXlZ7969a3jSZPJc8PHjjz/WxcVFvXr1atAfn57jDW8817F9Fhm4jZ5+eYm8Bv8c6q27X9Lf/Owk6H/5L/9lULmax+FV7RaTdw0RLBrMrhpWURAAVg3PYjaQ6cDBihFmOLisqsHRNq5KIECgQpfAGyXBMbgEI5lspd825ozdILqTM050QgaKXN3jSniuQ0gBIhysORFEEE7iM49OMlDkBC7XWgmywOmTF4/7n5ULHOFKsJqBJe17550TAq7OcmL57u6uVS175y1BKjtHcThsGNw/eMH8cS2AClXQBmKcjOGZOEcE5MgPR48hmz4K0zJAmzhwBLzIWlUN5gcAxAAifHYSBjmxE+qA2OvM9/ndO+atjYgNThrGfVXKTgYYaPP/NoL7HMW8DsqEJGNHzg2UpAwmsJfktpF16x/Llh1wy5nlztciByS0c11bbzF+vvPnXk/0wUkez0W2xd8OAqx7rGctM3Yy4E2Ol/urajA+O809h55+sHYMhmVyEt3D8z0myz7PoQ/7ghm35zlEBxhgN5hUtSuocV8N/jKuPII2dbiDLcZ/eHhYi8Wi6SCcJ9Yv/fCahs+A97Yn5pHnnc8BJl1ExP3w9O7urgUpyHM6/Z7LfUBZOs+ZNHX78DR30KdvYD1hW23b7IDKspg6zEETgCXfu5jExxUzDxShvHr1qpbLZf2v//W/2jvhRhrpSyLWlIsQM1Cu2lXKOtG42WxasnI2mw2O/rZvyZrifZY//PBD/cM//EPd3Ny0NYiOWa1WDQCznXFfrI/R6ehg60h8X/w6kg0khLC5fqfkfD6vqp2Ntf7An/JRndiCu7u7Wi6XLf4gSXh4eNjeefUv/sW/aOOCTxxzy7s64S+JMs+L7XUCjo5RMh7xiSXwLwNfihXRmU7wMe7ZbNa+t/3zvBweHrZ5Pzs7q9ls1hKkBjyd3KM9/DbmyD4f/xPgkwi3PWeueE9t1c4/dQKba9Djjn+RVwNGAArYbfsl9k+533EY88+OYZ+0cHp6Wt9++219+PBhIBPIMf0/Oztr8sx18GQymbQCUXyr4+PjVjVOG3zO8cibzabxLyvfXbzqeJn54pmONe1fOT4kSesC0QTW4b3XmI87NJjH2vXRiZ4zv/vIsSt6BN7ZtyBG4zlOppOYvrm5aacSvX37tu2mJuFtv8vr9vb2drAzmfGgb9AjxIvejc4OzqodfkDsjGxNJrsjhuHNjz/+WH/84x/rN7/5Tb169aqurq7q3bt3dXt7W6vVqq1L+/09vfA58dtII4305dKn1rT9EftgLoCx/ec3NrFqWMhOTMVJBsan0MUPDw+teAobg55DzxubMYZgrMSxr8eJrYH2Afoes5/HPfDFGBDfud0eRpNxun1uyPiC++p4OrEd+N2zsW7XvHKfE+M2H9x389VznRiUeWWe5dzkeJzcNFlWPNfmIeNDftKOmS/G3VJOen8jD2nPPc7sa7br65IPjKuHoSU+mbka5s62O/Mcvh8+Jo891pQt98XP6I07x26s07qkR+ZzxqXMea+QsTcGF/OlfgD38xgSs/d6yvWHz8iYibWMJyUvE781hvr69eu6vr6uDx8+DDZQ/P73v2/xM36scVlO9WSMFNWC+yUe7vgi8W3aSZ3omOiXoFwXvfn7c5752UlQJoYdDVm9A6VCJYhN4J5regYAMqBrYfCPFbR3ShIk+DorUKqWWSQYz6urq8GuE4/LSskC7QDZYI2vd3tWbPm5K7it8LwL08C53z10fHzcknMsFpyQ6XT3LjMDTuwSsqKGP/A2d3ymYWe8VLQD+kwmk4+UB/NAIJy7Ii3ICXL3APCqajwgsIWXPefHSWEHzFSm81wrQsbEd1k5xvNQPDb0qUzdtgNLABSTd0pyn99HZbCGtvhJGU4HwkaC/ntd8Ty/y8kKx3MFmJeJYq41AMG6tMHq6ZF0BvZRyqXHaOPO/73EvBN6BjV9v+XC6zr5ksbcazidBo/NgYCTNekYVA2Pp6UPABt5pBZtOIGb4Kd/u1psH98nkx3gl0bW82pZ9Hd+vp+Tzn3Ol8fFOkSXeHxV1XbeANJZ/yQoZ1npAWoeG3o0gSrvIDcgnrsHmIuDg4P2XrXtdrcTgzmkjzix9J/3WDlpbnASvuDYA1ay9qpqoPdS9ukfdsTPRpZSRpwYTx2WyQGPMWU0yXrKbfjZ6NsMMmnTgZLtLm2bB9Z9mbR3f7zGLdMAs06wbDab+vDhQwOXXdgz0kh/6ZS2DH3fA0Xwfx4eHtoRkdYZ7GjEp0I3n5yc1Pn5eYsrKEz8+7//+3r37l1LlDpIq6q6urpqSVOvc3aP0T+Sl/QDP9nFmewi4/lPT8+77rFz3jWfPjvJLmzDZvOctGSM7KxivCREt9ttS25eXl7W+fl5nZ+f1+XlZUteoJs4uhRdu1gsmk5G12TshZ9A7OAdZ9hNJ0lsT4gL/IO98kkrFAGSOPPpOvjVtiHs+uO3fRfbZgN7m82mvaPTutrjdlA/mUxast3xDjJEHFS1KxLKHcJVuyS62/f/yLHjVMd7zJXHP5lM2jHP9o1IlllOPV+LxaLZZB+f7Ip0n4hRVQO7yByTbGb+8ClsjykSBiAhjoS3rPfNZlOr1aqm0+lgl6ltqROiBlqqqhVGME7mGF1i2aFdr3HmiLljbU+n06Z7mH/8a/uQJPi8w8gJUPpg/8d4BO/Unc1mLeF6dnbWACrau7m5aTtg0SXoB/y7x8fnV/CwC521yK5ZF8qyi5t2WdvE3/aFT05O6uzsrPEJeeN+kp7z+bzm83n98Y9/HJwy8ubNm/rxxx+b3reesRykT7QvrhtppJG+HMqYvPe9yTG2MRLjcejWfe1xH7v30eXEpWAcr169GmCR6HLiQ2OPxm1s3xMHYzz2PYz9Ji+w8z0ecQ/+TFLGt+Z34komxmOe57XGUfnf8S/3Zbt85uuznWzb9j3Hz4/by/75Os+/MUyP2fOZz8S+JzbgfjuZCRkHyP734v683/005TXmQU/uejzJuTVOZRnytcahemT83GPs4Z3GvnK82WZvfF47vfv43vhNzhVjMi9o22PJ7xOT9HiNSeWacuIYWTLeVVWtGJT40XKesYLXNHEBMZ197yxo8CYH5wCOj4/rd7/7XU2n07q+vm7fL5fL+vHHH+vbb79tmDzPJBY8PT1t/im+pU+w83xaHg4PD1tRYfK6J7/75MR8fYlSLyb9Uv7lZydBDcZiiLJjnmyDuwQmNopmnBWvlUIm2vYZXIJtQAKDHrRbtUs0ONuN0N3d3dW7d+9aYOEFTZDhPqFsCWR7O2M9NoJQgmL3ywkkVyqz+Axq8GwHaQD63q3p4Jxn+SgtKmizEsEJKz5Pwwq//b4bAGBAMCcp+J7qLssL8+SglYDeoLxlxIAU1dvsAkVevJvLRhUHijYJhOmvnSju5xmWAdaDA7/Dw+f3SjngZ86Zk3Qu/BzmHkXUqzYnGWsHy0mWrIzqOVjwgO88Tz3Zhe+5ywNKA5LkqnevSRvZvN98MpCaDlnOFfO8r0Jqux1Wonu3HmNxYiP7wGeusocv6dT21rETMh6Tx+DvzB/rw3QAfQ/94550BM03F1243eQt/OYZWZhicpX6vuRYPnOfY2JHhrb5HHAXfcOY0TPMLz8ZeKEb3SZ99TqyM4O+9DGPmcC2vvYOCQDFDAgdlNiO5JpA3ije8TGKqb/hrd9VYBl2QJFBSNVzADqbzdqRe3ao4K8Lbnrr13Nu/qVt9pqDB77Guj91XC8wzaBsn/Odcs08ulLZa8kOudtjPpF7rw90LcmQlwKTkUb6SyTrhapqQH7VsDAAXUiiKQPq+Xw+2P2EPgDsMv3+97+v3//+980fs+0H3OD4ybOzszo/Px/oe95/yJokQZsFCmdnZ7VYLFrswOeMER95Mpm0XZi87xKflTF4Vyc2nwI63ut4cPC88/Hi4qLOz89bQpAdDSRBfCSt9RGJPXSc7bx9SAfnPSDBtttJnul0eAQrgT479Rzc216h15yo5l4SZI5X4Nd2u2274EgS+ZhZzwNtMA7bTr4jmYjPjs1E/oibHPfkqyL424AAvCZ5Dg+Ze/rCGrC/BX/px2q1aif2wCvenUmcwbMcIyPjnIqTJ99Mp88JTYpQaY/7kR+I0xzwjZwAPDg4aMliJ8UZe8bmjgmcaPSau76+bmuRNuzv4NvY79put60owWAUOsSnYqCnfHxu7xQcdJfxA3YPVe2SszyLoonT09N2NCzyylyTCGXNg0es1+v2zlOOm616fv/t5eVlkxH4iw7BN4H33jEP33k2cwZ5DuEl+higrOo5Cfzu3bv68OFDzWazQUE096CbOHrNsTjrIv82XjDSSCP9uikxodQJ2AK/j9M6xLbSWJxfdWAbt91u6/z8fFA0M5/P24kNGRMarE9Mx7/tN/m+HFNV/32Q+EDGXLIIuofduJ/Zb/fH+ELisomT5N/7yH3xnHyKsp89vDjH1MORHTt86j6373lO3jKWzDOYj+6LsRA/p/eZ5TnHnpT30qfePCdvvR6MJSQP8r4enpjP8fowJpQxXspXYkU9+drHD+NE+X3213j0Pvmh78xHD9fy38aarU/yfvwv+pE4lp/reJHXHmQy1GQM3DkW/GNjeTyTftJn+MBz/vqv/7q+//77dlrS3d1dffjwoT2LQl5j8IvFoq6urj7y51w0yfzafz88PKz1ev2iPumt2X8Kemkdfop+VhKUal9ACAN6CTgiPAZ+rVgQMCbcA3BVrRebjZgD++n0uYoU4MBBBIrBfSS4dvCwXC7r/fv3Dew1pXJNsISFYyDBvOG6quGRXWmUUXQAKQRrPlKKPgBSc9yQv3NlspWPk3jwPyt1GQcBcybm+O3jmrgG0ARHJhOx5gfBKwGe59y7NV3xa/CGz+CR20kj5V1a8Nw82m53Ox5xqrjOhsdAOM6Nk9fm63a7bYAfFfLwA4CGAJvvreRdXeY+0ncDbciUE9jpkFpxOSi23NhBtZzYaNooWMn3DLKTL/kD9Yyw10c6MlAabNq0QUs+oAuYYwNoBtT4zobTeiqdMvPHY3D1dF7L87jGYJUNoR0i5DErcShIsH5L587j9bhphz5hCPk+HUhkzWvIoCiyyzNYU9aPtJN6FX446Yge4Xt/5nXn4gt0BrqUfri/VcMjLOAV1aOWe56J3ACEYgeZ63R63F/WOLsAnHymjdzB6wCQgJAdGlyDXkAO7DTb9jJWy1Pab57HOLifueOZ5jeUbdkptS5LHZpOrp2ZdHb5+3PJMgTRfweTdvANMPp+99F6xbsmrAOdFHAiYV+x1Egj/aVS+l185kSFAzR0iQtPSPZh6/DL0MmLxaKqntfN+/fv2zG46Y9ZP5IEWa1WLVGBvmTX5Xa7bYlU/GYKWJx09C55F9Hgt2UhJ7qfvmSBm48pImHCO/ac5Dw4OBgkU4hj4BuJD/QL11GRi45mTBzxav3GvHCsqQNqg2foPsbCd/k6E2ypdSZ2nqNc2VlL0gteYaP8ugl4RDziNj132Ef7NbZ5s9msvVO1alfsCi85lpR3NfIcbCs7dpkX+IaddVKcYkdkkMSek+DMW+4ipm2/rsTFM5lUddEsRyI/Pj62KvKnp6eWoGY8jjeRVewa8m7e+zNeD0Oy2kcOMj6uZ0cvfbV8GQziPs+9fVnu8ek33g3K7vCqaslFFz048emdkxlTeU4h+4TWLdZ19sVoK0/Isb9F/8/Oztp7Sq+vr9s7b6+vr2uz2bTKfO6DPz7GF12F/vP77jLuBZBDd9BHF36zxm9ubmq9Xtf19XW9efOm6RDjI7PZrM7Pz+vt27dtjh0jpD9mvGGkkUb6Mumv//qv67vvvvvsos3Uqdjm/LyqPvIdjGe44Ktq+F5FYt3FYlHn5+fNtk+n0/rw4cNAv/eSQLTL54kvcQ/9p60cp3WbcSPa93gSL/rcJIFxp/Tj/LevM17h/vaSOB5fL+butQ8ZI3CfzMPsc6/v5mUPP/SYsq3kr5NmOV73uTce7oMvycfes3v/85wcK+0bc/HYsx37FHxvueW38xopa5+yvz0+esw97IXPHY/tm0/jNY4lPDbnHew/Jo6elHg0fPdniUFV7V7lxBzzfGOa7gefe+zml8fJtWCV3mREn5Pf9rfsL9t/9v3OvcH/2WxWv/vd7+oPf/hDS34+Pj4OfDpjcJvNphWQ4GMar/Xr2TKOJEbrUc67ZSrl7ZegXMP5/8HBQX3zzTef1dZnJ0ERFgctPLyndB0wW2BSATtZZ/DdQlpVXaVLkODdppkEoY8YU4TOQnt9fV0//fTTIOD+iFGHu/cXOolioN3PqtrtJDEwb4HjuwTinXxjvEwygTyVmw7QCXYMGCDIVnIALwRXOc9Vz4uabdYEZgbprUg8/4zHFbEEoyQvnGizQnQSrydDjNPJTygTTk4u0e+np93RYOms+DeghUEtH03FeAyEIV922LKPDpyRDQNOKBpkLWXecgv4kE6qE43pDFq2XbVG33iO1x2/M6low2uFbcPieeR7xo1cZoKctnP987nX9D5DaMVu/ninluWEe3NcJHvsYJif/tt9scHPdZK6iWd7TaQzzueAVMgH/CWBbln1XHANn1n/uB1/7jlN3Wwd4bnJcSHPtEf/mX/Llx2RNJzWhXZw/X5Nzz/62U6M59MynPJkB4ij/RiXHRWqTpE3z2OuC/4GJOZIM+/KYBwEdV4bTnImTafTAXhL/7wb1yC+eejKM/Oa/7GttG09zw4ndmlYn/M/xR5p7/ks1yftM27m18kGX5dz7797TqT5Qzvpz3gNMWdeR5ahl5wwy0MGyiON9CVRggO2794VVzW0p/hgJEDPz88/8rlY369fv67JZFI//vhj/d//+3/r/fv3A4CsamcH7Ife3t7W+/fvq6raMaO0W1WDhCtFg1XPu73Oz8/bexJpm6K0tGXoOwoS7ZMyFr6jb4eHz+9y5lr+tt+OXSKBcnp62hKlqd9o0wlQx0Ho7KpdvOYEHH21DvP/9Gc2m7U2aAfbY33G85yAoS/wFx5yxOrDw0OLXw4ODtou0IxDIHSw/VP+Z3wk2C4uLmo+n3d9Sif04CGJ0O12O9jhB19tCw3Q2P9D/p+entpOF8e07qd3fjqpnj6ZfVfHEMwR/bO/S9wAfzh6/eDgoPGEZDxjOTs7GxRWHh0d1dXVVRsb/HISfDabtdMtGB/rkHUNkGJ5pM+MCbAI34R3vJHUsy/M3359DX4HvEYOmSMKHFar1YC3WbjFuEgip89gMJ5kM33g/Ur4Wo4p8e82m+ejq+/v7+vi4qIlH3/44Yd6//59bbfPiX+AKdp0Ehsf2piDi3/Z/csOdfsayAS+FDLrhOnV1VWbIwoyXEj55s2b+uGHH5pP5PjAviM8w7/fB5iNNNJIf9n0zTff1A8//DCIx3uUCQ3+9nfWD+hHJwqI+7GtLmzmfuLG09PTdnob+mq9Xjf9xjvFuSeTmf7tmN+2ir64+JfPobTbtsEu7qUfiVc5XrYfyP/+nHv8d/I/cSO+693Hs3oxqefDeAf2zX3f9zzz2T6TP2d+Pe6UG+NBaWd685kyljzgJ/G2Hk974/A12e/eOjFuYKzwpTn0uPFBkTXnUvDfjanlHJqSh/sS2V7PPerJaW/eklf5fGOKjBdy39yPXBv5HPjinAefkY9wQaEx1uSH58z82ycz7rfxL9pgLeFLO2ZyrGF/Ez5VVSvqpR0nTqfTaX3zzTe12WzajtDlctn0pNvZbDatQBU/PrEyZNlySXyQ4+6tSc/XS9//qbTv+Z7zyWRSl5eXn9XeZydBP5csnA5OesoqyQkDrk0m2nhg9AAMLOgEDzaI2+22BeO0t16v68OHD4P3F/WMd/YzDaKDlqpdFSbfeww2NHzGfd4JxXc4BQgvx1Vtt9u2u8iLGwPmKnr/eJcp9/Cb5zvhRh/MDycY8sXSTsLQH/PLyqVXaUY/vHuLeScA8/joG/02kO3kMDsTmBsDeJl4sCFizquGO2HzeEv3kefRVx/vu93uEqTmo5MtmdC1TNJndgH3HD33x/Pr6wjmGXcanKoarGFkw3PgMVu2vY4dMEPJZ4/NbeW4PCfpPPtay4AdlDTUyZ/e9/xvxzevQ+4TGMgChHSIems3DbSTLtmfyWTSEv0ef8/hsuGFrGsNtNgZMk9dBQ55/tLoo2sIYnw8oeeUdqxvvIuBd3fhAHAthRbwHx1gOaPNTLCmw2fjyrN5PolnHyOOU0Nbfjec55M1Rv/u7+/be5hms1nTB+gWZAKdxlqxXoWn2L7379+3Z7Ce7+7uBolIA+rIGPoXcNQ7kukLcpP84jg9ZIYA0MnNdFbT1njOTfts7z7dkJTyn05u7959RQC9a+yksm7sJLIG/B4u6/2RRvoSyXbRetuAxnT6fAzP7e1tK9Z6/fp1083ozaqhf3F8fFzv3r2r77777qN3xfcSEvzw+gqOb6QPPh7N/WdHpk+OQUd6bFnAQ3yBXbPvRH/Z/UWhIbqTBCfXWKfmMbEkEQ2w+Ui1l3b8m8eOP+zr8J19i+1223bTwifbG7/rk3GTsGHuKDC0f00R5NPT864ybAUAJr4yPgw61/4Du/7oo33+zWbT3mfIezPpnxO3JIl4j5j9EpJqqcvT33NcBh85ko/5I06D955Lx7eOTSzX9Il+G+Ry8tE+F31Yr9ct+YYPxbgM0K5Wq8EJBtPp81G7Z2dndXh42L63v+CTf/C3bFNd1Gk/yH4XfLAPaZniqC3mFmDbcQZtOVnIUdo+nQPfiV2jVdWKIPLIWb+rm7lhbD4u2L6Oecf6JBannapqwD24w9PTU52fn9disag//vGP9cc//rHtyDw+Pq6vv/66yU2eZGL/K/3n2WzW/Ep0NOsCPYmucYHX3d1dXV1dtfcxm4/wHF25XC6b/B8fH9dqtWp98LpwTDfSSCN9efTf/tt/G/gLnyLjBFVD3MKFKokh2hcipkL/OFFFHMypBPgYFBUTu+IPuE33wZS+oT/LJKcxVfsJtO0EamLWvc+Mldg324c/2+5k/LtP134Olu1rTfuSYEnGj3r94xrGmP6T8QDbVfcr2zIelTgtz09M1Twyn72rLu+FevxNnI/+4M8k7u5n98bmz3u+U+IX+zYg8JPyaspYYB/Wmv16iXo829eu59o4cfJmX1vG1XKN4LsZpwFzS8IHxL/Mefb68Wc8k+cbO6cN2gajrxrmhHprE78Mf9TX5MYWroGfs9msfvOb39T333/frr++vq6vvvpqgPPBj/Pz83r//n3rv18X4zieMTpm/0slr927u7v6n//zf37Wfb8oIpcKjQRlAoovKVgYnkbV3/l/wAace4wigZYFtmqXFEEYV6tVe++ZA9SqGgi3BYn/DXjzHIPTVTvjab4kAG+lkDukAEZog0DVQGvPuDuZSj89P/Sf6xzoo3APD5+P8qNP3qVksAX+ZqKTYI1r4bGTGE7AWUE6mOW7XhLHc2ugHp64chVwyoG12+oB5RBAEEdfIV/wDBn3UU+bzaYBX/DZsuC++z2V5gf9cnWJP3PQ6cRGAjMJOvgHHvMMk51T5AW5TEDUcmhHxRVkdh5zzjLJYicY+hxD6cRTtp+GNB3PbJs2M2HTc1rtrPScXv9tp4sx9xy5TNwZlMv1kmvFMmcdbD5kwtA6zcBd6jv3K3nmz3NnYVU1oBLd4sp2z6eLOMw7xldVbXcJz7Wsoj8ymAMcN5Bk/m63u3dXVu3WpostcEQMYPYCwR4oRH9ubm7q4eGhBW0830lP9Kbtlwt7qnZAK++ew/HC8bNOd58cYLp/6dChw+Ez/SSpnU6s27PNs24x0Angmvfluv9chzzv2RcAeh32nGqDjeaLeeP1ls+u2u3cyueNNNKXQvsCQdsu02azaTvtqnbBX0/H8A5HPvvuu+8auI5/w7W26VzP3xwF5MQhPuTj42Odn5/XxcVFnZ6eDo6fJQFh0AD96feRPj09NX1t28sO08vLy0HijKNnMwA2IHh7e9tiBYrq2AVKso+4JguHGCO6xzGFdRgJmul02nbxYcvwDeAT/bef578ZNwkxxkL8BQ+x5VmtjG1D55OYQzZItmG7fcSwd8PBR94fOZ/Pa7vdtkQscmfyjk3GyJiJDQBRSGilz+zkc1UN3rl5dnbW7A27iRkD9hN+klQzD52Ug898jt0wX/FTnISDlz7GnpiEBCN/c6Qq/Xv79m39+OOPgyRqJjvpH5/TV+afd52mnrAMwkfGwrFcTji6CIx2mHvzA5ApCzBcdMr8EItNJpPGC4+LAmPWQyZkreuQVdbkdrtt72FlTPTbxbIuCMB35L2cV1dXdXt7Wz/++GPTAfbRvfZYL/CU38fHx7VYLNpRu95t7ASufUnWInOA/Lgo5PDweUf7u3fvBroeXu+Lh0YaaaQvk6zv9q3njJWMMxmrQt+hT7C/qTeqahC7YqOJn/xOeRdVQ+Bm9/f3Tfcl3pY2BX1vn7bn1yY2w+/EiI1zwbt8dmISxvmgjF17uFdiT715Sttt6mHstot5bd5nHKo3vsSq8lnul+/t4bjmmceWfHI8n36weWefkvaZO29K6GEH6TvkvJlfOW+OHZJfvef4t/MP/hyeZTvpT+bzUy56MuLPemPqPS+flWvBMm3MpYf39OSfaxOndHzod6BbBsGZXuq/x8C4e7zpjQOZR9588k0WOFpGkSN8Tny89Xo9wCuJOf03fWTjAzEbMThFgvYn5/N5e3VKYlyp/4xlJYacc74Pa/M9fy75uT252Ccz++gfdScoQdk+Y/IS2aD6XgcD7Ii0AnTyLA2EwYPt9vlIQ6peDa5kMqAHAmXW3Pca0PcYekEuC9JK2oELQRQBeDoTdjoyeQThMDhpBxlohz8EQa5CpT3viCL4clDpa3BinPB0oqFq5yB5RxUBOGPyUU+5a47x5twgCz4SylUZDqi5/vHxsVVV2+hakTqgtHx4VwKyYTn0O0DhO7yy0vQ7oJD5lAvLM4nhHL9lEJ4biLC8ZtLVyVDkwzuu9ykZOzuWM8sXBtuyuM+ZyGQMfOo938lHG799xLP93J5Tbn7vczRSV2TizjrRRHGA167Hzd9eP+lUm38ASAYmbGxpg3v4MV/dV8bmBJGT6BnIMN/0J3nJdymXrDkI0JfxslZ6Y6mqBujh4OAQeG48H7nLyOPynHme+I1dY1yZ/ExHKp0G1r9BSB9hhs5g14Z3k3udOLld9Rw8wiscIHh9d3fXjlBMR5i+EXTmGkzwzmtmu902IN/HAHndmkc5hzk3XjuWL/cn5X+fY2Wd+rnOl30Ht+GgPec2fYAcgxP8vItupJG+RLLeyOrX9GceHx9ruVw234HEAH6oE0wkidg9WrUrnnGbPIu+ANizk3C9XreEZ1W1o1Z5/unpaTsyl/ucvMDv9KkDTuj6SEmCUnaXXV5etqM8J5NdMRzjI/Hq0zvwq13o6Gvhk/Wy7bZtXNXOTuHvu3DOYISD7apqhXr4tiQfsXP22+mjE2XIwvHxcd3d3TXb5OpijlV34uTx8bHtDpxMnnc0kuSh/8gD9yFbFGgeHBzUarVqu0Ah72TEPjGep6enms/ntV6vGw/drmMIdp1kwSc8IAE7nU4bAMFuPOwJvpPnwXaWqm6AG3iPHNkPrKoWf7AO8H1dBe/rb25uBm2zTuzXAKA4GT6dTlvRgG1hvhoFOQJM4dn2Y/w9yWPaZN5IHsPfs7Oz5su4qNfxjYsSkF/77oeHh+14Z/jIkcjp4yN78AN5SH5aBpAx+sffXqf0w9ccHBzU69evazab1Xw+r9evX9dyuaz379+3nc/4dJ6jp6entsMcOUE+2XWaBbi8toA1iO/y+PhYq9Wqnp6edwezxlgrd3d3rc2zs7OBPnZ8YfolQK6RRhrpn5d+7jo2LpPYGO1lHG48C3uLz4CupkgG0L5qh0/6dIrsr+PjxCL2geg97McYga8zXpCYTcaoPT4kLtLrlwusjbP4nsSUsp9ZfOi+GDNzvL0P48n2bfvM68R49uGE+bn7xr3mn7Eg9yH5n8+x38tz7YeaPz3c0P1NrIJ+JeZVNXz1nfmWfO+N3eNPnuA7eW5Svo2xW4azHylzPRzL13tcPR2RbfRkLcdn+c42jStyT44LnMybguxrmf/02zoqcdUemZ+eO+cRkleOkVlXLrrgOsuciyX53kUa7otxSMazWCwGfvf79+8HhYmW47Ozs1oul60QkqI4nsFv2mY8mV/yvKfey7//VNqnF0x/6nN+VhL0JSHxdw6AEmzPycyOp7FMANLBsgUTYeGawSAPd++44PvtdlvL5bIFHFUfJzARrqph0srGxc/yTiEDRZ8SGo/PoMjp6engeYAu9IfFZwXMdwZNvPBcLW/l6etJ5DHefUk5V4saLM4EBKCG5cTjdQKGQNbGm/8NrBjkyeOQn56eWpIBZeSKoqOjozbvVja9MRKEoxxy50I6TibLhvvvRBQGxUrTAErOmRMS7EJIgwjPvfaqdkf5pjPqcefayQQlfIQ/aeTTCbKBwPhYcVvumAeuTdDMcrLPMTQP6I9/9jl0Hm86B/A6nY2ebvJ6skxnX3KsfJ/y03Nw4KN5yXd24LwWWf8+AiLlPOfMOx8MhHreU25ynhiTdZV1MeuXNeEkmR2D3FGyXq8H73sz/9xP8waeU0iSPLLTwm5V89UOAu0ZnEMnVu2OPLRc0S8AWvQ6+sWAE8fTMgcAU/CSnUmAW1XVADADwHYInVjO4BP9w2fW5VXVQGfGiX7BDrmgxwFCzgtz4L9tx7nea8uOpHW65c9k/eNr0w5b5+DMYisA+d2H1JUZ7PHb8gd/V6vVmAAd6Ysk60ADQ+nTYivQ1cvlsjabTXsXqIEuAC706s3NTb19+7a1w2/WJesud4l5nfEb/4wEKAVwVbv3IONDVQ1fw4G/x5jZXe+dgaenp01P8xwSK+h/J4ZIfB4cHLS/qRC2vz+ZPL9zkSSHd9kzD5CLnWiPsTip6iI7B83b7ba9UoOf9OHpg20Q48TmPD09HzkK//0uSicz7Yey4455JBHGuA8OnneXXl9ft37Rh9vb22YbnZDjfZLMsX3M7XZbl5eXTQ7sY2SBDr6E35dJO/iBHG/KM5OP9vv47diQ+Ax7S38h+xYkwvw+oMPDw9Y/Tj/abretmMy+1HK5bHPD+ygdR5FA8w5M+1QPDw+1XC7bOiIetS5Yr9fN7jm56qOJkS1kHtDF6x0yqIq+cLKTeXFi2/1BDrh3X1EA8geWAN+5J3nJusP/YZ27Mp+58jjQY1zv2O7k5KQuLy/bO3RfvXpV19fXg4Ip5N1rCplCL8Cr7fb5uO/pdNpkBPlw/MdcI4vX19etUMTfI2PMG3z2robEQBJEHmmkkX7d5ISS8YKM4SD7kZwIxSkE7PxEx+JvZMFH1Q63sy+EPvIJTth8F7mmnbYv4P+tW+3fJvbUwwCNPRhPSlwi7b/jab63b7HvXttCnpW871EmqXqYVu9z22H8G8+x56iHt3lsHr/Hhl+WOIGv99/eGGAszjKamBx/W4Y8T4zDNjexTvhNfzLn4Gf0sJF9f3uO/GxjZMlDf1612/hlPu0bQ/I2E6jZT7ebmEjOo5+XstqjnJ+UKcuHMadMHPbIskp/c3w8K4s8oB6m5IQhRa295xmPhZfID/kLYtjcpEAffcrMdrttG+fwL9frdS2Xy7q4uGhjIgY+Pz+vH3744aOC257MMZaeXnqJx78U/WM+40/aCdpTRHxukBKnPYHBquFRswgA13MvTrcdboSCBCHfURmEskzgngVC4PX09FTL5bJV7SaQzzgIghy4eEL8vxcR99g4mzxmnsOCcbW1xwjoDB/cB4JkH6VlI39wcNAWFoGqAylXX3lXD+3TfxYt/PQxrsyrF04GllbeKK7Hx8e2cOkT1wEyOJnr96v4SEr6an7iOPldR3mMBrw0sEa/6CNzaCVgR8AKykcPpWw5EDXoRPtOjqT8e+cAQT2Ak3nNeLxOe4kN5A9gxsqQfrsqjGts/Awgco0NhuXeiRi/94ExZl97jgLrO4E1O3379BNyn4UA/OY+J/oy2ZgJ9STkwHqu57hmUQV6JnnmRKCr0r0GbfDNN/OUtlwggZFlzVq+E1hKGfeY4Iufy1zRLzuUyeeq3S4B+mRH1LsJuIZ+GHTDCYDnBEye73TgPIeuQkV30DZ2grlwoOJ1YjlATpMnvpd+8T4nAFYCQkBbzwnPAXybTCaD3QHsnOCau7u7Wq/XAx7bIc259ZzuC2Jt4zgJwO2bDxkApKNlubDN4pkJ3udaSnLgZl1U1X/vODzghx0xp6enLSnhghRT6nkIncoOMmzvP4XDONJIvyShL6wzHbR5JyVr0wkEjqG0zWNdUczy/fff19u3b9tasz71OwZp07rXdu/p6antfDo5OanFYtF26xFc4kfTR9s9FwCyfjeb53fuHRwctPc441fSVxIP7LLDB+S9fE6iOM6h//inTjbYfpOU2Gw2bcccgWnqS/PKv61fSaxwvf0f9DgxCMc5saPW7z5cr9ftfYLEfdhOV2dj053oRD9X7eIx5Mc+DknRh4eHOj8/b9/TP/xf7BH8yqI/+zmcjJAJdidwnRQnfppOn4/bY3eKbQxzxjN8zJTjCNtrEmb2E0nsOmaZTqct2bparWoymbTjjZ1U5e+eH8w99BPfAr8HWaKPjMWFPMwFfeF4Qua7aldoBs8ddzKnPiYWOWGNMWb7jvhyTqwaHDX4iH7gqFwn9aDj4+OazWaN58jzZrNpMuAdt/Y34c/9/X0DuPjtEzfyXtqEH/SNE60oaj07O6ubm5u6vr5u7+vk3Z6OLfEpXVyFz/rNN99UVdXV1VXrF/LowlmSEDc3NzWfz5s/6cJP9N/p6WldX183WXIcZP0y+jgjjfTrJ8eR6AL8kH0JG58iYV8RXBfdzvf4juC9m81mgNk6pjIG5raxZfTBiZSMRzNB47G6HT7jHuM9tO1xVw1xZf53P3yNvzdm4r95tvmVYzAZl6WvxvmMP+UYPV/+3tjfPtzNvrx54Gd4Tvy7hwt4TmxHbYP8LGM09rNe4i2/e74z37+EYUDJR9ZKygB/5zP47et713i8jgOQw5TBvGcfpax5nHndPruf/HW80pN7X1u1yykkhmjMxvkJxz30O9eyx/9Snz1mx5o9zMd8onDDJ5WSo0GP4fcmXoXMOh4jZrUeYuwm/FqOun14eKirq6s6Pz9vepf+428b08ZHpXDOWHtVDfzoXGv76OfiXqn/ep/12sxrPveZv9hxuLkoHUj2Omgw0mCxHWoLN4EKwRsVsjjsmcSzsnXFd9VzkLRarQYv1XbQ2wO0e8FZj8mApTynB5r6d9XOkAAykEiCjwBDDkzcXxaHnRLzkWQeFVbuVxpaFqCDJLdrXqYg5oLMRWqlRP9smJz8oF2CXu5nLE7kWunxDN6dyjP2ORlOojEegzfuF4Gu59BJWO8CoF2/+6hnzLjOSQwbYDuY3gXhnWb0MZMyTnI7oeX55tr8P9etnY/8Pg2SgUXu9dxYxrgXA+E5yvUFQMHRvB4XYIp32UGWp5yDXJ++nh87Tj1HoGcwAaXoI+vJOygsYz2HKvVH6p4cI/whcPB97ofnwHrWzlNe47VGW73+ZLLMz/f/6CyMu8fBZ15D8IIdGPDTx3xbZsx/2k3nopc4T70PX7xjApkwgGmHhbYz4HLCzDLh9f3w8FDX19d1f39fZ2dnrYAD4Mx9gzc8F5D+6Oiobm5u6vb2to3h9va2OULYRCcvnESgX4CPXGN+e42xfns2MeWF8doue0w819c6APP6QubNYwekuQb2OUUptw8PD20nBkdqEqR711aOBd7d39+3oz1tE36OIzjSSH9J9FKwbrvhH9uN9Mf5nyMZ/+7v/q7evn1bR0dHtVgsarVaDXaZO5HgAkl/7iTBdDptR03atlXtCvlc2UpfWMPYHHw/dCcBJj4HPqEBpaqdHeAYN9tdEhgkIvHx6IuLPmwHDV6RaKRNB7K9mIfEZe7gso+fwTg+KUcs0Qd2iz09PbXdZvTV8+/g3X74drvbleb3rtqv51nHx8ftXa739/eDI0hNyJj9FBJt2FASqbnD0/Nj/pF0Qx6IDewv4ZM41iX+zILJBAMzscbnJFk9P8jK/f19e38kp0dgvygMJQlPIpAx+z2T8Iw+uRCUdcQz4Qe/eU/RwcFBe+cQO61dsW7gyvF5FhEiaySO2b3o9c13yCnrC3nhWFf0Bd/Dd45qtu+PHgEzoD37EAaAGC++B8lEn1REjMbxw7RtX9s6h3XLe+zoE/w/PT1tx4rTP/qSWAKJaRINp6endXNz8xFwZZ0J/5bLZb169aoWi0WdnJzUarVqQFsv/k1f1D7U6OeMNNKvm9IfNCZk/eLvEx+s2mEM6C5jtJx4gA7ebret4AP/CL2dOJ9tDf6GNxYk+VrbYuy3C7ccc/Is88J+lP3eHu8Sh8023XYPR+mRn/0pnWw/fh/ZNzQ+6/jfNrP3PPuZ+8bg2H7fGPO7lDvPP891LJLz0MPx7L9kgjfxuh4GmFhrjweJU+wbs+Wxh30k0W/HA/Yj6V/23/zgb3/eu9Z/m8+OzdJXz7H0nu1Yid/2dTyenn/pe11s6WLBHuHPpzxzP5S4rfWOYzOK8Og/eogi+1xD9g+tayaT5yIQ8CT8TPv+5iN+I/EURW7ffPNNbbfPp/Vwos7l5WUtl8vWb+NdmUx3HuNTOqNHqZs/RamL+Yz/e/P9p9CflQQ1KOn/q3ZHGKAMmFz/3VOovt7fI4h+p477wTOtZDKpZGPMu4C8+8fPN0jsYNZBGW02Zv7/AKmDaBsjfjxhLBYnjZ0c5BmMAx4mgO1xkcilj+yQ9fUGWWzs01iYt9PpdHAsEfNEUEo7TgS7DywkG9Os5nbACb/pEz+TyaQ5PwbZCDjNP9pjrgkIAT5y8RDk55FGmcTsLWL64GsspyhhJyzhMWvCR0Rl1Rnz753BXhPwAfDGa2mfsbeiMRjQo81mM1gT5oEdXzsdzJfXsvlnUIDP4QfPS11hXiD3HlOuMchy4nlJ590JK8u4d/PZULLek3cGMRMIrtqBZXa06RuAFuPkGeno73PSvX4MUqZjYn1p0CYNHc+1s8H4U9f2+Me66wUMzLP1PqBe6pHDw8P2Dk3zwnrT+hD5s55nbdNe8hIdDr+YL0Cg3FGQa9596oGruTvB/MznEgg66W8Hs7ejHdCPXUl+DzGOmJ1Oy2aeNGCA3IVAnkP6zJh8b8qZZcSOqo8EzEDFeiODsdTDvXn4HMr2WQPs0KWf/Gas9mngA7Yu+zvSSF8y2Y6ZrJOqhkUF2J/0AfBb7u7u6u3bt+3Yzslk0oo/SISmH4yOcZDn51Ks4GNcAdlcJEYRJLuk/MqGg4ODuri4aLrTvtZ8Pm86wr4uCRGu4/noOmxkJk0IbHmOx2r/DF3Ds23z0Kn87/dY2s/jXvs62HH0GIU0JA5t93ydd1pWVTuhhWQVvOBkAh+Bav+QqmPaYAx3d3eN/09Pz+/x5G/Gxm5cJ7QBAkjenpyc1Hb7fDQU44CnyAoyShU0coMNxidDTpx4MqCRfirAinfs8ioOgysZG5Gcsn/y+PjY1glyS9Gb5Q/ee92mnDJ2vmcuU9Zs+x1P2FcjSccac5yTPjS/7+/v2+4ey7vnkDVO373bmPt8rC9+Ibzz+nt6empAktez+euxs2ZJzsK72WzWEr32Ub0mKT7zOJBRnyhiWfQrGnKX9nw+r7u7u/rw4UOTOa9H+5kHBwftdQrb7bbtQoeXyDlzVVXtlBAK5SgydcExBSC5w7sXE9gnHWmkkX59lPgK9gJfwH6M41L7OYeHu/d6Y3eNV3EfRads4sCGuC3bK9sU2ynvuko7nQkl+0t+lvGl9NEcU3Ot/zZGxTN6WFX2J/1t29EezuVxO/ns+N32xTbez7Kv10scJQ6UvEne8nd+18sjmEfua86T8cWqj3eQGkPl2ft42JPp7JvlyZ/Do5xj98X88dgSH6Bfjh1yfsFbUjYSh+P6fHZPdnKc/ty8Nh5j/mRCyv3zmHOucuyWCfyL7B//G7/ke2PTvmbfGk/+WUb4zHPh3JTzOlU1KDRljriP/+1ToZeMy6U+4/uzs7OGSfkaxoJ/TDHdZDJpidjlcllfffXVwOd9eHioxWLR9C/foYeZG/BKroMHlvefQz1d+HPu7f1t+rl9+pOToL0FZDIg7cXu73OBeCegjajvsZONI+8KT9/DM53Uo12SoFYOuViYZFcXZyC5D4xN6ilbJ7R8FC5G30ktL2oUsYWZfhPMVu2UFiARwRXBUBoeyMkclBKLhIAyFz+KG4DHi5dg3e0b0HEf0nABgqEkoFSqWXVmntA/v+PQCtOK11XIBIJWRnaIeH4qOSf0nPSw8kwFb5pOpy2pbEPG7gEf+YljaUPnHQY2XGmweklBOyc2eDasgABOvMHjVIy5lt0+z8wCg3Sc7Nhap5hfjAnZS90COOJxOJlEP5HZXBvWUcinnXH3yWuCdWr9sM9hZv0yb5B5BdhkAwwPDVKlAU7nwUCF19x2ux2sEwNZOVc9xxfKHYUGo+xEelxVNXhXmvWkdTpzbDCSNeEkaMoUbRlwsgzwv9enAeOcd8BdO2KeZ+8AoA+Mi7666IHnwT92fUwmk4Gz4j4z1xDjPz4+rrOzswa4ej48Rv9tZ9PAPP2jYAWQk/nw/KV8M/8eu6/x3PSCSz633nS/raeSPK+fcrZ6QZdtQ8orO4CSB6lfM9kw0khfMqEnEjBhLfoVDvgi7DJiDXOk7NHRUa1Wq3r79u3Ax+UYao5ydLU8iSGO5OQdh9ihs7OzOjs7G/in2FX0EDrdID9r1+8+JLnkBNC+JKcTa9xDoZ0LEAlQsYWMJQEN/HT7FzwLO2F97eC26uOENfoHne5dmozL8ZXtEf7CZLJ7n4xtIf62q54dA/gdNQTYFHnRhv0TTrI4Pj5ufyfAgX/Mz/HxcUsW8X9VtaA+C5us729vbwdzwvzBR4AFJ+Fs/5zchbe07XnjPo794zkuDsPu8uNkf6/anfvdR5K60+m07QJNENfxSK5hxo2vcXh4OEgeIkcutk1ZtX+I/9cr2KMN+ujx82zsLOCPQXKSoN45yjG/3MOa9atDkG+vOfjp3Z/pu8ODk5OTVtHP3DseALBHzuE/SXeKN7wrnecSX1VVLRaLxv/5fF6r1aqtMSfKWZvsfj86OqrlclmHh8/v8b26uhrEUfbDV6tVOz0EoCyTnFmsbTDQ8RN8Hmmkkb58crzWA5cdJ++73/qA2JR46vDwsM7PzweYJv6cj+XH/mBHbcfsB1ino8cgnrEPi+vFpk6oJGWcS/+MVfQoMYnE2Ny+P8vn5d85J/m3/9/3vBwfuh5e4bMlNtYbv/06nul2kgf8nxhq3p/PNXbhuU0crxezJNbpvvha+96eQ/53P53AMn8TW8o+7vvc90O5UYF2XcD1Ekbi7/28nsxaXnprYZ+M9eY3fztm8Lwat00/1cX8qZP8vIODg1aQ3ptTz50xVlN+h/4Ba67a6YheoYDnwD4x4/AzzGv6n32luI37wPYY++HhYStWQx4mk8lgFyn69/HxsRaLRSsO7On6XBep5/fpuE/Rp/TO59zbm8s/hX6RnaD5mcGCXHw9QrCc0LHQs/gMSiIg3iHI566Cpf3esQO5MPKoIycVekalF0hZ8Tsh43tYQD5yyGflI9xeeF4wABYojwTiHaT4czsErnxn7A703efNZjOoDuCzJDsM/I2iMiDD0Uw9+fD/gC/ImYNJ/jfgYAXi9h3UmqdWJpvNZrDrx4k12gfAcBUyhMJBRglQ8/mWNY7r4nkJfmy3u11ryIvfb+oqZoMcVnLmq/u4z2mEjz3HwIbSSUTzx3LqNWvFZdAQR3WfQ8JcpdO6r+rKxjoNK2TD5mCe+zNZk2Ci5Q++WQYtE+ZVVuPboaffTjDZIWCNp36yPCcolbuBGbvnKNcmz+U3iUbv8PM4LePW2wYcPR987rFZT2RRADLCPAHqpE5Gd7nAw8+0/MAjElm0axC4qgaFCIwNJ4Qx2BalI2mdxDzbEQIo32637Zg15InncbQqx5vZLhmg9lrHBrAThqNZV6tVOx7Pc2xCJpC3PHbbiVtf7zVtwD3XdM/+pjNveeUZeV0v+PL9OQe5Vizz7pOT58xVJuH92/KexTFuL58z0khfCuWa6gWm6aNNJpP2Hjn016tXr2o2m7Wfh4eHevv2bX348OGjAoL5fP5RsYpPoXAiCn3+6tWrOjs7a4VzT09PLbjLdcjn6P/pdFqLxaLevHnTbIH1vpO6FKJRjHR7e9vAvfQzXHhIv9wm/XFA7aQX9sGxBHaDvvcAmQSb4AdJWPQ6Ng6e2o67AAh+Z2xlHwJ5cGKrqgZ88jGv2CGfcuBjfieTSXsfqZO++NO8n/Th4aH5O8wzu/EodsV/hmdZ0ZxV2Pgk+BTYXt7HCa9IFGZMRjvMPbEDyUkSS6wZ7rV/ghzQF9YD8Q0xC8AxPON6Emb8OEHK7meeQxLO8ueCsbOzsyZrAFcefybGNpvnd4hW7V7j4bmxrDjudNGrE60HB8/HMpM8ZIy0T0yU8R3rwD4P8gVv/X5dz5nj6Twhg/nz+uJ6/G6OlWUM7HjmWsd+/u1ktn1W8ILHx8fBUfv0xesaHsBfXivjeIxxkgRFXpAFeHl3d9feW4quN9Dr2M1x2UgjjfTrpASxjVlmPFw13CFlHJCj1H1ChAu68LM4FcRF6NbvxvLcR/9vDMtF4+gsX28bm3Gb43rr0uyPk16JlzrezWv5PDEZx7u92NXtJhZV1T8utjcm+Gi/P7E2j98xsD/rxejwK8fv58DHnFPzMPvrZ1ftcKnkpXEw/5/PTcyw12d/5/uST5arXDfGvBIPMW+NZ/Uo5Si/e8ku9+Qqr01MJcfYw3aSRznH2W+36aQ288pnPinN7aKHuN+6x/NuPnK9ffEsnjCG5GRnTw+5n77fY069gG+euSueS4xmn5GYx/Lbm1NiqM1m015dQSzEyTjz+bw+fPgw0Nv+2/PiDWqpX/+p6JfG0f7sd4Ja2A2O5HuzLJRV+ysEmLxMTPA9BtJBUyrHBD4thARRBNtWQA7oMegZjBjQNVjCc3zUYoLHJDoJkrgfoXPg652XVbtF7feDuvqaRDBj9PtfnJjLoMWVpH7nCvPpZB73wzNXBTA+FAXzY+ME2ODA1nNqBeMxQVaUXqi8TwW+2sFhPqm2T2DLcsucz2az2m63g+piy7hlNJV2OjyMgx0G8NnjYL0wZ+wIvru7a1XBBMYE6/Df68a7Vqs+Th4Y4OF75jaP9eJ7eOa1lMAbvPa1WTGShsT/p8OSSQf3lzl3G2lY05Hx2rbe+ZRTkQ6hZcXXWc4Za457ux0ed+DqcQM3ljfzyuNlDlhLHp/H1nO+zQcntHhuJpd5ZhZluD+ZNLSupS3ASu9K8Pyho+CnHUEDb/A4QUfk2u/FQo7QNdzPtX4O/bZjw3X8bV1cVe1dnZlUg8/mmeclk8neQQ6oaSB7tVrVer2ui4uLOj8/b2BUypp3OvGb91ZV7YBh9yfbSOcQO1e1K8TId6oxP8jjbDYbtJ96iPlxP+wnpEPte+10WQ7NZ4PoHpvXe+8ZnkPLqHmS6ymd0PRnRhrp10IO2Gwb+M56vKraTkreP/Lw8FCvXr2q09PTOj09rQ8fPtTbt29bYgg9cnJyUufn5/Xq1auWxCJR4eIwJwI4ArJqWLnso6npD4AadHR0VOfn53V+ft523DMmgyX4qehEgksnWEmWodNtx4klsCfpBzoY5honHpLgN0ff2k9zUhK+sgOXe2yn3a+q4ftHCb7pH++s9A4/xwgE3PjdHJPrAiWfGIONSh3PcakutMKHsk+OjL179+4jf8wySgLWCamqXRKpagewOOFqfwueHBwc1Gw2a3GuE4i2exz356QRskzfSFCRVGSczDHv32R+sMMuZHV8DY+9ZnxccMqGbb1PWcpiAB8966ML8cvTdiK35ik+4nq9/ih5iXyR4MT/Wq1WrQ+sD65BXojb6A864/T0dODrpt+BvnFcBq/wIS3HEHLJ2JFdxoesz+fzjxK3zB19YA1BxhrgDbqDooibm5t6enqq6+vrgX57/fp1k+/NZtN4cHl5WdPptG5ubpqcINd3d3ftNTrIsXf/Ml4XANN3+8+ex5FGGunLp8RWeoS+sN7HBvvzTIBVVdNLVcNd91zj4izHxaZe7OVnGOuxT4DvZqzXuGTVxzsAHTemHu1hTDle+6bJY3jkODSvta41bvESfU4samzOZH/M9t73GRM3zyD7Jlz3KblKPMW8TrzL/e/x1fiZ27IsJLZWNcQAEms0X/MzPy/ny+TXEmXfjWtkHqTHs96Y3HdjrG7rU/d+iof7+JBz0FuDec92u20YkucUvWH/P+WyqgY+FM/EzzLmlxi+fXEnQJFBF65azlImsl3/nX1kPMa7XEjHNS4cYfze/EA/9uXA+I3/av+Ovl1cXNT3338/wCatD8yPxObzOf+Y1HvGL+Fr/tlJ0KphppuJy51DVpxWcAQoGZhZoXpynLRDEBx4Emx5cfE8Al8CAYTOBjaTGWmUDA70gFIDpvQBwIOg3uNN5Ud/AJOc2ORa7/z0sTpWmCRCq3bC6sDafHKQbsDBIH6O3/dZkeQONMbqhAL3mz9e2H5JunkDvwk+nQymOj/BefeB/jMuwCN2WwHGeZFzLeAWAaxBDSezqUbne0AOKt5QLm6fdpFHrx8nPM1LxsWYLKeWrzQYXpNea64yT2AfntsAcF3KuxV4VpPwPBtFr3H/bZky2Ynifyq1M1lhA54JL+THVUX01c/gZ7PZfKRnXDXOZwmK0n8n8QwkJHjZc6DTmcpiBsbC/xgty4TXBf3KtcLnNtTmezqtdhDSEbBD8vT01BL6LkDp6U/ardq976nXN/MRsNGBzL4j0s0TQDg7Rr62qgaBl6tVrbvtYPKdE6au3qK/nquUDReToBMNOs/n81ZQgg6xfTTvDw+fjzGjOCfXPePNwMTrxOvN796yPJi/6HCDtzkPpp5j7HWVMpz20vPcCz6SMtBz33I89kn438Gz9UXSP4VjONJI/xTk9cCac3GdEx34f2dnZ1VVbYfRbDZrn08mk3r//n29f//+o6pWEiy8GxTfl+fbnhwcPB9NS5voT5JWt7e3g1MCHAccHx/XYrGo8/Pz5ptx0kAGmOhRitVIaEwmk7aTYbvdHSUPf8wrfLrcUeXiINtH+83of++SqBrGIbaB3n3InMFP9JXtFDobHpP4cRU1RTrEEi40cuEN/eAabJTf3UoyiGdkQSk6nwStCy+x994JiB9vfbvdbtvRs263qpqMwFuPxcTOT/Oa+UH2se/0lfgF+YSnPhoVm03REzuj7RNgX0iSwhPv3oWX2BonMVmHGTOkD4ud5pQI2sDmInP0mbXsoj4nQyHHGox9s9nt9qXvzIf9IvrOekh/HHl0Upj1yjpysRh+Hn3xmrMPzTwDNpEMpHAgASCut9/Xiz+RWxeaOmmeCV33mc9cIMd8zefz+uGHH5ocOqadTqeDkz8Wi0U9PT3vjqcty/hqtWrH+MJLnk1s7DjPAF3iO/bJRhpppC+LHM/uI/Qceta2E31etTt9yv5FVbWjuymqTTzA8XXV8HVLxrTweYw9Jf6VY0u8Jcfl8aOr/blxUT/XbfRi1ZfwnaqPT2PLPuemkMT3PAefioW511hifgf/jS3uG4t/ex5ts/fheR4/fkIPh+vx0phG1S7RZOxhH+/dZu/vvCevc39M9N9zkIQP2euP7+Ea5sEyk/irY6V9sg/1cg95nX97ThKrcT977RjP2ofL5aauqmERROLNOR9eM71+GOvLo2jNM/to1mHEt+5/yrd9H8u/17RzRTybefP9tGucE98UP49YFn7lTlITJ4jw6pDr6+uq2hUQr9frAZ7l2MUbXRID+BS+16N9mNnPoZfwtZ+Dvf3ZSdCeknEQX/XxUXEJQhps9QA8iAxQmXiCfWf6EzShrdPT01b1SLBHcGfQl+chpK7+9oRntbCNK30gwDWg4/4xfhsXAlMCc4+RPnMfVdY2VFW7KhPAGXZ0WoAzgPV4Epz3PKGY4LnP3WbBc7wjbRNQuk0brZ4RT0fDIIkdEwJm74zjHqp83Z6NiI8ey6Qu1a9Vu/dUsYuBpOjd3d2g77zrKo9q8nuRkF0DXAS1rg4xCDWd7o5bA2zyWqC/dhxzrr3LgHkwSMJ68VpzAsjJNyfp0xAzp17XyAXXehduOh89Z8RG1HO4jwwEpuGy05jVi/son2f543/PLQSf6BOOdyaILZsQgKOBh6rdWfIZCNjwW0ZSP+Wze0aMcdiAA0YZDGXNuIiB+9E/JD+dLHbi0E5JFsRYXl0IAsiF3spAyA4HYzZQlgk1A31ZUWYHtecY5M7OdDTpD/e7MpK1BmDKOrazNp0+F0nc39/X27dvm55hHACS9A3AivY9bh9FTh8cLGZQxlx5PIeHu5en286i9wDSbC8zUZlAGXOcCWnrqHQ4Lbv5mYF0vkdec37sBO8jt5W2O+fadivbGGmkL41SH1hv+DdrF91Oomm1WtXDw0MtFov6zW9+08Aw7+REr3uNAPKvVqumN/Gb0KW80wRfDR+J3Z4Uw5CoJIg7OTlpx+fyGbqS+MUFSvhfjCl9UL+HfTp9LlSBJySPsDH0Bf/d7wNEh7twz69EQF95JyVzYhtDO/P5vPUdu5JgSlUN3lVaVW2XK74pMZD9QGwuY7+7u2s+OHaZfriwEVueu2LpTwJyTjDbFiGbFEHan+CdjYyHseGjIJ8k2ey38HnVsNCLeXS86faIFegDc+VnIy/IHHPK80m4cU3GUCR6kXH6wGdOGtquu8/2oewn4jc4TrAvhixg6ykcYF3h4zGvnHxzf39fZ2dnzS+oqoGMMD/MP/ywvX18fGzt2UelDcfE/PbY3RZ8ZN4BhxgHvPf8+zP7N8ybgXr6YhniGFtkZL1et/We8RPt2/fmfxcDOB5dLpct4c86ZO6sp1+/fl3v3r2r5XLZ5hz9ul6v2/x5vVsnOQnruaCv9m1HGmmkXz9Zx/gzbJ59AfuR5+fndXR01Ow0xT7W737Ht3fxm2w70EmOZ1NH0bb7mjtWucY6lPjUdtUYasbO+8jXOa6FjF+6vbTp2ceq4W44F4zjexgfhXd+nucseee+++/kuRM9vrf3Wbbn76B9uJxjhsQX3J+XKPvx0v/7/u49w2PeNy4+6+EwyJtlwDINMacvjc/yxny7T/m3x5fUWz/+LuXY12c+gc/AE/EvjQERL/T6xbpx/GNdYJ7b/+Nvx3f2X5wEpQ9OUlqHpc5InIn++VkkLh3Pkdy0n0ksRXGbMVf6eXh4+NE7l82T/Lm6uqqLi4uGAd7e3tbp6WkrlsXHw88HVzSOar/9JVn5UugX3wlKgOQkja+zwoUcvFto8xoH906AphFx4DsY7OFhXV1dtd2DGD+CbPd5nxLdpyQzMMOoX1xctApyAwd+3xHjYQG7EteLjv64ah6+IPROolER6zaSPzzDFd9VHx9H4HttQBNorqr27p+qGhyx62CMuWEHp8dLZRhjsAPCdV6EAFeZYEKBOtCkT37visF6+mDjw+4A5tG7AZzAoT+Wnclkd2xyJjiQPb8bBmVIXwiaM2HgKiKUngsBLFcGo2iXH6rxmQuDjA7OnQCzkbKMWPmzxmwMeo5etoPB87MtZ9kWbVhXcL/n1A7gPsfSvGMd8zdy4+Qxc2+jWFWD9ev7ncSzjPB894+xW7+53+nQek4MWiJ/7p957Yqofby2LNGOAW/rgHSQSYoBkDH+XDf0wc+0LFgG0XOTyRCUpe1eQYNBatsOy2O+78zfZZDHuNE7pky0GQjPZDfXoQtcaGCdwbq7vb2t6+vrQfIZPgIcWncZ1HJ/kA/3Ad4wF8wf+sbrwE6becI95qfnM21qOmkOoLwukfeevTEI2kto7kta5vc9m78vodkD493vvN/tjzTSl0b4F16rrOdedTrH/3PddDqt9Xrd9NbNzU0tl8uP7CnrD//8/Py8lstlS1JU7Xzls7OzgT1xcU7VMMiuqhbsUZTowA9d7v5yfG7VrpjEz8/Czp6fZIDNO9MIhp2ArdpVIjuox0d04Wb6qFW73Y2MM08teXp6qtPT0wGw4J1ijodcdGS7aj98u929MoL2n56eGpjp9xPSNuNKPmGrbcsTRLEfdXx8PDgal51t9uNInnmXKjzGd0hbaP/XPqDvm0wmzbdlnLSXIIvJ9xvsZdehZS3nwztPud6JXtrFh/f7YvHv4S1yn8lfz1XKJfLl+TBvmAv4Zl7PZrOBL4fvgBw4TuOH5BsgDz6MC4jZ2Yjfs90Od83yGznwsbq5K4kCVMe33hnK2ADlq4ZHPhrksw7svR6HOeF53lXt/joORP+Q4ITOzs7ae5BXq1Ur/jBACDHW2WzWdgEgJ8gMc+edueaHdZh9VOuixExGGmmkL4t+zhpOX6iq2m4lY1tVQ7zm/Pz8o2IYb4jw6RcuHsaHcJycemdfsiJjT/SqsVcXl9GWcVX7LPvi1sTrrEeNd/V8Xz5P3NeYJ8/hO59k4fuMGzlZSt+zX56LfbHqS89wH52Qyfs83mzD5Ln2814i22S3Y9u+rx1jPS+tgcQ+e/hX1XAzVQ/7SRyI/5G3xDJ6MuFrErf338ZF07/uja/HG39uf9b82Dc/iZNut7vXmkDJJ/IILgrt9cHt5hz2ZNV+FvrIfozx49QriY06fuEaj8EYsXMbTgrz41iGvvjVHTn2s7Ozurq6at8l7uj/p9NpvXv3rr0X9Pj4uL1W4dWrV/Xu3buPNpLQDrGI+fY5NuIlWf/UPZ+69pfC0j47CdpTzr1rDBbkAvRk9xaMlXsa1VT4FlSD81b4VcOdRU9PT63a0f3JRKiTGO6rK5kArP29k3Wnp6d1fn7eji4k2EFBe1wJLJgfBFHpRGQSoRfA5TsDbZDgLwlrB9kE9L4PIIedpw5KCdIIotj95fEA5BsUoio+dwz1lIOD4gzE4SH99A88IyAFPOO53PvVV199tPgsS+zw5DsrWebXC91HVrl61rvGSM4w7l41GgqV3bZOigHeOPjkJxMxtOOEOcGuj2lG4TGPllHz2gF6zzg6gYe80d/8vKcLuM5OMzJhwJA+ZbLBCtff5zP8nAQjrVcSDORzG7QkeGVHN7/nN89lDfUcR8ujHd7UhekIcS8AkoHhql0ylDVqp8bAJe3zPM8x96HnGFc6Plzv+aza7Rq0Ddhudwk1r1UHPgYxkV8Cp6wqdUU7/EAGkGnLFG26r668AtiGJ/AweW+HCvALkMv607s+GUvucNhsNu14ycViMdhxlM4dCYHtdtt2PGGDDFoih7YfdsY9H/A2E32WcewWa962KQMvy0Ou4SyIyEpCy5XnN8fg9vcFCPld7xpTjr/XpwxORhrpS6QM9uwX2h478Mdfss/joxavr6+bj4jOtl+A7p7NZrVYLFriCx0ym83a+/HQ50440CYE6HZxcdESoVW7xM50Oh0Ut00mk8F39tv8/nTWPnGP9Rt6Et/Kya2q3TtKbbPTL3cCqGpXHWzfn2vZzen3OeLjTSa7o0fdh54dx+5QOLTZbBog6eSo78U/tx107FD1vCv16en5OE77FSSvkS0qwrFXfO4TDvCTGK9tkH1K+kXM4rmu2vkd7DTBx+ekl5ubm8HRudyD7+7EJ7zxaT3e9eviVP53Qsw7Db2bExlxwo94YLvdtuQYtt+V3PA2C5MfHx+b38//9Nvr2f4YcZjfs0S/kVX4/vT01OZxNpsNZNtxdPog9jH4m3jafjfP2G53Sd1MqE8mkwawucCM42B5D6b1meMkx66Oje1npP/vcaTesz/NmvcuZtagMQv73o6zGQ/x22KxqOVyWf/7f//vWq/XjT8UPQCmUfS6WCzq7u6urWuOpUz8wTJgXZ6xpf/+pcCpkUYa6Z+XeiA2n1s/ZvxjXAZ/whsHXr16NSjwcvvod2wavkgPc7Jd5TP7Jpk8sK7KBGhisMZ6rI+tk7muhy+ZT/ah065mwtRj7M2Bcavsj5+VfMrY2+0nZma/ujfn7pd5AN/9vKTe8yHfn2Pfx9ccZyZAfU/KcT6fZ+V8Jna3D0fItpxQxkexf+V5Mw9Sjmmj5w/wHGOCjMEYo+U0x8N8p1ynvNDXLIjl+1zH5qXHh3+IX+txpJ9HX5KXKb9en/uwF+skYjznXxIrThmnD44xfI9jWPcPLDP56L7b199sNi3exYc3huU2vEs0N7zwfPr58PBQ19fX9dVXX9XJyUmtVqt6enqqxWIxWEvuE3LLuIk39q2BHlkWP+d6U8qhqfdZ5mI+RT9rJ+g+BZidSjCSjjnAgszo3oAIahP4h5gcH8PkY4QQpqpqW64Njlc9A9MEyq405fkO0jyeTOTA/Dz+NgMJBMmLkf5lAGZhBIxw1bQDMPrjbL6PXXJQCfmISoP1aajhLwFYKmHa8uKmX17MtI0CwgnxMxLQqKoWSPuI0DSyCYBwnCx8uLy8rKOjo7ar0wlHB8n5w7wZBDHvErDYbDYNKLBCdv+syAmybeAMcnENIISV7HQ6HfCENhkTINLh4WGTb4CT2WzWwERXeSMLTvput9vBO5fshHkNey68VrjHxiqvtVFII+P7c86dYE/+TSa7I6MzOZHOohM9XNdT3vyfCdxM8DF2ryMbr56z5u/dX/PIQLTXcq4JyyP9cHGDE67WQ73gwQFG6hu3sdlsBoUb8N67QF25710U1mvoQB/z2nO2kFHus+5hzK7GyznnHgC9DJLgPfqhqgbV+Ohz+um1bp3iZyMjWfxh0D11teVkvV7Xer1uziP6nnd1pnzTznT6fEyj3wmV82U9neuStnwt1+9z+AD6U5/2/oewgQCrqdfwJXqOjvWD14LXZfoZvet7vkgGK14T6eh7HPvaG2mkL4EyCLFtqvr4qOvJZNL8q/QVsdWpP0lWoDdddDWbzWq5XDb9u1gs2nGtCcDl7jtsxMXFRV1eXrZdkiQWaSfBAdsBxmt/IAux8HEpPnGiiOTk09PuqCXro9ls1q2shWeuMqa/9kHm83nz8zlxxgk368qcN8bkQijGlu9jpX93d3eDHYoZn0EcWU8MZj+RZ/dOcMkx393dDXawen7sO7hI8ubmpiWX0jekTWwwtht5dQLXMut2iClJhDKnTmZiX4+OjlrhEv1hFyb2169KwUfCR2RN5Dq038uzzWv7/gaHsP3Yffz/29vbgW9q284YXdhAW04o+8guZMzFZYBOfmccvjlryElhih/sV9lv85za1l9fX9fV1VV7rQz9AEzndBL7wPP5fHAsNLLtojrknHkz+OiCOccR+EP2W5kzsADiFOYMoMm+NvdTrMG1+Fiz2azevHlT2+3zUck3NzeNd+Abxiim0+edAVXDJLt9ZYowrCM9Z/bN0hccaaSRfp1knAJdbx1te8v/2JWDg4O6uLhohU/GntAj3gFWVa2wK4u0uSd/O0FoPMMYh5Oy2U+Pz36ObUxiLdjg9JfyHlMvbvwU3/2TCWDjih6X58xt9Sh9peznvnjAuF1vXPajk2+9OXTfk29uM+Py5Fdeu+86j+elsZonPQzC5KKxl65LPPQl2f1UG/brjVfmeGkfOerhJb3xOQGa2GhPvsw7MGnna9Jn2oeluH8uxk8fsIdDGztKnrkNz2nym+/xh6rqIz/ZMs546a/jMj8X35TxOM5hkxTtOpauqvaOz9PT0+a/+3p4YH3hJCh949UKNzc3NZnsCld7c+v5/xR9an2Yt1z/T02/yDtBzRCCyUx29u7zIskkCu15AvcFPFyPoGFYbZSrqlarVTs+iOc5cWoAGHIFuLPhBNAO4KnG5t1E9JdnWKDpP4uEICt3aeXCcDV3JmwNSJhsSGjLQEomqfwMLyQAHi9QHBja9BFaBos8Zw6svdvQu3C903a73bb3zxAkE9w5MGT3AVVn8/l88J4eeONAF+DDfIYn/A2QxbMw9N55wHfMkyuxfY0dRCtGeJBKw1Vq9NdGI50cCJnkOQaKDg4O6uTkpFW704fcicpYXC1NP5EHGwPPtR1JO2b+jucY9NrnFCIfdkRZ555by3Mmtc0f657chZh6iT7bwbVD6+uTB14f7osNpNek+eK1ZFlMh8x98prgGj+bd5AhF70kW/5t5wR5tPPt58EH6yvuRc4NYDGvPMeBhJOhyKfXiB1UJ/rSkXMyk4QleoQ1aF2XOtR99ZwarJ9MJoOEbNVutwrP3W53R1tgL8wPyw599+4SdnFy3fX1dT0+PtZXX33VdgR4twwgJVV3gP4+wrfnNPlz5tJr3fOcv23zSGwgb3bOMyBMu2t7bvnl714i1PPf0zfZ3x7ldw6S+T59F9vVl9rrBSMjjfSXTum32Cc0AGZ9zi5NKlin02ktFos6ODioq6urWi6XgyAdgMs+Dfrz9PS0zs7O6vb2tp2scn9/394RiO5HR6FXCe6++uqrev36dfP70o+jD95Bybq1rqS/fIbv4O99BCx+o3c9QrYJtm9uwyAIQBz9w17MZrPmF223u6pgrsW3ctDNnNIP+Jy+EPaNwsfNZtN2cdJXJx8zriDZPJlMBrteOZUF39LtkHRhjl0MhV/tI+sMMDGnTiqil4kJbOdI2NFvXpNBP80T/B3kjCS//X4fl8wzsRscXYtcVA2PwOc++xBHR0dt/Vj+XIVtwIJ5RJaQEftSXm8Gazi+MH0meM7xw3yGXBj8pA/z+bw2m03d3Ny0+aM9kncufmMc9qHcT/PYNp5ENjqA3Z0kQSm+Y84eHx/bkdyeY+bk7u6ubm5u2mtPzDvwBJK4jj8dFyCfBqy8k9ife90yh16js9msvTeZZ2dhCQW9yPKbN2/q8PCw/v7v/35wnDfX8/zDw8N2lBrPcJEs8mNf1r6u8RrkxQnUkUYa6cunHojt/9HR1lt+z3niFU9PT3V+ft58APSs34d3d3c3eDd22iz7UuCmtO/+GtOx/2N82nFdxmf219K3sS5NXNo+rGNTt2Wbnn1Jviee4bH6f+v4Xpy6b259Hc/MYrNMqHgsUMqJyf4ZzzXeRX/Mi+xT8iOvMS5qu5x883WJE+wbh+OevCbvzz5lkpfPe/zzcxKz8E7I7IfHaRvdWwP5Gf3Lueite48nZSHvcZ95DhvR3Jb9pd74erz22jIlPpjzYn/V/t+++ci/jUca82Gs5rF9ZO41n3Pt5fyCU5J78LquqhbT3N/ft9NQrJ+yaI+f1WpVDw8PNZvNWrw0m81qPp/X27dvu5izT+J0zOWfnDfPUU+eXsLhXpqDXG/Z3ue0a/pF3glatUsK+B00n0MIRV7fE5Y0HmZCJkEsMATcfl+GFQVEAJy7RRFofiMMmcTjPUjeeUowbAHdp9S9oJKvJCA9PgtpJn4dKGV1fO9Fuu5fJpGqhsftesu1K2mpugUksaPCb/PUiU6uN2A0nT4fYcbcUHXNcWbwFTDI7/lM42ajl/LJszOhax6Zt7TZmy+DTiiwBA29fZ3jND1ffoYDT9pwUqCq2jt3nNjI9eNEjY98884EO62M+fHxcZDMSKfPwKAdGP+44sc8grJSymPBYPUSoHyWuoA5dYFBvkPK+sGJGSidPgMxBm7Ma++ytYybZ/TTCbRewca+hIp1hRNC9G2ffrQT72IRnHDf7/nif55tJysdAwNozDsyRtV9Fnggcx4zffGxcIw7j29DltAjPA8ANBP7VdXsweHhYXtvHVVUTpjaWffcVFXbZeJ3ckE89/j4uAGfPkaMNs0L681cB3aOvG5INF5fX7dd3dPptO1UdcEE44an2+22vSPL88XzEoxHni2LPfk0GApobhnL+9y25cu6LB1hg7e0mevfNv7nOkXZTjp5qVszsOlRBgwjjfSlkHV7rif7Aakf0oaxTpbLZd3c3Az8Sx85yXPsG5LMdNLMa5P+YRd4HcXl5WV7dyiFItYxBqH4fLvdDl7T4MIZdlr23nXlvynGs5/hnXlOFPqdkPhn1mv0AV+NnWD2u3o20jq1qlohTVV95Del/2sfDP/PiRzmJU/hsI9rG/r09DRIHFYN3zEOYMB4HG/guzEG/Kqq51MRnKAj9qKvTixvt7vXnRC3YJ8TrPJuXse28JVnASJ4btfrdeP56elpmweSuk7sMhf+bT8l45Xb29uW9LKtZf68JpFb+/TIt/1B+MJaMN8oIkWmkEHsOzECz6NIgaSq/RWe79dvEF+47/CI+WB9WCaYw/v7+8HRwLe3t7Verxu/7Xsg5z5dhH67fTADvy/XBXysPcaHnnKRsn0v4jx8WhM7kfnNuppOp00GHfvxPwkEn3bEOnzz5k1tNpv67rvvPtrJzbyzPk9PT5sPyw6N9KkSKLSe5zP0Ym9H+0gjjfRlUQLN+9a09VXV7n3dkLFP9Mrl5WXTNbzOxTZjvV5/BJ4TWzrOQufSv15s6UIz+0u9mK5quKnG7eb4HVfvA+d7IH0v3nURjfGBfYke9/ulONi4lXV4xtTmcWKHOeYcX2+MTqq5neRPxsuJY7l/+/Aw+23mne178i5363oM3tln3uQ4k88ZBzg26fGrh1n2xmdK/NmbshIfeamtlCuvKd/b8wF8j7/vrSPWPEVzFFt5kwO+o31Q8482kQH76LRtbMWy4HXO9fZ/PcaMldI/znl1Mr/HI/ypxPiyIJX2jJsmlsTzzBPfgw+6WCwGfLGsHR0d1c3NTeP7zc1NXVxc1Gw2a/7f69ev6/e//30dHx/XarVqPmnqBud2klIe8u/etfuu/3P9yM/F2/7kJGguEDPIOxJ7C9JtJKBYNTyGEOHzdZvNZhD4eKca1yEEGGHe/1H18fvN0jDZwGCkIL/Xk6pm3rORST7658CaNg3i064DwKpdpSoBnxOz8Ml9ZawA/PTD/Xd1QFXV2dnZIPj27jOSc9zHMyFAbipnSdK6X+YBARwJW3YjnpyctGDOiR0f8eXjaw0C0V7u+ERpIGdWoJYvvrdSc9LHSglQrLdzyzyxAWBu3C+eyfwYdDClcaXfaXAsw27X1xlMoR9pLOh/9tXj7DmbjDENSN7jsfuzdK6ofOH43dylDcBofgCkWe48z9ZF7j9r0MURrE8bVI8xDYz56PnIKvd0jOy0WX54FmBgVuUB1tAeCTTAjXRkUl7Mexv31Ff0zclxVztlvxOcpu+eA671rg70KLyjuil1NGBROuvuR+4odHBGRb7XAXPtHQj+sVzRX/TcZDIZgK5+JxY6wuvOdiadMPSud1w6iWy96ETB09NTA4Jd7JJ6iGez2wR9Df/hNc/wfKbz6N89J9CgIrsv2B3mOYG3PV3F2JiHlCHLRvoPXpsO0JHFlwK9DA68HqF02PbpRBNzMdJIXyKlj+/PkvBn0OVVu0CMAo23b9+29Wn/BF2If49ufv36dZ2fn7fjG6t2hSPYQydZvv7667q8vBwU+pyenjbfIdc5lbQGUUiYWUdZl9oWUZznVyOkH8h7SLkHW+2+py+BTSfhMZlM2pG4tlvJ+6xCtv9UtTv+0joRnpLQ8HGcLoAj0YPtc3IN/wieAXI+PDy05KCv5Zlpx13klslyxzT0k2TkcrlsMuoYFBvEc+xvwxvsFfaR+NGgh+1J2iViOHg4meyKpHJM2LZMrlkmPafsxrUPw5pBFvz+Ufsm9hex+/YxPMacAxJ9yCvzOpvN2vtSPS/IsMFE5D8LpBkjcZ4Tn1yDT0XCk7850v/p6akV35JgtH/mBCq+DzLgYlCvV9YE7ZDovbu7a7En5IJg5gqdwffw3v4cMuOEp98xa9lkx7t9OU5D8k5ZxxivX7+uzWZTP/300+BIYL5Hjoits4iWviNz6G7GCJl3fy5oNdJII30ZlAC2wXz0rnFG652zs7OmS7LoyYUk+QzbLmM6tse9JAIYkgui3Veusd9Fn3O8ttv7Em3mSeKIVcNEpL/3dbaR7mvGuFybScNejOrr05d1++ap2+S7xJESz0oMpTd+2wtjePviZPfV5P6lf9u7PnGFbMcYcWKiPb76M+MzuavP40tMLm23xws/ky/00T58j+yXJT/yWW7bn/f45OtMjM9z7ASosaWU9fQ9uZfvLZO9tZB96uEy+/jrMfMs47fcazzT/TZm5Y1htOV55+9MtNsnR1/RD/vHKUf2JdG9uYmPXA3jXy6X9ebNm3Yyy83NTSsWJu5xcbD5+DnHO3+KPiVHn3Pvz71vH312EtQC1/u7arhjzkEtARafOxCq2iXN0jBVVfd6AhIEGGEl8CSQQVh4/4erIukvxsyfE1zw/KoaCJXfjchZypPJpAUTJDhzsdB3LzoH+Ag5i8OOQe4U9FE6OAgGeJ04QJgJhLx12oudZ3nxeuEnPzhike8d5KKgnfD0UbUkQOfz+QDc9nwzf+ywRRF4ByDBrI+i2qdguD+T7FkxYjCKz+GrEwUEkja+PCMdQLdrECOBfq610cvkfTpJ6ax5rHzm9cRnmcjqOZUoV0Aw/ziwNh89plzL/E4Hyf3w9axFvs8dp/AnnTwUuZ2EBLTsHBjMsXGzDHgtI38c+8Kcuu8GUnN+stjBlIlHG87enFYN3+3r94K58tFOjfVQOrP+3w5dyls6gDwfWeJ+G+nNZtOq97muqlpQ5CO87EjxXPjgBFfPqe05hfTFjgztGdiyDrJsGRCnX+YhMmEnyLaF75hbdKSP93P12GSyO4rPFXPMJ8ce3t3dtcotbBGOJ/Ph4+54Hu8AsJ2B4C3Poz/YC+sZ89F9pD3G5OP27PB77TDXmRxNgDTl3/ZiXxGOr00HNuXFNtn/73O89gUiv5SjNtJI/5xk+4DudQDGNVW7ZI+DOh/DfXt7W2/fvh3s2MdnJsFhmk6fTwQhEURBYxYBTqfP7zz++uuv66uvvmpJG74jcWAfpacb0Lm20e6LQQmut05B52fCivHCF3bz+X2iPJOj2mlvMpk0HxiAkf/R94yNcXAyALaedkgs4dPQL/ur1s/Yi7SvPirYCWMXKbqACLk5ODio9Xrd2sGeOQBHtkjg7LPvfl8khVPEYvCuqpptnU6nTS5IbuH/JeBEX3gO31PoC6iDXDJ+dhtn3HZwcNCOcEXWkX/8D/wiTnfBv7RvBpjBuEm6kgimz+ysdSIT3tmP4G92JduOmheMif6QlCfZyjUZP+S6QTb8Pl77lPSJuN1+KIANx936Ho5QvLm5af4LPHBc412t9mfxsfBP8EmZB/hwe3tbr169avcYQHbiPWWL9e5jfEmSU0j84cOHQfU9MTPjsT/jdXJ0dNSKDLj/22+/rYODg/rDH/7QdtvaB4fQrcirdRZrmHssH8i8/eB9/tlII4305dCn1q99J3STsUE2hVgnHh4e1sXFRdMpbIAwboQ+tC/C37a77od9MffdMZx3pyZWlHiPv+v9bR2chUPGEd0vYzg9v5Ox9Hj/kj71PYnd9Prve2zbe232+OVr3W7G0Mb+uc74ZW+86eNBxiUSp8p7cy4TV8y57/GE/xOn8Dzk9ZaJfYnOqqE/mvYy5yv9XT8/582+ltv4XLlJnvT60JNZjy/5hI/gZKjlwv2wn9ibs5yrxMQ9Fx6Dcazsm/nGvJm/xvf9OX1N3uZ4fV0vdjHv/B28ctGmiyQ9Z+BsjJP/Uwd60x2+7Wazaa+uYCfp6elprVarj3SJcwMeV28dms/7dNxL9JKc9fju+z7VRo9+1k7QfHhPkDNh6e/TWGWiJv/PBQow4UnOYD0DMIInAqqs0MgEKP1i0h2gVe2OqwLUefXq1SBYrBoeN2uj6XExVgcd5pN/vIUcorLdFd9OEngczuiT0GIeSA73EkNW7HYibIhwMObzeS0WixYk47AAtjuIg39nZ2cfjQHl40VEJTzjsXHrAc+eC/rLuJ0EZT6cfOZaz5/nLmUYOUPWkJGUJQeLGTjSjg1vUs9g0yf3g8+yioXvGLvXU1IPyOgZIoCvNLY4hx4LbdohsvF0P3KNcF3vmDfLC2uFPvQUs+Uqx+DqF+8wof++x3x0ohAZ4T5kiwpG7vda3253AImBCgg9UbXbweFx8f412nLgwPqEp6yzHojsteG5zkSQ57Xn/HEPQKRfhG4Z8zxDAFkGqc1/v/PSQFOCba62dwGLDTlylw6h16Ir/S0PPQfTgDDPsS7BebOuNtDNdxlIWf8YuLRuWa1WewM9r0WeaVtgYJ57HCDRr9y15TVh3cO9tov39/dtx6r7l/KVgRZz6jlP/d3Th58iO3geu5/jZ9vmfa5zlWP4U+4baaS/BEr5tY+FPz6dTgdHNGJvCEbRf7e3t3V3dzdIcFlP+uh0dpCz5s/Pz1sRDc91EeTl5WV99dVXLRHlExK8K9UJTusxvncRhne12n+wPq7a7TjA/8kdp06YpG/kgB1ekMS0X/7w8ND44aMr81UFTqziEzEmJybtR9n2uJ8uNjo4OGhHKDF3yMHh4eEgKemkEm3a3vE8745kXjwH+W5D7JdjQetpHzvrwJ+5INlffQAAT0dJREFUpa/2xzxmEm+Mg+N2uW67fT7SGV/Edgtbaf+ZolnLjguLLINOqFOsat/KsuVkHrKdiWnPycPDQ9s1ix0+PDxsJxThH3g+7Q8zVy4E8w7q29vblhi17BjAsVzluoE3d3d39f79+7q5uWnrm77f3NzUer1uOsLv3GV+kXv7H07kPT09tV3Z9istE4BGyBxrHX7iDzkmsSx4Dpzkd6yfxXisecabvgzj8drm+fhwLvw8ODio3/72t02emXt4TpIX3ei4Jf1BxkLbPMsAp+d0pJFG+nLJ8c5L1MOKsp2qXRy7WCyanjFuM5lMml84m80+SqIZC3QRibFAX8fzckNLz+Zb1xnfS+zWOEH6S+j4Hna3D0NMHvk5iaftw14Sk0s/I/vuPuVzsj1/5zEYT3M8nG3uw0d8LXOSvnDvOe5H+t7+jY9kvAmep32z7LpPVcNXwFXVAFP1+khfzn8nlmL8xuPZJ2c9/rvPtsF8lvh0ttPDQ3MO4FVPvrzeUt48ZoqqKPbLzR5ej7lu/TxTb73yecp9rz33L+XWMap5yXOIm3oyCq7qObI+yjXsjRs9rCkTmWCduamCPhATVtUgTnXcRbwynU7be0E5YZMxv3r1qt6/f9+uc/xBWz4N51P2Iefv52BgP+faxOV+zr1/1jtBvYCqdg5/CheCa4PpoNPC0iMrkjyeygB31cfVPFXVBCCPqXFAhsJzxS9BRyYkCITOz8/r1atXg0Qr40dYc9EarHfAD1BhgNzXOqlIPxgbwV0ustzNyvOcwCGZ6woBvvM4aNfKAmDo6OioHdlDkITD4iSodzQ5wLZj4qA9DVWC3wk+eNHaSaGfThKk7Pk5/jwNVn7vtqxMzHODAqmkCT79uUEbAz2ATrTvZBefeU1aiaehMm8Yg2XSW/HNb4/XQBTXMV5X4LDWcQDgVRqH5HHyzDLB904Q8gx44x0QTp44ccbnKQOAN7mL0+O33rE+4dk4AHaq3JaNCus3gUg7Tb2qaxun/Jx5wCiiAw0CW/emfjb1HBMnfnmWPz842B1TnUfzOTFLGwZpq3bv7mQOmT8nEhk7z7MM0FZP7/ccdfOBfvq4Hvjn+3IMBrjgL8/OdW5K4N1ylGsHsqw/PT3V9fV1bbfbxlsX2bALyg6Y5d7JdWQ8+ZJ9Zl1ZJnpOM+3zTgLGw+f0c59DlfY9C4Zsnzw3Xg85nl7btJf/9+yC74WXvfZGGulLp96advDua5yUsu5zYOfdnN71hL08OHjeKXh0dFSLxWIQ4HHyCrvh0O+z2ay+/fbbury8bP2yL9MDTKp2PnHqL/QkgaeTP37fZfqcqfOrdkEpbRtMsT6uqsEpLYz77u5u8L0BPK7rHYEEkQDD7nJCgJN69pWenp4GO8VIYNm2kQhiN58TzOZj+mt8Zt83fRx8Fb7jMxfsIIN5ROtms2mnIdgXto2h0Mpxj/1j+168R3symTSZI/6hz+xO8f2WdfuF2Gofd+X7iIHwcQCFnVC0/eE0BxKttq/YLsdN+Gj4vvTT76W1/wQfiSed+OYadqLi6/lz4kMDNLwnFVlgnVHM9eHDh/rw4UOt1+uW/Ly6uhqMnesdE/v9mfTbrzlgrbE+fDqGfWZfbx5ydBh8YX2uVqumJyy3zJnjWPwd1quTxuxahS+O0Sh0ZA75sT/vwhPaOz4+rm+//bYmk0n98Y9/bM90Qd/R0VFLCjvOqNrtgvW84utbB3ldjzTSSF82/Zt/82/qf/yP/zGI203GKOxz4Au4MGc6nTYds1gsBsfpW8deXV01m7YPx/LJVvbxen4GOtL9M/bkWC7vRfemP9NLXqbtyO+Nsfh3xvP+3/6LyRiCr/H/tJV99HMYC/dib3pJuhzXvvg5bSzXmmeQ4wPuM78tV/uebfvoz3s4Rk+GnZyk/4k59+L9xH7sd/euMTn55e89VvuLvjbH6TUCGdvfh6f4/nxmYjmJj/k5ue7928VSxHUeT8pgYjZ8lwlX/+9xMJfeFZn8wQfNttJ/SR70Ts/w2HODh/tk6hVjmv/Wdz6lxDorN9BA3jXKOnbsTXzAemRTwqtXr1phydPTU11cXDSfzj4evHNuoLemPkU9ffJzqacXk46Ojupv//ZvP6u9PzkJ2lOUvaMqIYMFJgucP+slGqo+fpeNBdeTQsIrF6ABCwfi9NEAfo4Bw05Sz0eE+jneZZXGB6WdgX+CuYyNz9m96Yr5quGRnfk8/kcxmj9c5/duTqfD46ecAKIdJxoc0Dq4dqKCOTM/qESmotXt+mhbFCiKzcoR/jkx6ASIK2ScCEoD5jnn+0xapGHmM3/u+XOSIRP2PkKI7534SofJ1d5Oelju/RwrQSdIM0GQRtJgiYN3988ytW/dprK2DFvRpzOYzmU6TlbgngPLaJIdrDSmzLPbM2Bh3nGfk24pJ+aF+Qgved+P9ZfnzEfZ2VCkcXW7PJtxeo5coQ6PXAjiHQd2XGgzn5lOXjoKmZjy/1yTQC3rIMfrfvSSbAbvSGqjy7kmAS/PjXds79OZOX7acJ/MW8uAHTxX9NvZ93p08OEdwznunFd0NE4OBSwGM51Y7gVUXNcbQzqJ+Tntm9/5LD+THVy2m8x5z7nNObDDbJlBl6Jnek5Wz2FzRdu+a0wvOV5/rmM30kh/qZQ+ie2NddQ+XxtfkaQn7wVlNxfrykm2w8PDWiwWg3fWO9m1XC5ruVw2UP/bb7+ti4uL5s/bvtnH5DUaJPDQYTybo0P538nB9MnR2Rl0M3bvUPMRtFW7+MQ+CH6q/WD7JX4+AB/BbCZ7fS260YVW6D0np1ar1eCZVcPEh/0aktXwgfd1kTRxUSL85VpkxMlDkrsE4zlvjBXeWW/TNuCq/TPmwCdpMC7mBFDAcZh3RzqROZvNBrGb1wb30Ue+ow2DIF5D9J3nuX38G9757dOOIBJYjneqaiDfzBfJNJ7t1xKk3wJvAbXpc9pN7vGxqj6KGkI+WYfIBknO5XJZV1dXtV6v2/rmBKfb29s2dsbAjl8X1DLP7Ki0boGn+OKQfavNZtN4RZvmDbuC+Q2f4T/84vos0PQcIZvpm5HcpG883+O0f43/xBy54Hi9Xtd2u62vvvqqbm5u2u5ar9mqakXM9Ic+WYd5137iKJa/0RcaaaQvm77//vuP8MJefJRJUOsC4xtVz8duHx0d1YcPH9q93LNer+vm5qbhida5xmSxYbe3twPfhOfzPzbLWJLtHpR/Y4Pdln1cPjMvMr7vEW34WuMAjr0TR+jF0r7OeJDbMH9zLq2jrbd7GLH5YT83MUR/vi8W38d7t5EJyJxj/Mke3zyHVUN/Lwl5wk8xVmsMK31mkzGJfdiY8dPenNhPN8+MFTk3kAnr7Nc+bJj7Ifvo+BbGsD3X+FLG7FKW8Z2Isap2r5BirLn+PDf0F/543ScOiiy4Pfhsvz6xKz8v282+2f8zX6zXcmxeS/xYBns6wLJgnwqZ5NnOrxnbzCJe/DZvwuGIW6+D9Xpdb968qZOTk7q5uamHh4daLBaDuejlDZAXvxZy39z0Pvcc9Ohz/MfU/b6H777//vtPtlP1Z+4EhegMznEaHRz0XuBa1d/B4aRMCkb+TmIh8X4hABfaNsMI+GiLQMuCS1B5fHzctg+jjFer1SBortolFiG/H4dFQ7CYi9vKBcVLlS289PG1roSG91TgGuDwUT/b7XZwpM/BwfMRVwTaLCL61gPQ4QeLjfmiPVdH0FcrWx9P5oQz3zvhxPUOZF0x4XnKZKl5yWfp6GQyMx0Bt4PSMbDCnPjZ8M3zigwQTE4mk8HOWytQ5tGJWCc4bHi9bryuXDG32eyq9RlrKpueM4W8eq35f/rguUknjmelk9Bz+tLZsNzZINig0H5v7myo4D/P8zFdBgsZl4+YsrNjeUIe4B188VwC9iWoAqhFW4+Pj82wGBBm3nsOF89nfAkKeb48F5Zpy04GFL3r0X3ux0tOCqCuwRwf7cD59JY/OwW0f39/33QO68D8Y54NUqdcGpSyHbGseY49rtQTrGXk1mA14zIfDKw7mer2eg6SdwB7HpAPA+QkupGB09PT9iyAVvMBG2I+5u9cx7k+DfC5L3awAQ0B7K279xUyeJxe7xk0WH7T+Upn3evAYzTR732Bnvtmeej5Ip9KrI400pdCaRvQP9gy+/FOKOHLkPzENt7f39dyuRwkawA4eMUCa947Eubzec3n8/rw4UOdnJzU3/zN39TXX389ePcf/qKLHF2c1rPTtuNcg9/N/f6esRqMSN/Tvpd1pfUo92fQ7QITno/9gy8GOWjb9rlqeAwvSWN4QiKHXWj4TNgE+xbuL/FFvkOS/sMb+x6ps+0TUfxjG+uYx+1Z/swbPudvdrzhf+SpJk6Sud30ZRxj4KM5OWT+MNaMB71jz6AbsmHbxFx6DMzD4eFhrdfrVlgHH5GF3NGLvzWbzQYACc9hrPR3u922mBl/xnGjiwt65GI//DzHw+z2xOdbr9f1ww8/NBBmtVrVarWq9Xrd3vs5mex2BjuWQB6YD/vAfrccY6DvJE+ZS/QFPGFOkZvNZtNOTPIcG2Q/OztrOEOuP+tAeGx+sNYcl2RcTzset/0mz5PfJ7xarWqz2dRsNqvf/va39Yc//KGtF2Ty9va27u/v6+uvvx4cPY3+cZxOX5yoNV6S/tJII4305dF333334vesc+sEk20ieov3z22328FJCFVVNzc37T5sR9XHBbjo6n32AH2Vmx6MERnbSH3F82kz8ST6wf9u020k5pVxoGP5jB1tb/Met+U4tdcv8603d+aZn2FMFMp5+FwdT/svxeTZ9xy/r0nc0f32/8Y+IeYJnwA/fB8u6WcnLtrjqe/pYQaMjbjDYzL2xvOyDWPCkDeb8FzLg/nUw8+Nw5tc9Ok4iqK1xIbwR+7u7tpJM8m3jAfcN3+W6yFxseRryr9jU3w4r2X7cL2+oBvs/zpuw2/PBCi/Pf/79Ez+7fjMBaPmreNVPmc8LqijD/iQFKeiL5hTdO58Pq8ff/yxHh4eaj6fD046clycxan/mL5eb74/Rb726empfvzxx8+677OToLmw+NsLMpN/PXLVtQPHVEA9MNNCB1mhABJwPNTt7W07dit3BSGoVC30jCHBSVW1dwyhEDjar2q3owRhJxHhcdB/H3tLUA1PHNR4N0/VDqSAEMwM3AnIzBs7B1ZqThIAGnlOmE8CyKodYE2fAax4HkqV9wBOJpOBQwOvUlYS6PDY7SzRHwAa3i/K9U40pBNm0IQ5MTBiA2MwycEpP9zTM96pcC3DKKeURX47eeUdU06UcW0a/UyIWBbTMTOvPGbPv0GFNKg2aOZxzqO31BvEskPHmHkW8+s1lGNOp4S/cRS85sw/89rtW75y3fQMdOo5zxvtuNLMxtH8Zk1i5AySGDSDl/CFzwyq8UxAztSp8Ja1lxVK8ISEWfLaxQ6sMTubTiz1gEvz2O8xRUbW6/XA6bATUrU7KhCdiY66v79vgKkdJpKl1ntPT09tJz/PYe3b8fDYzUvmlB2N6Ll0rJx4py+pE+wA27YZeE5QDjKAa6ft/v6+Pnz4UBcXF4N2PBdV1frsAh9AQZ7H794a8Hc9G1Q1rCY0oMiOI683qOdY7nPwzS8X3Ji3qdv2JUp5nufGffC1qXuRrXQIc85GGulLpvTTvQZzDTvhCKX9vLu7a0dJopNpaz6fV1W1o0jRS+iN09PTev36dV1eXtZvfvObpl9t032Mkd8N5YDTOp/1a53F56n/0/ev2h0VRBt3d3fNBllH0M/pdNp28fE8n1pCcsf2Fh1IAhG9Db9vb28HNsuJE2yl7f50Oh3szMRnNEDiym6+Q9+7YNH6mpgCeQA04HuKMEmkmu8Ze9j3tB+JLPA/vhHvTU2fFXKQ79jQPiW2g/nke57BeJAH/49cMReMGV44prKswS98Hh/9h9+CHLAThns9B/gn8NZ+8NPTUy0Wi4H/RsW4yTIPuMUaSvtfNSxGA+BG5vBbGROJzuVyWe/evWvvV314eKibm5uW/GRu7CvQN3hDkvT29nawe9r+J7LLPOMfp9ykP8Xcer37+Nz0jw8ODmo+nzfswYl588fHeTupbJ88fRp0gndPwwdwD8uAY6DlclmPj491dnZWX331Vb19+/ajmGu7fX73LnrX/s/j42MtFouWUIUy/kvgf6SRRvoyKeOn3vdVw1OvbJ/Rd/glh4eHdXl52XQivgUFK8vlcnAvR9sbD0DneaMElP5ZxmkuoOf6XlKC64xX8Nz839iuKfnm2Nn32e9wf22HfD/khFnPvzGm5nbMw8S7ee6+5zv+9rP3xbfGQtyW70se2ley75qbSdyuMaUcl+cg/dPEddxW9tOJp97zkyfJR2MDHmsPT0z76XmhL/iZfI5P5vayDa9F+/aJv6R9ty9VVYPYxBudwAxJgBr383ro+QbO4eRvywBt0l7KvmNTt0OsZB7munWcgV5y8ahlInVPzrfHk7LRG7uvQZ/mez051cO5Ft8DOY9EoeT19fVHMl9V7dTPs7OzFttMp88nuni3fh5lTNu5pnMucsz/VH5hTye+RD9rJ2hvEm0gbAw/p5PJNAsPwmDDhkAbyHUAQTskGx18W3Bd5eBdoLSFskDg2f3p76t2x8OkA1D1sQKmHzaABD30L8fNPb4vk2QOxO2Q4Chk5UjVbgF552ICRK42J0CHZywY+uudZygR2mCMGGYfUwGvnKhwHyxzLEInfzPwspHjeebnS7LI32nErFRT/nuGPI1lT9bdd/prg7mvf72+4xTSnh0IJ5+8lgy+8P3Jycng/TT0q2q4Gy9lw2uvpx+YC/rKvHC/+2iwIcfs9cU4DGBYdxg4sWxk8tpzYMfEz/T1+wKCLEigr/QRg+EjxmiPNW5gzHJoo29gDEeEZ/E8r6l9xtdrz86c70l57a3DBAgNBnmOGFsmpLbbbQNwfKStAVP3H1kxCAQYSEX/6elp23nhIIPxmVfuf+oe9xV+GFi1rKVDlTyxTOS65F6DkJZPO1ZVwx0bHl86fbYzHlcvycg4SepaH1mu7dilLPUCBttm2y7PrXf496gXmKRc+/nZP19vO9Bz2OCfn5u6O8m63wGI53ekkb50si1KHyd9jqqdP0lVvwuCUl9cX183oH06fU6AYr/Rd+gIjvXhnR8kEe0Hu/LXz6va6XODZbYJ3n2I/19VzTZZn6G77GuiL+ijk6S2nfhR/J1FR062EPg6JrF+dxLOQImLJtH73OfTSBg75J2J7Bz18+2j2Ba7/46v/L/jOHjikwsYD0Wf0+nuiNm0hZZH85N+5U5a5t33e07u7u6a/Lgoah9Ag5z7aGDbHnbV2d5hIwCu/PoP/AviOsevgFbemZwnKHAtc2LwguN+SUKenJy0YiRkG5nwGnZRmYvJIOaHteO5ZuzIB1Xp79+/r/fv37ejbzeb50KF1WrV3v3peMDJZXxUeIqe4XmOSx27OXblNAqvQ07tINHLM13E6cJh5DH1BXOa64MTOnykLzKaayH9J3jbKzLz2KqqyXDKNjJ6cXHR5sBzRL84Rpjx3t3dtXll/ugncmzfi3myzI800khfHu2LyUzG14wb2WfBn0GHTSaTtqlku93W+/fv27uvsVWps60Tt9vt4Dhy98VFJT38A18hfYfE8RiH79+HATnGc7LV/lDG1I7B/b3bty/psTuuzGRLL17t4Y+JK9peZcyd2Kb5lzy0zUncgOdl4VzG8W43Yw0/D14aLzNP9s0RfTA+Zb/HY0ve+Xncn9cYz+hd63F7LnMsKUfIe/IGHy7ny20yLtZIvlKixzN/lr4vfi/+HYVyKSdee36e+dPboOb5yOt7cuPrEnfxM6wfEq/h2ZZh7vfrKvxagF5+5SW5zTlN/JBrjBHTJ3xlv9O9p3vNH3JAOQ/2505PT5s/WlV1dnY2iFN68p049T6cy9+lnu1dk/P5Eu175s/F3H6R43CrdseY9sgAeQKROYGuckkF5QSolb8BDq7jSB8ccoMKDiL4P5MY9G82mw2Oj3LA4L5m8GcwlXsyAYTAOxHqgAq+egE5mWBAhGc5SIMnXtB+Pv8boKIdEpM8B37Qnxx77i7jes8592eVA9fm+AgwmRN4nLz39w6QLWPT6XRgRF4izwFy0TMSlp+e0e4ZUXiX68C7EtLBcRt+jhWoeeBkWlaFnJyctHexwmuCbNYICaRepVryp/eiehsdAyvwxgrcIKHHnH/TDzuLdioSaDN/nfj5XEpF3JN58z5lxPfb+eNexpfAJZ/bcYJIelruzReeBS/cv0xOuT9Vux0tqV/4zdq1gU1HIXmBHHIsg3cHISNZ7ILDAZjjNQ2ItN1uB0dysKOBvvj4WPpBn3zkt3ejZ2WT12wv0KBfFMgAcqWzZpl38U3+5DOd0Eu7ko7PZDJpACfjWy6XH+mkBKbSeXSFbc9h59nuI3PK/7YBPb1hWfZO0Z4jlWsq5T6vQU68Tj0X2fZLdsD2u0e9MX3q+8917kYa6S+Z0her2um31H/oXidsHKhuNs87w0kCLhaLdoQ3NhA94ffN/NVf/VX97ne/q6enp7q5uRn4a9PpdBCo5jPdP9uw1B8kqKzTnIiyDvHfTkySzEOfercl+trAgn1GA3321SaT54Kc9Xo98PltX10ExPccccpY6bfHj0/mxJMTZPbz6BfPxQ7zPkx2QgIWkOz0bkL3z8+mP/CBRBvk5BzXIQP4HD4Wj8QTvLGvjbzgF7MD168n8JzBF+JC+u93VBrYYY34/beWVYMN9Nl+gRN2BwcHtVgsmp/EUaa8SxWfy/ebn8gf4wJU8TtZXViGn4T/BS+IJ+AbP7abgNnX19d1d3dXd3d3dXNzU6vVqsXn9GW1WrXjubIdeODEKPf6ZCHb1yyAc1W/Cw+Q1dRjBgmZU+Y+d/ByFC5FZPbDvMZ8VK6xCPtP9jW9W9p64fT0tFarVZs/ZBUe4IdmfHF/f1/z+bzevHlTq9WqzffT09PglRSsA/vQ9sEh+6COL0Y/Z6SR/t+gHghvPwaf8Pz8vOnAzWZ3GtVms6mrq6umC6uqJVRcfIU+wsfAxvuEgTxWvkfW9Y5tIfSlk0dc6wRD7xm+vpfw6eE26FWPEb7Ak8Rh3K7v+1Q867YSq7ee92e92NnXJU7Qswf0Nce977k5tnymfxsj4xm2o0nckwWL9MvyYZlMjM3X+7ocRw+D8WceQ8qj59TJMGSR/vdOJmQcyXcnQJE9P2uf7U7bPpk850a2290Jbon/JUaV/EhZ7Plvllvv0jbu5D721qefif5w3JeU69TxRa+/LjakzxkPJi96fbev5yJV8xY/zXGN8XcKBfmbax0D4B/iz4FhcjrJ+fl5i9Non/bwv/fhYh5P1X78zHP9kt76U+jn+p9/chI0F8XnHIX7OZQMzqMPnKxzsEc/OCqI7dpWhgageyCGA+Pt9rnKk6NlnfG3Ia6qVkVKEGvh905OBIi+G2hgsWdiiAAuK7eTXyyCHK+Vvh0W+kO1sg0kFexOcPn5Do64l/az4gLe8pn5k8mfTODawLhqN5Nc8J7PnKyxYrKycFLaZMWTCsgGI5UWz3TQyZj2Bbs+CtmOj9vPhJZ54/n3nMNrZAfAwoAZxFxb0SGvXJ/8y/cx2KDCh0zapEHhvqzstrOZzogdBvqYySsAEZxx1te+I79yhwTP9RnslhMb0+S5/+a+BFDtHKSDZV1geePZVFfymd8zRsFH7oA0v9m5Yr2YOsGfW5fAHyeubBANkOR3tI0z4J06Xo9OVm+3uwR71fAdRn6/KEf8+RgO+O816fVoR8qOLeszCyzgZwJrjIXr3Uev5QxkvMOD63sOuYFH/u85T96NY8fs4eGhTk9PPwLEPRY/0wB2LwBM4Noya5nuBSG9YAK7OZ/PBzq+Rw5c87fninlAz1nGPCemtFP+fF8wlQURvs5jeCkgG2mkL4XS57Gesl2yDcIvciFfBvbYxPV63XaA9kAqEoqTyaS++uqr+u1vf1uz2awVOJJc8fp2gsY7xlyMhH62D4tet2/t7xlz+u3oBPQMwSf3ox9JOllvzmazpuNJWNgvw9fB3rn93I2Zgf52ux28o9I+juMpn+DCnGJ/jo+P2/FJ8/m8fU77tqvr9brdS6LMwFPVcMeYd6zSRsZ8JGJ9HX5D+lL8jc+Ln0R/M27ws9brdU0muwQgfMniTSeGLdscze95w+9kvgye8dsxC777/f1928HJfd6Bx9rB94E/Pt0o5c4+hU9hgGez2azNPUlW+wwGmukvx/TCT+T3w4cP9fj42H5vt9v27k/en3l7e1vL5bLtzkRu4BF/V+2OMYb/Bsp4tv0k++Vei5ZBYmsSfzwH2fGrVtw2/qX1GLz28c4kSJfL5cDnsgw7jrEs9or0AMIcl3Otj6C0bCMPFCUcHR3V5eVlffjwoQGZyKljUf/QNs+DFxl//tKA1kgjjfSXQ8ZxjH8lZVxLwRA+BEnL29vburu7Gxx5jo6z3+Y42jaAtuyT8rd9wYxn7YNCthmZdEufwXygzcS4jGX52h4v4Zkxr339SKwAPe82PUbI85FxsHFO23a31Wuvh00mX6o+3uWY/ExKv8o8Mo5unJHnvBSzW16N+xnHyvjDcm4euqi8h83ar+J/jyWfk35hxg3wJbElPk+MxEQ7fuWCn5337PvfMeB0+nxqD76yZcuYV69/7nfvWfhCnqf0B3sy5IJOE/1yctCnX76Eg0KWK8sOuRz7l16zxvb9d46X56G/ejhcVbWTcdCPqcu2222LTzlC1zGEZd2vmeH/+Xz+0Tpx383nfeR7zcPenPxStE/Pfor+7J2gTJQnI8kLo2dQ/D8M91FRfG4l4uA9FxQCiVPP1m0HVlb0Ttzxc3JyMqj6rRoGl9lvgguOdEDonHzB0PssbSdtEiTgey8QB0gZ6NrwAGgzTifj+Hs2m7U+YSB85jS89FzRVxIv5rsFPnljECmDVp5vxeF7/fLmVDDIioEqKzj44cAQEMEOSu9a76bkOis6gnIHgnba+G2FWbWrns9q8Z4StrylYrQz4F0Alu0ewLfPITRgZ2cgkwf5XCeMAXC844A5z4DZcpafpQPm/jIenp3GiQpn+ukkUI9SdrMvTvDZiHruzW/ug/LILsiy26tA5JnMi4+N9bX39/ftWEAASPqQusHJK4M68IDv4K8TfF53PjffYC4/dji5zjrOhhgQieegs9PRRcbQmczdbDZr1fDwhKDLDlpVtXdHuUggdbF1QIKrdk79HXz1blU7WTmntOPkXDqJ7JbMBDwJATvkPnKZNo+Pj2uxWFRVtQpcAHT4yfjtvPkYPPpt+8u9vYCD+Wasvt+/Dw+f3196c3NTBwe7o/SgdADz855zmAFKOsR2ErOv/pzvegGLr/Wc7aN0fHtjGmmkL4G89uzfAESxFmwT7CtwDz629Z8LXGz7WWf471999VV9++23tVgsmj2ZzWYD/5H+OI5w3NA7Psonn9jXPDw8rPV63UA7+m7fg9iH/pyenn6kn0jGEiOQnLBOTwDBfruTzx6Tn+8jdSFOKEifKf10dJTfLcjn5p39yYz9fA8FcfDTvunh4eHgfZnoa9v89NfM415BqI913Wyedzeen59X1dB/8CtE/N5JeANvsV3mt0E/ns3uPz73Mc78j6/ko0X5oW8k851Mdt/v7u4+4g0yw3oj3sWmHR4etkIB2z4f42W/gfjPgLT9RM8PMuFjDdEFd3d39f79+7q5uWk7Pm9ublpCEfl6enpqIDhkvtgnsS/psdtGM4cU9uZaIJb02nKs5QIJ/gcUsr+32WzaCVEcYWyZYAd3JnATXGPO0y/hGFr6j/xk0t9rk/t7PosTxqvVqubzec1ms3r9+nW9f/9+oM8fHh7q/Py8Jbbh+8PDQ3snqNdBFgb2YuqRRhrpyyTjTlUfx2UZ0yReiU5gtxE2h5+rq6uPfErjAlXDkzWqdoVZ+HK2yWkT6KP/z+IlX2fqxaB5Ddc5ps77jCEnlgXZ/0s++r59z/c9+EnZL8fqfLdvPm2rcoz5eSZ1bI+yj2mreuPIfrhtnzjpsZosd5nkzuvNH+yqsQ/7lLRtHvTGY2x5X+H6PtkzfsF8GmNIDCrvz79NvYIFrxd4k2vI/ol/8ANOT0/rw4cPH8UW6QukTCb1koPJm099tk9uqoanFWUCPIm5y7XQk9nEKvP5zFUP6/aat/+Z96d+I+bwqxeSD8jh0dFRzefzur6+/ognxAE+JYcYdbVaVdWz70pxaNUOJ+3xDEpMszdPvmefTHyKXtI1n0ufnQRFuC0MTDhGyKC7A+dUPnl0birrfUYNQ5iOtwMwgg+CiFQUCRy4H05+AVrQPxtOAgT4cXZ21o4TBVin2tWgt49WcsBKINQzLpkw4x4WnytIPT/ezuykhwNzAli320vosJA8v1U1CGoTIDCvWVhca7CAvnsxkwRxwmOfcnB1Nm17d2DOr3erIUNeiOavZdxAkvmbBph2vOj97igryUwKGmRyn12xbWfKRtvgRMor4Bgyz5gNgLjSmL5gjLPvlg2vd8j999Fx9I9xIQ8GdyxfdnJynuzoeL48r5nI8c5xrjNYm4YzDR//O0nocfl/+O3kHLrB+jLn1PJqg+0dhj76hQDD85aFC4yTBBnrCz5Z11j+nLz15+5z6ns7RzbOk8mk7QrxOs/iB8thOuJOJrErAV3uRCs8oq8G6Q26wxc/g/nxcYoen2XO/OV7KuNub2/b2vGL2S1LyVPLADt3POaew59OOvZis9nUcrmso6OjOjs7Gzjk1hsOSl3lb2K8PefF1/vZ6IoMHliD8Leq2tG9Toww1pQB8zodeOsO5ra3nj0OJ0tz3Nle8j2vzf5V7SpXrQNGGulLJNvNtJUp/34HHms7TyBwJSr34evalrIOF4tFff3113VxcdGKKADXZrNZO/2F4r889onjSr3e8enwPfD5sRf4RhmX2N91kg89ahtVVW2Xq8G8jIES2CDxZJtI8Es7CUjYx+UZJOqwkx6/gQoniO3zeqco7465vb0dxHHwj9+M0bvi4Bc6kfvou9+7Y3/fCUp4ZDlKW3R4eFiXl5d1cnLSkq32eZhPdqo67iMxjS/uRLV553ip6uMTZBL0RX54JvGOY0zkczJ53onqHbX4b/DU9pQCOHaNIvv4j/SPwkA+h6/EGOm7MQ4XCLAuPSbsud/puV6vmw/kI6HZAcqxuy6045mcXkNfGf98Pm9zkYUUyBZJScbMGkRu0p+zz8gcVFWL8bfb5/cQszuUdXB6etqK7wxW8uNE89PTUztuGBmD78i6/Wn7JNYPtMt9LjRAzvCvHWvQHr7ocrms+Xxel5eXgzXquWas8NpyCG/9bHjFs18qOh1ppJG+THJclnigbbJ9lKrdEefoQvwrjkDPRA/2yqc+OWbzCSPGNXqJoX3JF8fDxon2jTu/dxyZ5LjUfcl79z3TOKrj/p7/7ef0Ysx8Rvrx/j77ne3s41O2YRvsMWUfPI706dxODxf0T/Y/ccz0rbMfiRHRX/O+N3a3azkyvufxsyYSE00+MV7WDOsJu25s1G0nXpLYWuK1mZw3DuP15pMw7edWVUugJU/tF+U4e7zsrYmUkeR9yoDxZPu/XO92e3kk/jfu6vnwd4ndpz9JW/TNspjxHr625S954P+NyTHunBtjghQ3+lQefHHikKen552jFPhV7U6UND5ufiTG+yXSZydBUyF5Af8ccC8Frmcc8pm5YLzg+R+Qwzt/MjHI85nEql3gC5hxenraAkgEyQJm4+vEmIFgV8AaiDWvDNJ7Bx7Bup0N+sv2Z8YOqOJnV+2SbgbqfZ2TvH5HnheHnQ8WEUJvJ4gx8Jw0SjzXO4UZp6/hc+/gZLw8h2DO4E3KEfyFp/DEoJrlyCCSic+cVHYiAN44AZdK2cmLNACMC6Nmw2jDx7xmEsHjfylBYQVK5Ts893VWmAbG9jlvPYeEZySQl/JpY9Az2E78OHHl//1+q+S/dZOBCP9O3rz027yhf5YzyHKKAcWBcFEF8+k57DmfPUfYgI+dKt9vWaNPBkVSHzFWy6THzPcGWtPR4ToAndzZ4/72+HpwcNB2bzoZ579TzxhITXDLxQpOuKc+MT89DoCz7I8d9CSOnuVanAz0los50i5hW5gbHzkNP73LejKZtPcDkGS1vE+n07q7u6v1et3ALQO81n3MEYVDBvOrdvo5E5o5Lzkey5rXroFCxsazszgmnfSeA7nPAbOdp38G2KGXHLh0QPOeHk/8PSBu7rAaaaQvkdIvxX9FT1q/9/RC1S7B6ICRpNH9/X3zX607Z7NZff311+2oHhcxkhS6vLwcxADWm5PJpCV6XACEzrENtO+Gv8kuUOIM9JT9Qidv0Od+3YC/Q3/hk2DH+W3fMHf+4QMSt1hXMm7mgb7arqPbHfswTj/fCV3mnr74KKb0Q70zEj6zGy19OOyb7eFsNvtIV2I7/Y5U4ivGdHh4WGdnZ3V4eNjem8guQ3wvxomt9qlAJBQ5NYF+c0SsE3aWlaqP3/XEd547jjL2/8gI/izgQ1XVzc1N+85+JnzDR9hut+0VMPZPaDv93rRBFKcxV/CIRB2FjPSPZzO+5XJZP/30Uy2Xy4Hfa3/MfCL52QNQmEfm3PEbuqF3pJt9u946sK/gQiz7sS7AQJcxBnQKJz2xHuiLdQLktUJxxuHhYS2Xy9YPCqNdLJnxMzxynyDHhozDa8nALusdGXz16lUdHR3Ver2ux8fHOjs7a1jAxcXFoEAAHjuJ7nicfmcR5kgjjfTrI2M5VR/HhOhw4noX4lbtfAnea24dgn7DbnlTg33OTBpYR/UwY65x/63L98V5Hpc/c1+NWdkXyudwf2In1uHus/Eb20pjH4lZ+f5M6PkaY5/J95fi4eRD/u5dk9/nfYnd5TWJqSbf3D9jt8Zs0h/JcfYwz8SIEv9BFnuf+7nuX8rMPuwgMZTE2Ox3+7keJ7xwotLYm3EMfL/sLz4ffp0xR9bb8fFxrVarjxKxOdYkr0f7z7252id3PVnz2urx1n8TCzHf5rt52JtX1qL7Zwzc+FBPb1Tt3jnvNZ3r0Rglz/QrOeibeQcuiAzPZrO6vr4e6B/8vSzQRbcaL3X/7Rv/KfQS5gZ5vC+18+fSZydBcdSp7Mwklpnle3rtVH38Ho2qoSG1savqG6Oq3c4djmshSLYRSsVE+1aEbBn2zjWCZKpEuD8nh4CKYGm9Xg8CAd9nB4E2srKJnV6Z7AIooj0CEvPZVbuu1vV7cbiXa53lh7+0yzioUsaowGPPaSqHnnygtP0eKa43SOSAq8dv2vXCdd/MewJb9zX/tjznO/YwBH62+23lncA/fWDc7pfnNo0+8+XktQ2j10NWwKXzR78Ixp1cSWUNHzPh5mvTOHjOHRzbUHqcDtTNE/PTRhOlu09X2JlJ59egTO97z0V+bxnwOksHpZf8sXF30i3BIfeTcfX0qOfYzqt1geeN9WS+eK56u20SwPa65HMfEW7ZoX3WucErO9muXjefsQf8bwNrZxF+u1gCgIkxWS+gR7ET3pEOCObn+FkGpnOHUs6Jd4UzB+i429vbbkWZn88zmC8AMq8BA6r0g7FiA6t2umOz2bRiHMBUJwLpB0ftWcbznXfMZdXHgW/KoWXb6x2d4zawmYyVI9qtG+yQpk1M+bbt6TnBlruekwn1HL9sI21Srtuq3fsbuCcTsCON9KVQ+iiWedZlVg2jZ4kdfKwnbbLL6vHxsd6/f//RzvTj4+O6uLioxWLxUZLHPv7p6Wm9evWqVqtVe/cg+tw73ewD00e/+8+xDDGKj6LPAB3dbz+Q+4gn8Putt+/u7gaJKiclsS/Wybb78G0ymTTdud1uB0eL2j/3rlhiDNtigmoIP45xcy/vKvXxs7a/jrEYj5N1AJrwxdXYGd94nrG9Lqqi77R/enraABv8AE5m8Gfw1keRMsccfcw48f0dVzkpaT+F3zwHHjrZdnJy0o5rJaGH7c44bjab1dXV1SDeZj0xF+v1um5ubloii8Tq4+Pj4EhT+yc8G5njxz5d+lzIHeO4u7trCdD379/X9fV1rVargV9v2UXW/CoC/B34QYzJOOGpfb2MC2ib7+x7u9gCWdxsdkVjOVbkGZ/IRwM7njk5OanFYvHRCU72a3kGPMbPOT4+rrOzs7q9vW3vW7VOYlz4bPxtP5QxZZEYvNxsNgP5ZVc+/jAnlZycnNQ333zTjiQmUYHszOfzpq/tS/b8qh4QOdJII32ZlL5efpffo5Osw7B/+D58z05Q7JcxV+M71tV+DjbNdhy9ZHuc47DdSPzF9zKWXhvGqJIfvRjRuAe+Kjzy6UCJN/q5xow8lkxEZOJnny72WDOGTvtqXDOvTzzK5P7ZViS+lrzLfhkncBs8P3luDMAxhMdom5t9z/71nmP+9fA/f25+wsceTpBYYM53jsm+WM67fYnEL3qbgfifdUaRmmMg5yOMQzE/JNhy09dL/oC/dyzi/hvbTR7nfPCd+Z2YUN6Dv+Ni2Tz10TENfXJf3D6+LTFZYkqMuYd7ey56WBR8IdYBX0y9S2xQVYM4hBgPXM++K/46p8k4P+MCWcdQydNP0c+5PnMcPUrdlTr5c33Rz06Cnp6etmpIJsJKwoBldsid7AEQfOYfBmJyQGbDQpUoleP7lFaCnfyez+d1fHzcqjxdNVu1AxMI4lAILCBXghD0GKhmfP7N8xFMHAUUnRPEtMuOHkAWExVXmUiwkBucMJ9z1yd9YrEaPHFwTF+sfK10PFc8g+sYJ0CO54o+erGlkeA5BjEMiqXcOFBOuTNQYYXnZxvAgi/pgOS406A6AWAFnZVrVji5ayFll7bTKDgZYaer52z1DIoTDVDP+bOM2lDYcc1neM5oz9f3HNmeUXI/c61kVbcNuJ/vJPq+ttxn8xvDUTV8V6zHRmLK8uU56enJlG0/004M4FbqGFfSe1zeFZlVYZ4/F3CYz57H3HnpHyfmfA/fWU56fEiQ3Ak6705MHW0Z4dg+vsvkE6ArtsPAHbx2MhTnwA6FeQMvDDgeHR01/XZ7e9vsRa475tTv60Q/ewcoYC4gLH2zow2g6QTAzc1NLRaLgdNn/ho4pV/WSz2nM50U+OBKOmTTa4rxGoCEX4zPOq7n4KZutfxY1vwcPuv5Bfm/7+mNP5/5ErEWcVR7SdmRRvpSqAdy2WZVPdubu7u7tu6dHOAIW4ppJpNJnZ+ft6SgC5aqnuOON2/e1KtXrwYgArYgdQMJzel02sB9dLFtnQNRn4iSAWnGNt41amDAvirXof8NFtCeA20ni/C94SG7sUhqwEPu8/G48KFqV5TDPJH0cIEJvHT/iC1IwuCHOt5zTGGfcjJ5TrZaj9NnEpiAliRxnCS2zcaO2DZh98y/zWbT3nu93W5bBTOxIPaQnXrYKGIPEtH0l2S5+4DNZNwk7JHB6XTaxo3dwW7bZ8DnIMmEX2EZAMylTeSL6wzq2Qdw8Rk89xHIyJ59KXYHWA7cNsUJ+I6cLLFarWq5XFZVtWQec3N7e9vWwWw2a/1ALjkOmGTzdDqt1Wo1SIp7DTAWeOFYJndwI5P2y1zQgCz0fBfWi30+ZBYZ9OlJWXiGr3RwcNB8Pfusk8mkJRWRM/tyGf9ZJkmGZtFi6mA/k7VkPsCz+XzeCsYvLi7qzZs3tVwuW5EJ+nc2m9WPP/7Y9IePts6kbOqEkUYa6ddPxnHtg6BzsU2Oofjs/fv33c0JjgGx+3k8twtM7OuYenGb8TkoY8mXdrL3sMp91zgWTfyy1w9j506Y8HfiUr04eF/fetf1/v+c+NSYz74Y3DkCX5tyYL/SbcAP7J6/zzZ74+/lABLbTCw1k6NJxmayzZwrx0T5HPsf2GvfZ7lJvvM84zX4KcYNe/it+ZfyzxrFdzGPiD2IRXIDBP0xFlm1w5u5zju66UuvKDz5y9+047nd54ckD60fzNfkV+al3B/fa7wzCZ+NOMCURX5e08mbxIvcH7/bHj/fejBjUto+PT1tR5CbT+ScyPHN5/PWB2OtjutchPcl02cnQf/Df/gPtVwu6z/+x//YwFk75Al6e2GnoBu4tcHsCVQvcZYC7h1W/t4Ju3TOueb8/LxVQPYA+gyoqArmuSwgjvRzQrRqdwyTg30bO9pykGXhdzKUNjabzSBYd5KWYNHJAoJKJz8Zq49fSj4TXBnI6SUwvECsrDwGVwWh/Aw6cK0XVcoNfUvgx+N0UGgZMc9tbGxU4bOVRhpOP6uqPjoqM/tro+Bt7vCYoNPOTToNCbRxnRV33pNj4LdlNxNZNnxpyJNHmfTjWsuIwT0noTNB2jvmCRnxWqB95NtgKPc42Um/eo4AZN6kk2GDaqPocTvByP+ee4OVmcDjmjSENkwQz3HQ4Moeyzt9NwjX040GBdFb1svmjXV7gmaMycGJDWQ6E9bpPRAuiwIYvx0Q89AAlAsznBhkDnyP16z7mp97fdE/z7WBTu9YIQlt5wKbQZ8ZN+A/+tjr0yCev8MBstODba6qBmDe3t4OEuLMrYHTPMb34OCgTk9P6/b2diDTloF03uBr6jl+GLPlMO3Fer2u7XY7sEsvrRFfk/6DgX2THWnrvp5Dbtkw5e6UfeSjVv7dv/t3e58x0kh/6WS75LXlH/SJd7E7YYWeJgmEnnQy9e7urr1Dc7FY1KtXrz5KJtqv8G5KH6uNjXNizUBFJvoyoWT/vBej2C+hXfx3EhcZQ/SCZ/sX1itO8tjepZ22L8Z47XtU1WBHhQPm9Dd8lGnGb1QIA4zAU9onqYZPYfDOCR0n34hLsg8JIsBb+kYCE+Dm4GD3Xlj4iM9FnOM5wQb4CHvramw6/jmykjuKkQGAhZ5/7jm8u7tru/Vo3wVWJHVJtFm+XITM315jlgdk2v7GfD4f2Po8ptV+FzGW+3V9fV23t7f1/v37lgxFjuHt4eFhrVar2mw2LfFeVe1VB8gKssM8UI1vP8YxBc/wvDi2h8cuUGOs9qPAARyDGlB3oj5BJ4or6Buy79imF8uxjlmXLqQmccyxkMhQxh/03zuqIMfE8IR1y3qn0JukNby/ubmp3/3ud/Xq1at2H/HY2dlZzefzj5K0rFPzoAfijjTSSF8uGQvKz6uGWKHJiR3jli42nkwmrQAJPdXDf+2nOW43/sLz/U5s24/E/qp22LD1VR6BbkzC+tYYG9RLVnBt6nE/v8fP9BV7ZH2b/Mi/7afwHPvB+z7PcfTiaLfra3OMPeqNjfnK+LxqiAsZCzC/3Nce1mhe+LqqnR1PvC/5w9+eg7yO/jve93WJqRlf9ryn3Noft73H73McBT9tl3tzlhiuZYDn+j30tOu+ss49Nvyv5Dd9T9zK7Ru3TOrJpn1B87q3jhKX9Fwm1pNrITHb3rxWDTFCj7/37H35Ez/D97iwD3/TORHiHvpNASO60j4kfeLUE/I+ztnQrvu5r2/8nbzxWk6Z3qcH9um+HqWu2Ndujz47Cfqf/tN/ahOa4KaDjFTyueuwajdxCL8NmxWa22CQ6ZDf39/Xzc1NE5qsrPWxMQAmrsykcpj+0Q6BCs+0QrUwYaQZF31NR8ABloXICcyspiCAMkiTSpexGoDhMwAdHA0COwtpGtOcK4TJi7aqBgssDVMqdMZoAMsLOZPTbg9+OmC2IUij4HlyX3CU/E6UXoUDz8rxWnm5f2l4IQJcG2nuN8+9pvw8/jYIlEYO/iAf+xS/+W9FbBDAa5d7uS8rfwAvnWyE7+ZTJnktb17fDv75MS+969k7AeChE/aWCR8D5e+8hj0vliPuo292WPhtZ2Kfg2jQJa9N+WF+XOHVc4js5AIEJl8zAeox8izk0nrM+sr3AuCYvMPHzpbXpued+U4D7+Sp59HHgNk58zzBJ1f443xttx/vmOcZBuU8XvrjvqLfDfzkOOhrAmLb7XYAHHu3Jf1k/fUAWMbonUDIlN/Llfp3s9k00BAeWrd6p5Z1ie0H9ocj0dwnO4L036CgnXDLL+A2ZCcL3lJMRKKE8dhmWAe6gMJBsedi37qDHPxaX/Uo7aP1gB1Zr4Wqqv/8n/9z3d7e1r//9/9+b9sjjfSXShmM23e3PbHOdCLFCQICLnZHkaw4OHjeHbdYLGqxWLSKVAdtXGP74cpoF0jhE2NXuc62nbH5PZfW/7PZrF1jPiRgxnGs9rfQDT49xokd+mobaL/YhS3WM7aJ6E52O5Kswf/HFkDYKWwHbcEf+7I+Kt0J1Ywb/D5vAxyMxfHNwcHu/d8kOikWdTDrBNnh4WFLWD49PQ2OTsXvJMFoWaBNZJBkKTJEGz72k/iPxBw+5na7rfV63dq0z4uPnH4uyVriOHjBGqFQCf/r6Wn3nrSDg4N6/fp1/cM//EOz8SRSkQ/65gQh/ohP8zk8PKz1et3W2mazqaurqzZ3s9ms8Y51AE/p283NTS2Xy/bZ4+Nje38rNh/fCv/E7yVK+WZelstls9n0vWp4mgd8Y9xVu7jEdp215FjCcaOfbx/HOsBxp3dPI7/oLtrwOueau7u7VkBmf4okuv1DTiQxJYgFH1iz/G1582cGoOmPi0VOTk7q/v6+rq6u6re//W29fv26ycj19XVVPe8EffXqVX348KGtU/jrOGVfHzJeGGmkkb5c6vl/9vmse01sHCFOzyIV66yqGugt9MzDw0MrjHN/+E2b9M34jIvf7F/sG09VDWyE+9XTaWl/UpcbB0k+Oj7ku32xZw8L8t+JQSZWmdiq42Njhr7OfE6+ZyIsn5OYafLDvyHs5D4e+Frb/iwYMyZl++/+WH56c5x9Tr7bB875dbv2k/1dzlOPz7058GfwC/vck33HZvvmw5iq8V7mwqeXGG9yv3yPx2tcyr59jol+GK/qjTn/Nx9o2/PV66v7CF8sQ5ZxY6tct29NGB8jzgUbNOUaqKqG51lP5Xw5fkHv0gb+mH1Fx1/4o/P5fLC5gbZdiOjXjnC/8Wj3sbcGki/wet/3PdrX5qfufemeHn12EvTHH3/8SMgsPD/nwVYGVR9XQjhJ6IWU9Pj4WKvVqm3h7hmfqp0i8EReXFy0d5HYGBj8wOnHuCfYSYBetQPS5/N5A2sd+BsAyDa4N5WGeYVi8HXwHoHNd9fYOfEc7VPE/O7xOo119o37DAak0reDlEmQBJWcCLCyMPDhvmbiL4k2uS6VMtRzdAju3f9Uwly3j5c2ENkvz4GTbqnA03GBN/A8K6ndrnnkMWXC2P12gtjj6ykznul55HkpB15HfJ+7QfN++pf89xzl366EtwxZeacD5LEYVPUcuI82AumEJuW683icOILHPWcsn8+1Pdm3c0s7BuKqhgYToC4BV8uJ+UU71lfWw95lARDUGwtza4eOte73K7sPdrBdWOJgLEFqA23WjQkYbbe7XRe077n1+NMGEgS5cg7dRz+c6AXUtQPG2vQ7rTIoSwfKcuR3g/IdY0RXODkAv+0Uoe+88yUTv5Y3Jw7t9DNe6yv3iT5gw+AJfaFI6SUfoxegmHp93hfgOWhK2cjr9j3L3wHII4+Xl5fdMYw00pdArA/vRrftYr08PDy0nWB+vwhFaCQXCd6d7ECX+L17LlKpGgJlTtyxW88JFwduBKW3t7dVNfQzbKtIutkXQE+7YINnOvmZ9hB7wr1ONjKG3BWX+qcHKjgJZN3shOvR0VGtVquW2Npuh6dWOCayjsVXIMnl3bzwx+80ZO7R1cw1c+HXdNh3hx8+lhaf4vb2ts2veZn+I7KT4Ad+gu04/XNsuN1u2/szaZ9YDj8Amk6ngyJK85HvSdIeHh4Oiq0MANN3wIjtdtuSfo+Pj3V7e9tOBrq8vKzlclk3NzeD+ceG0x+e4520VIBvt8+FTzc3NwNfxTJlfzvBleVyOTgGlyJh+xXIAsVeBrrhkdf53d1d4y8AkIvv+Az+uyjO64g+s7N1s9mdlHRwcPCRD4N85L083/4GR/qix+bz+WDHg5P+JIAZk4sL4Jl5RVxxdHRUl5eXbd5dZJCxJAlM84y5AqC0/Fu3GoiijeVyWT/99FO9efOmyepyuWwFFfP5vJ3OAf/8vtFPAbsjjTTSr4+8vjOWo6jJhT9OOKBnjMv0ioisA/O0Lyd30HlgtL3dZ/Zr9uF/GVejKxPX2ReHcq3/7uEyjrX34ZbJX/cjsUf7Z73++vperJynF8CLfeNIXI7v7I++xCPasE/rcTOmTMQZp+MZ9vl6dshjSbwnsYDe2BKD24fF+f/e/OC38AzPR09m3HePNX1f7rfMIw9eW5b7tMvuc+8Z+zCTHG/iJY4HEltye+5r8i5x7Ez+0Y59MPO9FzeZt34W3xMfIC/IhHMglnvzJ7FR7qXA0TzI9WOe5DP4nJjAesOxjmMh9yXx+ZOTk1ZMmc91DJYy7rjU+sb97ZH7yd+59v+56LOToA4cLbAIBwFejxG56KyAHJC5fYO9uRiqdmDv7e3tR4lI/nbCyG0C7rqKF1DH78dkohyYHR0dtYpZAxc+LoeAiSAVg53vxURB8BkLmGAJJwK+UIFq3lixmv/7Fmjyk/4Z3OgJZk9xZrA8mUwG77Gx0fFzrcyQgWybsRj891xyTTo0VqT+zM5RGj3aTKcIsvJwu+5POhA9mbaySOfMRiKVec9BSgXS2w3Wm0P3l8Sj+Qc/HFCjzDM5YB7sq+Dq9aM3FgOln3Licg5tfG3EWdfcm0Bt8jF1DNd5zbp/KdMGg1NnpdJPg8z9eZ3XQBrKfUan58xaP5i/dlpSnyQA21uvadTcTwBZ1o4DouyHgyDLEfe5wGVf/wGqt9vtIIFoR5E2bYO89uCT++Lj0xyA0W/bAXjMs5wkti3Ybnc7bx28WQb4+/b2tq232Ww2KITx7kvz3HNFW4zFQL51Y0/OsGdOXnjt2JFzsjqpZ8PT+eQz7C2JCmx6zv++4KFnq5JSllOmUjaSMiDw51l9aXkyCDzSSF8a2fdP4Mq7hby7E5/WuoajbtmBx/ckI1yJ6upU9C+6iSSH7WovdvCpFCQ40WdOgvh9f/muZL5jJxw+f1UNkqYOmg1MmBecrEDMUDUE6OzPkEx0Ms3JF+/2TN2I7cgYKHWT+8nzSMg5mWfflh1s2+22JUV91KuTw+h061PsswtgttvnZJ1jSsbOcyyLqfNpj7EwdpKCeUw98sVRuz7+lWezO5O/q4aFvzyDHXe5IzOLqOwrcuoB9pm2mDcSUYzVCajHx8f2/lVkG17AfwqEkTevExfMkizDd8H2Hh8f1/X1dfuOuWFMJPedeMdfIyHp931W7Qrv4BOAjP3a+/v7wdqwvWYukUWv3QShvLbsizl+JdGOr8Manc1mTUaPj4/r/Py86TkSuiQiXSzggrCDg4M2l8iCY2XH9zyLNfj4+Dh4BU4WrXqnlGNdn9yBnN/e3rZkOfKA3P3000/1r/7Vv6rXr1+3I45p31iHd9J7DXp+Mu4daaSRvmzqxVXWoYkpGkOwPugd0594o+2T7Tc6yMkD9Kz1rX0F+mAyppEYkmNR6zXbbceqPXwvMR3zCrKddPyc9tl4XPoPjsP56cWqbid56//9mW1jjivjbPfdMmL+eewZY/fmwOMwruTkF/NujM9tmPbhsrRjHzgTdsb5ejztUfKI+1/CsXr3e43xd84b/TAGlvLm/Ma+eeR7F5T6e94Hik9nPyvXY8YY9NWxjcedOH2Ol2d4Dnu4YNXHhYnGL91f+GicPWPa3vw7NnC7Pfnge7dN+y6YpV1j6ynD+Ov4g9yTvx07eX0xt/h9xK2WqTypNDfcub+JZScPzIfed9Cnvv8U7dOxP4c+OwnqBW+Dx4QiuF4gDkBs0Mzo/N4Ds0K2gcXxN9CcBqIN8HD3zs2Tk5Oaz+etb6nICDScSCVQdOBPoM9RlD5+ih/6zv1WDIzZVafcYwfBAQ9C6cVCO6ncrWy8GFLg9i22zyXazAoJt+0kr4EDzw0KIg1iOgUor/yu1yc7Ow7ALWtpzP3sbNPPz7H+HLJjwbj43P/TD6+BnvLjexsg735MyjE7SWhDlOvJfKW/7rPv6+3c6zkFnsMsWEijY0eNvqQDync+cjQdSPPB8uT58Rxn9ZYNY+oQ+J/yAkCVjl8aD/fRIGdP1i0Dlg3Pzz7n0fy1LmcNAjRZl2Zy2bvanXz2evc6S2PfkzfLsHUL+s7XMDfWgyQr01E0SJzrxbs2t9ttc/J6u5wg65bkudceYBbP9Jn7PtLN73PK3UbmP/2F936OnbOePPGePR+95rVqB9B6GT57Z0fKYK5n5IKEq4Nh/079w5jdJ3YbwQOvfds6rnc/vG56/oUpAyXLddqt3vghxmH587oaaaQvlVLH2DY7eMPeoePQg5b/w8PD+uabb+qnn36qyWTSiqCm02l7Fx062b6vfQEXMlqv+LUPTq6w+8mBs494zF1g9J1+OcGBjaSgMpN81pXofvMMXQQw6ISG2zGoYV+WhITtTepj7/h0n+CTi2USACCxwtGmVfWRXifph5707rB8vwyJGMtIL0agLeSBkyC49unpqb2rGn5hY5xMZZy05/dc4w94J2ser+xiFbcLf5k7+3m8a9F9ol+0aT+GxKN9mO32+cjd+Xxey+WyNpvdMcVnZ2d1dHTUjuRFjm9uburp6fm9Pjzb35uv+BYkzBkLcrZcLuvh4aGurq5akpX58OkaPnUG2fLan053hY3mMf+zS9wFZPTHO4iyfWQM2dputw34pk/IFkcEM4deZ/AcMMjPcaL84OD5Xaqz2azNCccK+wjlLAgxAHd8fNyS1XyGTPndyelv43fZV/bJLfa7HSfCC/vLXGd/lr4sl8v68OFDffPNN4MEO2vN6yF1lfW8fR3kYKSRRvoyKfGJT11rfIDP0P3Gjxx/GyuBEuvCJ3MbtplJ6KuMD9NP4jMXVtkm9to2pmS927s/Y1Pzch/2mnjlS3Fn/u05yOsTv/P4GQ/9YmyJjfl799V+BW3mmNwPPt+HCzkRaduXMX8P17N/25s/8BXv0kssxXz1OHNecyz7xs7YjMH15iifYZ6lnGHLfW0mhN0PCrnymRB+hk8XgScuBrW/YTwlnw1fT09PB/Jk3Me+k2OeXLcpa+6/cy2OrxwXJj5Fm57znq6zrnJOKDEmrs35sozgf67X6y42n7im72c8s9mszaV54zXrokhjUeg5F9e5wC7ja8+j9QNtmlc5lpTx3nWfY1N+Lv2pbX52EhSyQPNgB7BJqURpI5U3E5dJCxsNfhOcURWL08/1VuwIAVXJXsy05+dXVVMEABzHx8ftHGYSoKvVqilT7840SESw5rHRR4yGs+0pcE7umjdeJD1+54JkLAbkHcwSFDOHPWHaJ2AGzZ3I6s2nFV3VbrE7aZZgSC+hUrV7LwxtpkylkUwHCuVrZWMFZ/Iz4EUmQsyjVGA2aD3+0p5/O3C1TGOwzeuq4W5Ny03OlZ/J/Pu58Nrzk0E2c53/82wDfn7PJDxI3lrm0xDaAfY8e/0CdKaTgJxnYJ7Oq2WSv108YN1iGUmjn84Z/3vdT6fTgYOe9xmE7DlM6YT62d5p7p195qfb45lONNKuAVLAY+9UzCSo+9NzDrnOjqB5xe4YO6i5gyIDH66lXz6NgLnhM4NQtGGwm+Sn9ZH5h41hd4jl0QUc8IZ3abqvXgMUzkwmk1qtVm2+4DvrEvCJ48kovHHgZp555yv92m63tVqtmj1L2fJuUtqFV17jlsHUddZT1t1eW9nOPjvjZ7MD1RWKpn3/92QxbUjPN7Fe2XdNXpeOs6+xg5+7KEYa6UujtG+2ofbVCLbs/7EWqET1OvRxlJeXly3gq9rt6GLX2WQyaa+yqKqWaEN/po+IfTMgZ9uC7+udY9Z7PgkAmwcw0LNlXGfgwT6EEzz39/cNQMj+mMfpb3l3Jrx3Qgm+Mk4nW+gH+ohdd9bprhy3jvf7EO2jJe/hJWO5u7vrvj/SBVfWpZ5nF4RhE3z/4eHzuwzx2bAd2DmSaufn54NXoNhuERu5iM19dbzArlf74fZZLHNOBDMfDw8P7Sgq202vE+Riu90Okm3EvxRP8Tc/fn85c0kS1cVgfEdikhOVrq+v68OHD3V7e9uOZiXu5YhDeMDOZ/tdedqO/UpXo1dV48N2uzuO2L45Pq1lzdX08B7fju/tE2QylfYySUcS2f1lN+hisRhgDMibcQS//xRZ9s5v6wDjEOgHkonT6bTJKLECcp7v4nVM6LgGwI3PvE4T2IaXzD/rkTZns9lgB3TqIPwaYx6OsXtx6EgjjfRlUOJnL13nIjf7WrbLjguNL/le+5XE28aZjC26yIP7eLZjeo/Bsa8xj30JNNuj/Czb+xQvrR8To6Q/VTXQ7Zk8y3lIXeuY18+0v8P/xt48L73xm4fu/0u6Pp/R46Pxox4/Pbc5zl7OoWpYAFa1s/8pb/YZPPfuR+Ykenz2ePMz9zVxux5lXJW/k9+MIROE5luvmDLvr6q2Ucy+InGK8wf7sD2Pi2e40LSXO8rPcxz5d2JXzFsWzLkY0HLm2Ab/xWvMY8OP9qlGxvQ8fmSIsfEZzyVm8ys2rLOcuzGP8OnwvZ0w5R5vCtxsnjfonZ2dDXyx6XQ6OHVlsVi0OXBs47zD8fFxrVarj3B497VHidn6s5Sdf26abEcvdaSRRhpppJFGGmmkkUYaaaSRRhpppJFGGmmkkUYaaaSRRvoV0f5U7kgjjTTSSCONNNJII4000kgjjTTSSCONNNJII4000kgjjTTSF0hjEnSkkUYaaaSRRhpppJFGGmmkkUYaaaSRRhpppJFGGmmkkUb6VdGYBB1ppJFGGmmkkUYaaaSRRhpppJFGGmmkkUYaaaSRRhpppJF+VTQmQUcaaaSRRhpppJFGGmmkkUYaaaSRRhpppJFGGmmkkUYaaaRfFY1J0JFGGmmkkUYaaaSRRhpppJFGGmmkkUYaaaSRRhpppJFGGulXRWMSdKSRRhpppJFGGmmkkUYaaaSRRhpppJFGGmmkkUYaaaSRRvpV0ZgEHWmkkUYaaaSRRhpppJFGGmmkkUYaaaSRRhpppJFGGmmkkX5VNCZBRxpppJFGGmmkkUYaaaSRRhpppJFGGmmkkUYaaaSRRhpppF8VjUnQkUYaaaSRRhpppJFGGmmkkUYaaaSRRhpppJFGGmmkkUYa6VdF/x9kaoQxeNjxQQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(20, 10))\n", + "\n", + "for i in range(6):\n", + " plt.subplot(3, 3, i + 1)\n", + " img_path = os.path.join(pneumonia_dir, pneumonia[i]) # Gettig the path of the image\n", + " img = plt.imread(img_path) # Loading the image\n", + " plt.imshow(img, cmap='gray')\n", + " plt.axis(\"off\")\n", + " plt.title(\"Pneumonia X-ray\")\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "8ouW2hB9Ok7G" + }, + "outputs": [], + "source": [ + "normal = os.listdir(\"/content/dataset/chest_xray/train/NORMAL\")\n", + "normal_dir = \"/content/dataset/chest_xray/train/NORMAL\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yXe8Sh8QOre5" + }, + "source": [ + "# Visualizing 6 random normal X-ray images" + ] + }, + { + "cell_type": "markdown", + "source": [ + "1. **Figure Setup**: \n", + " - Creates a Matplotlib figure with a custom size of `20x10`.\n", + "\n", + "2. **Subplot Creation**: \n", + " - Iterates through the first 6 images in the \"NORMAL\" directory. \n", + " - For each image, reads it from the specified path, loads it in grayscale, and displays it using `imshow`.\n", + "\n", + "3. **Display Adjustments**: \n", + " - Hides axis labels for a cleaner view using `plt.axis('off')`. \n", + " - Adds the title \"Normal X-ray\" to each subplot for context.\n", + "\n", + "4. **Layout Optimization**: \n", + " - Uses `plt.tight_layout` to adjust spacing for better visibility. \n", + " - Displays the figure with `plt.show()`." + ], + "metadata": { + "id": "JNNJnOjuuhKB" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 365 + }, + "id": "phwBUIPbOruP", + "outputId": "0edf86b7-125e-4481-ac15-7bf6b7bb1715" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABs8AAAKVCAYAAACAvnWkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZC1W1Xfv8453X2GPt3vdC9wuSAXFKKRq4BalpT1AxUTpzKxipjERAkR0RCTMo4pNZY4RyWlcaA0ZSQkxjFVsajEQk0QNA6IEylMQAYZlOFy37enM3X3Oef3x+tn9+dZ/fQdACXvffeq6uruc55nP3uvvfYavmvt/XTW6/U6KlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqFN0PdwcqVapUqVKlSpUqVapUqVKlSpUqVapUqVKlSpUqVfp/hWryrFKlSpUqVapUqVKlSpUqVapUqVKlSpUqVapUqVKlv6CaPKtUqVKlSpUqVapUqVKlSpUqVapUqVKlSpUqVapU6S+oJs8qVapUqVKlSpUqVapUqVKlSpUqVapUqVKlSpUqVfoLqsmzSpUqVapUqVKlSpUqVapUqVKlSpUqVapUqVKlSpX+gmryrFKlSpUqVapUqVKlSpUqVapUqVKlSpUqVapUqVKlv6CaPKtUqVKlSpUqVapUqVKlSpUqVapUqVKlSpUqVapU6S+oJs8qVapUqVKlSpUqVapUqVKlSpUqVapUqVKlSpUqVfoLqsmzSpUqVapUqVKlSpUqVapUqVKlSpUqVapUqVKlSpX+gmryrFKliLjnnnvinnvu+XB3o1KlSpUqVapUqdItTtWvrFSpUqVKlSpVqvTBUvUpK1X68FNNnt3G1Ol0otPpxBOe8ISYz+et19xzzz3R6XTi9PT0r7h3/+/Sr/7qr0a3242P//iPj+Pj49ZrXvSiF0Wn04mv//qv/yvuXaVKlSpVqlSp0l89Vb/yA6PqV1aqVKlSpUqVKp1R9Sk/MKo+ZaVKfzlUk2eV4h3veEf8wA/8wIe7G7cMPec5z4mv/MqvjNe//vXxTd/0Tee+/+///b/HS1/60vi4j/u4+I7v+I4PQw8rVapUqVKlSpU+PFT9yodH1a+sVKlSpUqVKlU6T9WnfHhUfcpKlf5yqLNer9cf7k5U+vBQp9OJK1euRKfTieVyGW9+85vjjjvuaFxzzz33xNvf/vY4OTmJjY2ND1NP//KJbdB/+qd/+pCun81m8YxnPCPe9KY3xf/8n/8znvWsZ0VExPvf//64995748aNG/G6170unvrUp/4l9bhSpUqVKlWqVOn/Hap+5RlVv7JSpUqVKlWqVOkDo+pTnlH1KStV+vBT3Xl2m9NoNIp/9a/+Vezv78eLX/zih3Xvz/3cz8X/9//9f3Hp0qUYDodx7733xnd/93fHYrE4dy3n9B4cHMRXf/VXxz333BObm5vxrd/6rY3vj46O4l/8i38Rj3/842M4HMbTnva0+K//9b9GRMTp6Wl853d+Zzz5yU+OwWAQH/mRHxk//MM/fO5Zx8fH8cM//MPxOZ/zOfGEJzwh+v1+XL16NZ7znOfEL/3SLz1sHrXRcDiM//gf/2N0u9143vOeFwcHBxER8cIXvjDe8573xHd913c9LGPU6XTi2c9+drznPe+JF7zgBXH33XdHr9eLl73sZRER8aY3vSn+5b/8l/GJn/iJceedd0a/348nPOEJ8cIXvjDe9a53Ndp65StfGZ1OJ57//Oe3PmuxWMQdd9wRd9xxR+tcVapUqVKlSpUqfSBU/coPjKpfWalSpUqVKlWqdEbVp/zAqPqUlSp96KnuPLuNqdPpxN133x1ve9vb4mM+5mPiHe94R7zhDW+IJz/5yeWai6o5vvEbvzG++7u/O+6444547nOfG+PxOH7pl34p3vCGN8SznvWs+OVf/uXY2tpqtHN8fByPfexj4/r16/Gc5zwndnd34957743nPe95cc8998TJyUl8xEd8RFy/fj0+8zM/M46Pj+Onf/qnYzqdxi//8i/Hj/7oj8bv/M7vxGd/9mdHv9+Pn//5n4/3ve998TM/8zPxd//u3y3Pes973hN33313PPOZz4y/9tf+Wtx5553x7ne/O17xilfE9evX49/9u38XL3jBCxq8eLjVHNC3f/u3x7d8y7fEF3/xF8ezn/3s+NIv/dL49E//9PjVX/3V6HQ6D2su7r333jg4OIjxeByf9mmfFt1uNz7rsz4rPvuzPzu+53u+J77ne74nPu3TPi0e//jHx9bWVrzhDW+IV77ylfHoRz86Xve618Xdd98dERHr9Tqe/OQnx7vf/e748z//87h06VLjWf/5P//n+Af/4B/E13zN18T3f//3P6zxVqpUqVKlSpUqtVH1K6PRv4jqV1aqVKlSpUqVKj1cqj5lNPoXUX3KSpU+rLSudNtSRKzvvvvu9Xq9Xv/8z//8OiLWX/AFX9C45glPeMI6ItYnJyfls9/8zd9cR8T68Y9//Prd7353+fzk5GT9eZ/3eeuIWH/nd35nazuf8RmfsT46OjrXF77/vM/7vPV8Pi+fv+Y1r1lHxPrKlSvrT/zET1zfuHGjfPeWt7xlvbm5uX7a057WaGs+n6/f+c53nnvG3t7e+mM/9mPXV65cWU+n03PPf8ITnnABpy6m09PT9Sd/8ievI2Ld7/fXly9fXr/jHe942O1ExDoi1l/8xV/c4DX0rne9q8EX6JWvfOW62+2uv+IrvqLx+fd93/etI2L9Qz/0Q+fuedaznrWOiPUb3/jGh93PSpUqVapUqVKlNqp+ZfP51a+sVKlSpUqVKlV6+FR9yubzq09ZqdKHl2ry7DYmG6T1er3+lE/5lHVErH/913+9fNZmkF7wghesI2L9Yz/2Y+fafOMb37judrvrJz7xiY3PaecP//APW/vC929+85vPfffEJz5xHRHr//E//se575797GevNzY21qenpw8+4PV6/ZKXvGQdEetXv/rV557/gRik9Xq9ftWrXlUMyktf+tIPqI2IWG9tba3f+973Pux777333nP8fv/7378eDAbrpz71qY3P/+///b/riFh/2qd92gfUz0qVKlWqVKlSpTaqfmXz+dWvrFSpUqVKlSpVevhUfcrm86tPWanSh5ceuW9VrPSw6SUveUk885nPjK/92q+N3/7t377wut///d+PiIhP//RPP/fdU57ylHjc4x4Xb3vb22J/f7+xDXcwGMTHfdzHXdju5cuX4yM/8iPPff7Yxz423va2t8UnfMInnPvu7rvvjtPT07L9GXrDG94Q3/d93xevec1r4t3vfnfM5/PGfX/2Z392YT8eDq3X6/i2b/u28v9/+S//Jb78y7+8sQ16b28vfuAHfuDcvV/1VV8Vly9fLv/fc8898ahHPerC5/zUT/1UvOxlL4s/+qM/ihs3bsRyuSzfe9t5RMS1a9fiC7/wC+PlL395/OZv/mY885nPjIiIH//xH4+IiK/4iq942GOtVKlSpUqVKlV6qFT9yodP1a+sVKlSpUqVKlVqUvUpHz5Vn7JSpQ8d1eRZpUKf8imfEs997nPjF37hF+Jnf/ZnG2fzmvb39yMi4q677mr9/q677op3vOMdsbe31zBIj3rUox7wbN183i3E+cVt3/PdyclJ+ey3f/u349M//dPj9PQ0PuMzPiM+//M/P3Z3d6Pb7cYf/uEfxi/+4i9+yF4++W/+zb+JV73qVfHc5z43ZrNZ/Lf/9t/ih3/4h+Of/bN/Vq7Z29trfcHpP/pH/6hhkB7zmMdc+Jyv/uqvjh/4gR+Iu+66K/7m3/ybcffdd8dwOIyIiJe97GXx9re//dw9L3rRi+LlL395/NiP/Vg885nPjMViEf/hP/yHeNSjHhVf8AVf8EGMulKlSpUqVapU6YGp+pUPn6pfWalSpUqVKlWq1KTqUz58qj5lpUofQvpwbnur9OGlSFuh1+v1+k/+5E/Wm5ub6yc+8YnrxWLRuhX6Gc94xoXbltfr9fojPuIj1hHROPP3wbYaP9D3nHvbRs973vPWEbF+29veVj773M/93HVErF/1qledu/67vuu71hGx/smf/MmH/PyL6PWvf/263++v77rrrvX999+/fve7372+du3aejQaPewzeiNi/axnPav1u/e+973rbre7fupTn7o+ODg49/1TnvKUC/nz9Kc/fT0YDNbXr19f/9RP/dQ6Itbf8A3f8LD6VqlSpUqVKlWq9GBU/cqH9vyLqPqVlSpVqlSpUqVK1ad8qM+/iKpPWanSh5a6f+nZuUq3FH3UR31UvOhFL4q3ve1t8UM/9EOt1zz96U+PiIhf+7VfO/fdm9/85njXu94VT3ziExuVCn+V9OY3vzmuXr0az372s8999+pXv/pD8ozj4+P4h//wH8ZisYh//+//fVy9ejUe85jHxEtf+tKYTqfxJV/yJY2tyh8MvfWtb43VahV/42/8jdjZ2Wl89653vSve+ta3Xnjvi170opjP5/Hyl788fvzHfzw6nU688IUv/JD0q1KlSpUqVapU6YGo+pUPjapfWalSpUqVKlWqdDFVn/KhUfUpK1X60FNNnlU6R9/yLd8Sly9fju/8zu+Mo6Ojc9//43/8jyMi4ju+4zvivvvuK58vl8v42q/92litVvGlX/qlf2X9zXTPPffE9evX4/Wvf33j85/4iZ+IV77ylR+SZ3zzN39zvP71r48XvehF8Vmf9Vnl87/zd/5OfNEXfVH8zu/8Tnz3d3/3h+RZ99xzT0RE/MZv/EbDyB0dHcWXfdmXxenp6YX3ftEXfVFcunQpvvd7vzde/epXx2d+5mfGk570pA9JvypVqlSpUqVKlR6Mql/54FT9ykqVKlWqVKlSpQem6lM+OFWfslKlDz3V5Fmlc3T16tX4xm/8xrhx40bcf//9575/5jOfGV//9V8ff/qnfxpPfepT45/+038aX//1Xx9Pe9rT4hd/8RfjUz/1U+Prvu7rPgw9v0lf9VVfFRERn/qpnxoveMEL4mu+5mviWc96VrzwhS+M5z73uR90+695zWviJS95STzlKU+J7/u+7zv3/Y/8yI/E3XffHd/2bd8Wf/AHf/BBP+8xj3lM/L2/9/fita99bTztaU+Lr/mar4kXvOAF8bEf+7Hx1re+NZ72tKddeO9oNIrnPe958ed//ucREfHlX/7lH3R/KlWqVKlSpUqVHipVv/KBqfqVlSpVqlSpUqVKD07Vp3xgqj5lpUp/OVSTZ5Va6Z//839eqgja6F//638dP/3TPx1PfvKT4+Uvf3n823/7b2O1WsV3fMd3xK/8yq/E1tbWX11nE33WZ31WvOIVr4i//tf/evzsz/5s/MRP/ET0+/141ateFZ/7uZ/7QbV9cHAQX/IlXxLdbjf+03/6TzEajc5dc/ny5fjJn/zJOD09jS/+4i/+kLzw8yd+4ifiG7/xG2M2m8WP/MiPxCtf+cr4vM/7vPjN3/zNC19eClF9c9ddd8Xnf/7nf9B9qVSpUqVKlSpVejhU/cp2qn5lpUqVKlWqVKnSQ6fqU7ZT9SkrVfrLo856vV5/uDtRqVKlvzx62cteFs9//vPjm7/5m+Pbv/3bP9zdqVSpUqVKlSpVqnSLUvUrK1WqVKlSpUqVKn2wVH3KSrcK1eRZpUqPYDo9PY1nPOMZ8X/+z/+Jt73tbfG4xz3uw92lSpUqVapUqVKlSrcgVb+yUqVKlSpVqlSp0gdL1aesdCvRxoe7A5UqVfrQ02/8xm/Eq1/96vi1X/u1+N//+3/HV37lV1ZjVKlSpUqVKlWqVOlhU/UrK1WqVKlSpUqVKn2wVH3KSrci1eRZpUqPQPrVX/3VePGLXxxXr16NL/uyL4vv/d7v/XB3qVKlSpUqVapUqdItSNWvrFSpUqVKlSpVqvTBUvUpK92KVI9trFSpUqVKlSpVqlSpUqVKlSpVqlSpUqVKlSpVqlTpL6j74e5ApUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUr/r1BNnlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWq9BdUk2eVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKv0FbXy4O/BQ6cu//MvjypUr0e12484774y77rorNjc3o9frlWu63W6cnp7GarWKk5OTiIjY2NiIbrcbJycnsbFxc7i85q3T6ZT/V6tVrNfrODk5iclkEicnJ6Wt++67L6bTabmv3+/HxsZGdDqd6HQ60e12Y7VaRbfbLZ/TLves1+vSXkSUv9frdSyXyzg9PS2f8ffp6WkcHx+XPs1ms5jP53F0dBTHx8dxenoak8kkDg4O4kPx6rrNzc24evVq7OzsxGAwiMFgEFtbW9Hv92MwGMTm5mbjZzAYRL/fj83NzTL2brdb+N7r9Qov+A6ejUaj6PV6sbW1Fb1eL7rdbmxubpa5WK1WsVwuo9vtxmg0isFgEKvVKiaTSUyn0+h2u415XC6XMZlMCm/gDzzudDqxubkZ29vbMR6P48qVK7G7uxu7u7sxGAxiuVzGer2OS5cuxenpaRwcHJTnHR8fF9nqdDplXk9PT+PGjRuxWCxic3OzMa/L5bL8HxEN+eL3crmM+XxeZIs2T05O4vj4OObzecxmsyILJycnsVgsGn8zVn4+ULpy5Uo8+tGPju3t7TIvyMH29nYMh8PY2Nho/HS73TLfjJ/5hk/+m3mFP6yFbrcbOzs70e/3o9frlbb9m3XG88xfnjMYDAoPe71ekavVatWY49PT0wYf77vvvjg+Pi5tsiYjInq9XrnPfefn5OQkTk5Oylz90i/90gc8B5UqVap0q9PTn/70ePazn13s8VOe8pR47WtfGzdu3IiIKDoZ3w37jO3ItF6vo9frxUd/9EfHH/3RH7X6VxFndqbT6cR4PI6dnZ1il+bzeRwfHzfsbETEzs5ObG9vxzvf+c7o9XpxcnJSfDn8PHwNfJSIaOh87jFtbGzEvffeG7/7u78bvV7vnM/psZofF/EAunLlSly9ejXe8pa3FB7wmz4wRtstE/bRfOt2u/HJn/zJ8apXvarB00uXLsXOzk7hw+bmZvT7/RiPx3Ht2rUYDofR6/WKXbRP3O12Yzwex97eXoxGo/J5Hjt+Od/bV+x2uw1b7u/vu+++uHbtWvT7/Uab/A1f/Vz/xpfodDrR6/Wi3+/HcDiM1772tfFJn/RJxUfBJ0e24K/5yvzh9/Jsy+ib3vSmePzjHx/9fr/c4/nKxDP8zHzt1tZW/MEf/EE89alPLfONHPlvyx3Ptb9Dfyyn73znO+OOO+4ofpXH476b73xu3lgWt7a24i1veUs86UlPKjJxenoay+Uyjo+Pi6+3Xq9LnAHBV881/el0OvGnf/qncdddd8XW1laZL/yz5XIZ0+m00S/Gn//2uAaDQbzrXe+Ka9euFXnxnDNmxmc+IT98RpzHdYPBIK5fv17GSz/x7YkDiGU8T7kfxIIbGxvx+Mc/Pl7/+teXOXF86vvt59LXjY2NEvvt7Ow0YsG777473ve+95X1Rnxm+vEf//GoVKnSI59e/OIXN2xMttURcc52cx26DN+Bz63nOp1ObGxsNOwH92LTsCmPfvSj41GPelTBy7DH/G3fkGdC9CvbQz6n/ycnJ8VvwmbNZrPSfsRNPXp0dBSz2ayMz/6qiXbBEhiT/0dv89u8Zjz0m/uPj49jc3PznC9pTI3/wTeMH5lfjInP/UzwMJ4NzzI/Nzc3Y2trq9UfAWd1//GPuHZjY6PYpjymNpvruQMHpj1jwO4zPMUGM/bT09Py3K2trVitVsUvWa1W0e/3C96MHYY3+P1eA20yiM03vpT9La5DFiKiYLMbGxuNPuM78VxoOBzGcDgsfVyv18XnAm/EH2NusjyYv8goY8w+BlincT7mwb9pB37nGMKYvv0N1on9q263W2RtsVg0+L9arcpn3Nvv98v8wz9j114vvV6vYN3mC7xAhum3sULHDhmTHo1GBX+EZ/aBeZbjNvt11h3EMcg5+pS1Tgw8GAxiPB6XsVsXoFN5BvKOnvD4eAYYK7LDuuHviJsx+Lve9a5yPWNCX1kfWqciO9afjInxOVbL8oqO8d/Mrdcg7a1Wq/it3/qteDC6ZZJnKCQWkxMaLA4EA+bAWAfjFuQs/GYe13Y6nbhy5UpRNA5oHexbgLNBYbFYkXEPixNBy0Ec9zqARUg3NjaKMpxMJh80j61E6KsVH3zOwbydDhslOzm0gzGE5xgrlBLPYPFubW0Vhcjv7e3tODw8bASVKEYnKFGizNfW1lYMh8O4dOlS3HHHHbGzsxNbW1ulr8PhMEajURnTZDIpRjIiGslajE2WJTtp2alBuS2Xy+IQMFYSZHbcMPbZ6UKR2GA6AH+4tLm5GePxuCSvUJgE0k6OGsBwAs3rwTJjmUAucCr43+06WbaxsVHm3TJpo0H7doqY942NjaK4PSc44Xxuw59BMa7N69I8t+KuVKlSpduZnvOc58TP/MzPxJ/92Z8Vm/fVX/3V8Tu/8zsxn8/Lddl2ZTvhoHG9Xscb3/jG1uRSDs7W63UcHh5Gr9drJH5sp6HDw8PY398vz6GNNmcdH7Df7xcAudPpxGKxiMVi0bARp6en8cd//MeNxFAmJwIyCO3EovtzeHgYk8mk4Us6+IQf2L88pjY7lsdrIGg6ncbm5mYMh8MCRvh7rs8JQuZ0Op0W3zWDB9mme+7bKCcPrl27VnwF7LdlIPM1J3r4zTWnp6cxn8/j3nvvLXNgvhjIyD6E59LFUw5+77nnniIPtG8fxgG8/evMAwfhjlXsj3t89M/+mOcuE589+tGPbsyr28t9bOu/1zHPnM/n8djHPrYVsIRvOYnsebV/m/3Oxz/+8SWG41pAKWKtzEfrjpz463a7sVgs4tq1a+f4ZHDTcp+BR6+5zK+2+3g+frAT8+YX7dGXxWIR8/k8Tk5O4ujo6Jw+yPrF9/vvTqcTOzs7cenSpUaBY7fbjfvvv7+sV+aBWPuhJP4rVar0yKG3vOUtRffmBJqxEhe/2v5FREN/245FnCUBsB22X7QbcVPHHh4eNhIX4IMZ8wN74W/6jc0Ab8ngdcSZXUcfggGB3ZCsu//++2OxWBRcw/fDH/sPBnMh4woZMAffyH4zPMKeMFbjGtku8/yIaPjmtlsGmLF7GechCQMPaXNra6vIguea9vBh6J9xJuOAtGucLRfCWG5MtG28ykka5pgEgROa/I0vYKzYn4FjRkSjyB3+ZF+FPm5ubjauN8aMjDCXxqjAM4lDzBfW39bWVil82d3djatXr8bGxkZMp9NStMOc0TZryLgkfcgFU/jHxs+MoVs2HYM45mFeclzAPRn74/nw1mvJusXxgL/D52auvOHD2LETcawzNg2Y18Y0s7+bx0S/aGs0GhVdsrGxUWJIz3OOi3Kij2fzm2JG+r+5uVl0E+uQJDmfof+sk+CH9QzykjeEsG4sA+hC5INiMHic/dEc2zGGXOSZsdn8dxsmbr1g/9zYsDcuPVQc95ZJnjlQdDBkw9Lr9cpit9C2VXG4isHZdDPORv/y5cuxv7/fCIS828b9yEEEguLsLn20onbAyzPcT7LvJM/m83nJXFOl+MGQlWEOXjPI4x1CDp48hhzAcb8rSizItEf2fHt7O7a3t6PT6ZSqiIgoFQOz2axUGi0Wi9ja2ioOgxcz1dI7OzsxHA7jypUrcenSpSITVpiz2awE+ZYxyxPVRtkgZECD79oC9YgzRw1AKjuS8KgNxLNx53OcKpTCQyXvLkORs+uQJBpGyDJip8AykuXA/YYfjMvrzTzjuTg38BvnOCtFV+VYFr1GMcIGPOgLc2vn0nKLUrZyNmDVBnRVqlSp0u1GBwcH8ed//ucRceaY/t7v/V6Mx+OYz+fnQGooJ3CsTymOMbXZDwee+/v70ev1YjQalSDCtiIiGoGUg1Ls9enpaaPAhoAZn8JBgMdGQJ0DJ4/VNhK7lIMF2yL7gf48F5XkRJJBGQeytAXf//AP/7BR6U0AxI4WzxGBvisR8W09Vo8hB/8Ojt032+EM9ODXEQjSF8Cji3jmQBQ/IgfkjNtV0iYnxbg+F9Jl396+3GAwaMiZx0U7HpN9lAxCMJ7lchkf9VEf1ZArfufxOcYw332vQTz44P5lX5TPHBeYNy5GZHwUaQE4uQLZfMif8b/XVBsYaR8NGTDw5fHwtynPTVviKcd4mS/WcQaSuHe1WpUTNDw/GZhgzqlIhuzjEwseHx+f0w2eE+Y2+7ncA8jGbjOfCtLpdIo+o0raMUtO4FeqVOmRTe94xzsaNs7YwMbGRonhI5rF1wagIetB6yZ0S7ZlEWe72iJuFkEBHIPhuD0n33ISwwB4/j7bS9qxLZlMJkX/LRaLeN/73leSSQbwaTf7RrTLc3gmiRR4BuGj2S7lZJbtRxsQzfONf5EEzP6i7ZltWAbTnUACR3Li0rzAN4CfxmrtA1peFovFufnwtfY72nw9f2/8zjuasp22/+MTlxj3aDSK8XgcvV4vDg8PYzabFdyKUylsc1kj8HM6nRZf2ieOGXfyiVz0ibkzDgtuRjE8yZnhcFg+73a7ZYPAbDaLyWTSwJmdiCF55EIZ+9/4qd5h5gST595+eU6QeW4y/sY8Gvv3955v85jnIKP+O+9uZT6yT9yGIfoe35tlJRcTup+j0ajMzXp9M4+A70aMaz8+85Vx2wfkJDiPgTbAcbnXmz7gGfOJzrFuzBsyvAEE7NpFgtYJnqeLdiJ63bVhqPZd4Sd/O0lnDNhJOPpvvWY+OnkfEQ8ZP79lkmdtwRKJMgfQkMFyB1UOUBEoZ0MRBI55dCC5u7sbh4eH5wLxHFzlIMIK3wvNBs1VF4zLVS8bGxvR7/dL4OItkiTQHk7WtI0AJOzw0H8HlFYeDugzMJPngvEh6CxYP3O9XpcjA0l2obAXi0W5lh1RzM/x8XFsb2/H8fFx4yglknDexUUSkmfaOHAcE/JmgIx2vcgZSwYZzAs7S3ZsMs9sZJBDPwsj5wQhSUeMFQnkh0qAiz6iCkNL8EyFQt4hdpGTyW+UmBPGkI1gp9Mp1RHcR4LUlUfMk3ntZ1p52ojgGBgsYM6saC2vdo6zYvd96JQ2pV+pUqVKtxu1FUTg8No+mmwrc0LFSRm3n+2pbTK2/ODgoAQs+HtZ/9O+g0douTx/nJx9T3wR+mEAIfujtk35ez+vbReHbawDscyPDIhngMPATwZg5vN56SM+8mq1ivl8XhKI+Iir1apUXuMz2H47oZYpV1KbR/bZfV0G1LL/zH0OmuCDfRV4bF7iT9k3fKC+GiAyr3PRlP2kDLhxH2PNiRX7zOZPW+DJkeaObQxSGbTzWnGQDPFZXlPuQwZDLJsGCryekBH7Yhmky34effN6IJjPQIyBMX7TvgEpnmsgIoONbWvPwXbuf+bRRTGY16Z53Ra35bmzX+9rSZxxTFhb/GXwwXziu62trRiPx7G1tdWo+vfYGKuByFyZ3/bsSpUqPTLp/e9/fwMP8A/JM3ZW2B/AThvzyYRNMaCe/Sl8m2735s6n+++/P4bDYSnqoW8umsLOo9/AWNCPnCxgO+HXQdA3F+T3+/2SBOHVKrQFhgJ24/HZRuW+ZjzFtpLPvXsq+0f2D91+m0/BWL35wP6Ir+NZJycnBZ/EtlNUxjOw99mPsA+e7UZbwsK+nYtS4At+FOM0ZRzOc9EWpzC3yGeWudPT01KIt7GxEZcvXy7JqcFgUF75QzHLfD4vf4Pd8ttg/XQ6bRTy5TgJH8BJII5hBNt0sTvJM8Zkn59j8kimeQdOxFlyxbLHxgLiKheJgaG7Ddal1wz8N08zJpjjo7z7yT428ur/LYu0B+/sj1unOBnoOaDN7Cfnz/y514/la7ValdccDQaDktSxz8qcgIVa/2U59WeMywWirBn0DwnaTqdTknbetAE/tra2SiLPcaU3JVlXeOeiY3wXnCIzzC3JLsbtOXZ/aNe8z7Yi46/5fj6zr5+Tp2734eRPbpnkGeRBZoYi1P7NtQiXgXp2LTnQZKtqRLRmgbNwOzj2BFlBOCDlf08aytxnmuYx0bft7e2G0HmrNVXCHwjh2Nj58W8Hfj5Pl/usoCLOv9sDZwrhJSGDsLNAvBtrtVrF4eFh6cd8Pi8VpLSdwYKtra2iMGgXZ8bVp8ylnRjGyf0YG/gMYETl7Gw2a8hgVvLwi75aBphnlL/7YMOFEspGA0XPd56PrDweiNjajbPCvOD4UvGQ59sBdhtgBD0QCAjfMFiMkSMPIHjj4woM0HFvNmasY/fPSjobICdGvT4zUJR56+srVapU6Xam8Xgcj3vc4+Kd73xnRNy0Kc94xjPif/2v/9XQ0xlszTYz4uJdH21BhQMvnjGfz8sONCd+HHgZwMigOkSgQNHKcrksO/8pPOH5PgGgzUelvxCf5SON/PwMaNhPdFBjP8zFJPhDOSjP/bOfYp+PXTKugmXHP/6Z++kEk5/fZlfzZ7SPr9E295kMkORgyjbdPrjv9fFzXGvAIcuhQRme4TlqC9IdENOX7A96hxFttIENHqP7ln2RDL44/jGfzZu2Sn8nl/IzczLSfphjAvxI2nJ8QUEgFdgARPiZrhjOPLMfnPu6Xq9LHOe5N+8tN218dKzZBl7kGKCtT/ZFDZoaRGsDSeA1+ionQE9OThrv475IX2ZQlmuHw2GMx+Nz80pxo2NjnmlwiTY9z5UqVXrkE8XM6Grrd2i9Xpd3RVm3ZNDe96FTXLAU0TxK0PgJOzeOjo7KO6h8nLMTMHm3hpNs4Ee22dkX8v/um3fsZ1+AZ/F59o2yvbbf4zHwv30C+x7mud/N5OegwzNO5D4wBvsBtl/YZPA6J0OdHMEnzDYz+0bmkwuwjH3ZX3BxjXmfEw75b8tB/m07h7/hvnY6nSJb9Iui/NVqVZI19K/X65UkCX4NSQmK3h3vsGHDiSknRewLYZu3trZKUaDjGxJ5udiG+XR8Q+EVMY1fh5RtvnHZNh8KWbUc5AIgywF/W4azD23Zz/6n4w5kB/5wjf1Y89RJF68l+Op1wD2+nvsZFzzMfaV/w+GwvIOb2JFnWs84LgWTRE69lszLNsyaDTW9Xq/g314P7CJ0EQBFoORGuN5xZI5H8C3Nb+Sb5Bx5FicmnWS0rsnzleMXP4vvLtosYr65r/a/nWDl2oeaQLulkmdWZDYA2cg5KMygOsxigl0ljKF3AieiGeDQDy9yK18bGSsPnpOrbTJQgKDm3TIRNwPrfr9fnkG/WCxU3Xyg773yzqK24NDjyv1jrBZYG+8MGqFkaZ/FgYHp9Xqxt7cXs9ks+v1+jEajAti4Hdo6OjoqCS4bSWfdAQ1yIoY5JNAej8clmTSdTst2bGg2m5WKjwyCZEPthJn5Zx7ZcDMeOy4Ac8iwgQnLjitT2gCmTN1ut1RC+IgWKhZciept3X4Oa4/fF4FwGaSz8TMPqJ6JaFZbcUawDXu/34/5fF7mNBsZHIGIaBgh6wDmiDZWq1VjDRuM8b0GSvL/lSpVqnS70q/8yq/E53zO58SNGzdiOp3GR3/0R8drX/vakoBpS45d5LBmIMZ2v+0+gzQRzfd2EbzgrGfA2HasrW1X+mLX/M5WguVOp1MA++zDtQHYBj/MnzY7Tv/sT16UTLBddECJ75BB8IuAIWzufD6P7e3tEmTTBkeGY8sfaD7wIdp2HXlnTFvA7OC8LQnoxFIGnNwX2uQa+2+cSOA5cGKUZ9hndUCd/QACVccq9jl9v+fHIEzmkwEwf+ff2Vds42Oe+wwuOZ5xAO02vPsq+4PwnDYBiODTcDhs9StZTwaMLNsee+a9E10UuFHp7T46aHYCkftoyzwyfz1X5mebv5j9RO6zDPs6gxsZcPS6WSwWMZlMGkentlEGdQAAOZ7RgBr6i+f5KCnm0f1x/4fDYevzK1Wq9MgkdLdtb8RZfJ+xmOy/+T70LrYmF7JkewuhI8FobMMimruT+v1+Qx/Sp16v1ziNyAkZ9GMGt3PyICIatt6+gO0EeIqxP/MTP8r6ts0PzJiKMQx8FvOrjS/ZZoOb2B8kMZrvwU+JiAZ+xJg46cF+jHnjo97oq/uZ8cWM+2a+Ga8xf8xDy1suVs+bK3gOyRTwMH8O3grfaBsf3fiWfR37McvlMsbjcbH7yF+Ok0iy8exer1feRWweREQjOcOGD9pxcotdWovFoux+s3/iZAfJD/DTtsRY9rXNX69lx1j2i5gX5BQ5sSz7b8sQOsO6h/ay/DBO7rWPyv/MgU+Au8iXz+OIiFJYyWtxNjY2GklU84Xx8Ooh2jD2a9myTDCP1jckwjiVwDIdcfY+YHTRanWzQJL4zjzKWKdx54xLW0c7zs4+tttCPv28rPfaYmJ/Bj/8eb6nzW60xWqPyOQZityTZoXConbSy0fWwBQYlN+dhOL0lkMYOp1Oy/05iWcljdC1KTT6xH024BYsJxNyYmK9XpdqAfd7sVjEcDgsRxU9XCAfJ8EL0kkvBN1OkJVjDiqzU5QDRvjqFyYyN+wS4//hcFhehs0izNuBF4tF40XZGDq/tJBsuBWkg16UGVvvj46OyrznQNgvIkeOzA/aNGWAwXzGQaHyOAfUNgxUv2OEDe647Qcjv1TUzinJs+xU5b+RG8tqHnN2gJEJXnaKfC0Wi/IuOeYOJ9XvXcugGA6JjQL6AMNgR9VVHU7eOilrcM9zmUER00NVuJUqVar0SKbFYhGvec1rYmdnJ3q9XrzqVa9qFC9YX18EhLQ5uQapM+jgtuzYc+3h4WFEROzu7jYCEttN7Ib1uwGE/Gw/j+RRv98vnxPAeowONO0PeOw5OPP4badNDhxyYBrRrIxuCzbMW/qZ5+n09LScbGC/cL1el3fO2qbnttw3AyX2GTx2fE58HNoyP/Ocm89ZNnLCwoFuTmQAhFDB7aAt+/SMx769ZcY+Zk5ymAcOPvNzPP85ZrHvelHSMMtY5qOTJ20Vy+Zf9m8dzGZwBPLaAvTgSHTz3td7Ps0fPnOhYRuPZrNZLBaLBm+yHkHmPI/Ekr428y/7g22ft82dn2twCvIznTwDzCHe8JFQnmtTXs+M1e9DATSG5xFnx1wafMpxhp/R6dysyjfIVKlSpUc+WfdnvZATaBHndyHZFvO/bb2/8zMNlnON33WGTuv3+6UtdCc2FpyPNtm5k+0uCSlwJvAn73gAs/J7yqx/DZRnXMd2/6LidWOFttnmu/0Z/w0Z28gJKCcQbAMzL7JNNtmPNi7jNvzbO1/yEYn876PoeIZ5Zvuc7Wz2s/jt73NxEvgTPHCRPHMDPmUegAeSLETWeIZtPYVn7rcLtz0X9gM6nU7DN8uFgBS8873XDs9m5xOyPplMypGjJFi8+aLb7ZbiIx+3Z9+H+csJqTZ/y/5xXgPIN5/lxJVPKrPPaGwUnpycnBRets1x9lUyZk0/kWXG4xPZkGH6YuwUGaI4CVnhOuu7brfb2NHHHMEDJ1sty1zPnIMd2yfmFDHmz0WX5rnlhPG4SNGxk+c54iyh6PjYuxzRibYVyIvnxXFMjl3MQ8uW9V32vS+Kk6y3cgKO8TwUumWSZzk4QPFyPjGT3QbOOJtvRexKx4h2IXAgjVB6gnJw50oVX+MJc//8TAtsWwDt4DQLAWfe0tbR0dE543YRDYfDuHz5cqOywoE+P+6TjbiTaXYSLpo3G1Uyz3nLN0cJorDZFm0+ZEMVcfbyT17KyM61fr8f73//+8sONb9E0cr95OSkBN1Q3k3I+Jw4y3Pk8RtYyc9Dpuy0ZeWYK4S8g84KLsvWAxGyxrvlmAMfQ+V5ajMs7q+Dc36jRO00drvd2N7eLsabse3s7DTAgX6/H+PxuPTFcmPly/rhuRhP/w3wYP5ZebPFmWoM95d5uIgyOFapUqVKtzOt1zfP1b9x40bxGy6qoLXDDNln8PXZabfezQG99XJElOPNsPsUVhhM8TP9mf2aDH7b/hEwDAaDco130rt/9Nc7zNsSSm221fzxszP5mdjPnNjCZzWIkUF38xce4lcTsPZ6vQIK5PnLiQ+/LwM7m4uyoDznbQlT+pn5nPnkRERbQiUDgU4g4Kc5SLPfwf/+3DJI8OuTLhiPC8GYN3xC2jYPDcw5IU3b2R/Jvqn9T689B6T01SCOfUw+zydBWH5dFEhhGPzJ73M2CAO/3a9cOe0kcObfarWK2WxWQKEHkucMrrTNkXlmMMiyYP5leaNdvs/+JOACMa2Dd2TI8QK7QH1Ef5sOzP9vbNx8FwqxlQEi++usa8tMBi/Mb6qrrfcqVar0yCd0o3c1WO9n/CfrX4D8NhuV74GMSdiOO+lvABb74iLnbAe73ZtH2OVEBeC0gWn0pDGJiCinG9lPzAkF4ye2J2B3kHd3wAPwTnw0J2yMEdm3yP6k7buxvZyUwRabn95ZlYuZ4LN9JfsojMV+Cv8zb2CPTlZxnUFu2+dut/keWfMz46Vuw/JmX42icTC22WwW3W63HNkIZtiWJMryT9/gl8dt/4GkLwkO+xGWEY8xrwXkG38GzIs+5RMCVqtVSfY6WcZ4/Dz8POIE7/aCVxnPyzJnTNzJT/PR6wVc2Niwk1KM0z4jMmi/bDqdNsbJ38Zhma+8ecQxi5+X70NWKZ4kxrSMgS36SPL8ri/Lq7FKy69jF+Y561DWDc/a2tqKS5cuxdHRUUnyO0/hZLp9WZ5hnejfnjPnUYyl+xh6xwTwz74wY3Ec1WZD2vIqbXbmoiQY/POawO/12nswumWSZw4eWeBMDJPnpJKvj4hzE0Kbw+GwIUAoCir6qFzs9XplYXhnVMT5StQsdFasrlhA6BFEL6C2oM6CwktMuZZnOgGyt7f3oFnU0WgUV65cKYkKdiHl4/Qs2DmQyqAOyY2s8PP80Ff43e/3y0swqWTc3Nwsi562c/DrXWCr1SpGo1EMh8OiPKgWGo/HRYFlBYVxYOebnQlXuLJgF4tFI3nl+bFc+LM2RQCR/MyGOFcBZ6cRebMherDkWafTiUuXLsXjHve4uPPOO0vQi2PGy8Pze888x1neM3jC3zbkjJOt5gYM+NzOJnJugDGiWSlhnuW+oSDt9GajyDU4SD6Swc6PnZk20LZSpUqVKp2RARI75g6yItoTItl2mtqKGXyP7Y/1/mKxiMPDw9jd3S3f+V0U1uvYmAxc02cDzA4OsBuAIYAOtjluy75oDhhszz2mDEBlHrb5vd55BjngsX/cxlv7r8fHxwVUsP1l950rurNPCG/5zEFbBkza2jDvsm/laxxUX5TQwO/wHOTAkLnDf7EfkmUjJ1fMP673nAH4GVTzu0qQ5bZkjp9H37rdbgFCcrKrbW04UHa/uNbPMODhcTmxlvvnJCJ+HnLgtWQ5YN3lH8ck9MmyYl2zXC7LcYZta9tkOfPOKs8lvHKclvmW/f8MNvAZ/eN+9CB+qucEfrlNQLKjo6PGes3r1n1crW6+z2J3d7cclelr8HOJjSLOTmfJR6jn5DuvCwA8q1Sp0u1BOSZv8/cMOGcfJeIs4ZITGzlBkJMftheO4613+SxjEPhmGY8B60Mf58QUxPuAjGdxPz4F7S8Wi3MFvh4DCRvrcfR6trngYdhcdpSwE5n7cx9st7INtw3LfbR/A9/4zD6cfS0wSIikWFtxGn317h58IBeSMR7zzW3RLycQs/9D8so+l2Uw2y77YCSaIiImk0l0u93Y2dkpeBW2MSdUeQafW7ay7HiO7G/Qf9p3csgyA5+5PxfiOUEIfjmdThtryfJn7Jq1Q9u5WMkyRz/9vWU+r2s+R262trZiOByWd7mRLEP2fb+TlMwj7cJr47ng9uzYJ5GWsWXkhDZ4vtclsY/7yLXGbjuds6P9uSbLKv10PGaioB9yUVverLNeN4+yhK+r1SrG43F5hQHjQW8MBoMim9bX9Ml4KLxHnkgsR0Tjfd/IiXU37+JzUdvW1lZ5L5ux3awnkJWs67NsgePzt98jmOc6yydz81DolkmeQZ5YBJOJt9JEYSFcJL0I3nKbFnoHfwABCB2K2ttDs1H3u5lYnNkAcz0CT/+ZZFd8kNhxoB5x/l1LtMGLLDc3N+P69euNRJ+fPRgMyrn3jM2/aSODNDlIthLwZzYgfm7E2cLY3NyMyWRSFhTHL3r3E2N1htu74DJvURgO7pfL5bljheiDt+WiUFicvs4gAH2CR3xuoMuJUI+fz7nWY2LhZ2VgRWJAMFdhMEcGDEybm5vxmMc8Ju6+++7Y3d0t8s1c+B1oJM7szPg52Xn15/6Nsua63d3dWK9vVtwQsAMKWAYj4lwlLvzIDilGL4MltMHc8Sy+9xGenhPkKpOde6+97GhWqlSp0u1I1p/4WujHi5I8/h4b6QDToPJFz7QfZb3s9o+OjqLbvVlI44Ir22478Ng4f+62CTC41gnCiJsBBC8Mt/92EehNHzK4k/0m2ymDIva1MgjTVqHr5/K/j/TAduIfUEhD9SI+A8FffidAPknBAIH5nPtw0VgyH8wby4aL0mjbfpfvyYGp58Xgjf2Y7Ls7uMxJtOwXZ3/QySmDTZZ9kkfmVSb4jf/o+ea5GVQyCJN5mvuaE0LMT+4LcpLnhGtzRbRBLMtpbhdfkwRjXnfEg4eHh40qeT/D/bGvngPnPEe+x8BSTrY5yHcsCv9o14kxPvf/ORnHPYA+nsesr2iD/o5Go5I487Xwl3gnv9/Mfr9jY8/HYDA4l6SuVKnSI5/s30Wc31XGNeAaWY+asI2O4SOadt/+jvWN/c35fF7evegEmvvne/Dr6APPN0gMeI2PYx3LtcfHx7FYLBq+DfYFjDAn+ijItz7mXvPIPiXf41e5WN6JOhM6P/uc5quTU/ZZGKeL/m3z6CsYmBMEBvbbEqe034aN+jn2l80/z4HH53E4Gck1GXx38sX/w7s2X+vw8DCm02njnWPYUHwU5CX7b3mdDAaDkjxwP104n2WBZ3nXlH1SxpP9UE7g8NiNkXqt8Az6Yh8lJwONgfM845eQ+QAuz8lP29vbjU0T4Oyes9weMpDllXGxvjj5wH6gj6MEh3SCjfHbD/KuTMeF9q89btpCLvLcZfl3TAG/HE/wWY41jRtzVK1xT3hIgtKxgcdp7DQn36wvec8f99snRs5yjOS1nO0E47qI3FaOY/0M+JA3yLjPtGU8mLYsIw9Gt0zyzMzxBFyUnImIRvUFgkRQnQEInsH17MbpdrtxeHhYFjiVt+z82tzcLIuQReUF3+/3y/n0nlCPy8qSvubj+KAc+DuIW61WDeW9s7MT6/U6rl+/XqplEJx+vx+j0agcaUgQxNZTFJuTK06ktPE7kwGSNuNGhSjKzQ7HfD4/F6C7QqRNYRK0kwnnXWkoN5JCyIYdP57prbV+Fvym7+6Xg3nLpJUd99sJsEyjpNxO23VW0rlSAWPBNXbmcLTuvvvueMxjHhPb29sNg8SOQ6pI4XXegWjn0c5Almn6S2LWip72XcGFg4mcrdfrAtAZJIg4O8/cBtJGYrVaFUVppzdX91KNZP1Bv0xeX772IpCjUqVKlW5XeqAEmcFkJ1TaHOfseHOtvzc52M7fuw8HBwfR6/Xi8uXLjeAk+1sGEfy3fa4M6vBcbJFtpH2LDGDbxzAwkYOMtkRHJicV6Kd57XG6kjU/3+PEP3QgO5vNys4TPiMYzaAE/bLN9DOx8x5TBjK4NoMQBsIc0MGvnLjNflmWE4/b/gTt2Ad2/8xX88++r/0P/s+FT06iAEjliuMMILp9gKyIsyp5+1Zcl/tCH2gbGc5y0cZ3+rC5uVliJ0AJ5t4+LLJg4MW7nuwT03ZeU3n9804+XnxvyoCd16plpo2/Dq7NK+Qzg3N57VgePLc80wk7/vd9yN/x8XFMJpNy7GlbZa+BUU6RGI/HjSJI1jDFnSTj7N8ul2evRGiTr9VqVeJDx6uVKlW6vSgnG5zwMqjP75zEsV71dxk4zgkQ+13ZB7BONpbjZ1jfrdfrAp5HnOFT2Bz7ImAJ9lUojsL+8Wx2gbCrzc+13XQiKxck88MOF1/PuHq9XgyHw/LueB/hZ16YB7Zh8CB/lnf72Je07Ys428GV56LNXnuO8On4H1tlm2bfyjJgbIh7jMHRpufS43WfFovFuROzANMz37kfH5g5Z2xOYtImvrFxaXbHWxa5n9+5EMnFR/mkAvPdGDlj8fOR2bxW7NMhP/QFXyT7b/YxmR/7Ek6UbW9vl3eu8k4wb0zxHOGT+b1ZXiv4Ln59Ez/wZr1eF+yXNRpxlrTk3vV6XfwsvzPN+i2/dy3vCqPP4K8k4bL8w1fmxxsE+Mx5BPupjiv8WUQUHnOEPn2mXxEROzs7JYHq4/PxGR0jWh7oC/Ed+LKTuOhRfpPM4n8XtWV9kwsP6VdOLhoDz7Gk17l1Ru67dUW+/qHiubdU8iziLGjxziSUm5XHYDAojCLw9TuuIqKhBKxk1+uz5A3PHI/H0e12YzabRcTZsT0kAiyM3uK6Xq/LMYKHh4eNnWpeQIzBgQjBFJQVN8ksBKYt0zwYDOLy5csREeUF3STyOKfeR/P5fSAQfzuBaAWX5ygH5c6wswg3NzcbL/MmEeKKBisuDI8dAit0O2VW5kdHRxERMR6PYz6flwQRSUMU82p19mJDb9G1YfH4rCTsXHkRZ5ABajMwTgT1er2iwL0V2kep2BGzrNhZ5ChO5mN7ezt2dnYK/1yp4CpyAxdO6FkRcQ3jgS8GRqnu9/wgt97dCFH1YR6wDl3B7rF3u93GS3zNGzuYVojwiPWSHZc2wCSDIlnBtn1WqVKlSrcbYX9dfGJ/IAewDpT5zGR9b8qObhsYw//+jKKdnZ2d2Nraauzy53v3MwdQ/r8tkWG/0UkPbJoBGtpgbBms9md57G3/+3P7Ag6oc1/zu73Ma/xRjhYySL5a3XynAIEwPkgbSJYrzw2wZVubwRaPLQNlJo+RvtvvwPdwH+y3tfE5+7Q+FjFX3buYCf/CvkYO2vIYud/rxmP1ODLQYbCGPuZ7KRyzn2bAx33xWjPgwDUOmP1eP5KsLlTKMoZ/B5hjn4sfeJRjB3xu85nddnt7e7G/v98I/PO6cqzH+NvG/kC8MG+d+LKes5y6Pa6135l99wyurtc3QR2OosyBfk6cbWxsxGAwiPF4XE5Bybp4Pp+3nrDB95anHIt1Op0yz8fHx2Xn6XQ6jUqVKt1eZLDVesI2Nf+2f9OGj1g/Y7/sd7jYxnbcyS50G/hWRLQWR/sz2nYSBT8Q/8c+DmA7YDWFIzwbDIX7OELMCRCekX2R7D9lvgIGg6OA4QyHw/L+NWxltvnwLiLO+TG22/DDfvBF9tq20jvgsS/4ofkIPL+fDN57HnlGG7/sC7kPlhnvAMt203befMlYF215XrmP+cz+qTErfnsO7CfxHmH6RELHPHPfkCnG76M/V6tVIxFlf4NnkyjOxfD2dbL/RP/x+Syj9qsYq3HE4XAY29vbsb29XXBG7mfMYOusDebOxffGF+17cboa824M3fqAa5gvyxr3so7aCrCy7FA8BDYLX8HY4R3j8lqJiEbsSUzR6XTOvUs4x585/nGb9JU+4TNGRCPR6/wC/QJLxT+33KDv4BkymDFZ6170nfVQtgVeX9ZtXvfWM17/Xk/2md3nLP/Mkdcz+tLXPRjdMsmziLOFEXE2SYDlCDLBWM6I5+pN2oNhLAIMIYtuY2Mjdnd3I+KsesQv+rNhXa1WpQrXgs21ly5ditlsVl4Q2eZotIEwbf87oIUftEmGl8X4uMc9LkajUUREeb8X44g4S27lo2lssOGFDZ6/ywa5DeTIgu2j9zqdTuPcZi8o+smiZdcffeIentHr9WI+n8d0Oo3ZbBbr9bok0ajk4N1qEVESVTgiVkQ20LSPImCeDRpZ2eVAOn/m620cbaQAHng2RpZxmn88g6M4Pb+XL1+O0WhUErg8l23S3W63BMQ2enYqPC+ee8tkp9Np8BYZsIJl3niO1xxOF/PNUY6WH/rAOud/nBSuyU4oyn4+nzcSceaf54S+5mMj7cRn2ahUqVKlSmcFJK5SNMCSQZOI88fz+bOI8ztzsk+RfS/6YcJOHBwclMSQHfOcyDNI47658MNOPoR/aj+03+833i3EuGwfbYsejDKokXeimxywtQUxuQ1AB/wC88Z2cjKZNI5lNt9oi+Nt2ubb4A2ftdlhg/dc50SCY4OcBLTv7EDUoEvmuYEZ2iJQRm58GkLmvWXSvkJb/+lLDvacCMxzmZMtfI7flMG+HDtxveXWvGEcbXFXli388ny8UyaACcdOFLV5frzm/AzPTbfbLetrOp3G/v5+Q8dkHcJ48+feHZHXYPb785gzgOf55BrrK57JnOXdY35/M7LGUUvmk4FfP3traytGo1GMRqPyOgPPHcCOn5lliNjSOs9zx7MpdJvNZgV8qFSp0u1DD5YEs/6AbBd9ra+3zvLuKftotqtuC0A0A9XsEjFomu0BoPvx8XEp8HWSI7+jdDgcFn/KCTcXPpP8wFdgxwZ2Lu/KzpSxItsksJvFYlFO+Vmv141Xx5ycnBTMI9ui7GPlYn3vMuP7PEbbQMsAfoWLrEmi+IQr45jMNYXsJycnsVgsypGUBvwtI/aF8vic7MAnNT5snx7bl3FPcCbu4Wg4rp1Op2VzgnHcHK/wP1gnO8jxtZEj+OrEm2XHWKFxSPw/NoYwT05eMHZjjp5z1pD9QvgH/y0rOZ4DO+R0s+3t7RgMBtHv90tSDyIJ1+Y/OWFmGSLhxFr1OjMmbL6RjGIu22KGvMPJcRXzYn8J35WkH2Ng92eOY9rGl9dkjkNYP/DfBYEZb3bcZv3oTSH297vdbkMnsjacaDP/iZN9tLx33vmZ+IIuonMBHWS59bqxjLTxh7a9xvPf5nH233OMn33zh0K3VPKMBcPkW3lZefu9RiyuPCHcs1wuW7cmZ0cgG3wmGiHmOVQyZ4WOYdzd3Y3BYBBHR0cxn8/PGbHcJovWGfe25A6JP5QHyvHy5cuxu7tbeIDSRhlxbIcNN6CPA10Hu06meE68kLMAug2frZoTaE6M0BY/7n/epovBWC6Xsb+/X7bzUpGwWq0a1QCDwaBUQZBFx+GwE2ClagXVBm7ZGUNOHBy38cMVSHZCXPlgsIK27VB6zjBaPPvk5CS2t7fj2rVrsbm5GePxOA4PD0sA7a29rgbxnPo3Pxh684lEcz7vmetsvDMAAy/W67Ot8D4SlWoJr40MCtmoRMQ5RxCe2ul2G7ly3A6BDavn0/Oa57hSpUqVbjcyAGIdih5F7+dklO+PaB7h05bYijir/Gy7l3ZzYorAdLFYlMQP/oODMgPKbtPjcZBl+xERpfCDz7Epg8Gg+Cc5MMzBU7aRObCyD0CgdVHigrlwgUrbM9oC4ZyM4nlce3R0VHwQAlXzjL7TnvvrNu332R812f/NAWcGUXx/BtPyXDoodkKNew3IkeTAL3EfPXfMMTFARDPo87ybr/x2lbyrVB3kOhmKH48vZR7lOTavfS28cwGV+etA0wAb8+p3dbitTqfTOFY8z6n5Drl6nfXohN56vY7pdBoHBwfFn3Ms47GhKzy3Od6y75jljv9zgN0WL1h3OCZ1O3nXl8Eij5/EWSb4zikinKZB4szySoEaffRPjn3hn3c18L5oJ7rX63Xs7++XOJaCuUqVKj3yKfsfBpbBdowBcE+2exnY5DtwkAzgt/l1OWni4+l8HCP+j31Rg7HYIAoPfA1Jl4hmoVG3e/Mduuh59DFjMFhtbMaYCmP27/wM84bv247NRWd3u92ik51EIxFl/waM0ZsRcuIn+xF+FxT8Mw/Bkcbjcezu7sbOzk6xTWCLbTgaRSNOzpyensZisSjJNL+nc7FYNDYOZD65kBq+2QfLPgDXZJ8Ssv/gd1ednJw0ituJKeCffQr8ZJ5LUV22r97h5viDxKPHmhN/3iRhu+5T0+yDtyVf4JWxdHxReEtfSTYPh8NyJKOTpCRb8u67NtmifYqjzHMfJ40M5nVqP9lYoxN9Wd7hldvNOYROp1MSZmDuPJtNKy4Y9Bwa72ZumFMf02m/2sl69J/jYmOXjt02Ns7eS215Ojk5KafNEe9ubW2VZzNX6/W6YOeDwaCxttqw7bYkMZuNsq/phJp1UE6itcV5/O8Y036u14rtReaf9Smf51MtHoxuqeSZt3M6iLUiyiALu6nIxHvCHFhZ4QP+e8E4IQZlw8dRkQ70MniwWq1KgHNwcBAHBwfnAkYrrogzQ+trXFmAEeXF9BERo9Eo7rzzzlKNYmfElZbj8ThOT09LYsm7ePKLueG/K2yc7LIhzcfj5ORYdqZywA+hCBgDisuZbV7e6XfLrVZnuwmRE1dcsN0e/vX7/dje3m4YwqwsvKjyFlzLHuOz8rWS4HrGZwDJRoH7XBmPc9btdhs7JHd2dhqgGNcvl8uSsGVOuc5OEgqUOaUv3n2WK6PsjFDtCm/hD4bNIMpyuWxULGTFH3GzqnU8HpdrZ7NZeccCa/OBFCRyxjxyfCV8wTBQXQFvDGjkceb1b6Ob76lUqVKl25EMzBtc8XcGmyMe+FifTLaj9iNM+bm06UTQcnnz+EZsv6v63JeLKpbbAvLslNun8u50doa7KtR2l985kdhmfzPZv6AftOG+50IR+9XYfoJe+zRthSQnJydxeHgYEc2CHCdN8rtKbTfbEjMeoxMrOSlLHxwYZ/7Y9hvMMl8dZDtot/9mcMi+vo9rz8/M48v9NphjYM/XO0YwEJCfA4/zMT7mIUmxHHDSFvEOid82cIv2DDDCq4sKzIit8Ol4btu9+HmWY/ODuZvP57G/v994z16On7IP6nVq4IJn0Fc/02sXnrI+c5W2fVH7jOgD2uO5+Kh+DgmvyWQSk8nkQr2I/8p7q4n33A7xnQHCPPeWL6+xXq/XeCc2a73b7cbR0VFMp9PodrsFYKlUqdLtQdnnMh5lyoUa+X7r6myTbRttv7KvlHE8bBI6C1wCfWtd6MQCuFG/32+8Nyj7J951PJvN4uTkpBQOHx0dld0eAOzsSjLOYF84F0PDB3+WMcCI8+/BchIl4uykpcFgEMPhMMbjcXkXE5iY+dvmh9K/jFUZ84qIUlzBaUaj0agkzHjdC74k7bb5OiQD7adFRGOXH3O8XC5LUm29XpdCDtox7mcb692EOSHB2O37WR5JpiAHjMX+omXE/ki32y34pJ/jAisXxWCr8S83NzdjOp028GXuQa7sc+SkA333LirzIPsrXrd5hxe8omiHHWY5nlivz95ZZjm2T5/lgX6yTqw36AcF9m16Adnx0eBcxyYT5IP4xDzzpg7mYjKZFHkDO0bezTfmgr55fMwd8mFe5/e6ta35HEd4fpHB2WzWeO8ieoxY1LorIsouW3jttT6dTosOdWLY5A0o9isZl38T8zpR5rFd9FmOTZlL89288fpyrOt1aj3kPj/UExRuueSZAwImEyE8Pj5uJGD8wj0yzGZYxPktfwDrrpjJAAYLjkVCFbEz8iwaFqmBCq69du1abG9vx40bNxrvWOM62mk7f9VCQaDf7/fLOfckGnI1NEFQPo91PB6XZAxjs/OB4nZyLTs97rODSYwmbbkyIAu8jQzXoYhY3CcnJ3FwcFCy/JPJpCTNLA85O52NRafTKe+joyLGSZmjo6NSAZOP6szt57HwTFdmwDfLX8SZkcWgGbDgt42rDTvKm+sMyK3X6+LQeK6cMOIaPvMcu5+Mz8qt1+uVHXwYkHyGb1ugbsCCPvgdhVw/n88b71IBsOJ+eNoGIvJcKr2QG5LtNtSWnVzNY7Ij7+fkMVaqVKnS7UrYKZPtWU4q5GtoI4P/mS5KTmAX830OAP2cvb29cha8jzSLaALtOYHFOG0rHWxxjZMyfi7+LH6r7aqDKvuS9i0ionGfv/O1bSCNn2GQwkG5/Tz7ttyTgQUKmdbr5i6U9fpmFaOrOc1PA0XZjrry1r9ptw2Ua/MHmEuP24FqTvLgj3nHkP0DxwL2AfI8wvcsn4477Fsx577OfLZM0KcM8kREAezME9p18tMAWAZN2sC6LGO0aZ/T7Zin+F1UwDs2o5KX/jmhBa+4nphgPp/HjRs3ynsaHIMZUHDgbEDKspWBHY/FgAJybl7wtyu0MyDoeTJf8vf0kaSgTyex/mE3GO/YIb6KiFJgx9+OGyzPeQeqx8M9m5ubJRFLfHh6ehqHh4fnTjqp/m+lSrcXZSA1olm8k0HgnBCybbS+d0FFxoayv+MEkosuDBLjx2AbaC+Dz951y7Nd6OMEVafTaRQQ8Nn29nZEREyn00YRCn22HYRH2QfJ4K/tEIXk2Ek/G3wD3Wx/FP6A2Rjb8u+cQLG/0u3e3M1GUQV9ATsbDocNzImxg99h27CX3l3Gc1w0k30I5srJQuzPcrmM4XDY8F84rpK5XywWMZ1OzyUOLbv2GYzX0qe2HV9cTxLBfojxTo8F/JpxYrf7/X4p7u73+w2/guPPfYKY8Uzawkdik4C/97rz+LN/glyRdHHhIa9SIRHHj3dgmTdcz5rzbjfPo/0wb2CBr+a7n2O/MMsG4+X5+V2vrGPHRhD4IMdSc9/GxkbxhyKibNxgXkmWO35jrKwDfGbWp4s3vaPRCSPrPute607zCf+O1zZFRCP5CnEyAad+DYfDxml1FBNsbW2VGNk6yHJlGSdBiQ4n0e214HtzLGS/mM8to/xvPpDz8Dpm12NbbGhePtRdZxG3UPIsLy4Unw2HAQMrJq53G22gy3q9jslkEt3uzZ1Ik8mksdBtODGyrmo0KGHlxOdWSlR+DIfDuPvuu2MymcTe3l7Z6kj/HOxHnK8CYaFQHXjlypXCGzsMTlYYjIEH3W63BGJOzNhYkUBzgguD3uYwsfhdEZAXCPflyk47CU6aohzppwErxsLv7KRZwQ6Hw9jd3Y0rV64URdHr9cruM+7lHWG+nwXtgNTGNi98xpcVRjZeAAnMGY4g3+HQoaCHw2HhEd/RJwzWaDQq33u+2GnGcY35haQ8k2s8t51Op2zFZ2syzgjf5+3zBh8iolEhhEEziMFWfI4cZZ0DNFopZjDOf89ms0YiD6KSBMfLIJLnLzscXh+mtiCiUqVKlW43yv6V9TJ+if0xKCdj+CyieTIAn7WBtRkUoT+2Y26T4GBvby8e9ahHxdbWVrExBiacNKB/tmkZFLJd8fX00UkY23YoBwo+BcEBw4OBUPYX7btGNANvfBVX5Too9v15Pg3SsIsmV4v7uJIMQBmYaXuG5zoDBDkRlXkAOTa4yGeE8FeZM7/02jJgHhCQAhaZJ/ZR3EfLlmXD/rl9eT/PsmB5ybxxXJKDTtrPMuN5YU4dwPp5JHssf21rpS3oR+bafGgfF+lr4evx8XFJLplv9qdzQOzEGT5yTqDluc3VtB4Tbed+2k/k3vxj0CSDlycnJ+VYfz8LeSTRzy6ziCjHcZmII/J6MKjl+Nb6FQBoNBpFr9crQNFisYi9vb3GXOSdd5UqVbr96CJg0mT7Y9/QfomxPIPeEedPOvLRkLkwys/H78D3zPYWQNzAaxtGZmwEwLnbvXlsI8VBvV4vRqNRoyC+7XcuvMp+iflkzMt2Ev1ve+xxQTmJQEF6xJl9dFGNMU3jXewo8/tNO51OKbDgvVbmP+8so3jZ9sJ+pz8zwN5mf+3TYpva/D7vxqKf3MOzcrFJtuX84NtZprOvxBwa43Sy0wXiPqGJe3xMsv1w94OT0ShssTx548Dp6c0jnylcY47skziOcTKWsdnvh+8cCY08sP68q4j55Pt8JCXy6U0qll1f57lgLvFtOIXM/ePYyOFw2Ej0wuf1el0SqG1rDnkgQekkq58/Go3KdcjN1tZWjMfjMt+O8/Dv/JP9/byphfuNj1uG2uId47yj0ShOTk6KPvK6drGV8XbmkfvznLFZh/fveb0sl8vG2kLmeaZ1jNeOE8xtMUSOcyH/b5/W92Y95vFY/1iOHgrdMskzlJwTJuy6wgg5CM1H2LUB4k4qrNc3t/xiQNl1FBGlmiMH8DbgCArPjmgev+hknwGc4+PjGI1GcfXq1RiPx3F0dFSqKT3pNvA5aPY5pSjOnFnPAb2NrgNOFCwVCySs+CGRYQAmJ8PsGGWHxs6HnROMgB2oXq8XOzs756o4bFyoOqXPTlZizJkb/ifRuLOzE7u7u0WB+0hD5IKt4igEJ8zopxclc+tg3InDrOwMCvC5XyLapkg4W9jPxkAhaxgMG2/kx0cZkDhjPnxMowEa7tve3o7xeBzj8Th6vV55WTj9Y51GNF8WyXdUQ3tMNvw8OzvDNiJUPziBtl7frHa/CFxlXUAGRrPiRM7ssBjwyIYqO66VKlWqdLsS+jI757b32CgfwQvZGYayTs+6NoMPbSB41ttufzabxdHRUeP4YyfEsE326Wy7IqLhh/IM2wfac7BqP8D/w4dcjGX/ifvaAgsnQRyQOLln25aDaX7bd+G5uS85KbBe30xIcoyjQRaAeMtBnjMnimxzLSPmicfelnizf+brs0wYkGl7roM885dr8dntJyM7GZSxv9iWJMptG1y0z5fHaZlzMGkAhGuRcd+Xq0izH2pewA+vFVObX+QiPoMSXGdZ8Hog5sBXv3HjRtmt5oKxNv7SVvbpct/MIz7PMaTXjIFG5ojffo5jwzzHuc/z+TwODw/LS+jpF4WSAELEqcRo+Rh6dKv7Tt+8RjIwBn+JkTqdTnlHznQ6jcPDw4YOpP08xkqVKt2+ZL8pnziUfRR0iX+yvba9c9LJdphTauxn+YQq72Sx/kYn+r1Tfla2o9zDThMSRj5WkBOB8G9IdtDntv5DttfmF99loNm+NdgUxVt8n+0W2JyTatn++npwJMbLM41JwRf6B3COXfA7hbOdx+cG+zKfDHLb1tgntS3NfhEnCxkHZQzYThdzG2f0CRa2k5ZT+7PZh3Aio9vtlten2AfAf+r3+0WGlstlI0nlnWjIGsdxetfQwcFBSWo4OQSum/Fx+z8uUs9JK+8sA2tFru0LrlarciS9/Tt4Y5lhfToZljcZeN7BGilWwzd1G47Z+v1+XL16NXZ3d2M8HsdwOCzvhj0+Pm4kdYgFMhZIYow16JOrfC885rhEr2nWJXIGnpzlyvhr9ve9DnycpfUAc8h3xnI7nZsbHjh60mvEp45ZDk5OTopO5Bnolvl8XuTYrw/KuQfWpdcnZD5Z7ryWaCPHY9ZNXrNtvjef2X/3D30xjx8K3TLJs4jzWUg+s/JdrVZFURj0sMKKiHOT5MQcCxPjZ0OWjwKMiLJrBqWPgrHRpd/Hx8eNbD0GJuLmkYqj0SjG43Hs7e3FdDotCgMlynM9JghFvLGx0RDirOzdf4M5JFxciYhRoerCP1bG8NE/nqe8IOwQeD5cDYqBQCHDaxJiGNrV6uY5r040XgSk0JeNjY1yDjM8YLs7R0JGRAlY2QJN+3YeXAnguUFm7DT6OtrgOjsJfpGlFQwVPzY8PjIHJzLz20bbPDB/7JQydgw1STN4ERElwO92uwU4alNWBqxsmFxtbJlk/lgbJycnJYlKRY2PXuSIUu6xEke2nFhEnuk3fKJf3tlmmbGOsPG0s1GpUqVKlc6OioloVoFhP20jHJj6+pwsejA9a5tP+9i6TNgD2jw8PGz4HNgiO+f56BCe6WRUBjyckOKHZxCcYVMdEPj58MM8c2LO489+mG0w/cl85z7GkQEOBzg56YAPZN4D7B8dHUVExM7OTvF/I87ezYWvmhMgTjA6wWRAIgc/PN99cyBqcC7zI19veXN79qFIAJkvTtAA2tlPzG27GC0nbtqART7391keaMN991wbJON/+zP2RZ3cyfPuytm2PsEr/gfU8RgzQGfKa4YY6+Dg4Nx7j02eQ3w2x28uJsuBsvvjtnLfPAaP37oCfuSAPseFgCk5ccb4AWLxvXkeMY/BF2INfGvHZ/lak2XMJ1YA9nA8Gde2xX0PFXSoVKnSrU8Ur0NtMX9EnNPt2a77e9+fsQ/rT66lPXw58DXI2BZ9dlv2zfDv7IPahzVhV5xwIFlAm8PhsGAzGV9w/20vXNCDjaZ9cAn4ZbuGXQBb9A4T8EP4bRsCzunn0SfzwTtowEXhJc/jN/zxmOkbBdvIgDEjfkgW2Tc3v+xjmcDEeHZ+pQ7zmTEuY4nefWNbnQu67O+5f96xlDFQ+DAajRoYl99nhp+0XC5LoYr5Tb8oaFkulwWjzQkK+MWGAew7MobsgrM5mWaf0qd9MX54Z99ma2urcQIWcwWunP1TvwfNMpNPFmPX4unpaeGN/avszzMmdt1dv3497rzzzrjzzjtL+xwrz65I1gl9y7vPKABFV/BseOXkIv0zbzY3N+Pg4KAca+9kvH115IV8huMXxz9tOhV+g9UPBoPCJ9Y7OzGRNeaAZ9iH5BrW1Xw+L5uIvNGorTgCHrogy7GF/UXWiWMzrzHr/CyHWbc6bsxrNcdAOf41rx4K3TLJMwdjGWBAqViAHdQxobl62AEV2XuUlQ0WgsKCQOkgfHlCCNAA+3lmPjISIw6AT+DCe8t4CfuNGzdiMpk0EndtwmBQCoPnoNtVnhhOL0Af3cciyTvNnJRx2zlRlgN0G5I2cMdj4m/vftvZ2WnsWiKRhOLDceJ7xhNxlqQh2KZCKSeLHDjml0DmHVvwfjabNZSgv484f7Skx2hQKiIaSsYygjJGUVl2GY+Npq9zgE7bVlLmAQacHWbb29tli74dLpQnBpzkFARvuB7ZyUYAmcwAlZ0ZZPTw8LAcI4Ph2dzcjPF4XO7b2NiI2WwWnU4nptNp4QMOkysgDOLmqjIrcObMMpINYwaaKlWqVOl2JfSlE2TZDkQ0d4W07VDPwXEOpC8Ca217CP4izuxtTnTRL46Cu+OOOxq2mOdlkDwiGnaWe2gPPwr7bWCDZw8Gg7KDJh8x4z46iWfQJfPMQb7v8Rhs31y1me81COPkjp9NWzmAZf673W6pUrTv7cQIPrOBI757sEDGQNJFgFsOUD1G2rCfm/1qB2L+neeJ7/w/8Qj+NG23nRzQNjbkyqBD9p95jimDS22V88REBhPtqxq88twaxHJM0bYekTf7iPl5eSyeV499uVzG0dFRTCaTxjMslxDxoIE24hn4k+XDMmf/js+8k8s8tk/Js5EbfrzW+B9AiGMaJ5NJKcTsdM6KwvC/8fNdbc1zGEsbL+CR9aKTdxFn7zr2UVAcRbq/v18Sn1lOL5q/SpUqPfIJvyXr8kzoW9tz9FFEnMMIIOvmiKY9gTJ+wvPQhxfpxOVyWUB0+zDeueXkF2TMr9frlSNueYXF8fFxAY0pxCdpwdhyMXa2NxlvizizadhtxoDfkvE+8EfudTELdhW7xjho323ZxoB/2Aein8ZjsbW0h//jV4DY96Mt2ua9X/a9APHt2+X3V9l/4TsnPbyL3ngQ2BeJKPu+jiVyEtb+FPJiGcz+xGq1Kq8D4jNsOccNTiaTRrKBIwaRm729vTg6Omok3DLWypxYPklcUrDmdeKdgxnLRJY8396gYj6QuHFCIyd8mTvvAqXf4L7whd1a+Xhu5shkX85tg52fnJzEXXfdFaPRqPg5Jycnxa9CJryjLfvR8Bs+cQ06odPpFEzafhzv2nNS27FOjjfxUy/afZb1IvPNK4nAT/3uOa7lvYTT6bRsSvHJbtav8ANflEQrugQflvvtD3tsnBRm2WJMzkfkeBLemw/GyK0zrfP5n3m1DeB+++v0+YFwhUy3VPLM1bkGxDm+zxPP4svBghNmFpjj4+Oy3ZRkFgKAwneCwIALk2+lHHEWOFsYbPgIVtgBZUCh2+2WKujt7e1YLBZxdHRUzsJ3MsRC4/5lIUbBegszRo3vMZoO/lGIvs7CnTPhTsbQTgZwPJ8ZIEExo2g4fpB3gHm7LWRjarDHQSVn/7qaiDZWq1V5IWK/329UnrD43Q68tfE2GESb9MHfZRDGn9kx8Byg7Le3t8v7DjCEOCgZcLBipa9UuCJDbn8wGBQHys6TASVXwDA/GCY/m/VhAMMKrdNpJp7NKxux1WpVdpVxhrjXEAk8jxmZpR2/R9BAB+3QF/M8K9u2NeY5fCAnvVKlSpVuF8oJpAdKgGTnHx+O/91m273Zv8jko2l8Xdu96/XNd96y09rVjQ6CcxGXAzYCCT/TwQj2iec5QHX1rgNS+ul2Mk/z+B1Y+Tv7dwZS+Bxbl3cAGgjAZuY+OBnhYwsjzt49CljjIAm/jf7Bi+zDOIDM4zaPfD3z5/5DzB88dwFe5jP9aWu7jef2E/GvfKpDppzY4TP7jm0+NNc5YMz9zAGhgT8/z/z1PRlA4F7kNFdzw6+24N599fqJiMZpAvnZJycnMZlMCojSVlnaxlMADq9T8y0n0ByMGyh0EeRFvmHE2bt1/JJ0x59OpOGbTiaTUmWOH8uxifbHkVH7s54zAxHw2/PdRowTueedj5zccHBw0Fiveb1RoIYOqVSp0u1B2QYa/0Gf2g9su9962bhTbrMNZ4LsbxjzyuCssaSIM9/QhS3oeYoFKLTmHmODnF5EQe9sNivANe0Nh8PGuyutq7vdbjnyz2OnffPJdipjijzTpwXw2wUX+DDz+bwkU8AvvUOr2+0WbIl+O2lAn3MBELYNWwCPeJ2GfU8K4zOgbnvN88F38juosI0+eQn/KmNq9AXfHWL82ECPw/fZH+h2u40kETvl4Dtt2tfgmS6yYV68q4pjG3kdTcZ47aPbX8prhd1enBbFhgx4z9h5Dvzmt9eu/UXkar0+S7iZn04wwu/FYtEogkI+8vr32mdHmJNYyGH2RXNC131k3k5PT+N973tfnJ6exmMf+9hSdM98gTXyPL5zMos55/vT05vvXAOX9LpnnOiXw8PDMlb7ym3xDGNxMSHXZl8+85DfYL3cN5lMGvGrYyKf4DAcDkty1z+0RV8zFmo/lwQbRQT0oS1WN86fE2c5tjK5b/abzX/31zLmMXhd+rqHQrdM8gzD4B1gAPcsUrYDk01GGSIcKH5nGQEudnZ2imJ0cisiyrmfOUgjwHCAZUVrECkHZXYEMGQ5aPTYSbJdvXo1FotFWbTsAGKceeLbEjjOqBPQWXC5z4bQgT0GI+LiIzsYo4WXtu0sYVgRfBt9FDln7/vFjF5c/tsLws6Et/PbILq/HjN9PDk5idlsdu4ddLka2Y4jzzA4ZVACyjyzAej1br7vbTgcxmg0iu3t7UYFieUKGfQco6xIkLoPKLa2I0jdno2RFTdO5fvf//4SyMPPi8AMO15W8DyTtY0Rc5W+k704XCTHqIJAdnwspI+gcuI0n2HsOfQ6bfs886pNUVeqVKnS7Uo5iGgDTiD0dnbEMxifA9GLbLcDTvstvoY+2R9xJe/169fLuwVsHyLOv2/DfgsJEPxTfLqIs0CyjbDT2E63nykHXm389PgMpDuZZV/Udt62MQNa2e9rmx8HPwZysNGz2azw0MG058DButu1/2F/z8/JCZn8fVufHQ/kRJv52RaAXeQn8CyAERKjHpcBityGwSM/n37l++Cbx575lOXDY/Vv2smFd23+dtv6NbXNA8G1x9Umn/hq9lfb5M7jsu9pP90FVplvec64JleiZr1jebVuIVY0/zxHjGexWJRjGkncssuMRKvlaLVaFaAmj9v8Jg6ljxfpYfhOXLGxsVGK6zimB53Wpns7nU7jVArAtEqVKj3yybo/+0G2774+oumLZFt10U4L+07Y0myH2/AZP8fvHIs4ey0I19sugz8BrjuxhH4FTKewmhOrtra2yi4TJ6UyL5wgs92zHbftAZu8aJcI94GbgNP4tS98ji3lGfTVvhhJuXwdPDSO6H5gyyj4No9JiJycnJQEiU+G8DMg+gNmhA3is8wbt0EMwOf4s1kW+QxcyUk1ftMO/j07xQaDQYzH45JMYccfOCNt23b6+fAjIuLo6KjIBvKc/TowWWwzZNyz3+/H7u5uOT1qd3e3zL132tAOR1a6j8vlshy1CU+zD5p9Ivv2yMx4PC5ryEeZw4fBYBAnJydlh53f32pdYh8176LMMWOOW/C77r///rIW2YEGL/IGAHiKL+65wn9DHnxUrLFgY5h8l+PUjH8bV3Sy1zEKbTkR5rFkn89FUd1ut/iR9J241Tz3cfreDehNE14fTj56g4L7nvuVT7/zPDsebYtfmJ+MN8MP64U27N0/Xm9tcXUb3TLJMyaa818drBgYj4hGttsBG4Lp4x273W45LodECQrV1XQO4mkvGxCDNk6u2ChnIILsLAkBU67s7HTOKhIvXbpUBNjbTC3UEWdbOQGDbCjyFmP6zy4lV0k4mM0BW14QNqIIozPQGYjgc5wRrreipb88JzsJVjrwm+QpQSDX8NsABfyigiTi5otGUea5OptFaUDJATmf027e0ZcrmSOiHEtIsozKU/rH3FAV5S3DVvCM3fzIxy/SRzubPgomg4+0Dz9QlL7eW/79eQZpIs7AgAwaIT+u8Fqv1+X8Xjve7BS0o9TpnL3gHFmDF+gEQAL46rOX29aq59Z9tuL1WqlUqVKl25U+5VM+JX73d3+3+DbZLkLYmOw7XWRP+cyfZ3JQmo+ya7P//g7dfnp6Gvv7+3Ht2rXGTig71gZTsLdOoNEmfc/+Tw6obT+yX5DHb8CJzzJA4+DSIEAO3uwruC2PxUFFGxBkcMu+mXnr/zla2WOwz5qLYbD3PmKFe9v8MY/bwVjeMYf/k6/zs807xmpeecxtc8Q18/m8+OJOErm/ro5uaz/LFH1ljmjD4JCvy/5Mmyy5T5knbTGMg27IvqCPB/KzPW77XhxnxZEzrqCNaCas+N/ARAYS22KVNp64H/b1zHuel5/T5vs5JnTcRJw5nU7j8PCwnJgyGAxie3u7UfCVd5sZ1AH0sB5BrlzIxueeG3jN/PEOFooyvdvM6zqvexe0drvdeNzjHheVKlW6Pci20nbV9s16KoOn2WZCjqsjmgURbtdkDMNFKu5f9n+cfMKG0DeOWmvzUUk0DIfDBnZgjMQ+oI/7zQX6OZljPnJ93qmDr0Tbi8WiFJg7SYTPY1wxY2854Wa7yXPAjbJdMcANH7ybbzAYxMbGzdfeHB8fx2QyievXrzdOzup0OuUUJSfRXLBh7M99yHbZ88TY4TGnVpkPeVeZfR0nypAD+7kRZ8D/eDwu42YcHBVoXz8nJ3x6GO0hSzlpkAtxvMY8F+DD4IhbW1vF5wQDAw81D7H1/j/3lzG6T8YHPV/2p7xuTfhS4GfIctsmEMcVbf6pr2EOjQ+zY2y1WsV9990Xp6encffdd5edqLymB/+ZdQp/wVhdXORY0/LjtcV795AdEsued3hBfICsw1/HOPSH38g6az7nK7gHnWVfOeLs1UbeAOTj1a3zXGBqv9K7J+0PO4/CsY0RZ3qZPninX5Ylr2OP3WPzZg/LZk4ituk+X/dw8dtbJnkWcfbuKrKoq9WqVMxhYLwgzUi2rGJkCGJYsD6Kz1u5+SwLnZ/hibTgGaCwkWRxsrsmZ/1pDwVGks0BDIp6MBicC9b524bMiRwnxDIYZYFygOrvyLwTFPK3d4b5fv/GqMNbgxMoYvp9enpazpF2IpGxEOCRVPXRilTNEHQiP1ZENr6eH8aI0oMHVhh58dHvbDSYM4NmVgZUm25vb5ezaL0L0Ukt77pD1q0c6JdBKAjnht8kSD3Hdiq53xUVToauVquS0PI6YJ4t51ZYrg7KcmsHgWuyQ4RcYGgioiRZzVMDfiTEI6KAFbRjcMAVXYzD/M2JM8+xnaNKlSpVul3p1a9+dSPgt721v2Q/xLbYgUL+rM0BhrI95zm5ajk751zvtiaTSTn2hD62JZXcrttzYgqCH23BgIERJ77aKvPsV/KdAaMMzuRkjG2ag1Hbxcwbgw25zwZrHORmf9a+BP42vLL9bRurA60MuhlkoL/2a+2TWQYzEAS58MZJOVMGkJAB+3rcy1x4V73jA/s2eW48DvwM35cTGubFRTzKQCU8sjy3+XP5OV5Dnm/7zF7jprakLvwCaJvNZo1rM//x03N8RZ/9O/cv8y237TYdt3n9mi/2o3MMtV6vy06u4+PjmE6nZWcCx1pROGh94d12GZBGVjKAlK9BZszjiLOdsLxHmlNMbty4EbPZrPH+mwza5Lngu7e//e0X8rRSpUqPLMp2BHuUAf6csPf11m1Zj6GDs6+VbVXEGR5H4TxgOM9Fb7uYy7uY8jOwK/aj8It2d3cbu3Gw6cYKl8tlsV9theNONGa9mnE62s28g2/scur3+wUnBFOkbyQDwdGM9Rhfw2e1bfbumvV63fDjzE9wRh9deXh4GPv7+3H9+vVSLALPeTb9I/mztbXVOJHKfHOywDin59/YjnFFkojYVOOB3lUIX71rDP7YD2ZujCmBM6/X6zL/xu7guWOcNj8rFwTZX/U9PmqRJOf29nZJXiIvYLM+DpI5pR0/j7mw3Fo+GCPzzL2MkRgJP4i58LiY8wc6FSD/b98cntEn+9I8w3iz+7O3txcREXfeeWfJCcALNo6Abxsnn81mjaQosuLnOGZYrValPT+fcRkLR/5ywaYT25b/7KOz5mnbcZ9PzmNjCjg535O4RFfQB2TASS7GcXJyci6x7u95pmXecVLGTD1W50Da5IJx+29jz23xjvma/26LBR+IbpnkWQ6WUNqcv8vf3mqI4HGc43K5jOl0GovFolHNGHFWSWxw3ovQAWFODCEc9CMDKZ5I7kMw2B4e0XypJxlqK3ILBvc46eY+A1b4bF6e4W2VbaBPTobkrbjwAR7z/2p1diQJ21oJGPMLKlmw9NMLDx7Sho8pzGAUyoD57HRuVhFcvnw59vb2otvtlgohxp+PULIhtyLhM67PiwtgigSlt6dn425jixHf2toqZxL7+/wuMBtZy5lfFuoKYDsNNnYYNZ8RDfl+DImTgX6HgwEIVxF4zOapZRb5Q+5zEtDAlo2Ek1+WN7+zz04GPLDDkwFZAyOM2S8ItpORgVIr6uzwVKpUqdLtShnwN9nP4Fr/dmBqn+miBFBOwkHYJvs+XO/+5f+xZ8vlMo6OjmIwGBQbb98k23fsIfbHNs3PuYhX9hvhk4NCiL8dwObkgoM6j8l+bFvgbmDHCTrmxYUmHpOfje3le+ayzX/L1cT0z8crMfcGOmjb9tzylvmck7H2oeyjZx6al+YRz8kxgp+FrwM/mAP7QjnB6CDacmm/m/Hhf3t3nIPGHDzaT3d7Hpf54rWXeWt5dZDua5kv5DevMfOP7+bzeUyn0zg6Oip+noE6z4N5ybhyIO6kj4HTPLcGPfJc0j/7mHxn/zb7uHzuAkMSVCTO0C0RUSqgmQdiNK9XdjQABPnkEI+ZkxW8VvKuVF4AHxHlZfb7+/sxm80ecP1YblwckXf5VqpU6ZFN6DfrF9sX28uIM5uZfUPbueybWf9aB7UVe/h6cEBwhja9Zd2diw7AJXq9XtmN8UA+INid9b0TFVyTdzqZDxHR8H2zf5N9AWzOcrmMyWQS4/G48U6o/Fy/t8wAP34m9pME3HA4PPe9bYrbAi9iM8PJyUnM5/N4z3veU3b62Eba30OOer1eea/pfD4v+KXxQXiX/Qv7UxR9+zPmwRgr8+l3r5loq9/vl8REllmfYAaeiz1kx41PRMvYGeMHb2Te7J/ST9YYO8rG43HxGyh2oY+eT68fnsmx0MzhxsZGOdUBvoGF26c3rogM5M0JXoeMx7GYx0bfSMIgq+C/zBu/89o3vuf5ts/G3NkfXK/XZYf9HXfcEdvb2424hzXMPRwp6fXKd/AdHrgvxgojzl4BZX3S5sO5kMp4JrLTpvuc6MqJRI99sViUBDUnYtBnJ+xox6/acbKdfAxz5sJGP5udaTzfayiPPcu/fdEsU+4PbT1Q3ON5oF++ts1mPRDdUh4vC4HJ3d3djYibQXi/32/sMrISXa/XcePGjVivz5JtCIaVgpWv35GFsGIcI5rH7mUlBeWEk5U4hoYKmewc5Ex8XjQ2OhkIyEGXBQqBz8lDUw4GL8r8GnDh2ZyRS+UIC4cAjWRaWz8Zu9t3lh9gJTtZ8A6DgLFz/0ejUeEdi4Qgta3qotM5q0QwUJOVC2cee96zw+ct3aPRqJyNTd+Xy2XjJeCWFfNmvV43KlQxSDiIyEiWG/PYSieDQZZz5hxjYAAOPkSc7fLyMQVW3AYYMBrup+fEFQum9Xrd2MbOM+mX+0LfDDriTJt8hi9jM1+sjN2PDNQyVhuISpUqVbpdyQ503uFhPyWD57aJfJ8TH6aLvnPxyEWOcAZ13B9osVjEwcFBXLp0qXxmEN6OO+3YV4toJrkcyAN8Z78hJ6hyQJgTNhmIyGPL/MnPM3GtQRbbWYM2bsN+oE8PoD8GGLLPge2ez+cR0UyC+bgjnm+/Owdq5gH3XQRS5e9zUOb7cpsGcvJ9+W/zyDx2JbIDaBdgcT3/M/eeU/tZ5o39dygndDMPcl9y7OIYwuO3z+TYJcdY9MvPJp7jGMO8LiwvOWnmn9yuyb6l+e+kn2WTcTBvjtu41z6+fULmjfnwkVUkzYiRuIf1AVBh3eIxOdnq5+b17vVhHkQ0E2edTidms1kcHR3F3t7euZ2fmfJ3jiEy0FGpUqVHNlkvGu+wr/JA+E72X2wzsv00NuMiYfoR0TzmDDtkDIf2vVvGf9u/orDbBT7e7Wuyz4YfQzICm5oLcAxWo/ttg2x37Z9m/wNcpdfrxXQ6je3t7XMgv7E5koH2IXiex0Ff4M98Pm8UeHOEtpNGJCjm83kcHR3Fe9/73rh+/Xp5jvEs7Jk3D0DYQYB5H+noou6LsKssI3yOrfWRkVmO8g6mTqdTkkrwwzwjWYafzLiWy2Xs7OxEv9+PyWTS8P0Hg0Hhwfb2dnk9jI+HdKIIDJG2eZ0LSTSuddFaxFkxN8lMcEcnhmmL55A0smx784DXC0ku5Ji2s++cMUj4By7HrjiwW88FMuB5diGfNzg4eZN9d/uMxhnBXi9fvhzD4bDMI7JGEpiiIjBXk3Ue7bflIViXyCSy5tiIv7Ne9Bxn3eD4guf7mFLrEPQYmCWJ417v7FVXjOP4+Lixo8w8tO9n2WcOwNU3Njbi8PCwsWa4vy15mLFhxuwdgB6ndYbjkItwZN/vRCcy4b48GN0yyTNnhFFgs9ms7CpbLBYlQRFxtmh4vwICxOJ31tVB/NbWVvmcdnh3h8FxC7ArBugryiQrehsQG3kWYFsAgwKhvQxiZGXpBcaWbvrpRcQ43P+cEGPROHFHGxbQfE8O6Mbjcezu7hbDy+4/C3zmDfz1Vmq3mUERZGE0GsVkMmkkUWw02pJSGRzKRtIyZceO6k1XKXAN7YxGo9jZ2YnRaFSUvANky5DBEVc60V9kBSXO9uycUEOWME6uEmAe4YcVIwolV5xkgMROE5TnHufIRtJONYlj+mfZdWW1ncZsTJzs7Ha7Za1aicIbO8XeJWblmRNgbUCM5xd5YRyVKlWqVKlJ1tOmtsSEdXtEc8e1KTvenU6nOOw5cWb70Qby2i65mnUymcRgMCgFMrlAw31xAoK+Ohgx2O7A34U+Hkv+3/4bY8iAjgGgnKzCz4Fc+Woba94aDLCvmH2xPC/8JlGQ/TX7WxFRjrVzcJt90Hy8C23lecy+p/028yVXcJqvyBv9eCjy6+ssw9k3ph18xnw6BO3ax3Bf6FuW/4jzxxW6j9nPdr89/22xSPa1LScZiMvAhhNKzKPXAoklH8Fo+cv9py23k/vn63Pswtplftp2TeW1Sr8d+5jX8IvrKBSbzWYlKRhxdsQ4eobKcYM52edvS5K5cAzZgO/4u7RBzBBxBuoSM+/v78fBwcG5xGGWEXiSZRQeZfmtVKnSI5uyvWvTGTkZYD1lHyeDxVmX+DOeZ3AUPyoiGq9y4T7jbfYFjYcY2I04w7e8e82JLrAPkgjZJ9rc3Cy7NugDGISfCS7psZintgU5CWHf6Pj4uBSJ+7UXLhSBD8aR6Hu2cfiHjNG22EkE2+T5fB6Hh4fx3ve+N/b398t48k4ot+kxuzAF7JUE2nA4LM9xwoENEgbAcyLXmJbxUicajAM5GbO5uXlO1ph7H98ZEWW3IfNK4s078OGf+0l7FNc4CWMsK+JmoRlrya8ayf61/XASoN4gwrXgcPkUA+aIde7+50QERNs5kee4ievZHc896/W68SoYEqVgxfanacdrwrEW/Le+oX/MKTw9Pj6O69evl8QmOQJiEvhmntGO9YG/43snx73W0CmMlUQhlHWVT/BgPefkULd79l7onAR2O+zyu2hOM866WCwa/zNeJ+dYCzzfR6RyHKTXBesv00V2hHsyNpC/5xrHvd7wxLyad9YRzNNDoVsmecaitkEkAPXRbVT6eTeOs6dbW1uNF2EizASyGbR34OSESM66Uq3LhG1tbZVMPz8OnFmMDuYi2s/qN2jhrbGQgxg/JwMdufqBeyE7Om2BYs565+y6n42A0geqY5zwoY8oKSovsoNDYJp52QYakXBiWyp929zcLPPR6XTKy0ypurBxgmd5EXubJ/zY3Nws1UbcBy+2trZiZ2cndnZ2ivMwm80alQ1UAzF/Wd6zcfAzCJLtlHjuPEfwmTYd/GcwCt5aSWcnJ59XTHt2Xjymbvfm8Zk+jtTrhvOhGUcbwJmdba71TjQcIWTDABRrve0l9p1Op7F1PjsHHg/f+XOOa6hUqVKl25lyMNUGqjo4yPdln8g2l3v9fybsosmAgAtG2hxlO94REUdHR40ERwbcsQXeyeJA3LYqBx4ZjL7IxjnAtO+TE18OmBmv+eJrs89hP5n/nbAyv+wbObGU73cxjwGk3Ff65QIUbLsTKVxPX+BL5puBKvwrxsA9BLbZD7DvgCyuVqtGcOsKUc+VA3z7DJ7nHMyTNMpgkvtkuXJMQhsX9d19ygmpLF8OStsKu5BnJ7fys5hDfH++dyKN+yio8lGBHrcTqJbTDCZ57FnfZN2T/TvWpHns50Q0/X4XkXGNiw8B+2azWXlv23p9dhSpgSkDZrkq2ePhefm92FzvBC+6z3LnWILY9fj4OPb29grAeRG/HAdZ77Ee8LcN1lWqVOmRT7l4oA1Yz9dm3AoyoGvdx3VOmFhHZT+SInpjdwDO6L2Im0ff2Q/LetfYRqdzM8FAUT3JlOPj49je3i7PZeeMsS/bUMBrbD44oMkAvQuj7D8ZZ7B+BuPBp6FwPmNIFDGTnHAffGIP/bdu96YAkhA8j13M9913X0yn03NYXW7LvEZGnBTkefxvfNLX2yba5vl+xs48gKE5DuBz+yLM0WAwKPaOcTM+ZNftce/p6WnBypxIof/G8Jhv34+cMHZjoE7Y2i/LvgyyiC+MDDNnxrCQBb53ob9jFmTDSRj8A3ibd15azrg+F8l5TdvHAaNnzlkHfi59y2uCZ7ioyD4xz8Z3Y94gj9cxXPavLUNeq543/ra/55iKMdlP5B7rEctz5ulsNivHULot1i3rH7zT13iNdbvdciJa2/r0moRHOYdycHDQiLe9ruyvW6fbVmQf33FVG67gWCP/bco+PM/LMfED0S2TPLMhhQyOL5fLcpYnho1FZWADoSWbzET7zFIrPoS2zfhHnFUKkAwiMceLI9sSIk6aGGRxlt9ADIoHQada0QbGSsCCyedeJFZueScbStRZWivHDDjkChSe5fHSdq644b6NjY2SZPJ1OQFjBwclbUNsGSBZxiJhe7K3tGMAuSZXCRmAcpCcxwrwwVg4nnFnZyciblZYHB4eNhSjDa2dvTwXOYhGbpBLko7z+Twmk0lJJl+6dCkuXbpUDBgG2uCCFQiynxNzNgDevk1FAT+0h9Gxsed5yD48JWGN0+kdaNlgwXPaZZehz9vNoI777jbs9NA3KresUM13Ozw5QYi+yQq6UqVKlW43Qifn3QjZvl2UQMvXRDRB5+zcWr9jH9sq87jX9sjPzM48un+xWMRsNiuVrw6QfOyz+5pBfO6jDzkgyVWxDszcZlvisM1n8ffZH8v+IX5FW3/xG7Bzbqst8OEZJBvt4+bx8Dv7PlSajsfjUuRlwMY+qP0MrqMd+9Ntc22emh8X+Uj5GsbjADLzJssWQJ7BPYI8+mwymML/rkZmfg38tMmz+5/nLAeROZi0zOQEcY4TTBnsMhB2cnIS0+m0dS3neWJ8xDn2xdviQZ5tnWFyTJfBOgMWOcaCf54vrwuSgdPpNGazWQFULavIO/NMPGKgIM8jYzMPHScaRLPsU9THcfas5ZOTk9jb24vpdNo6z7noknnP+gEw2mu0UqVKtwdlG2Tw33o321ODv3yXQVnvLIo4v4PclP08vqeg1UeV8WwSIdjjrEN9XKMTFT5uF/vggmj6s16vS5LNGBOfgxd4LFmH8xk62b6T+eF7Tk5OYjAYtPov9mlns1nBXvDVjS21gc45eelE4Onpaezv78f999/f2H3leSYhYz8izzt9dJKDfkVEOVnIiZmIKLw2jpt94OzXe17gj+8xrmm80+8VA4sCszTGaV/L99E/v77GR0l6owS+IrgyskxSDsonnHlc4Fz2CafTaUmkwNO2eOz09LRxnCRrlZiBtc48MI5er9d4jVK3e7N43phi9s8tcxl/hZ/GGrP8eB3wd6/XK8VpOWbxerKvalnM2DprxuuS+/K19pXhSU425TVlvzLPmXFN2vFJZlyPX4Z8OCnn9e2x0paTtcgy7TpJzO5H/EyveZ53eHhYZNw+reXTut99zXGVx0A73lHmzU2e/5wQ42+femd6qImziFsoeQYjskBaSFEGCOZFVasOFtbrdUOJWYFyLUz2szEGCJez495VZUNnMIYXBtqwIIzO0FM9Qn/or4OZnIiBsgLqdDrFYUAR+V0TNt55cTJGjvygDRRAXoy+z/NnZQvvrGTZ8ukKRxsjJ2f43KBKRBTDYseF5BKOzsbGRgwGg5KE4QfHw/120s5VTN4Cy3ve+v1+Y0uujyOir1awVspWovDZC9xKg4TN/v5+7O3tFRmmj+9///tjZ2cnHv3oR8elS5fK3LE+uNbghA0XxoCxIRO8t67T6TSSrJY5eJMdERwNQJNut1vO6bZza0cn/+CwGDDqdDql4svz5Pm3cXZSjXEfHR2Ve60bzHf/D398RM/DUbyVKlWq9EikxWLRKA6KaAdW25INERcf33gRGB5xtisiH3V8EeVnYxdy8AXNZrNyPLKriF2p6THmHeG2K3nHkO2NA6YMnOf+u+8uYoqIRqDm5JT74eszzzL/8E8Yv220r/G1Dmxz8soV1vbJPV52o/PiemzuRSAaNj5X8JqcJOBZjg3ymPjcRVf2y/A9/Wz37cESc/hRyIUDavPDY7E/2PZ55nkGF3mGx2wfJyfRTO4/4I59cbflfiDzgDEGty5aE7Tj6nnHGfbpIPvTtJ3nMvvc8DD7d+ZX29pg/IyJI6uo8Ca2yM8jNnKhpvuQfWofIW9yYs7f8SziEB/jM5vNYm9vr/FqAvPFPjXPtM7IgNPp6WlMJpMGkFepUqVHPrH+rTMywG7712a3rU/aAGmT9ZCvNaHTDOjbb3Chk3/sz4B7GNh1cbTfBXQRCAsGZf+VsZIIsY3z9/btSFLYVzOf+THmSAE52ETbvNFH+kASpd/vR7/fb/DV9ofdavAHfPLGjRtx48aNxk4V7jUOY/7YRme70u12i0+dT3nwjkD6BRaDvcu+YT7ZyxiSsZvcF36v12c7+cDSKBoh0cDcIjf2fZhHF15znZOK8Nc4XESU1xFFnNl9+9jZt3Sy1cWMbXhqTmpwD++ds3wax3Q/kT37rtlvolgeOWJDA8/Fz/Y9tM34u91uSeZZXtr8fLcL2ceyDnFMwlz7eq9Xn57FPV6f2cfP/jbt+m/3z3z2tVmf8h3+pGXHJ71xPxsesk6CBzlWMS+dxHXM6SNEfQLYbDZrFIbBM+s850ZybJz56ByINz04B5QL6rJPTNyaE2y+x7miB6NbJnmWd05FNKt2yTC3BZJWVCxyrvXCcMKHRe3g1kKFQUEp8rd37GQQhMXmRdjpdEoybTqdxubmZjly0Ofh0xefHRvRfLcWiR0WhBc2xm69bt+t5G2k4/E4tre3y9Z2xoACxqDBRwMidqYwwjgZWWgReis0MtjOyPM8fsMv+M3iXi6XMZ1Oy3g8Lldx8KJNJ3hwQHzUkOXI/OZITshJUJ7le634GBdygjHLzoD57goPAvXpdHrOWbFCjrh53NRisYg777wzrl69WhKnrAeUaHbu2ozRfD4vLzxH/umjE19twIXbYx6Zl+VyGUdHRzEcDkvfWMv0qc2xMmjAPewstEzZYeA+t71areLo6Oic0maNet4N5hhoqsmzSpUqVbpJgKneHe4gxvbNZKCZ6wg87PCbcoFGTgj5uhzA5yClDYQ34DGfz2M8Hjccfna3Z8DZNtaOe34u9+H35H5wTbbJfhbXuA+2Vw7y2nic28p/Y2sd8NAn8xWfAF8w+xD29zxO7Lf7FxElCFutVjEajcrn7g98cYGbq8hpNyf7DCDY16fvtM11tOvAm0DRiYOciPE4s0x5vPZlLTuZJ56TtljHfqNlIAfE3r2Xn+G1Zt80B7n0NYOAbc+LuAmekDjL/qfBLMv6RfPWFgBn/tIf+Jr7Y/k1mOJn5LmkTy6MwzemKIxYzHLoGMF9gU+OQ+3bZjlyoWBb3+CD42TeRXF4eBh7e3vn4pPcTuaT9Q/9Mjh3fHwcBwcHce3atXN9qVSp0iOTsm0x3gEZv8rAb0SzcCgDun5O/gxq8y3BobJeNeaHfvZOMvoDEGx8iMRGr9crRVQkU6wPNzc3YzabFR28tbXVeGeQ7UvmhfvBmD0u4ysuzPcmASdK4KltEWPzEXzGI42rgVHx3Wq1KokpjiM+OTmJyWTS2GXipIrnGSzV2GSWA3Ac+E8fs01Cphwb2Ff3M/nb+E3213PCBzwYPjLXjHE+n8dqtSrF9vgDlsk8vxSuZ1m33F4kG/AOnhifZP59n/0KY272R7IPx4YO+ugCc8bFHFnmvfbzCRrMAf31xhE2mpBEY71kLA3Zd6LRhVuWEycn+cx4Xk7YZF8rJ+O9Phh3xkntw+f1aV54TeTiMcaGb5nlnes8r04G5dPLlsub7x/MSVevfdphbi46qpKxOcGWY2lkFx9/Pp83NrO46NTPoK02XzfHshkDyGvMhXW+xjLhDRRu23P3UHHcWyZ5RqWcF7INCgqOJJF3grlyASahJNwGk3NR9agNL4vXzMeQeTF78bBQHSRxHZ9TycL2a5+Vn52HHNQYnOG3t8n6Bdaz2ayRUDIf2dI7HA5jNBrF9vZ2eV+VFyd98GLnZa2u0gCgQHh9DGBENBa0j9+zso44f3QKQu4t0wcHByVpxPOYS36Oj49LNTOAj18ya0CMLelOGnkenZSEzB/mHR4jH5Y7lDLKzbJnBUJfrl+/HoeHh+Xe7IBZwS+Xy3jf+94Xp6ence3atWKknMTNSgre2ilAXmws/RzLgR1ieJxlwRVRq9UqDg8PS6VuVpBe6zy/zZG2ArSChO8ZCIu4CfS6Esw8tyNjYwJf4Y3f8VGpUqVKtzOdnJzE0dFRsa22f5CTLjlQyECJE2iQ7SN20JV3PAPKgUwOruxM54CQ6xeLRak2dfDvl737ediDbBdykEDBRxuZNx4bfTfokAOTtuDN9t7jyD5utuVu18CFeWb/xbaXPvvUA7dn8lEu5iP+hytQHTgxh/gouVqZvvo4IPsK9MX3eneQ/Xb6hw9FAVlOHDpwt0/eNvbsP/GdE1e0bfm2/2UgxOvNPOJar7Ec/Lcl4yzDBicyENSWkCHJRAFdXt/um0E2eOKCL8jgoKmNv5bh7PPymX/ncUEu+HLx4dHRUemnd6Miy1kWGZ+BG8+3n5/lxgCb16xBUcc18P7g4CD29vYa+i3Hvtm3z3zI68RAHFXNlSpVuj0Iu5ALVE25UCDi/I6ANtDUvkrb/RfF2ui1zc3Nxm5m7sFXIubvdM52HtlX5W/fa/B3NpuVdlyAQXIFvWnAua0d70phbOZHBuLX67MknpNb5td6fbY7JiIaBe60CYZpv4b+TiaTcjKTsdKImwXZHutsNisnBGAXsB/Zp6HvOTHixE6v1yuvvMmnF2HPXOBu2XAiE9mz75LnOOLM3iIvxlApivaOGvPz8PAwIm6+Pw9+eqePbSu4Iydi2c/OvqPloy028vzbjpvPjNcbKJzwzbvC+NsbULKfZPnMiWXPv5MRGVO0rwn2BtbNrkd4wPsL7bf2+/3Y3NyM/f39hr+bx+E15Wc6OeUYwokX+42WFbdHTOE41vdmvND8Y32wFlgn2dfLcYr5TZ/yxpq8AWE+nxeMGnw1v74IfzTziWc5Ge25N867Wq3KceV8l+Unr4csK8iwbYLlKBc1Wm9lWfP9rFfm2LGO5zTHGA9Gt0zyjJ1Zu7u7DdDASQ4HWT42J6KZdWXhePKYGAcv/M6LabVale2K9MU7o3LAmys9cvDBc/Lim8/npcIjV1Vn4eXHSpjnUh0ymUzKEYLunwNtB94I3GQyKRW2q9WqcZSfQaJs4O0I2NFyppt+Y6C9LXS1WpUdSV40nU6n8AWDx04zDBhGylXKETcDPY6G9Lvqtra2Ynt7u2x3pzKAPiJDBjC8CzAriVzRwPeAP8yVlXh2FLjOu82Wy2V5P5gTUJafHBRHROzv78dyuYxLly41qhE8f1ZC3D+dThtJU68NP9vfu/LIv+0QsD65lvfKjEajxrm6mazsqajFGGQj5zG53yS9Dg4OGseiXjQ2y4+/Rz5ygrVSpUqVblfqdrsFWLY/EtEekLUlaPK1FzniUD7aJgPfvi/radsnV3Rm4mgbqk05lif3LQPTOfBxAsGVvtybkx/Z/6QdFxa18TTfz332S33MpYOYNhAAwsc1H/FjnDyzfxwRrX111az9cvrqfmNnOZUByjujADJy0Zx5mNum7x6zAbS2nek5AHMskhMQ/O15zjLCc+xPOYBHdj1fTgrl/72mMoBnvxM/2YF4DlDz2DMPDJjxN+OhuCgnsJyY9DPsj/qZD7T+s38JAADvGEsb0JF9Pj/bwAJtzmazODo6itlsVuJAEvcmwB7PNzEKsuZCQsZIhbrXXu6veclajjhbTySqb9y4EdevX4+jo6MyzhzvIRM5yddGngevtW63W5NnlSrdRmTwGn3pXQYR53cDZx+Gz8FQMnbWRgalbT9yoinbfBcmu/g122AwFr4H7yJhxOlQ4H7z+bxRlANG6J0bth/0Cb2fk3W0mwt+Is6SIPm0I9uGi4q28CmMV9meGx/xzhUns8A7nARsw/ZsPwzER5zhP8ZWSNaNRqPCn4gzvMw+JPaN+ebHBfMGyo2Nmg/w1p/jv9lf47hBxuACr6OjoxIL2FfCLjJ+PneyjP658A05ns/n5XOKUxi7301nOcl+Dhiok8b0G3455vHmBPfT/nDGrr2TMOOHtJHjCrA/kkfz+bzI1Xq9LrvReAb+tOOWnZ2d6HQ6xa+xHNrXta+ZdYZxa8u/59CyYwzQOLd9J+Op3uHvBDTkZyJ3eYOCk2Rt/qr1J8+yriCpxekYw+Gw4JZcY52ZZd/9XK/P3kXJvFKctVgsyilo5k9b/7xT1gkw8zjHrJ4XZNJHfObEd47P/L19e19v2X8odMskz1hkKFgLSAboEQRX4hF8R5wpGSfb+IyFnY28nYPpdNqqvGjbCgllY0UGud8OmK3kqLhlF5oVvwMoH1dHHzhS5ODgoJGIsGDnqmnGNRqNSpU1inA+nzfe8cX2dcaWFSXK0YY1L06SVJ4zK3FvdWZ7L3OPUVssFqVqYTAYlMQSCtMysrGx0Ti3mUoH5IokHDLAQs2y5sXp6hqDBDZUzA1GEWVKNYDBGzsxVHROp9Miv1tbW3H16tWYTCaxWCwa/PIc5j4eHR3F8fFxjMfjkpT087LS4aW2GGvm09d7zvIaxKjYqXACFJkwWIB8MCdWem3gj6sgvHay88T96/U6JpNJSQpaH9hIeHw5AcfzMPh2JitVqlTpdibsH8mzXPgDtSWoLkqc2HHOuphnZPA6Uwbp255rvy+iGVwQcBLQ2/m+iNq+oy3slcean29fz74f39mXsp1kDvIx3xB+j4uc8nEpDoJyYGMf94E+wxchmMd35Pn8tg1vC34ckGJ7ARKy7ceGtyWAGIvfMZyTdlQb4zcZMKBvBufsv2fQjO+ZQ8jBsI9cMe8NStpnJ07x5+Z5DkiRqwx8uO/2X1xVnBNYfOb3peSECr/xiyxHHr9Bmk7n7Egnr3Xayn22X5afzTU5EY4fDp/y+Nyuk5kG59hpBlDnGAr+2rd10tP8R068Q4Lr0AmOqTLZ9/a6RJZ6vV4cHR3F/v5+eZ+v+dm2AxNq47t1rfnn/rDrolKlSo98MqhpPU7cj352fM311iPWQ20xOL+ts62zsi5nhw/kIxjRY/m9lPYZ0L/Hx8eNBBY2ikJdf+9xon9tR/D5XCxl3y77gcZSrGvtT1k3e04MjK/XZ0XeHpt9i4yl2jYb23Afbfftm9ou84zse7RhnsPhsPEOsZyIA2PkGto/Pj4uuCSFKZ4PeGl+OvmKz5GPG/ScmSd5TjY2NkrSgCMF8aPsf5j3zAfYHf1zgZbxNjAx98+vTWHtkLiGvM64Nvs/xmxJBHmnIv12YVlOEjJm/ELHIU5egRXn07VYa2Bp29vbsbOzU3Y+2ofnWVtbW3H58uXodDpxcHDQwB0ZX46VXKzPc/NnWd/kxJp5Do8vStibX/YBPQ5vJGnDVt1/vke3WMbsb0acJcDhHfOK7Hhzh/mDD+m16zVp7JMNOfmVTOaX/V5k32vM89bmY3r95YJNf0/77rMpH1FqPuW48xGZPOPcdu8Y8kJwYGul5MAgK3knPpw1zguGyZlOp41FmtvOhgzFg3L2PU6SWZk5cEMZkfzCKciLz6ALiujw8LCczZsF1Nd7AW1tbZVtyO6PFyZGiwodElqMPSfAciLHARsVPBlgYG6862k+n5fdYb1erxhNOyoGPtbrdTE89NnG1Ykz/qZ60v3xQut0OiVwtmKhv1YUntMM7DH3s9msVK3AS/rP+bFUiGCcuX97ezt6vV5Mp9OG4rGc4RjYoVksFrG5uRmj0ai8V8+AFXLHfXaQqILJzq4NhxW/jT0KfTgcRkQ0Ki1IxFLdz1h4/x9ywlxbwSNzBoLswHpcHFmanXn32450/pv1CH/oq53WSpUqVbpdyb4DR8BE3EzY2F+C2sB8U5t9sdMNOGLfiXZzEiA/r83R9jUZ8KEgh8DWVZ/4nRl0xn7kvjso93f8nck+nK8xEMP/efz8jQ3HL7W/4PcN5COPHHibPzk4z7/7/X6Mx+MYj8eNd8qar23ATG7bCRDzI1ft8ptAK/vkEVHO46dd776D7L/aD+CZ9MsVuplyoGvfxOQ5yvFMTgjm+YUPbfwxLzJZ/lxha3+xLVHtfvhv9xH/KM+VfUyP0WvQ1cD20bjeIIXlwj5nm/5wMO/PDUoYLGIcADoABdPptPGMDBySlPV35g//uwoWvWLZykCLx9cGkPm7brcbh4eHcePGjVKsZ2oDLzOw2QbeWKd5HAZkK1WqdPsQPkWbLTG+ZrI+zvbpIj/NALX1PtdZD+KD+XvidR+7TcwOPuNiX/wj2yr8Phc12E66ONw7cfx8nm071ga0255aR4MVedy+13iV++7/23CNjOcYlOaISmOrnh/zuq0gGX60+Vf47uC5q9XZO0ONE65Wq4L7LZfLghNxwoXnwbbK/kH29egDRfz0iwKvvJvF/rfnit9gj5nnxCjZvnPKle9jPRArtdl/J7J8n+XQ/oP9kewbGZdjDJYN+Oj+W0YiolF0B/ZszBffxolj+u15zjFHxM2YZDAYNPBb921nZydWq5tHQNoP5xrznBjR8toml/Da8YOxc+P29vGtg/LabtNbyGL22Xmm3yHtfntzhGWY9eeYh75x2gHHjdN+Hov7412mtOFX1LDjDGrTKW7vgXST/eSscy+Kr/Jzc3zsvviZF/2d18aD0S2TPIs4q6o4ODiIbrdbjs/xYkNBYvisaJzAyoEfYAjVc1Y6ETcX8WQyKdlzhMKJJX/ud5V5AkmAWCHmAMxCyL05gZYFi8QR7zVjx5oFlnZQKDnRsrm5WZQR/WJx5SCe+1yBaeHzeKyEobbP6GPEWSYdHjigpb8YU4wcyoTgn78NFgEebW1tlS3pKHL4RQKLvmfllo0LisVKljHAC5PBRSeoOIKQcdkpMm88P+wgm0wmFwJuduRsVNm5xzEEzCsJIWflfZ4ulIE8y6KdXchHHkQ0q3bgi43ucnn2rhODZFmu7PzRV3jrbcWcAez+ZnAm/92miJEr725cr892tlaqVKnS7Uo5gMFfwy9rowzUZv2LDcigOTbD/on70NY3t9EGxDhYoe2IaARTHOeTn0Xgap/Pdjv7nZlf2Z91QODPcsLM/pSTKhlYsp/qKkD6NhqNiu3Ft+N78yc/g/+Zo16vF5cuXYqrV682jt52YY592MwXPw9/wPPk4DYflZ4Ltzy3jMW+tf0SeIovmP1X+sCR0ZYXz6F9+ewb07c8hzkIxAdui23a4oQ2cjI3J0a4xwCRx2A+ZxCKv/MY7X97Ts1vjzX7V7nffqbXCfEcz3a81rYuuKctaM7xC1XsvCqAEx5cHOW+AMq6gMs+fo6FHBdkcMY+tddz9lWz7sCP73Q6sbe3F9evX2/oTMcwbbz0OmmTV8+B+WtQ6SIZrFSp0iOXsMPYTOvyDExbz+SdMlD2g9p8hIjzO84MFM9ms+KfGR8C28hJFNsrkoCMh2SNAWpO5Yk4KxbvdDqlyNeYFWPPoLB9JcaRAWD7WS52Mj/yjjHbx4vIfbGdJfmXcUvjbm2+qfvqvtlXtY1gDobDYeOoRhIGtANuRzKJ13tMp9OC6eTiqzY/0QkBy6B9RJ7nubKv6FMKfGKXZQZ5ybizk4+WaxJl3uyRjxs3D/EJPVb6Y357Xpw8gZ/GAnOsxPzyrLxby3IDb+1HIM95BxvYouWVWIT7aPfw8DBOT0/jypUrpcAf39cJm62trbh06VKs1+uYz+etOD9/OxluLBPeZx8+F2S6Lfe3LTnka8EGnfCiP9wPr3q9XolFOOEEXZTXapYZ+Iv/zUYH6xCvWfgFD/BlWVNs3vCzF4tFY+zIV/bfHUOb/Bn8yFgsYzN/ra+Qp3yceo6HuMZ60DrNvrP1fxuO3ka3TPLMwddisYi9vb24dOlSIzC3Ys+BmxNUDki9+HMVccTZcRTsckJQSdxRNdDpdMrOocVi0Xg3hoMkJseKywKRj9PwOBBoyIbUAV9+bwL84B4vJj4jcebnG5TywuM+jhTc29trJOqs6GmPhEluL4MyKD4rOo+X+XSFy2AwKLuzWGwsPgMNGGaSYyhlrudaDCPy1u/34/T0tIBJXmBsvc78dPCcAZbsnNgJPD4+Li/S3NnZieFwGN1ut+wgZBw8Z7ValZ2CvBPNcm9jm503OzMGgjzXyB0OgAGIi4J+2naVCkpsNBo1nsP/nHscEeUoBRtl5D6DBnbMWI8kyFgPrpChjWwIs+K38s8KGWVtIJB1V6lSpUq3MzmAiLhpPw4PD4vflBNoBnPtd9le2pbYP4k4O5rQehz706bbact+o31EgxiMIyfRnDyDbP/8d06mQfbT6JuTU9lGQW3BcQa2zT+PMyIaiSL3yc/0ez5cWergM88DPLp8+XJcunQpLl++XL7D9vrdAzlgyvzOPrP9GD4DGMMPxJdtS2CaB/iHDupPTk6KT2ge2l/yjjWAEvvv/tsyaX+Qtu2fe57ho/0k/m5rJ1MGLCAnkpxMyUBZBpRyG23PywlRKM+hP2+L1fIYMrBjyoF/Gy8sm7l998+V5+w0m81mjeKurKMimu+1yN+ZjwbL/LkpgwgRZ4APMuSEMX1yTLu/vx83btw4J98XjR2yDm4bh/8nVvJ9bXNYqVKlRzZlm9imU3Ky3jG1fQ7rD9uw7Ne0AeMR0QCo5/N5IxFjsk33KyPQ/VtbW8Uf6PV6jZNy/Bz7pG26k/6Bk0U03+vqRI7xOo+R6+Fttpm+LmN+jAnbwPja7LkxNfsGuWDafo/9aI+b631UpjEhvhsOhzEejxsyYv8XHwg8CHt8dHRUdoDTRwi/z+9Dsg+Ffwg/8pxh1/B5s23D9rqf+KA+CtwYH5ixMa3s+4FLutiF/nqejW3m8efYhXmiPzkmyLERc+k1B35ovM2YnNe8k0JO2iATxg0ts8vlspw8xffL5c3XzPiVMcwtG124dmtrK3Z3d8u6b5ML+4FZV7nwbrVaNTYSeI3n9Yk/1uZPtcV69umtgzwfERHb29sNDNp5ARcCMM+8hog1Yxy5La5oi4uIaX3yl3edcV3OtWQZtp9qmTDPre/twzNevmNzh+2H++L+W8dwHX33D8/K1+a2HgrdMskzE0phf38/jo+P49KlS40kCYLqSsCcDOBajlRkUrzjh10vZnoWVN7f0OmcJc/6/X5MJpOS7feCywstGw0+izjbgmkwhYXhrCyCTx8zCJEBGhQiz9rY2Ijt7e1yj3npfqHgj4+P4+DgIGazWUOBMhaMgA2vX6Le6/XKNTyLZ/O9FS/zQl+cxPKYbTBZPDgvEVHOTYZXVA/x/OxY0AcntCxDuXIjB9cGmDJwkI0WBpZsP0psZ2cndnd3y/vY2gy+lRAyyzOtvGyc2hKTlgmPB8eK+bLRs9HJitSyQ5VJxFn1D0oMJcfnPAf+UVVjJ4Q5JanN/DKPdijgK/3NlMFVxmNFTT9JkmFoMGYGWSpVqlTpdqU2n+P09DT29vbiypUrxTb4+gzecl9EMxCxrqYS0bvEuc/+kp9jsq8AtVXY2ofMgRbfu238ERdmOWBy0Opg1bzLgL371AY4OZjJQJOv29jYKKASgX8GregXvzk2xUFH9mM5Sn13d7e8ryAneni+QRQf1WL+0Lfsp3h85v/p6c13EXOqgINFz2su6skE6NbrnR3BxHwZJIQ3WUYz/+wfts1V3oWU5zH7wch5lnV/3ubj+F764ODRYGYb4OjrHajmgJ7vLwpI6UPmV14XXg95rC6qMqho8CiP2z6d28SnWy6XjRefu0jR/rz7jCyZ95YJAzXc70Ce2MTv53EcZaDBlb6sDYPDq9WqHNWYx0gslnefOdbNMUrmXSbr9wyYVKpU6ZFPGVB2UsXYl20L/5+cnBQQPO9IA2cD9zG1+YQmJzzm83kpqMn2Ad2LDvQRfdh+xmKsx2P2ZxnnsU3wq0D8fCcwnCgBk/PY6SP3kKAgqWBdTJ8yxhfR9M1JTOWjFpkX2+BclA24j/3PPoPtP+P1UX2DwaC8diRjO51Op4Gr+ujkg4OD8jzbOfMafMbyCL9cxE//bLcYDzzPPraL//mcQrNsP/FzuNY8RN6cnDDm1HZChzE1yxpFX77PfjS8pw9OiFn27btwAhb8NZZM+zwT3NXXwmdwMfgKzsfYvWPIOwzh2cHBQWxsbMTOzk7ZmGIdgJ4h9nABl/lvv8prAx0Ab+CZX//j3IB9eT5j/bXFKrSV/Wp47SStcwrwKcc79q2NyXruWD/j8bhgk8a26Yd9NhdIMqeOY/mc344HrRfpl/sbcVZwlX1K/53907Yxm/eWt7Y11JY8g9fW9chjGx7wQHRLJs88OHbbbG9vlx04DtgQcIyK38flxE3EWdXCcnnzuDiML0KezyBFSB1gMzmj0Sim02kxXH6Ok0j87Xbdl/ydhcoAD5SdjRy0+p5Op1PeSWFwxdtV8/GXvISa7ZtWJvCJY3D6/X6sVquiSK0EZrNZUbI+39fBM9XRKKecKIQMwDiQz4AcY0RRuLr6osAxIsoWYpQnxpw5aQML+W0AJDtbns9Op1MCdyu6/f396Ha78ahHPaocFcQ1tGlD2e12YzKZnKtOcb+ynDjBy/9WUDb+NuqWJcuWQSvGBajl985huOmPjQjnQSM/tEsbyCU8zWNFLpgvO7AZuMlKOCt9K2f4QHLT/1eqVKnS7U4OLnOQd3h4GN3u2ZHbEQ/dWYVsa7FHtsUR59/9ZD8AX8LgQL4/Pyu37aCJz3Kg5ucZ1HfAjl2j7TY/xAF7Hof7n4Nb/5/v4x4CNffPwTm2lQps+5P87vVuHj3DjjaAr7bj+xzcdzqdUtCUgzcDPA7i/Pzse6xWq1Lcgk95kR+UkzL2X/Af8WPst+UjYeCt4wv6ZLDM1/Pb/TIYmMdmXvuoKyctstwy9/7Jvpxl275oLrLKASo+eAaE3BY8zcCeZYF78OvbKOuGNsAy+94X8d1z7Urb+Xxe4j2ugXKiFZmiH23rlevov0GsHJPA636/X3zUzC/rGGIQ1mTbjjPLQI75vK6yPvGz+BvZ8v+Zr45bK1WqdHtQG5iai4Gy7m27321kkNl+Un5mW5EH+pFiiNXq7GQeY0IuzHG/0HFgUxHROAbNPoILgbL+ow3er2rdGnFmu9tsIuOzrcs23/akzabSh4yxuKA8Y5rgJWwo4Hnmk/0HsE/jIjzHJ0fBKycudnd3CxZr7ApMkk0K8/k8ptNpeRUN7Uc0j/TGjiOH9mlzsQ2y1raryUlT89A2mfnG9jLezH/bSxJM9g+5Zr1eF9sPvrVaraLf75/D4owLI1Pw2jY9+/J+JQ3+Nu0awyaB5de0OOlkPzFvfMAv8vPpG8/lOor8jcXSbr/fb/jGR0dH5d1n/X6/7BZlfKenp7G1tRWj0SgWi0WJMfMao7/48PaJXTRpXuY2jE87aeaTSBw7cW32tSKicVoVvAfjhTIu7jYdRzgONm7vcUVESTY61nJhIZsMoFw0AJ7qZ7st8yPH9+ad5Yb7nACE7Mv7Oz5HN6PbHK84ZvGzGFeOIfI1D0a3TPLMzPDCibgphOyEGgwGBZjh5aAWvLx9krZZ0JPJpCxEAPyIm1spqUplou0gWCGheJyYQdgRXC8CyO35mLoc3LvS2sFaW7DoRW+ABuXPsXn+yckUgIgbN27E/v5+I4lC+1RrogxRyqPRqBhKKkmYB5Jox8fHMRwOG5VKGMNut9s4xs8LIweZ2SBZgVsOvEhRMDkJCH+9Y8nPyLLZpjDzwsyADUrKgTyJM5yNzc3N4jQg26PRqBgenDODPZ1Op5G49frJ/bFShI/IQb7Hz/FYLW/wMZ+r7Gou+JjfEWGZbttaD0jnOY+IxrUGl+g3iVqvpzx/+W/6tV6fnQPsqibknMRZrbqtVKlSpSYYgR3BLsxms2I//JJw6CLHNSdWPvqjPzr+/t//+yVweNe73hV//Md/HG9961sbIDjtY4dcgUu73iEecQbYOICzbc22oS0Jgo1zv/MY+DsD2NjfNl+Xv3MA7Wd73NnWZT/F19vWMy7G5vc98OMdbAb1c3LFfmen02kcGWn7zxhyMZOTnPZLzDMHp+v1ulFVTnDudzeYp9mnyQGWA1XzGp7kRGlENAJpnmH+eh4M0OSgsg0gdGBqwNJFZPaP/FlbEGqfNYOe2dfGBzR/Mk8zOJnXNNWe8IXPHsiHchI1y3yWZfM386Mtaebq6Ny+59D9z8/2M80Tr1/HTQYsvE6y3DupzLN5Puvv+vXrcf369Qb/HMNERAFE81rJMZH1RuaD783jQ49WqlTp9iFjI/zvRE/GSy4qashFBVCbDTQWw/e2T9Z7xObshM82H4zHfg16FDtrv4NCfZ7vXSv4A9g+Xulh/9I/bZid+2dAOduyrIdt280Xf89vEmdO+uHPuH3bMftdJDrcL/syELzMu8vG43EDg8U2dbvdcqw7PsLR0VEcHR017KATCi4mb5M3ywV+Zsa92o5mznip++oEJrJOUsJJFXzdNl8APyC/SzXi7LUlTuAZn4s4S5j4Pb185500lj1eccT8O/HgXYHb29tlLil2B7OF4D3XIQ8kycxzsGEnGEnQMXc5JmJXouePNcxJUsaC4fnly5djuVyWzR0RZ74Pc2I5tyzkBBT8s67wms/YPdd5g45jI/tTTpCypsxb5xfoQ15bEVGKFZ3g87NWq1UMh8MYDodlY0tbAZRlMcdftGnfn/azz+c16vmEr/4uxxY59oCs03Lc6D7SBj4+92YdkBOHD+bvX0S3TPIMwbWTbgFmMaNwNzc3YzgcNo5SjDg7jzXiJpNIWCBYEVEUEmA9SoYMukEUPrfhclBJUMg2ULfJ9Q5aLaQZDIlons/K9ZA/93cZjOH/0WjUSGgZIHImnKTWZDJpgAK8vHM2mzWUMXPDMSjL5TJ2dnai2z3bTQZ/4dfR0VH0+/3Sn7y11wYMYCcHqR6beUZ/uM7KzHxrAyycgLKy9jNpzwYOpwHjYucMuSGYxaDNZrMyR8vlshgYGyQ7CFRGYeQYJ0ljgwJZgeWKmjZDkZ2j9frs5eiWfytRFJGriTc3N8/tOGP8rizz8zCobB9nRyTrh+v6/X5Mp9PGsaCeK5KzeVuzFXueVz7PyVo+cyKNecsKv1KlSpVuV2pzQLF9k8mk2My2404g2yL+x/973OMeF3/rb/2t+LEf+7E4ODiITqcTz3/+8+M973lPvOQlL2m0kfU6dpiA3U55xBmQ3wZo2+45MUTbvta2w3Y9BwwZMM/BRLaN9lG4Pvst+f8Mjrt9+0IXVQ87QI04S6bZ5+I6/GsDN/YtGRNBjo8ucVFNTh5mG513XWUwKvsy5oNBjxy0ZQCrLZnXNpf4C8QYbTsGDdq0zS3XOPht82P9Gz/S8mY++P+2304cZj74qBV8MM8z7btozvxinbkf9v0ZmwEi88kVpYwxJ0E9L/Zb7WeznieTSUmcGQzKc96WUHf/2nSCfWrPs+e6LaZz7Mg4XKgG7wBJ/Pfe3l5cv369ARq2gdARzaNYfZ2BCb43IPZgbTvOqVSp0u1Bxr8cH5OM8q6EiLMdSE6otGET1uHZBlpP2bez7c8JFLCpra2t2N7ebvgLtEnfPbaIKAX0Pgp6tVrFYDAods06mueDezEuYx62o9gafl9UGM+48xGJuejEdtJYGP3LthiiP/6e/mWc1UU6mba2thrJNycBIm5uQvCR3o4D2HHGnHHKlQvU/EywGDBc2nNSyclM75Sy32EeMzf4DN6lZFuYE1nwljmyXPBc+4Pciy9jDDG/O82+EHEHRxUyH6enpyVJZT/UfMAvtb33WnMxI9/xTF4n46QS8YHlypikN5QwD/CHsZEsPT09jfl83sBDt7a2YjgcxmAwiEuXLsXVq1ej07mJO4MtIxPwYTAYxM7OTgMvhc+W4exzs07afNKMJzM3PBtdRzLRuK4TbcwdfUOnsMkGXtufzMlc5pVnuhgr5xCQTT7jnogouChjZhMG9zD3+VVG+XvuyTE2/feuV/MtJ+PaYte2ZLj1kws1aCsX9OW4yuvW7efY8aHQLZM8g9oSaHlyCebIQBNoRJwpd5QkSpfP2BrqjDEKHcOfFaGBFCbRQIEBIibPC8UK3QKQF7fH58/dTg5uclU0z+73++eUJePixwLFrrt+vx/z+Tz29/djOp2WJIINNEKK4jg8PGzsRBqNRueCrW63W86zzXxA2eI4OPD39Q7yIferbZx5keVMOsYHh8jK2MYWufD25Iizc2kNLGDgXNk0nU6LYqA/vGuN3XvT6TSGw2F5Bslc+ELF/Wp1diY1RwuasgHPQIAVForMAJsVuYEkUwYxPCbaxbA6OYpR7Xa7hU84AQZceC7GGkDElXAcrWhwKANlmbITbIOXE2c4Fd5mXalSpUq3M2X7nH2C5XIZh4eH0ev1Yjwen9sZnsGNtvYJUl7xileU3WxvfOMb4yUveUk86UlPire+9a2N67Nz76RBBk4c8Dug8g/BWk4AYjP8TL9/wYmcnCizz5cTSba3mc9tgbDHYh7AY8ZrIKetfQedObC2vcavzNflOet0OiVIzruP7CcYtHHCIoNBOejJ/rRtufti36UtIeL/fU32wx1geweY+5jb9lx7zum7A9K2giautZ/pZ9nXNdiTwTQndvL68FgNtmXgznLP7+Xy5pFZ+F/eaRbRBKxcUJVloE3uPBa+c6Dt+cbXXq1WMZ1OYzqdlv99H89tA1QYe5uO8vOy7FpuLPsRZ8VktOcqduKCHNhD+Pbdbjf29vbi/vvvPxcPcp37F3EWv7r/BlQ8D5my3LfFmpUqVbp9yH5HxqyyLkZf2BfkPmM4ERfbR3yoNrtsch/sK+J/DQaDxjFxxmf8fNvy1WpVjjnsdDqNdyKBJ2FnjHEYVwKLsV/F3xQG28cx5oDeZ0zuM23mopVsm9D32LPcd/risdJWG7lA/KJCIfsY29vbZUOD8bpO5yyJwpwvFovyfjOPEVwHHwMsxruSLBs8n3HBdxfpW4acfEPewJD8LjjLsRMp8MuvVjEvwLG8gw0c0pjr8fFxzGazRhLIyT/8aMuHsWf7LLyexjGIsWDwYPwD46xOOBhzt89sOYOf1gc8F/l0UiXi7P1qbNQAt4cfbH5BzpCVwWAQk8mk8JvnswkD7DX7ltYTxoBzwsaJKY8/4iymM7+zDMBb5MybBSxP5CfyphmOv3ccRD+8tuA38uu4ISfP+Jt1xKuCPF9+XhsezHMyL5FTxpH916yv3Gabr0u7OUFn20EMxo/bp014n/1k89Tr+aEWgd0yyTODLwbc2ybDE5krQG1gHJjy7i8W8nQ6bRgykjckeLJi4Xm0l8EYOwg2GjY2rizwws4BWM748lmubMjKgmdzhCLPxZD6BdTcf3JyUs4cJnHAOPNunyz4XLdYLAo/+SHpkYEyA1l5Xg145H56HA5E8712zHKg675kpYHx8pE58NxtMwcofyff4B+7sEgKAibayaQfbHM/OjqKxWIRw+EwRqNRcQBddUw1FPLgs5zz2mgDInAK7aRmUMzrkLFaoVvO3Aaf+UzfvHZsjHByMJTwNoN7rF2f3T2ZTOL09LQ4Hz6GNK+JvDb82wqZ+WIe+QwgsFKlSpUqNW1Mdlit5w8ODqLX65Ujm6E2QMTtOmFi/4ATBwaDwTnwxQFUWyLCRwjnRIJtJUGfd7+40pR7csCRr8lJiwzcY8Nt7wyI5MSCg6yIs+DGAIfH4aQacwJYkoua7Afz4yAD22vf1vPooJ8Xv+NP0ldOiMh+rgPgHGQZYLKPbB7AMycl8Fc8ToLhtqSMA2N8I/PDR8LkRIf98yyLmf9Z3rx+GJ9l1DudHkjW8bfdbm7bsmS5zdfneKstNqEwD2BnNpuV0wHoE7/xUR2U0wfkNIMfef3DQ2TShZMk8Sgs87x6vmnL5PEjI+aT58yxmtdtlimDTgZQWI+OV9EbkOOLGzduxPXr10tb+LmOn+zLOtZze3nMGTwx5bXn9Z1jtUqVKj2y6SJ7YhDdICp6ynqnzddDH3qXFe1kbMv2oa1/2ZaScACEd+GT7Td9Xa/X5R1MBowZB3oPm2MbAbG7frlclrZ4PyzJFHBF+wtOHBiDsL7nWfZ3IfsozEvGvjIwD0+53ro+JxByYT5zYazH2NSlS5dKEsTPgifw4/j4OG7cuBGdztmrd8Ail8tl4/2k/X6/vHrG8sccG+9l3lyg7SPE4Zn9ERIxxv+QQ+wsbXa73VIwZF81Y2EZD6SvPIsxwh/8W9457Hejsi5s15fLZfHlnWxiXDk5xDPsz3teLUvedYicevNALugiZjKma3/ZbYJ32n9irH4Pm+Xeuxi942s8HhecNcdm2Zf1OnGiLyeIfH2Os4x5ep2Ap8JzJ2D5cWLf9zpGtWxyv0/B41onZduwWebWG4osF04Ee45zsvQiLLXNV+e3+XxRrgS6KBGWMVr/ZP0FD/03bdoumfdu58HolkmetRlZDFi+xgY34uauKQyljQVKj2SShXYwGJTqEh8TxzbGPGkZOLGDYMVipyCDHQ4aWcgONrOS63Q6jZc9ZqOYBYFrcpVHVkj0gRdwYrS73ZtHPY7H49jZ2SnbqrNS5n6DFovFohy/x2csahSqnQD3F8PEd1Y6VmYZDGC+HYiu180qUsafk0he5JnW63WpTLFSsRMGoMT42F5O8hEjPJ/PYzKZnAOeaIMxcKwlx5JSebG7u9tIlK3X6yK7jG0ymTRe8uh5zny1/ObEqJVNVtJ8nsEdy7ANJW27gsO79Jgjr0+eYUeatYOz1uncTFweHR01HLo8Bs8l/LZy9RgcCPi9ZzhKlSpVqlTpJl27di329vYaurYNoKBoxIHERZQDlwyY9Hq9+PiP//h485vfHL//+7/fCABNBvttD+0zRTTfr8X1LqbgOnwa+27Z/8yJugzK29k3D3IQYN7la91ebtt+nr93UNVGAEb2BQymtAWt8MvgBdcuFouYTCaxv79/LuHnkw2w+QR4Dsgyb+mPA9fT09PG/DtR6Epdg0SZz7Tja7Kf2hakWV7awLa2ueJ+B8J5Xg0YWn78Y58uxwHum+UxB8U56M0+oINPB6v2XbkH+QE4Ozo6ahzx7uRfmx/KerNfbvI48dOOjo5iPp+XZzBfGWS13HjOsjyYnCBzAs2759r0Sp5L2nJfDCYQm5Jco0/whaMaPZ+W8V6v16h699hdANgGgrTFO/lz61CvhUuXLrXeW6lSpUceWd+hF+0j5Gr/iDNdlBMaEWfHmPkzY2nG7tpAWNsC+hfRPF4SfU1Cy0U79nU8JnZhOWEFprNenyUz8HkMSrutfr9f3j+UC6v5DS6Xi6CNZRhbs963fYZXXGP7av54Dm2Hsn3Al/Nc0EabbbUf0e12Y2dnp2A48J5j+UajUfnd6XTi8PCwfOcTfhaLReMYR3xF2szvrstJIhe82Z+zTGZ/iuQH8+qNDcwxckHShkIh78JyogC+gh9lfNh+AGuGOacovNvtFn7atnMPBfbeJEFfkAewaPvD9NG4a/bV8YPggWXessn8e9cbfp99eRf4RUTZnZhfETSdThtHYLIBg1hhMBgUzBp8dDqdNnxV+uGkTfaDzAfG5qQp4/S6An80OT9gnWUdYkzVvIUsjz4mneflOdjc3IzpdFpkJcchfM7fJCzzLj3LlefUMYLjghxrZD/Uu2stG1xrX9a613yyPuW+nHjMfWeM+bhH9zfHNNlnv4humeRZRHOXEWSwou0zJorjQ3KWGWPmY/iY+NFo1FASPBsFlrPwXlA5gWbKQSZtOLB3Hw3Y0Adv+3am3s+wYbSgo1C5x2fj0g/3DcHvdrvl+BMqP7a3t4ux4HmuGELBYyjYebRanR0t6EV1fHzcSFZmpcb8oGzaElhWUl4QHJcCX510Mn/MfxSnF7Z36NlpQYnTHoYx4uzcbYi+mG9W4paR2WzW4CMyOZlM4uDgIHZ3d0v1jYPz9Xodw+Ewut1ukVfvRGOsOZC3/Fq5eA3wAlDPgw2vZdpJOW+Tz86w1y3OlR1WKo/sBBr8QFnn9ZOdvTZwJI8Rw5edICqFSAi3VU1UqlSp0u1KT3rSk+L1r399KSywPbBd73a7pdCBYKgtgWbn1oFHv9+Pb/qmb4rlchlbW1uxt7cXX/d1X3cuSZSLJmgvFyzlZIBBBD7HlhFU45Rjv/Iz2sD5DB5lvuQf+vdglH2HDK7kcXu3Cteb/7aHLq6yneYa+AdPbNexy4eHh3F4eNgA7yHbbgJBwCYDFR6ricDPRVltfrZ5Q/95ZhtY4X5mH8L+VPZFaSP7lZbx7PMZoMgAWZvMuJ028Cz7NNmnznLp+cg+Nf4QY+Ea/zhW8px0uzerZC9fvhzb29vndoTho7lqOVf+ukqaH/zJ4+PjmE6ncXR0FJPJ5JyPy32WnZwA8zh9XY45nVSHBzkGMVkOHF9dFG/4PvhpuT84OIgbN2405strET5afjOA0ibbHnObzPt7A7FeOzV5VqnS7UMUqdg+WMcZlN3a2mrYs4imTXJRTsb07BP4evSjcTjbIPAI4w0m4nn81I2NjXJiEP/jU2BvwT1s840bMn4nCyggGY1GJSngfuLX0j+K9rETYFX4D35vlZ+NTxdx/ujx7Itm0Ni2hzHlghbjS4y/DZO1PVqv1zEajQqWylwNh8O4dOlSXLp0qezCy4XRtvHz+Tym02lERAwGg/L6HXxJ2oXnxjbtbzKOnDAzf8DwaNPFYdnPYp59isL29nb5/+joqDwv23rbWbCm2WxWPidpy7qZTCbFvnMP/YE6nU7ZwUbyrNPpxGw2aySc3O8sZ14f4KhcZ8wZ2WGuPXc+6cA+gpOI+XhzY5eMiZ1l6/U6ZrNZSZKRUOU7xtnpnB0LTzLNfWDOLO/ZD2J89vOynsoxn+fT2HYen/th/kF5PeX1yjyhd3O/kA2SumzAQL68nlarVeP4Up7NOrTfmf1BnkcM5JNbkHPfn3HejC/ndQHv8tGnWeYse1kPQfbxiTGsa9xumz67iG6Z5BkD9URZYDNIkpXKcnnzjNzRaFSUYL/fj52dnZK84T6UDAbMk+VMfZtg26g4MeEA1VlmrgWgd7WOhSsHQTZmWfiyAFghsussIorR8k4sEljuPwEqQa+TIGTDHURbSbDQ/YJVB8kRUY4vZJ4ApjxGLyofndjpnO2+y7zNlUIRN5N9NhYY4bZg0jxHDgA/nDhCHlHo8BJi15nl0s93tYGNvAFFyxkOKI4eOysvX75cjKMBIJ//S3+s2OysGlCwIqRvnt/T09PCP9rxvNihs2J3O066QVaQGQTxOnI/kJ3JZFLmeTKZNIyy+WuZzcqTz+2UZ+PDlvtKlSpVqnRGv/d7vxcRzZ2+beA9NoaKQgcF0EWOLD7Tr//6r0en04l/8k/+SXz3d3938R18Xwa48/9Q9hkzsN5mR7AJtk8ZjGBs+Z0FmVzQ5ACL76AMqLs/jIHAyX5DbscAVNuYHWiYNzmZAx/z0TEGlyaTSbHH7ocBiAy6uFjFPnq+1nwxsJV3BNLHLJN+vkEsntUW4NqvtA9vH9285NnZj8lkECcHrBfd52f4vhxQZl8oX38R5bny3/YbczuWD4rE8HkdF/A9Ab8Tm459IOaEdwJ7J1uuLqcfXh8RzRepc03mT9ZZObH2QFW0mb/28b2+4GE+nhG+2S89Ojpq7Oj1WoZ8SkLEmcy16d82eTDf6EOOYTN/4MGf/MmfnGurUqVKj0xqw5ocS1ufe3eu7wGXQJca87Jds17NdsFYR/bfuDdjFz55iTbxc7BVxPfdbrf8PRqNil9lbCbjcPiFu7u7paiadzo5CehkghM9/p7PjM1kny2ieYRcxr34G1tj0J25ol/mrXlmG5/nJmORtNXr9WJnZ6fM73K5jN3d3bh69Wo5hnC5vHlMIc/Cv+KdZpPJpGBdPlocHnvuSVz4iMXs18FvMGD7my4sA5sjGWcML/vD+H/Y8+3t7cIf/JM2m5uxPeIXz739AG8A4X7P29bWVuzs7BQe+P2q/X6/nJzkonAnBTPm7M0DTpDAP/h/cnJSklYZu/Vn4M+MbTablcSp5xUeEIOcnJyUQjrrCXx+eMExnxx/PRwOyylUjCnjx9zrtWTdgf/m5FvePZf1GnLncXi+22RhuVwWeeT59hGdUAd35XP32fgya4ljYVers/cyIutsHjo4OCjrsK2vfIbs+DmZvEaQUevHfK35n4skHMc4d2CMNqJ56p/55zXEfZ5H7uX3Q90QcUslzyKa5yZDDpIcmEQ0lbyPD7xy5UpJnPGD0aFtdr8wKVSpkEjimTzP1asWiLxQ2oJdJo3rDOJzT5sw8yz/hjJQ0ul0SsBqZeBjTuATxoAgNSe+SLBhEL2l1Ibdz+e5NlgGMhxI0s5gMGg4Cyw+n1sccQaKDAaDwiN2mVlGDMAwh/CcNv3uADsRGCO+z4rTCxbDY8OFEUCGJpNJzOfzwn+eCbAA0DAajWJra6tUkiCv5j2VObu7u7G9vV0UEHyhmgZewR9X6WTFZqDBysWG3mARsmN5y2vCa8MVuBhpK0AcTnbVQTzP87der2N/f79U7mTn0c5om8PPWrPDn5U0a4Q5tOKuVKlSpUpNsNrAbbb1OMqnp6cxmUwahSn2l2xbc1Xxa17zmpjNZjEYDOIbvuEb4ru+67vida97XenHRYQ9z4A//c1AOWRQx74a5OpMipOcYLDPYJvEZ/afcpBtwq470HV7ThLxXQ76MyCS+eBneie4EwcO3vO4sMOz2awcTW3bzDiyjeb4Rj6znxDR9OFykMXfGaTymOx7eh7hpcEIgkX7PBE3j4I3P/OcmQ8OPO1TZPCOz/FDzJ+cGMrgWeY7z3PbObh3n9xXz3tbbGF5y9/nteOYIMdBzJHl0DLt//HBOPXCgCzPhz+uVvXasw5pC+Tz35mv9lHbAAOvbeJBAy/eFbBenx27Y58aMjjV7d488YNdm35eBgugDEJ4DMhX27rPZFAxA0PWfw+lrUqVKj2yKAOW1oF8byDX19t+ZnvX6XTikz7pk+LjPu7jzullvp9MJvH2t7893vCGN5Si2YjzgCuYku1h7qvxNfeV6/kbENpJlfx6EHQ+R+eRhHHix75wxNmOahcCu6/5FSUZD7XPgK3xHPiVGAaP+cz2kx++d7LBPPVv/s595D1m8GdnZycuX74cw+Gw9BecjlOpwFbAxpwkOTk5KT/5yEH8CbAzzyPFZPTff9unN9YHOTljTNBJooz9rdfr8t5Xnk1CJ6KZ8ORz5hFczWRcDZzSu5sY93A4PLfry3LkdWQ/2rsX7RvBX65z0pKNFtPptByFyjNzktc7peANsZHniXnwiR4kUY+Pjxvt+jhI4p3FYtFYZz7aMBe3WZbtM3vt2W/1usoxIOO2n+SYIOOn8C/rIPPQMslnue2cB7FseCMHccz+/n4jyWm/kHyITylj7O6XCX5lHNk6tq1Qoc1nzbGJ/eIcF9Cn7KObnOBs89f9XMfRD9WXvWWSZ3bic+DoxZAHbyGMOFtQJGUwGhZiB18oIoQp4mznjrOqbQCLAxgvMp7j6xEOf27BaMvyZlAk4nwGnQQMisZnBKOUUEwYYoTToIEXuqtEc4DLWOEp43fAZdDFO5cMotAuIIWTZOaZq0Gyk+B7Wdxk4TGQDnC5Nzt6KN3t7e3Y3NxsVHcyz5YzFCMGBaWOMzCbzQrPF4tFcQaQMwwDBn5/f7/I/cbGRjnOaHt7uyTWuPf69etxdHRUtsMzxqzAkBle0OpdVm074WzskRP46ir3NmCCviGPNkCWq2xEI25u72fXItVE8JwxLJfL8q4Ly4H7D/leO1ZZMWfwBkchOxCVKlWqVOmMsiPb5v/4OuzA4eFh4zhq62AD9twDrdfreMUrXhGPfexj4/nPf3688Y1vjBs3bpwLiA2quE+2dRDBGPe2BSsGFOybYtvwJTLQkP02AzAXVag6aLTdsb01ZV/S/qN5kpMato8Gm7Dh9MEBpgEn+sl18/k8Dg8PG0FfDlppA7/Hx3bbF6BteI0/wHd5nHnsnjPzJvPAc41/wW/vxrMsMV7mnD468YDPaf57/Pa1MxgXcQbMeAzud9vfWeZzDOIx2w+/KK5oa8fksdnnt1zn4JTnu/rdyZ3j4+PyvjS/08Jryz4m85GTh22gKsRaMOjYFkjndWEQoA3c4Lp8VKllzrLkuJGxn5ycxMHBQeNIUvjLc5GPnLBzf72uc2EgPKUP1on+n8+sO3Ixa6VKlR75ZDA0f2ZdZ+zFPh3XGXuAut1uPOUpT4nnPOc5jWSTCSzoTW96U7z0pS+N69evn/PP/Cz3zckzPxOd2GYDI6LskqJIm/ds+X7wRd6nlvFH8LGI5pGU9Amsg35yn/ER2yoKqb1jJ9s289tzA2/dtu2CT0vIvo7tTfbR6Fe/3y+2rN/vx7Vr16LTuZn4tB0FV5vNZnF4eBh7e3uNd3t54wKn/vg1HhHROOLbc2ofwXKRfT1jXFmmbQft59rXyEf1bWxslASaT/PieW3Yp30A+xP5ZI7t7e0iQ2B8JCq9Vh4It6OP9Nt+PXPM8/G9XDyO/IAhe0cYz2Vtgz+Dc/r9f2wG6HQ6RYYZ+2w2K3JGe8fHx7GzsxPj8bicJBdx9s5Eb2zhvWdt2F7bGmEuLfOWI/SVYw+udaEbfWVdG2PmHq/VXAhovNvxwcbGRgyHw7JemCeudfLd+PZ6vY7Dw8Oys4y5znxwQddkMil5gbwm+Aw5gIfZJuRxWjZyzMln1s1eb471chxhXenfLizIdsR+tNfbRbFNplsmeWYm2BBHtIM1BtotIMPhMDqdTtmBtl6fnS0b0awyWa/XJZPNWcME+N7al8EAB4G+Ji9WG1TvkmLx5KA/G8C2AJe/USQkCTGwp6ensb+/XxJIFqo2ECaTv8dIuKoD8MCGJP9GWfh6yKBV3i7tJCf98O4n+EhCyJUKtDkajRpjZa5QQt7R5erWwWDQeF9b5omBEPo1mUzi8PAwJpNJY+uolStn8lrmkEmMincFkvybTCZx//33N166OhqNYjwex2q1isPDwyK3VIwjB/TDL9y0Y5IdRwfKNjAO/NlW7/mEvwZ0aNPgotc1MrKxsVF2iJKgox/ML2vs8PCwbM22TGZnnD7xuRW2lbTXBTKALPkI00qVKlWq1E4ZfHbg7oAdWiwWcXh4GJ3O2Zn52W/I4D2/j4+P42Uve1l8//d/f3z7t397vPjFL47777//XJ+wN9kvzH01uOCCnQwuuC8ZOHAfbf/oh/uED9Pr9Ypvxj32pR7I94McoLv9nFiyr5r7litsPf7ValWC4Ww7zV8qHXnXbZsPQD+w97Rrn8PP9vxkoMRy0gaQZd/T3zsR4KM/7W/Qhn0ECF/B/g/Po/KcYNP+Ezwx/50otV/kIqUMDFpmHScYjPE1/M01bbGS+ebg0n3P4IzJ/qFlsy04zkEyvvzR0VEcHR0Vv9R8zTtUMxBm4CLLBv8bsPF8egxtwGJ+ru/1OvJa9NGjbd+7j8gXcUQuEryon9590KYTeJblLvfFY8j3Wle4HwA7lSpVuj0I/WHdb51ie+ZdAtZLbWCldXRExI/+6I/Gy1/+8nPPf/rTnx5f+7VfG095ylPiMz7jM+Inf/In49KlSw1wNe/AQk8ajG6zW+6b22On0HK5jOFwGP1+v2A13W637DYDZwSHM77nZzqJZhtIP22TraONH9JfMDjGne93oi77jdhlvvc8ghk5sbJerxvj8Jxzr49l3t7eju3t7Viv1wW7gcDcSJrt7+/H6elpSRCAS/Ge1MViUXwWfC78IvwwxxbGoSJu+lEcH4g/5l3wbeC+ZdntkISi4Mvz42Sxi6p4xsbGRoxGoxgOh8VfZq3wDPs0JGPpv5Ou+M9+tueJ9pgPy4NfvRNxlvQ5Pj4up0ZQ8A8Zw8z+MPxiPLQTEY02tra2yquTOGqSWMdz4GNUkW1O2rp8+XLs7u4WLN9H1fMM8Hon5Ri7ZZd1kTF3x56MzzyEX8Y1kXH7jjzTR7Pa97VPRd/sXyPnnkPmIhf8sa7Ai/f39wtG6rFYv3nsGxsbMR6PGwk064u85vnfY/Ua4u/sY/q6fKoDvPea8PxZZ8J7F2LYP81JtMxv+8QPlW4Zb5eB29jkTGZEM4hDoCwQKKrpdBqr1SrG43F5oZ5BChQOymkwGMTu7m45vsYZWQtvFhQHsCYEmIw99xpYcEDFeOwAmHh+r9drVHtg4FBg0+m0HH3Sduatq6UzGAKv25Qlz2aBu39WBPDYC9/PttLzYmA3oM8z9rGSOA4YguzQMYe0icPT6Zy9M83t5oCbxFmeKwil7uoZzpZ18sV85LhG88IKBuOTt3vb6aMi5+joKHq9sxfTXr16tRzfyDbcTqdTnAYr9V6vV15mS3ttgXUGLA0+wPvValWOlrSis0Nq8IV5ykdoXbt2LR7zmMfE1tZWHB0dFf4gI9w7m81if3+/IVNee3Z+3Ie2ajfzlz4DYOCoIR9tQEulSpUq3e6UA2p/bkfXID+fTafT8h7WnDyxk/++970vfuEXfqG8RLzb7cbBwUF867d+a/ztv/23Y3t7O+67775GkO5AxP1zv2znaDeD5v4st+P7+Mn20oGI282Ah/vqttucfI/B9+T7cgKtLQFF3xyg0RbzYnA+Bzz4WIeHh43K7DzX5gd+uf1P8zrv5GGuMuif58Vzluc388k+kRMd9u8jouxAz8Fgngf64CNQuMbHjps/5ov7aIDHQSd9NuDGMxx/0GYuKrqo3/xv3425zMFsRDSSn54vn+JBfyPOKpLhL8EtQNnh4WGpaDaAwf05Xshy74p4z6vlxLqINi3zmY9Zrhz4A4xZZg2gZf7mpJ51E7zxKwIyyOm+ek79DMuTdR7zk98Pmefe7bVV4+d1d5EuqVSp0iOPjIVExDnd6UQCfzuZBaE72vyoiIh3vetd8cd//MfxpCc9KSLObMhv/dZvxfd+7/fGj/zIj8THf/zHx1vf+ta49957G0fyof+M6UDZ7tIXFwLwP/rWrysBOxsMBqW4miSRi/GzD2a7kD8Hi4Rvbb60bRf3tvnKHr8xMSeX2jYj+Lm2vU4AeWy2r76PnWfwhx1j/X6/vMYk4uYR2Pv7+7G3t1feyUWfj4+PywlZYDHuc7/fbzx/ubz53vvs6+GzeK7ZHQgu5sSii8Mg22jaZudVliNjl+zmyTuD8G3sQ+WEAPPrz0gUWS5or20O1uuzI6LxFeAl/pY3V3A8NlgmfojlLxeX0292ZfE5c5djBPDj2WwWBwcH5cjJK1euxO7ublmz7IwzJgfmyO7DxWIROzs7Bd/l9Ao2Jnh3nf0uzym8d2LLPpPnwDGH107G+5FT+/tux+vea9hxUdZZ3iWYZc5rlUTqcnnzVK6Dg4Mik35G9iXdL3Qbp6b5VQDMR+5jm75qG4/9dvuvGRMAV7bc8XfWiY7xXESW31Xo/tMOP1k+HohumeTZRSB3VnBZ+AzgYxARat6PxGKF6V4sEWeJnK2trXjUox5VrqVa08rW2W0WjI2Vg1iUpwNeJxNMNhBZsaIcSJrlahaOCiRxRvLICpAdTpnni8WibJ31WbdZ+NyX3d3dGI/HxYnIhrzbPdu+y2J2IMxzyZwzJxhTOxneKbZYLAqYNh6PI+Ismcq88O4N2oZfXOcjFJkbsvcZ8KH/p6enxbhjeDhmxrLqbacoJP53hfEDGVQ7PeYlcz6ZTOLg4CCuX78eg8EgdnZ2SiKt2+3GfD4vu9HsWDEH7FzzedOeX99jpc+8rVarmM1mDZ4yP3mN8rcDfNbjtWvXYjwex/HxcanuwlGiT8fHx3H//fc3wK2sJzIQYHnNiTIDOjbwdhJwOB6qgq1UqVKl25EyCHLR97bPVKDyjs+L7nnLW94Sb37zmxvgd0TEO9/5zvjBH/zBYrcjLgaAbRtykiHbKHwBO+Bt4/Q9PD8HJ21gk/vL/7TT9hwX07QlIjN/Hby5HfeHCkrzwwA9tpxKTu8myxXeFGe1+RgGXHq9Xkmc2e/NSUz31/4g92SgyUFuns883waB4H1bUsHfO6jLiQlfl4NLnoWvAWATcebr+chz2nGBF+20AS2mtkDeAITXTZZ3AJH8Hgv7TvYB8YENjBm4tJz4fhcj8f4M4iKfKuGq4AxAMC4nuTLg5HnM82EwLMeTD8QjFzN6jMQOEWdHljHm7CtHnL3c3sAN/MwxmeXK697z+kCUdYATYPm6TDlWzfwF2KlUqdIjnzII3QbKgi2h79peu5BtZNv7dUajUdx7773ndk0Nh8OYz+cxGo3i/vvvj/vvvz8e85jHnEuGGZuzHuYa60T0K8S91v3YYvCiiLNkTPYdlstloxgc3yljiOAYYFrZBzIuxBiy/4KNxX8wrsZYbMftk+J/ZFtobMb8yAB29rOcSMS+c5QhGBjAPhij7ZpP+aGAGb+apJd3pvm1Gsz5aDQ6l9yzPfY7bLvdbpk/kk0cz2l/xnPj9wCbn/ah7BdajsDuWCdcy3U+/YHn4RPhB9p/tE8JXmXZGQ6HBTcjsYU8kuSiDyQEnRyDb+6rk9Jc4/WLP5eLGO1/9Hq9mEwmcePGjbjvvvvi8uXLsbOzU3blZdkkCble3zxacLlcxnQ6LTgnvPB6cbGQ/SYnrPy3fTqvZ8eQLuZnfXAP/4NXs6EgIhqYtv1DJ7ccX0HsOuOZyCn+I/LI2of/N27caMiNdbXl1Btw6HfEzeNWvVnFaxT5tAzzf/YhPR/WGSbHyt7ZmRNsxsKtz/ifOMOymnV6xn/Nk4dCt0zyjEVOEicDEG0DzsExk+EJJ4E2Ho8bu8263bPjAllwm5ubjZeAXr9+vTAdRdcGYkScHaOBYrJi4xmuunUb2UDRLtWe4/E4+v3+ueD2+Pi4seUW4+KXbKJoMVLsUvJuHyc+vHC9+GyMF4tFHBwclN1MnU6n7Ihy0OUFmEEOG2YqiVw1wZGErqjwEYUZiOInZ94J9gleeQbJNYzNRZl+DDvGngRl20LsdDplu7EXrBM1nnv6ul6fnQmdg94M+NBvnAqSaePxOC5fvhyXLl0qigk+QjZOGC/kx8E+z8vjszICiOPIIubFhtjzj2wxH1tbW4WXETePWzVQuFwu4/3vf39Jaj5Q/zKoxt95veTPL9p1ltdupUqVKlU6o+yPtelif4c/ht91dHR0LqHEfdgs+wUmA95tfXqgYgs+s23DJuIztZ00gP/mZxCsOPjOwYN3cTngsE10tR3Psg01D+0f2v8koDOPMjCDj+x73F+en4+6yfPq4MXf54Qg1aZOqNEXz6GTDLbF5js/Bo94vn2BtqSkfS+fmpCDPfxCnutjvLP/0RZA2n+xLFiefMSjQZwsV/Afn9D+oNeafWu+b0sO2Qf1uO3r2HfKvh/j550KJETd73w9Fc2z2Sxms1nxceGfY5qctPHOMgNmbTsbuI/n2u/MwKOfYb6Yf20JK1eV52Cd670bgecYtDGoAqjHOsr9y33x5xHtL5T3nDsesnxdtHvMSU+3az1Uj22sVOn2IeLpNn/JeFfGi9CpThA44dCmv217nNR52tOeFuPxOP7oj/4obty4EZPJ5Fz/sm9kn9E4T0T7bn3GYozAz6AtAHLux66jX9HpPvEo4xDZd4OXHoeTGPQh+2HWz27HRTS+1v6R8Tn3x1hTBuDN2/V6XRJnYF4kBQeDwbnjAEmcIQ/4eZzcZH8PrI4dZmCW4JZOjoJVjkajMl8UJjkZZbniFCV829FoVE4swzfL/id9sn9o3yv71My5EwO01Sbnxixz0tIy2SbnPrUKLI3dWmDfJM/ADB2z2N/0encfWcteJyS02FQAvz0W+u81RxL0+vXrBbME3wbv5khP+nd8fFxO2WJzAM88PT0t82M5Zx5Z+1yf8VB+57XveCpj/siRfTPWwGAwKDFs9sO5F1myHl0ul+VdZ8xF3vhBn0h2EUeTCM1xVcZCvaaZQ+dLIprH22c/2m3AD9qnXespxwRcY3sQ0TyVwm1nfXwRfuu/Pa85tmuL4R6Mbhlvl10fCAwDZaJtqK3wzdS8q4xrOQvUbZOMWa1WjXNTCeouX75cKh5cOZiNjpUKu6NycJ8NNm3YSUDwUP4ko6wQaJdE2NHRUTE+GZxYLpflJZBUHaBAXcGAMbFBpY/0xWfm8q6SyWTSAEWszBkbRwg66LIRd/YZhe7FS2IOEAPeoqQhV6LYCHm3INTv9xtOias/DPCdnJzEbDYrO/gAAsjYc23OmLOby0qiLRnjSgsb0AxC8D3VvjbEp6ensbW1VZ65WCzixo0bMRqN4s4774zxeNzghwlZ2t3dLdVduRI2Kxs7VXYwcDos21nBOnHNHNx3331lbD4Peblcxv333984i9d9YL4tTzy7zQFoS2QyhpxA89GdlSpVqlTpPNlPaHOms97OQf90Oi1VoDmRgk+VycEc/2PH7Cfa/pAYy32xk27QwD5I7nsOCvFb3Cfa9u6inGTxNeYnwZSrFR2UtPGD9nP/XGBkn8sACN85AcM1uTI6+7ARzZdd+zr6RFWv/XHzGT8O+2s7bcrgXB5DPorFY0M+8Hs57sTz74QOfKIqlCDc/PBYvOMvy43lKuLiHWwZIPH8ed3Yt7IM2291UEqbLkqz/5Of5/ba/uae+Xwe6/W6HKOD/MAXxx60S2xAm4w778rLSS/7Z67i55k5+ZnXovnqfrbFZOa1wQO3nXmR28h98BpCxpkbV/96nZtnWZby2Ex5TUPWkb4uj9tjgzw//X7/3DMrVar0yCTrc+/eRTfZblrP4RtFRNmBlXEz25tP+IRPiMlkEh/7sR9bvt/c3IyP+ZiPiWc84xkxm83iB3/wB2M2mzV0kH0LYzm5/9lnMB7iPkecP9oXQBy/LCIax83Z7/R4T05OyitIwBT4zjvKsDXwhPaMg+UTtXJhWFtBVB5nxhltS/O4uS/bNydCwCo5pQefKSLixo0b5f1l2DjsP5+DldEP8J/VahVHR0dx48aNxpGC2U6Cd7HRwokv+6KWA/OG8XAE5PHxcWxtbcVwOCzYFr/pn9eC/SvLnm0oCb6M7dlnsm322PL8es6N3xrHiogibz5+FBw7F2K1xW34W/ZfXLiEPJH8tO/Ojiba43/j2vh0nU4n9vb24vDwMLa3t0sxf7/fL+/OcwL0+Pg49vf3Yzgclg0uxp/ZWIGfmP0prvX85XjC3zu2NI8y/5xQhCcZhzax3ukPPN7Y2Ch4vxO2lluwU5KIe3t75aQ149GOUXI/LCe0abl0fNCWfMrEM3OBQhsukH11b0qxfnkg/5T+udjLMR5yl2MdxviITJ55kXryDBrwfxs4H9EMFPkfwZlOp7GxsRGXLl0q95GQIIl0dHQUnU4nLl26FJubm7G7uxvXr19vGK+2imQWHbu/HOiwgB3g0jcmcjgcxvb2duN4G4TIya2IKM/w0XIYa3agTSaTxhGOFjqUC2NyNYcNO4EuiQ4rXozs/v5+rFY3Kz9Q6oy317u5VRcQxcoOntN3eAs/MTg+g5VrfAyM+49cUL3Q6XSKQTZQgozQnpWmz97FYAPuwMO2IwcYE9UxXvxZHiHv0MoAB2TFjYJyBQ9JPvpD/6g6GY1Gcfny5bh8+XKpEso781Dc4/G4vOuPZBwy63VoZUR7bSCPgQSvQ+864+hO7hsMBg2j4LkxHzJQmRWujVt2luwIIE/WN3n+KlWqVKnSGWVw3XTR57YPETftH7tRsNe2020gywM5vg4825ISbUmHTNg8B7TYrexnEtjYTtoXhAx2OAHCmCPOgmAn2lz5ym8DPG4/85i/HfAZ4MpAknlmn8P3tX3P7xzsdLs3j1vye7+wsfACH85Vkw6SPC77rwTh9mE8bvjmNjwv7MSh7zlZ4x1P+Ft87nYNfvn5yEXmI0Cb5ZrxMCbzgf4y9jaAJf/2mPjbpy3gnztQzv22r+q+5ETVdDotBW74U4Ac2Y/KAb1l1H5vlt8cbHt+HigQZmzmdwZHzQcXH3Idc5/b9P/0i/YdxOe1xykn1kltvqx93QwYMk9Zt5pHXhsGfC8ix32WNYi4g6O4KlWqdHsQusC4FWSb7wLpbJNsT9qwjYiIL/zCL4wv/MIvPPf8o6OjeN3rXhc/+qM/Gj/3cz8Xly5dimvXrp27jmeg78DpjFkY4LUuN77oPq1WN3epXLlyJba3t2Nra6scezcajRr+G/bIx1xjFw3oQtmXzAUo9s1ygst2qw3f8HceV/b9XMxsW5qLiXIfnVQ0NgR2dnBwUHwA+BURJYHDLjR+uPf09LS8F+3w8LD4F8Y+6ROfucjMJ4ax2YF+O5HEGI3pdjqdxg45J3w5AtHP5rQA7Dx23zie5dC+gftP8oBn2efAN7Rfln07xuKEjHfaZd65QMmv6HHyLScr7K/Dr9VqFYeHh40EKXKDnIGtwwvzHZ75Zz6fx/b2doxGo7KbjIIdv9/L+B0xBn0kSUd/Sex5DWQ8mP5yskCOb3IuwZ/Be69XkoWOBy07jiXct52dnSJXjBc54Jnj8ThGo1EjqbxYLBr6JMczHiPPcozOdZubm2UevU6YU/rw/7P3JjuyLktatkVkF11mrt1UnaKfMCkxQ2JAUxKXUAhuA+6FG2DAAIFEI4SY/EIwAFVRSExggoSEEF2dfc7eq8mMjMg24h8sPR7P96bH2vt0g1X7MymVmRFf442522uvmbsnBkwOO3Gy28o6lrt8uVzW3e/D+VnOHB+eIz1X/hD5bIJn3rbRTq47x46niQgHfapeO99VHxuTKO2bN2/a5156DKH/9PRUX331VTtnjG36PDA9AVdV26rRE2TVMOCXDhcBOpYOe2CZZHJQMVdCMelz5hlLpZ2tYQfSg8sTtx1dEzjsZ4vin5ycDPa4NSCaz+dtwqLOXE9mB9sK5sA26cTg8iGWNtBMdAZE1JFVhNPpdABm0iDw2ysRHVRjpVsGH+3kexJ6fn5umbZ8Z3KA+norIPo5yQbe522TaBPGBEub0Qn3LxlAEJTv37+vN2/e1Ndff93OisPwOxBH252dnbUVi5nVxPspp0EQ16CvueoSnXh+fm77YLOFJEHa7XZb33333asJ033YM2z+258lGKWdHIh1UO37yIZRRhlllB+zHCNv8/t0evkNFiKTGJzAPN3byrHqNYGdGMsOpoMdPWLe9qAnxpCJLyFmcIBNKoArbGuon3Gh3+33uOy2pRawge+1OFiVTknaUOrTc/L4MXY1AeM+8HdkZdv55j0OtICNnBVK/VxX1yeDVj0ds/NXNQyooQ/WN/sSLo+daeuBn29d7+F+t5fryH12HjPRiL4HD1qn/Jnfabzm7e9TF/w8txt19ju43j/7/b5tC0Rf20FFD6qGpI0zgxOreRxR9xwzSULYb8kxnvrRawfK5+fmPf6Osts3dfuZPHZ/u99MMmXQ1GSmfYQfIi57+liU1f6dxeWknSgPGdGjjDLKj0s8rzPPGw/0VsRXHRLNzTOYr7ON/+f//J/X//f//X9V9fEs+9///d+vv/pX/2r963/9r+vv/t2/W99991198cUX9df/+l9vCea9xALbFD771K4DOQdXHeZaEu2vrq4GqzPg1djqj7/NeTDX2u5lGRLTOMGHeTrtDG3o9+VzsT85X4NFzEcaL5iLM6fKvWmf+YwgoXlJfjvxnF2cOHvMurPZbOrt27f19u3bwc5N1B+bS5IRz6Xs8LpcT+AmMZMDwcYWxoJ3d3dNx/j8/v6+bm9v26o0Y0PjFfctdt68adWBd+NafAm4Rv5PrpE6JKa23hqv0dfUE33xzmBOHjdPmVsSgpkp/3a7rQ8fPgxWBSYvSRkoN7s+JD7yyrWnp6fGX69Wq5rP5403ZhWng9i73a4FTBmjcKbe+cOYjX52cNVzAX8bE7rtjYtoG/tKtNFut2s7p6X/5+dXVdtlzkfX0C6Mn+VyWRcXF4NdGLbbbSsDv9Ft+0c9v8N65GOmemMmA7g9DNn7zP54Yv3eDl/c6/ndZfFz7Wv05kFf4yTExPafks8meEYl+fHkntFQD74eyc5g9+HbvOP29rb2+3399m//9uA6d9Z6va7ZbNYiwQQTPPCSrKHcOI0eUHbkGKwXFxd1fX092EfZjiVBtYuLixbQY5vGDx8+1O3tbVth5qXQKGXPaKNAzkDN7AkGthUPwXDZkD4+PtbNzU0LDNHmLN9l8mLy2Gw2bV9Yt7lX59FOJlMclDJgspNNn7Cvb04kSVBQBs784h1sYWggZkMDMHJgjXPOXN4eacU7rCNcB9mR5I9XnFmfPBmwvaidc9rl4eGh3r9/X/f397VareqLL76oy8vLAWnlc9zcj2TjWAfo6zTILjtjCuPH9xcXFy0LiXHEWLu/v6+f/vSng/clKMkgo/vIpIMny97f9GcvMD3KKKOMMsoPk2MBBH+X32O/NptNy7QDqOPc24ZWvQ6k4LQlJrAtz+DB94mdIeNM/2Rg7vHxsW1RiNhRTwfMBEUGTPx+l5f3ggOqhodb2/GoGpJG1N3v9XONTY2vsw+T5Mn7wA4+54zyUXaSooz96L+03+mMOYvbeC6duwwYWHdSR10H15M2NI7GMccvyCCM29v9bfyBXjn4+fT0NMCDlAFMYp0Aa1lXE6dWHXAx5fD12adZZv+g4/zkFpvopbexsm7aX6Kexl8moFzWXjksiaetJz2hf/2sbG+3c44r/k/izXMPPhzX2acyxnQ2b6/cPRKB59nPcX/7vtR97s939HTX81JVta05R1w8yig/TrG/zW9zNlUH0rXHzTHvm/R3YOGP/uiP6h/8g39QX375ZU0mk/pX/+pf1d//+3+//s7f+Tu13+/rH/7Df1hv3rwZnIdFOTyHGXP15ufENcynibNms1mtVqu6urpqttv3EUw5Pz8f1AscAWc3nU7bSqjkCm33zHfZDmErCTx4zqcN4NmOzeX8TntmLG07QxkyAMLfxn/wkuYMKRN81MPDw6tzsSgTuwy9f/9+8Cw4SXijPB/Uu26BSczRXV1dtS38HDQzfndg0PaZBQPgSurt9qE86Xsk1kNcBrclHBr9b9/H+NZcXnKAvs7YkCR9AizoDPwg5fL7jMuM76wzz8/P9f79+7ZLm8vm69KnSe6ZdzpZCH4PrnKxWLSg0mKxaPfnwgHwJ8EnxiVBtV4w0/5A1QHrg1fR0cRcjFf/IIwZ9BE9mc1mrc/3+/2rrd453shjFt+Y57r+9pMoT45Rl7U3z9mPdp+l/+l32P/sXZvzkLGyOe3c7cs6mfVhbPgaJ6nxrFx5xrvMI2Q85PvkswmeeRkfWSv8ZpDbsFQNCZHsND7zYOA7Mh3YSpCJ9sOHD7Xdbuvk5KRubm7q66+/blvJMbE4g+MYMeLypNLudh8zeFarVSuXndTp9OP2dQQZ6PTNZlPr9bo+fPjQDtLkHDOMFWX0KhpP8LyLcuWyVsrO8k0PMCZ3jAcGE4Vl6f58Ph/Umf5EiXke2R2U8fz8vGWMEJyyoWLS8CDxoKBsBiDWo6rXS+f3+33rW4Ob+/v7Zog8wF1+T1Ls/ZskRRrQ1FPeZSNkcZ9Zh6yH/p72oV2pM31HAPj5+bnW63UtFotarVZtm9L1ej2Y5Filtl6vB+WyweP9CYwoOwCIcXh2dta2ZEQPIB7/+I//+NWZa+6v3E4g2yon3WxDGwifc2Yg9otOsKOMMsooPybp4RxLj6hI4h6bQPYiDobPkTBJYKeCZ/Rs4DHgz28wwDEy2OW2PXPdEDsM3i7FARk7zUnMO9DVa0fEONFbIdphdRndLr7fpFeP+O85GH6uvzcx4zJwkLydcgKMbDOS+mNcRTvle7nezjPXHsvCNvHlZ2f/+n2ps/x2gI7/M7iXxKH9lSThnLTG904y81khifdcvuxDnp1BN2NI93e2Lb6Gtxmkbe308n6eSR9bL9yH3qLF+pJBJI9n+x6+zu3pOjl7mms8dnJOyv6xnmTyWwbDuN6rE3v64Od6/OQc1Zuv/HmSZ4l3fa3HeM6P1lM/w9chnovH1WejjPLjk/TBmVt69qjq9fmk5gj8f66euby8rL/21/5am3P+5b/8l/WX/tJfqr/zd/5Offvtt/Uf/+N/HJCwxlCJLT3PJzfC6jknIXH/+fl526Lx/Pz8FfHrNiEhmV2sOGsKMt+r9M7OztoW5WxRWDU8EsV2IG2Rd1Cy/XUised94+se1qH9jWOyj/3DsxxkeXx8bMeysMIGPO8VRD5/C3l8fKzb29t69+5d3d7eVtUQj7vP+NvBq9wdyHzXw8NDCzqwqwVlI0CBPQVD+jOv9LMYd5orTP65x+XlLgfGvua13I/0O9eDFxP/4A8YI1AW+hbez4GKrF8PizkpnvLDN8NPU2bvEobf5p0XjNNoN3A7707OlUQ7VjNeXFy0gCMrG9n2n+Sss7OzdkwQeklwjXELtvZc5UU0zA+UN4NRyYsbMxpvoqvGfugYbU6yoXWToCf9ic6x08PT01Nb7OD3+Te6RaKfF1+gA5QRXaEPc9EK5Ybj7vlSvcBcjl10Kv01jwf/uD6po/an8pp8jsv5i8hnFzzLAJA7wBkY6fSglJ8i0ZlAcRDfvXvXlkwSrbbBXK/Xr84h41meELwtTE6qzl7gZ7FYtInNK7mWy2VblcXqp7u7u/rw4UOt1+vBeWdV1bZ7ZDk0RsPZjXa6rPQGMm4jtxWGnonbDq2DYvf393V+fl4fPnxogbBeMGW3+3gYKAOIQBuTGtkCOfHwLE/WnoxMMOx2u3aorHUhJ+qq11tt0nY2ojwjCQnIAYKYvbakLuiut2HEeLAkOcUAwgM/iTaem4YHY8BYsnGjfC8vL21l2ddff10nJyd1e3s70Mn5fF7Pz89tuX2PoDAw82cJsBeLRQNTjBkM34cPH+rDhw8DkMszbRhSpzzJZv35PrOxHVzme/4fZZRRRhnluPQI6MRcduJ8j+0ncy/n0UI6VPUPKDb528N46fxZwAdp7/1c7nVZe0EV/89vk+1+Bityqg7OrIlz40M7Y71MxyTEU9K5MOZ0O5mUsM0+9iza1sSMr+Gzy8vL+uKLLxp2cp1NoJDM4/4yVkEyo9tlIViZZU9s4vocE/ex2zcDNu4765xJi2MOHs/hdzrkbIXu7Eo7tq6v32HSDX/CGbZ5jX0n7uk9yw6/64bYwTaRYHyGH5Vkn9vR48d9aP+kqtpOD9knSWrkSqzE0R6jvs7vtp+Q9/TaymXi3twGx/0J1uyRC9QrCbwk6nqkQs5/nyI3jIX5LOdBfA22W8ot0EYZZZQ/2cJck6Sw50IHHGwrM+nDAQCe1ZPpdFrr9br+yT/5J/X3/t7fq7/9t/92/Yf/8B8GK4Z4fy+ggKQtoj6J/eDkSBCwTYMzNAbDvq7X6zo9Pa2rq6u2QtdbxFXVgNthriVZn/c7CZ06mItEbHu8ksjYLPvO2Ia69ZI8eDZzvef/DKBgK8Drk8mkcZPr9XrAVaIr3L9er+u7776rDx8+vOJbbKO9hWEvGOt6m+8hSRwhcIINTv4oV/KY7zNG4RpzjVWHAJN/zDllvfwZz8n+sH4bW1kHqJv1ylgKjGwe3WPFep5cp7dc9xiAYzZ+8Q/lS5xpHG9c5LqaL3cf05eMCVaF2k9kZSvBMxaVXFxctG0deY+3eCSoiJyenjae1L6AMWZieHjq9A2cKJa8KJxtVbVdvjhzzNsynpycNC6bs6F5nxdH2P82fnS5PYfxGWOYXdoySM04sW55HFGnTIQwDjXmRR+pg3eHc/uas/czrWfWa9/rseBrPuU3H5PPBu16YnJ2iRvNkz9iZ7mqv02Qly2aRLm9va2Li4uWbXJ1ddVW37Acmu85/8kdnGWx9MrEROLDw8lGIZDklWTr9bodnunDuHOfWBRosVhU1ceMC4JvZPrmgPZET1s5A9iGyoAgD4ckes7n6/W6bQnI4MylnmTokBnA+29vb9sqJK8Y43vKgr7YgfV19LHJmh7ZQVt4YDnQwu/dbteWlbsuDw8PdXt724JqACHaivo5E4N380zKQKCNd9qgepmvM198yGUGa33YfY/QAQBeXl42UHN+fl6r1aoeHx+bvjMGMnM4CczeWPAkihEjwAtIu7q6qul0Wj//+c9bhpYnOxuFXgDY0ptQ3e9Zd3+fxMsoo4wyyih9ybk352p/3yMujNuwrWxfYUcVSaLZBIztgq//vjL7WuOFdJxMHuU7bff420GPLIdxIcKz7OC4fdwePZxr0uoYwZ39kYQS+CWdDDt/iWnBMicnJ7VcLuurr75qOLWqGraF3GB3gv1+365xUChX9vC/8Y1xpBOijFczyzJXKKZDb2Io653P4V3+TZ/ncxJ7WceyDdNJdx/bB/J1qVv4La4j5XP/GQvRphaIQIgS2sjEUJIcqbfZFx7Pvs/1TP1OQgDJPnC7+Fk+G+ZT/mGv3envDPi5T7LMxvnH+tGJoQ6yeQ7JdvQc05s/uP8YGZ31/tR1PMvkDmd//6LkwyijjPJ5i7EHc1HyChChyQF4zjJJz3MTjzHHcs1//a//tf7oj/6ofu/3fq9+//d/v/7xP/7H9eWXX7b702557q86zHOs4DE3wPX7/b5ms9ngvCE/g/8hs33/brcbbN/ITlbcb24G7oydhszXmMPDbvteB3iYm21DTIJjNzLRifp41Qv1J4k7v89kCv7HJhhbEBQjyTwDY09PT3V7e1s/+9nPar1eD1Y/efUU5WTrROM78AyBEvCusQCrlcxxkpQPxqRteGYGFXa7XcOt1H0yOQQ9jLGNRY7x0Kmn5grd9rb10+lhu0r0wW3ufqkaBjvMcRm/sSrSuMLt3vOPnPzk3SOy7uA85gafBe0gH/MH9eX97DyWOwWg/+wIR+L9+fl5W13mY4CoI1h4s9nUyclJC3BTJpI12VqU8tHWDigmL0h7ZOKRy8x2rdSX8cn/BANZMPP8/NwWc3jsew5AJ+DeaTvPUfajrB/mPnMOPDk5aWXgXrjlY3gz/UD7yMb7jiVYxzLYn3O3n5NzrsVjlL9pY/uIySf8EPlsgme52oz/UXaUxySKO8BOddXrrEM7gFz/9PRUb9++rYuLi/qzf/bP1nw+r6urq7ZtCdvbXV5e1unpaQtEHSNFepm5fFf1UTEInBFEY5K+u7sbdPjd3V2t1+vabretLC8vL23/4FxdZkKBIMt0+nELSII+TBaZ4Uv720n3MlKDGt7lwVV12Cpmu922ibDqMEhMFPBcLwumzGQR2LnvtTftyUCnnBk0SwDniS7JjAyw8JsVgA8PD61/N5tN3d7e1u3tbU0mkxaAtQGhDAYSGGEvHc4D1V22JOb4DsCBPnnLS7e7QVKukPRvrwbj+VxLZoQnJ8pivef9XqkIOGBbLnQP4zWfz9ue13xPG7nNcvLNfuO3J1sbKv8wTvK7MXg2yiijjPL9kiS0P0sS2/ckIY69vL+/r8vLy0Eg7BhQ5rm9YFIPxPNeBwuyrOlUp9OAnbbDbWzDcxHjDhPqbgvXletcHxPixk69vjBB5c96bZ995f+zHV1ObH0G2GazWb1586ZhVDuo1AvBqXWQzU64nX0HRpy0RDmdtYvDbOxB/ZK8cL0Tq/Ody5OJXD0xTk4nrUek9IJ16bu4Dk4ozOd5C2rfY51hRwiyPXu6ZMx3dnZWy+Wybb3k8pqwMlb12ECsL1nHbI/8LANGlNtb4WTbGS9nGXqfW99SXO4kIT1e/VNVg76yLtvvMr43wWD8zHvSjzT+9v/U30QBflquAukJc5xJTeRT940yyih/csVzm/1lr/pJm+R7PAd6brOdsI1j3nl6eqp/9s/+Wf3u7/5u/a2/9bfqD//wD+vt27cDLGX7Zo7QkrwP11dVs4lwEr1ASK76pqxce3d317aPc6DOPBz1Sm4CO+BkXifpU1bbVnM1vs7JRhbbF4ux02QyGfBorgM/bGdpe8oWcjc3N20lD3WgHLe3t/X+/fu6ublpHKqxnIM8vNNbLmaSVPoQtCflod2rarBNH59ZH80nGUM7MGh8Q7+RTILOpa03HnECDz+MneQAM8neyfD2QYwRWaFnjsw8l8uTgStj2ywrWyQav6AHjGU+e3x8bDwh5cm25V3WU2NtBKxaVa194Zc5Romg13K5rJeXl7aDHO9kNzDr8sXFRS0Wi8ZFGg+DodkhIzGf8aN1ZL8/7DDmuhDE6wmfz+fztvAEXWJcE6S1TuA73d3dDTCffQXrlznYT/kXvp762p8xnvWc4vHC/b15yW3X2zHkWLkQ2tO+Dc9LHwoOPRfe5LU/RD6b4Jm3G6HDiQC7kTNQlFl+/J3khI2eO+7l5aV+9rOf1eXlZS2Xy1qtVm0/Uc56WiwW9dVXXzWnn+eZKPCEkRO6lYvBxYSAwfFAZekzBEMGvDLQwjt9EHtutzidTtuesUwsjlR7RZdBDv3Biicm8Pl83gw5y2X3+30LNO33+5bBynMNBqqq3eeAD2VnEnZ/8mMH1GQXgz0nPd+PcJ2vJavi/v5+oIuslKPMBNRYGgxw4nMvhXV/JQBFj2ycz8/PB6RSEgqAnP1+395vI+4xgxFy1ijloHwstV8ulw1cZEYFQd7e9pQJNDypokdkiKzX65YNMplM6nd+53fq+fm53r5923TQB+yaOLMBox0s7udsY55lgJYTtMfrKKOMMsoov5h4/u8R2/zvv7HDZN05aOJncZ0BfwrfQ4RkMApJTOD7jCnATcZvGXhIm8f1KbbLx4hoYxyu85aPdgDSQU9HJdut6nXwMTERtjyfwzt6/XZ6elrX19fNweFztiMhaxQMBfHjDEi3H+U29uP/LC9lMd45OTmc7QrO6REl7ivaFR8hMY7r7zZ1UNHt72Bgz3FL/fFz6Se3RTp97hu3pZ3g1JPdbte2V6edaBuuc4CStoNoAJP1VlXZ1zrmoGbfJUFJvV32DKTjc1GOTLCy8559YN/LbZzv8Th2f/But1WuAPC8ku1pPIvvlZ/zLuubx2yOEY/JxK4m6DL4Rh1oA/eF9QE8Tt2PkUGjjDLKn1zxPGUf2kS/bXgmcKcwV3333Xf13//7f6+f/exnVTXkHZiLvv322/oX/+Jf1O/93u/VX/krf6X+wT/4B/Xn//yf7waIUozj4K1sU23/ud4ksFc42ZZ7vmZFFecsQcjzvOl02j7j//v7+9rtdu2okmw35lvP25SZrRBtI43bbI+RDJBku5m/Mf7keQRFCGhhGzabTTtjzMngvPPh4aFubm7q7du3td1uBzbL21Pzv+0TgQyfW2X+1nqXq9zgK+/v7xvOge/KreLcDll3407bYxL8HXAw/jCf6iCr+9c6SN+7L6qGyUzmPrnfZTM28lhIHE2wY7fbNb2kzHCPDoAsFova7XZN73a7XTvKhV2kjIsc9KG/CFxNJockf9fJK9MoO+1LW8BV+lxBVpJ5hRc66l086DNzuSx2gNtMXpd2Zt7IhCYwtLF3j6O17lVVCzyenZ3V1dXV4Ow22pEyORmO9vVCGtqJgJ91x4ldDooem8ut89ZP3uNx4eBu+g+MkfR/PG+av09fi/J6NbPHtcdK6rjnIOYFv/uYb3JMPpvgmbMn+aED04Hy4EN6ncnvdEKd8cFqom+++ab+/J//87VYLGq1WjWnlElitVrVmzdv6v3794N340S5DBYmgapqA/3t27dV9XF7RZxZBhurmTiLyoEzHyLO4OW9lInVZQ4WMhleXFy0yWU6ndb19fXA8NFeNlIIkx7bLbIM+piTiYFB8oB37y3rZdVVrw9Ndf/hdNqB9CBN/fDgY1LN5ag8l4mTNvd7nCmKnrIai0m5ahgAPD09bYeq4oR6FaAnJrdhTszOPslJ2g556gITDVkhp6entVgsaj6fDwKY2+22qqqWy+VAl5F8J23psvPj+1hZdn19PVhOTwbT5eXlYNXZ4+NjW0n3+PjY2iD1IEku662NA0I78ENf+fu8Z5RRRhlllNeSJOwxkv/77rEtMf7j+sRSOd/nc9P25ffHyoP0nGGT4Iid7x7ms3PrDEU/x22QZAfBJ+7tkVbgqB4Bn79NoPO8zN5OUsmf9zAIZZ7NZoMMVScOgacgWcCilJeAovvTAZ1cKZNlpAyu+36/b1gVx9ckBW3ge+0XWK9oN+NR911iEpfTTqyDM9xv8itxq/s6A4x+hsveayeXjb+9NQvvzxWGJmN2u13NZrNB0CYxnt+bdTTp08O5vWuzr62fiUWzXTK4bb+AcnhcmdSiXRywdn09t1h/nIyY+mzsmc58iuuS4ztJz/RzeyS15xfLsbkxfTmus788yiij/LjEmCN97Jy3qw5EKnOh7Y+f8S/+xb+of/SP/lH9p//0n2q1WlXVa+zy8vJS//7f//v6p//0n9Yf/MEf1GQyqTdv3rTjHhCTxJTBczCf8b+5Mz8DAt7BQQeXfD1cCQlCl5eXLXBzcXHRAg5wGBzPYjwHTsQOJ9bk+Sbz4ZbcTrQzbWbMlxwY9bCtN79Vddh96OTkcMwMRD27YcGVwafQXg8PD/Xhw4d6//59W4jgPppMJoM6GU86YGCc5s+5Hpxp/MY1tI+3azTxDlb1b+s2nFmPfyTB2yuoclEGnznIkbjFQV2XnUUF1lmS4z2mjBnRI7hcByhyLNK3iePgjZ3kx1jhzDN2MiPwRP+zc1oGcIxt3e8E64zLrEMZlCKAS7vCzaN75rGfn5/bfEIgygHB+/v7Vk/8LI5NguNmTLNy0Vwk0uMk0TuCjm5Prj8/P683b95U1WF7Us52gwuHj+Z9+Fi0secvjx/6nuBoBq7oA9fB8zjv9pFAPpYI/417HYz258aOfPYp/JjYN33s9Iest3DcGRvgWb9M4KzqMwqeMRDc2XY6PFkQqbWRTmcCsQNsUsMG9OXlpbbbbf30pz+t3/7t327Gk+tQ4vl8Xuv1ui3TTsIjy4AS9BxMFHG327UzpdbrdTvzzME7ykD7WPmtnI6iGwS43j4UkTOuNptNWxVkRfN9lN3L3An8TafTWi6XjSzCQBFYNHiizExIDqq5bdIJ9gRgR77nePv7JC5sjO3YYwSYeAA7Bl4YJwfXqA/tQWYBz2Mi4p3sG8y7z8/PB4aXyZRns3rMEwmBSQKh3pbFRsFtVHVYCsy7Te6RFe5JmYnaRpBx4QBWTsrU//T0tB3uud1uB+BzNpvV3d1dy0jKyc+GOwO5SZZ5sjbA8hyC8A7qlBP0KKOMMsooP0ySgE1bm2A2P7djBUjPZ+azk8R2OfL3p55jvGC8YSzh4EPVcEWLn+H6+HeS4dhc408HMki0wX67jra9dlh6hLxxkR3aLJsxbGauuryJZcERTqJy33oFv9sXnAB2zPI5O5z62yF0/XqEvjFGZhn3fAT6MzGG+yUDUKkPGUB1YAZ8Zl3vEXHZB71+zP7uEWfGZB4vXMPnLy8v7TwIJ/El3uW++XzeMo2TtKwaZre7H9Ip9thLZzn70n3ne9jqxm3k9jSGzPdRJ/s0lAPiw8Sk6wQW9lY7YG1v31RVAx+NsibZnAl62aZZ/yyv6+r/TV5ZTKjmvT3dT9+tp6+jjDLKn3yx7XFCiH1pB2um02kLQNiuINjF09PT+st/+S8PtijzNczrX331Vf3Nv/k3q6perV5JPJd/w5lg05zgkHMn3IVJfeb85PLMPZKEvFqtBlgGW81qlvPz85rP521VFGXDrtHGTtxwPY1ljDWTszNG5HoHZMxf2t7wP8EK7wBFIhRBMwfA+JvjTN6+fTvYVcucjpNM+N91TfuNXpBcDcGP0I4OdlkPCUiwip66mkt1e5p7YwcF44cM+DgIZr7M+Msr4tEdtwnf+Vwy6m694x5zew6akKSOvnsc5VE6HtNch16Y46R9e+VkrNBOrDBjXiBQVXXYDc28LO9nm0a3h/0kc5X0o/sDv4m+9+INtmsk2ENfMwbhURmzPtPv5OSkcfLb7bbu7+9ru9223TQ8l2TypVfO2UdiXmB8uE+YS9jelDFLDIB3cU/GAuwz0Q72QXp8JzpLgJR35Lh1/7uvrEsW/59jIuuRkmPf/h/19vd+rv2AT/EJ3yefTfCMAIYbiobxCh9PSHbyIRt64sk4nUoOKdzvP676qqp68+ZNcxYZ5DiOy+VysFKrF/yxUnpQoHSZzfL09FQfPnyo29vbtn0RE64nolS26XQ6yLJ10Id3eUmrDZS3zamqFmiD+KAeTC48w/tRPz4+tvZhP1qW9LqvmNQ84e92H5cCs7Uj39lQ0a4YkAyUYtiZqNzOXvbLROrBTgAQ/cE4oytM5tYzsgGsV/QjhsTbetJ+1pE8mNWHzDLRmUxLfcJQZeYBYn3B4Hh142QyqYeHhzam9vv9ICCae/U62FQ1BIS830behB26w37YzgI/Ozurt2/fviJpDIQxnJPJpOlaklyUK8e1gZj7MceCyz3KKKOMMsr3S4+w4H87+/79qfuZ40mM8nV5v5/ped/kjef9JBIyWHYscOa/MyEnv68aOkD5DGMIYxOuAycYu9lxxWbld/5NAprfb7Lc+NOf0cYORpl4MH4xbvWOAe4jVuKAQYzfeI8T5cA9LpPJe7AENjtxZAYbMhhhzGgd6QXqrGPWDeM5sJTJC4InxhToodvVn1tHrev8ZMa5iTD7E6nrHhs98s3kCU45yXaut5+D7oLDPCbQhXyPxwkY8lOBQ/tPPf39VB/7PX5WVQ0C0b2gGXVNXeo9375HOvPZTxm8st66r7iWPk1SK+e+3jP9eeoJSX9uQ/ctc5HJkcVi0XzjqsNZMqOMMsqPS47ZJ89dj4+PAwL8U6Sl55+Tk5NarVYDnEBQw7s2nZyc1BdffDGwEV7pwpzZCyRRJpfNmMSJPMkjcI95KNtzYzTbRmMatmncbDY1n8/bzj/n5+d1f38/wBeU04lkPQ6Qchnb+HOXlft9TEraVz5Lzghczkoz/qYs/L3ZbFrgjFVA1hH4pVxhdHJy0hYnOLGfPue4ELhBr0Ci3OiLdy2qqnZkCbwkK52sG8Z+6JLfVVWD5KfE7Nh+Yzrb0gxw2Dbv9/vG5YH1bHP9Pj/XuIr2dDChFxQjIY8y8DwnzHEdOAjOG90D86DnJPpbaDeuh1sk6Aq3T1/R764T/U750BXe60AZ95pjpo7Pz88tGMS2qmB+xiwBLPqScqE39DurSfFbWHDiRSeMN9rM49K4dz6ft3HjABX9iT7leWzu04yH2BfEp0JoP/Of1kHa1PNFxgusuxYHkG0X0kdzopjHgvE47ZZlSxyd86IXbVj30079ovJZBc8ITni/z14H9hwbR0DplJzIPFF6kKFw+/0hgHZ1ddWWJ/NODig8Pz+v7Xb7aiJMw80EkBMM96AYGBwCUpBIdliYlLwPLu/3KjUbPOpK29rhdoDy8fGxLTN12zGxezB6AJk4YXtLJk3vk4xTzkTh4CDndhm8ZJvynbf08cRLfTyg3L8ebDlIaWfKRLmtfzb4u93HlYI2OiYDfA9O6Hw+b22GPmHgHQzy8n6e6aCfAZuzowiium1MPtGnXgrtMWM9I0BKv9NfnoDR71zGzKRLW7CiEvBzf3/fDqL3Cs7MpreOGQCk5CTtPvHfGFLPA34G+v3LTrKjjDLKKD8mOUbi+u8eEZHXJ2GAg2+ioHdtVd8mIL25nnsy4cSOc9YvSXU7Hgb/4JAkJrjXjrCdRxw/sJ0DG64HwQm/2+U0FkqHIcmqxEFpR3mfz+owdsQJBwPwfhMqYAbwrIM03hqbz8GbJBOBIcExdpTtoCZh4X5yO1cdktbcP7RJOndeWUS9vSLJbWbSgT5LjJU6ZT2z4+y+zeCY+9P6m3rhOttvStxjfTR546Ci9YZzjnvnwLgPTPC4DewoZwD3WOCS8cbzEa9mOBZMc9ndnqkr7ncTUC4L37mtvQV8r68gPrI8brPs7957e3VKH6dHohr/Zh2zvdyWq9WqHV3Q09lRRhnlxyPJwXkO9G9zcxC5XJ9zlp9bdSB4q4ZbN/sa2/7e/Ghb6vt8fdoE5s5e0okDTd7mDo4r28ELANwO2DB4Jt7P9n/H7M2x4J/J7sSV5m2yrd127kvzRT7WhRUwrGTytnhwJqzIubu7q7u7u8F5UXBctrfGB4nHjhHwcFdnZ2d1eXk5OEKGMjl5B7tMXb2q0QsAHAgFe5mLAufwGX1nztHYJnEI/ee6EoAyfqo6YOqqQ7IXOkzZeD9cL5gxx5PxOj9sve2AjfXfY4U2Z4UfZUyejiQyB0rNf7oMHAnz+PhYd3d3A4wHricByeWijl7Y4KQ6xiL64SAfgXH7IQRUHbDb7XYtuEidPHdtt9vabDYDP3E2m9V+/3Hhwe3tbQvS0U70C+fIce+XX3452JIxdcz/w5HTTugv/pIDq4lbvVAh+8MJee6D3D2B+jOOEqt6jsnAGmVhnkhe13MtOmZfxbpA2VxPxDwv95uDTr/nF5HPJnhGg+XWjR7w/Dg4YQWpek2Mu9N7xIkVi3J888039ZOf/KTm83nd3Ny0wceqnOVyOciu1Bj5hAABAABJREFUTcewqgYD3J87GLTff1zRdnd314wUg47AkwcRhspKVnWIOnsw2Tnlew4o9WTIhMMhiiY5KDOBGRtRBrWzM9xHZB0wkXmLR09a1IuluF4hRbuZ3KCsDvLRry4zWdxVhwHmJdjUw0TAYrEYZDgw8GiTzWYzGOzUhbagzU0CUUYCpOv1upGEGDQmYSbHxWLR3uED3heLRQvi7vf7QVCSycNBVgMDfhsQmrBBn9G11WrVMi0I1Hni5F30I+3COGN/b4LMnvien5/rw4cPA2CZgCL35eW3y5HOvydRA9ecVDOTge9GGWWUUUb5tNg5TUIEMdD+lDCf24b785z7c843KZOkPeXg/nQSeYaJ7yQsXLckko3peL6JdP42FsNm8jc4KZ3GfAd/HyOcKAeOJPjY9fhU0MXOBw5mBjuSELMdNkZmSxNvcV11WLmfwTN+wCC824QL9aXdCOyZsOs5ciY3cLytM7TL+fl5w1V2vii3k5jctqkHqV8uf5KI/J3Pol7uKzvuJp1yBwmeS33B5YxX2trloC9ZEWhiwTqJbhibeYzkeDExaXyXq6w8/hFjVGPtrCs6mTsS9EjG/A7863nGRJjHROoVepF95iAs9fecZt+Bunvu4D2Jdbk/yYDUn6rhtjb+v9emrhskCkFStqe07zDKKKP8+MTEuG227Ye/rxquTK6qV3aihx1tW50MlLaFz3mPn2W7jhhLeNW452yvcnNAytsdmr9DqAvJ4IvFYlBO2wmuYYemnNONJfjf9tu2q9eGtieJY70tsXERQTM4I4Jm5iQJ2MBRsRKNozfu7+8HgTOENiWJBHuYNgss64AQWJAt99zWvSACfWR+lb52EMJcGc8kIOfgTGIhAm9O8DO+9aorymT875Vb4BV0z4nuxkqpu4mprIv+bb+K9s8ginE9YxZdcXu6vdiFjFVnYIbz8/PabDZtS0MnvjnwsVgsajabNQ6ZstCOk8nhKBvqTj/Bg8Ih4j+hl34W57Ixvumrk5OTms1mdXFx0Xhaby1pHYQfX61Wtdvt6ubmZuBroHuXl5d1enpa6/W6267mRKsOO3Mwt+B/eCc32p6+Tx7TwXvPSW5T6kB7WYwx3c/pv+Z84+BbjmfrtMuP5PMpB79tT/xZzxc2F90LoB2zL7+IfDbBM0/ORIgdPMtlh3RSkg49By6d6gxoMaGxoujl5aW+/fbb+vrrr9sZYrz78fGxVqtVLRaLdkhi1ZAUYXJLYsO/q2pw1piDURxeSNm8FSCTBUEn3+dgTRp3ZzrTVhjO6XTaDvak3QlkejkshtWDmvMrKB8ZC25jgxJPLB4kd3d37ZBHrsVoE8zzPstMsl7e7uCqn0M5MIxJ2lQdMj+cKcqz6APa9P7+vm3faFLG4mXK/uH53luYCYDJ3AQN7yao56xsAmiZ7cNkzI8JBCZy6uIVd/TFfr9vKwInk0lb7uwtRd13CQCn02kLvKGrGNLZbFY3NzetnJ5Mfb+NN/3n30gPsOcknIG73iSbxmWUUUYZZZTX8jf+xt+oP/zDPxxsYWzpgV1/juAQch0OMUk8OHvfl8FsbJVOJ78zcNZz4F2WLLudBZffjnJiLmOfdEB2u10LABm3UGcT5yZUTMSnOEjhd5oY6vWJHSkwCN/1VqoZ7zw/Hw7W5lxeO+rgVDAcwR73jTMeSfBy2XlvBsjyzAGTBekP0MZJsCHGf+4H647PDaC9+G0fZTKZDA5uT9LO2Nj1sw6YxHC9XAfq7q2OeOZ+vx9sg+8AGW1h0tB9SuAEfEoAxdnyPDedYdreOupx4PGc49SOeJJEXHdsjHpeMN7N/k/CNwk7J+TRtg7OWQf9Of1k4uCY/vaceu5HHPgyvjXWNl72/8bmPIP77Kf4uVyDf2SSEv373d/93RpllFF+nIKfbH7HwvzH2UpVB4wER1Q1TFS1XWMO4x1OSk4+wH/b5mV5PcebZ/CxHVxnQtoBGOMzz+kuvxPUjdEIzOSqGq/qNWeFreSMeMpn++z53/jO9sN/u8wOoMHTkKgPv/n09NQ4Lvgb22OvNIPn4p0O9BjDEXiirZxkAlZB4LguLi7adosvLy8tEXsymbziRGkPVhg5aOZdmapqsDU87QDe8ao2gl3mWB2ohe+kLARhaA8Hl05OTl59DwfrLfngXfnOiymMN+kPlzcDCbQTeMv+BGPA/gbPSYyCTvLe5XLZ2pq2J3gGr2e8lwFdeEkHar2aju1NPb5ya0f3pXladBhumkUKDoTisxCUZRtF8G5ub3l+fl5v3rxpOsgz6IP9ft+eRUA3xwOBx+12+yqYTnt6Bzn7FNTP8yH/M7/m/DGZfFwQYX/Vc1viWS+2sOTcxPX2i9A360zOx/4cPfSz/HzbB3TY1xCQTa43323f9peRzyZ45mCGCW5HWR3F5f9jhtOdYsc6ifqqasaaCXEymdT9/X29ffu2nXHGM1n9NZ/PW6DPip6rqzzg/TmHbzKJORsGAoKJJ7ecoy5ePpxGzhNrrhKrOpAFROJPT0/b5O4DFJnEfCg2By32SAmfFebt/ggc9VaVYaTIZqDezsZgoknSi//9WbY15SMABcCxIUIPMgvJkxqTPeXDaSabiGwIMnF8eKZXZbns3GO9Qd+YnLJM3j6HiQbAgOFCb+gzMtzPz89fOeM83331+PhY8/m8rXbD2DnDHF0zEJpMJm35s9vZxpOzBG1YPY5z2wbaBWNh8iPBtOcJ/20wWVWvPveEPcooo4wySl/+3b/7dwMb3gPXPcCa3/cCObYr4BY7d0ko9AC9yXDE5LidSeOzHinvsllMmvi9fhY2PZ/vBCOXBdxi22yH2Y5uEvNZZgeO/F0SLb6GFWeUPetlu8wKM7AABIKTnMAnBNVcLuoJjqVuOOUmWzJoAmbKQAqfGZtZR3rJbNm/bjfKZAzTw5pgDSfgoG8445nEZczcW5nEu7KPsi+pF+VA98GydjwdzKO9PG783N1u17Ych2wgiHZxcdF2YeC5JnSoE3V0sNE6iN72iEq3r8kq3sd96APf8wzGnp+beN9zifue99FWmbVuMf51Bq6f63qYXPS86Wt8T28us9715izKkt87gGa/wjrptrPO7Ha7+q//9b++Kscoo4zy45Cer52fVw3Pb7Q48M/8fYxANcFssd3P9xsnpr//qQQPMCG22rwjPIrnxMRkuTqJBCBzYpQZIp8jLBwo2u/37Xy0DIY5IR+MY2xm7JHBRrfhbrdrq8zghPxM7wzg7fgoG2ebscKIVTTGJm4zcIbbJ/vAWHk2mzVMSMCBNoI7woahAz7CBH7Ldj710bgHXcEWmqdL2+72fH5+bmdimWfjfuy2eU90ymUzLrq7uxsEWWkj6mZu7eTk41mBBHyMwcDPJyeHs3nNm+/3+0EwLn02j2eXteoQxJtMJi1wSsK/9cjj15hwuVy2uiwWi1bOyWTSONTERvSLeVJ0irqZW0QICJtj5zpvzYiv4qSwy8vL1p/wn1988UWdnJzUhw8fBvwxz1mtVg17p29GWdAj5ipWMr68vAwWZaDHlAfu2jrheQ79tp56YU/Osa4b/Uyb4HvhsyU+PTbv+/sMqqWeeb5Ax2gfY88MQFq3uNdziwOJfu8vI59N8IxKerKyUfTAzIijsxn9vKrXy6DdiWlgvRUjgwADk6t7JpNJmwgc1PNEd4yYwbH1YPZZZ+58R1jJ4GHCZGLyNkooLcuq06nl/R8+fKiqGpw3dn9/X+v1urXFfr+v2WzWlm8jTAZMYBgIDAbBGt7J9h/UzRM7bUNAiHpzPfVl8uT9Po/NkyN969VZJhgc/KK9POFwvwONXvnGNRhMb3fI1o4YNxtQv9OZWy4fOs0qQZ5J3efzedsO0oQO+uRDNMmY5bBUkykESNMYUR7ACs9if1/0bbFYtCAkfUq5MTSAL/SBLHuMg9vfAMtEUhKGiIODHu+esA2IDJJ6Eyr9M8ooo4wyyqfFtquqvwKE75P8MHjuAX/IAxMUeW+C4ySOKaMdT8/3ifvyviynAx181wtkJDFvp9XENNtZOwPWeBFMmCQImMnY2Pfy2xmySbKkwwV2IrGGz50IRpnAjmzVg33f7Q5nhuKIshLNbVt1cBq9osVBIwd+rAfZ5rSdnUu+c8Kd+/vl5aWRVCZ2wBJ+n+trrILOUYckqez4Z2IXvylDOv7ue+7vSQZiaA/uMYGTdUOMqcHJkDzc46AUpBafQTbQJx5TiW09RsDEGWz2b9fLYy+D3ZnE5u8dCEvfkHHKc53A5+fZd8o+tf/JfdknfG/SmHbIgGLqWK9OFrf395EDGUSkvNTdATP7mSZfEoOPMsooPx4xFjLpXjVMlDDRjR1xUktVPznJ4rkybZYxlTGB52ljN8ruZxhT2O4aJxBMA3P5/eAGl6XqkJzOeUZZ/uQhdrtd44Jsi+DPmH97dsl9wn3ZtubjeO58Pq/5fD44a56ycHyMk50oK6vNNptNPTw81Ha7bViDesIBGT8RGAQT0k+Q83B95+fnNZ/PB4lAYFDXDY7Lgt0Cv9IP2DAHCfx8+tor0+A53c8ONKX/wi5hXrzga2lDdiLIcvuYIhZiWGccrGK7QdqX7Q/3+33bNY029Q5lcHmJQey/gQ2s19ZbnkvZaGuXAZ4xxx94HN6SoGPVIcAFxmT+gGM2zqM+lN8cJeUxl+u5x7gH/8YLAeAzWam2339cTeaFJHCv0+m03r9//yrQd3Ly8Uin29vbxu975aO3h7Q+k4jmcQ8GcyDUbZN+qrFqBtrwUyi729F9zHj9FLbMcdCzBR6fvK/HsfNj3GysnTYjsTbP9zhLjN3z9X+ofDbBMwetnL2KMmQAzQ1Mg3twVL3Oxkunpmro6NHQDMynp6dar9f1xRdfNANCWR4eHlqm7nq9Hhij3uTOwPBAxFDZQa+qQcAMw+fgGH+zHJzrWA6MoqK0DiJQPi8fxYH2wKH9mRjZ09jBJgzjarVq5AvP4ZrMPmFCMelCWW38IF7I8HDGMu/gtx1AB3mm02lbzUbdPOAd1EoyhHrSBrSX/3fgB53wRM27EYJagAWCSp4YfPYZ5bCeMuFzL/XgWgw5z3T2EJM3xgYij76B1PMk5mCgSQPKT6YSwnltBhMYD0CXiQd+vNwb3TehwLg9BrxNRvF/fu735b1j8GyUUUYZ5YdLj5wwMO7NtSkZcMKRMY7KQJHFuK5quArGv7O8ScgbA/TIdju1aYcoa8/GgDewrX4O+MfJKT1npeeoZCas28f1SSfZbQDOBV/xPv62U1j1kRRar9ctmYjy+1B52iDtaeL0dNDdP70AWhJjGajo2X8HLMHN3oa8arhNt9sZcRDOfcsPbcz3fr93AnBfZjCFNnZd3L/c6/fk+KIvaDM70uBB6xT32AcwUcV3GcSZTqdtOyUnkyGUzWSFx3diXre7/ZPsj3SMucb+RG5J5b50uXpzSAbAsp8pG6QUzzPOpW1NdLqe7jfPMb05Mv1T+sR96EAbQv9TZuugiQvEbd0jED1/jhh5lFF+nJJzlFdeQHCTCNTDH+azuKbnz3OtsUIP99ge5RztMnjOTS7FZfD8761rMyjn+ldVCwRxHclD5iy5xivq9/vDGWk+UsXBOuy5OdDExbS96+y2gaNkdym2aQTrghtYRUTgDzu32+1a4IyVZvCA5vXc3tRnu91W1XBVnG06HB4rl9yuTjY/OztrmNMJSdYREmAcDEM3vOMVOgR3SB/C9/V4YQc4+Rs9YYtS3sNWhtPptPW3cSLJ6+gK5bHfRPt7S0m4OupM0MlcWlW1oCS4hPaB/6RdHARx2zsgygIGr8ziXvg8+mOxWAzqTVmsu17VyWpM2ob+8YIHykUZzCGTuOWx4nkKDpP60cYehxxL5HH78PDQOMyHh4e6vLwc+EmTyaRWq1U9PT3Vhw8fWrk8N52fn7dtV2mTzWbT5gXaj3mGndw8Jikv85B37jAH73FljhyMyTPQZ/sC/Oa95sWti7QrgTDu9bty7CJeDHRMUo+Z0+xj2dfLd3jhicf49733++SzCp550OAQebJLh9uG1dHZJC4ykuqON3lixaJDWcHFHsx2qO7v72u5XA4m+nRSnWk8mUzaCjZPbg7iONuPQZOr0apqQFRghJm08h4mG7aJ9EDDAbSieRm5AzmsIPPBlw8PD/X+/fs2gf7O7/xOLZfLgQFz5NsHc1JfBgvBIww+7cfEdXp62pZtux8o4+3tbZs0PNEySZko8SRrh5PPJpOPW3Te3d3Vu3fv6t27d81IVx0Mi42gQQv6O5/Pazo9ZJjwLvrXwKPqsA3M/f190yVPuAAqxgO62nPKqw6ZAB479CP/A2BWq1Utl8tmUGiHh4eHtn2nx9DZ2dmrbQ5OTk7asn/XzzpPGxuwMtZ9AKjHkfslyRoTHrSHv8uxw98Ozv2qE+0oo4wyyo9BTEjk572/q/qBNjtu/O9t5nrPNGbJ4JjtqEnnHsHgYAX/myjhPhMsGUTjeUn4+71gkQycIbZ7lIV28fv5vxcMSUmSPfsCe0wQxO3XCy7sdrsWONtsNg1vkalpR8cJSN6bnv7D/jtIkzjRdtsOGnjOxJb72v9TFrazdqapsRP3mUzwO61f1p8eKcd9XGcdy35PH8S6Z4xkJ5i+6eEfML8db8YIh6KbJLFj7G2PwOi0L1jWqyT3+487UnDms51qkg5dP/dVYmz3ncdeBr+4Bh/BQv+6rzLYakmSwP3qH2c5026QjVxvPyzJiN6ckFg06+u2SenNiyb5jIXpSyTL4kAl7Udbmahy+48YeZRRfrzCnOIgE3N/cmn8ePvCFBOePD9thvkBiHjb6STa0854DnPAhc+8NWPa6KoDhkkcxneUwTsVwTU5acZly3L7XE14Lgc8HKgzF2LM4vfw/fn5edt5aLlctrNsqQfBHhKsvQrdCdBpB1nl5ERnY2+u82ruJPwpH/XwCjbzgjyPvs8gG/YLfaDtUr8SR1BHJ9VnmxqLG/s7mXwyOZxpV1V1dXVVd3d3g+26jUuSw3aAAHxLQrt5OHaKyn4G+3l1nnXC48S6CidMIAnOjSBSVbWEOHCzA1T4at6RjH7Z7T4mzF9cXLS6kDTvgI59BuoFp0pdGZtOxK+qV+PNGBrdclvf39+3e1yGzWbTVkY6MYo687Narer5+bnm83mdnp7Wl19+Waenp3V3dzfA3PQhdbNfZ73lmtvb20GyKNiRfmUOdSIbz/F46vlRqQPWGQee+T7/Zhx74USOeXPnGWvpzfseY8kFpL/l53usuB55Tb7rV5HPJnhGw3miZeA4KMZ1GRTIDkknnHdUVVNIPjs5OWmKaiXiegIZs9msKTFlg4RAmXkeASAABkGIPIST6zMw4MgpdWBiI3CDAXTg0FkHtBPO8Onp6WD7yel02r5j0phOhyvk/J6qw3JdPnPZbm9vm7M+n89bO3q5qyPsNlII0X+vhOtN2j5Qld/cR5tiJFwP64Od6AQi7O3MUvVcosvvnNQwYhhxACd1pq/Qa9rZfWgHPc+Q49k2oDaqBp/0kw0cun5/f1/7/b4ZI1aPsfXkcrms1WrV9lU2mEmwcXl52YLLrBg0YGEZsVdUMvF73NNvDibzLLdlZl1YeuPHZfYcwO9jk+8oo4wyyihDSVCadvgYyfqpz21b+PF7jPF6n9nJzaCK7QqfY2+5L4mJXl2NJ5OwMA61HWbbbz8vHQDXg+dBaCOuu3GCJXFc4l+32/n5eS0Wi+YMGVMYixIkW6/Xg0xUJ7e5Lomj3N6U1yvj0+Hie1bk9fragTe3aZL9dtaTbDOZUDVMMjJmOxb0ov25Lts8nVfawe3jPrVPY5w5mUwG2JBrXXZjdMpFG+73+3YAu7PJKXuSULQpGdYk/SUBA66/u7sb6K3HLff1iBz0xe3q/nS/IpBWjFsTLNnuGSynfA7sZf+b0HE7mViln3wOtutmIpB2IVEtdc73G98jeX2PnHDdevMBv8H9iLE57Ylf4p0xTLj1yOVRRhnlxyE9gtV2s2q4tW7VMLk1v0u8mFjLttA2N59t+5rzY2IgEo+5P+2Wgx3J95jEtQ2xjeM++J0Mfnl1RuILuC2fa+VVNmlLsy+w6Wzvt1gsWkI0yegOlhjDMdeD9+CBzFm6Dg4MmpOlbpQR3Jc4KbcWz/51H5mX7CVPpV6Y2wHDZuDVXG/qnn0RMJRXmJk3tH5TRrZy7I0H6xrPmEwmgwUC8MZOYEl9pL+MY9w2XJNtaAwKlwz3je/gBQGp2x5P1B/de3h4qLu7u3r//n1dXFzU1dVVffXVV1VVNZ/Pm84zBj0+EzPZJ2FnDtfNYxnMxbM8hq2fSM4JXMtKNPodfwcdhtNmMcxqtaqLi4t6//79YIEIfUHbmb+mTPCl1gXqiBAUTdzP39lPvMNxCOs5445+4LP01dznPazq69ym+Xfvd28s8GzGqZP/3B7Zb/SrxyCffx8X8UPkswueuRHIgHMgDYLAilFVrybDqmHGsQ1NdmpvAqUsNhqcy2Xle3p6quVy2bI3zs/P2+odGwSCQg5q8U6cLg92HDTu4X+TENleVTVY9UMdN5tNm5S5H4fu/v6+nXtG8Ill1CghAbqnp6dGuFQdsnJyQuc3K93m83ktFotmvFn5RPvwN+VidZrLwPeAAJ9PV1Ute4egJavnnJVA2+IMe8IzoYMRIIDFPZ7cXC4MvR1qvue5XENmLm3ujBsABX3jDCQbaD+7JxgT+sK6Rluzos+Z8dSLbZjW63XNZrN68+ZNffXVV+3cC2ebM+EtFou2tSf1pAzWH5OjiJckW5coT4Jn6uXvcyJlfBjg8FmSqwYlo4wyyiijHJceud0Dz77m2PzKXG4nArzjTFNL2ghLzu08G+cZsR21XeeaY4Sx8Zqd8cQ+OFg4/JQtg3SQ2pz34HYyeU37OOPSq7p8T27NYTxS9dE2L5fLlmjks84I2jkTleSh3g4IiUV5nxO4jEV5hx1N7u+RXX6HMZDr69/WSetPtlsGJ3m+ncJ0Ft3HVQfntuqHbWln0ob7nFjVc7RNFGUdSZQjGcqrNp2shA/Arg6LxeKVo2lc7IPC2fIoiSfqjrObesjnJsz8d5IZXhFAmd0XYGD3Q45dj1mTQXyHHmSWe5I39hmt3+7n9D/9nk8RCYgJ2k/pi5/juTKfme9JcsTt5bYlcIau0WYmpXokyyijjPLjkcQhxhReaYGYDLa9w/Z6TumRncYBxoLGGMZDts3M2yaBeSb2yziP+7P8njudbGXObblcvgosgX/2+48rtLk3+Yb9ft8wIractmY1k+ddbF+uynIiBMGy+XxeV1dX7T6eZz4SjEAbw/uwNSPHk4AHEgtnsknPL3DwjMAEdYDjoi/giai/scbFxUUtl8uGT0jU9o5O8J4+qsQcJhwh3NtsNmu8FzqZvOzLy2FHJZ9PbBxrTorgSgYgkodCDwjK0beUizIlZ+3xQrDOWxiC18BejDeXm7aGQ/X4y6QadPf8/HyQGA9GcGIXn+12u3r79m2t1+u6vb2tN2/e1Gq1avwhdUMPvHqfOcJnfzmAhv44oSnxvutu/pO/cyGAx6bxt7ljBwofHh5asPPs7KwuLy+rqtoqNO/SwLPsl5KQBs/LvGL9N9Z3EMkLbdIvsj/jsejgqwOgLp/9xvR/0MscG9YbxooTKtMn8ruJ4bj/+Jv6uM2SM0YIbrt/XMZfRT6b4FnVcBWI/87GrhpuPYKCuNHdUXZw7bTbaUtjbwXAUSVizCTCux4eHmo2m9X19XXbFzUV1MbR36GAKB4HsbO6yu/3+WAeUEyYXuprw0hAhkHAAMZZ2m63LXjjTBcPOpcjI8MorKPGnhwwXDj4b968GQTe7IQyGLw3sNuw6gAGbJCYXKmDBybthDEisHN2dtZWYFEOyAgmdTJw7u7uqupAMCH0+37/cRtPB0f57aWuGNc3b97UfD6vDx8+tH2mCQoSgEIvqHMGhpNUIWsJ3aQNDOaqakDo9SYu33N/f1/fffddrdfr+vrrr+snP/lJLZfLlpHkCfzs7KwWi0WrO23FakcTEZ6MAVEeb2kYKJMn7Czzsf97ZAPv9e9RRhlllFE+LTmPfp/0QGzO0Qbk4AqD916Q6PvA8bHvk6zxdUn2JHFhssWf87fxlYl8b4kD7sz3srMB/1cNg3ngMgJuduApl4NQLjt2lV0B0sGHHLi4uGir+vf7/WB7Z5Mn+WwTQ8aDXGsMkivnjLntHDtJDXxgkqPnLBrrGRv5b68qM7ZIAs3fgQ0dSMqD5E2kpI4ZF5sUQN/xc/jtYBVlMblgHwnfALLAWNO+Ddhys9k0rMauEO6LTL4CV1MWCJ+qqu12+6rN3C8ZALeueneGdMStXw7yePz5ub7OvgxJhyZUM0jtjFe3m5+dJJPb1XU3YeDyZv0yuA+BYcxv6ZG7tLV9l+yHnANNvDEmeAa+D/OWz1Wh3KOMMsqPT2yH0vYnEW3735szsKPm75DenF41xIj8b14wMQpzv8uezzB+QrC9xgvH7BJ1YZ7HdiaW9buxNSSrgxWxW3B11IF7zZU46Mj38/m8rq+va7lctuQY+BmCaE6OMU+FjeRMM7g6kvV5b5LUJFl5twNztlU12K4cHGecs9vt2u4MlI1y0Y7gFDDM7e1t3dzc1GazaX1BEjjtfX9/38pzcnLSgoCnp6eDVfjUb7VadXlbbCE2ksAbCWe0Y+IHdCv5UXhY7xhG+3ibS5fFfLZ1DSxKoh7jypiCPuLZcJ7wd3CqGdxzcI53JW4lEIl+0P6Xl5dt0cft7W09PT3V3d1dffXVV20VJAtROO/LQVYCua6HV+ZV1WB1pMe8OVy2bmQegu82h+s5wjEAz0Xo3W63a2e7sXKMsXt1dVVnZ2e1Xq9bHzihzfNm6oqxt8dab6Wk5xi4cq4zjvV8lXg2+5j/0RXzyU5qS9/T8wHSw+gZ5OR5/iz9H7eNeVrrKfro9k378KvIZxM8szNiAsUTBY2X0VMaju8daKPT3QFM4Ha4c1u+NOhkLZyentZisRgEDqo+Tr4cNJgR3GPLD3kvQQomNYwnRs0R3XSsHOTCacTZhfzgnRgUgxorK6vQmLgc9OFd3u+fcnmQZ2CGtvcKuoeHh7q+vn6Vfcs9JhVYadYz4tmntFlmNPND8LPqcA6cByFEhIGEHV2vzqLcvIPJnf6yc09/MDFdXFy0vXQJxKLfDw8P7fnU0QTQ8/PzIIPHOoWuscqw6pCBTN0BKTZMJgYMBnzN8/NzvXv3rh4fH+snP/lJvXnzpk5OTtqWphhhljaTsUN9TOTQv64XdTB5acKJ702AWJKM8/vy+959v+pEO8ooo4zyYxOD5WOf2THpfZ5YKx25HgDv3Ytgt4wvkLQn2HcnonzKFvjeXMkGrprNZs3O+v0Z5Epyyas9cFz9Tpxu44m0qRbjL7Crd0Xg2dPptJ2LAQYBmzgTk/bpZfkZm6a9TxtLeRwQMY7d7/e1WCxqsVi82k7SuNRt6/7+VKKRg4ZgCQcy3KbZjpTN22D3MIyDpN4KsYc/HAjjHvsydpqraoCJvDqQtkjH2XoNToMYu7m5qfPz85rP57Vardr5d+5PDoWHwDAWZns/ygHutdPs3+4P9yn18d+ML2fzZ/u4D8CEuR0/5cFf491JGtkX681T/u1yGF9a9xgn7kOXO4NkOWd6nsr50USMiYZsj964MnHkwDx1zzpXVdsGLM+aG2WUUX4cYt/cWMw2Hd4tbWKS/+bvMnDVw4JVh/kykw6cvON50Ngjg2BevcH/xk9+j+d1BGx2DCe4rSDYWUlVddglaTqdDnassp3jPoJGPhcpse/l5WVdXl62pKjn5+e2wxNnnTG3s2Lr7u6uttttPT8/183NTfvc5zxVHZL+bZPNlWI3HRTjewIN5g1JpjbPxHuqqiX/085gPcq42Wzqw4cPbWGBMbJ3ozKp7pVM1hfwDYnxl5eXAz2gvrT/YrFo/Uj/OxhGncAQiffBKPQj44U6pN3u2XkHba3L5r7MFxsX5LFBTozjnfQDu1Ghb/Cq1IHVVw7c0N6LxaLm83nTL9qIM3K/+OKLwVxBPcGX5iMJ1lBXr3ZbrVavsFZvgYpX9/k37/X2mGBOL0ZhUcJkMmnnn8ERcw0/cJ7GnujRbrcbBA3RFa5DL71y0Jyn4wk8P7GxVwdaT+w3e/5z8oPvo429otTXWG+4Hsm5mL7rBfHcNvSJ+44yWpepNwFoL8LJcvb4iR8qn03wrOrgGNjZdsOlo8L3Nio2fDScO8Rb6DjgYkNdddhCzs65gwIo/GQyqcvLy7Y8m3Lt9/tB5h4GkUmWQBkZEXyWDpwVy5/ZmXZbuH7T6bQFdHhGZjc4c5H2Y/A6ku/sEiYZMpQ9GDOSbUMIocTqOkAF76Fez8/PtVqt2gTGpE77Z0CUtuU9nlD5nnpwjY2dDZwNe1W1TJW3b9++clDRM1avJUFAkAsD6YCd29NEG8DMmepeTca2ml4ybgPDNgAEtsi2AYjxjuw3no9+eewwgbJK8ZtvvqmXl5f68ssv6/Lysh16SV8TQNvtdoPgb06otFPVYZIHlCRJ5OwRG7dcvei5ofd3Bp8TAI8yyiijjHJceqRxkiC/yL2+n7nfWZlVw+0YTTwbb5jYycAU87yfg/CsTPox+eLAgMvrwBaYzzY165bOOXbYjpxJCQcFnMzkgISxQwYqEHAMARLal2ezrQ/Otc9CcL852JABAuPr7B/KD0YA4xCcQTIQQvKUn2G8l4lS2QbZF72+Nc42FnK9/QzaztfZv7Be9zAP5TY+9Xt7WalJUKDLmWDkZyRZmVivqtoOF+/evWtbPXGWw35/OLSc+rFSjeeBNdFXHFrajv5035oI6gU53UbcQ2DT7QU29Jg36Wlixk62299kJe+hjY2DeaZ/W+z/VA2DotYPk0OI56XefMrzLE4etI9rn6A3H2QbowuQuPalq6oRsldXV7VYLF7Ve5RRRvmTL/axq4ZnXZnU7/niSf4yP/m+tF8IWMDf2f6Y7LVdT/vC5z3cBpfSS/quGiYZUF6wC5gm+cnEIuzu5JU15lfgFSGF+fzi4qJtd8ecb1s1m81qsVgMzmri3dfX1231jQNF2+22ttttrdfrxkH6PFsHYGgj4xLaG3FyGPyT7T5lNfb1dpv0HfcSSGRlEVjU/UmQ0JjcgTP6G/6rqgZ18+p5+Lvn5+dm75I3dp96xTzXUAbeTV0TexlvehEH73Byu3FB4jb+pj3BXgSs6Beu52za3hhLX4J2cx9mGXxml79nvC4Wi7q9vW3lIFnL56menJy0csFfknjI82jP3CLTqzXhP6k7vgkrp7iHgHAvkEMfwNU6GAd/ysKF5+fnWiwWrT0cK6BuvGs6nbZFGKx49Io0ByXpR9rduusgZerFMW7T9+X8zb3pwzEPeuv27FvPQVWHIHMm7iXWtZ7/UM7V13t+dczG491+k/H+LyOfVfDMla8abuFmh9GdlwY5Jz07UO4AT7rc78ndRtfv2O0+ZuYSGFsul23fYzur5+fnNZvNar1etzI9Pj7WZrOpzWbTVjZ5AnLZ0gF2GXoEDtej/CwvZmWQ22E+n1dVtTPJeCeG20t/k9SqquZo8d7n5+e2XSXlYFJjonUGB31LdjPnMDBBbjabmkwmLdjDJOofO8zpWOYEQfsTuGKypl2TuDBImE6ndXV1VT//+c8HpIn1FcLAjrNXTp2cnDTSgQndZBLGgjbZ7XYtGMs2S5vNpr1/uVx2ddMZDJPJx32jLy8vm5GGgHC5HGx1XzOe+M51PT09rbdv39Z0Om1noWWAdblctj2ATU7kOwy6e/qdQNafGdT6mZ5IbWhGGWWUUUb51SSdjvzs2PUG+j3BPoAvbJNMTGdm8G53SIQ6Via/27gv7+l9bucYu5P1wJ6Cv3oBA2cTmtz2dSYCXC+uJbnEThbPM95FeB6Zkb7ObQIuw7HL4JSxLZgOjEBCltvcZFZiLK7lbxMjYE+fUWECiDp52yf+Btu4j4z/rGNJorntTPYZW/SIPsux4FD2q7eUpLwZ/PAz03+hLRwQsm67rL7eZbePxd83Nzd1c3NTs9mslstlffHFF7VcLlt9uBYcSx0yU9z6Yx20OMiYxCm6Th+4T6iHiSG/2/3lwBo+kZ1u2j+DcpTJuurPet9zrwOidt6tF7050G1gXXGb0F/ZVvmMT81vHvs8i/7y1qhOUMOPJKt5lFFG+XFKBhLStntu898Eh5jTvFLJAQbbzSRMTdKaq6s64EPbW/M1JnR5noM6tveuU65kdlmc0OQ2cCIwuITywu9QVurz+PjYsM92u23XMOey2xW81cvLS52fn9f19fXAdrBd3fX1dQsQsdp8vV7XZrNpWx6yEomgA2XHJoJNMsmcdnHSNvaXJCy4xKpqK3K4P7fKTB6K8j0+Pr7igHgGbWze1/iQfuLoFbAv5SQ44b4jeYzyEjTh2fv9vm5vb2uxWLTVSNYJc7YO8hhPOgnP7Zl6aZ22rbaOGxO5PomB6Nf0NfjbPoN3rDK+YywZN9L+9k34ngT/7XbbeE7a5u7urt1DEJkFG2wpDl9qv4D3sdrL7YfuEXiFj6SP4H6zTc0F0+ZefcdY99bf6L532YLf5x0sGuB6dIFFMrShV9K5bNT17u5usPsGn8Mx8791yBiVdvd8bd1CTyzp+3judJyD71yWlJy/uad3TcYacjzxO+NBbhc/81Ncww+Rzy54lgS4s1pRNjuRSZ5kRzCxeLCnoeZ6d4qNMYrhFTC73cflqRwW6EDXbDar1WpVLy8vtV6v6+3bt3Vzc9McEGclGkwcyzj14GDSdeYL77XBMzGTJAmGxyvjbPxoYyYvruO91JffTIJE7Bm0CSgwhl65xwTPlpJMwExWGU03weH+RQyWaD+DIV+XjjDlhhwC1Mzn85ZJkYbQRm0+n9fl5eWr89gyOymNZmbhcAjoy8tLIy/suJLJkNv1mORygI7yOjMi29K647HiQCoBMPp6s9nUyclJvXnzpq1KMzgga9wkiMesx2MCAY9l2sVAib89ZrNt/Z4eEPdkPMooo4wyyveLbWna1ySLv+8ZSU5XHbYeAU/0nAQ7A0kWO7iWQRs7u70ACfckqWPHw/XDdju4YZxo5z/bxY4ntgzHz3aZbEcIAAfeHAwyXrVNJXBgAqNnQ91m0+m0YaB0tsFo4BCuN17HZjuYwO+eXafNMjBJe2Ufu6xgGxKpnDWZfectWLIP/VwnGFFml8HBGmeCI+lMupwmAf2d24l3OAiV485BparXq5Oy/dKBpd1NSE0mk1qv121bmsViUW/evKnFYtHqSv3Al1WHLc1JroK08rhw35o84hqPWxNEHu8mqbwyzVv+WIzrCcqyCiB1heutq5TB//ckyaye9Igw9AzJez1X8D9lNHGbc6L13qRHEt4Qhhb8BB+VcH9/35IuRxlllB+fMP/lvG3byBzO3GFcYX8ce28OJnFY+ueJ93r20HN22jrzNtgvnmV+BptmrtH2gWdA4DthxeXNhHrKwTZ2PmIFPMW20slbgPfM65Gw7kAhCdPM1QTO3r9/X3d3d7XZbOru7q7u7u4aF2jMyW9zYbSVV5Y7EXw6nbZgiXlQb6nots0Vflxze3vbgmYkZdkGUR++s97Z7tMuPpuJwAYBFsph8h87SXu6TugDZUkeFEksaLubPBXlM2Z3YpUDL/xv3rU3bhxI4/vEhZTHwS63Jz9ebODVe+gISf+Uc7/fN+7y5OTjOWC8uzdW0bvJZNK2znQweT6ft5Vo8NJgFa/scl/ybhYfpB+abYVO4RMYd7qt0QOwEP6GVzA6NpBjF53z4hHKb4zuZDaPSdqFMcE4y7mVvrL/x1imL3ied2Iz9+p51vN3itvW4562O3Zf6gM6ZP7ZvK6FfssAv/nvXxen+9kFz3KCcWPk9+ls8dtGs/e9z4z6FNmeQRXup+NZ1eOt4xaLRa1Wq9rv9/X+/ft69+5dvX37trbbbbs/HTRnU/qMgSRZPGHZAaeeDl5hvJbL5YD4cFssl8sW4OPZPmMMAwkBQ3ainV0vjWUi4376wACilzGKU86gyCxqgxLXnzZLcGWj3CPJTPZ4sqBNndXCNc6y4b0YcZbNAyJYMQdQ4nre7QmSpershcs7KcPd3d0rsszlmEwmDYzxToMT66vrnpn66DqTNffnZISBnE6n7cDW5XLZslRNVHlVnfUZScCbRIH7mWdiyNDvNMr+fewZWZ5e2UYZZZRRRvm0HHNOet/1Putdk4Ryzt/GckgGLuyw57yfwN34JcvKb+yqiZLEFH4uDrGzCm0XudcBPZcXvFU1dMjtTDtYYMxkPEnbHMNAYAu/3wlRYBicGztLbv+02ca14AcTZXbqXTfj+55tz0Be4jsIGztz1JN30e4ZqOnhpCTrTF4ZZ9vptp6ZXEv98D3G1L6/J9m+vAOdcRAlcQ7tZoyXv9ErzkZbr9d1fX1d19fXjZQz0ZLtYh3zGcBJIqWD6+9oW9qHZ/eCqF79mO3psjgJ0uf5WYyX05fgsx/aP66L28Z95/e4DfI5Lp8J3PRhe2WyXvI/JJjPUOSdzra3/4JfM8ooo/w4xYSwbZznW/gLzyk55/G5bbfn/KrXK2k9LzpBKO2O/04bYjuX83zVcItG3++kF8oCCe16g6fyPQ5EGINUHVb5gPPggtzOzPUQ8KyoMc48OztrgbP9ft8CZTc3N3V7e9u2bby9vX2V1JRt4dVcxqtODIP7MudIW2E7CHgkQY+9fnl5qbu7u8GiArY+JwhAQAueCxtpns5Br4eHh0EwxwndaQupq7E5ZYST9Kqgqhrs4ABfSDnddqnXxmXYcPOpyUPZh3F/2UZ7/MBJwskaX3Otk/QYWx4bBHq4PpOUEAKv6T+QPIUOkqwEj8y2jew2AQ7heYvFYhCIf3l5GWBOEvp4D89zEpc5e35zbXK6PbxN/zHOMgZAve7v71sCGUEt95V9CDhTgn89rEwf4mv2/NzEzg52ehEFnzEumFscsHXQlnqnz8y9tB/vQTcSw/dwbG/M+R35P+1m7t/60BsrGXj0d7+sfHbBMxSjF2RyRJPB7nv4rHcffyeRkZ3ac3jyeWkoyZRYrVY1m83aHsKs0FksFu0sLUdV/bcNore4S0eMgcGA9N6vntRNdPiAcwbTdDqt1WpV9/f3g8MLZ7PZq+XIflfVMFJN0Ih7yNZwmzLReaLwoLDT62AggRIGcBIwlNl7EOdAdP9lRJ26UE4fKs47JpOP2x8SFPWqPbIiDCRZOk0gsqrahNnLCLi4uBicVzafz5vxd13pO95pUiLPRPPqMvqOuvKTmdUYAAwwfWFgQIDs9PS0bQdK/XpgbrfbDbJVbZB7Y94TZo/g4TMbP9fFY703qScxk4TCr2PCHWWUUUb5kyyfmicTEB/7zNfnXA1ITmIkbXfV68PoXb4k0H39MbHd5HdiCds5f8bfx9rF2ML40aR+2j47eM4mJfswt8fDwTTO4D3U3QE4Jx/Z+cA5dJZfr05Jwrgd0oEy4W98y3Ymdl65L7PD7SSCFf1+npdkAORS9mtie9qx50Rm0MxYwquAaEsHsHpjwERNfsf/DoaakHGAlLawHpjQcrmcWe6695xxkyzv37+v7XZbq9WqBdHI2IXIMZ6kn05OPp6NbFyexGvOE6ljniN4Nt95d4V8rp9BX4CP0W0TNdYD97Gfk34gf3M/Y8jPyPuyfh5/PVLF/1N/f8/ze4E0v9s+L4EzCBHr036/b9stUbblcjnIsh5llFF+vGIezH635/CcI5EMhiEZuMIGwWt4/jIuS87HSTt+X5bPxH8SssYi/p+50ljNnEeWY7fbNfvIdcYEtrHcw6pftnczzuJMMHaDohyXl5d1eXlZZ2dn9fDw0FaO397e1ocPH9pZZ2BIlzexjt83mRy2bayqAd+XiVxgONqs6rDKxTgWeXx8rNvb2xY44agZfqpqsILd/egVYX4/9ow6ETDJhDrwLPXJhRjJEXq3LMR6T9/Rt77X7cpvYzvqZi7X2DHxBGU0T8pnbDVJPzvBJjlS7uE6+ojgW45HMDT6Q9vyP4Emrl8ulw1jsLMYq7ZOT0/bWX7sPAZP7THqNoDfnkwmg1VvHmcel66fOW0HXq1PPMsrKt224KHdbtc486pqu405WdLzHpy4F8Y4AOwxw//0Je3mZyIOjqE/5liNbfksef30z+hLx1g83nMBCZjfMYte7Cbfme93sNf95md5DvBn6Ee+91eVzy54lpV3g/B3OiModjoxNnwZrPGk5udzr4M9NnAolCdjJoOqahmN7CmM4q1Wq7q5uRm8L3+cuWBDzODyihtvF0QADyeaCSADTTYaJycnrXzOWOWds9ms1RtDzeTpfWXJGGGAT6fTFuDh/YAA2s/97UCNAzp2eNPpSzBEfzJ5GxB5InWGSU6uOUg5I6TqowGHKPjw4UP7Gx0xiMMAUE4cdnTJWyeZMKqqWq/XNZvNar/fN6NDwMxkxGQyafsuu1/QEYwn4wRAMZ/PB0bBmek5JjCGBnj7/WG70KpqgTTqigHjWj6H4Ejw5HFXNTTgkGZJavDb+pGkE3phPUugb7LhGOE5yiijjDLKUHJu/b45uEeOJ/nrexw8691TNcxscznyPS5DL5hj/Fg1XNns+721sm1HOsd2fLneJLp/sI1gkefn54FzahsHPvOZtL1EKQcWsHMmJHiet9SxEwN2BfOQGcq7wKiJ0d13YB4nuiW5xmfUkec7wGdCwf3YO7/AQvn8XG/VaAfSDi/t7t/Wt+z/xA0O3rhNjUeT8ONv2jHbqRc4sxOZ3+NQ07aJufxc409j6rye57AK7f7+vpbLZV1fX7/aZogyeGxMJpNGHLi+6dz3/BWuS7+Q+oItTYBNJpMBSWihjfFPTFC6XxMX+vPU/5zfptPp4P0OVh5rY7/bpDH6mlm+fqdJngygcY1JW8gs/L+cV8netw+XxMkoo4zy4xTzMZl0gdi2eSWP58O02/kOczMOAqQN5ceJG4nNkny2jc6/k7exbXOgjLJVvQ7Y8ZlX02f9zJFQToh7uCc+8/bKZ2dn7WwxuDp2/3l8fKzNZtN+2AqRs2zNs3k1nPlC2x5vHecVRbvdYdtubCy2mC0SF4vFK5vlc7m2221bVEAb52pFsDh2+uLioubz+QDDslDBwUAnFKGDnAfnoKmTsKzP1iX0G24tdd16YT7SON9JUsbHHj+J+Y0HjPXNZyb2qqrGz3p8GYMaoyaXbpzv9vTY5ToS/82p8WzaabVaNX/C4wI9M9bf7/ftKCKCmuiWdwo4Pz+v+XzeFqYQNKNN7HegP7Snt8CnPRN/0hY55v0d7Xl/f98WUiSe99zj7VE9XxnTm/N3kM34zv1kP8B+YI9P5R4HuVKH0RP/TXnyXDhL4no/0zruutr35l3U04smHJNBZ2hL19tz7PfZlh8qn1XwDMlgGQ3kQwOZMBzt70V9begRlDezPumEdHZRIju5nmwz2IWjCfHAIF6tVnV7e9uICU+ylB1jSyTbZ06ZAKj6OHDJ/OQZRPFpKya3i4uLNhiJ8r+8vNRisWj7w7KUlgCZ68lyWsrCM/hNkMcghOXXjlAzmfE+Z8imw+oBzsA3MZIZ1OwXTTlNyNgwemK0o0pgi/usI8vlshn6u7u7VgeyMSG2bJRtcHlfnscBqUWmN0LwjCXOnFnijCDeQ53ot+1220AVbUfbe59YjyOTdJltBVijfdHrh4eHWq1Wg4k1SSUCex5T7l+DX5epF2gzSOgRZ0loOOjncZ/6MMooo4wyyi8uCahN8ieYzrm/6oClMuhgPJWYoCfpCBwjK3hn2jj+ziACdifvdX25N5/pOlUNs5ipV2517Pce+8z3sQLcZaSuTqbBdiPgE3ALh8dz5oQTc/gNlrRAquP4OniYSTRJFhgbp/NHuW5vbxuR5EAJzzCBYLyf/Wosn85hL7uc9jYZZ8KB66zHeQ264jZzGyT2cZlSt6w3kC/2VZxVi36wIwZlyd0beKaJMurrdnYZIMDwY968eVPX19cDQsjXOwgKgecxne3pzx0My77hfcb5vbnBRMPLy0s7WwMiZbfbDXbmyPsyCOk+y+uRrJtxa8837d1vvTMW9mow7jMmTp3J97y8fDyzY7PZtLZjXJENbl9st9vVbDZrQfVRRhlllKph4rp5urSTXFs1JHQdIEI893hOy/mMOTG3NzMv0isD5UiOiECNv0s7ZRvbK1tyHzwbXshlPSbYI+bih4eH1h4Q/pSHXX1Wq1VNJpO2OpxAw+3tbUuS4Dx6cJW37K06nM3lrRBdd3hG7kUc9PL12Gk4PvQDnqu304CTmHrtCd9n3AOuMUaC73JfI+YlzWdSDhLD9/t9wwfWkdSLTKqxvTdWsc56hZbxJ1wZz7c+pz9gW0/70g9eYOCAiYM+3tLRet1LEnL7Ji93cXExCPTwPJ5PYDexA2UnmOVtPB00o41PT09rs9kMOHr4VxL94bSpF+1BmeDlSfq3nwqnbb6QZxkHUi/Ka/+J+cO6513YqEtidc8f5oezrS32IdA55jzjRsaC60L/25ft+dg5V3leNx/v9vbYT//X/W7pJSO4HHmNF/r0fKkePv9l5LMMnmXlTVygFI7+e+Ly33YaLWn8TBL0Gj0dG4JUPNtb90EicJ2NPIcgohQ2Ihgntu6rGjrNvM8TsM93cLY0GQF+NhMAZcWxxrDjjHo1EoQLQRsyTUy2MEFxL6ubqHsu86ZvZrPZYFJ3pkPVcEk9kwKHRlJX/jaA8eos+ssAD73hffxMp9PmODJxefJaLBa1Xq+bseAa6kB7+bMEIAS4ABGARweL0E2AEobFWTYvLy8t8yJJjswGSscZfaYd7My7vtznDHXa14bj5OSkBesIJGbd6Q9nhbivPcaSCPMYsAHzMxNc94hT/06CdJRRRhlllF9eMnDjvz8FZH29n4V96JETdnjtRPfwYNVwOzQ7h7zf9mC32zWbl8EYO1Vpm1wGkwDGqjzPjqGvTWfbmNYkvpOpptPD2aMm1r3FSa8cbHEDBoVw4XPuoQzp1NFHJPwQXKs6BEzAx1zjOhg/0Cb+noQd9w24iYCgnTn3R+qM25N2cnDE+mQCsPcc61j+7Wfwnp5ksJB7cnVfBk38fmNn9JU2hvShP50YlwG33nacPN/kUuotff7+/fva7Xa1Wq0GZ0DThs6uZQcF8CL1zvGKXwK2RWcdgOqtDgWX8pnHFrrjcX96etqINEjKdPTte9HPPVLD/Wh9sIOPzmfSprGyyRR0IH2I3nzZI1C4x/282+3a6sH5fD44G4YtLQmWedw68DjKKKP8eCX5sKrXSU3YMQfIHPiCC/CuPJ4r8z1IvicJY5fJtq5quPMQz0rcYP4obXNVtRVYnl+TfzNuww7Y1lPe5DMTs8Lj5WosMBpc4c3NTW02m4a3np+f23lnbOFIgjsBBN5BO9lW2daae3I9vMIMvsoBSfhCgme8H1ziNjVv5m0XCWZ5YYFXJBkH8xz6gxV4j4+PNZlMGi+JPc/+sR6aX6w6BFN9TA792Av8JY+W2NPvtk47QGAclUl39IuxBAEm7LyDtdZ59MwLBehb97vrZx+AAI8xJG0KB+qxvd1u6+rqqiXsUAbw3Ww2q9Vq1fCZ+WR0At6XI5HAa+btHRB1sr4XCrgvzVHS18vlso0N+4huZ39GX5AUxvE+5tp9Rlv6f25/nu/FJZTXSWSeIxysciKf/Zqcb4znHdijLn6O5yu/h/K6/PYP+dw+vHGu51zEOxt43oerT57Ac1XGcDLo98vKZxc86zV2r5GY7HqOhD9PxzZJDz+Tv9OQ+dnc52izI+d8jrHA2FVV2/KOyRzjiAJ6iSlBEowIZaIuTB6pUATebMjSseJd7FnLgPCSZAYWkzfv5FkuE4Ez3mVn9hj5heOKY0ddMf5Vh0CYiZX9ft+cOhtQruM9x7J+bBAw7NPpdDD5VlUz5EwCk8mkrq6uWp+yBaf7jXIAfAzcIDSYTE3mbbfbZlhYbYZ+014Ylt1u1wCBJ1xngHv/Xu53Fg0/7g/6LcFwkibeovP6+nqQ2ZAZaH6/QVWOKerlALTHHmRKj9iyITkmPYLC340yyiijjPKLi+dh4yP/zXWWY0Qw1/ucBduDxGQ9MJ7lMP7L9ycW9Gp2PrdDUDVcceRreu2S34MHIavtnDrAZQfPdc1g0snJSTsDFfvOs42bscU4nsamxl8mVPjejrWvM2b2lkBeaeZAG2Xmb5NG/Abn5Dmt1hdnzXKNHTa3lR1MsIydQWNv2tB+QdVwK0cHTtOpS12nXvSjyQk7x6m3bhs7/W4DkzF2JN3uYDzKutvtBuePVR0yzk3+pdip740zfJHdbtcwodvH/hT1pRw5PtwfrrfbF/KS8ZNnPXglGe3DDhkmrXiW9Tzf5fGX+Nj9zLtNriQR0SMAeJbLlLpgffH/Jowpm8vt/qeOEKr7/WE7dxICq+rVGWhnZ2dtC//379/XKKOMMkrVMOHVNi79cvMLFnMGx+wg1zmhqTevJo7z956n/VlyHg6umRvxHEoQp8dZGD+BLdwm/DZHkqt+KB/BMWybubb9ft+4x5ubm2bvmLe9vTJnM5k/gczHrmeix2QyaRwUdTUezzrk1s1wZ2ynyI4GlNF4lfpi760jGVwF1zqYaExHPc31GDNQV+tjD7+hC+Y1+Z/3OIBqvUnfA0wLT+xkMbjfYzy2uUrwVOqm2zD7yPeCMdJ3cfsTsDK3WHVYjOFnpL7ynfGUk/nevHnTku2cZIcOnp+f1+XlZd3f3ze8hj4ul8umDx4r7Lqx3+9rs9m08WI+O9uGlW7JUTMW81xX42/3A9w1XKx9g8Vi8Uq/uNdzh8+m4zOC87yzN68ml28f2P6BOW/7NMbk1lmLOfScB51I4H7JOdg/OR7tB7osnofc/vYts29yjs+4yC8rn1XwLBvbv924nnAysJbXp4NjRyUbOh2lLFvV0Nm9v79vW+M5qGVSwWTD6enHPYM9CU4mh0AcCmWCYDqdNuNoJ81khIkSJjkMJMbE2/ERsOIdfn7Vx4MeDSwmk8NSZ5MjjqoT8efZnoj5Ow1Cz1GmDQEPk8mkGWEGpaPeXEOZctlz9ntmWjjzkvajrZhoqz4uP766umpggHZ0O6Eby+WyTdwAmKohIegJieXITODL5bKdG0f9bTggAk5PT2uxWAyyoTAqVdVWOdL/RPETLJrAom+ou/XdGUO0G3/zDACMx5CNqw16Ag2PeWdn5Bj2vr1+jifT7wuQea6hbJ8KwI0yyiijjDKUY07jsWsTlx0jlD8FgHvOrhNSqoZnanl+N1HQq8enPjP50Vv17Xf7XjsVJmf8XRJIJsKdXWr7iROf2xoa49jZcIKScbKxM9v5pLOC7fcOAcZYXMN7wS7Uy5mk1N+OWa7CyoSeJNf44b4MFiZ5BsbrER5gVO+lbzEhk0SgdYz/M3BnMsc643fRBvSxHUqeS32sN/ZLwPTgWNrHAVkyY8GxbNFJ0IRy9c4Ppn0dlLGerdfr2u129ebNm0ZCuC/QUXAphJrbyPNBjiOPGVYfeutGkxJgSLbzMcGYQiKfV3m5bZ081usDPksSrEciWHoYOP1anp1BUto95zm3lbH9y8vLIEmPOnHGiAkRZ/9znsh2u63tdvuq7UYZZZQft/R4OuZZz1dJ9le9XsVv3z1tYNo8cALzm+2577G9wg5monfPrjPv5mohb1fm3z6KJef9DFzwbGyfZbc7bCV8eXk54KE899/e3jbuzKuO2KIxV7BnuY2tKCNBs2zL8/PzFohzIIGVYJQD7Mi7zGUmpsRGZ2JT1TApCKztwINXt2O32aKSa+H03GbGo7Z7lAP+kDYyLjVf5mCJk7mMWc3xgdVTx2l36wTi7/x82jL1hn6Bg+V6yp27dOXzksO1PhJA8+5jTpBPDGG9Ozk5qdVqNSgT97F9tNveHCvvgGdGf6iXVy36vScnJwP+00FQngfmTtxJm3gnNj53nfb7feNh4fjRt+Vy2QKkfn76BZ5/MtjlfklfwPOUdRG94TuX1TyrEwJcJmPsxP6U09+5vIndU48zIMZ1tJ25afTI/eF51fcmVv51yWcVPKs6GK10gHuOCopjJy8NsQeqHawMxHxf41tBeP7Dw0Pd3d3Vcrlsz/XWN94acDKZtCw+f0+5Li4u2v0YHE8SVYelkp4MPJgJtGFIPLnRtjzXCsc13sKRYN7t7W29ffu2EQ/ObAYwTKcftzxke8cEPzaSSRAxsMlupM04t4229rOZeAya3P+0V5JrNgwYMxM/NpIYbQ/Q1WpV7969a8tzAThPT09t4mdCXq/XtV6v2zU8i6W8XAcgMZjJg7l9Fhp9wAo16mSdp4+fnz+eQ0dWdRJw9IcnVtoPAGJx+2A4druP5+Gx0s6kFu3G+MxJ3mPJEzvl5LfPVMv7DEj4/X1juUdijDLKKKOM8sMkgxOIHRCDfAPrY89L5zNxYA+c+7dBtsXPOJYg0SPVKUuS+OmEVg23ykinNcWreIxdekEVt6efbdLp4uKinWlLHU3cuP2chENyFcEFSBsCaLSVE7FMwDhz0BjTwTAwD3YcXMA9xmq8k8QhtwvXZnuZnOll2maAkyCe9YD+NN5xuxknph+SwRZ0Hgc+9Sa30jFJlIE767vrha7ZdzEm4l76ysE77uEM3f3+sM0835uEsZMNJgbfpc+F/nz48KGur69rsVjUbrdrZ+G5HmQTb7fbV848z/T7XVf8pcS+VYctoNzGWT/rCW1JAC2JMPuLTgA81l9857aERMk5w+1hstH9ZbLSPpvfmfMTQvttNptar9eDYKXHEX6C/WMwN9u63tzc1O3t7at3jDLKKD9OMabCRpPIm3ZqMhmS957XjIcyYGCOIufPxIXHsCJ2y/eZ98i6YGOSWPbczrW9ABifexW9E1g8hyfWc6CO55Ic5eCDy+7VMpvNZpAYn4Q1vx2Iom9yJ4TExKwY434wJ89h4UBVDbaMph/hC/OZbnfayDgR23R6elp3d3cNi3pFIjbLCfXmomhfygoXi8BpejcwL1IApxqj85kDJOi6/aLUT/OE/tx4ytjNn1MP6mzsav7U+J/AlHG660L9XDYnP9E3BCQpO3rm1ZBul6oaBJeur6/r9PS03r17V1UH7GfskVidYLW5a+/kZix2fn7egnE+HxDMOp/P2w5cBOd4rnlmxgP4Kecz/qZ90RfadjL5uPqMNgb7Gd/l+DKP7S3L0T/8lpT0QagTvz2WPJ9ZL/1/JhFYj8Gyfha66+RDnuHn5rxtHO4fyp1+D22U1+dPjr1fRT674FlVf0VYr7G5lt/uJCuOlc6BCr/v+8qDsqBgKP7Dw0PLsnWWrjNskxzxpJoOIwbJCp9GnsmIbQWtNF65hoGh7BguZw3s9/tBZiYTGRMWq77ev3/fJhGMxcXFRc3n81qtVrVarWqxWLyaKDCO1M3tSZvQXuzhjOG4v79vmTBMeux5a5DFoGbCo32qagAIsi+ZCJhIHU33iiqWXWNUMLy0JxOu95j2mXN+l4NSgAAmGhNq1j0CoT4TD0NFluh2u23lxKgCdngndTCJhg5TDyZtympgXFWt/gZwlP/h4aGdVQKYsaHgmZlR4HGQk6jJQn//8vIyyAzpkQc5rj2vJBAZZZRRRhnlF5djc2lvTvZ3vbnXOMbizzIjLol5bBX4L4MwVcOVXrZN3i7ZzkUPL/KMdEj47Z9jNsfPzUQTOzYuIzYQ24etB0/02hMMDTZh60Zv50cZcIIykYu/e/1iLMB1WV9jNtfTWNeOa9Uw2JGBD9oDJ85YN9/D95PJpDnTiMkJk2UmulweBzMsJt4cDOIz/ATK7+0G7a9k+/b0yjiKdxhX0raUOZ/JFoa5XRIJXW4/rqG+6Z8Zy4MD1+t1nZ6e1mq1qvPz80EmMeVdrVYtuJP43JnCxqAm+Zw4hc56pcDJycfzeL3FfWZ2e3xBnuHjWGd6fQKxkwQE4jFM+dFP+qRHvOa8lv3fW72ZJDD6x4rA9Xo96Lf0S51Q6ZUCXHtzc/NqbhlllFF+vJI8nG2450ikx4lVHWy8sVrVMBkheTC/08S1bba5FN7huZJrM0jk8qf99XOTr3CbOFjmgEvPnjtA412EXEcnjzvJBzuHzcLOukxgv+wTMIKT4UnUhndL4p0zrU5OTtqZZvQtnJdXABFkwfYml3t/fz/A3dm/5+fntVgs2rvgKp3sThvBEbp+8FFXV1e1WCxqNpvVbDarxWLRErTYYYl252xW2tbBIvOC6A994/KDf2mH5+fD+X/WW/eV7T7tRbuj39yT2JcfB4MoG3Vz+Wgjc6V+j/ErumuM4AAS5WAbQrAYerperxu3CL4gkYfy8k7wlutJQBjst9/vB74J7yGAluOZ8QNXShDQYzD9OM8j9J23hcyVlcxd/O13+ZnoGuM+eVF+29elnMyRDtjnOO/xoeiQeVQ+t+/BO/ihv3muy5TBdwdejwW/rKu9wJ3HQs/ftt/Nb8cxPsU3/DLy2QXPPBHYIPO3/+/dY8llgL6+qr/NWwYv+My/EQY7+/f7LComcxs2JtJUVgaUs4LZus+BrcnksCKMMvv8Lz4j4MW78oBQf+d2wrjZCO92u7b81eBmu93W7e1t3d3d1Wazqe12W8/Pz81A2ahXHQ7z9GDF2PEeEzMYdN778vIyyDZ1MIjrfOi1n8tvv9vEl0GUB3eCq5OTj0uB379/3zKLtttt3d3dtbIvFovBeR20GcE2GwZncVMeTyqemAEpi8WiGRgCrXd3d033nMnjSeXs7KwdBu5gHYaf35ntYZ3HgHicUGYHcs/Ozlrmxd3d3WDSNWFG2Txxup9yLPK5x6p1xNKbEzwXJBj/dU+8o4wyyih/EuXrr7+ud+/evcqaTdKhFyAz6eDP8rexkgnvqtd7vPNZOk2WHrhO56nqcM6CnWYHGLIsPbI835vX+XOTLSaQHBxJvOJElvl8/iqjm/fxw+Hp3vEAvOp2djapV3sbt9l2p201ZrLDZgIBcYaunUPekRnducKI8ufqI34bT7mMToRy+XLLRtfP5aPseZ2DVbliP8ue4jLzTDum7oPMKHd77na7dhYDfoGJST8HTMnvi4uLOj8/H6xi7DmlzpClnIlrq6qduzKdTltiHboFEcZ3VTVYFUXfGGtaL9x/VdUS1igLu2BUVTsXw+OGNk4iCSLR5Eze5/K4f9LBt3iOss6nT+s2zrnM31MmkzIW+zSbzaZub29fBeXQfesXfijvo7zb7bZOTk7qd37nd17VbZRRRvnxiu1++uueb/g/BfLbpK+JYc/T+bz83J/ZptouOcna9t82wNjJz3K90ub7qArbaq+O8b0OnJjPY97GxsGLzefzxiHRJg4aEOiCu+M+cF22E7jJ9XUQyYEOJ25jY20fCWaB8cCViLeUdDCOIA/BBuwvfUY5OLaE4FliNdrGXCFlpq0vLy9ruVy2YJxXmifOps8cxERXaFdzjOgN7cdvJ/8Yd9G/HkPWLe4DayXOoI/QN7BaLrjIxCiEFXdcg55aTwjkUA/Kf39/X2dnZ4MFB06Ug9et+sgRn5+f12q1ajpjLEw72T8gqQ+9eXl5aVtF8mzOQ+O9PqfVuNH1cRuhV5xNRn9TZ89nxs4+toY+B0txDdwnvD242vMTZXGbeQxzfeJF3uGgW2LzDK6jX+mbGXM64GVMSYAseXCX33pqXfMcic67DcxPp10w5jZ2NuY9xu86OPirymcbPKt6PankdRlIs8Ne9TrTIxXLHZLPQVA6R2TzeS8vL3Vzc9P+n8/nA8Xw3x6YDGYGsAcME8VsNqv1ej04lNtZAPw44s0BnV495u1iPGExcbj+aTgxRDjkFxcX7T62MLy9vW3bF56entZyuazLy8uazWbNoadtmYhpB69Eon4nJyft8HEPaLZlYdIm6EMwywad9/EMZ9LY+NIe6Uy7zyCcJpNJvX//vt69e1c///nPB0aE91I3VvFdXFzUarVqe1FzjkCSKgZ0TCAsU686rGhEx6bTaa3X62aErKfoiPt3tzucJ4cBYbWYiQIbDAKGZFz4LDoCmF6+vdsdtimYzWb18vJSm81mACqTHKTvPa49Rrkng430P+3pPvMY7k3QSUZ8itwaZZRRRhnlo/zpP/2n68OHDwMb2ps/E3vxGfbomCQeyXscpOoFcFwWA3GTAkmI814Ty9yfZUpCnfuyPDhCx+qXDkI6xi6/MzGn02nN5/NaLpeDlXKnp6dt+2tIBhKbwCmsBjcO8me0dQaKnI3oz923rluv39xOYLjsa5KsqKv71iuKjBVT9+xEpz5kEIny9AIk/u3PfRB5OsV5n/F2fmaxztlP8Pd+VwY56Du24Lu4uBico2xSh2cY54GtIIzs62QGerZz9pFxPYHb3e5jEp7rR7+zhSM4EVyZY67qQH7u9/tGmhj78dsBpl5fJ97kHvwJEwqeC7INrNsmaJhn0s/g/fRlkgIO+tqf7RGgbvfenPXy8nH7ePqOPvYcl/6G6wMxhV/3F//iX6xRRhllFIvnXWwRNs+SuKfqkDCTSR58hzBHQsaahzMuhNPKYJrncZc57buDJJ7DXRYT6+b4zOP58957jFtyJRlJ95QT3NU7FoXf7HrE3A5nZLKf/52YThKLcadtKu3KsRwkihPQoG/ggGynqqptg0jQje+Sp6F/4cy4Ds6KNvPORvBM7Gj18vLS+DJzdz4blXdVHbCw2z+36+N/6xE8q3emSr1wkkpVvSqDtwIEu/UCbtYV6xb3JY5Ah6i/dbTHEVr/+M7PZTy5r7jO13hs0g7Udz6ft/NWrYt3d3ft/vv7+7q/vx/smoDO7/eHHczQM95BsDW5fwdjwTG8C32Gv/YY95iljj5XDb3rtSn6Dh+J7qJP7h/3O7rQC4ilzmb/cA39b+7egXs+53/viuY+43n2E+y/WLet4/kZ9ch52DywddU6mzjU9c25Iz/v+fW/rHyWwTP/zs+ygf1/Eg+eQFEgR1J777VBsIHOwFkKjqpXRLHdnp9pZw6lwIg5SOAJ2cueGbgYsKqDEfDZFZSH9xKsQZjcHOWvOkyEj4+PbUk1z2FZ7mRy2NOVspDxySC4u7tr2y5eX18PjEMO5ow0GxDRz5SJMjoTxQ4/kyKToR1Pb7HiScnv7JE/BCMJYFJPtkrC6eZ9zphdrVaD80isC/QtS41pAya25+fnFrD08mTKxp7B3g6Id/E/xoX3+iwTB79SxykPWbzOQkBsFDwJk2HC+y8vL+vm5qYFFk1SHiPe/C4DX49brjk7O2urP3vjGoOY33vC7o3pUUYZZZRRhvJf/st/OfpdBhGSXAaL9eZzrqsaksoG79yfAYmq1yswTDIcI6hdBjsNWR7+TsIj7Zmv9zkbPRtjByUxqsluP7/qY+bo5eXlwAGbTCY1n89rv9+3bfDAguAi15/f2H2eDZ4BJznrlM/cDg5UuN0pEw4c1xtrpP11f7m+7nvwph1W64mzqfnOBJFxhd9pPc2glZ1k1z8xKn3Xw3rZ3iYJqw5BPX9uHOdyUl9nWXu8eHVYJq2B0cB+EBf0Q24ZZZ01NrQTDDnh7FvaFhIjnXXXybsl2A9Kcu3i4qKWy2Xzl3gfz7RDbrzH94lfTUgkGXF6etrKYv3sjWPfS/uaRPT7KRff02ceBz2M6nb7FF514Az/YL//uD2WfSWPyarheTr4hD7D5v7+vv7gD/6g+85RRhnlxyvGBUniVw3PsEHSv0/OxX/7s+Tlqmowpyauy3nVvJCDHYlpjhHJiQcpt5OyjEdcDtsQns29CHjJbQv3s9/v2+ozY47n5+d2bEdVtWtsLyjP+fl5Ow+K65OPo0xue1aTgUsJJsBz8hyvFqNvXN6qwyo9v8cJI7SzE3HAdTzDCSEEKKwLtrHcz85J5hwJhiyXy4aX+I7t/WxTjU2ok7fwo8+Mqdn1iT43xnadUt+og7FU2mi+83W9YA3lRo94F+PB2CaDMXznJCo/N6+pqgFG90ovduuiL+7v72uz2TQ9cUK8k+VoEydKwUlSB7Ya3e12bceBy8vLVm64Tvrq4eGhLQSB48yAYlW1JC0H9abTw0IJ6sdz7MfwHFY6+uxodCrnCW8r3+Mz04/hXf7t5+V2oe7nnM8oq/Wrh0cZb8br1DvHSe4ASBm4x3MU/+fclb5A4ubk8X8d8lkGz+woulH5LK/tObtu2GPOho29ldUGukemJFnCSiAHrxzRTqPLcz0pVNVgT18DkqenpxaVz+W02+22DWLKj3Gz0+/29IGEVmAmgc1mM5houNfPuri4qJeXl8EZXwYZJpeen59bxgr7CXOYuCcCAwX+dz1MbGAEyUQgq9WAxJkECQxSP2hr6wurpjg0m++ur6/r3bt37ewzJig74bzr9va27u/vW52cKWFwwDlm/twAZDKZtLbb7/cDsGSiJLdcsoF2HQjceTIks+fu7q7pMFkUBIIxAhg1AyGc9Mlk0vp3t9u15dHffffdoP1NFFrcLx6nCaz5ntWZJqk8j3jc5iRtIPHrnHhHGWWUUf4kiufglMRnx+733N67NnGfPzexkURF7xpsFe/LexwEyDIlgYONdD0yqNJ7rutrB5bnJX4zjjB+I4CAveZaHCRsP4SF8TD40YE5/2TQoGroqGSAoddGGQg4Zudpl3TG2TYwE4qqaoANuZ5+TRIis9b9TsptbJ5OpPUlSQI/E4c7ncoeUZa+CH3r4JX1qqfnvXZErFMmMhK75+4HlJm2JSCHE2/fyxiasiWZCfFkcuP09LQeHh7alkHGjWy1TvDXQluAtV0+94F1DL8gA2qUjXokXqes3rLcfkG2M8IzvLKPz93vGTTM3RLyPvrK73XfmwSxL8X4NtlGICy39Mn3uB15Pj85F48yyiijILaticksxga+N+25v2Me7XFpfnfO18euP5YIj63kb37naqBMjIJ7AWeZ27MNyrnUGIlAjZOi+JvfyTPBUcER8iy/k8BC1QGHeL7PlSx8Do7cbDYtOYY6wQ/ybreJA1ncR33yHcanPmdtMpm0AAur3kj0ccAny+0dvHgvuzFQJusWZ5/NZrOWhM6zHTijLd12xgfettJ22W3iXSLQG/wB9MYcIdcYrxgTesVS1Wu8YX/Ewd3E7j0cwnN4rusDziEQlBjaeJM6U0+Ct9fX13V3d1ffffdde4bbkuCZ+8w41WWmbatqwMFPJpMW2KUPWHCSiyxOT09rsVi0v+17eC7xakX0JFe5cQ3tQdnYYv/8/LztDJJJjenPMObcF+bt6av0S2g38/vokHXEPov9OJ6Vc3VvDrP/yzW83//nXOs5Oz/v4fwcO9k/iaN/Vfnsgmfp5LhhAP/pQHiyMAnemwysZDmJ2Tn083vZJ9yLs19VbWWSO5xBzuD3QDg5ORkExZiMmIh5DtF6jAoDiyAUE5qNFOXgbyYEJvfHx8cBQcFZEHb6KTtGxJFqT3QPDw+DbVZwvHm+lzd7ZdvV1VXLoE7FdyTdJIf7c7lcDogC2pjl7cdWG9H27ns/nzYgMJn6gKPPJOg+J+sGIoiAmDMq6EMCrNaJl5eXWi6XzYDSdkzu6Bn95km2apg5TtshjJ/MbDHp4EwR2oFgKuXP/uhl6NDXDg5+8cUX9d133w2WXffAifXLRtmGwECOd/ecexN6nuB5hyVJklFGGWWUUfpybL60E/XLzKcmshHbOn9mbMb/x+Z420XbFJc5g3B5r7EQz8lAnB3bfG4vKMP33ioHp8Z1mU6nLbBE3bDFHIjNFo2Q5+BCYxQnRRnP9oINbsd06N0G4CDXNckx4w7emQ6YM68z89iYw7jSdXH7pV5wTZazR64ZX9ifoM7GE5SR68AbJkvsxxhDp2OLQ2886PFkxzKJRuMcjx9jKbcVzyOg5b4iMco4zRml3smCZxtb0r6J6Xw+mj+H4ENnXUa+g6zwDhKun+cCn0+RZJvrbh2xz5T60SPMrBM98sL95s9SH0xyINZZkxNJYvid+Zv7fa6Ly3NM711eE2x+xiijjDKKxbYO+5D2r+p1oKs3D/m69Pd9VlImA1iwK8YO/jvPbzfpm/yEsY8/S6LZvAv3p82nHK4n9cC+OSBAmUzGU577+/u6vb1t/KFtPivMqoaYzNiBgJ/5MGwAcz4cH++2TSCgYg7KbcSRLZTNiev8TfCN97HtNGc/wblRBm+LB8+GrtHm7HrFjkSZ7DOZTFqwztszIsa2DpxyH9dQJ58D5oUETnAnGGg/xTwq9hUsYrzssvA8yuidFWhHrvE44Lcxv38bk1E32tSJViyc8Di0DpPkhq+UiVIEQy8vL1u/rtfrxp0yBugr9MD8Je3hYOl2ux34A7Q3cxAJ9ua/4ahZuMI50vbxcgtx/Cj0hnotFova7/cDDpaFB8xVXOfkNfjwh4eHtijCc6d10vgPcVsxBo0ZXW5/d8w/R0doW/u01NXv9rinDPbdeWfGZGjHY4HAY3YB8bPSxvw65LMLnlW9XnGWDe7O9z1JpNjo2mFPZUrHNieRdMxQksViUcvlcrAPqwkK9kpFmByqqi039tJp/idL0AqVB3ba6Pl7Z1uQ+ZHOIivbmEAMMHgm5aIcPlvMn0MoMSHaYCegcL9RX6Lxztjw873NiPvI76cuzuimzgYdbk/6gtVXPJty5QpAkwJsRfj27dvWZ7ybNrq4uKj7+/sWUEUHCbQ604h3uuzZv0ksLBaLttoOnfJkwzN4n/ebNrBDbEAJ6mVAzOTCZDKpu7u7Ojk5aWf8mdhzNgnPWK1W9fDwUO/fv2/94HGVQDon0ZzsPfnS3scmUN+bv79vkh5llFFGGeWHSS/o5M+PzdFJYhhHpI2wbXAQ7VNkTEriiixLL5BmosHXZBKI7+M7Y5l8jp0kMIezLauqHXaOUwa2xLncbrct4QcbbdyckhjTATS3r7EheCnb3wEWPjdZ4vZKPci28zX0KwlZSUb5Wv43fvff7utsWz/TbZfBH9/fC0ZxD//3ymcMBR5LfOXn5rN5f5Yr2wYczz3esht9MbFRVW11l53nnnPrRLvMtLcOOJveZc1+R4fwmVx/ztzNFZnG9WyJQ2DPfger3hzM85xiwtd6kmVEUjc8HnrOv8vis6vTx6TPPqV3qaOIy+H5kGx9rsksbhMs6SfzXgLxo4wyyig9YU7F7jP3eG6z2H6aWM1nVr1OeOF5niP9v+e4HoYzxuCaTJZJW9HDfFkG23rf6/ra5jggArlOe9i+m7tjVc50Oq3NZlPr9bptyctznfxMYKZqGHQkwZmyue5wX07Ipxwc52LeBpvL+40puIbyOAHDwT5vn0dduZZtKQnYYJts15yof3p6OtjeEm6Udjw7O6vFYtF4LiepOYEJPTKH6LPL6F+vLqP/uNfjgcCQ61hVrU3RAfPN1k3qZ86VJCHKaF7Uz8kxyHWpz8YFDsBQTp61WCxqOp0OzlM2F5fjAe6aoDDj4/Lysv7sn/2ztd/v65tvvmnn41JGnuF+zSAs1xjfEoBFj9Ad9AX981hjTMDnTyYfE8vAxJSflYzuW/rFW13TBuZ4aV8CdwS5Hx8fa7VatbPhaIfz8/PB2LK4j2mvDLpRL8Y2ZcqYgOdNX8vf9mMtmZRmrtufZ7n9d/oETgCw/+pnuY15xjFe4ZeVzzp41jOolpzc0jjRwFaqdDiQJC9yQjExc3p6WpeXl207Ot+bAR2Un6CYDZK30PEKIDv+djx5/sXFRa3X67anvc+uYnJi8LMs9OnpqS4uLlpZvGUf7/Jkmm2Dcd7v94MVU0Sh2eKPNkmjlCvBqP/NzU3NZrNBpjaTzWazaautDALsjLrvPLgI4tnwVQ1XIAImmBQ5tNKBK+4/OTmc23ByclJv3rypt2/f1rffftsc79z2xoFRtyPBMJbwMuFS9w8fPtTd3V3TNWf2eFsmjDYTN2XEKKBPBmceFwAO3rNYLFpf0D4EgZ3VcHp6Wnd3d60dN5tNXVxc1GKxqMvLy5rP562d3O9nZ2f15ZdfDpbeu33520RRTzzeMF4eIx7HOaYSkCK/COk6yiijjDLK69UVvYAC3/dI5/wugbWlB+Dz/UmmVL1eAWPSPTMZud7v6iV3JHHjcjkjMcvgDFi/I8kbfvtznMG04ZPJpDmxYMx0Sqivk7xor3Q8TAa5LSlP1QGbUh6udQACTAdOYasUk/MmcKqq3rx5M3CQIRq8isvvdvs7I9Jt7T4wqZRyTLfIeLWOZtDJQQjasPe/ndrE2A5cmgh0OYzrqIf1xWScMR/4kOuM/+2T3N/fN8KANoHkyvb1Fkv4LxACJIOBdd3u3GtfiTbIMc8uD2BRO9PuT5cDXbG/4HYy0egxB37OQLNJmiSm6C/qkUE0foyD/QzrRwY/7QvlOM15j3L6vqrDUQA8l3L05rSe3839Hk+jjDLKKBbbrJyjzAP1ODhzFDm/810mJCTpz3O9gioxGt/nuxzIykBDzvWU19jQ/E7vmYk3nJhgbtHvMt8CDshkD86LYn6nPATPsDfmrrz6BB4PPAAWcPI+CfjmLI3Nkvt0G7mt3N4EkqbTaQtyVB1WnoE5fD1txA4LttHwYt5dq2q4+nw6PSwwYOtzb2ud+CSTo9JemiMF4zhgR5vyPW1Pm4CJHEzk2cYrDj6CrdwexuMef4mjwDz2NzKJ3rpMOZ0Ez//WMThDdAP+0UG41Aeej55fXV3Vn/7Tf7oeHh4aH+qAHPrm69F/roNPhbt1AJnx7l3gPA7Qxarhdqxchx55O3knj1UdOFHalnvRV89PLhf9ynOXy2U9PDzU/f19ffvtt4NkK8rnPnd7Wsfs4zrQaMzua/hxsDLxrvXd/LgDkO5zdNqS/k/iWPuu/knb4Pf0fP9fh3yWwTMLhiNJcBsTBIXwhOQJweJIZhpYG7M00AxeotFVhwGezpoJFIJdTPxJ5vAsf2YHms8oE8EqzhJzoMTLuslS2W63LVhDoKfXVhjH/f6w8iivY1JI0JHO9cvLSyN3fB4AEx/BPgdfPKhz336TRvv9vgXIDDpog3yfCYgUO7guP21igMc1s9msvvjii/rmm29qvV4PQA/kFMaeZcBMMACP+XzeVm199913A8ebtsDY0xbOrgAQ9ZZpVx3INoMeB8tSl6oOh4TPZrPWhw4m8j4D3vv7+9put3Vzc1M3Nzf1W7/1W/Xll1+2jIqHh4d23/n5eQugmQizvnscUB+Pix5A8Mo/jxnuYazbGGRfjzLKKKOM8qtJj9j9Re+1w5aEde/vTJLpbefjcjn4kkRM1TDD+fvq1ytTXotD57rZ4U2CxVvDVB2cZ4ICDkCQtWoc47+TFLcDbgIhn5GOCU7/p/B1OmG73e7VFtRgEeoOpmE7E/ARq+DBIm5XZ5Ynccb3dpDdH71+dZ8kBknyx99lHydh5DYyDuHzzBS2LoAVucd1yvfmd/ZN3DfZFt4mE4zp8nhLJLLR6Q/XxQFjE1+QKZeXl7VcLgdjjrYyUeR3Q3Y5IHxsTKYPQF097qhbthXlgFBysNH+hv0J43Da2wHVDAQam7rvuDe3wXRiX5Ih2bduy6ph9jiJarQNzwTDm4xJ/O1kvTFwNsooo/QkffMkPG07zXHkMzKo1Au8cC/zk5OR+OE7bzHINen3J8+X13o+dGCFz71FG8+sGp69BT51grC5Is/L3o3IuAF7yypqJ2ibW/K9rOLOFTfG2AQVOC6m6rCVo+ttTGg7DxeYiT8muB2cmEw+rlq6uroaJOSbi91ut42jJOGKesGlcQ+/vVNWYiTuJ8DFtoP0M4EWfvN8MIcx5mQyGew0RR3Pz89ruVzW4+NjC5h4JyRfCz/JWVn+Hn01LofHc4DHK/q9ciqf4z5Bd63D5sR6QRXruPuK3blcXrhK4yLvqEX/OLEKnV6tVvU7v/M79bOf/azhTgdJaav5fN6CdfZZeB58KvdQD2M7hDpxHXoMzwonyoKC7XbbAq/sAII+9/hjb/HvFWHUj5+zs7PGh8O7E1z95ptvWt2O8bz+zHXzXGvfwnW374w/UnU4o89zkO9LSV/fPnKOAd7pMd/rz/SfqLPtBJ/9MlzD98lnGTxLI5zOgp1cf+8O6ymYiZbsUO63wbTi8//19XVbWcPzfEChjSKRcbL3iKhvNpv2ziQLbNiYqJ2RwbNpG5xLDKqNgZf04vCy/Ym3fqw6OL9Epvf7fYuIM6B4Do40ZXCwjrpRH97vgBL/88OEReSd+p+eng4OvqefmQzc5vyfk4bBlwe+dYsy9AIuVQcgl6sXZ7NZff311/Xhw4dmNGez2WCLy+VyOQCCNtLz+bxNvBzMameWtoVEury8HJwtAsFGe2LwmYTn83mblNF1O9wsQa+qZixoB/o9J2CPTfqWsj49PdXt7W2t1+t6eXmpv/AX/kLNZrOmb1x3dXVVt7e39e7duwEpZABGeyVpZpLJP4AIg0Xf499JflKvMYg2yiijjPLrlU8B2953zMPYn7TbtkFJxvvvxICZAY1N9zt7hEne5598hjMeEewY2M11sWPua8Er2EMcMewtOA0MB6HvjGETBOAxn0tgx5l7jOWMNbCvtq1eoU797fiA3yiDCRkCIrSD28KOLs8gyEM5vKW028xJU36nM0WNoWl7k07WLfeN9dX64n5JwsLX0ia560PqrIkPBy6SUEtSkTob1ydZYLzEe02aGONX1eDMEAgjSCH6wlnBVTXwFwjggA/ZLomxQhk95lhtCL4lu9ht73HkNnD90SPjVV9vgrPXv84cdx+4bY2pc3y4/b1qznpi34TvjanRLfdpSvqs6J+3njfG9bzo5ET/OMCdfvEoo4wySortU882+bpc9VLVX/FuHiDxnOc6PmeecqKyg09VQ54PjGGsUHVYbc71Sfy6nibvjSkcZMt6OmBD2SkH13CdbcPj42Pb0m2/3zf+iDnb+IftFb0aivuwfU9PT40jYhtE82DGZg7QeREAWI7kLuMe85Cz2awFBabTj0nbt7e37R3GfK43z6TMYA4Se6wTtAOY2Svq3H98DxahDDzPqxPRF9qV1VGUybpUdViwcH5+3uru9rcu8D7vvEWiHPrBd17lA9dlrJrYkHt6gTJjcTC3uXEn2WTQBlxFAM3tQ72Xy2XjQ72VvHXZGPns7Ky++OKLAU/ItpRVVXd3d02fCax6pRu4le0kd7tdW7Xlc+fcjjl2aSPGizlub0V5e3tbd3d3g230CT7DqbLF5GKxaP4KfTufz2u1WjV+nbPOttttVR12cZvNZvWn/tSfqp/+9KftO3OkjoFQNuuZ5528Lv0kns2cSjKX70/9tY/quc+6YjvgmAZiP/UY/+p+su74+9+EfJbBs6phQ7pTqoYEhv+vGhpUDwhP6nRGGhTehUGz8hA4I3vSzjr3MkD2+33d3t7W+/fv6+7u7tVqmIwib7fbdsAlK7UYwF5VxoD2RPny8tIyE+7v7+vp6amdEcBE8vz83KLo1A8Cw1khbNXCu9jKb7PZDLKdqfdms2mZjSZKEqg4S4PnOOvAA5bP7Fxn8DSdORsjf56ZnjzbusH9lIFrnRltsMGEUfXx3LGvvvqq7u/v6/3794MAJIYvCaWqaisArVuLxaJtUfP+/ftBQNby8vLSVhF6a04mZnSBCZtzLdAngAPXomNexeeMWzLNTQhirGgnno9Rf3h4qP/zf/5PVVX9xb/4F2u1WtX79+8bkTKZTOqrr75qB92afDGZYHHwlTHs+cA6ZfF1BgzWF55/bPIeZZRRRhnlo2RAoeo1WLaN7s3ZPenZuhSTKfk/dqMX9Mj3Yy99r4kWO4Qmbux02XFG/FmSCG4fP6dHIhnH5vWnp6cDfDCZTBoOM6ZKBzvbmM+82iZJADAGQrYkWG06nb7agg9cYPxlEsZONVmoXuFE3R0ws5PmZ7p/JpPJ4JB5Y0jfC+Ygqcl9ZD0y/kpH033cIwo/5XtkPxwbS34PzwS72afA6fU9fkYG9sBS6Dz6RD0IVtpPgBjAx+Fwdm9db5LNukk5n5+f6+7urvkcxplgw+x761mOM7ePx5L9wtR1E5u0TfqSSYbmM3pCHVMPqIN9PvdxEm+IfR7PdX6fy5WkXNVhFwnPizmXuRx+lufwLPMoo4wySk9yLoNz8HZoXGeeBbv2/Pw8CIpUDbGlAxyJmbgu7+3ZV3/u37ZZxhd+Zs6bnnvzGTnvYn/BHz2ek2M6HDzCvmw2m3p4eGgc0snJSQt+OWCTq54SG8Ml5m5YXoFGgIk6u73NcRHMw367HiSQ7/f7wQ5MYEtzkA4m8v6qw0or9AM+zqvRwTAEcwiaEGgxBuIzb+sIprWeZuCA54KJjXvct5SZOhvDeNcmfltfaDf4ONo5dZzrwBS5k1jac69kAxM48Y6xmL6bedAeFmJ8OwGecl1dXbV3s/sEz6Lv8R/Amr/9279dk8mkvv3220G/UFbOA+Me6w5bjr9586bhTdqDPsdXoX2ZaygbCwc8J/lzrwytqrbIgJ3EuJdraX841slk0sYvesJYZuEJvh188E9+8pP6f//v/7UVgHCu9o/dV+gu7059zr+92swBNPsKFs+Nnhf4m3LQrplQ5hW41if/n5ic7xJjJ37/dcpnGzzLxrMBsSHzNXaw7ATl5GNHKgNzVUNjWvVRKWazWV1dXbXB5+BBVbXVaOv1ur755pt6//59d8sMBydcRwwZ5ETVISqbSxpNJLAP6/X1dXsOhtT7A2NYqJfbk0lsv9+3JapeLcRSWQaksxJms1mdnJzUV1991ZZDM9F5orQz6KCY9/Fl8nd2Cv2UmSA9soJ+sR4YJNkAGJhUHTKrTVBZXzDQnlgWi0Vtt9t68+ZN7fcfA6Ys+WXiILjpSfTk5OOZaRySut/v2zP4frfb1Ww2q/l83ow/qxdNUNggUy+ea8Pq/Xrdlre3t68IFa8EpD0xPmQRo/ec5WedpB9/+tOf1mKxqD/35/5czefzWq/XrZyr1arevHlT33zzTSt3ElUe4wl2e/OBAUJvXFsHPad43Pd0a5RRRhlllI9ie5rERO+zH/K8xHv8PjYXf+odJliq+mdZGfQnQZz1cxayiRs7GJPJ5NVB4P6bcuVntpuZwOF2MU7x6vLEOjjtYA1jAzvNGXCgLPxvp557XQ8HXDKwAV5zMIwy8Fy2dKbcidEhUpLwd3/miifKAG5JEi3JI3+HsD1MEhX+PzFCBg7z2iQiLEm6mIjh3Q7Eua+sF36GVwzxTDvFvQBgrsJiJwUw336/H2RRV1Uj6gi+0q92rN1fPJOyG6uT3OUsXSfToVMOpDnIhXjVm/XFKyqzz1OsryYDTMBlIlb+tp85nU6bT+Bypz9CX2XQrodTP3Vv1SHBjf5NAjefe2wO/EXn8lFGGeXHJ+am8n/mTubEDD6l3fRKBGOLDJwZu/Tsao98tc0wRunZ68QdSe76c8/ZTmaxfTcuSQzh681buv7m9qhLr40yiZ3nGVvAJfFMJ+nTBwTYEjPQD/v9xy0WExtWfQwKrFarts2kEzz8LFaXe9tiggQED/gBp7BL02azae04nU4b9/by8vHsVlbSsRtU9hP8mPnYx8fHwblWYB5+WElnbOmtr9HtxNbgoh629n2s+LaeGL+5f8DIPDvHmFedITybvk1MYnxFueD+uMdjCmxmvu3p6altvckzOJOMVXVeaUeC/tPTU52fn9ebN2/q8fGxHYeDbrBIgGf7+Qj9xbO9QwXYEv28urpqWybmOEQ/uRb+lJVifMY44n8CY3d3d+0oIrh4b/XtwODp6Wnb8vP29ra1I8G+1WpVX3/9dX377beDse2zDjPJ0TjSvpDnUD5Hpxmb1tPUhUyMQ2/9uZMS0y/8lD9vXEpZe9+Zlzd+/XXztp9t8KxquKTUDcVEnAS5DaQb/thz3Zlp1NNx5wwnkxF8R2bFT3/60/pf/+t/tXPIPKmgpJ7M9vvD9jVMmmSNcJgn1xHdZumzzxxzRkbVwSg46zBXD9lwMLApB8E7BgdlYZ9eJlImDMt8Pm/lwQA5Cp5OHNkeJo8MHBz9d3/aOaX/3L85EHvgJJ1JG0TrhMttEuTi4qJWq1XLnqbvCCDu9/sGDkzwOABGxoGDUff397VcLmu1WrXPPEl5YvPydtrcfez/PWmyjed8Ph/oirdzon/43sE0sqBMyuSk9vLyUj//+c/r+vq6VqtVC+CS3fTmzZt69+7dQI9tHHiv+zT7jH6yvqROmKjokVE9MD/KKKOMMspxSRt7jFzo/X9sns15OAMXJmcQbFWSN1mmT5HCvevsdPFu48XcZsfEC8/JIFsSRWnLkvDhPjDFZDJp29jZnvtetuCBDKANc3vFdHCc8JSr9nvP4N04aN5ZgXsdBPN3mQnq7S7BgmCCT/0PBoJQoEzGJHmv+yD741jWevZVBmj5zo5lj2CjPE5AymuMYawLGRyzeAVXD/smPs7tO42PTSRRx/yNjkAkTSaTtvPFZDJp51KA6RwAI4hmEokMYJ6PP0SZ7Jyb6LEu9gJT/tsJbZAo9sfQ5SQRrUfpc6ajT3msVzk+XSb6x9Lr/57Yr/K9BM49Z6T+/tC5cJRRRhnlh4htXM51VQcinnnVhC7i+21H/TwT/L6uql7ZDP5O7gQxx5MJ2nzvpFzzTvluf8Z7k+wF5yRZbZ7LAQ0H3aoO23VXVSPtuc82021h++EVOdhC/ncAy23h4I1tJN9RZup0cXFR8/m8JdP32sPnj4IPwWwEHZywv91u23sJnvE+6uKkMgIVBM5IIDcGzC0RwSaUEcyS/7uNjFkoi4M6xmXG1w580qa9QK7xpD+rqsGW6PS/dc0+E3UmuAQeTi48A7OpS+knedtRdMC4i7qxzSHbFU6n07YwgLaBX2cLx+1223YqQEfoS/Ol6DACH2td8FaavIugKeXl2QRQaUd0xu9Cd6jvw8NDC/axixhtRX3RZXj07Xbb9N/B4bu7u6o6rJarqrq+vq7dblfffvvtoP/MadLXGaROcdKa+yp9T+uO4xjpGzL+nbSHXlOnXLhjSV3jM4S+PMbx8/+vWz7b4JmdDyQbz5/3SPCq19tf2PA5mp9iA7tYLFogg8GG8s5ms3p6eqr//t//e/3f//t/W5aFFTHL6ImMZ5qc4H+W77KSiIk6g2P8sA8vRoeJfDI5ZEVTFsgOB99oq81m0955f38/CEzY8ffApe3J0mZZLNd7O0HKRjsnceJsAb7zBGFjkgSK29jgK+/p9b33q00n2f3GdiiLxaKenp5a8PT09LS+++67ur29bZOtJxvud/ATkmsymbT9rAlgAjJoh6pq/XJ3d9f0BSPkNsTYMIHxPsoEyYE+YFgIzk6n03boqQOmGBAyJLzM3rqOfm232/r2229rsVjUfD5v2U6bzaaurq7qzZs39cd//MeDSdiG0MRGgmELemcSjbIkeEzCgWeOMsooo4zy/WJsln//qs+xXeqBYubu3ooj/ndwIxOjXM4eZjSG6BHbYJbes7+v/r1y9Aht6kGbPD09tWxGCBOcNogI7B6OhomAdDaM6ZwRif10AowdfmNOsparDljUJApYA0zFe/kxTuQatvZxNi9JRnZGkcSHPMv40vjXwZIMujrAkNiP/jDGAkcYRzqQ43Zzn5qUsj5Yj3vYk3Y2rkt9Mw73s4zfKRs6BDaElHBbUs7ZbDYggMDK9qOow3Q6bdvQ57aZDpx5iyR8qapqmNhtkGPE7Z3kaS8w7DGQpBbPS0LAxJ+DavgvOaay//0s+sLYthf8yu+MfxH3ra8zOQn+diC595Nt2yN/RxlllFG+TxxIyYAL/IHxlLmjqnplc47NrbbZPMfX+CexGf/3EqIcIOjNgcYjubLZwSTXz6uHXBbwCPbXz4LrIBDl9qWc3Pvw8NCwlHctMkfH819eXmq9XrcACiQ++NLYj3pjQ8AGJNm7rvB6Dho42ACmcLndBj5j1dzV8/NzS9B2W7Lb0X6/byuCKDOcFe3NjmEES4y7eGYmVdF21oHEOqyCorw+x4m+px+86t3twueTySHwZZ8mMaxxXOo7CXPm3ugz6muujpVexg4+Msj6eHZ21vQd3TcGNceeuIy+oS5PT091c3PTtnKkTmz1yDaIs9msHYnjHbRoT+s7z6X9SNDHF/A2807Y8k4I6DZtRYJVcu60IzuuecwRzN5sNm3HN8+J6DzlZdUa/s1isWhjYr1et/GJz/fmzZvabrd1c3MzeBYcsQNMjjdYjxwwNFZ1v9p/NueaAVnrjuuZCx64ns96mNz35Ts8tyYe/03KZxc8s+Gyo2mHt+eAVvU7KB2NdEqzc6sOWRcYhTdv3tR0Om0TNoPy8vKyNptN/bf/9t/qm2++aQbIHey6WDkctPLnGAMO1mZAMxlgSGyMKSsTj+t3fn7elqXSBmwviOLakfTzaauTk4/7Fi8WizZBI0yOHI5ItioGyQam6mAw2cqQ55scoW1MVJj08Gor3pNnXTiAZjDgQZj1N3gzCExCi8mYSX65XDZ9YDJer9ev9JLfV1dXLdPAmdvb7bZub28HB1YmMQipZCPM/sJk+yZpY6PJSjMIEGc0ARL8rtVq1YzJhw8f6u7uru1xbdKFdzoIy77GNzc3tdls2rJnyvb4+FjX19f185///NUSeto654LsNwNTB7xz7vg+EqBHmo0yyiijjPJajs2TPULZkuTyp64xCYANs1ObK4yw1Xbo/Ezwgh2LJEryWTgRtsN+hzFOEiUugz8Drx0jebItcfz5IXBF9q23YUxHPPEAthw7ndgHTGEH2tm0aVONBTNrGdzqYFi2J1mhiZvBEvv9frBKCMxsrNgLfHnnCP+NJE6m/7kud2owuWICjPYxKWTM2SPhEtNZh+y8un4uq8sB0QZu593W356OuZ2qhlsP0WbG7G4f+gEsR53Ardy33W5b8h96SFlpM0gUk0YOTFsfUv/QJeYI6xVi3J8+Y84z2T+ZmcyPdQdJv9J94e9NwFkHkgjIYLaDnxmw7T3XhOingmceE+7//GyUUUYZ5VOSxGgvgGb/PeeZnN+qDkmzzGPMxfA+frexJbYm35MEv/miJIh7GNHzf2Jdc4NVNVgZgq3jWQ4EuCxOPp/P521bOfCQ7fxkMmkJTPBnxmkIO2ER5Lm7uxtgPJL0bQMdhHEAhrJavK1d1YHEJ3hD4Cm3nDSWIAnq5eXjMTKsOAIDeuUY2MN4g76jHgicE21FoMb6CcZ0OTJRm2eCt6uqLQiwTrndezjBQQbzWYmxeI51NPlNxkZu0+n7jF3oFzhcY1L4QOt4jzvzd9yf5aVdfQSQfS7w33q9brpHH5FAxxgAh4MXGQPGovCv3pmDfkpMy72MB2M68GRufb/b7WqxWLzCjsnFc/5v1SFRCh/t4eGhlsvlIOC33W7beLm8vGx+EvEGjrnxuLm+vq6Hh4fabrcDP9L94THqseCgvLcetU4lVqY92O0kMXLqbAZeaT+Pj5wzPS5S56zP/P+bDpohn13wDEkgTyQ4HRk3NMYqnag0qiZgkIxK05Gz2awuLy/bgEcBOWPsf/yP/1Hv3r0bdLYdX0dNHcFGiTkMk8mCclYdDnxmkPK9DT0TgLf24/BCtsnzwEqH1OeUYXiYPHgumQJevu6Bi4PvjAwviXbU3cDHGcTZ7giDNwOfPn+B/s7sAD/Tbcb7TBy5fUyCeTJ02bgG0ICR58DK3W5XNzc3zSBTptVqVV9++WULYu33+1qv13V3d1f39/c1mRwyQDxJEIxbLBatTQzi6H/3XwJM5OXlpWV4e+J0u5p4c/+RJcQKS3Sa8tjZ5+/tdlvr9bq+/vrrwVLn7XZb8/m8belogtGZ1bRDGm33h0miNPge4x5fBqHH9G+UUUYZZZSDGE/l7+8jW4/NzflsJAniY2Ln3tf3CBpnHZtEz+enfbD9SCcYHIejn4QL1yURblKIMlFWnuksZewzK87IcDS2w4ZBAmBbqw6BMDvTxph2Gil7nnOQRBXv9Bbc3kbcmJ3/vSoGjOR29XaC3oYFnAF2Nt6gHOmEOUnLwUu3t4kUrullYjrRzVjQdU6iySQGOmM9NN6yZKA2fQv0zvpDe3grdoIovNc6bIwLjkxCw1nplgxeUx+X0SsT8VcSq+F3mBj17gfeJaE3Ruk7k4iJZ/nJ8WadcTDZZJXJFQfTXAa/0/rV00OLddXzSY94c7ndxnkt49db5RwLoGUbuEzfN5ePMsooo3xKnPxhe9HjJapeH5WB5MqIlJy/bAddhuRxuN7fwfH13uFrjB14njkycxiZWNTjIOGSOPrE9s9c3m63G/xtLGUbA19JEIpdjTjHjDbGXoEVbbcRygw5zu5JttOuq/82WZ920Mnat7e39eHDhxYY4Bk+L8tt7HLSZlXVsE9VDbZ+dGI/OIMgCvXe7XaDIJ1xP3jq5OSkldHb/6EL6MPT01NbTY8YF9J3xr5O7jPmcnsYT1YdEgrBETwjcRa64Pan3/EzjNvRz8QciSfMq3uVHUEsj430Ax4eHurh4aHm8/mgDdCb3/qt36rdblebzaYdieOxbi6ZlY8PDw81m80G91jfjNfNzyP298xJuuzeeQDdzvN8eZZ9KfwX9ALun0Aa+nR5eVn7/b7u7u4G23OyWIMkR9qA9+DDIA4KUgb3rX132sErKdNH5jNjdeP69DF8X+Jal6E359o34Xrrvn2Y34R8dsGzJFd65AmN6onKBjqzSukYB0bymfxtR+rk5KRWq1VNJpNmxKqqVqtVXVxc1P/8n/+zvvvuu1eGhnK4Dkn0O8LubWYgCubz+WCfXwY8Ey5K7YCRt9/x5HZ2dtYmezI97QgScCHCzCCvOoAWjMxisajNZlP7/b5NAC8vLy3wQwSddsZQkTlicskGMSc42skG24PRgUzeZSeWCY3JzNkkdoh9JgD9woToII7vM4DDsPO/D4ikXwFF9MXNzU2r12QyqZubm/rZz37WPmNZMIeuVlU7ABU9h0iy080Enm3vSQh9MZljYGndYEtI9vOlvrPZrAEy9CUznwEZkF4+WJZ24b7ValXv3r2rquG5Hx4zHjspfIfefSrA3rs3Qfcoo4wyyih9ybk0yYhf9bsE9Hm9SQs+T7HD4GdiX8BHxg7GTH4ngqPvDNWqg4ORTgbO5KeIa5MYJnGws3banESC85QJPnzm1WhuR+PYJF2Mp3uOOf9DlpgkoC7gOpKFwGmuo6/B6QWrgWnBX2yP4n6lLZz8Y1yWfZ36wD1gbzAK+MQ+hP0F1yMDGenUmfwwxvDzTE6AlYzn0DXribGq9Yw6+3q2eyG5C0znQ9Ups3cnyMBPkmneBgqCMscKZTGeNAkBFt7v9+2Qde7x99n29v3AvIk93S+MCX4fCwodw5pJhBibus4mr9yvHptJ0OSzqWfqhn/nc6yrHsecK5x17c1vvfnOnx9rs1FGGWWUFAcFENthf85nGVRzkCGTYzK45rnJq9SMG/Ia80FwWw5UJB50gCDnQs/RDh6Y43KQyPefnZ3V9fV1XVxctHPoHXx4eHh4lfAE6e9VLNTh9PS0BQ24xqtfHKDgPp5Dv/h9yblVfQxIkSRPYM9JTg4iwIPRL5QD+842i+y6RDvyPYk0TrSnfVhwAEakbgQWaQ8nZ2Xf0h/m0LDL9J9tu5Ny6FMHztDdDCS57H6vgw1+rssK19fD+ug6q5McZOZ6sJMDIvRNj7vrYUuXmeBk+ma0tVfn+X0eR1XVAl3mJHkW98zn8/rJT35SP//5z5s/QT3Y0pSjheBZX15eGg/Lzmvmg42T8FPQZ+psP5FxZExkLO6xkb4kCw7sL+12u8bn3t/f1+XlZePG4Vzhfp+enhrvi57N5/P68OHDALOiSx63nlfdv/Z5UzeNk+k7+yzuIy9Ssn44WcH/064Orvkanp/+p2MVrpt94t+EfHbBMxsWN6BXQ/GZG/wY8e1o6LHs30+VZbFYtA7CEWV7wrdv3w5IB+7xxMc7n56eWpbGcrls2Q3UJR1vAhlWFsprp44Bg2FC0TBoDvQ42EFbOcjDhG9D6sDeZDJpE8Fmsxm0/+PjYzP+RM8pjwcH77N44qDNMAIGW86ooDyeENAZB16YyPxjJxwD6IwBgokO9vgeZ0yfnJy07Sy5HoN+enpa//t//+/65ptvGpHAQai093Q6re+++67u7u5a/W5vb+v+/r4FJ1kdiKFhG04OZs16JwlGnU3k0df0lwkw+m4ymbRtFzMzgOAvS5EJrnnMcQ8Ay5OlDRWBQoiAnKiTPEQccE3yyPfnGO2VYyQHRhlllFF+/WISlv+/LwCXNoD7k8CwY5DOvrEU9j1x3zFnIoNhdghcF75z0IJ7MlCSZeN5DsKBOXHm0jEnczgdHP73dSRf9ZxjHELfa6fEJD3fsdrcDiNlf3h4GBAcrqMJfggNPvf5tnk/9aZ9HdxwEhEOcCbN2V/w1j5p93OloMvvbHmud7lo1wxWepcMxKvEvErLgVz6ws6nA2qUy9jXktvA4xtALkCikMlOEJYyQFRNp9PBuRHZJ0kkeHx5bKEjuX3jZHI4cwJx1j79gj/C2Sdg5Azoue96Y5x2zD7JYBf3ZIZszld+p+93FjDP928TQz3JcZdkVoqfY7yLn9cL3Gd7ZZ0yWJbz9yijjDJKTzzfMXelXc5re3bXgYiqoY1JMt9cm9+TeNJY0PNwzongDb43h9grj5+fc6fnYP8+PT2tL7/8sr766qvG4YBh4HkIHlAmzp+nvgRZzDFWHRIq/ByvigcDGDcZJ5qP5LqTk5PG06StdWKLMRdtxjOoI+/gCBCvqgMjuI6U0wsFeP5qtarlcjlIfDJfywIF+sdbRPOM3CELvMDKbQclrAfJMWZg5Zhugw+w9ebW4Hw9Dsx7wgtTRycbJV4HT+Z5bB43tOdu93GnLNrHyU6uk+vr9/Jd8qm0rdvP7cDf3o6RfvYqsdls1nZAo8/Oz89bHxGEtd9zcXHRrqMcVTUYF/wN5jUGPTk5GayI85xBkNO4//HxsW1lTp/Cy3uHuIxnPD8/N054NpvVw8NDC6h9/fXX9d133zXOl8AkK+toJ8aeuXy+s9ivsB7bB3Df0JfohHGk9ccxAt/nOSd9rB6nbvzr66zXial/U/LZBc8sbmw7PtmYXNtzijypeZLqRS5tWJloLy4uBpkMkBpsm5PbkvjHncxE7oHsSYrB5MHHJHVyctKyNaqGK7N8YDx18GC3c/ry8tImFq71mRkOzDBh887ZbFZPT0/15s2bQdsQFbcBIejjPuN7T87uYzv39JONMD9kVDIxGYx4S0x/x2/eR9nIUkjH1hOl9cEklwkpDDQZO87unc1mLchKmxLcrBouBWe1IZMUB1DSNwTA0C+MKJOXyQ6MmAmNzFLltzOJ3bYvLy+v9IF+Idh1dnZWy+WyZrNZbbfbwXaalJux6QAdukfZyBDhOwdPc1y7H3ukZ+96/+/ga48YG2WUUUYZ5fulB2B7cy7i+fpXuRcx6LcD6Xmd5xjYp03Puf+YXUmH0ttuu7xJPuezqoZOD7YIp4nnZ4Akt+ZwpifBCu8zj83n+sSnbLdjDGm8VFXNbhvLJcFvXE0ikbch72F5Zw0725NEI9oIPOKV9pTPZA/XeQsRv9PO2TFizeVw++azsl94DhngqQvUg8+cgGVysZfNmbqTmbruK/raz/GW3uBsfJnT09NGyvE+MBy42olk1v8kCilTrpoDB1Yddmrwe3zmnck5dMTP8TleJvtoL+ulVxIYr7u93a45Z9iR59ngbZONfI+OmEwymUedev2W77Nvm+3ba3ffD4GU/WWc+ynM25sLj107yiijjILkvMV8hl21HTFRy9/GEmAu/88zjeGMJ/0e5mQnp/TsFcJ87m2yEyP2yFtzX8lHJg6s+hgg+e3f/u3GpbEyDB6FeoLrKBe8IRjAWM4YDRzi3QmyDfx5bgEJpoWHm81mrVzgS74zhuGz+Xxeu92u1ut1443oGwcRvLNWJuu73txvHIA++LOzs7O6vLxs2wWaNwTLeLcBf0fboA9wcslnmZ/MwBdlN8Y090l7GydQbt6ZK5zAOegPuA7dcgKb24XnGX8Y/yTuNK7xe9Onsi4bN9sf8SpL88jGs/SBg7e0twW9YdHKdrttC0OSy9tut6/8lvPz81qtVoM2Pz09rfV6PTjHy2V0v87n81Y+B8EoA1uOM96drNabj3i/9efh4aGm02k7i5AEycViUYvFoq6urlrwnPY2r5/8tX2g7Ff/bxxvn8Y+lsddz9/5FF62z2y9TX/U7dV7D89LXrd33a9TPsvgmQcZjd9z/vnfk5M73wMBRcmMwqrhgd0e+Dj/vMvLmllp1TOmlpOTw4GGPpDRARA7WnzHqi2Ul9VZGESUbbPZtGednJy0oAzlJqLOIK0aRun53/V28Mhl5X2np6d1e3s72HYSw+FJxoOTyYu2ZhtDJlueTztxr4GMSSrazKCFoB0Tk7dWckAtB6vJAg90xJOTHXuMHe3KElvKenV11cr7/v37NokCigggQRqgW7yL9iSI9ubNmxa83W63td1uW/Byt9s1AoxtkJhsLy4u2oGX7gP6luApGUAACtrCevXy8tJ0ET3EkFxeXtZut2sBQK8QwDiYDOEa2iuzemiHJAyS/DCY9BjL/utJtskoo4wyyig/THoEv+fRT829lmP3+7tjpHEGe1JMyNgegYsSG9gWGHd66xRv4Wibkw5FOiHOgOQ7nLCrq6uBbbUzjJ0Gz/I+Vg/xY1LfAQNwKs/x1io4fcba6exSb5MktAs2GzxjPMVKpv1+P9h+x+SLiQ23Ee0Lhs3+83MopzNxU6+yLYzluM5b5mS/20mmLCbZIIcyIxx8ZyxjrJ2BHurXI+IyyMh1SSS4PiZgnORXddhNA92qqkHCE7pOWXv64fFnXO7ruBY9A8tn1jfEAH6A+wK8bTGxhFB+kwS819f1SB2Pb/C0M+FT53OM9oJfGWjLa63Plh45kHXokcE+J859lH1x7Bmp4373KKOMMsqnxDb2UzY35zxjrwxM8Jltvedgk/e8I3Fd1cHe8TyeiY3AJlUddrwyf8iz+MzYNOsHNjSePD09rd/6rd+qr776qp6entqZRibDea6Th8FocE2UH7xlTIf9Ijk88eNut6vZbNawhDEnZSexxmf5EuyiDWlf7rUtPj09batjHh4eXq2CgsecTCZtNyZjW5I/4Dyfn59rsVi0/iHgAD9mrPLw8ND6DkwJhqSv6QvbOtrZ2y3m1sfG8Q7eOYBofGY9N/6zviMEkngmfYEuGk/mOLDv4gAJ5TUX57pap/OdHpcez36nsazLxf+MHx/T4oArZTHOZEUVeJr2vby8bFuSMl4JkFFXdjMwV8g72XGBcsIXO1CIjk4mk8F7KJ8DfIw/2sNzR88HQSeN/e0reQ7b7T4mIT48PDT+Fj/p4eGh7u/vW19QfvPscLK812XKAFrGTqwjDsY5JsF96Stkexp/emzY36QtrHdZFsd78trflHx2wbN0DI6BdzuzDvYcczhQrE9NXhacuJ4zxAouDs1EkXk2hpNt9QwGeB6TjA+qdFDD9Wd5KsEQAwcU0Qd9epm0o+Wce8a2P9zPoKw6bBFIGRms1JUJ5OTksJXKy8tLXV9ftwmKtqH8jjrbyXcmsetNW7FfLAOUDAQ73OnQZx8acNE+SAZxGMxMkH6eI/kYg8wYBpBQJjKJKBtbXVIO2ojAI9kQgCkcePrh4uJiAMRYjch2mWwnii4wma/X65YFRP3YT5d6MeFNp8PDXw0EnMFDYNZAEpDCak0CtLQBexPT5h7LGDyMqseCyR8TVoxLT6YGdNY1zwXoAs9DesTCKKOMMsoonxbb76rX25V93+d5vz9LB9ff81mPjMH5ysQdbHBVn2DJ8hqXYPO41weS+/2208645Ts+x65eXV3VcrlsZIHxLMSJbR6kCbsfOHBmnEkAIEkYr16y/TR+sYOMnbcDlo4Y+IBgWTpTdtQglvjtgBntAwZ3ghll5vkZtOmJ29vb9hhj+NkmyHxdD0uYNLPj7DqY0DNOsS/C9VkWBylT98GEGSw55ue4TpPJpOkBOHG5XA7awMlwVYczRiinsaH7jedbeK+xPFtS4WfRN5z/AlmIjqxWq7Y7BiRXbuVEUpqxn/XYY8j6m7rjvnd/mwxI7Jnt63cxBvgs54xjZEBi2GPtaoIUP89zm+9Pwsvi+qWM2HiUUUb5lCTJXnXAOZ4nP4W5sEnmhpAMLth+mhswp5TcUAZRjE+qhsnyWU7bVJPXzLeWTAIiAfrq6qpeXj5uWwgXd3V11YIALy8vDdeBHbHnBFjAf6xaIzneNoXrXF+eRcJ81ZDzc7AJu8xOAuYKnZhedQiGOYiG7YKnmk6nr951evrx+A/v6OVVY8anDlzBKZoHnkw+JpWv1+vWP07QyeCNsYNtt1ePUbfcyck8k7E+bQSP5ZVt9IlxPcElBw7BqeiisSH1tb5bj132xJSU3wliBDTsZyVuTK7N9TSOQp9cf/qGdybmNm60f+GFJNbfx8fHdqwNAVGuoc28+OHl5aUFobyyb7/fNx1PH4fxwfWsQKuqtjiC9nEfg5WNPzNYC0aj73k3GPvs7KzNf9YHOF7rcc5L5tnNmXo+dp9l3/Jdzt/+3H6Mx551MOda2oox5/bLmI39F3P1WS6X7zcln2XwzArxKQI8J5E0mibh05npOccOLiCZZcvgwqBcXl4OznuqOhyo6ZVq3OuJnPfyfWYWYEQgSXgWQSoTIwx0rmOy3+0+Lp/2loa8i3b2AZ8nJx/P8IKMgSDCcab88/m8lQEj/fDw0Lbug0ShHDjG/Ewmk3ZdOoD8YFggBvhtMEaf+xke7DZi6dx6IvDkYANTNQQGCH1LcIv9oC8uLpo+8D/lePfuXTvbjPfQLz4404Eol/H+/r7Ozs7q4eGhvv3225pMJu38POs412FM0a/pdNr69vb2tk5PT2uxWDSd5joIksnksAUnuuOsLZMO6DdlXywWbSvGi4uLZhz87AQwfO4x6fHMeyyU20Y0yRDPIyZU/D4b0FFGGWWUUfpyLFCRc6jtae831/j+/Dvncb771DxtG+JyOLiQ1/qZ/p1Oqklp4xm/I9smA3V2QCeTSV1eXtZisaiqA9Y4Ofm4YwGZu1UHDADGglzxtttgQrBjtovr5BU16RhVDVcpGRdznVfROUBBO4EHjEVx+sBLTsqhXGAr2ggHNstvzJBl99aN4Lt0bnt6lQFQxIFO2iSzTOnbHjGQvgfv7DmDPYLOZaXfjEm95Tn3+m/a31nb1snERxBdtOXFxcUrx9fEAPfnmSK0BzjYxILPRLafw/tod4gGfih/BnpT3C8maHiny2iCLsdCPt9YlGdlUIw2yr7wO3vlPvaurJOJDevW4+Njy9r3nGfSqjfPWfL/ERePMsooP1SSiP8hRKcJXdt1k9OI56Ke7eZ6eBzm58QvttEuXy/w4CBBVX8Lu/yOgBnvm81m9fXXX9fp6WnDcCSRrFarOj09bStrbLu9oozAGj8+asVl4f3YO/eBt+g23whfRdDMfGL2AdvhPT8/t5VCVdUCGJRtMpm0FXDYShJjnp6eaj6fN/zsYONisWj1BQPAIbm/np+fWxs/Pj62VWf0Yw+Xuj972B0+yTrAZ1UHbpUf3n92dtbwpfvgmL8CZkt/wJx3YnjqQV9zrfGAcSh9wHfGHelPcS04Ev3JZzhw4+CYV5P16tzDFcnxZqDHfcAOXFy/2WxqNpu1rTp97jJ6R13xm3gHQVz0Bx0gmOsVl+gJAWrE2y+CffGTrHfUm0UNmQyYfsb9/X3jTyeTj4su4JTh2R8eHpqPg59ljh/9z/ZP/5T2MRdLe7vs9uHcj45hWGgH/FDzri6Hy5h6STlcnvz7NymfXfCs6rXzWDV0PvO3G5JBz+Cz45yKY4Nrhzw715MhExIDhiWVBFEwQJTF5XTGBIaBwer9aQmk4MB6ySuR7w8fPgwO/cSIeSAQwKLsRLSpG8uvaSvKf35+3g5KzD1oKXeP+MCwV300oqw+qvo4+O7u7lp7EfRJw0E56Ve/n3e6P9EN+plJhCCQdcGOZAbd3N9MlvRFL3jraz0h0h609XQ6bRm9GFImcZNe/E2bchaIDfa7d+8a8NnvP25TuVgs2h7TBq1JCBgQWQdub28biPN5FG4jE2dM2rQdberMHN5xcXFRFxcXtVwumwH2suoE1gadtEVvvKeYQDB48ER87D763r9HGWWUUUbpyw8hQizfN68al6XThS3rOZF2UqpebwWU8/sxsTOexEqWi7KCldL2+Bm9YFuS47PZrBEn2+12kG3sYMFms2nECrgEJ9LJLw6IOcsyt63zOVZ8bgfIGNdOd26t6LYhGJKr2jLY4FVn7je3r4kN4xDjROuFyS1j6yT+jRPTcfNv6pXECuUyEdfzKYzF/H6X17rbC5L4b653sJS/WZ1lPbPDT71M8LnuXOfvuQYyAl8CnG/fhj4/Pz8frIBz23krRfTH7+HcFQgoryBDn9jVgHMvnDXttsrxd+zzJAKO+RNurxwzGbxyOZIIcD8cW4WWvkaPAEkxyWXf0XMW9x4j8tw+qbMjLh5llFF+qGTw/xh/YmzkgEfaROy8cUoGEHwdYluO8L2/M77olZP3cH8SwbZzSK7MOj09rS+//LLtJuTjOq6vr1uCsXkb3sHc7l0G7u/va7PZDHaa4n3ems4YGZubq4C4F64QOwTOcFCLurLNIrjA27CxagZ8zCo5rvU25+AIkqlsS6fTj0d9UAbvVOD2QcfAwsYq6BYJ5lwLXwXm6a00p9+pizGduWHjDONTBzfQhwxAeGz0eCjK5S3jqbP70X2fATkvHsgACmWn3/gMPru3Mo3+QYczQEm7wEN7FVXibPrC/CW7KVQN/RDmCxYo7Pf79tuLCAjYoAceD/YR0UlWRnpBCcHbbGd0lrnAGNF9j9BOXtlqDrS32s5BzOl02vw++1UOKnKt2znbOH3qYxjP+unrPJcYu1NmB+8SR/b8Aa4z5vVYdp9/KqD2m5TPLnjWc1b9nRsuyXd/nsGyjHj2HIrMSE4QwG/vMczqM08OXOMJKqOqLpeXiBLd5nvvi4yBIvpsw+DIMZOLMz+IArOCzPsEY8zYLgXDmFFjJjYmVARH1hO0I/TO0sDgPz4+1uXlZQsc4qSTPTKZfAy0MCE6kFI1BEHuZ6+sM8ByUOxTQj2oUzq1NkzWlV4Ggg3K+fl5LZfLFgBNAsTkx2TyMRudPsOYQTDQp/P5vObzedM5AlYvLy9NZzA2AB6DRHSPpfJVB2MFmKFNMEr8n+fPeTK3YeXQS57rwKgneoPU3qTI5yZt8jvrhucBA3hns/SAyyijjDLKKMeFeb83F1e9xnD5f17Xw1n+PxNDkE/dh6S9NyYwpjCot0PE5xlUcdahMaSdEJP0mZSCLJfLtl2PA08kNeFMsc89Wb4Ez3DOe7bUThu281MEujOVM+gFgeJ6gzuNDeywQpzYEfRuCiZkes45Zbe9NmGR/Zr18qr2PGDbAbteEg1lygAomNtlR9yviZH9LN/bW5HkOiXmSb3kbwgq3mUygK2LaH8IFfSNMTKbzQbkC7qVY8Bbodpxdz/Rz+D61DOX3QmPTgi8vLysyeSQZEZiH4l51oH0A/1ZkhMOKro/fmjgyuPCxFu+O683DnUf5/t6evGp53ItWzby3CRz3D75eY+487VeQTHKKKOM8ilhbuzNgUmQ5oowbEovOQbpkb/GAL3AWdWQi0qymecYq/YI8UyOwaaYg7I93O/3NZ/Pa7lcNttY9ZFvu76+rtVqNeAVvbIMe+zAGVjQQQqT2A5O+YxZ4zrwAdcaT8Bd+jPb+/1+X3d3dw0HkGBuu8rfrqtX85DwT1+w2o6EHe6fzWY1n89b8Ix3epcF2pRye9tPVrL7KBvwjzGmcTJtajwKlwq356NjrN/WD/528NE8FO8yZ0wZaSfGEOVzO1t3aRPqX9U/2oj+9VhjHLiPfdyQty/0O42FeZ6D4NYb6uUgEvXh/ZSB9vLuGTzv4uKiLi8v6+7uru2wxRg0J279cRkYD/Qn7yGAt91uXyU7ssAFXhi9oW1oZ2+byrNzlSJ9iy7f3t42fWM8np2d1Xa7rcVi0ZLJrCv2gxyw8lzrhADahO+sT56X7Ys5sOy26MVcrA/2T8wTpG92zF9PLjl9/E+9/9ctn13wDOk5+HYucFocRLFTw3VWAEdsHVzLwAVK6i10TEhkduXFxUX9mT/zZ+rDhw8tU4JBZ2PlAJoDCEzy/GBInE1ghWKVkJ1bAhQnJyf15Zdf1tnZWb17925gYE0kkS1CnQj6eMATyKOtnP3AcldnEHtLSRtRvmfFFRONgxwMUB8kSvDMxBO6gQHGmJi0yvbl2c4ASYDkfjJxlMtRU0etZ+iNM0F5Ptsfrlar+vrrr9sWjvThYrEY6Cfth2EBrNDv0+m03YMOL5fLmkwmLVOdCc9n79EP6Nz9/X0DGCwXvr+/bysGWT6chBFtaqKxBzTJZrK+ojuZ5eD/kxyiXzy+nWXP5y6P5wq+7wXR3IfWi1FGGWWUUYbye7/3e/X8/Fz/+T//59psNkfJVwem/H9+lvb3GDDnd9qYTxErGUioer1CDBvi7at9r+1aEhT5HP7G1oED7XwgECpV1XAWCTA4UODJ2WzWtqsjscf40YS7nTv+T+LE9bZTbyfN9QAX8iwc27zebYItB+vZCXNg0e9N8usYEQYGcn0yIzQDgL4+nbTEAvm3P/N5FNY7O6o+V8J94DEB7nb5Up/S6c3yZCZ2VQ3IE/43tnEAEnIBnVoul231kkka2surIqm/MXXqpOueRGgmxNF24FGCZV7R6EAg9aGNUq/9XPeVy+fvEr/meLX0yp04tlcWPzv7PgOnJpoyGIu4j/EfMziZ48ni67JO/L9YLOqv/tW/+r2Jh6OMMsooSJKdaYtNAttmV31614BewKJnp10GYw/EWC2fyWdJJucz+ZtyJ4dY9ZEDYdUZO/ecnHw8d974jyQp7BlciX/gZtxO8GCUh3JmEMVBQ4JUbjfjNDgl6m1szFlt4AoCDpD58HUEQsAXia8dYMwEmtvb22anV6tV46/gk2gbcCir+WhfeDO3hTlDP8vlcD+jo6kzDmKlzuW1tpm+zzgwA2FcZzxr7IKOeXcrMJJ1k/7IYIQ5Lp6TnJv7yEFWP4eFGwRIzb95HOHXUN/kDM1DO+DFAg9jKsbNl19+Wf/3//7fQX+zewd9O5vNar/ftwRF6gm2ROezX+mTp6en9oz9/rBDmPud8m+32zZ2eRbXeZcOfEd0j76FS/dZgyzMMe/qVWuU231JedzGOU+mD92bR+0vUe7UbeNuz+muu99lvy/5Apcn/VT7TVne36R8dsGzJMKPiZ17O0H5naOf6QzlRGFFZILAGUExMBpEoE9OPh4m+PLyce9iZwRTFtclQYQPfme/em9x57JRD+rEvq9MPvv9vjabTZsQV6tVm3DY/iedObJYmBgYtBxg6gkt90J2UI0294o2nwnhbVsI1LHSjiBd1dDRp6yeeG0gmKgy69r9l8EoTzL0QeoDZepFvQ3qnK2RmRlJ2FVVC6DR5oAgJnKewZJhxMFf+o5JlsnYAc/9/iPZBhAwUGWVGbp3f3//6uwSO/WbzaYte+a9ABkDDeuZwRNZwgRBMWLZVr0gJW3Yy6rn+x5Ytt79kImWSb0H1EcZZZRRRjnIv/23/7aq+sSGnTd/xvU9kqOH9RKb8bc//xQRbKBvII/j6q0nklzurUizvcOWOVHHtta/2T4m26Kqmo32lt1s+03gDKzAfv/L5bLh0fv7+4ZDksypOhDwYDowU9XBoUtnOgkN8IXx0mQyGaxqo67ebSGDh/QDmKCnH+AE7ndSm/WnRxRRX/eJ+y+dQcqW37s8dvTcz5AF1mc7uC6Tr8mkPjuy9l9MxqVu9/AMhBDjiP+rDoE+60kmtxn/OenL48RtZaLTQR+uAed53HlVHD4E7ensYhNHJHOxjY/rd8z5TnyYQXlWTdpP6M1Zn2pznkt7Wh+zn4+tIMu28z15nd/J7yT1IHDweZMgyfJb/9LHzM82m039m3/zb7rPGmWUUUbpCfN8Bp6Sa4DT6tn0niQXdgwH9ObzJJ2xZSZ4k28BgySG4DnGBpkcNJ1Oaz6ft+R2+EHzafB/2OWXl5fBmWhwRfxvDgv7wMoj2xv4KeyEd0TKnYzgZBxAg+CfTD4mQHHMiuvnHYUoR89e2u46+MCuU4+Pj3V3d1dVVev1eoApwLG0IT9s7edz2RxMYpURASC3B1tAs7qHtkjfwDaWNqWtjIupX+rEy8tL62fjjOSs0WPa04EIngEP552qqg5Ym/LR3g70+HnJeSZP2BsrtJ8/d9mdLObvvWIu/TK/Bx7cnCC6nslhu92urq6u6v7+vr777rvGmS+Xy7ZKEU6ZZER0Gdxp7t1nldEW6Arv/u6775ov5WsdIGNRC+OQ/vXKNgev3Qa8Bz1BfwngUe8MQiau9VhjjDkG4SQv67c5c/7PVYQslKENGev0cR4N4Hc4+Em/po6nXvS4As9/v2n57IJnNmLHGgglo4EdGOG3HW0+62URoJB2Dj0oHh4eaj6ft3uISFcdyA8m1Ol0WldXV+1wP8pgxWJgPD09NWcHw5kkh53UDMgxiDA8Nzc3LXABqcKSZyaD29vbFvyrOkx61On+/r4Z9Zubm8G7IDUwWmR57Ha7Bg4ScDChAgh82CNGioh7TtrOgPHgy763Aer1s4kUt38vks41GTizThHcc1ltUNKYUm90hz7F+N3d3TXdoe1ms1nbapFDMK+urtqz0FEyKvhsu93WZrNp76E8tLkNh9v/5OTjGWvU2xMpv71NwHa7bdt7zufzdlaa+4ilzpQhjY7b1WM429Lj15NoOvwI706g4ntNGNI+nqxHGWWUUUbpS4+USELhh3zfm8Pzu/xt29a7x4S9xcGfnoMP/jNB4udyvRNVeBbX9IgZ/rcN5Dk+FL2qGs4CY2232wFp4oQlb8fjg9IT82JbHSSgfiY0sM120Ew0gCEoP9fQHs/Pz4NzJVxviLHz8/OWEQo+5DonAhlD9Rxu91f6CcYP9Emu2vEzP6WD/iwxhCUDkL3rE4eAtUw0HHt+j4yy0wx55MCh8bF9G3bNoM/A5iTikVx1cnIy2DrUunvs3FqTT+6fqkPimNvCTrQdcBxskrfAuLSDs9yrDroIjjae6+E/t6HbN32C3j35ncvPNUmwpiSBlXJs7uO5GXDDhyTrOvs85yWe2fOve7rf+3+UUUYZpSfMUcZZJm75P7/v2fm0z4n9fF9vfoZnycCWbTW4h+cYG/T4CkvamiThq6rtEOTjWBaLRXuvg0H39/e13W7buZ4PDw+13W5fJXSbp+Jvr2SnXZLbND/D9cZiXm1nzgucaU6ONjeGmEwmDY+4fbxSzDiBQMJms6ntdtuS6qsOK9N83tN+vx/s0gB/iMxms3btbDary8vLlshjTE6QJVfXcy39koEOykDQhXcnnrRuO4BUdfBB+G2e18ni9kPwe+xv5Njy+7nPHKw/p0zW1e/zffK3n+1zxvb7/auVaua/vSKStvfzHBA2vqI+5+fndX19Xfv9vu7v72u9Xjf+mjrhU1xeXg4C1ayadDDPvC7t7BWTubDEQTDehy67/8DY2+22+VFeeGLfyP3jdkLP2CKf9rIvdwx7+hr0z9ulOsBnzjU/d2AOcXwlcXTKMazdW/SS9+W16cd+Ckf/qvLZBc/cOD3JAe7rbAD5O4MrmT3iySMdjarheV6UbzqdtsCZz3rAICyXyxYUYRAw8Fh6vdlsBkE21yWdpJzIbDQZsM6EIMiCcaGcs9msbdm33+/b+RmQNmRhECAh08RbgbBS6eLiojabzSCCX1Ut09rLUhnwvYAVS7QhTrzfMf3C+90WbifaJicCPncbWxc8idjQ9XTPAAk9SsAE2OpNFkzAk8mkVqvVAMD5cE6DBJbDs3T37u6u9e1qtaqvvvqqGfLlclmLxaJt7wQIg3zLJceQI5yRhq6bEKTeAC5fw37DnFu3WCwGq994dsput2vBNkCQM1QcnPR44P9jwTT3if//oZPrMTJhlFFGGWWUoXxfQOxT0rvmGO5L8oTP/D/4LHFSEh+5kslEym53WAGeWNBEAUEDZ7b6XX5nrpCxM8jWjNg+no1zBX7kBwxl5wt7CKa1M2G8lduHO6hVVYP7TdJQJoR6PT8/t8QY6sv2Lc7+pV14Ht/57Aq3NWSEE4RwmBFjOK5JTJC6mHqRmDH1y3jcz8j/U2jHDIr53XyW7zC2cdkTv6Sja5ISvUz8Rl9Y39FVY04y3skydzIUmM79a+f32Jiibu5TdM/ON36GdZV2IGibGNz6YPyec5P7xLrjMYGcnp62bfL9LBM6x3ZJgATx2LSPYvLs+xz//C79Q18DQZPzoH8fC4r5+964OHbPKKOMMsqnxHbtGAFvXgbbYF7F86/nUs+BGVDLYFEv2QoeDbvIHMcc6vk3bbntCd8ZWxqLkSwE17Hf7xtPc3Jy0ji0h4eHuru7q5ubm3aUhhP1zW+Z18AWgRMpi1fbgA+woyb4see2aSamKYNXfDjo5XYyB4Z4ZRpcVNXH4BV8D31pLOmtzqsOq15I3L+4uKiLi4tBUk5iXB8rY7vI365fVQ1wJtwq/cnz6dsMllk3uCdX0/BeJ98lNvG4SCxOX5rLow1pG/sEYC73nduANraOMwb4LLF2BvY8Ho31k+slEYsVdNZr8CDcJnW4uLgY6BM8Mz7EfD5v5585IGf/5OHhoS4vL1twDR1EJ7ziz7qC7uJHcfaYeXyCUfzvXR4Yfy8vH1dMOoCawWVjTbCnV6L5mBv3VeLnxGz0heMXPNPjgXJY16mr9Rzd9QpBP9MxGc8v5vJTB132xKAeW/kO6veblM8ueGY5RrJUDSOfiAf9sefk3+7QJEuqDlvX2dHEeDBgrXQM9uVyWdvttm5vb1uwgUjy7e1tG8QYi3Q2ewYIsSNEWaoOBob/cYDJYDk9Pa3VajUoN9s70hasDmPisuNKwIzVTTzPRhTDkI49kysBOQf6aDcGkQ2LyQUPQgzHpwZQBh+tJ6lbdsydeeLvDaJyIst+oU7+nc4sOvXu3bvWZgSPMB5ff/11XVxcNHBFvwI+WG3Gtk6Asvv7+7q4uKjVatWCaS8vL7Ver2u9XtdyuWy67HGETkDu7ff79uzJ5JDxjq6u1+sG9lg6vVwum/6YTHEb+NwQtuzke3TFYMLPoE1pL/dfVQ1AVwbUeFZmo/f0ZJRRRhlllNeSYP1Xld6zTOI6GNQj0bkezOGg0rEASe+9Xg2V5fP5rpkE5Pe4jDhj4CUwDQdQs2IMPEkyElgTB4jvaHfjJRM2bPWRznJmK1Ju3tEL4hjv2Mnj+iTrq6oFFcGRnJ1qQgZnFQzk9zjw4HY2LvRWgomtTIhZR/jf7cezM+CTfev6OeiReC79EerievO58UqSUIgJM/dnBtnSIbX/4O8hL5KQqfqo92Rts6VTZkwbUyVZRDtkpjYkFP3iFW0k/GW7QqiRZMW9fnYGehIbmjDyb0v6cNStF/CqGm79nr6L70lJktYrCHp9nmPA37lM4F9Wnbk/sk1cR7dJzolJYoyYeJRRRvllJDGFcVHV60R4B88chLDAHeU7vIKn6rXdrqpXWCU5NZOyPXKZ99iW+3/usy2DXzEPBrFPwsPj42Ot1+u2TbexX7Zj2rHpdNrwngMCxp1OPndZ3ZZcayzLdpLgNeoKpjO+YSUX9XZCPee50c58xwIE4wCS7/kMfhPMwLE0Jum5N/k72iCDVsaUGTRwv1pHrScOyIKjHFQCG7h93P/WTfdzBiBoP/ePd1Uy350YhDKxIAE9IVCVeDS5Vrcnz/fnvt9j3OVgJWJyp4wLrnt4eBisaqQd+c01VUPecLFY1G/91m/V09NTvXv3ru2I8PLy0haG+Gy+p6entiUoQe3kzBl7Gfyjn30ddWYceWcOFqlQd4K97mf60v2MTlAGxi73ps9hLjPxouch64rHqfu+h2fhiNPH9fPN8xL8c4DeZaRNeruDuX75t/uC5x3D278u+ayDZ8car+p4YA2lYLLyoM9nuvNykHvSI1LOgCeinI6cg0bI2dlZvX37drBlIgrLVnmZydiblBJIMFh5L89koiR6TVvMZrM6PT2tL7/8chBMcQAFI+WId9XBsb64uKg3b960pa/z+XwQ+HPmKIPIWRIMNP52lg/vJcrOczyxeEJLcoT2coCN/u4NSPd7BuGSiPD77bj6Hk/qaQB4pkkXlvCuVqu2vzU6AQBgW0RIKPSR7Njb29vWvvQfmQHn5+ct2EabeIUhdV+v1wNwRH+wTJhzSKx/9An6s9/v68OHD7XZbGq5XNZf+At/oRFzmfVjveIsCx92mhNp9qXbvefYm9RNEi2Br5/RI1dGGWWUUUYZyg+dM499n3N8kgN8nk5b/m97bKe3R7pwPxgisQTfZ8AtV69RRrBLrvLhvnyHg3ImNniOt7MBJ/oMDAeWKBdOTTpWdkxM6rBizZmTWa9eYMdnpHK/HUfwG3XlPZlhS9/4Xd5WyA44P/ld6pRXr9EGdtpMbuAoZz8ZRzjrPPXUJAX3OgknnUnrlr8nIOS26Olq6nk6mNb9xKo9zOPy22lGFzlrzxnEVfUq09REG8SB9aVHPJlYzL7kc/fNy8vHMyuyrt5K8pjTzf+9oGP6Akl6MjadGe1nWPetF1ybBIb7qEducE3qQSYF9oJtjMXNZtP802yL9GspS/pBve96ejnKKKOM8n3i+dlzDb9tGxJ7GL9hL9NeJyarGhLK/p18ggMZfj+cRc6NxiSI7RLPy5U8xi0EMThq4/n5uZ0nz/m2JKx47u/ZHvgfyuPkeZfX3FkGQriebcK9ymYymTSOEAwBr8RPD1+bw6s6BNCwXd5S0QGvqmordbz6jP/hOgnGwBtRJ8piTAt/Rn+bQ3WAMXEJ/Q9fZgHP0/cEs6wvxvDGUU66A/+hP14xyHP5juex5acDGXk9q9ISc8E3wqn6GnQ18SF6ZFxJO9Kn6IbHl/ljj0HjauNf6sDWpj5ephfQcVIYQWiOECLARvs/Pj7Whw8f6v37923M0QebzaZms1mtVqtaLBYtuEjAmMUd6BBYHz/C/YBeus3B2PYn0x/0+KNNaHPuz7FJO1MPY9r0kzw2kjPN+Zlr3e7wt54XGTfJs7qu+Z3fy70OgCU+dTmQnMN/06vOqj7D4FmSLTZS6ej6HiayfI6dNHcKCprPS9IDub+/b/unplNm55ZBxRJRskswRiZNnO2ZTj5/87kj5CjOcrkcBE0IZjl45fPEfIg3xtuZwvP5vB3EyDLzfCeTDUtPTabQZs7Qpi+YIPgOY8AkajLBWeYeiL3gGeIMkiTcKIP72uCNSdyZEtzTexZ/u1w8M7/L95Pt6pVil5eX9eHDh4EOM0Fvt9v67rvvGhBiaydPrA6isg0j/YGhw7iwcozMd4gPVkaiM64rk3dvfLnvuPb29rZOTj5uN8lk63spOyvo3r59257VI0VykraeeJz4mrOzs7YlQhpivyvJgpEwGGWUUUb5tHiO/kXFJIqf1/ssnQBLj1CuOhAsDjCZKDHIN55IPEcZSEpycomxCQ6GiZPElv4fJxCcgw2nTfMMM78fTGa7520dMznEQTdvv+OkqWx3O7qUt5coRnlzlZOJiKpqtt5OoXGGSQkTUcZntteZUOOgXNWQfMhnUM4etnP/uJ5ul564bL3nGmNkeTLzOdud8magLtsaXXRWqXFR6q1XOvo5ZORyxi0ZwX6eDw6fTqf18PDQ+sCJVtTR7eZEL8rLc/FjvLIAMoK2YWz02sj9wY/b0//TFtTb4966YALs2HyXukm5s7/532WwfCqJsnc97eFs/PQ7vk/yul/0/lFGGWWUlLSFaQe5hjmNedEYIeczP6fH5zhIwWcmrp0IZV7RyUbYSfMMLoNtMPdWvU60NhZ5fHys5XLZjt8gWEZyCNyLj3cxIe/2zCQa7zzluhFcwk5jt80xws3AjXAt73fiM0eAGFPRnmyPyHfgWeyhsRz9w2qayWTStpfkbxKxnKBjXs+23SuB3D8ERpyMbiziVWm9QJI5XgdwjUdoc+MnrqmqQfDSwQvjCcoEfjfHmXbf/1N2Fht4IYJ9F48zBwa9zWGuRPKuYNY34yTaxXjcQUhjegffen4jeoweoYNwlicnJ+2MQOtz1eFcu+vr6/rZz37WeGna0z4FXCjlRs8/fPjQVobRVvDiDkDa78gt783J+lonB+a91NFBRRIhvXoUrJ6cOv3j+TJ1xry25xB0zs+jL3im+8vzo6/Jfuzh3V4A1ePb7ZrBNJeZOlrHf5Py2QXPkE81Tg5mGzNHRe30VR2c4jSiPQKhF1jzGRXca/KFwUMkfLPZ1O3tbTtDwEaN6wlK5DJGJlKCdSgfSs+kYeKkqpohxigzgCEzPABN9hBIYfL54osvarfbtYNL379/30DA9fV1zefzto+xB5YdQNqLrAfOwWKCdpCmF8xkQnXdTaQ4Au2Jmu/SoU4yIo1LOqBpvG2E8329wJkl3++Mi6pq23n68Hd0h1Vn3nKnqlpbcg4d24s+PDy07UIpLySFyw2wm0wmtVgsGnFSVQ3g+V4H1xhv7o+Tk5Oaz+cto+rl5aVlCvM39XfwC7LG7X8scJqfO4sBo5gg+hchAn5ZQniUUUYZ5cckPUfIn/dwVe86z+UWP4P/7RTkvUks+Pn5vx1yOwJ+B4Ldcfao7VLiQGNLbJFxCYQC+A9MyN8OapDcAq41ucH9BCScsen/q/oYmLYAs3k1nfvWDj+EANe4fzNIYiLB/emgReI6t7N1JB1x9+v3Yb/Uo8QOx8g4EyK0Hd9lwCXv8/++n+Cl29a/M4hmwtB65HJlsNPPpHxZRpM2JqNI6AJXGne5z3m+iQgCad7mm/qYZOQ+B439Of9DWJngY4tw19Pt5EBbjkP+TvIryQH7FZmxa//Pc4n/9jzUC4b+UDk2v7ofwdnpu/h3/p368yl8nONilFFGGeX7xHOq5xsHyPJa/jZvYXuYiSdpjxB/Zj6QuTmTvT3H2z7YNvB9JlvYxvaCc/A6+/2+3r9///+z9+dO0mfZXT9+MrMq98yqZ+me0Qi+EoxAAgQGBpiYwlFgEwQOEdhg4PAXYMsC2ViAg48sggiIYDFASEFEDyP1ou5+tlpyrS3zZ1S8br4+p24+3T0zPfx65nMiKqoq87Pc5dx73ud9zr23QZRDbDtoltuKz20X844+xmsEuHiH62psCga1nTK35K3+9vvDrlQuqxNLHIxxoKLb7TZ4n9x3Dr6NRqMSuCH53zbu/v6+7JREPTiehOfzezgcFr7Rdh1ckQOOlJ3P3NfG3zzDHB4BEnjYbDON4fgNNs+J6sZrtv95Vbn72ProM8U83ty3OZjjfstBIXN89nvyjmCZ06PeDurBA7Oyi2uoIzpnTEOdfeYX/pJ5xbOzs3JM0mq1KliWd+NH4TvhR8HLo69O5rJOmf9Fnx2U8uIAbzdOudEPxryv9zzU6RyOxmGMskLNK0vzVo/mPiOebsOa6+Nrsr55zvW2jdzLSlD7lLzDviB6Th/m+TL7OojHsedeVr/6Pd+mfGeDZ4iVF8nOb76WQYLQaRgdO+Pve68NzXg8jv1+3zgLwIYURVyv13F1dVUCIQwAzhzr9Q7b53hi9mBi8uP9GJfxeNw4UJHAiic6FBYH2G3kgwqZNCg3S1zn83mcnZ2VFUy003q9LgEOVp8xEdBWTD7eqxjDQp3Zi9ZBHdrYk4aNHIOX622I8iSU2yKTCjUCxoClRjxkkGYdystHazqViRaybnx+3s3NTQlQUj7OxdvtdgUgeFtLzkF7eHgo+kngyhOP78G4kgluo0lbshKRLSVXq9WTFW9e7UZ/sfSaNr+4uIiIiA8//DBms1m53m3+8PAQ8/m86FduR0+euT9NDLpPrd852JZBw9chEFpppZVWWnmUrwKuec6uzeV5HrctztdGNFeK5HcxzzsIk8tpIiYiGtfbMc7vcDCn02luCYi9rLUHz8hlsvOMDTdRXyMc+BznHOePdskkO3jLgQTEjmHGyDzbJE7elsbPy044hIBxDmUYjUbljAHfA8YEJ7rt86pB47ccwKR8NT+BZ9SyxGv4kGtcP+NDbynududZxhsuhzF/DYPWsGfu20wo+n0461xn3ykH43gXCVkWyultE+k72sQEh7F43g2A50PsOCAWEYVIsK9yd3dX8CY4jmcSXLa4TXkG97gdclvmvqcd8xxjZ93k2TGn330ecdhOyfNHnt/cTzWiI8+X+LOcrZH1NT/7fZj3WLn5P7dbK6200srXEXNxtXnahLVxWA4S1BIPbDNzwowJXePDjA/MRZjLo9wEJ2xrEa8qMS9ljiMiYr1ex3q9LmXyqq+Hh4eSoO6EKG9fZz7H7+NvJ1B5/vaqcd/jRBX4HOw5tortm7Ettve0KSvAwaXYeVaSGbvaRjmRhb7n92g0ehI0gwcDlxozItSDZ7LtY8Rhi8jMKWaxD4AeWA+NDcxRRkRZpQRmQq8dWETfaoGvPCZquk/7cQ0YydswOmDBM8GpXOf2d32MN10G7nObUF9j/dyOft77guFcx2ILr5BkcQGBExZrZHw7Go1iMpnE1dVV4aldN/oFHYK7pp8Q2pfP4F3dH/D6tDH9DK/LuPaYIJDH/+b+eZb9J3TX481nSVM/8//mQTNms37lZAHrWJ6rXS7KlhPM3DY1cZkod8bbbs8aR5t9qJ+HfCeDZ7XIowdbLaDmyaHW8H6WDS0GhEHke1EWtpdzUMsZBkwUy+Uy3r17F+v1upGRwQCLiOIYOviGwcRg8F6yMTivzJFXDB4BDYwx5fF5ZR6cROpHo1F0Oo/brFxeXpZnMwlRVi8p9/2OLPN+3jMYDJ70De3Ke2pZOh5IGCauc1DOQcv8Dn9eAzw2YCaJHCj0dV7S7AEf0Vwqfkw8YVJOryBkGxpvb2gyiTLYUAO4CERGRDEYBl/Uj89YmjyZTBor0QAdECZeYTYej2MwGMTd3V0J7uWg9W63i9lsVsaFjeLbt29js9nEX/yLfzHm83kDuHnF5Hw+L1t55snR4IHMFSbRDH5pY8YyYzs/M5MXBs+ttNJKK63UpUa61q7J4D0HxvK1tc+53kRBjUjJhLCJZDvtx+6tkcbYwFo57Eway2UbVCvjbve4ot9bamM7SVoy3uK3cSLvMB6x3SU5xxjHNi+TSM4oNuGx2WxKu2cnPOLg0GM7uYYy4Nhut9vi/DkgmQNmtT7w38bwxknuWwc1KRcY2kEVYwN+uzw80w6dnwl54c9cXvrGWMVY0n2W8Yj1wglceeUaQjkhwCzcbwfaeurg8H5/OEvC27rTds54BZsaexpX8m5IPCdx8Xct0EW/OJFsNBoVQgE/7BhRwGeMz1qQ2Nf5GhMEeeusHMAyQZT70LpE/WvzZdat/N2x6/EBIYXo09yelMe/s7wP837Vva200korNclcjAla2//8O9tT5rvaymsT8+YVjAkyH8h7bKPzCjXEnGJtfjYhzGc8vxb44zngLVbKECjyygoHxbCXtp/YYxKwMkfE+3ISFfd4F4OIKMlcy+Wy8b67u7vYbDaN+/28GinuAAWSCfabm5vGmWicZUa5OPoGPEpytRPuzdlib6fTaePIkIjDUTJ5xwRsvVdv0+8ut1f9oIu8D51lVRIJQeiCcSdlcAIXOkEZuJeFEtm+89uBx8yDOSnKfkJejWQsmPGpdd73eywbb5jbxP/wHOCEP3SU9u/3+4XXs97SFvYZ8Elc3273cZc284iMMcpgzpmxBR5Ev9jNiwUo8N9gVQcTKRO+gI8r8lyRr/V3vBv/hHt9PhvBa9rp5OQk5vN5WQzEWPY85j7KcxTvrfmN4HT7GJnD9pxurJt1iLJbD2iLY764Ofv8HPO+Pw/5zgXPPCCOkeie5Gw8I96/bQqSHeH8bitar9eL6XTamETszEY8KuLr16/j4uKiKLLL6+sdqPE1BFJ2u11MJpPGwaL8YCw94UG2kKGJ4aHsEVEcTTuNg8Egnj9/XrZYseOFoVytVnF3dxer1Sru7+/L6iGCNp5MIg5bEJrocjaKtyDyMlTu8Q+TiicMZyZRHxtkyuN6enL1xOVJzhO8dcU6YF2DwHCwKA9qBzJNuOUA7d3dXbx586YEpt68efMEsA2Hw8ZKNcCMiYD7+/t49+5d2XYHUgkD4rFzcnISk8kkbm5uGhMThoIl+hhm/n/+/Hm5jmwgyBaIDQiU/X5fyIfNZhM//vGP4y/8hb8QH3zwQcN4YwDYNtKZGW5Xt1nWZcR9SLmdjVHr7wzofl4TcyuttNLKd1lsT4+Rw3xuvJbxmB2m/Lz3PTPi/VuhmThxkCCvXvdz+Z2dY9tzk9M1J9IEQi4rjix73bO1TMTBkXICDH/jgGBz3U4uF+2Zg2AmPJy0gi314e7OmHUCmLGaD44HY4NFEZKkwAGQPmBBkrCMp9z+GYc7kJWd+qwfXAMu8So495mDUQ6k8Qxwt8mBLBk/up0y/vB1rkvGnz73iyCrcRxY2ESk+ziTH8faCJxOPfy+8Xgcl5eXJQudOnn3C/TO76ZszkDP5UAvuJZAa8Z53uEAP4AEKnQwPze/C71xwM1OvIkEZ7U7UcyJZrndsw/jpDXKlPFqbQ7MxIH7xsKYhVi0f5Gfn9/zVd+97/NWWmmllW8itYSDPL/YPoI/Ip4eKxJR33LOgYca52Yi3s+yTbUNcFDM/FHGXH7ffr9vBEkyR0gZ4bwgyG3HfO6ZAwls28a7jAXBVnmlizErXBCcDcExMBXvur29bazsJghkjIQdjjjsZOWVepTPASR4JDCY251r7u/v4/r6uoG/CApmHoikJR9xwrNPTk7i7Oys8EnevYC+B1tRXuNkxMFPng0+tl4ZJ4JrzYHRV7QR/ZExWm2FI/UyNs4Y1XgHnXDZ6Qd00j4IfWW+NfOf9kGoG8EpxgL8oMf47e1t4a/tb9m/4H05sMSPdcVYk7ZycJZjjDjDbLlclkUJHEUDl+oV+3zugBgBavreSYjG5d5ZjZ3Y0Cd0E17enLyDuozDh4fHo5iM5Tx/0Ke3t7cxnU4j4rBDGItcrq+vCy513cy3WrJeud+Zh7jO+u/5NGNW9ynvph+N5RHqnsuW/SkWg7TBs/eIHa0cRMuBsWxEfY0n+2wYfV12Mu1IMygg9V1GVmA9PDzEZ599FldXV41MyYjmvsJMRAx+yuDAzHw+b0SgKbcnUt7R6XTKvr5MaBhTr2yiPD5HIxMrTBzj8bgYLYwomY1nZ2dlK0hnHzAh2Wm8vb1tAAnaApKICSo7nxHNpclE2+lzAwUGVI0cw0nOk4hJEwZ6Xq2YA53HyLusS/l7T4BeheiJ4u7uLt69exeXl5eFTNvtdnF9fV3K1e/34+bmJt69e/dkdSF7BDMxYah3u13RDTJQCMAxsZNlxHt9dh26x7sod7d7WB5NhpIJAwg06ko57+7uYr1ex8cffxzD4TCeP3/eMHyMpfl8/mTrRgPZDIIMAmrjnTrWJPdrDrC10korrbTy9STPmWCN2lyasdb7npevsfN3bGUXfzsY4+/sAPAO2xc7aSZtXCaey70mCPjONpT3YqPABvx2VibBLGcA8uO6uF1M2GN/vVLM5Aqf+zm0ibGpA3k18t8OUsThLAJvzehsaZ6Hg8/1g8Hgyep6nu0taPzu3L/Gub7G2wLyXOsS19R8ATAM7VEL3vlvB4GpqwnDjGVq73H/1q7Nzq7JBL/HJAvXOkhGm1Amkzm0B34EvkXe/cKEGbqO3kJweRtJ65qDTzwDXTERyRiBhMGnGo1GRWdMsr1vPvF37k++r/khteBVDrr6HYj70Li0RlbUykn7mui17t3fH86bzvPcMV2qlSv7z/n7/HkrrbTSyteRPJf5M+ZVcFwm9z3X2ec/Nl/5f/AVgh3jM7Ca7/f7/MzaHGnsmXlE21KX3fdwHavNsCWe26kDOy7xDMpvfEEyusnrfr9f+Ek4H/ge7Lt5NQJXtlG8K+KAO2zTjfPgXLw7lzEGz+K96MVqtSqBPQfJwBrGek6+h/fkul6vF8PhMCaTScxms5LQzfXG28bKxnfWHSfl5AQbtwc6Yg7R2JQ29flYxg1OgjrGv3kFGm1jbhGOz+MmJwTV9B6/gKQ2jyHX23riACh6SvA115/A0X6/L4FM+xWUOyft0Tfw2dTRK6xGo1Hhw9Hp/f7xzL/xeBzL5bIRhIYrdduax+YdXIeu8P58vftus9mUHRq84s7vrC3wcTJnRJSAo/l/gtcOitIn5jnn83n0+/1YLBZlZV7NV/C49txkrFub74zV/ezaeLA+G+d6DjOX67mIOlIv9MDxip8XP/udC55FPN3CpEbCMCnZMObIOdfxmSc4f58NPMpycnJSzpLiWmcR3t3dxccffxwXFxcNooPJIWfOMGFRBrIgWIUVccjayBmFTFbeHpHsQ9el2+2WSDvXbDabEkRwFP/m5iYGg0EJtDhbwoTOYDAogb39/nFrP+pDxoFXvKHw3paFz3iX+8MOooklyu96GyBkEsOGN0ezTYJlZ5PrnB1i3ciE1bGArPuVidw6aMP58PDQOO+Euk+n01iv1+U79ACwsNlsygoxZ1ugS5AXnU4nxuNxo88ABOyT6zZmouZd9Kkzrz15n56exocffhi73S4uLy9jv29mvbgPaR/Gy2g0ivl83nher/e4wpNM51q75vb3ROxraOvhcFhWSb7P+c+AppVWWmmllZ9cvoqA+Lr320bbttg5rc3//m2CufZ9/szOU8Rh62veBTFgwO//a+UxNiAb0g6aD0X3ChknK2Gz7fibVPdWjw6SOUklk/DOpnVSFc5PLk/OOMx9nPEZP16xZdLF7QTWYNUP7WNCivb2vcZQx3SN+jozEwwLlqvhOGMM43vq7OxY/++y8tu66vZ0f/IM/87tTF2RHLSzw85YcbCLeqArLpPHzGg0KgSGyR+S6/C9jO8gs9AtO/iI/SfKAvmA3xARjWA0/gMkIX6OM7Z5v4VrvTU5/eHAWMb06HkeMxnjZ1+hJuhY7i//b2I0kxi+nj5kXGYSw/fV/neZa/Mff7dYuJVWWvlppRY8M/cQEU/+j3ga3PccmlehZbtd420imsGDfD3Pc8IL12Sc5WCMy+p6OAjgYIfncq/u8DtILHf9jDsy5nCgB9wAf8cWjQQRzM3AUS0Wi4KLHJQxTjRuyJyquT8HSmhDuCt4I8pMmU5PT8vWz+5fkmnchvQNifj83+0+Jnaz2MH+AWdUgRXMR/Ieb3tn+0s7gX94FxiF9uYznxNrDOdgAjs+OZCXV+UY6zvRiHFAvdFdMDV14VpzZTzLAS/6k3f5ud61ymWhLWornCh7xCGZjt2q2GmCI4PwI7xdIe1Pf9AO9rusi14l1u/3Y7VaxWg0itlsVrZDpa5OUERPKQu8MQE/+NTtdltWqcHVW4cYx5476EcHFT1v+IfrwZ7UzUFKzwP2zbieIPN0Oo3JZBJv3ryJq6urBl+e50jrmX0s657nqloCJdf6PuNG+syB2Ty+zC1b3D7W35+nfCeDZxH1A5L9f8TBeKIk+foc4MgdZMNuRUZwzmw4rXQfffRRLBaLiHiqXHR6xCGybAPg86QgPhwoQsmYOBg0lIctOzwwd7tdIWVY1pwds4hD1sFqtYqHh+YZZqvVqhxwysTDiqVnz57FbDaL73//+yUos91uY71el7Z0loSNCoE03s9n/O/BTX+wcoqVbQYgDpYaJBl0GXDUBqmXleeJoQbATDKY8DDAiIhCGiDZ8LmvqRdlG4/HcX5+HovFogTI0HUyL7yaii01yQgeDofx8uXLmM/njfYlsGbDZsBKhhOTPvpiwGDjhS6fnp7G8+fPY71ex3K5bOhkJozIgPr444/jN37jN2I8HpcVjnd3d2W7UoJntf7MYzQbB49PH/bJd5m4aKWVVlpp5ScTz8uZtH3fvH2MoM3gO8/rtWv9nW0tjpltiIMZiJOqsJW1wIWde35cFmMCHCCwCs4aK8C5lsxJMAgrwV2eTKLwPge6vBUJNtHYL+IQiIuIRrAOPGgn39mqNUcrYzbKC+YANxJMAV/4/9zuBCwy5sqSA6m5/TM2tC6ZeOM3+LZGwjmoYqyRiYKsT/Y3qKtX47svqbPfyd/8Ns7l85pTbL8nJ+BBENA2ZJH73CyTlKPRqGB8Z3+6rYyxqXvG0mQ2Uw/8DTAtuBLceaxfeY8DbL1er5y3u1wuGwSQCT2elwmUjO2z+Pt8Zkcmhf2ZfS6TCLU5EvkqgsA+DePXhEzNVzlWF8/Nx+bt3BettNJKKz+JmHDOgTPmapPoEYcdaSzmgWrcD/fbxnnLQL8329RaQvSxpCuCC06iyBwlZaUuTsgieMM8TjtMJpMGH5nJdbg/ykY9wLrGEre3t2WLRgIhtCcJ9V6Fxvdwe3nHAj5jRRfBEZLpzR9RH8rDM+AKHSAksAHnh60HDxqrertzB/m8ACCiGZjMnGHGucYWDi54u2zqblve6/Ua2yLmoIYxFc/y8/nfARP7K/xPW2f/BSzltqI+6KX1z+UD8+X65DFV8+1IcnJQ0+MOqfHXEY/H/piv9FaILASwPtLP4Mi88wH62+/349mzZyUR67PPPovtdtsIaLO6azAYNHBop9Mpes98kcehV+qxI1ge3z4/MOJx4YkDdMad/Fg33U5uN+th9mNYwUdffP/734/T09N4/fp1Qwfsqzjh0PNd9qOM2+1H0K8ZR2Y86/tzsNB65fvMNzOOs5/z85DvXPAsB1Fq32Xx5Mh1VjATGHYKsjH1571eLyaTSUPpUdSIiI8++ihev35dBruXWvJcT0YIBvL09LQ4pziNBJ6Y6DAwDFKMg51MBgeTMEY54jDJ5UwdJiACaNvtNs7Pz6PX68WbN29is9kUY+at74jU87nbKuIQjHI/OIJuggUjYWNB+9JPrPzzsmIHcbjWk5zbmr+dWcwkRRsDxLw1ockjg6j8joeHh7IKjPcx4bn+uf8z8QLoQIfOzs7i8vIyLi4uynNYDs/5E+gQfUM90K/xeFxWqfV6vcaZZF5RNhgMotfrlRWIbOmYM3V5B0ub3a4EbE9PTxvLqNED2gDj8vnnn8doNIrf/M3fjNFoVAJo9/eP5+qxki2PnRpA9bh1f6Fv7yNdfX/uk1ZaaaWVVp5KBr15jrbNqGG2Gtlx7Fo+z3iNz02m5MDYMbLGNtlBGNvgTB77XXYY7RyaiDHmgizgHFsHIMAdPiidujlxC7wCMeHVQPzvQJfJBr+LOoGb7ES53XI9Ip5mt3KviXvsfESUM68iotFmEFq8y8HITFblAIf9A+N7O5zGhLSlsZg/d5lz0CeTCNahjE+M/fLnGX/zPMptx9TvzmX0Z8ai2Sm2boP3Pcbcjr1eryRokVVMUAtSajKZxO3tbTlnl2c4W9sEHH1sYgbpdruNrR3tUHt8rdfrxlY4o9EoIg5BWRNjBNAg5+gjtz3tAmmTdSXjPrCuiZqsB7mfcr/g95gctQ+Sn5HxLfVwv/EZuD9ff+xZec7Nn/t/E2Zt4KyVVlr5SYW5xIGg/H++Ps9JtWCb73eQqmYvuQaOjJVJzPvMseavHJQyFvKceGzuzEEy3u15FVvL+ygTNtzYLvMUTsQgAJBxzWKxKMdl8Ixer1eS3b1TFnYYHsirpAja8Az4R/AkeNBYzFvt0X7YXPcz9hGckZOIVqtVbDabBqcJT0QAI+JxkQMLEXJCWw6aGh9R3hxYo513u0MCtrc69wo249usb7yP93slF89x0JA+zNg242CwKtc7+OSAYo3f8jPNdzpQYTwHJqY8ORDistXK7/+NQbxLFfdPJpPi57AlNX2cV+aZc2WhSKfzuJ3jy5cv4+TkJLbbbeMcP4K+XrhiHybjWvuG5kzhUAmyeQGM+9jPBL96gYXHfPZjvRLQbbvf78sODASMe71eXF1dlTbp9/vx4YcfRq/Xi88//7wx9tAJ+t/9krnTrMv2NdCzPE/6OdybsS51g3f3tcbOtKfLfowj+DbkOxc8i2iuCHvfD0qas0kjnhIz/uxYNp2vZWsdrxAiQPD555/Hq1evIuIQQGEQ2XBauSIiptNpjMfjiDgcmE0gjOsRD6bxeNzY73U6nRbn1s4VWRlMhgxaBj/b9bGMm3IT/CPYRpkmk0mJ0BM4w5hg+O7u7uLt27dxdXVVgnv8pj0MKrxlD3X2CinajOcYyLhts6NqYTCbeKJN/X82Lji6tIknQpMdPIPvbYSshw6eZlKD9wOAINX4/vnz58UgdDqd0idMluPxuBAQtMtwOCx7AUdE6XOCr77WK+C419tjGiw6EOW9iwEUBPZGo1HZdnK1WjUMPz+LxSI6nU68evUqfvVXfzXm83ms1+sSsMUgANDeR1rYoNSII4ByHiv5eQbQrbTSSiutHJdjpOwxYOvv7HDZUT1GSltycAMxHjzmxHGd/8e2gT+MBbJzHHEg6mtlzTjE/7NNsYNOYDLscK3u4AxWpBEwq62AAYdAXGR7R1tk7ON+sNOdneYcoEQIdnCfE89wKnE2s1NOApSDZ7zTdt1twjtNoDk5KvdbLZiQCRL+d6DFbcS9OSAKmeRnOChI25iUcKZsTvjL4vK6LTJeMfYBl1v4zP2dk454H+XPOJs2IVnMY9GkjtuPdjNB4vZj9wOIJ48Jl5lnGdsyDtHZ09PTODs7K9tUmZixTuQkK/+d6+rdMvi+5lfmdvA1PM+kVu29uQzH8Ch19nnP1C3PV8fuPzY+cj1aaaWVVn5aeR/habzmIBOy2+1KYMGBByei+D2Zb8h2m2fyd+2dCHbKSSJcCx5yWRx4cJngVfK21Pv9vqx24blOggI3IdjEvIUhwQjufXh4KDsXESSDQHewyMkd2BWSMkiwZ8vDjNXhjAga8AzzlpQlByLATN7ekb5kN6ztdtsIoBgjOiH/9PQ05vN5TKfTGAwGDZ7WXGXG/dTResF3uczGzt6C03V1QM3Yms95T27LjMvNJZoT9KpM67F3r2IxgZOyPAaom9/tYCQ67NV0xiLGh5TF4y5fa731PcZsxqJs3QleGo1Gha92+1Mfr57jh7KcnJwUDpVd2uCavdMaPC/vIMCGX8aY6vf7RV8Y04yl+/v7omv2HagfATz6KK94oz+9/aT1kneYKx4MBjEej2M0GhXfkK0x7+7uYjwel/q/evWq6i9YmLvyHJrblb5lHJtztR5k/4DP+F3zUfws5sfst73Plvys5TsZPDsWOItoOr5Invzc8SjF1xUG82QyiW73sAT55OQkJpNJXFxcxGeffdZYFhwRJSCFYmcHm/1ICYQwmB3sYsJk0PIzHA5jPp83somZOMhGpqwExGgHD2YGGBMC7zk5OYmLi4vGKiSMG8G+iENmqgNM1GWz2cRms4nhcFi2VeH6iMP+xV51lid3l5d+teNNmx37PvdjHnw5om5AZt3LE3KNdDB4qpFtOfvIz7NxZkI9Pz+PzWYTl5eXcXt7Gy9evIjhcBjv3r0rS92ZxAkIYQzIgAAwEERl6831et14H6TV/f19LBaLUhdWrPE9be3l8Bg4Z0eYiDk5OSlB1uVy2QiCAehOT09jvV7HmzdvykGXBM86nccMlOVy2ejLDJhNxLh9/VnE47JpAnbvG/N5nmmllVZaaeWpZAz2VcQ//xuY+1n+/30kdyY/HFixY2dbVxOXwSSEz1ii/DhAPI/r/K5M/tjWjMfjODs7axzqTR2yQ+LgA6vMWfniABnYDUzA9bnNnCVIXWlb3u8MQhxnYyKwntuJd3vlv9us0+k0tmgEK4BdIpq7GPC9+yc73JlwQHKdjf+tH3aqM+a0PlB2cE0NN+T2NQbM+pXHhvGk24y+zI5ixq/gRfdj7uPamMv9Y4LH5azVezgclp0p0ElwnZPdTEoZs6NjZKLjr0BUZL1zHciWz8QbuuU2I0j97t27JysRcdprvgJtyD0ZT7rvaljUQeesp/zv8vhv+hAii/Y4FkCj/ZwdXSsrfZnnwOz/+Nr8ec3XbqWVVlr5umI7U7M1Fs8zcB1InufynGd+hf/h3jyfHUtAIRhjnGP7bvyX62ebALEON2TsZOzBTgTM5/Bofk4OFnoFuW0hCSPwcD7aAw4RbpHnYkMdKKAdMuHP+yKiHKVibOI25RmUjc+881G3+3g8yWQyKViCVUKcvxYRJegxmUxiNBqV3ZZYtdTv9+P8/Dxms1nhqLxFJ+2f8Q42OHNXXuzAfcYyEYeEGvAv2JUAYtbPGg5Bv+FeeacDjDn5x7bYqwHd9uwydiwZkM/oax8v48CgA6F5RzXqTp0zL5r7P2PwiMPOE7Vxhg5bMsdHWcbjcemjvN2955iLi4uGL2K9hN+nHXh3t3vYIcHvd7D99va24SswBrmfsppLHQwGpd/pBwJqbk/8JfwouF0HbWlbriEWAC9PAG29Xsf19fUTft3jwjpb09uab+NVa7S19TLrRdZvnyNoX5T7HLv4f8HLfieDZ3nCyB3MZyZMPPk5qFG7J0v+rNvtlqg3kyKT/6tXr8rZEvkZNgTj8bgEvcjA3e/3ZYA58JAnTyaWrJwEyBaLRXkP7+R+9kOOOKxug2CZzWZxc3MTq9WqYfRov5ubm2KgmIw9GTw8PJT9ask62Ww2xZGOiJIt4swTAnEc6Eik3suseX4mDxjwTFLuL8rvswRqxImvZaDSB1kH8n2AIfrJfWJQZRLHgTU77JmEc5YwS4gJsHY6j5m22+02rq+vGxkO6A1GygRVRMRyuSzZCM6qoCzsM+yspG63W3RjOBzGbDZrTNRkSxgkmDhhC0mWI/f7/ZjNZmWs3NzcFN3BmFxeXjaWL6Nz0+k0Xr9+Xdo4T/KZWDCIo2wGcr4+/7bUPmullVZaaaUp2UlBjhEjx+7LBMj7gLLnZzu5GdcZW5k8yYSLiQgT4TwDLOAsQX6yY2g7hc2czWZxfn7ecIzsnGTHnODEarUqpAerpnmPt7Lw33ZcSFjKhLgdXTuQ7pMcgKSda2ePmNzJuMjOIjbfZ3JAdrg9IZVsz/ncK7Yoa64DmAj8aUyUMV/2DbJ+QI5kHwSMUXtGTpZyvzjz3DjFuCZjVxMGdij5zBnPXG99Mu7JzixlwndA92lnP49+9HaHzrqHAHR9/ZyMtTMpk9sLvUYX2ImA86XJSoYMNHEymUxivV4X4s26j27krWDQHROh1ke2jsrtlwO3eWWnxW2R8Su4mjavEbR8h5/G3Gb941oTPJ5zLDU/OH9uoqSVVlpp5SeVmh3CThgTZbwWEY3PbY+P8Xme//j/fUkGuUwur/EcZcrf5WcZo0REI5jGChXjtohDUAauCdvjFUeuD+XFVt7f35etjsEZTnIx1uL9lMvlwX5RDurIogDuJ0kfTOddksxx2dbbZvGMq6urWC6XZcWZeUkSam5ubsq2d+C64XAYz549awQUwHjgZJ5lLtLkvG2jP4uIRpIOdteBO65lByjqxzuMZ2q6U9NF61rND+Jz4xM4YX8HJsx+gHnIPI5cJ+MT6ynvdJ2si+bcctnzgg6ftZefQ//R/x6TYE+PwV6vV3aJY8cyOEXuXa/XDb4ZzMqObujyzc1NGYvgf/sQDv4wls2VG0eyzTlbLOZFPA4eefUawd+ar4OObbfbst16p9OJ2Wz2ZKUou4G9fPky1ut144gf9613eaDNMqftejm4al2if91f/G+d8BxHeazPeSeWPDZ/XvKdDJ4heQKpNaAdIiucHcxjpImdEg9en//kPWlvbm7i4uKiEUCwAjH42DZkNpsVBce59BJwDx7KjfIz6WPkCEptNptYLpcNB9FLT02AoIi+n0nF2Qe0D+XHUFBettbh/V7hxkTopaYYHNqOs8swvkyKDw8PZZs+7rWTyt6u7n9Pto685+AKOuBBa0BlQ8azrRN2gm0YuNZBGBusmsGzwcJ5RledocEybcq/Xq9jPp/H69ev4+bmpqwKQ/d8jgj6vVgs4vr6+kmWkg37zc1NydaxcSDAxUqwfr8f8/m8kZXV6TwG9bwHNOOQz+njbrcb5+fncXt7G1dXV0+IqNVqFev1ugTqIBQdjMvOP+PlGOnlzykzgcIsnk/on5YsaKWVVlr5dqRmi/053+XPakSJsRM2zKtc8rU1cTlq+CH/XcOYBG38Wb/fj+l0WgJn3rrPJDv2CRt5fX1dCJD7+/uCG71Nm3GS/7cDFNFcEUP9nEHqbSOxj8faGKzJ/ziY4BC/221kcsxOqnGR29BOtR3u7Ei6DRwwoz2M/fweb3NTI8GMN9xHOZuZ+rr8XItP4PYDl4MBczDG7874Mv/2u002UkZnhnOP8ScCFrUeGfc66MRKwYgofoIPRye4xvVk9NIGzkZGd7wljskvl896yXPRo9FoVM5vAUsz7rbbbaOP83xj4jaPJ+rvNs0BNzv/+fn+zv3vlW0Wt3X+3v1o4gkd9Xuyn5t93hpGtp7Wxv6xebOVVlpp5ZsKdsiYic8Rz5kmru33Z7vuuSoTurbtPNPzvRNZsk3O9x4LfoA1HMSwXSb4dHp62khwh6cxdrH9Nk7w6hJ/7628I5rnvbPlJeWjrt41gO9pC+wpiU8cB0JAIx8XkjnCiGgkZ9MOcDpO+veuSvQv91L+2WzWwJjs5uDz2SgbHJr7ArwIzsWGun8zN8j77WPkcp6cnJR3ghOsK8ZVtG3WZV+T9Ys6831e5W+dBTd7HPkdPo4HvQHXWpeMAT0e82q0HCCjnZwUiO75urySy5+bY6SdHPB0nT0ujecZ2z52iaNrzJtGPCaEwWXzLrhH9Mg+l+ctvw9OlevRH3ht9A1OnLIR9OO5vN/zi/0B2iHr/Gg0ivF4XFbN5XHJcVGsSsuJiO5D5iLGqtvA76YdweSed6x/nks9n/kzz5OZa6/h2p+XfCeDZ55E8kSUSQIrsSc/7mUwZkPHdXny3O/3MRqNygDY7XbFubu+vi5ZiC6Ly+wtGrvdblxcXBRHL5MnNlo+AJpJkskeR5Wl3Tc3N7HZbBr3GIwweGqr0Ky8zmCOeHSCt9ttXFxcxHw+j7Ozs0afUEeWdLPsmnJ4+0CTKGz/WNvLlaWvGHOTOxwO7kwDhMnExi1nmlLuXAeuRy+8tSCfm3DwJGBAQP8w4TiQSn948s0G0hP8ft/MdKYdWJoOecWqLWcOMeETkMK5dtaSsyhoK/QMwIbQpycnJ+X8MvaWHo/HRc8z2QI4tINPH83n87i+vm6MlZubm1gul3F2dtYo0+npaYxGo7J1YwYENoIYY55Zmy+c7cRnWSd8TyuttNJKK3WpEdFfZ+7M5EbtOcfI368C5ZDw2DqucwAhPy8T3NmZoIxgGW/r6NVouQ4nJyfx7NmzGI1GxXF9eHgo23kb+0EgXF1dlbM/CRBwL2Kn1qREDqj4f+qdsyJdbm/7QbuBFyOiUQbe7ZVGdtrv7++fZFlCwmRxoM99ZHzo8vI+Y6haIIkfB1EzRnYQzdif+vt/Et5qem5CxXU4Vkf6MeMNP/9YsCtnq6MfJsbAeOiXE6dcZhNDYFna2U66r+/1ekWHTeaYnIuI4uuA5xxUw5/hGd7OibbneT53g21rIGRubm5iOp02gof0Nz6DiRoTGzmIhG7wm3KYSMz9ZF00iWsiys+nTrkfrOdZas+EMMn1yD+unyV/VmsL65fr+v+CwGillVa+22Jbl/kYS20eNG+ScV/mcvJ9/u3ney62fTaeimhuhWwuxeLghHk9hIQOEp/N6XmXA2MxeDHbLzAkZ47u94ddrLztI+fPe9GAMYVtNr/zPD8cDmMwGJTV3dhb8Ad4zjgiE/JOJuea7XYb7969i9Vq1cAoDlTBBTohirpGPGILJ/ZHHFbMYx9PT09jPB6Xd8B9kYzmtrV+8gO3ZQ4TDtKLH+DodrtdOeqm5pvAIzvw5iCZeUvrr3Xez6zxnF5RFfG4TSb877GgRW2cWH8zz44erdfr0sfomLefNDbnmhyQw4fwtfYlMkZFv90+9hXoI2+FSMB3MpnE/f19vHnzJiKi6Dc+44sXLxrYymXBp+R/uFbPK/DxnkccZESH3Ke0M9jYOka/ccavz/JjPNB+fHZychKz2ayMBfSbo6Rms1lZwGDfrBYo9bxam++sO6w6tc7aJ8v+BX3P9fabGMPuY1/v9/88uNrvZPAsIp50Ap9lQeE8eTgwUnMUs9PkyTLicXA5OMMkzNJiS3bez87OSjTZBAirqLzNCvdHHPZYtbN7d3cXy+UyFotFMd4E0Si3V5kZRDDZEIHmXQwuBpazJTir7P7+PlarVflsPp9HRDSi6Rh0Gwzqy6TBRDOZTBrLaJmU2JYlr37zBOqtCukzjBa/7cTa0Hgg5mzv3Ic10oZnYfysm0x6zgjgGYCUY04211Mffrt9mNhPTk7i/Pw8FotFXFxcNMrkQyzdzw6UefyYmKAtyDBAf5ioATEGG+v1Ol6+fFnIMQAh+p0DnPv9Pq6urgqAOT8/L5lG1GGxWJSystKMFYnZ4DtY5zbjXcekRopmQN+SA6200korX08yyZrnT3//PrDra7LTma+pOZJcy3e8y6ufuOZYOYw3/H0mT8Ar2Eo7wn5Xv98vNjJnPDoRaLPZxMXFRWObZa9OMbnO72zPIw7BLTvuxjA4/NxnW+0V5A4k4ayBJaiHM0H5sZMcEY2EKNrRwUa3Xc3mHqtnvqbWrxlX5dVu7vPa9ehCDoBkDJd10DjezzRxkTGkpbYKKvd/7TPEBJav85l5fGeyKhNnXJO3lOl0Oo0sdr4HszmI5rMl6IOIKKvBEPse6AeBXLYWj4hCpkEq8p71el0IPsqz3z8Gz4fDYSyXyyfzCPfSPow3n0GRyZ6sp2632nxiP4D//TsTbDV94Hr3PfXH33W/5TrmcXEM2+bPawTb++5vpZVWWvk6kufMWnIMn+dkFOZMY7JMVnt+NS4z5vJqHt7rhO0czPD5ovl9NYzJc/f7x2RiksaxB/ApEQfu0kEVgkTGgfAreaUWgTQH42gjYzO3Ne1j+wd+YyXMeDxu1NsrtbgHTsyryd1O8I8EW+7u7mK73cZmsyl1Mw4B/1AvMKd5PrhVeKC82xgBPnSGVWEkgt/f35dFB+AAykG9IPrB6+ZYKQf3Eqwxn+aggT8351fzlWoBYPqZ5zph3TjVSWLG5dSF9jFX7mQ6+1TGt8aS5i7BIPhFjM18zhntCb7jb/PRxrvWe95DW1pXGcfmN2lvxqznB/Bsr9eL5XJZ3kVgm3o7huCdNig3RzH5HLL9fh+r1aosPDGGBs+Ox+Mnc1K/32/0Aau8JpNJY4eK9Xpd+FDGbrfbLfMA+slcs91uy7mBPq97NpuVbUeznrp/3ffWE+uW8WwOgnsezH1ryRiYdnaQ0IFRf59jMN+WfCeDZ54A8k9NWO7oyHcmONwBJt0R7mXJZj7AGkV2+SAeIiImk0nMZrNyrScRglEMpPF4XN7rZcQoEwQFK3PyJINB83aFTGIYXxNJTLYOBrrtPAlT9oeHw8GNBLp8sCFlZwB7YmSiioji3EYclqRjmOgrL7XNQpDIJETWE4RBmx1T6um+Jlhp0ic7mg4I8jl/OxOFa3OfUGf+zxOPy83/tIEzb05PT+P58+exWq3KNTc3N43DIamPwZDbh3fT/m4TdIctb1xWyAj68+3bt2ULn4eHhxiPxzEajRqZ6DwT/aFtRqNRDIfDxuGVHHBLxhU/BA5t1A2guS63Z/48G4n36c+x+aWVVlpppZVHefHiRUnk+Dpz5jFi+KvuzfOz7boJAP73jgLcbxLGxEuNVPd7DNx5toMqJigiDo7iyclJOecWDOeDvFnN/fbt27i4uCgHpYMD3T62Y5TLn4E/cz2zvcvbJHIdOKLWnnyGI8oWJw7w4eD4AHfjoMlkEtPptDh2tV0JXFfKSnt61ZjLbnKrhulzAMyJRT5/I5NIDkjwTLAz15toy/roIBV6xW+TWJn8sA7may21a10243rfXwsOuz55S+uas5wJChNmkAYkXiE43/Q5Tr5JQ3wG4z2TRvhi9t+4h6xaMDDXcZ4yZzvTdtlXIAjoMZUDa9bR2vXu60wGME94BYElz23uz0x0guu9m4h1P+vIsf9rn9fapjYXvHjxovqsVlpppZVjwtyYg0u2FRmDRRzwjnfF8XxrbOP7HXCDiHWiBvOpbYMxjYMAtXmRuZ3n8dv2cTKZFNI84rAtHVxlxIG3JAHZz8QOseUcOwphBwhKYb/hI3ObU15jC+rPd91ut2ztltveZ+9SF3gnJ7cQnHJSDUE9VuWY+DYuAxuYU6OtCKKcnZ2VNqG+5nipjzGxV4O5PK47dQRfuF7eti6X37tb5BUzDhTRz3yegxV5fLivjNfg82qcF2OAoJ93EaCO3g6QoJG3k6ec3snJYy0nzHEN2xDS7tZt6mydQvg+l7N2L3pvzGVsb/6fYCZ1ZbvU0WgUH3zwQQOHZR+QdkKf8d3oe85Sgw9ntw62RKTtKA98v59lX8xtRfvCk3IeG34ki0h4zmg0agQved98Po+7u7uynTntZe7eQcG8kCP7zrlv7D8wXnLwmHc6HmPfNmNqv5v7rTf213+eHO13Nnjm3/6byd+TJ98zALxkGXGUlP8jnhIpTHDO1kURiLjbSd7v9zGdTsvZUB7kXlHFqjMUG8PqPVdxjjabTZmwvZXfdrstgy6TQgzE4XBYBojbgzq73s4gYRIk65MJFkJkvV7HdDptgBKMkidAT/xE6TNo6nQOy1UZwPRrjTDBiaVPTGK4f/MgPaZbnsSdZWLDYQPtyTY/38SN2xddywPfEwT3e5JDR8jc4Tww2vL169fR6XRK8MoGjUwkO9wuix1yQIP1ifsw1MvlsmEIIh6B02azidVqFZvNJiaTSczn85IRhB56ebuDlePxOM7Pz8uzHQSkXPR3JoPcZnlit15n0JuBeZ6APaZrgddWWmmllVYe5Vd+5Vfi8vKy4QRm4iPPsZmEyAkafG7sl3GDM4hxdEyM8IwcTPFzHfiqEc25LE5M4nowTc3ZwFED49gZIBDw5ZdflsAZxIRtOdjDNjwiyhYZuZx5+xTb3fwctzl2ORMq/oGQ8cogHLqMBX1mK1sVzefz8rfxuhNyrCN2KjNWd/Cwhu8zBot4euasMWgtmJF9D7ah9vMcVDkm4NOMN7PO+132K/wbORbUchu4H7MDWktE4m/6OuPojF1pzxwARU+cbUywzOSS+x08zfd5PPI8iBH+BjNvt9uCTb2dOT5MJlhycNVtlJPrss54tV0uX8bzWY/yHGFxoCy/M/s/xuweG/nHevW+OS5/XruOz09OTuIHP/jBk/taaaWVVr5KTLZGHAhUB7Vq3BzznpNe8vEW2KPMBfpv80XYBSe6GBfWeERzgcYjmeM5PT0t58lzz+3tbbFTfqYDX9mee7WZV1SBFym/7SflcFJKDUM4ODIcDmMymRT7aSIf2+QVYp1Op4HlTJATuNjtHo/kYHWMn0Gf7HaH43ActGAhga/t9XplRQ7PJmmGctCODg440QcdcLIQ/3uVPdv0ecWZk5N4nwMGrApCZ61D5qKyLc+6SqIRusS11guvjkJfaRfKlPk/3sP97jP8J/TBO1FlnaKPa3xmLajNWKtxdOb5HMyx32RM4rryOZjT5XH/m4NEf7rdbknex5eC+2WOIJFrNpuV8qIPvIPy249ghzSutX5nvMZ4yEmY9JuDyxxftNvtylaUDmZTRtqJbSodRAUTr9frhu9N+TxHeH6w/tr3tl+DfmSprVzjer/fCQEWz+luuxp+/TbkOxk8i3i6dZ47C2XzRGUFtLjD+HEQLXeOg2dWepMCDLSHh4dyvll2kvneky7f39/fNzK3/TnLRRmErqMn7ojDOWkIK5BMHBm0ECknaEe0HMHx5H6fVUEZCOx5CyMbf7JMWZHkIByTvI2VwQQTUy2biHLSXjUCyP2ZCQv6NzuUntw8kXmy8wooO/IRzSAZ11Mmf+aMVpMLAAff5/7q9XoxnU7LVki9Xi++/PLLxtJ/iILBYFDqTjtjIAyyuM99zxaNnU6n7J2bt3eiHzDAl5eXsVqtYrVaxfn5eZyfn5elwUzS3r+aANrp6Wk8e/asbIOKTuaxaFKw5ty7j7j/2ARb+9/ExbH5o5VWWmmllYP84R/+4RMbmefO94HcTCj7+myfjz0jk9B2Mp0wlG3x+xKrkIeHh5IMUgs68LedDz5nmx4yZiOiZAQ+PDzEYrGIm5ubxjaIrmsmLuywgD9t68CWOJ3OJMQxse2vkUQm9SlPTkAxVuAZdiC9TSP/04YOIrnsuQ+NCY11rRcun+299Q3CxeW3rXcQ1tcZc/rerCuZkHL/8Lf9BspUe54JCRN92Z/ImNf+AM9/3zjMDnyNXKwF1KzfuQ9od3wEbwPP5+hgxCFD2u3S6z2eB+22cB1ctjweINIyMctz2bLJbU4dqIf7ie/Axryb/02y8E4/Nwcdc5/nOS/rj4kYX2uyye+tzWNZv/I8XdON2rUuM0TT//yf//NJuVtppZVWvkqY24zL/Fnme/JcxTyYuS2+4/+8e5GxBNd6TuUzl8u8hYN9xnwOmPE5icQEYFglDJdD8pMJcnNBEOrgQ59p9vDwUJKtsJOuu5NDjHMyqU3AjBU52ElWbu/3hzN6zUc5qGObEBGFqKetbm9vY7VaNYJuvJsy5cAXK3ngiLiegI55tv1+X7ZiNKflMvscJtrFfGdti3RwobF2TkAikFLjnCwObjrYa3/HK94ciELwI3i3sYu5cZePPsxbI1Ju40v3DYlJtBX94kQsc/Hwju53Y0xjRe8K53HnZ/oZ6KBxbq43+MzziH0W+HvuJ/g0nU5ju93G5eVl0evcZxEHnpct+FlQ8vDwEMvlMlarVVn0guT5wL6YF5lQZnCv+465o9PpFK6d9tlut41YgQOQ9C0723U6nXLGGSveuKZWVtrOgUy3gz/Lvg/3O5jIODfPjeSYjbGty5bLV5vPvk35zgbPTGb77zxheKWNByH3ZbEBNhHCMxwcsUPMhG/DwlaNueNdvk6n01g+fH9/H8vlMtbrdTGks9msLMkkosxEkbePRMGpu+vp7I5ManjpNw4iBtGDJuKQHYpTz/+8dzAYlGWg3Ev7dDqdmE6n8eGHH5Z35OXWFt7v1VGZILFBy8QDE3Aty7cmvt+Emg1KBlP87yCP+8KHPkIauF7O0PX72XvZAUhfY2DD5y9evIj1el0CTw6U0Tect4K+0vbb7Ta22230er0GsUfd0AEmad59rP2Z0FmNdnNzE2dnZ0U/0F1n8DA+hsNhzOfzRkDNBhvQRD/l7G8bdOqCZCIp/3a/5p9WWmmllVaOi+fX7DRGfHXg7Ks+z38b+/kdOTM4B1MimqRHRDNTOQNzB1GMh2rlMolj3MR2GpvNprQPK9Gurq5iuVwWR8wHZtuppa44RTh/eYvpvH89ZcFhdaAlt6PrQjuCU/KqI9okr9jjfwIgxj+ccwtB4zasBcBMDDiQkQM17jOXoebYGVvlrHMTTZmM83v4zNgnO4K159au8/12/P0c4938HGMe3unyZ/LRZAUYz+/LYzHjT+uP9cikk8vA9jToEp8bw1KWvAKB+8fjcYN4soNtQsKkAPVm62/aCQxa8znQU88HxsDolv0vB9Vqc5yfk9uypgdfp/39N4SJdcxzW+7/Y3Ls/a200kor34bU5syMIb9q7mLug1NwsodtHX87CdvcYLYptmPYBfNRNU4xB/vm83m8fPmy8TnHlRjb8L7MGXkHArY/ZMWZzwrLK5eyzcoBReoKDp1OpyWYFxGNs3ZpE/NSBLbM/2XO6+7urvA25n3MkbnMDmZhV+GAer1eDAaD8nx4xrziyP2+3W7Le8EA2EqCcrS5cQR1pp8d1CHY4ICDMSD4wu1sPTEG4n8HF8w/52fDpWYcmO22g7E1MV6kHtTXfWH9pM15X8YaPNcBOX+ffTV0qIa3cyDEbeXyeHyja9bz7DPRr15h6KAYWxtyBq8XIngcWFdYAUb5JpNJCXQzXm9vb0vCIO91+7FrB89nO3+ugas31sbvA+9SLgLW3o4ePpYxMxqNYrlcNvwy64DHJHXNOlvTqYgo8wK+pnco8epGJHPc2c9Bn+w3WKwPPy/5zgfPaODs8B+LZOZrTQrwvycqOx81A+xORknu7u5iOBzG2dlZ4z04Vl76ymDgvtVqFev1urEn6d3dXQwGg6IcroeVyIrvFUARh0i0SQIGkVeZZRBD3W0siIjv980lqGQ9E+jgmohDhk+/349nz56Va0yG+FBLBoqzHTyxU36ekTOJPbFnQsbki693e+a2pQ4ZoDlAZd3IOmgjZH1zvTxp0R5M8nxv4GLDhOHd7/fx5/7cn4s3b96Uwy8BM1xnPUAH5vN5CTSt1+uSNeE6MvGv1+tSB2dE0Rc5A3a3e9xu9OOPP47hcBgffvhh/Oqv/mr0+/1G9hXlox2Hw2HZftKGxhO52xedcXaEP8vXWvcMNmuBszy/tNJKK620Uhc7jce++zpiLJLtu7/P9pzvvPIq4ul++MccAH/O3M/12Gfe4f+xrcaNyGg0ivF43Dj7gXOg2OaYlTKj0agQF5TJ5A2HtjsBxivIHCCzffPKGK8GMy608+kkKeoDZsXWm0iyzeV/8IeTdiIODp37y3Y7E2fUxVgh3+PrcvDS5cx6Yv3KzrbJjJou5ucZB1lHMtmR73Hgx5+5Tvl5/G9iwIlcJgaPjRPjZGNjP9ckl9vdzrVXY4Ed8Wvy99xjXIau8R472u53ksYoM+SFMfJgMGjsDgK5wA4KEG6WjL/xv9AbEzK5bUy+1BLtcr+7D61XuV/d7vnsuVx2vveY4P/8eSbEchvkv12e2jxr/WyllVZa+briOS7bucx3IZ7TMn+XuQc/w9vFOXE5k+x87vvzfJrr4DnXfMVkMokPP/ywcBk8g8QhB6iwZREHuwyR7+sInm02m7IqzG2Z65Nxsm0M3N10Oi1bh2Mveb/txGg0Krab4BO4FB6RlTQEEOCTHKxxcpjLZG4rk+zejtHtlHk7B0Ldp5nPYdWek2jM9ZjbYntxVubBg3r7S9oDQcfAgw7YWk8yTst4IWPSHNRCzO2ZS8u4vua/WNdzQDj7T+YyzS2zu1XEwU9AV7jeeA2Ol/d6JVPm9xz0rOFv4za3i6/fbDblHuNY14fEfQee8VXYYtWLJzgOx5wtY4PxxM5g1NOB3Fo/046MT2Nv42PqzCpF+g69dqLW/f19SVpEh82NZl/ZAULrGD6G9cd6QV9YD25ubsq7ajEY6mZ9IxjqeYE6WRd5xs8bg36ng2c1kjsPKjvwOQpuhciOdiZerCS8l2fSoayoiYg4Pz9vOJZMrFxL0InA2Xa7LYEzD0YmHvY1ZcLOwQD/9l6vdty8NSJ/s4poNpsVo0a7+VwvnrXf78s5W7e3tzEajcp2fDzX5wsw8fD7gw8+KOe/ZefYfZIzvV0f91+eOG1keI4nfhtr60Jux/y9JxnKykSVJ2A/iyBmHuQWjIJ1zRNIDhpxP/2MztFf9O2rV6/KZM+qMvqYianT6TQy1He7xxWTL1++jN1uV/SRe3gGY8NL6CmT9R6CbrVaxXK5jNPT0xIw+/Vf//VSNiZk+oiso+fPnzcygHmuyRWP89xvnsRzIK3WD/7cE3JLDLTSSiutfLXkYMT7vrOt828kf2YCOJMrNYcy/11LcqlJDq7Zuc3lMn7JgSSXm2Qf7N3p6WnJDnx4eGgcWh4RMZ1OC446PT2NyWTSwHR8Bz7MBJMTZpxlaced8mZnx0EbJ/HU8LZ/akSG+50kMJ9Pa1xnW2uHyu3qs6U4OySTZrzTOLIWuAIPUZaas3gskFcLImTiy6RQTuJBMsbIOKeGcU0guey15xlXHmsHv7e2es2fexz5e+N+O8jZP6Eey+WyEBH7/b4RXGVc5bFuQggfip07/E6cdPwmfED0JY9/sKzfa38PIVjt+0x60Q6ZzOTv/N6sSzzDc2Aug/uY/nSCnNss922WrMdfdU+NrPBnrbTSSivfVLKvbTzB9xH11biehzI3Y1viVQsmxHm+7bSfbaLaGM/lqvE/+/3jypCXL1+WZA/sNXwhnN52u431el22YsO2393dlaQqAmgPDw+x2WwKT0gyiRPgzcHA6XkFDXUaDodl9YrxhVcsGTfQbhFRVrHAIRHQyxwQyfnUn/YxhuCH1T4mzI2zeT//84yTk5PGUTG8m/JnnaB9wc+0I/aa4B/tNxqNSuABHA8Wybs4UO6so9Z1bPYx/bb9zrjB+Nn6bMxufXZbZDxirOJ7zP26PBlb5/50f4CfnITkseFVXHzuIBnvQFfpPwfX8uotxgzt6yAXdfaObJSl2+0W/ApvOR6PywIEr3q0XwhmtF8yGo0avhfjxQExguCMM/OnBNwiogS5jPWtRxnz8U7qy5i0znG+2Ww2i9lsFovF4gkWtu9mncwxDX+ey+a+yb6P/XTf77H/VX5K9itqPtm3Kd/p4NkxYjuTL3ZCa84Jf6PkDGIPSneyO5V7GQxnZ2dPnDAm/KyM+/0+1ut1LJfLuL6+jtVqFRHNVUQGAwwCnzOWnUpPBjYanU6nGGtPthiGHN31oIRcwHFkOSlLVZ09QeAmnwnX6/ViNpvF+fl5Y0VZNshuVxvO3CcZKOV+ygOM+hFoqgVKcptyf83wMdC5Pq98Y8JFN/wcGwD3H3pKHzDZ2ch44ufHJFjEowGZzWZxenoan3/+eZks2RPbmcEZHFIf3jOfz+PFixfx8PBQ9vF1uzmbgjFE3wNO1+t1yTy4u7uL5XIZP/7xj6Pb7cav//qvx3Q6jdVq1TAi1mkTZzzXkzttStlzsDFPyuhVLZCaxYRMnmdaaaWVVlqpS41gzd8dkxo+q5G0x0iWiHpCFGJ7eax8Jlfu7++LE5Pxim0EdiUHM8Bf4DhsmMkKthwxZn327Fmcn58XRyufa2EnxX/TZnZc7UzSNsYWmfzJmarUE3vqFebuL2eZ2gHGlvusUhzVWh/VMgxdt0w0UFY77tTJQRf6zE6528T6Y/yaJZfZ78rPoT7uJ+7J76dPjDVd19xPbqvsM5gcdBlr9TUhkt+Zg3h+Fm3o+9Bnr8JyoqGDWxBanBuGfpjAQd9oO64HJ3o7HPoXP8YBOoJpnjO4lvY2oVMjFTzG3VfWFWeyWw9zIMzjJq8YPCZZF6hDJle45qsIBeuE62I9ynrn5+d2aqWVVlr5JmKbfiwJxPNdjdBFMi8Q8TSRx3OZ7bJtgudC81S+LuMS339ychLPnz+P2WxWbA/kfkRzN6hOp1O29bZds63Enm02m7Ltt+2rsRzJIE4OQuD8nExPOcCY5necsG+MMxwOY7fbxfX1dYMz5FqfIWZ7bv7GONhYgqRvMAL22Su7SJwZDoeN418oH+80FhqNRgUr3N/fx2q1itvb2yeYjGAnyd+cVWxsiX6Zm6JPbBf9Y17WemmcQ9vXsEAORpgjRT8zxjPmNTalfXiHfQXz1x5v1nnq2+/3y3O8stPjhMCS7+GHd1MXB6qNYQn0OciZVxPSb16NSRlcP/rf2JKfzWYTu92u4MTlchm3t7cxHo9LoNlBQ1QIhHAAAQAASURBVPOlcOLWESdKooMus3eZY37gnt3usJ1o9kHcD7zHZck8c7fbbax2vb+/j9Fo1BjfOb5REwdKcxAYXTEuJTCZVw1mP6mGVT0urI/2w607P0+O9jsbPLPYsWdQMYnkrAIrRh7g2VHK39cmRgYcEeTvf//78fr161iv1w1F4Zm73eN2dLe3t7FYLOL6+jqurq4aB2hS/hzAu7+/j/V6Hd3u4WD4iAN54yXRTGQ8g0FvY5zBgidmO34uA88gO9pthePriDDZpKxm8v7EGcAwqdHWuf39uQ1NjXzJK878+xgJgJhkMjhjsB9zUD3BZcefvw1ucmDPfek682zrE23oABufOVv95cuXJXg1HA5jMpnEYDCI1WpVdI6snUzsoNeUYT6fx/Pnz+P+/vFcPsYCOut9qCEtCLjlPnh4eIhPPvkktttt/NZv/VaMx+OypJrr6EMINv+fCQnrS+6fHDizDtSCYozzTBz+PCfmVlpppZXvung+/qr5sxYkyN/l+TqDdMSBD/7Pn/t5tUCC76ll1uVV586WzHgKbANuMlaFLGD1GLjJzzU5wg8BBGwV73G7uK7Uw44GzpnbCXvqDM6IgwOMOIDA/97fHlyWMYLPXXUimINt7qsafqJutCPlNu4zMZXxVH6PA3zciwNrXTHWcDCxphcRzeAk3zuQZ/0xiYRuWBdNMFl4jvGRy2UdyPjI78vEZW4v2rMWiHSb5OQ+B5KyYw3ZwXfoIyQZuNY6Rrsa37MtDvfZwYdMoJzeEor7je/4P49n9yu4uEaURRy2oKzNVX43+uD+tm9WC05n34lyeLuijIGz1K6pvSdfm+foVlpppZWfhdSwnwlyf5eDaIjtJP874QFe0AkVPMd2lnudyB4RDfuWcUkuy3A4jOfPn0dElEASdgbs4+CRk47z2UYEkdh2GJxl3Mn/2BRjTDAlK90IWuQAHYEzB1RGo1FjxyDKyU5ZOUELW3Ssj8GRXM/fw+GwrFyjvVitg133OygXq8FoS+NhE+8ug5N3wKvgBgfoOp1O2aqx0+k0VrcZE+XdkbIew2Fl3rKG081vZkzqAFPGye63vADD/ZF1lTb1ltPwuR5L9kdYpdXv9wuOMzcXcThvzytAqQ9H/VB+JyqafzSO87WU2zrMs8GBi8Wi6AOBVrbzZkGDfQy3r59JQBvfbTweN8rvALEDVjzLu7KZT2ZHBOst7c/KRwfVRqNRaSPzzLyb/qMutOlutyuLFzabTWPBw3K5jMFgUOIR9oU9//Auc87okn3Obrfb8CepK2XJO3PkZ3m8ZIxrcb/ZD/95YtLvdPAsBxRyFDQT5r4Pyc6NB1R2GvLEZCedIESv14vxeFy25nFnQoLc3d3FYrGIV69elah2RHO/fISBgILZEcyBKgY0Pziidkp5f3bwcz2ckcI9TP6eIHmnDUHEYUVSv9+P2WwWz58/L6vemHScjcAkOx6PGwHPHATzu7PRcL/ZKNnJzyScnVh0gMkzG8msB8d0igmcehjQOTBng+rtHW1ohsNhmYzQE+9JnbMS3CYRh2W/b9++bZxVwmpD3kVmAG1iw0ibn56exnA4jP1+XyZc78Ptcbbb7eLq6qoxMTrA1+0eznm5v7+Pv/7X/3pMp9MybgBOgEQO0yQrpCaZqPP/mfRzO+c5xNfVQHErrbTSSis/udTm1Bp58nXuN+CPaG5Lk1e02+aZ/ECMI7jW9yDGJHYandhhrIKT4WCKsRz2lmsJNJmIgGAgyGbcWMO6XqljZ8Rb6GC3TeBn4r/T6ZRMxdwe1BHCx846OJN+ALPwDjAEZBD42dg7JzHlLHG3b3aEuS9jOPcRumIsbf3yLgvZMTNucHnsG5gM4XPagu+NPVx3P8Oki/2OvAq/9tysFxkDI66jMZN3kcikWMa9XN/tPibs+RBzdJjyoX8kAqIblNFZvugCuupkO5eNd+GTOIsZgYSs4Tu3cY0osD8InqXO3r4JX859k/2STNIi6JvbzddZL+gDxm+uK/X7usRCvo57v2o+/jrXtNJKK628T2yXPJ/V5qSIp8kqfAbXFfF01T022HaY67J9NddkYt3BFcqEcN2LFy9iMBg0OBKe2ev1GmfW3t7elq0YV6tVLBaLgrngSODLhsNhOe7CCU7m/LgWbAPhT7lZHeNgEzbMAQu30cnJSWw2m5J0vV6vy6ot2yI4PoIN4EKe6QAk29Q5yYmEJdqZwBVl2e/3JRHcmMm8rwMHrCACU/C57S94Oq+cYmUOeMZBOZP35lCNIcwVYtN9Lpj5Sidq5e+oG9yfV9wY+xm3uE+ccGWMZYyR/Rvf40BOTg60H+CtDx1EyxguC3jMfgC67O3is45Yr7zSDB30PGGO1dwvbcSzOZvQnCZlYntU407vlmB/k/nEC13oP8alxy1l7fV6hQfFDyR4R8CN66wf8MkOrNHH1B/OdjweF39vvV6XhTzuf/rOvphxJvqSdZ+/6R/67eTkpATx7Ed4DqVMFvs0+bPsK/085TsdPDPxbUfIHVALkNQcSU+GfJ7JdwwnkXc75UyINzc3jeAV5WCw39zcxMXFRXz55ZexXq8bkeIcBPIAzk4QAZebm5uydynZJNQb59RGlLLyPsrppbHc6/J7EqJ87AHMpMeqMjuUp6en5Ywzt30GR0yIdhCdseD3W9wH9HW+Jt/rQej2zY5nXhLsZ6M3/u2JKj+DSbO2Is4GBWNsp96TFu9g6yd03YQWkzwT1MnJSUyn01iv17Ferxt6HhEN8ML93AfRNhgMot/vl0wjkxsRUbYSQG+Y/E3MGSA5UPf5559Hp9OJv/k3/2Z0u91Yr9cFINDuDw8PJRCYt46s9bX/z/1aM54WT/wGfC050EorrbTyfvk6ROo3nUszAZzJlJrkYIOvt9NtbFWrRwbodiZMLCBO0vEWM9gQr2qmPBwKbTKDZ0VEw4aC0Uy6Oxhn58Z4hP8JvlFv/gdbgFV4NrgyJy+ZZLJj6oQbO5eInTuTD3nFWkSUTGmvPuIZxoiULZNa2e7jpIOzfb+TmhwczDghZ6O7rbMe5f/tXOZACljFBEwODvI39xnfZ18n+wv8GN+4D6mb2w0dhqTLOpcxMXXkGrAoZSMYGRHlbAgwpoNdEdEgOO3XOMhqvTVBavGuBfg2q9XqyQo6+2EmhHI/cW0mAfDXPD/QbplcrW2NaRKupkPuL3/mMcu9x36+DmY+9t37rmuxcSuttPKTiuf4zLH4p3Yf1xqP2X6CQ/L86PsdEANnmaOKOCQ7m8fAZkD2Y48Gg0GMx+NGMIu5vdvtli3gOp1O46wwtk28ubkpWwpCnnu1jHkir1iLOCS0k2zV7/dLAGmz2RQO00Em7jPum06nZRchdipiRy3zidSN3YYmk0kh6nNCFEky2Fzbd3NPZ2dnjaQQErDAD2y/6Guw//CIDmhkXMDxId7xCz1AR0ajUQk6GnuBG4xpjRnQRYKRWV+9a5fxk89JpW2sMw5w+n1ewZcTs6yjHgNOHjIG8n2UnTLkYDP401vymec1f2y+0dvOk+SUA4Hm5XNA189FvKqP5+ad1tATJ/m5DSlnv9+P4XAY9/f3hcO2v8W5gyT1TyaTUgYHNTebTQyHw1JGEgbhzFldxnc8l5Vzo9GotAOBdOYg96X1jvqyHfputytzgQNwLILYbrexXC4b5551Os2zm42x+cxYF/1jziVwzrjlPsawkzDti1EXz/t57naZKCufZd35tuU7HzyzAmUDmw1y7VoHPTzRZwNpR4UBZSPCcmoG73A4LNvQ8dztdhtffPFFvH37tnGmWMQh25AB4ICZHVuc/eFwGOPxuOyfSrmYEJnoHBhBaSOiQbTYsdxut6U98kozjCP1ZyKIiMbKtIhH0oOVSp5kGTR2wClDr9crRI4nzBqBBemTs5bdbh74mfzy4LNj6f6gfL7eZUGc0WQj7Pe7XIh1y8IWoBjqTFYAfsga4G8bACZg7kdH6XeyMvb7wwo2b5VDXSH1bEjRDbKbTk5O4uXLl3F3dxeXl5fx5s2bUg7XlbZyUJR2e/XqVfzxH/9x/PZv/3YxLKxCvL29LXpG5r3HrwOu7gf3fU0yeVqbO46B9lZaaaWVVp7KMZIjExh5vvVcnKVGfvj6bOftLNvGYof9vVei8XzICezbMSLahEsOLvG5tw3P9t/BC+qBk5fJcmMlPwcbDw7IeMkEi6/JRD2YxVuBZLwDlvN9Lgs4DBKDpDHqazzHddTf7UU9yWx2oIsAoJPMTFj4ffSL9ct9C7Zzn+Wy5rq+Dw9YF60Xbic7oYizoV2PGoHnfsnBuBzs4TswdS04Q1nAevY5HExC3OauV84mNWHGNRAHXENdrfv0K2edOADFNk0OsPG52wtSD3ISwm232xXCzGPFq72yX2ndd1+5rtQRXIzkHTzc/8f6wfpRI7Zq9x3rV/9vPbK4jrX/s7zvu1ZaaaWVn1SYKz0H5ySNPIfV/HTPtU5YxiblwIRtnoMRfj6Cvch2wvgRLsU8H9+fnp7GbDZrrDrbbrdlVRdbFjopGsk2y8k9lLff78doNCo7PblObFvHu+EHzS3B252ensbNzU0sl8u4vr5uvAssyQ94kjZxwpT5RPcZHB/BQbfTeDyO8Xgc19fX5d2dzmHlGPeyggb8AjYiUBERjeAlwaf7+/tYLBal/HBctn3Pnj0rbVjj+JxkZQ7K2MRYzc8GZ1s/jfHhax2Ypfw1rJo5zJzUZN7N269zrRPvbd/zGHH/UUfuISjoa+ElaZusr07wR6eMlzNW5FmMX56Rk5Z4BkFn9wFlGgwGpU2NPzudTtmqcbvdNnjl9XpdVojSTqvVqoy77CPS1pSLoPp2u43FYlHqAj6kPp6fWDlqncPnc9JhxqWMEdfbCWGdTqfMN8bd5n8z/nWfUB7a2mMg+wjcz9jjf+uS9d/PY/yZB6d+ed6o4dtvS34hgmcMhkx4oyy5U9yhDm5kBzR3vJXLisX2JEwOBJnG43GJ9K7X6/iTP/mTePv2bRkwHizUwSQQysGAIcrNuVX7/eEQUgw2kW4MDMtMXS8GpgcCEwgBFwZ7v98vA8zEgI1tp9Np7F9LGZhYGQD0mQkAE1nZuByLJDsruObI2Wk38XPMSaRtfE8m2ZgIDVwimocemuigjO5L2ov+xKhbJ2sTmHWUfuZaZ0Jst9uiD5SBfXIJdD48PMTV1VWjvBFR+s/BV/rQWQysWjQwpF4nJycxm81KeZfLZbmH60xEokM8+7PPPovT09P4y3/5L0e32y06bgIFHd9utw3DauIyk1uZhMx1t5jEc/vbYLTSSiuttFKXbK+RTEAc+z7fX3ue8Zfvw9HJ9t9OpRNB8ooxr2KyU5mxoIkd2xyD9+w4s8KG68Ba+/2+kCjgA2yqt9+h3mDGTC4heYugiAO+My6mPXAgKbNJgE6n08CYbk+3O44juK1G1HMd2JfnO3BkjEpiGvX2tjH0Bw6kHS3wlvuVa/OKJa7lMzuCDlLW8AJlyESF7/Hvmv5Yv+yDGBPne3IwzkErY9CsG+A4t0EW2tGJWLzffoNJJ/tZ+VraxYRNDqg6gx7d3e/35ZxetxvvpO2sC3nrHHTd9Y6IRuYv7ePxwbuMKU3+UO48JjOxwHNywDOPoUx+8sxMGvsa6xTlz+912fJ9eZ7KUnvPMTk237fSSiut/CRSI1L9XUR9dXm20w5G8OMVzg4Y5eeDeVgdg+SAgudXyknQBRtjPu3Zs2eFnIeIZ/UZNtBcCbbH3KbLZ17IQTMHi2gLk/RgUMpmHvXm5iYuLy9LuSiLA1HYLewpdSfhyStMeIdtMn1nrA1vyfNZvcfz3Xf9fj8mk0njyJHMz93d3cVms2msnGdVDOUwn0tdP/zww3IuL23ngKD9DHQmJycZy9K+lMEBYvg6B/CsV+akwNm0rXlvdMWBMCff0C70oYO5YG2XJY8p19VBL56dfTEHfo3xwKcOLj48NI+JMf7MwZqMpfAVmDMcYN7tdo1tEb3tpflr3uXEQuuRA3QEoNlpi4UJ1CuPR7/r9vY21ut1iREQL9jtdmVHLffDbveYKDgcDov+eyXlfr9v8L557mNFqxdNsFMdC28oq32HHCiv+To5ZpLbMusDcykr4GrvQqxrtgOI7YHns/zeb1O+88EzT0ImE/g+//A5YsNrRzEbw0wmEAlm4OTD1ff7fQlybTab+Oijj+LNmzdl0vPyW96TJzACVv1+P6bTaczn85J1SbaKjQUKzMGgOLgmBHzmBEvCeScBFK9wc31cRiZcGzwm9YgoW1e6fkwUNgp5wmcy9FJpkxg5w5Jr89ZAfqcDUm4n972ze7KDy7Mgu/zsrI/5GQ6YeWIHPNCGJpQsnkToAwBJv9+P8XhcDCIGk8kUMIC+dDqPGRVkOJHFC0nHxEw/oi9kefN8JkCXiSwKMisI9l5eXjaWJ0NwOWOF9u90OvHpp5/GYDCIv/bX/loBIzmjnNVnNvCMT9rXfeB2zJO7sxlqRNmxybuVVlpppZWnkp2tr3N9xNNteo59xuc5iMOzbCON3yKaGcnepqZ2Xc32+gcnz9gwtwHPBPv4kGgceXCY63mMoHEAgx8+w8HDDpLcwt/+n2f7WZTVWzBS71pbZ9sN/sqBMTvabitWBNn5hECgfbxCzD+5v90e7ksHJ3JwjPsdSMsJOSZ//IxMytlZd/vk59WcfuMY6zbXO7HOJAFiYsLtUpPc17n8YDwHifI42u8PSXbe4pNdI+xzWC/AvLzDpJ2DWBBY9k9M9JmIsx7aiTe5sN/vi+7jP43H4+h2u2Ubq9xn1iP7HPw4IzaPi9ze4HP0pxaIy0lb1l3ew/2eX+1X5PGRx4rrWPs7t2WtLvka+3GttNJKKz+JmGfht+2gr4mIJ3Mcc1HGbRGHJKnMleVn1FZKeJWz3+MyeJ7mNyukIg6rX05OTgo3FxHlrKHFYhEXFxex3W4bW8XBvzDne2cgkuojDtsSw+eYdwJLZQ6DdqCtwWDgUZKTCVJxv4/joL45MdzvoZzYCCf9O4Dj3+DE9XodJycn5R7exY5b4/E4hsNhCUQSKMAmw4+6XwlSbLfbBo6LiMIpDQaDwrU6mJX73H6DV6DBidp200feNammU/mZtImxXQ0Huq9qfWz9zryzfQCSoSzGKb7Hn7kM/O1FDpQBnJ/FgbyMTzMHd8xPzO8wp2t/hPIxpvw/QSj3nTEXWHY0GsXt7W0sFovS7owZnnl3d1e4WIJfXNPpHM4uZIVbLgvt4TJEHFaU4aexMILyc64ZgXvagvkhIsrWlMj7MGzNR8j642cwNxiDGyebg7c4qbOGQ/nbvoPthMv685DvdPAs4ukybwYqkwCGxtvPeeDRITXjkoNpJtzJVuEwSd5Dx7J14+npafyv//W/4uLi4onD7e09IpoBtE6nU/Yc5h125iAdMEAENGyovO2ild177mIYbYwjmqvG2CM14pBxQZlOTh73ODYoIFjCNd6jNRM/dhydbezBmp1bvo+Icu5WHkgZ5Oz3+4ZhyRnlORDmDAc70pkccfndP4AJson8LgO9PGFxTQ6i+R3UEYPKykcycDiklmvyeQjD4TDevXsX19fXZU9nspUAUW736XQaEYfsCxsa6kLWhOX8/Dz6/X5cXFzEYrFotBnPdsAT4Pjpp5/Gr//6r8d0Om2MEesJgKoWxMzkWv6MMVLrc+um55ZWWmmllVa+WmzrEGypr6lJbe4+9g7/7f+z82kbkAMlxghgiFpZTExzn52z911P3e/v70umLIS+97LPARHXD2wJ9sQxwz55BRBEAs91ljA203WhvLznWCKPy4NzBKbCduPoQXRERIPAcf1qgZnBYFCIJ+OmmkNkEqH23uycWRcy4e+/M7GWMZ6JBjuFWe/tSOb34BQ7S9YYM2d45jrUnNncp5nYyJ85+JE/d3kpm1f+ZWLNu1zkVWm0gckBf25fyNuLepzQnw6g5RWSuY2t8x73+BBgyLz7Q9a17OjXyC+uywHM3E+1Z9CWtSBqDuChi36eM9qPEQf2YY7V831zdv4uj8ufF2HRSiut/OJJxnrZBvnz2lzzvs9sa7BTGbtFRAM75BU9tUQpJ2lkTEjgy0T8YDAonN5qtYrNZhPr9TqWy2XZPcjcBMEg7CF2i7oRjIP/Ar9hgzJ/2ek0d4giGAB3eXV1FTc3N4U3NFaJOBwn4rbyam8nbMHLQeabU6IfHKCAy7y7uyvnmRFYAAsQLON+96EDAU52oY7Yv5ubm0bwjDZnGz6CCgTOXDfjcNtvEuKw/8Y1xlWUA13yjmDonPU2Y9UctEDAYeiquU0HdcwbOvDqceJnuj3Bu5TTvJ2DcpSXYI25UPreuCHvHmDMm/lSY2XuMfaxn0MfeKUefYC+U3YWmhAY5hl+h5PsadfJZFL8sPv7+8b2h4zNiMdtHUejUdk5zjpJQJwgPdgaPfJ4p57mYbNecG1e1WYf8fb2NjabTVnc44AtfUX9zdln7vvY59Zdx0bsn1Hu2r35Gf6+Vs7sw/+85DsfPMuBMHeIie/s7KAUjsIj2XHOpMputyurz1BSFJUOJXD20UcfleAdiuPBm50jDNJ4PI7pdFqcJQZBPuPLZeLah4eHct4ayktdaQveh6Fk8JpE2u/3xajzezqdxng8jtVqVQYyAzs74RhNSBYcVQdzmGj58blplDVPoryHiYfvHFzh2Q4C2Zk2EcC9DsrlCckTah60nmT4sZOeI/M1J/V9Qbm8CpD/yWbyKjb0g2Dxer2uOuXz+Tw++eSTkuXb6/ViNpvFfD4v73bfuY8p13A4jIeHh0aGz3a7LYbD2SSz2SwuLy8bAMykhuvd6TyegTaZTGI2m5X6mSwDsNjYGiA4Y9zEBHMC4yRP4PmaNoDWSiuttPL1Jdtrf267WptTsxOQydtjyRC+JwdbjEtyICI7uL7HW97YGYZM4H8HVIwVwRS73a5s/YNNdVKLD1DnvowfsO04aWTuQtBkh5Ay5yBRDmAZC9awrjF1ds7BGd6Sz23gwJH35Sc72BgBR9U7Fpi0cJ+7P/MODuCUjLXoqxpJ589ogxyE8mqsmt5aB9CVHACDbMuEAfcaazjo4nfWgjboSsZAfrZX8PFZJihqQR5v15l1qDZW8U3A2BBq1hH624Fd+03eMYN78lak+FTe4srEpeti38j3k5i42+1isVg0SBh++37X16SpsSRt5gzzY0SwCdiM0U0+5LmB710/+y/Wef/Q58cI6NyXxzDv++5tpZVWWvmmYj6I3zWbV8Nv/h3RJN75nzkv71DkudAYz/bRNpLPMmbge+ZikomNJ2azWZycnMTV1VWs1+tCYnuFSOYnzCnyP/hhPB6Xspg/BF86Ub3TeUya7nQ6JUAGV0Ugj92J4JAoO8/v9/txdnYWm82m2ESeae4LDEIAzIE62oktEW0DSb45PT0tK7/AyRGP2ADMaJ6ScpKYxjaYxj4EKllpDu5mtbyP2jk7OyvBDgJFOVjFb95N39B/Pn+N9gPf0odwdA7K0le22WBJc168x4HOjBloH8pHnxtv8BxjJz53uSIOWNDBNAetXI6sPxmP53r6WgeN7Nd4RwMH//CjMkdLOfHZaG/wpbGUg33mtM2Fk+xIWVlUcH19XQKU6D66hk7R/jyH+cDYzucPOkAJ7x9x2IbUfZfbkWexmILv0FH7i4zfPBda7/jfmDNjyMyj2jc2jqYdWPBh/TM2r/nx6LX13PO/fZyfh/zCBM/sMJvgzwY4K0MtSJKdUv9Nhz08PDSyHWxkWI316aefxtu3b0uwotPpNCLUdDgDudN5zLw9OztrDJxut9vI5Ig4bCPI/ZTBg4TrKNfNzU0hL3i2nS5WK5mkYRJi4sJAYXgwTDjItSWm7Fvs9mXCdXayDYGzct3GGchkYsd6Qb9l59XPNXGUr8vEk9+RHVpP2FzLNXZc/cxMkkA40N8uKxOPJxVn8zDh9Hq9srIQgAUI8VaL+/0+Xrx4EW/fvi2ZE4vFogS/mNCm02kJBJO1tN8ftoM0KeLgpYmvXq8X8/k8Tk9P4+3bt08ymNwu3W435vN5LJfL+OKLL2I2mxUyzcYTvdpsNo1Jnva2ZIIof5aziv13bY5opZVWWmnl/VIDsTV7mufcHDD4Ksl22zgtoklu1DCdnccMzLnWjnomW/w+bLWfd3LyeBbocDgsdszbg5iIN0ETcXCWsNEE9SAIeJ6TscjYdZlcZieF2GkHB3rFF7YRfOGVP9hFZ3LbCXYwCEebpBy2GqFcvNtJLzzPxBD1dbuDIRzg4t6sQ1xbaxsHRa03WUdcJnAsz3Gww/XLOuOyZPyanVbfn8kYrnN2fa3+dqwz5vQ9OVDkfnZZfb8JEuN/CAD7C+iWMbjHgDEe2JIkOeuTsTXv4TkQcxAi+A15O1IIs+l0Gvv9PpbL5RPCkXbEZ0IHvVrN4+FYopUJL+tPzT/JpAD97jFkXWDs5+fUfiNZr2rl5TpfU5uvW2mllVZ+WjFvF9EkbDMWi2jyc5nDq61AcOKTMQX3G4fxfBO+2BAwlud8no/A02EvWM3EKjMIcRPIPMvnilE//u52H3d98op/VqiBgfx+7AWJTvA4nL20XC7LvdTHwZC8in8ymZRVYhlrmY80HzWdTgv3eHJyUnjG3Nbj8TjOz8/j/Pw8JpNJ4dTgeLCbTurmTCn0gl2XCIrRJzc3N/Hu3bvGyjp4M3RnOBzGfD6P8XhcdmKijBkH5SBu7iPv4GB95HsHz44FJXIwzbgBTEJbeicmY2/uhU90v+XnUb7MjWYfgOfSdhkTepcJdCCiiYfxN2gL6wzvBO/4naenp41kq4xTvOquFmxzoBWuFH0HL/I8B2Os6zzX+rBcLhu7b9Hv9A98aKfTaRy3RLJgDsiiQ8bjeTtVf+ezAOkTxgf97OAkz3PCWPY5zNlbH2s/1jUS0zy2/Fzq7pWJ/jy3t+81Fnf/U3fbhG9bfmGCZ/lvEwR5gNvgfRVBnokW/kZZeReDnYDFarWKTz75pHEWGqvPhsNhMY5MnvP5vBAsEU8ntsFgULIkWXZsycBjt9vFer2OiGgEpbzXMMYDQoaykIHiIFu3e8gyYZWSJzCIFiYEbxnpA+cjDtsz5j4EBOSDFmkDt4sJhzx4mSBwlvmbZ+RMTxsOfh8j8VweEzF5C07uy0RJdrYd3KxNHu4bk10I4ML181JtZ5+YVDMJcHFxUepzdXVV2h7ibrlcxmQyiclkEvP5PEajUdzc3MRmsylbdVr/rKO8B/3/wQ9+EBcXF3F9fd0wAhjK8Xgcp6encXt7GxcXF/Hu3bv43ve+18guoV8nk0lcXl422vFYn3ke8LhzsNP9m+eLVlpppZVWvrkcI2oziZ+vsUPp5/h7Pje4Nvl87Fon4tSIYpcJIj7i6fY82bHweynL2dlZTCaTgqkgvGvOXkSURKe7u7tyuDSkCg4PYhyUE5JyezkwwL121uzwufwOyIHxfHA1RA1ipw+SCbLHJI5JCGNNMIOxk7chIUEtkws1yVjqGOlhbGbH3+1oEoW28qr8XOb8jFwvZ1vWMKZ10P5KLXgCxskrmBAwYA4cZp3lWhMD4MRMRNSwlnG6tzAkqOXsZQLCfgZjxEmF3g4U8oQkQHQCcijiUZfYtYM6uLzZXzk9PS1bhK/X6wbuq+kDwvjFX8pEZ5bcl7RTDYPmd0LAmJAwHq7Vj2vy3FQr27HyZl+IazPWbjFyK6208tNKLUDh+Zj5ElvqecfBizxHOgDB/Aqh7WQfbKMDMjXMUONzXF5IeQcUrq+vG7voeFVVTkxxvUyyO5GEd0RE4UxIOHGZKCcYgLOaIPEps9/H/zyf51I2r3I2HgGXeYWft3DmbCcHUuCmqCO2Hbs2Go2K/WdLb3Y3cuDBiSvGnqzwA0+AL8Di9M90Oi3voh1oa8pqbAQOsR3kf5P5vIt+zPjLfKy5QSfgZYxPWfw792G+P+/q5XcS8Mj8phPzfB/9Zuxhrpf7KQfvcCCHgGvmSPEVjNv5cZ+5fDmg5/rTBuBj2sm8OAFX+jwnp1m3naRHEI7yUX90D968233cOeTq6qrRB/P5vCxCiYiS+OW5AH/QixE8z3EvZcYvo336/X5ZRME1rArN+mU9q/kk9rfMn+Yx6LnWOmm/gKQ6+5X+4R6ebwyaMbT17Jgv+LOW73zwLOIpOc7fDCoHWyKa2X01x8hKk8mdiMfOggyx8cER63a78emnnz5xMLhvsViUz4fDYUyn07IXciZ2mExcJwyTSQsDADvTeaLvdrslazk7oQASViq5fjlTeDqdRqfTaTibm80mer1eiXYzgHNWTMRhpZknAR9qDzFBBghltbHjOvcn4s8MxNyHvtbl4F1+fjZcmZAxuLOuWffcB9nxZOIleybrq5dZexJ1HSCBvNLMRsw6RdCLSYelxwQCTdIRRLu+vo7r6+tylhnZM+icy219zYHGFy9exGAwiIuLi0Z7sC0AE+nNzU28efMmnj17VkANutrpdMre2GwhapCTf7tM9AtEXAaQNaPdSiuttNLKN5eMnyLev/LhGBFbew4YzoRLjeSuvSs7m+97H/io5izb/kc0A2lnZ2clIQRHIW8Zwj1k5a7X61iv1yWrGBtlJ9EJQNlJwTmxPbRTmdskY1zKamxjQoDMXBzKWsYogQ4IESfrZOzF/XbYvQoOh8ttfCzAlAk3vyeTDb4Wp96BFnCInUEcxhqutgNpki6ieYYd7+R9tSCNHdoa5nT/ZsyZdQLdcVDHOztYn13fTCLRTsZQbn/fax1lTHp1HAHp/f6QUYueutxOPvRY9zu92wIk4nK5LNs80UbsgOE2h4jt9/sxnU6rZ/e6zYw/KSPl9s4Ttfsz5vf9fJ/Jq4w9c18zXjKRa3Ef18pVk2P31O79eZEVrbTSyi+2eF43qZ4JduM88xpIjYT1lsLGi55nzeHYDpuYRjKvwmf7/b6Q8aPRKCKiBLbM44DtchK77ax5MK8C845ExgERB6yXz3a7vb2Nd+/elW0X4ZwiogTlsv1y8ARMljlTr4Izr5iTuMCLHHfj9jb5vd/vyxlkg8EgZrNZ6RO2Puceb2NJm7CzAfWD12KFuctPIGc0GpWtIrHz4E4HVClvxNMzyuBv4TxdZ+PhfHRJPi7GmM51o6weB/gkDnxRJvTb+u4keq4zFuLZ1mX63LxozX/DH7Je0qfma83F5WRC+g2dcoKTxwc+hlfHeSyac+b5blvjKHQSLtOBXhK3CBTiJ8CP0g8EvRaLRWw2m4afwDaL9CP3MA7hYq13bl98KPhhyo9+mhun79ALB4kfHh5KPTnbj/mJ4J4DpT4ywPphHcvvdR9kztW6xfd5hVpe1OJxUpt7arzCzwuP/sIFz7LT7MFgx742MeSO9WRhA83KqNvb2zKYiNzPZrP44osvYrFYNAyvpd/vx3q9juFwGC9evHgSiIuIEhnmEMPtdhubzaYYubw1D5NzRJRgAvXAkLOqi8nEq5VoK+rqJbnUF2eUDM3nz5+XYMvV1VVsNpvo9/sxm81iMpk0nEmfSeBJLE/aJqMgUWh3rsmBMYTJxJkBfJ+XEmen1bpjwMXkcGxQeuK3U5710uV0m/BuB8WyHlIP66h1ysaWyctBR8qfDR+EwYcfflj+d9a7DREGerFYxLt372I8Hpcz0giEUifeMRqNioG0jnW73Xj+/HmcnJzEcrksdTo7O2tc0+k8Bmevrq5KhgcE5N3dXYzH4xiPx7FcLp+0l9uaMQ8Z6eAx7/MkTTsfI0NaaaWVVlp5v9SAbe2z2m//XbPXxwCySWTEmcoEwexQ2om2OGAUEY1tPfg+J+jYIZvP5zGfzxuraMCD2DEcme12Ww5sZ7UZ9sflM3518MM41OWKOBwK7oCP8Z2Jh4in50tRdzIvwaAOfGVHCYcSfNDr9RqBCbYzodw8nzI6s7nT6ZTgCGVBvM2KA0Y5c5JrMqFGWY0vwY9uM653m/CZ32Vdzbrs59nppOwm13xfDhghJtgoO5KDs3xG/Wt4l+vBtHlrQt6Zx6N3oDDOpJ1ykM5lw7/AUec8P84mwak3ds9EkRPzdrtd4/wJtkhlpwyfPc319OloNIrxeFzILZO2Jpxy/3hcUR6Tmu7/PN58TW1eO/Z+60WNUKiRx8ekFmyrfW+iLf+u3ddKK6208k3EcynzVw3Tca3vqa0iY653ECLiaYKKcU6eO32N5zhzbL4O+wkfZiLehD72iXncyf7YUbZoBI/lI1eoixNTwK0Emu7v78sWjZy1xvtIgDbPaSKblVJeIc77+E2wwyvrCezQTk5OMt6q2Q/KDpfImVHwnmAFgmPg6Gx/SMbvdrsl8d/1I/jGynMnR0UctinkfQ7k2Ja77DyXfqSu3onLz/XOBZTPARD+Ri95J8/z5/5N/9EPBFCoo3k69CVjfmNOPs98pO+lbbPPYE7X2D0HGflstVrFer0uY5Y2p21pG3jJzFd6rGY+L7cpz/JcQHnZAhQszDaZOVjV7T4uiiEY3ul0YrVaFWzrLVTZ1YtnPjw8lO3CIx5XshGIi4jGKk2v0kNoY3SHdoLftF44XmE/eDKZxHg8jpubm1gsFqXt3dcO6qNbtGlexMGcYz8qL+ihr+1voaPWD89x/t9j2G1iv/fblu9c8KzWMCa67bjkQATX2uHJHenOtRG1gR2Px2XQ+vmTySTu7+/jzZs3jXea2GDA/+AHPygDlcl/t3vMRiHggNF0VJ0gnbdwpGwYOE8o3W63lJPAmd+Lo8ly6E6nU5avMkk76yXiEJBgwqJdttttKfNmsylbUPIsrzIykDGBYKLHxsLBTi9LpV7ODMrOHs+2UciBLmcde9KlzB64/E+/ItmhrZFqGGfe63agXq67AZHb2iCNicdlYvJnNaANm58f8biK8P7+Pl6/ft0gkUxYobsAwMvLyxiPxzGdTmMymZQl7+i3DYvHLpPw7e1tTKfTODk5iVevXhX9Y09qJuS7u7t4+/ZtPH/+vAA5DBpL9ymrJ3SMHeCqlvWfJRMheT5opZVWWmnl60km2WufZwI24njQrPYcrvc9NckkiR3fiGbWMs+pkdomSHiOnW7sNec34OSBzbBJOHKnp6exWq1iuVzGcrksZL+3cMz1xO4jOZDg8mK/qKuzlqmDk7Bwtk0i+Ts7lyYJcgDHhJWzP3EYffaISQOeF3HYLjOvPsL5J5jnutIGdrKM17ID6HMpjP9y4IN28v85oGWH3Xpn/Gf9c/9lzGpds05az7MjWnu2+93PtONae5c/gyQzwWBs7WtNYvK/CZ7aOQeuk4kuY2fwnTNpvS0U9UY388Ho6M/p6WlMJpPybAepSSYj8RGiJfuLxogZL1Ju6medrbVX1if/9nPoy4xdqaN1pNZ/+bvadVnHapK/P/bMVlpppZVvIplry7gLYb7Nq5dy4MtzccZvfqaxoTFitn+ZJM58iuf3brcb19fXhdfIK/+dcIP9IUkEQjwnnBN0cVkzXwL/Bea6ubmJy8vLBldpG0KZIfjNsWBLsZuUweX2ajTsMCtp4GfABPCNtE8O/hjLjEajQurTFgQDeR7tb7xK8s3d3V05OgRsNBgMCqkfEWXbypOTk5hMJuX59Hc+Hw+c7ACoz6az7uQgIe3qOqJHxq1OrKFuxo7GVzn53tdQ7tFo1OA2nfRm/YcrNjZ2QhLtzv85yOsyZx8J/Wa8GrfhH3lMeaUjf7OIxO3kbazdDmD62kIZymEsRbkJ+niMwy/u94ed1dbrdWlD+odxy6IXgmJOLmRcRkTRU97HPLVarWI6nZZg9Hg8juvr68Z8AM8N508Qlrbme2Neyufv8UWHw2Gcnp6W7SVPTk5is9k8OY/RuoWuO+5Cm/AO+oJgvRMX3Pb0RZ533Uf5nprPRBkpy7fN236ngmd/9+/+3fjH//gfNz67v7+PP/qjP4p/82/+TXzyySeN4AUda+cJBaLjc7ZxxNOVKP7ckzAkPnsRD4fD+PTTT2OxWDQmMzq+03mMyj5//jym02lERHEEJ5NJXF9fFwUkUsxg8eBYr9eNDILtdluCbh78TDLT6bQYlIiDQ82E7oxgT6q9Xq9s14hBxIDc3NyUFUG0szMMCP4hzoJgEouIxiCxUTchQtt58uF5Hmg1pz4HjrLT7j7yJGegkQkNt6HLiN75ugzUMnCJiEbwz3WqkYOeYGy0TVzc39+XrTMJZuZ3um3I8FmtVvHu3bvodDoFTJi0sDEiC2Oz2cRisYjRaBTn5+cF7JBpvt/vy1JsJmRPtP1+P773ve+V/2kDJvzdbheLxSKWy2U8f/68PIfxN51OS5CQcjlThICZV7/VJlXrn8mQb3sCbqWVVlr5RZJMxtY+PyY1m5e/zzghY62M6UyKmOB2uXAQs73mWq9As9Nvh5Pr2VHAB4I7gBIRhVR5/fp1vHv3rrHaxcEF188BtYgmTsWOY/+Ni5w1iONqUsZBJTvk7g9f761z7HTmzG7qDDFD2XLZTVLY8aJdnZ1NtmQOKmZnyg6z+4532w/I+pLJtpywVNND61btOmM7HMaMM7PkwEQmJUw22GHMzmPGsDw3B4wzNrSe8T1tTxtaf445uh5DJhzAe8aVTh4jAxcfZ7PZlHHCfSYK8zvzeOLvwWBQ/K+Hh4eyCpKkxMlkEldXVw0cWAti28fMfVbzBSiXx0CeH62DORjsMmTSzP5Cbe6t6dT7PqtJbV7P726llVZa+aZivOd5F0yWbaHFc1JtPgWjYJe8CsiEeu25JmRNzPN9Dmg4gYUdcabTaYOHYucm7zCALRwOh41dg+DtbC+xn2ChiAOGop7b7bbwJmwbl9vJJLzrk/kXc5LGTryPY0II1hAwM9kOx0fZSbL2+0mW6vf7MZlM4vz8/AmxnhOrjLEJQG42m5KMlndRyDtQwedSZ58FZU4OPcp4Mu/Qhd7lpKSc1O9AkPGM/7Zv4WQcfjtxjPHD4grew2qjHDDyOMs+TBbjRfOu5lPz4grj5vy9OVza1/UhsEMA1891G2Wu1MFH6xztZ/yNT2K+mHmB5Hv+9llo/X4/RqNR3NzcxHA4jPV6XXhOl927XFEHxiUBpfV6XeYe74SwWq3i5uam6DY87mAwKD/WsU6n01h5xxj1sUjot+dZ5hRvcck256PRqLFSlfaz/nhcZj2kT5y05/Z2ImIuk7Ez/ZhXKPKsYzpgf+fbku9U8OyHP/xh/J2/83fiX/7Lf1kaczqdxj/4B/8gfvd3fzd+93d/N9brdZnkcTgYiEwiGLrs3PA399ERnmzZYsQrWnq9Xtnu4+LiokEMMACZTJ49e1ZWZKHgm80m3r5923CW+I2BYUKkXjiSDG4GoRXJ9ep2uyVQ56wSEyEoNZMaQRUmBCL9rEjy/9vttpzf5m19cgaGMz94hr8j6OZ7mQwsfGfiJDufbkdfZ0LDf1s8EeX7PZEY6OX7PGF4ks565iwKX0u9bRQMSvgxKMC4RxyMk8GZy0NdMCRkORhssSrN+0bTT7wTfdhsNnF2dlZWiTnzfLVaNXTaBMT3vve92O/38fr16wYRQR3u7u7K9o4GURAp0+k0rq6uqgRCbnOk9hn9ZsLl256AW2mllVZ+kaRGpB4j/g22uS5f4+fa1tuG5aAEciwLjefkrTAybvDqJpeTsmKj+ZzkKM5X8nmyYARs6CeffFICZwQVjAOcnQw54LbMZTQuoFyUwW2bsZDbnHY2ye9dA0zkINQfMsOYz5h7Op2WvsJRg7hwX2W9wR57e5JM+mTHifIaQ1on8rMzeWA8l9vU9c7OYcZlxiTWa2PJY8EXt4XxWy5nJj9yf1JW1z8H62rv9fZIfrYxpvUy/5/JRHQhl81bqhpz4dTjT/R6vTJWIPPQeUgiY2r+J/uc8n355ZcxGo3KtuIkiEE8TafTuL6+fkJwGe87KdPtmceUdTsiChFjn8P3OhOZ7zJ55XaGvHPyoPvTZbJk/crzQE3XauI55+ve00orrbRiydyN7Wm2nxbbIq4xHuN/Y4uczFL73udquQzgtIgDOZ+xU8Rh/l6tVnF7e1twEdewPRrlYKUJ74Ow9uoPng1Rzr2Ule/YopGEEycORxwCGcaXYDy3s3G1VwPVuLDJZBKTyaTUgwR/80O2mXCRBBMGg0HhOAeDQbHPcK0ZSzkodnNzE9fX13F9fV1W07DqjG0Zva0kyUbgbRLNs17Qpt5+0nU252YczrUEOrwaiXqz05h5YvQJ/JKDD+iqA1g13O4ENvp+OBw2Fka4bjmQcSzA4cAV7ZNXiWVdRbe43ny4+5P6OrmedjUv7jqDA/mM9s9bPPJ8Bx6pF+/gdx5f3MvzHMjCf0HXWMACb9rr9eLi4qIE0dmOkiNo8qpN86LUm4U4o9Go+I0sjnAb8ixvQUm/uE0y52//h3HN98PhsBwnsFgsyrhx2+X50XOo+y1jV/qj12vu4Gd9BCtzP3N9Dtpl3FrzI78N+U4FzyIi3r59G//iX/yLWK/X5bN/+2//bfyH//Af4rd/+7fjP//n//zEQWPSZiUXPybKPXF5gPMdS6PPzs7KhO7lpicnJ7FYLMrexnQwgQmyHVmphZIycIbDYXHiBoNBY3npfr8vK2uIWPO/BwFGar/fNz6nrF4yipGhXrwH6fV6MZvNyqTrdrDjttlsSrCFZdZsa0mk3gETyufBENHM5s6BKBss2jIbjjyZRxxAkokiP7NG3vEsxMSb61BzkG1YMoFnIgq9q72T+22EmBAyyUL/8n6Xj4ncn/NOr8jkOQTDzs/PS2AWMowVhARpR6NRzGazMoEzod/f38dyuYzb29s4Pz+PyWRS3j8ajRqZOZSPw2C73cdz0C4uLkrfmYhhbJHVhKHdbDbFUAFMXFe3bSYGrEO+r0bktNJKK6208tVyenr6xGF/nwDcs+TPbF9r378vuGBcAbbyM/2MYyRyfreDFvzPweMQ4V6lQxBgvV7H//2//zeur68bWwqDxzJ25b2QPM7iNMlOOfIqOWMFbJodDGf22TE2NssBAgezMmHFNeAe6u8fP9d9Q906nUNg0wlvOTjGtXay+HGZ3Hc5oEH72YHOepDJG/rG7VvTGeOQjG1rSVu8K6+Wom+tE36unW/6hz7L2J531Ii/XFaTOHn8ZUc5tys40/jUz8fPydth2g/Ax8lBJ7aYMQ4kwctEln09/KtutxtffPFF/PCHP4zBYFAygCE5IUUgPcC49IUz2U3AuE1NLFhYfef6Zn8ni8kwC+XKepn/f5/k+77uPTVd8LzUSiuttPKTSs1e5/nJ2Ccn5HKtcYwTiiKa57P7mZ4/zfGASYz9js3z3It9Mn55eHho7MIDn+XEEHMQPMvJO7w7r1i5vLyM9Xpd8CQ2q8Y1YTsI5HjrPnNnYFdwquuPvaRdjgXLbPMcEISfZBei8XhcVn/zXG+tzUrxxWJR2hDeiTOD3W7wTnBZcFjG6yTrW994n5PBjD/gpmp4kGfkIJv5OydDZQyc/YwaPnh4eGispvQWhgi6jk5xnxdD5OQrH8XD7k25TMb2SF4ZhE/gwLb5da6hffCDvHCDe9yerhP4J4+V7XZb+tzbmNJWDgIZx61Wq0Z72gfJst/vSxlHo1Hh5M3Bm9dnFSRYHW4cnbTeWSfQFfjP0WgUZ2dn5XMCwPv9YYcvdJ1y2F+j/W5vbxu7eDD+ciCN8XhychLv3r17wpf7N+3spC7KkxNBIw7n1rmf3b5Z532deWxfHxGNefbblF8ItMuyybw9Y834eOUUiuCsQxSIlTM5SOGAQcRh9dhutysH/1l5mOQcdEO5CSKYVLATxxLkvIcv7+50OsVhzMEC/mZLRgdlIpqAgzJ5Mnv+/Hm8fPnyyT7MBAT3+8eA3uXlZZycnMR0Oo35fF7OsaLdiGLTF86UpH2PkWAuL+Vj4hsMBmWwUh9f52e5PRww87vyb671czzhug5M+NY3tjLiOiaz7GDTVg4I5swHT/5ur2xYut3D+XYmMDAClM+EIvWiLKPRKJ49exZffvllmbQxRDbwbKkDuHh4eCiZPre3t/HFF1/EbDaLFy9eFADEkmCyNGiT9Xpd9vft9XpxdXVVxjE6ud1uS9aGgd3d3V3JePL2o7n/3G95Eq8F0NqVZ6200kor31z+9t/+2/Ff/+t/bZyZGfF0VZklO2eZnM2f+xl+LuJgj+/Fnvj5Djhl25rvxWZmghoi4fnz52W7Y5MmnBv75s2b+Oijj4qtIsCGvXFCU0SUJCjjKJwtxARJDhYZI7k+/MbGYsexqfv9vthtMKLxh3c6cJ8Yf/nAdnZboPwQFmAdBwhMatFf4GXjMAfJaiSRsxQhA+hj32csbGzEtTXMYCKLz2s6ze9MgPh5vM8+Q201XB4f/skEY95Gxwls7nffkwOxx7Cx38//tDHld3m9BQ7jLCfNOdjHfVxjsoGkK8pqQsA64K12rAd8f3FxETc3NyXBC98E4oRta3hungPQp9zfbjv/n9sr60HuXwvtk8mATMj5XrcR/2d9zPr1VeI5JevCYDCIv/W3/tY3el4rrbTSiiXjrmybcsKLg2Y1Yh7eyvOy77Ht4pl59YbL4fncmMtYIM+rGStGPOI6Vt3f3t7GarUq8zn8nhMjsItOKIqIsspqtVqVXYNyAgf2N/M+PNcrPCiv62Z8RluxqoqEaN5BICyvYoM75LkkshCUI0lmOp3G+fl5Sc7mOQQmvIrcZeY98LtwkmzPjI3q9/tlJzKCdWBLY1cvXKDdvB16zT8wluRvyuIjc7Jt5n7aJ9tYtxt1gQs1bqecLJQwps78JGUyh+gELIKMJPs4gOkf84rUD/1zEMY8LTpkHy37GA6uZs7UdbLOcr3nAvtPxpx+L7udmUf3ClOPb+N2X+vd0owVCcDu9/tGfMBjCsH38pzF+xgvzA+sziTRC241IhqrLOnrvGKUZ8HXEsijP/Fd4W0/+OCD2O/3cXFx8cSP9g/Pd5s5XpETwWrzMeVG7y0eh24364T14tuU71zw7OzsLP7hP/yHhZg5Pz+Pv//3/378t//23+J//I//ERFNEtw/uZNN0NsAMwFk55jgGQrHhItTd3193VAAJgNWcNlRZvLzJIaxHw6HcXV1FVdXV8UYsR2ls32dGYDgnLIc2gAAooYgIQ6jD9cejUZl9RgBRAJ6EB12RAk6TiaTsrKOwBYDIwfOeAYTW87E9ESfJ0smc+rwvsGSnUUDmAxmPDHna0245Mi3gVnO2snZGTzbJIY/i4iGAeE92dB4ksiZrLyT772sGZ3xBI4e8DvicQXhfD6PL7/8slEflvL2er1yGOZms4nBYFAOYTe59Pbt27i+vo4PP/wwnj9/XjIY7u7uSlaRjeRutytnpl1eXpbxyJlwy+UyXr58WTKRIw57TnMmn9umJnmyz0CFd7aBs1ZaaaWVby7/6T/9pyefmXiNqJPGvq4mOYBR+y6THP6+FuDg2rzaJQdosk3Of+/3+4KBwDqQ8WS3Xl9fx2effVawI9gr12e32xWnyEEQyp/PknU5bLdcB95j+4gtxv46e9VZjTjS1BmMnNvC55M4EGRHCseMMwPIzjRWyok61MPvNLkVEU8Cbnag+R+84WQnZ3hmJ9ltlck2B1TsNLvMdtBzMDcLuoJkHeM5/p/2tBhf1wgGC/XFB8p6b98o3+d2r/lR7guXxb6A+5R3OgBnLEk92ErGJBM7GwwGg7JtlYkfruOd+DHb7TYmk0kJlOGzEaiz/mZyzU69+8VEmPuHz7nP+pOfU+tn9wn3W5cz5j2Gf/2sLHl+zri49lw+32638R//43987ztbaaWVVt4nNYzlz02+W2rYMmMlX2tuwceWcJ/J64xda2V08ocTVXKwCr6Q1fReCQWZbdsbccBDxoIEky4vL2O1WsVms2ngnRrHFHHAgt4C2/glorkdHnwi93MeGfYUHrbb7TYIetrZ2Hq/P5xZC7b1tnLz+TyePXsWnU6nYcNJRPNqFgII4FM4KNpgMBg0Fiy4r3q9x2N2JpNJY8tLypK3ujOP6qQrBxCMG1mMgA55AULWE3Ngxg/0A+3PPebDjvGabm9zte5f6pVXBkY0V59RXxYtuM7GOnBmxuFcZ13j/d5hgzanf/mOctC+NU7UW0Wa/0Tn2fITXEdCoINQlMnjAD6cslJO3uMVn44bEHTFpxmNRgWvsuLUc0YOiubAOTjPW47SLg4Cw9vTdjzT84/7xr4Qz0QfKRf1urm5ifF4HB9++GE8PDw04hy0lbGo+5/+qnG9nm+9COWY32Mdr0ktqP5tyncyePaP/tE/it1uF7/2a78Ww+Ewfu/3fi/+1b/6V3F1dVUOYveAypN57gwUv0bO2BnE6C0WiydLdDebTVxfXzcOIux2uzGfz2M0GpVJzs4mSsDEgdKu1+vyLPZJ3e12MRgMyoSKE8W9DqCcnJyUSLWXvzIJMUCY1AlkkUnClntkZToY41V73W63rDh7+fJlnJ2dlf1gmXCdVU2dmWAyGWKHkz6x8fBEYIeavsjBGz/fE7/BUM35rGUZWGrEi7NUbCSZ9LOzbaPmuuVMmjw5u5wZmEC62SCyoo1yoxOAE4wDZaCvxuNxDAaDuLm5iZubm0ZAFNB0cXFRJvLhcFjuMXBcr9fxp3/6p7HZbOLP/bk/F8PhsGxr5W10yMICHEyn01gsFg19YEtIDupENx8eHs9TefXqVWPcc2+tPTM54AndAfdWWmmllVb+/1eM8Uys1IIRtuW2tbbRJi14zvtWGeGMcMC5dwsYDofFqf/000/L3vHYXmMByAAcPMqYsQbJVq6ft2DhczvWxj3Ux9nAOFCQOThh4EofzA5+M5ajHXwP7R5x2AEB3GkH2CQN12QSyM4xz80Yz/WsBY1yv/JZzjDmGhMEfnYtMGVMQR2MazOG5L12oHl2xsI1XOprrQeuQ169Bo7MATLaKD/rWDAmE4Tc48DOseBMFpMEbiePvexM73a7coa1k8VI7iKZEV+Fsc3YOD09LWdUs3MHO0WAmRmLYGme4XFH/7nN8vzCO+kz+241nXA75rbPhDJlqRHNtc9qz3xf31j3jxEW73tmK6200so3lWPziDFCtjHmamwvfY15IOwvP57DnRyT51Lb6YjmCm++ywlNPJMAT0SU1WK11cs5sQTbxv9sA/f27dtYLBbFjlEe855OMieYAF5127mc/uGz6XRatlkmARsu0raaumMXM/dFvQgwUJZerxeTySQ2m00sFosYDoflnXCqlJlns+JnOp02VpI5OPPw8FC2szNmYzcI/s5loz4EKYw/jbMzds31zHjY+mcMBy7g/Zm7NpbMumgbnfFmDswZr5Iw788cRMqrn4xT7TOZxzTHy7P5m+vxHSgn+uE2yAlX1It7vWgAvbPv44CocamTvMCOOTjnndOQzBPTJl4AQpmNH29ubqLT6cT3vve9GI1G8eWXXzb8N97hlYnWLX/u4CTl2W63ZYe6xWJRFj4wZ9B+Xv3lujoJixVoDsBx7+3tbYzH4/j+979fuGN0xmMqb9/poK/nQ/rd/lLWd64zZ5v7jbaxfucx/W3Jdy549sknn8Tv/M7vxHq9jj//5/98/Ot//a/jV3/1V+Pq6ioiDtF6Osyrg7KTacLchHvE062ACF5FRNkaj0mCIMHNzU1ZNg2hT+CMckQ8XY6IIeLv6+vr8iwiwhFRzhZDYTlUkz2OI6Ix8fKZo/FeCebAGQfcEyA0eTAcDosRYnDf3t6Wgfr8+fOYzWZl4rczbBLG0fm8jDbiABJo75qx80RM+XP2qo1JDfhENM/WMPDyBMzzDJbsrHvw86yc8eNJ3HrFc90Grm8O+NJ3fMY97ysr0X63b97O5+HhcbUhwSn0gYDwp59+WiZtJvPdbtfIBOp0OgWU8Ru96fUeD3n//PPPY7/fx1/6S3+pkIkQcrQndXx4eIjJZBJ3d3exXC6j233MlmKf6+Fw2NBfZ6+7fdyGNaLCPw5Sel5opZVWWmnlm4ntakSdnK1d95O8J+LpCpz8f06WyDbfdtxOkx2WbNP5jAzD2WwWDw8PxaHpdrtlBdnHH39ckkFsR8FbPqM24uAcZYyRMSkOEnXITh6209jA9/Ac/se2UibwlX/jEINfHAQyznZCDhiBv9kmhboap/BsbHDeciQ7hpQtO0y1/vbn6B7OM2WxGDtxvTFU1h07hdaxHBixT2IyIt9TC4D4OxNcXOMgmZ9tfEq/ZwyZsVLt/X6Hv3NfZ+F6jzfrpPvXbUvf5O2hSAo0fnT/sHrMZ1OfnJzEbDaL58+fR6fTKdtAOUEPPbZeZ+ecclBmr97LhJDrk7E697gN81zoYJsF3Mv7reu0d/6s9v373p2vqV2bdbaVVlpp5acR2yD75pnQPka2RkRj5Y/n7mM8X57/cuKNxXYQXs+YIpPTrAxhmzV4vWzrsWvYKydfkNhxe3sbb968KWcgYe8IEDmoAc6Ea+N+kk9yogwYlAR4sCu2l2M5sG858ToiykovEqT4DDu+3+8bidKUk921WAnoHbawgdSXM04JwIEPWABA2Qgo0qbmH4fDYSmXedncl/ShAzC0sQNdPJu2NFeHjuSAJNcaQ7LCK2NXYyPzWrSfy2xc6Xe5r9Er85V5xRn1wIcwTvOzMp7MuDPXN5eVz/E5PObdphn/wj8SIHNbZozvJCfHBxD02Asf/D9lqtXdOuOVW+zeQR3QM3jWu7u7Ehzm/Gt033MIZc5+6Ha7Le3G2WoRUThdVlbmhQmUl36xb4J/yC5hNzc3Ze7pdDoxn8/jxYsX8cUXXzTus45mn8bB0Jo+Z1xqHyW3QfbreT/3Wr+zb/Ozlu9c8AyC/vb2Nn70ox/FP/tn/yz+/b//9/Hf//t/j9///d8vg8IEOP/TaTlKfYxY4W/+Z1VP3iZvv9+XiX2328Vms4nRaFS28NnvD8sk/Tw7Rkz2OHQ+fHAwGJSgnANvlJ+JGcOYAzUoKsYGEsNOJpPb2dlZzOfzOD09bWz9SOYMhnQwGJSB9PLly0Y2QcQh63U8HjfKlutPP9iJ9sTBIMh70pr48ASWiZRjoAnhOQ681JzOmm7wXBsnR/j9freNDYZJI08cnU6n8Swb3fcRhTZ4tQnL2RuWXq9XzhxjolwulzEej+Pt27cFeDFZPzw8xHA4bCytNoEQESXznkNbF4tFfPLJJ9Hr9eLs7KyMC4M66hgRJaMIQ8Se3mwRyfXb7bYsWcaguA9qpICFcjNPZFKjlVZaaaWVn1yOzcV89775NtuqbJ8jnu57zruwsQ54cD32MDvKtfd56xY/G1yBPSNwBibBmbq8vCxEPokjOCiQPNhSv8MOrstDoMu4ptM5nJ1qbNvv9xsZpQ7QuS0csON/HBYfJs99vB9iw9jM7Wwca3wC9nTwwu2asaxxlB0z3kf5vRrfYmxXc84yZrKO+DcER9ZHf2YCwXWyHvGb55pssG/hv3OZuT9j4xqp4XplLGpfwXWqtVvuX19bc5AzEel25SdvJZTr4APg2XnA2zdGHLB3t9stJAFJgTyb8UG2LitDMxFgsiL3swmBmjjr3v3vPq/NYblvs69hsqeGUzNpVHtmbtdj766V79i4qdWjlVZaaeWbyjF7YjFfkudXfns1kO1gnteMEd83NzoQ5zLU5mswEcT1eDxuJBITuDJJ71XOkOeZtF8sFvH27dtCvlMnB1CMGbGDEQesZ66D8juJBbsHD5QDRNQdW+ozzpzUAicJnvS9rJTzirLRaFQSzlgpB0/58PBQSHx4MRPk7utO57CdnfsO8YqljOEIwIE1MhYiYYt2N9fopKFj9hDcYIyB5ECWMYvLa112UpmDVi4zbWP82el0yoooYydj0Jrt9/tdZq+etH9BuTJmoK2sp36Gg1x+L7pu3TI+zny+A2HUyXEBcKDbHZ6etqfPrQ/GYQ7yUgb6hZV9jB14z91uF8vlsnCjs9ksTk5OYrvdNrb7Z+z6ftol6xmBuv3+cJzTer2O8XhcVqLha7n+tA8xlcy/Eyy/u7uL7XYbz549iw8++CDevXtXuFa3fca8eS734p7sp1r3M07O/kzG3rR/Th79NuU7FzzL8l/+y3+J3//9349//s//efzBH/xB/OhHP2oMshw0c8dEPDV4eS9TGyOMhQcs78AgMkFxgJ8NWD7bC2HJJUaRlTQmMjwxMkhQKA6oZ7Dn6DdGnAM4mYxYcYajyRLvfFC8Dxwle5NgC2ejRRwGtVfSkRXS6XQay1gZADYUtcmfv/N3GTTxuScWDzb3qZ11T4THyJX8LAeIDLyYiKxT2TC4PkxUJhNsLP0MT04OxLqMNn4upycrLwPOgWCDgdlsFhFRJs3lclkmy+Fw+KTNGTsEXL2vMOXo9Xrx5s2beHh4iB/+8Idxfn7eMP5c60n1/Py8vBuj8/Lly2JAIfYiorG/eQ0A52fXhHFTy/ZtpZVWWmnlq6WGsX4SMJvJDObwfE1OIPHvnHmZP7PtzvfkxJaIg9OIbT05OSkrpTebTXFkCBatVquSHNLpdAp+gggwAeJAiu23cQiOlNsiX4dN9Yow3x9x2PKYrFIHhezA7vf78h2r/3u9Xsns5ZmQH9xvJ5nkMCdsUSaTACZiHHw55gwZl3m7kYwfjZcz6ebn5vpHNFcBGttlHUS8m0DW19r9fpcdwDxujDm96t/Oe+09rmPGxC5/xov5+1r75/t4tj/LuspvZ4y63e0XeKzZD4Ncy4lg3W63JGsxDiE40HP0FH3zKrKIKOdjuO2P+Rv5f3Au9TM5gC9Q0wf7qdZ9k5x+l7G8x0e+pkboHfvc9cjX+f/a56200korPwvx/PI+HJm5GcSJOMyp3u4sB9Y4Awzxc10WE/bHrvPKcrYeJBjkZCUHrPicY1ny3Hx/fx9ffPFFrFarEhSyveDZDsYZBzoZinog3M8qM/iozWZTsAhcDs8hwOZkKm+RTDv7b/Chzy/LO1AhJLaA6cxBEoCkXN6+jffDo/FctniG2+Jv7oOftQ11Pzvg6IQf+gaMYz1xGYylrUfWASdoGQdQhrya0YE8ym68jB5Zr/PfvAfdzUFAvud9xmgZJ7ps5qwdlKZs4C7azeMqc/SZrwf7Uj6uye2ffah8fJET7eDv4bvpv5ubm6LrcOgek+gunLb9Q9r+9PS06C6rQM/OzqLT6TRWck4mk3Jm72q1elJnjyWXy22Aj8Ycx/E6JImdnZ2VBT0Rj8mP1iOC2oPBIKbTaanner1u1Hs2m8VsNiucLOIEL+s2usDnlC377DX86n60ZF/C+uWg/7fJ436ngmdEUy273S5+7/d+L37nd34n/uk//afxT/7JPykTs1eg0QnskxvRXPadI6D8bWHiZnDQQUR6uXc+n8dgMChbgjBpnZwcDminkxeLRSwWi7L1Imc6oWTeesRBuDxZsirO5AQGq9PplLPJxuNxKYvP3sCAYlSc9eHBPxqN4vz8vEwM8/k8IqJhkDAyOKa73a7sTWxygPJHNAkCB1v4LBMgDEbeRX/lLBzEfzvIVRtcziYwOUV71MjAmgPpslq/+J2BGJ95EnI5siOdg2V+fnaKO53DkmImfnQY/fVWQqxS/JVf+ZXo9XrxySefxPX1dUREmbxt+CKisaye/gdAGtxdXl7G//k//yd+67d+K168eFHGZSb6AKDdbjdevXpVDBp9hMGIeBy/BPXy+D02+XpyzqvOWkKglVZaaeWnl/eR7l9XsjORgwI58632fhMh2LivKkNOospE9cPDQ1mxTeDMBD/JJ5x3ARb0ebO1RCK3GRjMhIWxBXiBwIDLjD12ZikJJzmIYSfUtjUiGrbe2X0R0djCmQxhYxlvxe2y8BmJX3Z22CKdd4Kj7aQ6UcrOE9ccw1q5fU2mWY4FCRyo9OfuL34b775P7ATzfyYf+My6bwzI/cbSEYdzH0z4uJzWuYwp/W7XN2eQ7veHJD63kbE5xIf7ymW2M+2+Qz/sF/T7/bIDgYO+bDmFoOeDwaCxewU/nOfrMlp3a+XJpBFtASlgPHksMzsHhk3o5BVl1NFiv6w2v1E2l9++Vr7WYv06Ngby81pppZVWfhZiG2S7xrzrubk2j5lvyXbdAQkHKvK1zMW1ZCIH5/xuk8SsKjGm8WoueDE+py4+yuLh4fEojdevX8d6vW4EJChjtrHmb7C3rPDiM29TGBHljCbqgO1iJ4TNZlOS8rFvtrlwS9gLJ6Psdruyyuz6+rp8x7aJroMDTbx7tVo1Ai3wkhFR/uY+6sU7XFaT+tjrHLSyOKmGetGuxnO8OycP+R4HCY17M5eZ+UrjIeNCxoKDcMbyx/yiHNjKep3fa2xj7Ok6Wxe9YCLiEKwzFnI94SPBjvSd24D/uZ8y1IKWeQWiddQ7fFBHfCVjUvPzLFJgtxA4ePww9MQcLXMDbe3rXaZerxfX19clAQzd9Ph0kpePw2EOyVgUjv7h4aGML4LV3tFuPp+XMbHf72M0GpW+tq+VxwmrTCeTSZyfn8fbt2+fBLcc7DSGpG08DjOfnX0adMD4ljkFyd/ZbrCF7Lcl36ng2b/7d/8u/uAP/qCc/YW8efMm/t7f+3sxGo0i4tCQJuMdNHMwLRPl/t+K42BOxGFrEJwdVvGwXaMdIZZPRkQxQA8Pj1v5LJfLcsD8fr9vdPjt7W0xwHZkCHzd3t6WQ7K93y/lIyN6Op3GdDot5XWggneSUWyiiG1RUOjhcBgffPBBnJ2dlUAJTl+Ogu92u0ZWCdmc1M91cjaHszr8t4NKHjDOCnFmhQdwNkQWGwCLiYM8oP1+D24Hn2rlcHmyw1sr59dxhDOozEAyG9uIaAAADISNIJ8zCT979izW63UjC52D1tkWB7Dhduh2H7OA+/1+GbPoyXa7jY8++ihOTk7i2bNnJfMjtxuGdTwex93dXQFM1g3KnQ/vrI1rgwzrL/XK/ddKK6200srPRjJBne20pfZ9JmyzLT5GCuf35u98jX/8fe1ZEVHOOoPMxg4RKLq/vy9JRhAJJjkiDoGWnIDkRJKIA5GOnfbqMX770OZsy/js7u6usV0JGIcyOfGJ9+YADE60HVzqu9/vG9t88w52IvDuBsYeu92ubMlHUhi7MIApKQ/BNHClxY68yQXrljG9g4a0K3Wq6VMtYFH7+9j9mayp4T7fS7848JLHQ8aYOZCGPlFXkyFeAWmixgRFxlP53ZlQ8T3WI/9tXea51jX6l+dHHDLZve2nfbNMKvJs/BETSfhuxot8ThlNAOR2zW3hYBbfuS2pv3F5HqO+BqzudmOMeTzWsH/Wp/dJrX/fd+/XeWYrrbTSyk8jmZ+z1LCa56WcaBLRXPXlOc8EdCZkfUZQJsgzQQznxnlDtoXcn5Mj4FqY8yG937x5UwJOGedGHDAYOAZu0TsKcR+YDFIcbIb9MIbjPfCl7KqVFyQ4ccXcJG0Iab9arWK9XpfVZHBC4EASXmgXjnoBW5q8t2C3SSyjXXgP9clBk/F43OA1abuMF2zrjbkcPMkJNsaUDuiZnzL3xD3Zp2AXBZ6b+V/XzzpZ+5v3g/l8n30A97+DkvxNeVw/2sB/O9HO2MrbbXJ/TnLLfg9jg+cas4EB/Xlt8QRjNPOfPAc9NiZ2u0VECWpnXIq/Z/6ZsQOujjgcvcT2iHD4bNXodsDvYWzg13nhDm1FfRiTxoi0Dc++ubmJq6urWK/X5Xgmns0Y51gn6piDdLTXbDZrYHL3mX1Y90XGzfmenCDm6z3v8Znn0RzPcX9/W/KdCp5dXFzExcVF9bvPP/+88T/kgBUqOy12hhxQy98zYdYUIOLgzPR6vbJ/qVfykEFCNsp+vy918aC3gWJgEMCykjFgIUp2u10xQP1+P/r9fgyHw5JpiWFimx0HIVhhxJJNJpKIx4MNiUIPBoOYzWYxmUwak0x2Up0Z4kmK9h+NRsV4MXm7ThFPyaocKPE1NTLMg5L65CWcOfPCgMp/dzqdYvg8cWVQZsNiHamRGggTsNuQZ/f7/ZLFnQ219ZB65b2tTRIgBns2UpAKEHC8i72oHx4e4vnz53F7extXV1cl4OW6E8i1UbMBIWuDMnc6nRJA+yt/5a/EdDotbcpqSSb24XAYs9ksrq6uin7xPfXKxst6coys8HUeg23wrJVWWmnl25NsC2vfH5uHa/cZSOf5Pzt/GVzblvLu2ntMkFM28JYTRyIOB3/bmTQ28DMcoMgJQsYIYLjdbtfYGcB2DVtIvRzEiYhyfw50eCtoB5tMHEUcsiHdR7zDOJXglvGNAxT8n88MADMYX4GDWHFU2w6He3MwwfgLXEfZ+Mx4j34wVnT/H9OJY387YJWDIFyXs6LdpllX898uD32anUxfl4NbfAfOR8+yTrluOYiXsa4DmXnL8lze2ucO5OEfZKxtXYJkgGBDr+y3ub3ZRgvizSvbPEccI2H8LPrV+upn5Do62zaiub2Vv3e/1RL8aNfc/l9Hsu9Sk696lv2u983jrbTSSivfRPIca2KfOdVYjc9s380XOTjBc8wZeB7LtizbDuyGuSLjEM7QHAwGBcs5AEN5nPwDLmCLwuvr63jz5k1cXl6Wcu12u3L+O3UfDAYNLOcjZxDsyWAwKPyjbSKkebYhPvuLZ2KXIeapC7tjuW0jDtsv+sxbuESCd8PhsCwsYFvv8XhcbCE2lkQ0r1DyCnPaJ+MSYzt4TW9Dl21s5oSoK/3jvsv6RTl8pAh968ALuMS8dA5q0e9OHDLmRdANc5TWMWNg4xuXxTw44lVc1qvMb7q8TnLj2QRJHTCkH8xrmres7WrgslNv+3zHsLfngpxsBA7MAUaXzfqF7nc6h5WWBKXte6BPBGUdmPbcA1ZeLpeN7RPZ0p6/+ZxdTPDh3Kaeh9j1xFjT8YuHh4eyonO73ZZtGJm/ZrNZiRtMp9OSzBhxwOYE93iH5znagHd7Xs59ZB2qYU6PY99HnWv43D7otynfqeDZNxEUnQnXSpuV2OJJ0IbKGayeBPibVToEELjPGawYmMvLy7i4uIibm5uyFBJDjoJzH0GIPAg9gfd6vbKdIoMGoqXb7ZZVP1ZOsqQhIlgWzqTOlpO0A2XgmTnbALIoB60IhPA/WTS1fYZ5lskEBgh9YxLMhi8v2fWZBf1+v2GwagM5kwr+3lmtzhS381wb1NapDMp8PbqUgaJ/mBTy3twIZcjPpozuq/1+38h2ykElA1AIq/l8Huv1uky6bNlpY3p9fV3GBBnjnti9Fy2EyN3dXfzoRz+K3/zN3yxgkDZB3wFZzrDPdWX81IKsNQNsQ5Lbug2etdJKK6387OSrCNtMVEc0tyz2dVnAPDUyPjtVmUSpOUkZlOdnYdMcsLFNMunP9d6ew9vIRDQPo88OnDMjyVzM+NWOpwMe3p4Pu+pVOW4vY0swITjAjj7tAO4xAYDt73a7ZdsQY0IHB7KzjiOK49jtdst5vL6Gd4Ed+MwrzXwP7ZN3VaB97az7HZncyLqUnT3qmZOyMqYydq/pMjszZF3NZE9+5vsCGOiUsSnlso7nIKLr6j40Ds9j0wlzDkS67u5Ht53ry73enifXP78HrOqxSJvmOuMj5DnH44fyMmb8mfs1z2m5fjmwViN6+NsZuLls1i1vL5T145gfkHXpWADsGIlRm1OPXd9KK6208k3F81H2w2tJBNkG5bn3q2w217yPvDUmyu9Gdrtd2XXK5LX5Ka4zqe9gC8nJr169KjvxEBRiZyqwI3bWieEk7Pf7/UJyn5yclHLxHmO9bEPyWaHgo8wNGjd4JynznST+DwaD0k8OVoKfWYVDEMK4E/vrXbB4fj7zlHeb9wKjsm2dk6wjouyAAJ4BPxAoM8eaMZa5L/BExgX0FdxWxGH3JRP9/J19CZ5FW3lLdNrQ2MqJev7cHJ9X4vndGRO6bR1sI4hm38n19rt5Xk7qqo0B65Tr50Qhj0vayhy962LddTIjOmisiQ54JaXHK/0G9uId3EcZMw9tXeQ9TrQcDodla0X7Bg6wcd9sNis7cK1Wq1gulyV+gN/gRAF8IeYNytbtdkugme8YOyyOYe7yYhfaFv53PB6XY7Tcll5t6LGc5/Qck8kcNHqX+51n5pVqx8bl+3yjn0Z+YYNnEQfnKq/uctDLhEIm2D0I8io2G3mcOzIokBoJ//HHH8dnn31WJlQUDUW3Y2SHjecR9GIyJdOFSYj6kfkSEY0J1xmZTDo+5B5Dttvtyhloo9Eozs7O4uHhoaww8lY5GHHaxQMiO9FkeZLV4gwW6pgzLEzmuP25lowWJIMcrvekYKPh4FUGUfSDB60/z463CQ36gvakHDacvLs2SXsrRCaDbBxzWZxp4e/d97SDy+2J2/vy7vf7oqcvX76M29vbWCwWMR6Py0Gsp6en8ezZs9jv93F9fV2ez2oz+okxmNv+8vIy/viP/zj+xt/4G0WvmNwJfO73+8aZeXmcGfDkvuMaf+7v0V/PA6200korrXx7UiOu89/ZFuf783Nqn9XwgLGLE2J4j4G8g2C5DCSIYHtxYMiwZVsO8MBgMGhsP2Mn0xgK2wtm2mw2ja2ybbe8Oj2T/g54OFiBU8UPz8D+GjvwTJ+5y/UOyiDgVONC6plXWdlxy8lPDgph2113nkF9XRevVjIxUQsiUCbeaRzkuoHBfK/rzLPyd3bG+T9/Rju6nXNmrXFbfl4O1GRMaNLJ7VoL5GQC0qSDt/LM7/O99FFEk3jKQUaL8b3fbx/IgTKTkpvNpmBVY2Bn36LzfAZxR7viAzA+c1tbx/jcvoHbxNfwrOzM+7d9NOuC28Htms87+yZSK7P7gN/u06/CxN8mSdFKK638ckm2U3yWt2eOeIoRzYPkRChfbzuXyX1L5hQyv8I7ZrNZY/WN8SccocltOLyIR/v1xRdfxNu3bxtbtLHq3phmv98XfAXOw1btdruy8i0iGjwdNoV3wplgT81dUW7awtjI7WFOzfgOzsc8o+0OvB0BN7AVz4Aj9Ioz2pGAAdvfURf6wlwmnOV6vW6sjqMeBD7W63Wph7fhyzjN9TB/ib5ap4xB4UPBGznpxdjCWxXynpqe0kfUn3vBxLWtOI0Z7GPQf+Be6753D3BQwok+Do7Qbg5kGW+gSw56eRGCAy/7/WH7UCdSZW7ZgTK3lccGgeHM53c6nfIO+zNOcgQf2uegDHCV7i9WbtLXcO6DwaDspkWb3d/fx8XFRXn+arUqO3C4b2mLwWBQVonhGzIm6GfroPld/FX7mp3O48KHiIiXL1/GbvcY+KYMLJyxnzoajcpcZ13xvGcfkvLYn4yIhi9MW3kOys90/MbP5jrrWW3u/1nKL3zwzKvPcgauszbyKhw62U6MHTGEDuNsMpY3WgmYiF+9ehU//vGPC8GC8WLCOTk5KSu7bEw2m03DSHGOGZOUJxeycVEYJsM8wfBze3tb7uE+DPbDw0PZqpGMkPv7+7i+vi4Dh0nBk5QJDE+ibg8meQ9Kykv7Gahk8JMNi/vME1kmEzK54XJFHAyK76Mv/Ey/z58Z3NQILj/fQSD3GXXAOPFchHs9sbu/ncWRyZH8HJfJBtzgs9s9nG324sWLiHhc7s9yfLKdzs/PYz6fx2KxiMvLy5IZBFnn7G/AHyDh4uIi/uiP/ih+8zd/s2RRGJjc39/HeDwuk78zkbnGdch1dxtYX9wXBn+ttNJKK638vxHb1Ij66i+L8RqCc2X7aYKgRj5nvIFtADfZ7tRWNHU6nZhMJiXQwI+3k2N1lZ1acBTl4XBnHCMIcwRMYdvvIAX2jOfVVnA5kSgHznAe9/v9k90GuJZr7HAaA7IlHufxggMcxKBOzmwdj8fluWRTsw27z4LIeNx9n7Ej7Z1X7md85H7I2bDWR+PMrD/5OmNZ8HrGfy5/fm4twGWn0W3H/bXn1p6XCRX+R9etpyZ9/JnbEjwJUZGxKtdkXGuHl3KY5LHvxv+QE/gw9PNwOCzkIeSY+xE9oI74IIwHxiq6mQPRuW0zOVBrl4hmZrzrVwsYch9ltN9ispHy5fcd+z/3f00vsq/F7/eREN8WQdFKK6388ojn04hmoIP/mau9pdkxzsZSm/eOJSB4zq/xSHk+HI1GBfdhR3LwCQ7S57bv948Jx3/2Z38W19fXjZ0F4EhsrygPASIT/NhujlhxW0U0z9ECw4FznDCFvWQVVj4+hHdxLQk12De4Hnbicl96IQOEv7fi5pkZu4Ft2fnICef0B3aSlfu0vYMbXBMRJYDBLkngHTBLTraijWgv2s/J8cZ6xpuuA5iWa508hs33e9EnrneA0tiFZ+R+N6bnPge7eK79B77zu/F5rAMO7NFmLr9XUbmvXE/e65WG1jWPJ8aDy+g5IGMpB3BpKwfG4CfRG97nJDHHBLIfwBzBM+kT60/EYXv/zWYTo9Go+ITokVcm0l7G27SrkzP7/X5Mp9O4v7+P9Xodi8WicfQOz7Kv63rSH7ThcDiM+/v7+PLLL0twezKZxHw+j9vb21itVnFzcxPj8bgEHM3tHwuWRRwCn8wTDvZxT+0+B8v8+TF+22Jf/9uQX+jgWUSTZMiBsYinJDri60ysZ8eFQT0ajRrnQUQ0HcLLy8v46KOPGsGxt2/fxnA4jPPz8xIwgDRArPjj8Tim02lj+adXcW02m4YCewLncwwu2wDxDAwdoOD29jYmk0lEHBxQJpnd7hCZBizQJs5i2O12ZW9jB+686szBJOrrdjMAoU09iJzNwz12QO2k1hw8jJGN1fsCMNnxddmpvyf4GuHgwZz1kUmYuudMEJfPwO7m5qa8C3CWy8n1zjLieQ6yut38A8Do9XplAnZ2Ntsssc0ikzkTPc+EUON+yvPll1/GeDyOX/u1XyuADX0A0I3H42JE0UdPrNaX2qR5bFzznDZ41korrbTys5VMQBz7HrFNfR8xa0csz/cZO+Tn2HE0/rB9tP0zLqAuvqbb7ZbD0DlDFkfMNscHsTuxiWs5XH273TZ2IeC9/ORAgx1/20M7qc5mxOHhOgI7JGFB4BiDOoEI55O62EnmfI6IaGQuUmZsel6ZBhljjOP7vIrQpEYNR2WnLgeJ+N7EikmNjIPep6/+37qUySNjQeuug6C17/PvrK9uq1rAI4+DYwGSHJD0+MgYEj1Cd53IZkxN29I3Tibzs2kfPzOTKXb2PXbs46ETkFveNgodYr5w34Ojd7vHhEUTUq6T8SJl8Xh0G9nnpPy+3kExt3/WO65ljiBwn32jrLdZ/K4sx3Q939tKK6208m1LzaYjttu2cbX5sPa3f/t94LPM2dQwBPd0Op04OztrHEXCbwdbbAfgW66uruKTTz6J6+vrBtFMEK3WHhEH3osABUGzwWAQo9Go2n7Godhqrx7hOmNR/9gGYdfAq16BhM2tYRYwH/bb2NA21YGl/X5fjowhUED7wkPBf/L5/f194Zl43mw2K6vZOCd1OBw2grBOjst4NeKwA4IDD+aSseH0TfZBEIKf6JwXeByz4w548blX05nzRS8onwNj/M931lfKn3G2+UJzfv4u+1K+16vM3M9elcn48jjnM/svJO3jL/A+sJP9HMYf3zNu8njKbcD/BGK9wMD18Q4AfI+Ob7fbwol63I/H4zK+R6NReV63243tdtvg4YkXUBePXeYpAnPe0pFFPBmjur3cR+fn5zGZTEpcYLFYlCQ0xshqtWr08THcy3sRv99zB/XJ2DhL9s/5nXWtdv23iVl/4YNnTMAQ8Tlyfeye7PA4AmolYNJjCeUx4v5HP/pRbDabRvDKWR2+x5PL6elpTKfTGI/HT4Id3q6QLEkGlCPqDlLlQCLG7ubmpnHvw8NDrNfrcnggq9MIzmBECH7s9/uSAUo7U575fF6ebWICp9aD0JO0A2PZMOSBhrHjbw9q+vAYCcKP9cHEU176mnWlpj9+Xnb8/Vl20LOBIzjpsub2sAHM5BGfof9568YaScQ1PhePspKlE3HIpHX7e8sA9MP7d/N8C0HjbrcbP/7xj6Pf78cHH3zwhDRx9nk2+u6L3I95HOd2ph2OTcattNJKK6389FKbo2v/18iOY/dyTU4YsU30KqJamWrvqyVSGGfgnPI5max26ozpkG63W2wY12y321gsFo3MWhJP/F7jT2+7Yuef+oApcpIJZcjtRBs5KxDMZiwG+QFBYlua8QnPz9uqQMi4r+1g+V1gEONZ2/+Mj9yn+e9cRuptIsBYIOuGn2en2QLucZnAk7Sn9cZlqhFmNR3NGCb3ufuY/yFyrHd2XrmH39kJrWFL+iSLMThlg0Qwbs1l4FoH12rEC+2at9tG/zebTdniZjgcPtnpIAejRqNRDAaD8iy2JKd8ThA0cYZvZBzu7zOmrJEL+ZrcPvYVdrtdI3PYOubnZz8n+0tuw2PzYv6uNke20korrfysxHOSuSCLA2e1Ocz3ZM4H/sF20qtnwJHc43fkOY/39Pv9sjsTxD6YBbvnoygo/+XlZXz22WcNohviPc+zeYUPdg7SHH4N7GkcynPgTyKikPQkaFEXggWUBzuWd7QCs65Wq9IGEVF4SSd5OAnaq75IeuEoFwexNptNY9s73sEKHSeL0ze5bSKiBNCm02ljkcJ+v39y3At6kRPyjWWd5OQAprG4MTPtx7Mz7st+gu8BM7sfrNMOFpk/BSNnHEjfE6TzmcH5HbXAYcaKfEcgyAlT/J3r47GEH8Sz4ZSz3uaAkcdEXiHGe+03Gbt6JZ2TmxivxpHZ9wJ/ecVVXs1p3NbpdGK5XJZFJtnPQJdpi36/HxcXF2VM0lckYlJ/yk4/IgS54F/v7u7i8vKyYOSccOUA+unpaWOXEN65WCxiPp/HaDSKzWYTy+Wy0bcZ6xqL02bMASSTZlxc87Oyf1XDqLzPz+RzP+Pbkl/44Bkd6KBRdtpqHZknKj7Ljsp+vy/G0caVgTQcDuOP/uiP4urqqnxnRSDSy0qu2WwWEY9GbDQaxXw+j8lk8kS5IC4wgBHRyLIgYMZ5Zn4X5fS2Kvv9vkTJmRx4F0THZrMpWSYcQtrr9UrkmwnZz7axYsBlYsjLMm20MMi17WNyNNtZrx547jO+83NycM797D52v9eCr55AMqDz+7JuuszWP8rC9jcms3wd78qZJNQtB+twvk2gONvFPxgzJnAyhQig3d3dNZbcA5wGg0EBkWT6sA2VV6GRnU4ZWTn50UcfxXw+j7Ozs0ImQpwQrPY2AnnM5snW/eAxz/+Auxp51UorrbTSyk8mx8jZHAg4Jvma9z3L+M5Zbba7DuBwb0RzxXvEYWUWW2tgd/K1OL/T6bThEDthK7+v0+kUJ6jT6cSbN2/i7du3sV6vq9faruUErtwmEBZgJ2OejEkc2OBelxcSwHv1Ezhj9wCvwsn22G2W29o219+DYU2OsbtCJsF4lhOQ7Ey6znaiTAo4G9VOV8YJ+d1gkfx5dtz8v3Ghk9mMVd1n/O3325+xfmcCxr9dNvrMDrQxrvvP7VwbR8ZubnNj2Kxj1n9jzU6nU/yCiGZAtNbO9CMEwn7/mKXb6XTK1t6Up9vtlnMijPucFIjvMxqN4uHhoWS5u+70kccI73Zgz2WkDG4n+jOfSUKda3OG30Fgzz5JTaxvDpZb8nya9SDX5X3va6WVVlr5WYntUOYxzNvYBnoOznwG2C/jEu/044Rwz3XY6owVdrtdjMfjEjDiM+53wCciCh/2+vXr+LM/+7NCKO/3+8YWiE4gx+5gr3g3x1jAD3rLNuZ87Bl4ll2DfK6q+TPbb5LhnfTC5zc3N4X/8REsXh3EdbS5k4rgkug3tvWOiMIXPjw8xGg0Kriu2+3GZDIp7QHvaR4HTMBuWmAlfuhT+Fp+uIcf2sYEvLlFE/twmk6MArdQrxywgIODW8t4JWNQ+y30AwFS+wNedQUv6N/uA3i0jIFzcg767MBUDdOhX07U8z38T31yENy4mPZ2OczrOmBIf3pRSk7+ctvzLONO2oDgGH5Wv98vGNFt6WQq86W0P20M98kubt5JzEGwiENg7IsvvmhgL75nHDBHuF0pAwFyB//Y/t9+Kfo+m80Kj4/OMWZubm5isVjEfr8vZ5yxuhO9cHvybHTRf+92zQRW2jpzzx5rtWDtV0n2Odrg2U8pxwJo7tgcvfS9OUKdHX4CSHZ6CJxdXl7Gq1evysBlFQ7PODl5POcMQxMR8cEHH5TMDJRgNBqVwWGFsDFl4PPc/X5fghws5/QERllt0Lz8ut/vx3K5LEE3DtUkWLbdbstSaAysDQngAUfRRtiZGiaEbJzoL5a2mgiKaAIp+uIYWcd7czDN99UIEgfl/Cza2xkp/s6GxfdlosPvNcnF3wQz+dwBMTv1OVPmWL0yucTeuzWBmKAdxuNxRDxOxpPJpAS7CKCdnp7Ger0uAIb7WX14fX0dl5eXxRiZfLm4uCj6u1gs4tNPP42/+lf/agnKmpDLdbOxdH2PTb4mQPJc0EorrbTSys9G3kfORjy1j1kysZ+JXYuJk3yNEzBMvjsbL5fNTjmOiG3Mfv+YAMLW1GyXbDIEvGUHGjuz2Wzi9evXxSHxNiuUnXsd2LK9zs4BGMwOCXUHm4FZfY8zOBEcMbAYOIMAFwk12eE3HiGTERxNnWgjnuu2p/ys5MvnM5iccD+DK3N7+J7s+JtwA3d+lZ65fm6zjMdy/xjzcX9O+vKz/HzjS/QA3bCg47Wy56Alz0L/TfqZoLAu5fFlPEp9c/sa2/tvB7Egulz+/Nzc1rw/72BhHEff+swZ7ut0OsXnurm5KVuuHqvbsbkMXaw5/PZpcrubyDombk+Ci95ePfsPtYCa+6Lml+Trvqm0AbVWWmnlZyW2M/7b3FomY2tiUt73R9TnSt5lnOjjJvI8h105OztrnD/GdSRj+Hl3d3fx5ZdfxpdfftnAi94q24ItM+HOSjd4MexBDhyaSAZbOpGde7zKh7IT3OG9BN28hSPBAgKI8FR3d3exWCwanKvtHElpBN+oR8Qh+Qts6ABLxiZwpzwbXhI+ymcFY+sJiBA8cIJ+PkYGbEE7uR/MU4JlclANzOkAiTFX1hcnvVFfnuFADTjN2MpBJOs+ZXXwzXjE9eDZJLwbu6BDxssumzly2tOBEbCqMas5dcYan9vHAhca5zvYnYPZ/hwxxw/uQseMR70LnDlg7slJUMbM+FnUi3d5pR+ru9wWjCMSNdnFLuPPTqdTeFXOHwM7c44aCWS8A990PB7HdruN7XYb+/2+nIvIGOIefDXiBScnJ43jdzweHKxkbDhgVhP0Kc9VfIfu1I4roO/d/v7M/Zq/+zbklyJ4ZgOVo+IRzWDIMfLFnenBxlJMR4chDXq9Xvzpn/7pE4Wyojow4OwPH7bJ4IUA4Tk+hN4TJOVmGbkPvobw8EDnO2fTcmi7Jx2MOwcLRkTMZrOGI8y7nf1ho029fA5bbldP/BHNc7FcXk9wOapdy2rIk7IzUf1++iATAehSjSDIQS23KXLMcc1BoBwAMumDrjmr3fXm/X5HLq8Dxd3u4bwzn0FiIwzoQKcmk0ms1+tYrVaNTPfdbhdXV1flXDKPifv7+5hMJtHr9eLdu3eNwznX63VjW4C7u7t49epVfP/7348XL140spFpTzLRDSpqAXCTKjVxG2bg2korrbTSyjeXY3PuMaI1g+T3PeOY5Hk835+J7OwI1QIRuYyZSCHJyc6XsWUO2HQ6ndhut3FxcRFXV1fFDmLPfPi6HUaX22WxY8k1xoMRB0cczOWtamzvM36BiMj1J+PXeCMH0MDA3k4IHOCgF9gt94dX0ps0cxuAffnbmM04rda3tKkxRHbm0Z9agNJ9689ob/sIObDINbS/gy8um/sjB18cYHL75uQo+varyEiTb77P5ImxcsZK7he3XR5/Hgd+Nm3Ec4bDYdze3ha/we87OTlpJBGi38PhMFarVWNM4Yh3u92Yz+eNtsjEFf+zDT9nq+Ty5/bNcmyMug+z5M9ywIv2pD08ho8FzH5eQa3sb7TSSiut/LRie5fnR39me2JC2/bW+Mj2HNvjwAzP9H28z1uv7Xa7RvAH++nyYIP2+8ethD/++ON48+ZN2WXA9tS2iOd4xRicCke4GAeQGIUNc1Cj1+vFdrt9grF41+3tbWNlkq8hcYszQAnegescXIML4lpwsFdWeUUM+NEJIWBfsNVutysBB7C1j5DxirUad0tbetGEVxlFRGPrPcplXtUBGtt0J+NYZ4373DckglEHB8DQOfscHNnC+43TfC6WcR+6aW6ToCArAo1vrXe0D9fzHO9UxWfWE/Qg4xv/hrfkGvtHEVECnm6LvAKUexiDlIv2xOcw3+utU/FdjHutD/SFsbjHhBfJ0BbejQRdzvxzRBQsGxFlBy6ugXtlnLBa1HOD8R5bqzoJEb+O+IC3eWSnMHZkoA/dnmxhynhdrVaNICrjxIl2Htdurzxn+nP7U140k30ffmdcmX1UPqvx7982Lv2lCJ5FRENJ8zZt2Uj7f9/riSzikHnC7+FwWCK7k8kk/uzP/iwWi0V5RsTB4fYkeXt7G8PhMJ4/f14iu5vNJvb7fdm/NCIak6Yjvg4gmEAh2u2VYCg/g9NLUDngkGuIQu/3zUCTrzVRwSohlJmsHTupTHSeDByJtrK7fB50/M6TvkkLE2c2EPSb+4Rn1gxfjfDwJPA+cstgxRMw7WWd8PPz5xFPz1fxdwaNNvRMkiZWMnBEF/w+xgl952XNGKjz8/O4u7uLN2/eNIwiRs3L+U9OTsqKtH6/H2dnZ3F1dVWWBpP54NWI19fX8fHHH8f5+XlMp9O4vr5ukJSAAYOk2pJv2vMYkeP+aleetdJKK6389FIjiE1I+LoMcGv31j7P9+XsVuMi4y3bA9tlg37eZ5vkYBEYbz6fNxwMCG4cJZMA2LXXr18XooHEFW/nYUxBHcBz2UHAUQMXgrmcfWlnEecPx4jnux1MGDjbNOIQUDGxkDOmvc1JRHOlGViaOlCnnEVucsg6Ata2809bmchwYMs4DYc8bwPpAMf7HLr8nR29mv7Q7hmz0Z7vWyWWMauxrfXF/cu1Lo/LaXFiGf9bcoJdbVzWAtGZgMskjd9nzG08hv+BntrRdn1NFg0Gg9hsNg2fzs9+eHiIDz74IMbjcTlrmvECgYguzmazsvWU8bkxosvvemW/hO9cN/53/xwjn7ieHUD4rOYHfF2yIM+7+e9cl2P3tdJKK638rKQ2n4Gd8hbQzOm25cyT5oqyHbXdyPYxBz3MO2VSt9vtNlZcObkXewSHtlwu45NPPok3b940jquAX7Gtsu0Es/l4DIIVtqsOnrju2+22YDTsuVfyg/mcaHR/f984x4rk5fx8Y2hWcG82m1itVg07YWw3Go0ax8vwThJcHLwxfrU9B9d5QYODJ/nZ6Am7XyHgU/oSPO6zr3iG/QOEs9ook/GZcY1/wJ7oKQEZypNxq3XBbeJghLGh/ZSMuxwsYkewrPfGrCQp+Vk5Ocv954R2j5PM1VnfHEz1fTmgbV3y2PSqQ6/Id1k5H8++oFfGOXnP/h66bV+mNp+4/Wm3Tuew+suLd6jndrt9Mu58DjRtxY4Jbq/tdtsYI4wFtzP1Ab+yOm04HJaYAmMW3QU708YsvDFe5b339/eNQOQxn9166uu8gpPP3a7G2sajtWuzPvon+zg/S/mlCZ5hrLzU0Ku+GGw2XibquddLS9lHn04mW/Hk5PFw0E8//bREZ7MysGwZR20+nxelZgBst9u4ubmJ2WzWWKlDBJnBQ+SYAbjb7Yrj5wmGCYAIsoOIrEjDaDJh3N3dlYAedXXwh4mO3xgn3uHrbQzpA5MwEU/JCTvKTLQecA7MuY75Pq6vicGQ+z0iGgbdZFs2TN4SNDv5/rwWoMlOOOXNmd3Z2PO3n2mnPIM9/vazHYT1ykXrAkSfjetwOIzZbFYOZu90OmVCZYxwEDsGnSwWgm+Xl5cl6Ew7mDR7+/ZtvHv3Ln7lV36ljBdWa7Lk3n1lsIQYfHANPx7v7q9WWmmllVZ+tvLTANhMJPu3iWeTHzWQbVCNYHNsf2rileH9fj/Oz8+j3+/HZrNpZMDyve3w7e1tvHr1qmyBwbucmGKyphZMA/94FZmTYyzGWv7d7XbLVt6+jr8jDth2v983VvkYlzgJCGxoJ9MYCDyBfcUB5Hq3xe3tbcHKNzc35Xs7r7RHTqqyftgBNv52IIR2pkxup1rQKQdjTKjkAIrLmgNZmSQw8eF3ZsfU7zhW7xy08vNz+Vwn18NlyViqhs/z/ZAYlozLaXfeY300UdbpPAbRCHJBCPAsX8uKMQ41d+CPs5p3u118//vfL/oK8WafhzGC35WT/9y+/o0OW+/pJ97nQHutPyzG/PhRDubVypD71XLsmtrnx55jEqqVVlpp5WcpnpNsZ/jOWMdBj5wU7JXJttvmqjLv47ma51OGvDIt4rBDFGSy58per1cI6zdv3sRHH30UX3zxRWPrQzCKE5QzUc2Zaf1+v7G6y0Q2fJ+Je+wodnA8Hpe/eX/mQOFGfXYa9pb3gD3NE/psMQh32oJgkXdDIEDlICB2je9InOG4mtVqVcrqs5ucMMVOBzX+DLtOEJKghINIBLKsX2BgB1toFwfcwFlwVA5sgOPhYzlfNW9HnldvZYzta44FCZC8Es08sO23ecyMp5yMaEyDXqG/6LT5XHPn3g7TY8//56CgOWvaER3LY9cY134G48JjmGA0bcZRNARXjQUz9qXefMecwGIB2hs+3Ul6DpZnX4Bx6PpERNn5gCA8zx4Ohw1dyMF9+gsdHw6HRa9p29PT07JrnMdst9styZ/sGkc/EyCdz+eNRC63v/vX+ua6OVCLfmcOO8/LnhedcJB9I//tcfFt4NVfmuCZlT9v3+gJwwMvTzDsSWpnrdvtloljMBiUbQk/+eSTuL6+Lu93VooVeD6fl23uIqJxYDrlePfuXeMaVu1gWEejUTFc1A/FtRHEMEYclkozGDEq3rfUGdQRzW1cGJR8huHIEyTtCFHhyDgTih32nO1De9Wcf4ObY2DLv3OQytflwZUHnLOZ7CxnA2bCI08KrotJrYjmwe2uv3XBQcvcPrldXG872K6Hl8ejNyYQAIVkbuR7B4NBjMfjWK/X5V3uX8rgrH/Gz+3tbTlE08v8ATMRUQjHDz74ICaTSVxeXpYyAawg92iDHACvBWU9tj0vtMGzVlpppZWfvWSbdMxm+3pf48+OPTsnQdjueW7PAQWcvExE52AFtqLX68X5+XlMJpOG0zWdTss7cMQfHh7i9evX8erVq0YGb8aXDgQ5IQv7RcAKrGd8SPIJGNMOp/FUxmQ8kzIYW/hAeQgMrjM5QXvwbFYKua2dXUqbYvOzU4Ujh+OI0+f+yf3Oexz8sQNPO9Hv2HvwmTGLdSITZX6enUX00s/iGsTtV3uOMYsxtMuB3+Dy5wCL+9Lvq40dl5U2zNfYybVkx9XjNQfZ6D+POZfTpJE/o02sIyayOOPB+J730FYmZm5vb2OxWMRut4sf/OAHcXp6Wra3oZ6U4+TkJKbTaazX61gul0+SslznvAKw1v/5nlob1vTFwmo56zr35vfU/rbOfpW4P49JTV9aaaWVVn5S8fxkm8h3WbB/tgH8bY7Pz8Xue8s18y9+ju/DPvBMgjFwI3AI4LTxeBy73S7evn0bV1dXhZg391DjLUheGg6HBVOBEX0fu1Oxy0/EASc66AWJzplL2DdslxNNzAHlpGqeBW6Dh3FAodvtxmg0KsEw+CVvU2e86DPlCJixFSZt6+CdF0HwLuPeXq/XWEhgLsv8Y8QhqMXiAHOZGX+Bl8GxThDKQQFvuY4fADdLf8FjgeO8oMMr38BTx7Co8aQDKTWs5UBfHnO5rjX87AAQn4PXwWOMD1bX0Qbw4pTJyXb0D/e4XRHjDI8hdJjy0u7Gq8bX9rXyfILu0Q8OVBvjMX9wv4OgvM9j1kEmuPVjq+145nQ6LWeU3d7exs3NTeHpe71eTCaThk/T6XQaq8/QO8aD5zr0k5gFPKznWvOkDqDx3WazKdjZbZt9eveD61rzKWqLQPxuB3OtE/RH5ncz//2zll+a4BmDjMk+B9CcweBO4H+MEZHqiCgTvwfwfD6P9Xodl5eXT6LVEYeBTGYjk4ozXyOagZmIR7JhMpmU4BaGu9frFUXGMHovWC/vZnLFCeMayuDJq9N5jEhvNpuy5Z6DbOylasOP8WT/VOqbJ2QPntpk6fL6e9+TM4b9rjy5Ui6uMSmXCaXaQPMkXiNXfB8BSIw9k2ImNo45y5kwNFDz+02IZT2nLt5yyaRXbvvBYPAk2OrnGHyw1JdnnpycxGq1KgbDW1RB6pnsi4hiEPb7fcmIevXqVWlrBw4vLi7i8vIyvv/978doNCqfAwTIgqJMDvDliTS3qYFAJkdaaaWVVlr5ycW2yvPvsWv8WY2APjY/G6hj17yK2jbdDorvN6HhVTKQLH7H+fl5zGaz4qBj37bbbcE+OHGffPJJXFxcNLCm30tZbIdMeGBjeYdxIrggr/by6vwsYBEIFGylM0bdX85uNqbgWZQTZwySILe1CYaIaAQaec5+vy+YE3wMprBu8NvnqXlbI57pVXkm0YwvnNlrcqxGPri8NVxWw4n5t4kZ2skkVXZajV+yU0hbGlvm74xv81gz8ZhxpJOkuDYHYtymbmtIA5MxrCJ0Pd1u2ecy9s943v3c6/XK1t8e9+BTj+eIx4QsfKVf+7Vfa/TPfr9vbCnf7/djOp3GZrNpBIQzRuez7MBn4tf/mwjlt793W/I//l3uq1wuv9N/5/mz9ln+/n3vyfX/tkiKVlpp5ZdLsq3KfBjf1WyS7bPn7YjDimfbeAd1PN864SiT2/v9vrEyyra53+/HfD6P/X5fkjXgCl1WB1wg1uEQfVaa8V3EYVtsB8woA5+xUoXk56urq0Zwr9vtxnq9js1m08C7JqIh3vv9flk4QFnNodaCN6PR6EmQwdsmgqvZScjnMvFOLwig7AQgOQONHRKwv7QHmB0OitU7LE5wAIH2BL8aP2fezHaPPoXzQidoO5eJ59g3sL8CBs6rdaibca313v2Zg02UB8kYnOeAgT3GPNZITs9cWs2/A3sZC9E+9IEDj+YX4aHtA9FO3oUjYw/6k3qxMosxS8CKNuYedDonz/FOgmnoSt4qNeNWzxG0FYEsgrvsSML19Dn6QX9st9u4v7+P5XJZyhsRZbvH3W4Xs9msrHK8ubkpPlCn0yk7JlAOb2vK3EA/EUfw/MYuYuyk5+DY7e1tXF9fN44myEmDlNdt60Q867el5qMdw5UOxvH7fXj2Zy2/NMGziObWjfx20MxOK//bcWMJaMQhupydnuFwGK9fvy5bh5igd5Q9G0jv1Wvn2pk0vB+DzYDGIcTYsBepz6LyBJyNAeVjJQ/vvLy8LNHl09PTEkHHIJH5yQGmEdHYVogJy/XwpGMCyIG1iOaKIU9KlJeJx+QRfYZk5zETCp6IDboMqHy/r+cZzgS1QfEE4cGdCRYDKBt/i9uEidNiA2HiwBkiGWTm3zw7G1cACJOmn8PYYYXis2fPig7ksrAdE2OOTKherxfPnz+Ph4eHuLq6apADGLiLi4v48MMP48WLF2WlGRM+W6XaYNWIHvrBdaN8WW9aaaWVVlr5yeTDDz+Mt2/fNrBVBsvZnn4dyddm+/p1kyCwdxHNxJhs840LnVH57NmzBoGAY4ddGo/HcX9/H3/yJ39SAmfGd86w83Y/vV6vnDnrffhNrrDtMdjDgaVut9vItqUO2aZ6xRkOGz92dpxgYpwFbskOV8Zb2H7qzvtJfPEW6BHRIFYiorSDM36pu9+dMaMd2Ex4WVfsKLoOxgrG38aIGaOZbHA7ZCxiB91EFe2V/Q8757yH/vAza+92m2TMR93sFPsZrrfraCLRGed853LStrSVMarb2eQlel5zmq2XlBPCgFVkZKl7+x3a1VuU40v98Ic/jIhojCP0gaxctlp1+zjJzG3trfD9eY1Uyvcj9hP4/fDwUJIY85hzv7ifrO/Wjfx5/v6bCgTZixcvfqL7W2mllVYiniYR+7PadVkcRMg8AnYIbAV+yskziOfhbDexD+ZjwETn5+dxcnIS2+02Li8v4+HhIWazWbx7967YqIxlwUNepeWkZ/Ae5aJslAWbBz+IreUMMuymOUxwjG0ywaSIxwDYdDqN09PTuLm5KckblMHcpjEm3ByBAezeYDCI58+fR6fzmJjv4ASk/nQ6Lf3O+8zReOGA7apxLWXjSBCCJqzQAz85QY2+AyeYn7I+oDMkbRv31OxqjasDJ/h/2g7O1hyp+9y8Yubqsi5moa2NF7I/xW8Hy8zjGfs5Sc4BOHTS97j9jM+9bSd9aB3KPJ4DVt7a0av90EUHdAhqOqjDe7jfOkYgFX0iUP7w8FCOODLGgt+krXJQzf3qc834jrHqQB9+E/zmcDgswTOSDEejUZydnTX4UHSbctIO1DUHh+3bMQ7pV/sb/Gw2m3j37t0T/TLutZ9rvG+dpzz2idz3LNTI76Dt7AvYB7H8pJj268gvVfDMDgzOVQ6U1Uh0OtWHbqKsVpaIwwTBYMpKwz7IOIqcP8FEc8wpRsF2u12sVqsyga/X6zLQWebJcxiYdvYcVPNyWwYbwMJRZZ8ttd1uYzKZNPZ0hRwyoZKj1ZAgznR1oMpRfQyBnUQmVgZcRPMMkiyZ0PEAfd/1npzpe7/DgMz1szNtwMMk4syjTBqSmXDMCXYdMqHDdznLmvahLK6X29hGnH6KOJAJ1kEMFs4yY6jf78e7d++i0+kUsOU9dgGLbBvKdgaesD/88MPo9XpxdXXVADE3Nzfx7t27WC6X8eLFizKZ0/YsuXf7eMxaagRSJqdaaaWVVlr5yeXDDz+Mi4uLKrDFxteI8Z9GsiN4TGwj7QzXbEAOekREzGazGI1GsdsdVp1hYyE/IiI+++yzsm237SbOo7MCIRbIjO10OiUb1niJd7hsdoQcFON/3tPv98u2KsaarqOxZ06w8nV2mjPpkrEd/W2HG6xDNib3k5XKu9kumuvBlNQfgsT97/cb87gtjSW5jn7JWd48O+PJHJysEW2+3+U2PqvpHWXOODEn+lGOHLii3/1ZjbBx/2Sy0hjYdbAeGE/Xyot4HmDMOcvf3xlv577mmrzSjjNSeB4BbW+LlNsMrPn69ev4//6//69xrh8ECpn3s9ks1ut1owz5JxMExue5LbkWcq6GPf3ciChbbuXgGfWp3fuTEge57F/1HHT/ww8//Ine10orrbRiqc1BYAZzQPn6WjAgormiwfYDgbNC4Ezgtmp8knkV5mlWXLES+vb2tiSdz+fzWCwWDaKe+8bjccOGGZdQJ8rHaiufE8r32P7lchnL5bKsQLm7u2ucFeoAlAMOPJPEfpLBuA/85hU1DijAaXIOGhzkyclJnJ+fl2fRF93u49aLrDaLONg620fK6JU7lNe2lGfyPQE8jreB40KHvDLLHBzYwbydVw954QTbZ/LMGi9sPhb9Mmdn3co2F1sO1kG84q0WLPOKQvOy1CMH5ni3x575PnPl9h94vnlFypQD2PSxVy6yEsrB0YjDUTmUz7tj5dVLHtMkGJqPRjLHjz746BfeyapH6zm8Oz4gbUZ5GSM5KdLzSY1fxpd0ILjf78dsNiv6ywpQ8//IbDaLyWTS8AvzasUcaOZz4gD0TUQ0toJ1O0c8nsVGnMH+zzH8a3F/vY+vdYJpFtsB5kjrpt/10+Dgr5JfquBZxCE72NsWkmlghc7ED58RaGJw2qH1IOx2u43DQSMeDeRkMinvwhC8Lwjkd5t4wCjf3Nw0gl5sG0SgIhMMNqBMMpS90+nEaDSKu7u7ss+/68o5FDiamTyygWNgehWaA0rOHOH5dkIdgMvBK8paIx1q7VczTo5457Y3YMtOfs62MKFwLPCasx1qRIUn+AzIfI+zUvyZs7ghGBxstHGj3bPx9MpI19eki/djJtNhPp/H27dvy0pFCMbZbNa43/3v51GnDz74IHa7XSyXy4Y+rdfrWCwWTybLTuewT7YNT00fagEzt38bPGullVZa+enlf//v/13+rmGaTETwdyY+shPpRA7EdhCM5O/4je3A7mXyhevyyis+x8ayuhoyAodqOByWveM//vjjWC6Xsd8fgmb5eZQVJ8VbgOesTttwB1y8aiwHcLCrYEHvF2/nPjuMTrIy1iBT2Kvj7TiBde0oGt/lYKDbw5+xfXhEc7tn40Xan/oao3GNHXg7VpSrFvyKOCRk5UCYgybZefMuC9l38L050FQTl/nYmHB7UQ7qTj2tO/6Mv41FM5Z0e7jMtI//dwIWfZZXKOZxi57RHwSws7Nbq08mSfHfKCe7Z9zf38eXX37Z0BP7GPf3j2dGf/HFF3F+fh7Pnj0rfU/7sM3UeDyO09PTxooBvze3l/syrxJ0W3sc5PmJdqJ9nUVMG7l/M0lg8iLPt1kvfU++9hjxkO+9u7uLP/zDP6xe20orrbTydaWG82rJ5ZZ8vQMox3z+TCjz460dHZjB7pocd2CHVRu2h+zORCIQ2znyWa932G0g28u8A4HrbwwH1uOsWLhB849cix1kJU2n04nNZtNIDOH5fqa3TwQPOlnL5cqrvLxQgM8mk0mjLE7Ep21ub28bQYPc99hGeE+unc1mjYUEcJgseECfdrvDVsicdYX+0XfmZxGviMGOgzNsv6mfF1LA06EzYBpzYvm3cZ9xHBykk378nd/Bb+MHeDP8FOM6f4au5XdkDMnfBJy93TycNXpN/QhM03aUG07eu1F4xzjjLtoInh0d9haafi597LFFHe1LOsEuL3BxUH2/35fdRuDdqau5ffqZdqde1C1jLbYNJ+ZAmVl8sN1uy7339/exXq9jNpuV7e7NledEMlaXZf+RGAdjmzFFv7OYIbd1zTdBH6x/DojmwLhxr+ermt9M29qPzxzutxk4i/glDJ654VE6d55/skFmsh0Oh6XjfR1LDVldc3FxUb6bTCYxmUzKgGT1GZF3no+y2QBHRFF+jPFyuSzGlW31yCpgIJpQguRhMkfRmQwGg0EZlEwibA9JeSj3cDhsDErejXPnyZxJKwdnTGJQFgdm7MQi1Ml1qQ2QbGSzg2nwFNF0Jnm3s7ZdB8psYsdEgsmtTLhwbc1hzY4w32Xjx4ToLBnXF+OS38m1BjQ2fvk9Nk4OrnEYq51/gmWcvXd7e1vOJ5vP54WoQAATDkDSfmzh6H2oHcwdjUaNc1U4e2+1WlXPpfC4MuGSQfMxMquVVlpppZWvL+8LDHzd+7NN92eZiLdNd2IF+IfrDK7BEJ7/azjCBD5bbUcctqCjLBDsP/7xj+PTTz8tZzlg4+yE4hiShZttoevncyEgQfI2g8YblNU21+W0k2rsazLGW5DkgBXtxHbeg8GgkC8OOHmrRrcDziO2mmzUvGLO27k4aOIAgnGPAwq0gZ2z3L84ohmfWd/QkYwT+RvCzOXIAR7rbHYqKbfLBP7MQTbrIpnebnOXyQ4s5c8YPdeZcrvMGVtbF6yvOeiTySMHg/0sE3U5y9gBKepoXXfbgeWsz/P5PHa7XSwWi7KFPu/iHnysTz75JM7OzkpGPwQCbTIajWIymcRqtar6hC6rCVCX31nJCPXJ9bIw3tfr9ZO+4Xv//z6ywP6I9Sv3c/47z7c8q+bftNJKK638NOJ53eSquRm+z/Y2z4e1OZN7s621TcB2mgvheuyRz2SKOAQCwHusoDKh7gCKk8YpA0Gp3e6wUse2ATtJMApbudlsYr1ex2q1Kmd0umy8z8ETJ8JkLMD7OPeI+mLzTcaDLQgEOhkMvMeOW8YilAP8RxtRdq4xp+YgHW1Anbzl5d3dXdmukjrRnvQTdt564K0xzWOCBb2VY26P/X5fkrwou7frM1YD38LFUQb/Jvhjru/YKin7MMZLHkdutzxmMg4xB0oZKCflNg7zSjDeZ4znd3rRAb999pjHKO1MH2S9rtUFvOnza2vtQp28S5rLXPML7eN4HPAegsD4iT4T20lebnd/bx3neCQCZcwftEWn04nFYlECv3x+e3sbk8kkZrNZ0Tvq4G3vKQvjx23qJDhw8Wq1iouLi1gsFmV8emWs2z5jxjwX0eaMe19nHJz5Wetc7s+sz27rb0N+6YJn+/3+yeozK54VIRvuiEdjMp1Oi3HwAHx4eCjGElKffUl9j5dbmmS4u7sr2ziyzc5+vy8DxxklZFNgcFGm4XBYBhlGEKVF2ZncPTmNx+MygLxSiMyVh4eHsrT85OSkLBElMs0zyfzkM5MaNpp5P1vaPKK5NY4dTE/8GA4kO9q155m4oEyZ1PDk70j9sWfkQJId59qybE++fq4zH7jfkxmGjHdl0IVeMSHxbq8aQwiAmWxA9w2c7GjnCZEJF6B0dnZWtiRgu0VINQK8JqJMoplk6/f78eLFi3j79m2DFLm9vY31el22haTsALP1et0IOOdJM/dzHu814qKVVlpppZWfXr4pkDUOi6hvy/g+gJ7tay4HYiImf2difDgcxtnZWUk+IbkDDDQajeL6+jq+/PLLQmQ4Y88YzMlX2PG8wtvZmzj+4Ae+z+W2PY+IkplopzK3J86bgysmxb2KyBnMvBtnLeLR2eN5tK3Lah0Ay3grHSfzgL1w4tbrdSNoZhIoJ1IZF+Ugg7GSdSI7zVkHcuCI3/YRHCj1u9zeNX3MwZYaCZgdRG9f5PJ6RwU7yJn8MwHiOtbKah3z89y3uT1cDxM8XE9wKo+3mljn/X6PLWNmyjAajaLf78doNIrLy8tGwDHvbPD555/Hb/zGbzxJPLy/v4/JZBJnZ2cFk9b0yc56JvlyULE2lizG+NSPcy9qep51Kv9fk5oPdey6/Nz3zcOttNJKKz+t5KBWjYtDjvEqeW6D5M7feR7Ntjj/7fdQPm/5a5yHvSEQ5tXDrLzyqmLb54inq7rh2OBOCP4sl8tYr9ex2WxiuVw2gk95FbjfYXtsLoyAgMUBBttIAmYOYpmzsQ2GuCcoQBuenp6WxGvaijJFHM7CpRzZdhEUpI+Wy/8fe2/WI1eSpGdbRGRm7JHJZLGWrq6Z0mAkDCDoQhBG//9Cd9KVAOlmBuqtik0WydxizyXiu0g9ns8xepDs7mLNB9UxIJERJ87x426+mNlrZu6LuLi4iMvLy1IfdoVg5y90a2fOGReEZ2C52bEBLgrua33V2VQ1XdqYG/YEurfxNuqQscisR2ZdzZR1YJdrnYWxW8smQ8e2LUFbfY37s3MS/nqOmdc5mIuxS9nMHQfHU18nhri93qKeBBUHLxpP7na7JYHFc80YKfdC1NdJJJmMxUY8rj+MceupHoMe+7vdrozTn376KW5ubop9QZ257+7uLubzefR6veLwXq/XcXZ2FpPJpGxtnucO/HDgGOUxNrnf6xvP+n8ed36PAyL5PdtUOXg04/08Z1kAXzN+/0vopL8651lEFGcQfzA7C+q8KLD4OI2SCeKUYyb5ZDIpiylCz+nfecJlgAij6eHhIebzeTlQcDgcxrNnz2K/3xdnGgsfizpCwhMVx0ZWKsgS4t14yyOi7F1MOzkAdTQaxXQ6jdFoFKPRqCxC7F9MWyOeFk5PFhwlfM5KDYKKyWMlADIolDOpaIsVBD9rA9WG+CGnS02Ry4uHQRUoAwSZDwaT8r2mPB69MLFguHzKsYMKfnorJxYtR3B0u097X/Octzmlvo7yPz09jTdv3pRxcnR0VDIvp9Np9HpPB+lS5na7LVH1jIP9fh+DwSDOzs7i8vKyXO90OiX6tt/vF4Vzt9uV8WZAIs9d91O+9kstti211FJLv0aqybUaCJKdDbX7s6Hl8mvrvb/zrB0Lh+6PeDojdjQalYPY83aCZ2dnsdvt4vXr1yXQCX3LmUkEFvl8COssyMLdblcOfu50HrO8vPUi5RmcsdGQQRDLdmQ3xqaNbUcAdjpPEcHcQ9CNHX2AHw7Y4bojqAF8qLd1Dz8HOOLzHGjLarWKwWBQ2uuoUvhiZ0IGCA45HmzQ85z1UFPWT/mc7+O7o2k9Rp0Vx/vy1i3Wx9x/3E976Ofs3DNw4/pnh5z1Ueuing+eN7Qv/+6yGCf5/X53vsf8NPhnPmGE217jtwwwAQDMZrMYDAZxeXlZwIvsEL24uIj1el221eI6IAzzPx9ibrDLPMmBWdnYr6191Nu6PevIZrN5L2DOz9XIZR7qAyjf8zH6S+5tqaWWWvoUqq1TJtZR6zBcP0TIGED6DGrzvGWYs4Hyepll9m63a4DovOP29rYEMHFPDgSpyfwckBLxFKzMZ84+YntCgoctO3i+FrxBBpbloXlgnQaee+eBbrdbtirPu3DRxul0WgLzyUij7O12W9pv5wgB15wfDEZo7ArdhAy71WpV+oKdvzjvbbd7zMoDs3S2YK/XKzrufv8YkETfZVluvNcJCBmPs5MlZ61FRNkmkjYRFOdxYL47g81EPbODrjYf0IXYUpT70W1oV3Z2WZ/KYzPr2nbIMl5sJznYLV+zbuQkAvjrbU+Nn+73+0Y2lv86nacjikajUSPxgD/3FW01Tko51of5T3IIvgQHY1m3dIAaW4pyP7t3uH+N1zIuer3H43HYQcF9Bk+8LT5+iNvb21gsFjGdTuP09DSm0+l7TkKexadhm4z+Zvzc39+X3em8C4P7NY9FrtsxzHXPG6+th2yLT8FobeN/bh31V+k8szMpR19GNA3mDNIYfLBTgnKXy2UBFo6Pj+Obb74pDjCuIfwAZpjYZPEgdLfbbflPujBZX4Aw1HexWDTK2Gw2jVRSnGAM1Kx80H4EGY63/X4fk8kkut1ueQfRxtlRw8DPQArtduSAnYksVjVFwd+zEmPHE22oCRFHA9V+q5VroZAncl6IrZBZEJjsQbdw9Hv5XItwqDl4MqDiupG52O12y5hi0ec5rtv4z7ytAU2O9qBNbG2zXq/L+RCMl+VyWd4znU4j4mnbq/v7+8Zcoq9Go1Hc3d3Fzc1NESzMLcYyIBzO6RwtRd0gg3FZ2H7KwtxSSy211NKnk4Hej9EheejrWWHPZBlgQy3XiXutA1EHFHrkIUAAxi6ylC0VO53H7TOur6+LHPVZt+xBbyMZXc3GoqMcIcAFyy7kr51nmX/eWSBvi+HoZd4b8XReBTotOpzPxcWQQsfDgIRPuf415xO6Ce2jvjhLqI8Dqqx/QDZ+uc9nJPA+G70OXsPYzGPF+mfNiVYbU47KdL1sxNnAtJFHmXmuuA7u45qOSd/lceC+zYCKDf1DbXE9zUcDPXleWmdGP+N9nle0zSCOQSHGuQE789hgIPo384/xy1jt9/vx7NmzEpFrW4g5dXNzE2dnZ9Hv98sOIgA02F3X19fv2Rw1vrle7hPPV9tN8DYHVO52u+I8t7M4z4Xa99rnQ/Sxe34pQKKlllr6dZPt9hqoWrPjazsZZVAXyrLZMiyDr1k+Z33DgRDOTmItv729je1229Bt+H2xWJT6kEley84wNgYmslqtitMMnQzC4YR+A0jPb2R+8UwOvCEZwFihd/rBEYbuCJ94ll2GdrtdjEajmM1mDWcTujFBVd65i75ih4bhcFj06ex0A9AnSAZHBvyOiCLvI6Lgpvv94xlVyHHqZr2cdllHgGfoN7m/raswXqzPuh+zU6o29mo4anaM8l7mAM4Wxp/Ltn1hvY8+zm3NWLFxz4xT5swsjwePLbcRHhP8bmcNbcPZmJ1Z9JV1Y97LeDX/rf87ixKdjXeic1JfO7x5t+3DHMhlR6yTFKgXfcrxRx5LzEd0TvOMHbZwwnmNxIZx5ic+gYgoW7mu1+s4PT2N09PTRhBcxk7JzGQcr9fr0r6jo6OC4d7c3DRw7TwH8pqax7rx3rxLiR2ZkNf/Wt+bjI1/Lmz3V+k8YwFnktmJZmPPgtpkhwbP4Wxyhs5oNIrxeBz9fj/m83mZhF4cvUhGRAFm7u/v4/r6OlarVQO8YOITdWHDnIlvZx6TwBEFTNS7u7uSdWYnAs6J/X5ftmUkJZy24rBg+8i8GPMuriMQPZFYBCnH/cNildO0M8BgIMFACPcxKbMg9GIIbw2UZIdRFmx5kaCeXuhdP7chLwq0h74zeJPHoaMgWKy9gFlwu76OnKFv4DnOKzuSHVUBbzudpzNIAGYsJMfjcdzc3EREFIcZC/7FxUV57vT0tJG5lgU3dZ1Op+X8QKIdADJcB4SQHaHuG/rU/Kwp4y211FJLLf2ylGW66WPrsgETG18GqHMZNYXbssDgP8b0eDwusspGEO+/urpqnEUADQaDxjbJ3h4FWY2hZLlkxwd1Qhav1+v3nD35XjJVKAswBN2WA9Z9EDb6koEh2udIRAxQgw3uC+rD84A1BoI4/wIHIvoTW/y4PzHakPMAUe4Dl8177XTj/f7s7X6sE0a8H4nKM+Y5vPDzeUxlPc91rWV4cV/+nnXQbBxar4140mezXm0wkHrQJvTJbJh6XmQdy6AKYzLrUzaIa2SbyNmS1gndPuqRsyf9TteH3waDQZycnMRoNCrz1TbD9fV1sYmI6sfWOj09LVvVUz8Dh9mJna9lvuS+zA41jyGifLODzO10mXyuja0anz5EXj9bx1lLLbX0OcnrqWVVDl6xDsW17BTzesg9NdmKfsH3iOb2xxHvZ5wb0zEGwzMEWW02m6Ln0A50GmfeEOhhcJ7fAeFXq1Xc3NzEcrkswVMG3J0x0uk8BlCfnJyUnXrQ+0ajUQkgga/GYHi3MbjRaFScamCHyFJ0Wwdlca+3l8bZ5d0ZHMyUgXTk/Ha7bSQUWMfxcTnGq3BAsFsX710sFqU/vGUifUCf3t7eFkeg+43EAsaEsdws040p804cOU5OcFZZ1ulrMt9jlznjPnQ59B/jxM4s6mYC96NutIfz46gP+J3LzLhpxFOQfMZfsx7t3113z7OM+8JHzxvPeeq53W4LFs72ot6a1J+tMzE+XAf4ttls3lt/IqJkyNmJmfFt61SMMepxc3NT+oU68zcejxs2Jo40Z2NStp363W43bm5uigPt/v4+zs7Oylaq+/2TI9i87XafEmbI0Ox0npyd3W43Li8vG0lEtofymPCY9XjL67J1XcZAtus97vP7/Lz58HPTr9J5FtHMfLFjogaoe+IwkPK+wDio+Ot2u2XhnUwm0ev1SkqyyRk/pCDf3d0VQ46JY6MSQQRRJtloODj6/X4DvAFQ8SI2mUzi7OwsHh4eSoQKZ7V1Op0CZDw8PJT0V7Zs5LwKC3pPLACWrPjAL9Kms+fbYIq9zH7e/eJFkwXL4FQNIPCCnkErLx6ewHz2AusFOOIJoMEBxHULZwNwtQXAQJAXS4MafM9KZuaRlch8P79noCk7tiKiAZDluqAMdbuPEVQXFxfVPYDn83nc3d3F3/3d38UXX3xRtjRA8WJu0Ybj4+M4Pz8v5/ixL3ZtUa0BV3mxNZ+8qNbA1JZaaqmllv42qimuhxwBNfqQY80KdpYJNkj9vgyIIHsy0IL8jYgCHFjn8+Hr+/3TFjJs64YTiOesj9jY9dbHEVHABEcrRjwZujZa/ZzP3QAMctSkz3dw/SnDWS3oKRj43Icxz7MAD3Zi2NH08PBQtglxkBL6K2COo8ZtBKJ/OkgLHtEu6pINb7c94skggw8AS/yWdYCaw8zf0efgmYEr63H8nr9bH6wZhNmYtP2R25rbmIE8gwn+zU5Ttwl9arfblfFsPbEGkmSj1fyCP5mHLiODF7bLvPMEYyZneRnAcX2ZQ85wHAwGcX5+XrZ2ov3r9Trm83nZZpz+ZS4SUe/5l+0G1ymPl9z2Q2uf1yJswsxvjxV/P3TPh577EOV10TbxX1JOSy211NLHKK9hXh9Z340F2YbPa77lpMvzM3Zi8X7uMxZU+83OJ5/RhLwhA8qZLicnJ8X5xTZ6dpSgC1HPo6Oj2G63cX19HfP5vGSyWW80H2g3OyIQNEU5DmoCX0LGGzcD1CdgKSIKzmPdx+23AxL9ymez3d3dlW0mwTadNOAz4RaLRSwWi8bRLpRtoB7ZzDnDdk6S3cazDw8PxYFnrKy2kwIYnceidXHqbd0rj2HqQTno5e4zZ4HVsEb6ws4D3unkiRyIZeej7SHrHpDHuHU/yvaW8dnRmdvudmBD8JznkJ+zLoGjLzvC3B92PtJ31Ml6m7FfO0mpozMyPZZzgJh1Uuuptoe4h76yL4GxwPxmnjDOaEO2d7ApmYv0J/VmXjOmGSu8z8/i+N1sNnF1dRUvXryI7777rmzl6OMF4D1Yq8cvbfRROQQI2EbJvMtzg8/ZvoJ3jDv6pTbm7DCt/fnZz0G/audZzjo75EDjM9/ZdobohIinLVIYCGRs0XGTySQiokQRemFgEK7X67i+vi7pkF44/T2iufUkkctHR0cNh9bJyUlJ0dxut0VIkjY6Go3i22+/jdlsFtfX16UNvV4vJpNJAT6Wy2WMx+MYDAYlE4jf3QYcYXZkua1Z2aAdNSPQRjCTmsUxO4lYlHA02mDPk65m5BrYyZOuFlXhermtlF0zKi0MDRY4s86LDu9jC0QiVvxeyrXgtICn/Ax8ZKGEkLFDOSLKvr7mo9vqtGTKMFBB/zM+Op3HLRxfvnwZvV4vptNpqSeKIp8Z9y9evIiHh4eypzdjnTqglKH41MgLqt9Xi2ZoqaWWWmrpbyMDAJ8K3H4IUD5ENsAimts28v2QbKg5LfiMgdztdhvRtZYf9/ePh4kT3YhR0+/3Yzwex37/tMWh68YzOfgD+ezdC3a73XvbM3KfQSSAfWRodpjZMRLR3OrDW3SgR3hbbesI1nd43nqPjSzrGnkcwFPrCdTFhjL9YWAnOxfYLYJ2cC/8sXMuZ2Q5WpfnrW9bB6yNPQNsNV3C+rH7OQMG6DJ5DGYD03qf+z/rhDW+Z9AkG7l2NlIfbABnTXJPBkSsJ7uOGeBkzOcx5/7wWDFQyNigD9FR3Q76CyDF2ZURUbaD6vV6MZ/Pi9672z1udUPwntcSbw/OvEVnzrZB1rE9p2u2ziFwAeelzzvL93xoPf1UB9eh8eFy8ntrZXwukKKlllr69ZDlUl5TMlDv+2rray6jpouyTro85FIGf3O5yJnsjEBeDofDAkLzjHepoh1cY2cddILFYhFv374tTifrgTzj7BvjOmSVoCMhd1erVbnHjhG2ZCRDG+cWQc4R0ZCNyFfrGchV5DO7XIFhkSFmHXG9Xsd2u43lchnL5bK8G/5bz6A/4DHOP8rAQRjxhDFGNGUycty8QvfCWQdv4aOD1lwfY7S805iebYCHh4dGcHger3w2Tx187/scWG8d2rpDHuO0lX7JmCQ8sr7p7SspNwddeStS2yjGf22nZScV936sDbyL8YUzkrKog3VmMG36D57Z+UpfwwfrasYkM5ZJZiV978xH96O3YvUcJaklz1HsOY87th9lvcFhhdMZXmTsOPsLIh6z4169ehXz+Ty+/fbb+Prrr8v5hOib8Aj92k5Iv2s2m8Xt7W3ZcYz+sr1yCA83Pz0efZ162FFm+zdviep3eY39HPSrdZ7BWAsQO8lsBHviAywA5HNgpoF8zsKgM5lUHAi/Xq/LxLFQWS6XZQ/jTqfTAFkwHLNByqKWBw9pyvP5vGHgd7tPB3lGPDn9iGLwdoz22Ps7Z6B5sLOgOWLUPOM3OxyZFJAPqKfNVmLot9wv1Jv7KdNCgfsNOtnpZKMe8rMZFHDkdY4UgVAgMvDmReGQU87KhwENtzl77LMDjkXZjjW3D4HlcrifNhu0spDgOmMDBYHFNmf+kZq83++Lo5bIB289wHtxhuY9r4kussLK/Y6spzwrrR6Tjg7JgGtLLbXUUkt/PWXANYMLJq/R/l4DZA+BtDZOKCsb2y43R7y5Xsh15PxgMCiy1IakdS3OYiDbH92u0+kUnYdnUehtmFIm0YGuEzpq1k2QvUdHR8XJYV5a18l1jmhmcGUnC79n0ITP3AfwE/EECDhSkcw+fncWEfqfeUP5NgCtv9gZiA4FWV+pkfWRiGg4qzJP0GmtM/A8Oh3Xa7yFF+jJfLYxbgDCjso8V6znODDMfMwOEP9uHdqgFfd77viawUS2X8L5mB3PtS1LHS3uNlAngyIegzUAxWWsVqui7zG3COSznZLtDOt93W63RNzO5/P3tn3K4J+d8HndAITxub3u28xz920NWOD92HBuS76/Nm/dL5/yLt/Dc/78KVRbk1tqqaWW/lKqBTpBWZZYjhk49v25XMsHngELqOkOLtdBNdvttmzn7a3jrONEvH8sBnVBN3JQCvjJ7e1trFaruLq6isViUc69RC6hm9IG9CQ7FHC+gLuBQXGOFLwBa/niiy/iiy++iP1+X7ZIpM2j0ajhKECWgvsQyBIRxalAVgp1IHEA3uMw2G63pY0OYEKm0r/ut06nU3YiIiPO4wN9wDgbQTNkxaE/RDzqgrUdKOxchG5vb0tihMeLMVF/ZszR5qzjZN3NuqZtBzsSrBPUxrd1aY87yBlexi4ZT4xPjy+wYn6zjsl7rdtRju0R7nMd4bPnLu3MThjz0W3OOjBYO1il9WbaYzvD44t2Ui7jx1iseW6no/Vv5rTbym/ceygAzfYNZwwydiOiBGyi88JDAq0oNzv/jEfP5/P43e9+F/P5PH7729/G8+fP37Mxa1g1c5Ngx/Pz83h4eIjlctmwGXmv+w8+Zx3f/W7+Zx65DzN27nZS7ufEdn+1zrOIpwnrLeps8Fg4W9gwQFj8IYQo50n40D/KHg6HZfBtt9tYrVZxe3tbDLiIKIIIRxb7zfo9DBrvKezU8d3uca/8iKfFxE4vgJ2rq6v3jHLezxaSo9HoPaPf2UV2HlJ/L6DUjxRqyuA588gLoBcqCyovUq47E9P1pM/scKz9bp7ay54nrgG2LBRyuUTcoKxAjsjITkG3gQXY77RQdNSFI9jdJsrM7fTizdgmUol2eFGOeNrqCf5st9sCXKzX6wI0EsnhyB+iGij/6uoqIiJ++9vfxunpaZkrXggnk0lDgCAccjtRMBzx4/7I383TGqjRUksttdTSz0MfAlYzUOv12p+RC/m3DO5mxdzl19b8WqCPAfiTk5OiL1kH4V7rgWyRzVkUrj/6DTI2B9x0u0+7D2CkUTdAeW9tjG6I/uWoTfMGGX/ISeago8xjnrEDC6PJwSp+98PDQ9nCmcw8G/AOuMHpYAMYHZJ6OVLX97lNNkzRNa0reltoO7Os31Ev88JGrp15u92uOAyzfpGdjdl49jN2ajHu0K1xlma91eMZvmT9zs9lgII6+n7z0YYy76u90/XKIBLPoZfWtjk02GHChsmgWV4bvAsBEbpsAerx6+07PWdpJ0GORM5OJpMGcMIYJUJ5NBrFxcXFe/zMZJ3SNiJzocbXTOi71KUGtmXwgP7I937oPR+i2hpb67eWWmqppZ+LDgGite9cQ/bjgOI+y1Z0AOQVugIyzOulgW7qZEAZHc/BxQbqkR2UZ2cd+o3bgvxaLpdxcXFRjrkwbuI6UH9kGTqmecIWiTjvkI98HgwGMZlMYjKZNDLVrBfDE86MAuvj/DHrsjhlvF3i/f19cXTloBswULLzsn7GrlcRUTBLdEf6G747I240GpU6eItuHHvo+NaZvXWm5Z71BcYL9sD9/X2Mx+PGNvGUw3vMP7c9O2LQkTmmxzqC8c3soHDQlevt8eBAMK7ZEZmdutk+4R7rqs6Ucnvy2MSRRR3dNs9DP+u2ZHsIW8j6tXnjtSDjrIyVnIhiHTHiaUtMb7FIXXjvw8NDLBaL99oMJmqHOffjcDrk6KT/WVuYS9hh/X4/zs7OYjAYxHK5bGzF6h1LjFubb/CZ3+/u7uLly5fx8uXL+O677+K7774rfoKMI8Nb6kb5w+Ewnj17VurCb7YJjNd/iFzH2rpPP+WMTLfPa9fnxHZ/1c4z722bwRT/mZhQDFgWdJ4F2IhoeqVtzIxGo1gsFo1sMyI0nLXmQ98pO6Lp2LDxy2/UDU81Tg8bsRFPW7GwMHhR5cwzt99nDfiwTTsgc2SqIzm73W4Bo1i4fJaWFRCuIUzdPuplECX3VwYc4GE2Kr1o14x032uFzmAS5EXckah2nqK4uEyDJuZdfj5HxRr4MiCXlajsdDOAAD9ZcB3VkdtsHo5Go/fegzJG6j58yFvdMPYWi0X8/ve/j3/37/5dnJ2dFYUkIgo4yPfpdNo4o4Jxtt8/pi4DXJryeLCDnDnvhballlpqqaXPQzUg9mNUk8dcr5XpNd3AshV360415xpGDoYOct6OEOtkDw8PjWyznMFjg5H3+F38jqHEdf8nMIUzaK0X2bmVDULq4chRvlMOsj870SA7mZC73hIk61bwl+hcjGR4ZKdGjqrN/LcTbL9/OkOhFiVsY9x6jflgx5dBBqimN1pX9Fix3onu6vHkdrlvrHt9qA3wNTt+MuDheh9ypPh+j0vPBfMZ8pjP8yQDnL6fdvDfxq3BwKxzu144U80zA3LUAduJ6HHrgTgxCbrinZRzcnJSggO9TZX1c/RY7jcgA2+Yt+abnaCAp24LfMv9yFhyFqptIcr3+maQ7VD/18aH+87l1O45tOb+Net6Sy211NLHyGuRwVH/Zp3Mz6HvOLM9r2MOwoG81vK5FnzBdoEOKiZYyNsH4kixzMHJBMaDg2GxWMTr16/j+vo61ut1qVN2Klmv6vf7DTnigBXwOupDcPNwOCyYyWQyKTqHn7WzB90UPNFyHUeGd51CxnPUy3a7LTLS9by9vY3lclmC9JHntJN3IN+tt1IW78VpZiwRHtgJQhuz/gOWy7jyNuj0E7/bOWHnnfFIykVnsJ1Af+VgPH9nXN/d3RXcNOJJ96kFGnkcG8tG781ON/cb76Ut1lHsrDAPwPnoE+Yb4z1jcNlxZqcevMxYrpNC7MyzPmjs1WOMcZb176xnZx0Ju88OWfoZzDE7xkwnJycxGAyKDlizQz0O/B/estb5WBrfM51OYzwelyCrTucxG9P+jBycyHXPRT7/y7/8S9zc3MQ//uM/xldffVX8DfDNQQbUjf4ejUZxdnYW7969a4yRD2Gr8M31cjtzP9ZkgZ2y/t38/Fz0q3aewXwGgfc/tbGXDV0bKnaERDxlyxgA8LZ0NmC73W6s1+tYLBZl0UKILpfLsohB9hZ7wDBBmNS93uN5Ui9evGjsr+yJgwDsdDrF6OS8tMViEXd3dyXKhAkCESEND1ksLWCY9I5MYJLiHOQQRHhhJcgpxf1+v2TswdsMuDhqyMZ+9vB7car1awY8vBDQbxZIBtJ83f1sAIb6Z5ACwZuBQPjjulInA0N89kJt6nSenL55LBrAslIU0Ty00dETjIl+v1+ifEjbHQ6HDeUNBQo+GABZLBbxhz/8IXq9XozH4zI22Q7BQhZBkRdJnmH85gXXSq/b/ksssC211FJLLT3Sh9bamrz9SyiD8JANmxwdWQOO7ZjBaLX8R2bYEBuNRnFzc/NeME7WV5yRZuPIW8ZxP8Y2IAdb0WC82KGVHUEGhGyQU4aBeOt26ALWpQww2ai2DmU91UaXDTnkOGXZWM31ttOsVk/f69/Ni/yM9SWeAyDJxq35kME56058zwFRWc+0M8mZTQYWDLgYtLOOku0H91F2HLssO9zyO7O+a6ChNqfMD+uL1m0d4Y7ORpkcYG4nVg00gUf5Pbvd09aZBjK5b7FYNA5Bx/7BNspgTb/fj/Pz88JDghbhUUSUcyUAVbymZAereQz/3EeQbQ1fB1hldxKPcY85ynB5+dqnUL4/r3e1ezwebDu01FJLLf21lGVNDXTme37OcsgAPffaAWWsJeMrDvL1eyzLwd2QO+g1DqyPeHIQRTw5Y5ARONHA+66vr+Py8jLm83kJ9si6Be0gcJ1gkRxowbNsR9ztdgvYjmxEH6Sd6EPIJBwGZG8RWMLuCLQRp4y3yIMvXNtsNrFarYqDkXca54t4kp/gizggeI5nyWRbLpeNjLbpdBoRj+c6WUajd7ETlM9yQi/JeCE8hkfOVqLd4HaMB/MQ/SJjk25nDg7jPXZ6OGg+O9zcPs8VX/euYdYns25p/DMiGhge2CL3UZ+8/WUO7PJ4p93GtXMgkQP1uGa+2BlpR6HrdUiHJEAq655g4MYa0cHgN/XMTtOsb9MutlQkANO2hOeVifnA/Dav7KvY7R53lbu/vy92Idmjq9Uqbm5uGmeiMZdZm3LGoHn05s2bMv6+++67GI/HjbaxmwhzmTqPRqN4/vx5rFarmM/n1TXrQ/ppHoOMFdsnmef5eV+zbfC56FfvPHPKo4VVdqBFPAloOtH3M+kGg8F7QoyJyOTZbrcxn89jsViUTLOIJ6HIAD85OSnRHk4V9cKLkECQzmazElVClAYZY3kfV87ngBdHR0exWq1iuVyWPY6ZdETFIDhHo1FJ9Y6Ikmra7XZjMpkUJ6CFih0w8BOvuhcXD3x+yxGy2cDLDjUv4BmU4LMNev8GWZhg+HqSMj5chqMcIpoHNVqhy3WGJ/Szx6ijWSz4LMipT+5jAyZevMyriGZaN+UYJDPvuUZfHR8fx7Nnz6LX68VqtYp+v99Y3LlOHxrsQnH83e9+F//+3//7GI/Hjcgs+r7T6TQyHxmXbJGFguexYYFDe6hz6zxrqaWWWvo8ZFmageTavRl8zfceAmezTLNelo2ViCej1cabt+uzEWuj2gYchjjgvLc3tt5BGehe6DvINWerOIIu4lGfOj09jcFgUDK6kdW01Q4W6zDZqRTRzFTJRrLLNO/RXXneeoAdh3a0mNcGmjI/8w4F3M/7eJejHV2W2+e2+5oBsGyU0W8GNjxubMTncqwnuezMU+tmvsfGuMvMBifv4L8NXutmmY95zOagsawP1nhkndn8NQji+6yfmuBhjm72mMnrg+tgewG7yHylPVwjIng+n8fJyUmcn58XwMR6Ns91Oo8OcgOK3k2COvjdeczmOe/32CZw0Fy2XcxTO/ucOZHnKGV9aF08dK1m62Qb4WP0l97fUksttfQhyoB41hdtvzszKWMyXsPtJPAaWnuH5ZK/cx9lID/W63Xc3t7GbDYrmAX1NKYI6O92UDeyzTj3a7/fl637LO+Rc3ZAsSWis5wpH4cWAc4OVrcu4h0CXEcHvUREzOfzRiA9dfIOXpafOJ7YYYt6OaAF2cd7vR2idXSwRYJYLPN3u6fsmW6328iwIgPKjhIcaMhVnvEROMYjKRddBJ4ZV4WXOCy8w9bt7W0Mh8OiR1ivxP7IuqB5nPU92sF92akLJmdnZtbbjE/a5vHnvBVlxm/BhR8eHkqShoPS4O9qtSp8w+Fou8K6ZZ6b4OH0O/y1U4r2GCt1OdYReS7rr+4D+s7rjHHbjLHmMePx3e12y84GnsvGIm3b2H6iXZRZG8fMDTLdwN7v7u5iPp+XrE7mqJMY4E2n02n09c3NTfzLv/xLPDw8xD/8wz/EdDot4wRfBfPKY244HBYHmnFwnO7ZRnFbvMbCg7ymwbcanm9ecW+2RX5u+lU7zyKe0nFt5HhgR7wfTZivMVEcAWIj1QbkarWKd+/exXK5LGnCo9Eo9vt9GegMKgSCBQuDCeGCgDo5OSnbNPb7/SLUMNqOjo5KdhiGog3Gh4eHcvAmi4K36ImIuL6+juvr69jtdjGfz+Pm5uY9JxwZbBHvR8d6m8HBYFB4RMYQ/cGzVmTgac2xdAicczR0NvIyUJSNeQsjg1ZWwLwA85cjOyxUDY4hYHKdrRRENBcZC1DenxedTqfT2CeXfjRw5PZ64ads3ovwNbndlMFiNxgM4vnz5xHxGHnBeLKygoJi5YKx/6c//Sn+03/6T42xZNAOENHg183NTSM6KvOTNvPfjnGDHC211FJLLf08ZIX3Y8Cq7z30W21dP1RGDmCJaG7zwvfsLMtyF5mKcZzvw+D2YeV5f37qY2ABXSs7mqjzbDYr2WboD5bh+fyOGiBk5xG/cS2D9y4ngwXWY6wjGLiyzoCeZ5nrclw/DH/4Y30Jsq6T9Un/nh172Xg2YJR1mEOOJPOHOn9Ij3Qds8EX8eR4dSBY7d3+LRvNvCOPm9zf1g/dbvhBfWpjwXXKzjobp7l9NUOWfs3R0jZs0eOpk0Et2kkGlu2VPKb4jk32008/xfX1dXz77bdlOydv8XR8fFzKs16P7munnc8hoV4ZsM2BctQzg1fmr9c0gzGsEXb0Z6qBwbW19i9Zgz92T22taamlllr6ucjrJt9Zs7MTIDsD7GRygETNKQHV1rOMreQ1lmtgLdZN0PHQS3BOuX7Q1dVVvHnzpmSLRDwB+Rmcjng6ssNZUADNbstgMChnhaFn5R16yL5ydtBms4mHh4cibx2UgmwCy4FPnU6nbMuIfD05OSngNxirj4nJ4DjYHoFlYDmW7z7/k/fa6UUg9unpacmwY8tIHDBkld/e3hZ8ifFRCxJnHPE7OoixqYyVebxRPrz3PcarjDta/6X/jC0aV7aOVQvYsbMZnlnXsi7sueI2+Bxi5kV2DHteoFvR19hE6L5ZH3QQEGPOOidOopqtBE+zMwa7grHtIDnrl55XYIjeXSNj+Mb8sy5IX/ie/f7x3EH0TLfZtphtKI95slvtSIcYV16fcOgyTkejUSyXy7i6uorVatU4Pzsnpvj9d3d38cMPP8TR0VF8//335Zge7GHGAv4EtoSdzWYxGo0aR0FlvNiYq21ljyH7X8wv75wG2QbJfpnPSb965xmTksHpzC53anaOeHGKeDKwWDSy0cRAur6+jpubmzK4EJI4v5zGzCB/eHgoGTYMdn5HSOLEwknW6TxuX+JFnwlgx1vEE1DkfZpdDg6Qy8vLePfuXfl9v98XxYAFM4NX1Bc+IkABh7xYGJyy8LESwaSHp/QB5dacPZ6snnTUy0BXFiA8YyHr/rFQykYybfHC58UvL4ZeoHOktcefn3GEVXYEeSybb5TlNltgM2YY5xkQYr4gvFz34+Pj+OKLL2Kz2cTl5WUjctbKFfxHsDLO3717F3//939foktyfw4Gg8bYov3eS9ltM6/9Oc/fllpqqaWWfl6qOQa4/iHANivTn3If37MczOt8ltM2eLLe5vqyvfV+vy/RvMgzDGobpK77brcr8g+ZB0Ae8Rggxa4B6EcRUfQq5CAy0XqADUPqaqdOBiGyU826Sz5LzJGclpsZcKBMyrE+QPtd16xfwQPf6zpm/ctAAuCQHU65/82zrIPZeLdu5+82HH1P5rl1WH+u1aemq7gNtkEyyAIZMHEf2unm/sugIP/NZ/MQ/TnrjG6LeZl5YL09Ay08D8DBddfLYxtQEhspOylpr3l4fX0dd3d38f3338d0Oi3no/V6veKcBqDA5kEvtREPCOQ6ek5knroutbXEYxAbwfwioyDP4/x3iNyneZ75+6eWkfvG5bTUUkst/Rzk9dx6hNca1ltwLNZ+79pjHZCADMhyl3fVMtj4b33HZUQ84R7IDx+NYb0CWQFOuN1u482bN/H69ev35Cv6JHIAOUJbc4YZMigH0+McQ2/lfE8HLjkYabValcw3eGxHCbLS2d+8f7VaNXQg+o4AauNhq9Wq8NZBLc5u4r/PHyXDhiQA1w19B6cBOJG3kHMyATt2cT8O0KxTuz9sM2RnlPvaY9S6Z9ahcHzAC/Qg6+DGP+0oMa7JuDJebb4Yj7YMtxONttkRC+VxB15HRhP9ah2fepGVZp0yY5jWS+zsoix0L8aJHWMui3nOWALztN5Of9pp7Hdzv+cv7TTW7TWE9tluyLo2ZXAfGD4JJbQj96MDL8H4s4OI/rduBn4a8biVKWN0tVo1nPvwn8+2g7fbbfzxj3+MiEen3OnpaVkn0Ynz9+FwGOfn5yWpwePN+mheX7MeD9X0Z5dlB5t59yHM4Oei1nkmIyd762ufa8ado2eZGAYZ6Mz5fF6MuYjmXqxMfLZ99OJgIYqARBA6xZSJzIJJlg7v4vyM5XL5nkGeDWz2h3XZCJr9/im1lYwjCw9HCGR+RUTJOvOZBBALWq4fz8M7G9VWcOwZz8a6haEVAC8AGVhy+fDR78uKGeSock90L7CZ8jsNumSQwfz0GLMgzAsUC5wXrFrkhCO2mCMZLINX7gPAr81mE7PZLL755pt49+5dbLfbBk/gIcBhRBSl6O3bt/Hs2bN49uxZUWgiomR2ohBGPJ39R709X2p/nsfmV0sttdRSS5+XMvgacdihVpPtEe8D9JkMKuQgHMv32v3IEBuoGDQRTccCIAQOMQwJ7sPQwki34yyieW7tZDIp51HYUcN/R3z6mnWk3C4DI/xu/cJgUZbt6LC0xX2THVDWi/hu3Szrf7TP92dHFZ+zU7BWF/ouornTQL4/61Z2Cua28Cy/WafIOlntPa6fdcc8brPhaLLRWAPtXM8csOXxap3TINyhoCH6wJHmjBW/w7zPOjzttg6J/koAIMCX9WQ7rbLt5HdCtMfAgfVbZ4a+fPkyvv/++5hMJuU8Fttp2Bbeqt62D2Wv1+sG0OS65LUn35P7yrZS1uHv7+9LdmoeU+6nQ+OiBk5l/uVn8lrsOZyfy+O2Zs+01FJLLf0llPW/iPd34wEPc0BGLTjIIDxl5nUrr6Om2nVjSsfHxzGbzeL4+Lis1Q46xukSEQ0w//r6Ov785z/HxcVFcSx1Op2SKUX9HOAeEY3zkCKaW1sPBoMS+MEzBtDZZYrt/JDH1I0A+QzCGy+Dp5a5ONxoM3VBflJXjnGxXkO7qRflco16OuDajr+IKM4xdHHeiY5nzCuieZ4wur0xOWeVgZlSjgO6czC6cbTsSMoBS3nMwRewTd6T9ciMuVFvys14Izp91vNrThP4bb3EwUmQdVrKrm2R6qD2jF3a3uB3OwL5jXr4nDIwaTt34SGO4mz7US71c3aZnaDsLsB9dswzN+j3nLWXx5L7h3HptpKRyvaH4O3w1hlWfDfGORwOC37K3Ov3+8XmxGnd6/XKMU5ff/113N7exnq9juvr69hut4310O9l3G42m3j58mXJWP3mm2/KznLo0A5qG4/HcXZ2FuPxOObz+XtYNOR1Hn7iKK3prlAu75AOe8iu+jnpV+88s6DDAZadaCYb+XniMVEQFAAqDw+P54UhLGuKwdHRUTlkcDqdlgP5er1e41BStkU8PT1tZIbhvDg5OSnZb24DzzLQGagIubu7u1gsFiULjsnOBOKQzdFoVDLUaJ9BIb+Txc3ebANDdmpQVk6ZzVsv1hxWFhYY5u7XLIRsjGbArjYZqbuFD+0zwMO7skMq15NyM2iTwbBDdbSw8QJhoMR94QXbigvghcERv9OREl7kHIHB2DLwxkI+Ho9jv9/Her2Od+/eNRRe85XxgJD6P//n/8R//s//ubyHZxhP7oOsDOT0aMai+fCh+d1SSy211NLnoZqjAvqQslsDPLJBaJ3M8iwHSOQgmWzw1HQ8OxLG43EB3omKRLfBgEG+Wt5wnW1IAF/Ozs6KQYecBQQhwIj6IGvtYMrZRQZVMujudhziYe3Pstb8inhyWmW+5/uor3VC7rfjEd2DcqwrZR2q1pbsvIB/eftqU37PoTFpfcN6bK5bdrjVDFR48KE65fFMm3iHyW02H7L+WNN5zDvzlvLy/KMv8+81Rxrv99jkc94xwMCE+U8fW99kjnHujKOsj46Oiq3F+Hz16lV89913MZ1OyxykTOaywZsMeBn8y3zKPMq2SAZ/s32Ux3Xe7ogyM3k8Hvr9U+nQHPPnGqDGb3/Ju1pqqaWWDlHWubIMgzL+we+Wt97muqYr8kytXMvw/Px0Oi0Bw2SecbaVMZGIp6Dwq6ur+OMf/xir1aqBc1kXQv4YT0LW+Rr6YQ4aWq/XxUngrRmRN+iU7Ga1Xq9LRrbPkbJ+gk6GnFuv12XLSvBJ777A1o7UAx6xHSRnJ9kpQHZO3kUq78aVA9AIkul2u7HdbmO1WhX9mbGAvGenLpwXjAHKAD+ljrYTPI6gLMONbeXgL+swWU/KQTQew+Bz2aHl8eMxxjtz8Bx4qrG7jO+hy+DUsd3i+lG2t8G2M8v4q4nx5fHuMc13b5UP3/27z+gyb+ElerYdfGCDBDRyH+WzpSftoQ3Gzq2L0wY7D80nj0//ht65Xq8bPCY5gPdBub/p68Fg0Djfj/r5/D9nWw6HwxiNRjEajWI6nZYzFnGieVtyHPWdzuOWrD/++GMMh8MYj8fx/PnzoqP6LDN8AqPRKM7OzmI+n5e2Me5tJ1intu7pscFY81pas0Vyv2Sb6XPQr955FvF07pkngRdBJlHe5s8RAUxMHFKkDSMM2NfYk9WLoR1C+/2+7FeM86rb7ZYIZSaNjXiEB44zhOFutytRJ0RNEu2Cpx2hQ8bbZrOJ4XBYJtTl5WUsl8vi4GDCsc9pp9N575wz9l6lnbzbjhp45/MFWMTNd0df0l4vvAZFWABclyxkDGxkI90KTAbpKOOQUUw0LQszTkXXyYLL4EYGO7iXujriqGakm285s5H7uc5vEGMfZQInl9tj4C7iSQjaYcfz2+22KFKMj263G5eXl7FYLCKiGZE7HA6L8zji8cDKP/3pT/FP//RPRRCgvDgixKALcwmh4/mbFQA7zz73AttSSy211NIT5TU3r+X5vgycfGjN9jpvspGbr1kW+M8BM9RxMpk0DiG3HMf4JggJHYnP3n6EveGHw2GJvPUWyM78592OTrTs5T47ILgf3cF6BXpCBoPM4wzq56xxgxvoBnbqOEjH//0M/wk8cx1sHBuAsPEOUJPL432W8+gy2TDN+pbrYN3GOlrmj3U6j8Ps2Mg6ZQ2gq+kk2bAEJMnjnPHq57NjJuuxrpt5wthm7PDd/Mx94zpEPIE55on17py5xT0Gfexgi3iKkOZ+wC4AQOrqsx0Mwv3444/x93//9zEej4uNZNAnA3KOWt/tdrFerwuPch+wZhgUMM9oT7ZHPO/QvwElsu1T6y/bJx9bH/9Sqo2dQ7+31FJLLf0tVFu7soy2/gNW4bX2kPyzbPJW2NYh0A0so2vA7Wg0KhgdGBVYBdlXYD/oRpeXl/GnP/2p7PxkWe9z0wgidmaOAXj0QDA/cDraAQZIvcmWsf6C42uz2RQQ3xgmvCIIhTrCA5xuPg+LOtIWeGxHSMRTZjwOiZxFSCA956ZFRAned1a4s5LgEY4RMgH3+6cdkeyUOT4+Lg68TqdTdHf4RuA2Y4335kA8+jvjiOhI1rWtT1mGW5/yvQ40Ms7pcexyrAfk8W8nRNbfyarK2Kt3+bL9lJ1+Litno/FO5qiD+BxExnf6i7agxzlYyufVgTtC1s2zrZf1M95NGxys5Pust3HNjlnzPuuxWc+nLtQVO5Jz0dhVzjaO+ZRtCuYcjizaz/jGMeYEG9aH8/Pz4l9Yr9cFf6V91k9vb2/jhx9+iNlsVnwQOMsYJ/f3j9ufz2azOD8/j1evXjX6oKab1uwg7rXunPuR+7OeDZ9+CVy3dZ7Fk/OMyUmH+S9TNnw8ITabTRmkDw8P8dNPP8Xl5WUVULCxx+Ll8vb7fYlwwSEFWejzG5lqpGHjlHBmmIWgHQosHpvNJi4uLsokvri4aCwyTulky8btdhv9fr+cZcZ5Aiw+LI5exPy7o1gNMuToADuTvIjYoZIXqzxpawah781lWPHI93qBhJ854+2QQONZ2pmjU90+xon5iVJmfrjeOUrU4JZBGK6hsFlomH+OcLeA8mLFPQb0GEeTySQiHiOjuP/k5KQsxAiLTqcTb9++jfl8HpPJpGRzZscrfUIbHNXOPe6X2rXa3G6ppZZaaumvoyxTIcu0LN8OlVNTgi1Xa8p5zcCNaG6FV3N02IBEjhOx+PDwEOPxOEajUbnf2SvW3RwQZDCCbeEmk0nMZrMSHWt56ShhO64cGIKMMwDkZwwY5EAh/3EtBwDBG0faGoRy3fycDczcd9l5ie7hDDP6Iutqedw4y70WWOV3G6iwTp0BNnjsZ9HPDWRwPTub0IFq+iN19bj0+GNcej7wu8ES6kOZ1tXMQ/cn32tzwu9wudlpnLeQsWGbdVb31aGMtWwkZ101O2Ht4Ha7uRdjn4wytqQBuPT7t9tt/PDDD+UMNBzd/A6oiC3DHMc2ZLyyPtTWKHiTgzH5zfpzJkBQzjvLfVkjj3++f4hqNsmhtfZj722ppZZa+rkoyxA7sfL6BNaQ5THPGZR3gDVkeZIBY3TArDOQvXR2dlZks3fOWSwWZdvCiEc9Z7PZxNu3b+OHH34ojjPkltuy2+1KthP4jB1DBBlTd+NN6EU41Hq9xzM9aROB9IPBIB4eHsp2i97xCezSOoWD3ikHkJz29Xq9Bt4DvyjDWSw+ToUgfsrMuNN+vy/BKhHRcCJYR+FZcMCIR4cQSQbwrTZOvMsD44b/1i3RORzohX3gZz3u6Fd+z06o3PfWa60XWX+jb+GDdTfrc9YFXQ5toR2eQ3bKEQxoXBKdhrraMZz1QMpgnIMDWieiDTgGKSPrbU4syWMNnY5+zDYI/DDWapuCe7DRsrOR90PwylsxGv/0toP0PTqdy+Q/tqXtRc8V+MJucOavE2TsVGceMNdwjsMD5h1bkp6dncXp6Wlst9tYLBalbbaVcfD96U9/iq+//jq+++67mM1m5f0EmaE/j8fjmEwmJSEn8899Y/uyZsPzfp63PeIxZ0z3l8B1W+dZNM89+xRQPXs7s4G+3z/uBYzx9fbt28YCzzsM9ntB7na7ZZ/SiKdIEhxWPl+j1+vFaDSKiCiOLwb63d1dyQLq9XrFSbjfPzrkvJdw3qOWNm42m1itVo09cb2Ps6NKbOw5y8nC2cSEs5CCN568XgwRWCxMObU6UwbY8uLFPRZcGaTIi21t8bXAsNLD2ECBgLJC6EXFwtjOLRvdWUh7ofNinoEWO4ezsynvIW6+OAKX9zBvGDsIORZuztfrdDplOysiKxaLRXS73eI4o420Z7vdxuvXr+Ps7KyRSdfpPKYRM+bNSwtZjx2DI/SLlY2WWmqppZZ+HsoOFBtkNvD4f8hBltfnT70P2eTsJcvRWhBM3gPfwTzIcYI/IqJseZOddxgxyEYMl06nE6PRKAaDQZyenpaM7IgnAALdwZlRGE/oSMhAgyS0K3+n3XZsWV+xvHV/eGtl1zHrQDVjPTtzsr5lXTmieTas+8POKNcvf4Y/h8ZGHl/WL3MwUX4fzzqy2CCMnWt+j/UytyvzJ7/XfLNzyPqK7QzzKs8r8xxdnrpB3uki8812ifsuO+rsTPNvee5TD74brKmBWhjJBoawgRzsaB2aOY/Rjq6bQan1eh0vX76Mf/iHf4jhcFi2l8EecmT/aDRqOL+J4KU8g315zLp+eYzm9vo74GQeizX75hDVyv+U5/P6wGf68y91sLXUUkstfSp5jbFNb7zE+IQdSFkWRjw52CjP5WYZ53dk8Nxr8XQ6fc9pgHxi+0EcaMvlsuE4w+nw8PDQCFa2zkWd2H5xOp0WDI8ADuswPO/gY+pkjC8iYrFYlOvomgQz397eFqwPeYhe6nPNwP2cIJADZYwdwUPkMd/BdSwfjT1av0LftbMN+Wq9w9tT2pnQ7XaL0wA5Toags/TsrHJ5WSe1Luz6HtJ9qI9xW9qPU8lZYZCDwewgspz2PYxDHDvsBkW9fH4Y48YOLvMcfcttRi+D//Ce+zOu6Xp5vFOuHaLwyc87QcAObeulnpvZnrCzjvbboUiQIfPK45s6MvfAcc2XvGbltuQt2r3TAXOLseDs0YgoDmp4i07a6XTKmWIkyjiz7+TkJIbDYWMnMRIYIO9cBy9ms1lMJpNYLBZl7eF5Ps/n8/jjH/8YL168KPezNpCFdnt7G8PhMGazWbx7967RJ/axZN7Rzx5rzvZk/cu2p8fZL0mt8yyaQsYTz8ZP/vOzXiQ9oe7u7uLly5cR8X70Z3Z62DNu5wPpxFlBABjiXCkGLwdoesBFRAFyWITm83nVW4/TbzAYlAUvIhrnt/ngUgRSRNPJt16vi4Cm/hFRJrYVl4imceeDOc0rKxcATG6nlSr3xSFwhecNTmWw75CnnM9WtDKQxmTf7/eNs1Dc5jx+akKwtlD4fx6THqcGZVy+n2Wcm085apZ+t3Lg+xl/dqaShejner1eSfslOxLliD5kHF1eXsZ8Po/xeFzmxcPDQyPSxH2YnYkGjbLybaWrpZZaaqmln4dOTk6K3gB9qmJr+ZdlX03O1agWFJH1jdrzDuJBRqD3jEajEq1pmW95g76E7DZAMpvNSka+DXrey39Hp3KPAYFs0MMbrvOd9tkQ95bGLt/8yA6nLOu5J+tG1imcGeRyXV52TPl9+RkDWdn56efot2zculw7IrKTw3pffo66+jdHFB9ymFGu65z1NoMWEU8BbC7DVHOyZf4YWLB+6u813kA1Z1weE7l9nheUYZDT+i/lolfmsWpAkzIyiEJ7ATXgHUAAuqd1aXRQsgG+/vrrsoWj+U/Gab/fj9FoFJvNpmxvQ3sMBtIW68M1cj9km4HvOObzOM3fTRnUM+U5VZtjh8rytQ+tDwBTLbXUUks/B1lmZFA9O8Qsf+xwO7TW5XIimnIwg/TIn+l0GrPZrCGvWMtxgiAHttttvHr1Kv785z+X9dyB+tZH7ahDvpP9jN4JvkJZOVuHeoMTPjw8lCBj9FJwqIgnMPru7i6Wy2XB9bbbbcn44vgZtn/jWQLX4TNb/5Hx1u12S8A958EhV6mP9V/0Sfcr91IebVosFuWcNZIMeK+DuSmLNoMT0T/oHmBPXAO7MiabA432+33R/5y9B/94FgclbXBGkMdaxNNWorTVwe2UhY1gbNBj204KnnUWpMdg1itr2KfLYpwzbjx2a/hb1nFye6znUCZnP2d7wzYOTinPVzs9/cyH1gnGJM/2+/0yzzqdThnTdl7BYwfRMe5pxyHdz+sFfcK8ymOMupENxjuxQ/lOgo3HEkFkOIdtyzK27YyGj/D/2bNncXp6GpvNJubzeWPu3t/fx8XFRbx8+TJms1kMh8NGQABOas5HMxZQw9Nr9gC8Yjzxmf7Mz2bb0f39Oal1nkUzHdUe5/xngUdHeTtBL2rHx8fx008/xcuXL8sCaq+rjUpnpR0fH8fZ2VkRBPv9viwoi8UiZrNZeQ8TcLPZxO3tbczn84bRZSFNVElEFIFKuSxqnEdlJxmRlrzv4eGhONg8WL1oGESyQsO2R3bMeULxrB0bjtagHr1er0QMsGBkoC3iybtuh2ieYDyLwpHBIk9QK1o8D9XAhswXvhvE8p8zpyy4D4FUvs/AhaOiqCPfWewpy/V2BlkGSPhvh5NBv/1+X87Qo170E8oFERZEJazX67i8vGzMObft7u4u3rx5E2dnZ6WOjKssGKlbBqbcz4cU15Zaaqmlln4e+ud//uf4H//jf7yXPVEz1jJlwDZTrZwcHJPXdRt2OVjH99rphazkrAWMlLztCDoJsokD1AlUQudhCx2D+BHRMIhtNKML2jD09+wEsVGR9ZSIaJRvvcKGiCNaaVtNr6rxvvac+ZiNWK5lQMx6TO7rDznEXJ9stOeyXB/rC3xHN7DemR0drrN5WOO/611zrvizgQ3bGlmXcXvzu3K7fL/LyvcaNORZ68TW5+FNjuw1oEN7Mqjg8WKj2e92QF8O5KI8n39mWwiesWUT85JnKff6+rocbu6tYAAJ2L5xOBzGarWK+Xz+nmMTPrptBqYYOwAsvi8TAITbdMgRlinzM89JU/7t0H21d3g8uB3Hx8fxz//8z59UTksttdRSjYzJRBwOfM7y03hHzSFG2Zlqeonfa12t13s8J8jvJzgcPIo1/urqKn766ae4vr5+LzAmOy6Qp7vdrgF6o3Miu6yPcR8Za5RN5httQJ5Yv4PHq9UqVqtVXF1dxWazKc+Ag7LlJDINOTcej4uenB0xlE17yIwxngfek/UMyrSMtQzMwSrIfALyAfH5Dd0aflDXzWYT4/G4tJFgbDAr64vWedy/1uU9duAF+j5t6Ha7xXmBLj8ejxvJCHncOTkBfA3HCzZDTdewfp8Du+zAzHpYzVbzNqEZV2UcMja8Oxnvdj8Oh8OIeHIYZczY93uOMf6sg/scO/7s4M12QHbmMcbNd9cBh6fPEvMcNI9qTiGuMf5wvNGv7je+209AO3GY39/fx2KxiHfv3pV3ect75g9rB9uW05aHh4fGVv7eGtO84fgl9N5+v192T2Hebjab+Omnn+K7776L6XQao9GokbFKfw2Hw5hMJnFxcVHeY1vKa6h1/GyXZCcZ5PnpZ3+ppIjWefZ/CaHmjspGr0F4T5yIJ4PcQuLVq1dl8tljzKDGSKIM9lIeDAaNwxpJ9zaI0+12y9aM/PegyROTPY4RRiyANoI7nU5JN7+/fzy0GgAsA01ONbbQw+Fmb7wXRAQCnzMoAf+JBslAkY1tRyjUhDH3eRG24DDvc9RrNpAzZQPy0L0WYl7YM4hnBc3PWnFwOyxgMnjjaKCawy8rBnYwHgJj+M3ORurIf5xny+WyOM2sjKFk4hhm+4Orq6vSF9lZenV1Fbe3t2X7RjsePT4ycPWhvuHeNvOspZZaaunnpf/23/5bRLyfZZSdITnQIRslmbIuAfn5iPedLIeCJGpAtg3PiCjRu+g72cjjfgD69XpdonhPTk5KBozlOrqWDXZnMfHHnveWsTnaOaJ5DgJkJ50BJa5ZlzoEtNccZzYObfRnwzeimenmMZD7vQZ24XTJTi6ey+2hrvk9+Z3WYXLZ2ZFGPxHU5O00uc8BO5B1I/+exyH1yg6o2j18PqTLZIJH2Saw7uN+N0iZ51MGWTDca8Ck+wObypmAWd9Eb+R3R4Vb9/fYAphwG+lX23DQdDqN1WpVoulpw263i3fv3hWwgGj2Tucpk+34+DiOj49ju93G1dVV1T70HLNtl8EUj8daf1F/gEz3vfu/9nym3DcfWlfzHDlUnsdHXqu3221Z91tqqaWW/lrKeoRBVxOYj+U1csXYDvdaLhgDycE1Xt/sjDg7O4vxeFwwMQexs7sSTql//dd/jTdv3jR2GsiBMZAdEQS2W2dwhlS3243xeNwI7oGcAYJuCXhuWUmmGbghzjnvLkSbIh7Xdgegm8fwHbIcJuvM2BI8JlssZ4GBI/IMOjB/8Bm+k33jo1KMHXpr9d3uMWD/+Pi4ZJC7XtlpRpYYToGMzVnnsT7Q7/eLDoHzJDtCO53HrddxTmZHgXlAW3IADu21Xpp1PvMXHR2nIe+z7mz9m3rR7oyPe25FPJ1tB35s3dm843dvUc+4sa5nzN12mbMLras5OSCvFdZJ8xrgtoAr2xmPQ8rtpS8Yez7zy/ol9ffc5Hd+8/iMeFp/KIvxh27IOL6+vo5O5/FInMlkUvqXfkCPdLZpbit8g1+73a4Efg4Gg5hMJiUAjblMRtpqtYrJZFLWOBx9jHPWs8vLy8a73Wb60zg9/MwYPnyrOX/zmPklqHWe/V9iUtUWh9wxLCwsFNxrr/X19XXJ5NrtHiNRnHXl6AucRbPZrER1eDtFFnrvi8ye/uxhnLNq7J3GC433n0ho2oYQ9XZAdoB5YtHu3e7pcFO80fv9viHsEI4WdEz8Q976iPejsfmNhdxGnttJm7wYGVDJTjoDZC7L7/MYMOVJ6gWR7158Xe4h5cnGMfzht7yXdV5w+Y/xbgHq5ywMLZwyj/JYohwrDX53jsj1Vjz7/b6cU8b4p5zZbBYnJydlgTVIxVi5urqK58+fN/bhRSAxHlwX18N1zdcPAU8ttdRSSy39dZQB3/w/y9IPXTv02yHHV0RTLh0KHrFi7gxqy16uoVdglNkAxUBcrVZlr/j9fh+j0agYFuhJ1pUo238YQkQpcs06Tw7WQsZaX7FM5L7cJ3Y6ZH3KfEd+1/qGZ22EUl9/t05Ev2TgKwP3ud+4loN58r2ua3YIeQz+NY6JWl3dxqzT2bA7dA3dDv3J9of55UA0+tZOI/Om5sjkM32WnVPZSZqfyTwy8Oh5Zh3YhrHLtD6MjWDwy9H5Hj/W1z03eMYGtqN97+7uyhYybIHjiPSbm5v44osvCtiWHd3YedlwhzIgmo145krmr8eK3wc4m5+pjWHz9UPfXU7+/6H6fOj+bP+01FJLLf2tdEhvi2iuMw7OcZBG1v+yXpi3t+52u40tZ2v6wcnJSTx//ryB+YH1edu/9Xodf/zjH+Onn36K1WpVcA/LRQcKE7AB+G35BdgPrkaQFL+jA0DI89Fo1Gg3nwnqWi6XpVy2IzZYjw6aHWFgkLe3t2XXKgBzb6fX7XYbTjP0U+urDw8PjUwht5mz1Hq9XgyHw1KXiPe3NrQu64AX+tvnqmUdzQ4q+pqxcX9/XxwjHgfoa4ytWjDbbrcrW1XSfuvI6AvwDv0/Z9h7nPlZxiN9Wxu3GSeFarspZB3e5dEeO+HYbpHEDcYSAX9Zb6O/4dl6vW5s5Ud94bWDrfw8/ed6cj3r2NYvHVAPLun+zBgzzjnWBdt/8I9EGPjo7LGssxqTtaOPMplPeb7AS5xhbCvp5BPw0evr6zg9PY1nz56V+nms5e1CITs3aQvjjp0XOEKKOUudt9tt49w+draDjo6OYjKZFMdazRb02M449SF7y9dtK+VyPje1zrP/S56cNmCzIZSdFUyiiKdF8ujoKN68edOY4A8PD8UJloX8YDCI6XQaw+GwTFy8xU4pxqiyoOn3+0UAMqgxALmXBYI0Su8NzIT0IkJZZKoROXN7e1vax0LPpKodBmmHEWnVBnQimplZKAtOXUVQWhmwwKJ8DFsLVP6b1+67XEcDUpSfDV94mtvqZ1hMbXTWUmSpA+9n4tNeDnm0I8sCNY/HWrtqBjXt8n7DrkttbpgXPtvMPEVIIAhwsNqpbAWDRZtoq+Vy2eARbZrP57FerxvRXZ5/BilMea7SFs/zllpqqaWWPg/VlOVD99Su+X827ijXcg2qZRU7UCcD8vl9yMXz8/Oil1hmIYvv7u5KoNRisYj9fl/OScLwQG6SYZN1G2eZEV2cjeBsGNcCfaz71Hh6CFzPTplan2TdodYXWQ8yT6mzo6K5z7oK+s4hx5gdPvkdbk924tB3u92ucVh2jT8fMr7yeMbYPlQH3l/T8zKvqTN8sr7rcWsnr3XR7OjMumgG7wBFHLlsflJX66XZLsrRqw4Oo275fArsBWwJ19nvpa52qgGyZN5lII1r7hPOWuZcaO69vr6OyWRSAvxo2273mEXQ6/XK9qtXV1fvGejmR3ag1sYn5DawxmDD1Rzetf8ZZM5trpVxqD6H6GP3/lJgRUsttfT/Pnkt9fqZs7xrTrYceGLZknf/QZa4DDtE/PzZ2VlMJpMCgBtcZzu65XJZHGe8B0cBWI71VOqPI8pAeUQ09Arqab0oB6VERNluDf7h4Li5uSlZK9QpO4zMF+R25mfE03EvrqN1HeQYOrIxLcB/8CJ+R/biqAB3jIgS2A/+MxqN4ujoKNbr9XsOJ+tS9BUZbYwfY0s4U6yPW3aibzuIxjpoxhnzO/IxQJSBcy7bHzyLjmO+12yBTNada5gkwYDWR6131/Qa6+fwE+cov6O/WPfyGB0MBo0tQH0mdp4HeWt820vWqeATgVDwN+upWXc2r4yBu38J8nd5xpd9nBH1Zjzh2PZ4YE5Qn1qiC45p+skOc+YHWZPUx2P89vY2lstlnJ2dxenpaaNeztRzeU5wsaOP8eb+YSvZh4eHsssYjnfKop2Me68VlOXys+0H2Y5w/x3CCrLP5peg1nn2f4mJZCdANhRz53iBZ/D3er3Ybrdxc3PT8IoziK+vr8sgZCu709PTskeuI2i87Z4FLh5fJoFTQRGMLEb9fj9ms1mZhDjhaKO95ixqXkQNUtB+Im2oD9tKMtBpA+2z0GfisVBZEBjYsBCHrOjk6CEWqhylDf9rzrnsFLNTC7IAhReuE/dkD7h5ZtAp9yflATTkSBj/lgEh/rst3W63CKbsQLPSAH9dx6yQuXzmB223U5IynFaOw5T/7i8rrSiLs9ksjo+P4+LiorGYn5ycxMXFRbx79y6+/fbbRvR/RJSz9zxHDUwZoKjN5ZZaaqmllj4PfSqwmu/LynTt/uzIgDIYf+h5B6Rkg3m/f3SCsU2PZT+y6e7uLq6uruLm5iZWq1Xs949bXXCIOXoSspUyMBCRg97ax7oPn/2/ZvT6OV9zxCu8sL6ReVwDnGp8zc9kUMhGa60vuDfrGtZXsv5Em2145frW2pJ/t+5mB6SvuT4ZODo01mrAmO/Jjijq4u1KzC9+y++jfrlvHRnM+xjf5uWhiGTrTG7nIWM18493G2ygTOuu1rts4/A+n+PAvbbHyCizTp6dxZ1Op5FJAM8AEKbTaQHeqP/19XV8+eWXDcASQILo4/Pz87i+vm4AShmcOWTAw5/M/zx2AUTsEM994v9+/6H/+fPHfsvXMwiV6dA63FJLLbX0l1JeEy1bfI+BZ8sA4yFeiw1c54whB5547UWn++KLL4pMAqgfDocxnU7j5OQkbm5u4ve//338+c9/buiLEY/B6ARhcHyLHTWAzYDXNazn/v6+ZGF55wICsiCcT/CBM82Wy2UsFouyvTjPRjw5w8xDHE7I44ho6KyDwaDgTO4Lgj+otzE89F6wP96bHVvca52W9/gd3p6Pd6A3gWWSTECdrHvaITAYDMoWjXay8pcdZ7zLzglvL2ed3GUcHx83AuSM+eV+t1y1/sY1Z+sbYzav/HzOZANvzXo3PPazHhPGjSnT+Ctjz1le3unM/KGvnFEJdTqdMpeoDxj7yclJ4V+2kTJ/qFtEczt42l17P33kuWXnHmOLOUG2pLeipN7sJsBnfss6lbPzwNU9v+ArawfBm71er7GtIvUbjUYxm80aW8EyH/1eAjyxF+wIz5l72KpnZ2dFf/eaQ/uYDxzV4zngXcoydn6I7Ij0+PAY/aXx3NZ59n+JgZ49mNmTnveiZdLhFDo+Po63b98WAYUDwEby9fV1bLfb+Prrr2M6nZZ7Ip4EDAPPi48zyxjQq9WqMZEjnibYw8ND4wyziKcJ6n1vOdTTizeplqQfszCxQGDEkgJOuig8ZGFlcWWxZAHizyAWgofJ7UgLA0p2onnCODLAi6kBEzt/PIFZkAxyWejUwAQvAjUgJhv2/m4hmIEi3kVf4Yh0/eln/8/8sVOVqB0DEbU6egzkBc/R0JRrQVRzSBG1y3jwuRKUR3tRRm9ubiIiiqK42z2eTfGb3/ymtBHeoIjaYZiBDY8vK9i/9GLbUksttdTSE9VA5o8p0vm5Whkf+u1jYHFENAI6FotFiXYlYOru7i7evXtXDlsngtGOs7xtC+WiyxAwZYecDUAHxNjh4jq63tYdag4ny0PzpgbG22mVeeP7svPA183zHFyUnWLWWd3uDCTk3/zubETl31yOA7dcz4gm+JZ/dx0NQjg4zKCJ9VDzPo81P5v5Yz6j+9jojGhuGW+Q0MYsbeNduQ8zj2p9W9P/DG5aJ3V7XQZ6enbsOTK39iw6H9GuGSjhPnYDub29fQ9AYe6Nx+OyjVXOPqNORErjYJ9MJjEYDGI+n5c22k7M+rj7LvPA5Oh9ovIzuHtoLOe1LI99X7et4fplqs2Jj63HH/u9pZZaaulTyWtidgKw3uYsYeMQEfXgGNapWlAtlB0Pz549a2yZhh52fn4ew+Ewtttt/Pjjj/Hy5cuyfjuYheeMa6FPOlgjIkpGh3Up5JuxDO6ljdSJjKzNZhPb7TY2m00sFotYLpexXq8bct/B0sYDu91u0Wm9OxF1MNhuPGu/3xccEj0ZYJ2ty8EkwWxqWF2n02kEaoODktGz3W4bji476NB5rEN1u4/nxOEsGw6H5fgazl7DccK7GV+bzaboDGC0Gde1HsK4cR/Bc3R9y+GMH/Ms48EBN4x3OzX9bvoD3c+JFfQTbckJErzDOCzjgmuMFQf/7fePDhX6PWdDWmf2HHPgk/FldC3rt57bONPW63Xhp3f3gJgbxu+9gwH1M2/syKP9h7KjnH3qMefAMZylridzyttzo6seCryiH/wO5iMOdfqE8btarWK1WsXNzU3MZrOYTqflSKisw9shx3i1bs59jJnxeBzPnj0r42i1WpV3ux/Rt4fD4XtzpIbHms/GvE2HbDbPhV8K122dZyKnUmYHA98NAjBBWdhZCK6vr8vgyQPAC6yFhR1xEdFYcE5OTuLu7q4ceM0iymJFlhvCgcHpbe6YNI4O8D7FtJN6MZn5vt/vS5bPbreLxWJRzkrzAoRDgwUZgzRHdHihz0Y/E9n8ymCGhaPLsFC1IOHZ7EixMlUzSvmfI5+84CBgOp1Ow7HphdBtNbCSFxErUZnMAy9wJqfIGmyhX3q9XmO/bCIXDMJ44fLYdMS6FScLQZQuhEMGXBBQKCK0i7LOzs6i1+uVsbXZbGI8HpfzZKbTaYmw8TwkGisrwwY1GDOe2y211FJLLf0ylMHbQ9dqv9U+HzI2/Pyh7zUZgJxmR4CHh4dybgU6xWAwiDdv3sTbt2+LIXR8fFyikO04c1Qk78fYsZ6CfEWm8dmOtUO6hOuedYLsgMg6Tg30/hhAn5/PfWB9y44QO8jcH5Sf9bxcD8g7B/j6oWjS/A4AE+uhBhNyn2V90M4wAyCZ9y7XZee61njjvub91nl5rgb62Qlrpxr3Z4DDbXN5tkW41/OPfs3GrIHDvAW7HX957Hg+u23mH45rRxID9vlsFMYJtpn7G9toNBrFcrmMzWYTDw8PcXFxEd988010Op3G7hzYUScnJ3F2dvbeto95/eE9BpgimoFvuY+pl887q8272rXa7xlUqM1n8z334cfe8yn3tNRSSy39NZTle9b3vIZZpnDN9xn38jWXmXUm1uDBYBDn5+dluzTkwmQyiel0Gnd3d/HTTz/Fjz/+2AjGcJYJ9UeP85EoEU+6yvHx8XsZUoDkENgN2dfoH5Tz7t27snvUer0uGdbscAD+Yl3RgceA8NQRuYfD7+TkJAaDQZGp1Jky3O7xeBzj8bixPZwzq52lkx1LOIcISMPRhm6D8zHi/SAy+NHv90s2Drigd8J6eHgo8p/3swUndcpB/ta9yJrPwfzo83xHBwLT81g0LzzuwMqy7oWTwk4HeJZ38spzx3iu9UHzLutkWc9j/FIvkiuwa2o4ea0++X+2GSjDmW2sCR5jJJSQiQavCJzie8bXnfFHf/AursFf5i1OLsamHa5Z17e+aj571zUHdu33+4KdWqc01s+8Zu7SB+wwZ72ZsUVG2nw+j9FoFM+ePYvxeFx47PlO9pzXQiek8J1xjEPc/QFf7WyjzTU7L48Jj0F/h/JzNfvhl6LWeSbCWKoB7tnQdSRGdpIsFotiPNWcJKPRKE5PT8u90+m0MbFZ2BzhSiSJIxtWq1XjeqfzeAYaAq7T6ZR7iIbGKcGizmTwIY6dTqeRXm3nCwKp1+vFcrl8L5KByI6Ix0wi7ycb0YzCxrjOEytHVxusqBl+lG9QCiXBCxt9y8Lo61k4OrswR/pmYIc2ZaPfyhp8ZeHLkcIeW647vMiOVdeDOlKeBTxtyoqGlVPGg5UwR1S4H8x7nFyOamasco8PFEURQ/Hy2XvHx8fF2XZ6ehoREa9evSoL9Xa7Lfv5EvFDPXHEZTA1A0v+M4DUUksttdTS56UaSFv7X7vHz2cluQacfEpdIpoHSlu3GI/HBSSwrCHz5IcffmhEC47H42KgW9Zm/QUjD0AD44L7swPEZIdLDfjm2RofHKCS22rj9hAonvltx1Q20rMhZIPVfQhRjqM+HcGY+90Rn9YraT/6Fe83/9mJwW0FOLG+lHmZ+8b883u5RnkeX+ZdTS9Ehzs05nO/5Xc6mCnrtbZPchl5DGU+WDfnGkY1/RfxlM3GNQxrA0n85nKzg9N6ZwYzzBtADOYhgVY23ql3t/u0RTjBW51OJ4bDYXGAL5fL2G635ZxewAp22Tg6OorZbBb9fr9xOHoe/26/+ZN56DEREY1o5DwH85zif22u5ntcT/d37R7fm0GvWl0OPd9SSy219LdQBoP5blA84v2tlr3eWpbXAhL8PQc3RDyedTYejwsgv98/Ztq8ePEiut1uXF9fx8uXL2OxWDS27iPDBDkwmUwauzbd3NyUICvAb+t8OGbQKY0LebcC2jCfz0um2WazKaA54D5BXbe3tw18xnyLeH83JfjiM3kJVPZ2iNancXhNp9MYDocFKwX/sW7BdpS5D3g/GV/9fr/hoMHRNRqNGroO/72blvV0+IEOzmdw0/V6XZyFDsZ30FPWKY3LZQeB8U7rwTxLe60v2R5hzBubtp7n8njWzp5MtgHcJnjuOWdnUNZhI550MpIHeCefD+2SYf0Und/19nu4hzIPYbDMF9sIdgQxv7ztI2PYawD4JM/bqcY7wSntVHUCBX3P9YholEEbnJnJGLcDDf0T5xTPUj/j3syr+Xxexpm3wESPXa/XcXx8HM+fP4+zs7PGs7TNO8ZZp8dWcv8TiIg9i38BndmBYdbla2MT3tX06Ux5znvN/6WodZ6JbHTZWZYN/Ygog5YB7E50qnPOPDs+Pi77JzOw8JxHPHnhWQgxChHcCGSEJJOYxZ8FYzweF+HGPQi26+vrODk5aaSQsr+qt4r054gnwUra9GQyiYgoCoF51u/3S6SKwQzql6MqaLsnjIVMFlpeiJjU3sLPBjl94UnLhHY0BsLLhiXl2HkF2cDk+Vr0Qu0Z88p15L8Vo9q7zLcaMGLBxRjmGuMKvuWyWBThIwe2UjdH89CXVmxHo1Hc3t4Wx+1isYiIiNPT05L5xlkSg8GgKDq0F4E1Ho9LxNFut4ubm5v47rvvGtEotCEvoHne8rvr2lJLLbXU0uehQyBx/n5IQa6VlZ0LuazsBKiRy0C2ZKX92bNn0el0ynYkdnb98MMPsVqtiv4wGo1iOBw29r1HXltvwUDCoQAY4HrbcWbjNuszuR1uSzYs/UzNOMll1PibHYwY1tY9/Jnf7RDL92YjHmPTfMtlZyMah4gdA24HZQEAobPb+ZOddjXjPOJpp4bMNz5nvc4AC78bHOJ+G5cuo9a35l3uXzuxeHfO8svkevq+vCVWRDNIzNvEeBcE72yR9V/sB9pmB6kBG7ePz+ju1uGsozvSHlvIurDfAaAW8Xhm7mg0ipubm1gsFvH69ev47W9/W3RwQAcCBpnr6LSurwEh6lUDZA1QwW/WGO9ckee614QPraV5LfQ95n+2t2rjo3b9U9brllpqqaW/hVgnszPMVNPxjNH5f5Zx1ilq5Z+cnJTtydj55u7uLiaTScmGev36dclEZu130DyB7AR02znFERacI0QwMUFadhyiexqv8RlU1JvdetilCnkCNsV/8xiZaOcMstY4FDoBAL0zd/b7x6QAHGcO4uecN7b3Axfy+7LccuA7Tjtvm07/DAaDUgf6EpmNjMc5l3dzstMp43j9fr+0BR0lOxEIyLHu5WB3b9tOf3Y6neIIJFDGDjZ0FeS9x4x1A+vB9B2ORe5l7DuAKT+Xg2ncRuPXvJd+4bPtAOOYjKmsh0N2yuQMMI+5rGvYvvH8sO6P7oejeb9/CrizXsg8I6sLG4G+JCPRujtzMWeIsk7Vdj3LdorXNfBxtgWfTCYliApHlLdhxR7dbrelrTgGyTKlbeY9zuvVahUPDw8xn8/j/Py8ONHG43GjD2pHDrCeRUSpX7/fL2cGMpcZt7YFeN48i3g/qSGv7x4zDhY0ZVvsl6LWeSayIWRjKzsWiFzMoD3P2FjDWRDx6P0+OztrbH/IIrxarcrCai8+Hmgm4H6/L860u7u7kq55dHRUBjBERhrRmHYKdrvdMjlZWJhwPEcEhtO6eRcOs7xAwUNH+PIsi4cXTpxuOfWZxdeLlye0gQYWNj+fQR4b2l7wshLFewzgZBDDn/NkPWSA0lYWPt7l5+ylZxGmDw6BYRC8tTPQC1feL9fCLvePBRI85B35GUdFuUzvH00UVL/fjy+++KI4OKkX/1G4rq6uotPpxNnZWTmgfb/fl4WfeqEU4MSrgYE1Mp9aaqmlllr6+SnLzbw2H/p8qKyavDXV5Gl2IOT7It4PNBkMBiX4yEZxv9+Pq6urePfuXQG7h8NhzGazEpxEGX4HxnPORrLBnv8oJxsMBudzWzIIVDNGrB/UgHT/zm/+7rbZKM46g9vyIUAf/uSgJRvI1j+4lh0r1Md6LGXz2XqqjXm3zVTTGzNvs/FX07FqeqQdOTyDnh/R3PmAdxpYcXtrdbaD0XV1P+f2u/525mXQw/2WQRePa0d526g2D90fBnyYt9mZhuPTxjkBXthIROWORqOG49lR6MxBtvc5OTmJm5ubuL+/j6+//rqAKoBwONLYzvXt27fFbvI4dXCWnbq2ETPZFsKecr94zuS+zJSvfey+2np66Jn8vO/7lGdaaqmllj6VkEEZizsUlABZPlp/sRxBlmQd1DJ1Op3GaDQqADYy5fnz5xERMZ/P4+bmpsicjLGNRqMYjUYFB8nbmyETyWQBz0P2IMfsTEGGEpT88PBQtjDMW7sZy7Le5CMzwBHhCUFiEU/BQj6Ly/oQ+Fyn0yk7Ww2Hw7JVI2eEGsfD4QT+Y0cLwfrG7Ch7PB6XenvLyogo/HNA2sPDQ8l64x3gjM7aoQ7OrMMhkTPOsj1Duc4KyrgbbaffcHDZ2Uf52U5xhqH1IG93ad3C+qQdhVm/pR+c5WbM2eOFNjjIy9ftbM06fESUd1iPdJCXA6+yA8S2RQ4gtB7kjEzqkrFmeJKxTPB1xiNj0Ekv9JtxYQd+UT/KQ491ENkhW8xty/YbuL3nH1uMs15ERCMgECctvOe99BXv3Gw28fr167i5uYmzs7P45ptv4vz8vDijGXseB8wN9G12tCMocTgcxmq1amw9Xks6MXlNd9sPBUX4uuXDv4Xu2TrPRDWHGeSJDWjvxYMO53yMd+/elXu55/T0tDjHcKDZ6CayxQJ3uVyWCYDTxR5dFj32J2ZhRaizBUmn8xhFzTt6vV55xgu50zW73W6cnZ3Fcrks25Q4vZyt9tjacblcxnK5jBcvXpRJdnt723jGAACLrTOivDDlPwtIR+A4miYbdDZurRjRxkOAVlaq8uQ2+X5HZrge7JVtRSUbwl4McGDmbW983oeFt9vt8WHwIgM8FtgWcowBeMIYMYjihYz3ciAm93pf381mE8vlMiaTSak7YAEZaKT9MhbYn/rq6ioiokRdeMGlHd5OgL7wfM5zuHWetdRSSy19HqrJ0BpQe+j+GmXZnn+zIerrtXJ8bzZsTk9Py1bWyLHhcBj39/fx6tWrsh0OmSg+Z9WyH1nqA5Ot45js8MkOC4yyHE3o9rgdNj753TLRBmm+L/Mtv8fX83OuW26f22J9x8Z/1vWsq2Unmp1JBkJsLGanTsRTsI5BkexYqo3V/A6uZV3vQ7qhdTzrYbQD3S47S3Pf1N5LedbZct/5vhyoRlkO2oPy9jt2BJn/WZ/1bgW0Pbct89xAAnXxM/DLAI91a/TNxWIRvV4vxuPxew5o6520ne1reHY6nZY2AK6wHnC2ISAcvHCfe27Zbsnn4MAHbCXz5NC4OrRW1tYGv8NlHZrftWsfAiZqz7TUUkst/RyUHWj8fch5luV+BvRz+T6ryfgTR6uwlRrB7+Ac8/m8cQ6a5R6ZSwRouGzjhRFRZMtyuYzhcBjD4bDh/DB+t91uG1kpEU9OE66TJW3Mxms/jg6e5b8dEBHNM7/shJtMJiUDjCwq7jGY7p2ncOzxXgJbjKVmnRGHB0445Pj9/X3Beuhbgsz9h0ynf/wey26PE3aPYGywQ5IzzMyLTudpK0n0F2cZ4azb7x8TCoxF+r12IGU93npU3ibT9T9kY+UybWvs90+7mVkPt5PRQYT5fbajKIMxBnnsefcB20Q5+4/fGZf0h/E/O6nQ6bDLmGcOcKIM2o/TGwLDttMInQzeUxYZbGy1iFOLufrw8FCyw9wHdibhoDo6OipjFOe3x9LDw0M5FoDkAt7JO9j+0bYlfeg50e12C5bPbg2bzSaurq7iq6++im+++aZxdjdrxcnJSQkSdb/QLvTp6XRaMuQY1z62J4+ZbPd6HuVd+0zGvg/5bD43tc4zEYMAQ90RrVnI2CBkANze3sZyuSwLfcSTUUVEBsSiu16vS+QtXl8GtydwxJMH25lbjlJkEDKgmHBZKJEeTvksJHaoIAxHo1FEPGVN2amRt3XkPhvTDGz4ivELAU4xubNy5MUeo9SGuhdsC0YLC2cIur5eVLMha4DJC1IGJQ6BJa6bF+kMrlnBsUDN7XZZ2cCmXvSdHauQozHcDgsw34cikQUW72ZRRWgCWmTHGdE8EY+RWt1ut8wP7zvM79vttkQroaj5EF4UMMa9xyRpy1nQe4HPC3hLLbXUUks/L2UD0CBsdrZANSfOpwDFWT/Lulft2QzS25kym81KZF2n0ymRtIvFIubzeQkQmU6nMR6P39uehHegP1nGOognOz4MdGTe0R5n+2T+ZF0k84122/FQ02UyeO7sqByE5PvNd57JOo3rbB068zC3K5dnXcS6onXLrOtRNyhnTtUANniE0Wj9yL+7Prw7t9N6Ye5btyUHJWVwxe93GehEGWj0826v+zS3PTs1a3Mw2xU1gAV91OMgbz2V+ehtfGyPUWfm7PHxcYm+J1LfoM3FxUXc3d3FbDYrQIR55ij9Xq8Xs9ksVqtV3NzcxJdfftk4n4W6oG9Op9OYz+elrJwlZ4DEdfIc8jwiwAzK8/JTHFq5j/J6ZDrUpx977lAdDtWppZZaaumvpQz8++9j9zs4uqYLONiJZ1ifT09Py05OBGVwDYxruVwWEBuMwllLAOjG1nwOE84E1vflclkcZADYyJbb29uYz+eNe3a7XcNJB36Sg1+8zVxE80gL6oezC8AdvIodtsbjcTmmBfzPgex5uzoydZC7bCOJs5J7c6A3fEJ+jkajkk3Ddo/0F04u3o/jCzyKPs1b0HGvM/vME2NlHk8ZI+TzoUCZiCd8ar1ex3A4LL8bw7UOhr5gPbH2H2cpvKR9nhs1fdW6v/V0+sa4rXVHt7Gmi5uPEH2b9VXa7GvcZ50c3BHnGPOOPgQLZQy4HfCQeWie00Y7mN33zr5zfxI8ZawZfJmz93CiOdDPOqGz/SibwC87tflvvbPX6xXHNX2OYx9d2rqlEyKYE5x7aAyVcn788ce4urqKFy9exPfffx/9fr9guPgSPG/Bo61Xc9bhzc1NaQf+DGPzHjP8Bnl+1TCB/P1jdu/notZ5JkJQMfC4lgU2A88LDBEmRCr0+/2Svnh8fByz2ay8BwG63W4b2z8y0dhfmYHric3CYOfV/f19ifaIiEYdOACR51iIXG8bz7e3tzEej2M2m8XZ2VlZNCiPgU37EZD39/dlz2O2lURZwFDlMwtjzYGTAaJut1tS2R2dwsLnvsuCw9e5lkGZLBQz0JCVEAv2GvE8i54XbMrgd9pB2yMO7+Ft0Is+h4+MR5yeOf3bY8uOxuzQy8K01+uVDEm2LaCuFnQ1PqPQDAaDsgc2iiZ9f3Z2ViKXMngAn+7v7+Ps7Kxs5QhAYjCr03ly9OW2UzcrHlmZbqmlllpq6eelDym8H3sm///Q7xm4RW84RFmG23lG9JwNDPSqm5ubclbDYDCI2WzW2FbZRPSx9SsDNN6Og3a4Dcj3XO8cTezv2Wllgzk7YDIgwH026CPiPUPSOpOv8373TTbYqb/rlOvxMQDehm6uj3Xa2pigX2wQ+1lTLtvvz3XNAF8uw3XIIGAGRqijgTXzl/ZZz6zVg/fZGZcdmJm9WXrNAAEAAElEQVRP1rnND48b18l6MmMPsBGQjDFqeyrz02PDUaqQI49tqAPKASQCIEQ8bcW0WCyKQ9xAai5nv99Hv9+PyWQS2+02lstlsdmwWwA5er1eATd5N/zLOmheFwxuwEfsBGym2vzK49Dj71PnjutQA7T+GjpUt5Zaaqmln4syNuF1NYP7GVcyWVdi7QIX81Z4YBNgFeh5vIvsCm/5Bs5BJglbIvKMM1rQ2xzERTbLfv+4rdpqtSpyZ7vdFllHkDAyzhlCYC9ku9Ge2mfIwdbUlSyTwWAQ0+n0veM2IqKA6Q4O6vV6pR1sz0jf8S47t+CLExIckE05OBcinrbWcx/jUMBZBy6WA9LAP8EU7QRgDFg22lnCuxkzyGb3o/UrdDPr5MaWLf9rOpHrazsi45If0tEd0O4gM96bA6SMBbsv0M3oB65lvJY+znZEnos4U3E+UT/6nHFI+Yxx76xAf6CT5iCl2mfr0/QDZ5uZ33x2YBbtpD614DFnifp6DkZD312v16W9dhaydSvX+e8+4DxB/8Z885pI3Zlzo9GorFvZ5lwul9HpdGKz2cQ333wT33//fZyfnxcnJHXFduWdnsPsxrLb7eLm5qZsq+qxkTMTbRtm2z73m52PNUwh22Gfi1rnmcjOs/zdBi4Lbe5cZ75MJpO4uroqghjBTNQGjgLvo0p0xWq1iru7u7L1CA42CIHFey2AndXjbfCWy2WJpl4ulzEajRqLAFERbDPEfs9Mbqd9IrC73W6ZvLyv0+nEYrGI1WpVUkl91oTrwAKAk89GnRcc2oB33wZ3fsbOKUchZwPzkIOJzyYLI97FuKgBNHkxtMKWAQ0LuzzOiNLNEROUTz0NTuBk9CKfnUX+jLJlpQ5hxvvY+pM+Y5xY4Lr9VhAcEQTwSORUt9uNZ8+eFQUJpciZiERFEflAqrLPDex0OmX8WTHMIMwhHrTUUksttfT/D8ry6ZADLV+zgo6sjoj3ZK3JulOn85hl1ul0GucoIEeur6+LAXF2dlbOVMhOFvZ/N0ji+tiwpX05iOkQGJ0zqzJYZFmcASQDAof4aBnO+2q6FjypOaqQwzWdKzsaXXcMKIMJNT07v9NAg3XD3B47n9B5+EPX8Dty/V2P2liCt9lYzzyt6aAuy7x33Q26ZB2NMeyy/N/jxO/w50O6Ui2gy+PZvMIWsH7s9tC3GO7mTwZ9rAfDL9sRRONbz6ad1nkXi0Xc39/HZDJpgHH0O/W+u7srB7bP5/OimwKGug+wWTiHN/PsQ86pDHRhU9Yc5nn81L4fokNrSW3O/jXU6tAttdTS5ybW8xwc5PXb99bWpSwfa9gRz5FJstvtSnYyjhav1/ze7XbL7gSWL8gF8AzLX74bg/P2f9fX17FYLKLTecqyAX/BmYLu6R15WNd5JqKpZ1g2cuQKQS5HR0/nlA2Hw5hMJjEej2M6nUa32y1B9DmQ245Hv8fOLvQ69Bb3HTKV/mErOjs0er1eI7jEYD3lwZvValX6DVwoOzq2223jTDTGFWODP9qAo9BB28bBLJPtSHPd7IDhN9ru6xFRnIB8ZtzaJqFvHRSV+9vPe/zjILJOkYPyqHd2sjHu3S7K8u4H4IY+J8s2kXeuyu3P9hvjlD6G38wzt4UynQ3KeAK7hk/OEjMOansCvN8BYrSd37NOhnMJXhIsSf2pmx2bDix0f4GZ0t7b29tytth4PC6Y//Hxcczn8/I745bxTnt4X3bI2tl2c3MTy+Uy7u/v4z/+x/8YX375ZeGxHXQkANnJ6mMOfAaxdU73l/s8J8Ucsj3gS7apfklqnWeJ7FE/5ERhkfBg3+/35QwxtmB0yiOLJYuGoy9wUJHiyASzo+D09LS8bzgcFs8x0SdMRPYqpV440NgneLlclvawUFBHhAzpnfCB8pkUTFJnTVEOQu76+jrOzs7KuxCIw+GwpIpDvDPiKbsuRw6wSGdBwe+5n/hPxFDOsrIBmSNz3FfuXwtr88/1yCCIF4gMYPgz3y2kGD/OYPMCk8cfY5A6EiWTF3aDLY7Gdb0NCtLP4/G4jEnaaoXGC5nHjqN1eJYxQkYjkfoGERAK+/0+ptNpGfebzSaePXvWEGRWUDPBG+p0SMFuqaWWWmrp56O/BqStKce1ew79bkA8k2W0gRfunU6nRVYYzF+v17FYLGK3e9zSZzKZlPdTJvoG59rasM6Ag8u2XmkHD+20EWnQh9+tX/gZG+Kfwmvzx8FHh4AqynVEdu4f18lRpeaD73e52TAyL22MZSfBIWdBjsb07/6t5iDL74JcRwMn6I++ng1G95N1yRoQ4PFooMhjzzz0jhWQAR0b5uaNncVuY9bvcj3pVwBAjHYDDRFPkcL8d/+YDBChZwI6ABRy9gP3Mz45i9n3z+fzuLu7i/Pz84ZtAzCC/cUOGta34XNEFP2VXRVcb4+V2tqTycAaYJ93c3CZfM7zqtZHH5rvnwI2ZBvmU9bvn8MZ11JLLbVksqPMctkYhvUj6xa+15iLMRwInQdHmAF/yjGGhDyKiBJwZbAYcoALWI71jP1+X3bfIYDn5uYmFotFKd9BWw7EMgaDvEPuI9987hHXwWNwbDiAfTwex/Pnz8uuCugEBsnhIzpdDvIB43RiAAFVGSODH8hL7gEPAsu0XMvOLnQPdCKwRsoEI4Wf5lEtawq5Dg/N79wO6+dZv3X/+1rWf633OZvL+pqD2MwP68GeJ3aMeC5ZN2Vc5kw4dCIw1xx8yJiy7uMxb70V7NY6K/XY7x8dMZ4X9CPt9U4Erp91UH4zFmje2mnJPRlndQICcwp91uWQUcXYpY99Lev65ov1aOvctDuPOTuS0Ht9zuLDw0MJ1GQtYotV1kO2O91sNjGZTBq4qetMW1hHRqNRzOfz+F//63/FdruNv/u7vytnMtpR77nLH2toti9rYxXeUIZ55jnv3Sv4/2+J47bOs0SeXM46qwlxZwRhADni5OzsrLHgIWAjng7443rEU/oo25GQqcNvRD9YUDAQvb/wcDgs9Vuv17FerxtC3Y4G9hTG2CVLCAcHQpsIjoeHh+KMi4jyrAXC/f19vHv3rjw7HA7L/xx9wGS7vb1tCGf4YsGGU6W2OAHuwC8LxZxNiOJgQWMFIL/bC1hOH+YeFjIvpG6HI48y0ERfZUecD1h1WfCMhR9+eivM7Ihz2yDfa564DozHrCzZ4Lcya35m5TZH7dzf38fbt2/j9PS0bIPjw3upe7fbLdsH7Ha7xhaSFraOKsntdrtyZE5LLbXUUkufn2w8fCrVlGTL6WyMImdq785OEn/v9XoxHA5LAJONOrbQ4YwJyJF7BB3Z2LUMslzMQLidJZlX1guyTOez9aTswPH7s3z389xHW2rOEtfdlCOrDxmO5pmvZ72r1u/Z8HI7a8aZ35e342HMWOcxKJLHV76W+yDz2XWOaBqovNvbAfpeG88ZPMn95/b7dwMevM9AS26TwR50wRwJm9uLHsx33+8+MLjlKHJnonlbGQNoEdFwgqF3rtfrBk/RKfP2MhFRskhp4xdffFF0a/MQ0OTk5CRGo1Fxmlm/jYhyfsloNPqgIV8bi7lv+G4woja/apR5TD987JmPlVe7/2Pr9qfUt6WWWmrpLyGvr9kxlu+zbLdsgrITw/qAdS92Ycq6JLIabObo6Cim02nBxMBJwKnY9jG/23LYWBtnmrGDFZgQO1Gx1aAxEjBAnH04jjL/nEXDTj4EevG/3++XTDMf0WJ8zM4yykWeoQPAI2Q6161b2SmTM5tcL9qArmZ5z/3WL3ykjt+fdVoCYHjOfWGHD+S64gDqdDrF0USQPveARzl7zmPT+pN5Aj5m2Z4dCq6Ln60FA+YgOPMv45HOgqRc19u6hZ2J3W63nLVn7BxclF0GrOfiaPbccHLCfr8vZeZgL+rvLEYcT8YXqTO6Ff3G2GFbfZcLTu4yrJtxL3zzbgHUwX3K+HCAFm30eLE9ExHlnfyhC5MEQ/1x7rH27HaPu8+Nx+PC336/XxzyV1dXZXey2k4HEY9zmiOYyHj93e9+Fw8PD/H9998Xx7rnvbFyOyyHw2Gcnp6Ws+C8HtkBawer1+ga1WzMvxRT+DmodZ4lsvc0Czsv4hFP3nYmhQ+zvL+/jy+++CIWi0VERGNh8kGgzjLjXpxmTDgW/cViEScnJ8U5xuKBsGfAsl/qYrGI6+vrAgZRf/ZmZnFHkFE3n6Xm6MrtdlsOqUS4RkRZICKieMU3m01cX1/H8+fPo9frRb/fL5lH8MhGshc1R6zwn0WSvsiR4ZQJrwFMIqKkGNNXedJ54fJCmAEeX/eikw3oDLLUFv/sYPP9fM7Op1o7M1jjLWzcPxkYygCW623HrPuI8cUffUk2o0EX+ohxTdoxAEe32y3be8IPFCaDGgg4gEkii+zAREjkQ0RzP7iN/xaLbUsttdTSr5k+tO76txqIewg04T9yPYMmvi8b0FC3+3S2qgMzkKXr9boYMdmJwLMECRkssB5HmVnOZznFff6d32pty/qIdQuX7TKzAZKdM37OdbRDxzy3HsLnbJjZIM/3+578/lx/v5//+blagFUOTsrvM1Bg3bLmkIBn5mnW6cwHO864Pxv7Btisk7mPMrCSn8l9nIOycl1cliNpszPGgE8ux+871JeZt3a2OVo8g0YRUewHwELrjXZ+RTyd75B5yFaMgAsAc+jYGfipOcHZ+sa2kd9BWbQ5j0tsQLcLPTlv0WT+fcrnGu9ra2YNLKF+H6JDunSeYy211FJLPzd5ja0FkpjsIMBBkrEU40+WEWQU+37kITodWAaOLJ8vlkFw430EfziIyjtCkU3CdmnICvAr6sB2gzkzyJhRDVPr9/txenpaskc4m4jfAOLBVQgecyaKdRHrWNyXt4PLOjA4knWAjPENBoMiW+1wQf9GViOjeR/9gq5hDDHrzbSV9vjcLcaCyyJox/oabQVzOz4+Lvw07wm2Y3w5CyoHf1E32yDgmDUcEr4wHjz2/Fwen7VkAchZPrQ1453wlYB1Z91lRx79mPXLml3jAKusT3kLQM9h/nvuG8tkzLBrQLZZbPNk3J/ALcazjydCH4Rf6KS1xA074Iwt5/WC5xxkxlrgdQpyX+PAt2Os03l04p+fn8dwOCzbnON74FnXBxz29va2zMPtdht//OMf4/b2Nv7Df/gPBde3w9r8f3h4KPx48eJFLBaLuLi4KL8dskW9Jrgf81g9ZMsd0ns/B7XOs0SeOHkieTB660Vn53iRn0wmxUnA/UzIwWAQEVE88MvlMm5vb2O5XBbPL5ETZHoRhdLpdIoDDUGKUegDSxeLRczn85LRFvE4wCaTSYxGo+II4x0s8uyF7LMrEPws/kRoL5fL4uBYrVYlK2i328V8Pi+p4CyOXrTZ2jLiaQLkiFYvsvbeUz9TFpI1A9a/5X7neg0I8TMGbjxG/E7fT58fUvisnNEOC4Ocos5Yc9SvQSn+DNxQBxxTBh286LAwc1+trrSBhRXBlCOVWVjZ6tHtIcKq1+s1ovp/+9vfFmFn5QBnLXOPCCoLKEdD5P7Ic7mlllpqqaXPQ58CqB6Sx4cUX8u2Q/dh0GbZZT2iBijvdrtijPsMBusc1gktVzH2IQfYZOeO65XBbjvWLJu517qRQR8bFVmXyEEylqmuD4a35Xu+Nxub3EM51p0OOTDdHvcJn7Me5vd8qA9rdXP9cnvN81z/PHZqxq3r4L6zQWoe2plqfSTzxv9zP7luNsStU2e9z23zGPIcyTqTgcIMxPAs73W73F73q/no8e2xg4Nss9k0tqXJc871df24boc3AV7Ww1erVbx+/Tp+85vflGAsyqYsn8mbwTKXhQ2yXq/LNYMSee7mOjMOAB4zCOBxmj/n/586/mu/1d6Z76utuR9b31tqqaWW/layPpH1RMs7y9aPrU3ZGYDcGI1GJbsKnMmAtZ1DvNvgtrNM7FjBAeZdnwDcr66uihzyWWq03fIvHz8C9kj7OUZjt9uVs3fH43GMRqNybjx4nM/sjXhfx7Czg3eBsXmrOweLOYjFvEZfwElFW+0o4HcwTOTZZrN5T+fiXQRiE1BNX9F+61TeRh1sEzlu5w3kfjbP3cfWW72Ndg4OskPIchr5j8MsZ/JZZ8IR5Mwl62MZ26Jv6Asf50N58In657kF1XQ97rFehLPY/MlzLQf4ox/brrF9hU7lXQryGLXe7GC0XE7GJh3I5+xIz2t46t3bGHc8wzuNzbKbW85cy/ommWC0w1gtbeJIKHa2s/+h233cmWu73ZbjBTxOwOw5H41swJubm9Ln1Hc4HMbR0VHJrKVO4Lfv3r2Lf/3Xf437+/v46quvit3L+PDYIwhgOBzGl19+WTDf2viyw71mK/u6/SzZFvwlddLWeZaoBrbnxYI98yOeBA7OEe+DHBFlUDtl1AeAkhWGs4vyObSTxQlHl9/prRQRPL1eLzabTVxdXcX19XWpD5GSZ2dnMZlMSnt9+Cjv4joChuwz3kl51GO73cbV1VUBoJjs+/0+5vN5nJ6eRkQUBwjPIcyIyDA45MnCQmPQytlp1NtgQJ6clJPBGverf7ODjGfzOEFw8U6etUFsQzoDQhFNoZTLzou6BRRCyIAZQroGeHkLHBZGj2O32QLYB19aCN3d3cVoNIpOpxOz2SyWy2U50NbzwLy1woBCxBYEZCqOx+N48eJFER6MW5RZRyQ5ejhHHFuZtoCtgQgttdRSSy39PFQDWg/d86HPn3rN77OB7ixoK942oqw/2NixUYocimg6Q9CHMCCss2As29mRHR81Jwl1st6Ro+x8P/dmwzAH1GSeZSdQNkJqDhHXPbfJvzmopxaokh07EDoU9bbDynU2uGCyDuZ3uAzaYWOdMmuOTht18BIdNfMEcMy6od9rh6brbF7l/jg0ZsyHDCr5Pju6GDfWbTMwlNvNu+1wM/iU2+P65LKzA9L8wW4g+3O5XMZisYjlcln06NVqFfP5vETBG1hxX7tPI57AC9693W7jp59+iu+++y6Oj4/LtlgOGNtutw2dmPcYxGStMcCW+ZDHJ3Wyc9lAop/J3z0OaraEbZh8b65PDWQ4VOYhynOq1a1baqmln5sOrS+1dc2U9YaIeE+e8jkD3g7eRW6TWUTwLs4Mg+M+Z96YnzOvb29vY7VaxWKxKLifZRV4TXbkoM8SEPLw8FDkoGXLyclJnJ6exmw2i8lkUhxmo9GoHI2BHHO2Wdbr9vunraXNA2d8oRvjwLKjCDkMv7rdbtmu2Y4vt48+MBifA5Ec1AIOeHR0FIPBoGSHGWtCL8MusN5Bxh3yP+uuvM/OGrAzjy3u9blzHm8uO+sA1vvcPutZOEo81ukfO+Zqc4Gyrc95Lrmd1ulsy/g6/cJ1yuOzEx+o/9HRUWObTOqRtz30d+roTDjr9eYVz3vOUB9jlzilcSDRt/QZcxYbMOtMxjWdQUiGmjFSj2+ST8x/yuc588e7bzn7zM4zO7CpP1st0gb4wPh3Bmm/3y+7MWDHOmuStoHbU9c3b96UMfWb3/wmnj17VhxuvJvd5+DT6elpPH/+PH788ccGlp/XHOvqeYzm8cznfytqnWeJLIjyROezD5xmEWWAM1Dx8O73j9skkj2GV559+52qzSLPoL2+vm5EZNiRwSKDY6HX65VIyvV6HRcXF7FYLMriwJlR4/G4ASD1er2y4Ec8LkC0z1lITvVEAN/d3cXV1VXJBtpsNtHtdhsLCYqCBRAKhqNwmAxOs88LpRdGC0fKZLHxs4Bn2ZA0GAFP86Q9BCzkyWunH4trjiY1AOE20OeO1HHZBm14P30C39jSxk61miBFIcHZ5NReCxDX0QIhKxaAFr1er2x1ABABj+7v7987n4LxAOhIna6vryMiYjqdxmQyKdFEOMx4Nwv1dDotvCET7RAgZIWhBui11FJLLbX0t9OHwNvsELGCXJPR3FsDZvOzRFFG1JXtDEbb8IqIGI1GDX0v4klm1urS7XYbgUhuV3bs2MC2g8fvsq4AZZ3BdXCwS81RVJP/mbK8P6QfZT2t1ka+W8845EDL9XPZ2XGUnTG+np1N/uzAIOtRNb0gjxHqY0ck7UBHdx+4XJ53Ob4nt8fARHaOmlfZWZZ5a+df7R47gjz27WzKOzfk79xvfS47AN23GcQyn+zgxR7BfvKZLBcXF7FcLuPm5qYxrgAc0LUBMzyGsy642z2dC3N5eRlff/11sWsMaFBftvGaz+elHN7lyHZvRcO7a04uA1juD+v/1mEPUQZ13De1NfXQsx+7/qFrNRuqpZZaaunnpgzQ+7qdKJAdBqzvOILyOmU9xueQ5mARMCbWa2QgMigHrjhzGjlKYDu4mM+KingKBM46B5ggcgIwHkwRPGUymTQcZwDi7GSV24deZMdhRHO7PvAhsB7qYycQ97ofuAeZTvvQ02kTfWMnGThit/t4LI2xSPoM/JD3O0vQOpqdHGCntN3t8j126mUeMOayrWG9lz7BYecdttyWnCGEXlAby1nXhHdkFdWyM90edBs7c3Mf2RnqMWkdzZ/ht/VBficr0jxhnNF2j3fPWWOT6GGe74xPEi+oY9bBPP89HngHvPf5ttQ3B9hl56fnCf0HVp/XF46jMX+pR961y040dNtOp9M4tgYnVa/Xi5ubmwZ26z6mzui84LTw9NmzZ2Xscy4ZbYGH2+22bOPIHHj79m0ZV4PBoGzjiM9jtVo1sm77/X48f/48rq6u4uLiooxhr2+H9Mg8H7xeZllQW98/F7XOs0RZSFuARTwt7HiwIRaJh4eHAuozeEajUWw2mxI1+fDwULLOttttSem2cF4ul8VxgBOBhdiG1s3NTTnAjzRwHBgIqclkUg4EZaKwODliGUGcQQo7WoiS5Jw2eHJ/f18mGR5uyrU3GkcIzkD4yWT3++mPDCg4Mhye1CainWgZZMhREu7fQyBbBlhskPO/plSYXI/aYpzr4TFoJYVxwOLrlHpHQpkPrlM2+G3s+7vbk+fC3d1dAThwqloYMlZwHEc8LXyMbepAO25ubuIPf/hD/NM//VMRQmxRikDhPYyNHO2RgTTXvQZMtdRSSy219POQ5YjpkGL7MTDXAHiWlXZMRETDGPU9/MdIsUznO0FDyBUoOx94bjQavXcfRpHLyO2wPmP9puYE8/fsrMp8yAZ3fqd/t7z3ezMwzucPOcK4bgM4O23QQbJzxwZTrrOdGeaFeeY6Z73Mv7vfXabvs77IWEG39XvQVd0Gvyu3zzzLOmKuv3lnQ9/9lvngMnK7KcP6UM2Jyv2u34cCkVzXzMdcj6yLWR/Ndc3jfzgcxvn5edzd3b3nPKM/CZyyHm7K4xaD/tWrVzEej2M6nUZElN0Qcn0dSc5YAhAwKOj5zLVDcxYeA4AaYKzZJTzzqWulKc+z2rNZ7/9L6ZcELVpqqaVfD2Wb3YG7dqYhs8GEIppZ/HyPaK6XBv4PbU8MrkXGiuswHA5L0DRyxjoDwfLL5TLm83nJHCPbyVuk8bzPUXOACO9EDoIbPn/+PM7Pz8t5nrPZLMbjcfT7/aLTeFeGrGOZP8gi6kRbvJ0lmdnuE+u+EdGQbXZQgWUhz3BMGg/rdh8D0+ADMhiHi51f1g0pww4K35f1YeQ5ZYPP2uEJvxhL1t9zUJl1s6xnUi9jo/DHzhs70vKWf9kZZqefEwWy3pH1LM8BZ9C7veaBExeMGecdGIxP2sHFf2dUwhuSKRjbdqrBI+519hXl2CnocefdzPw+cHGcZx6T3W63bC3IGdbGKAn4dwCXE088N5kz1I+xYgyd9t3e3pYty3m/2wYvFotFRDwlmWy323L22mg0Ku8036mnHXf8wSOcYOD09CU8gj844fb7fbx79y46nU457/v09LS0g6Qg3o+Dl+0bfcaxx2jW3W2TeI5nfNxj+5fCd1vnWSI6EOGYQXcmCwPDizXfHQkR8ehkIONrt3vMzrm5uSkDHwHihYj0ZgYziyuLvqM0uJ8DA3n2xYsXjbTewWAQ3W63cf6UF2WENE4NIgqYINSXhWOz2USv14v1el0OIry9vS0Ou5OTk1iv18V54hRrg1bmr419TxATfGQSZYcbfMlAUAZsfG+edL6H+hBRYTDCoFD+oxxHNljwmDKoY4Ah/2dseTspfkfRw7nr88MMIDmi2kARi2w2pp0W7roRjcDYIcrJCibziPeTpUj9KI9F//r6Ol69ehXffffde4sngrMGxN3f35dz+9w/jJmWWmqppZY+L3355ZdFubZ8MtUU3BqI6/v8W+0aeooj/yzvP6ZYO5K003na0iYbARGPhpX1DmQyv2OIZUMx4v1sbusy2TFxSF9xmZlXGSTIfMvGdc0B86lkfdS6kMvN9/J7zYHktmRd0L87mMhtg1yH7Cg1X8xnnslbdLpMrjn6MTuQchtynQ4ZeTXHXg74yf1d+5x5Txuz3pTb6HFRC0hDZ6Se/s3AC2UaVDJvsoPMdXB0M+0/OjoqAYnX19dlS0fmliPq6RvOW/AWrtYdmdevXr2K4XAYg8GgBBwCruQocraEoq0GcKnroSzV2pzkGsGFmX+H5n2mfO+nPJfnVK2cQ+X7Gfh/fn7+Qed+Sy211NJfQxmD83pby7axfsD3HIyQZaDXNwPWnGdrgPz29rZsUbbb7WI4HJZMMJxc1iuurq7i6uqqZJhYZuA88RZr1sfswHKwdLfbjel0GrPZLM7Pz0u22Wg0itFoVDJMkNc4p9A3jcvkM794L3iMMaCsb2Wdz1iMd80yj9F1I54yyNgSk2etH6MHUi+wLesOOQuQcYJzM8tp9BkHQkXEe4HZPsMK28K4H/wkOyg7S7Ku5209wX7NM/rA549FPDlEwNuME/KMx7WdvzVdLzuZa7oo48ZBZPQlgfO8Bz4x5ulLdCY7HakLTjE7oHAkU5a3PoSnYJTOaoN37kve5aCk7Fh3n4Edeqzw2Q48ysx6nHFWO76Zv7zfW3Faj95sNiUjdbVale92suM8s7OZrc0joiTIwCPmCtuTel7iCIR3bJne6/UaZw97DNHXjIGrq6v44YcfiqOeHcNyv+z3j0lEz549i4uLi3j79m2jXPrKa4zHiymvocaBs832Oal1niViofOfBTcT2Jlnu92uCE8Wat/PAjEYDOLq6irm83nJyMGww1nlRSjicWJENA92HwwGDafY3d1drFarYjDudruSsu3JzmRjD1Pq7QX+6Oio4YQjcsUeZRYoyiPTjQlDe/f7Jy/2druNs7OzRvQLzjlHb2Cs8jmDCRbe2QBE4PHn/oGHnnAWgrm/XJ7rxmfaiBA45HClPCsBVgqyUe3FxqAH18wrxo4VSgt7CAdnFqQs9FmAO4LDfYWgyYooYCDZj5vNpmSksfCTdcgWn4wPPlMnrr18+TLOzs7im2++KW2z4pej+x0ZUhsX7pPWkdZSSy219Hnoq6++it3ucRteRyxmwzuT12p/P3Rv/oyxxbWsNxiUxghEfjiq1s4s5K+3VgZsR4m3PPR7csZSRD1DxW014MP/3Jba9Rp4nv/XwPtcjutvZ06mLLMj4j2ZXGtnrZzsRPsURwK6r3Wj3H7Xs1Yf7rN+aD3QAFjmr3laC3Sq6Ri1frBDK6K5Hbfrkeud6+S6O/PSDq5s7LstBtr8u/8bTONZ64gZtMkgBPXhefOI57OOznV0x+FwGNvtNt68eRNXV1cNkIn3G3B0JiplWw9erVbx9u3b+O1vfxuj0ShWq1XhoUEQdg+h3naSWa+srVeH1j0AF4OBebzkuZ1/rz3nsZHHSm0u+b7a7zUQw2Pk6OgoXrx48d52RS211FJLPwdlOz47zrxuWa5YP8hYnsl4FmWdnJyUc92NEznoab/fx2AwiM1mE6vVquiWEY+y5fXr13F9fd3A9cD67DyA+GzHBNupIQum02k8e/YsJpNJTCaT4jAjixoHDUfK2DkREY26cF/WL8DpzDef4YaMtA5mvQP+WKeo9aflvvUH6uFjbHzduKCDvSkLRwhZbX6G9htv9G5Zzkbij3ZgB9BWxgr3HNL7chAXdfFWmbSzNsZxmmUe8ht9wfj3WN3v92U8gdHZoWm9xbq7dQJ+M75rpxTH+NDP3At2aAyRso110lZvK8g74LPLImAqO/b2+8dgJOOAfhfOpcxjAqSoO88SNIUeSf2zzedrzCf49vDwUHbngt/U32vWeDyO+/vHY25Wq1Xc3t7GdruN1WoV6/U6rq6uYrValX5k3DLWD407nFjs2kVbfJYZ85q6Pn/+PJbLZazX64Lhks3nAIFerxeXl5fx448/xmw2i6+++iomk0k5qsptjni0nb/88suCDRgbZx5nJ3fNLjHfPU4P4QWfg1ptN5EnlVOjDeBHNLdfYTAhcHAmsDg60ni5XMZyuSyOMxZjHwQY0fSWY7hGPAFEbMPogY2zy0Y57/Ch9niPs8Dc7Z4iLr2wMfHywMWDfnx83NiDGccgixZR2l4wWOxzGqkNUxt8Fq4Y7I4ycNQDRN85vTcb7nl/3wwOsDh5QbWyYCHrtGlTFqgG5nJGWgY28kLtvsrjcrfbxXq9bigBVpIcOWzlhXsYE5TrVG4LXDtyrTxYeYp4FCLj8biMUcYSQs4LI22g7dvtNn744Yf4zW9+U/hiZyV9BS8Zezh7c1//kotqSy211NKvlf7n//yfDaU2K72HDOlPWaOzA8JrPNGrhwDnDLBYLmbHgPUvy56jo6Oyi0B2tkC+bjJYYjlq49DtpFzkeOZBBsZt+DrjnPtq9ao5YiKa4Ed2JroObrP7wwBB7je3O/OMe+x0ybyqgWSAOBmAqbXTdcpj9FA9XMf8PFTj6yEe196HHmk+oePUdiwwL63PuZ/dFo8Tjw34VYvir/VrBoxcf7fLfZTbkOtloAibxfwnkpngK6JY3759G+v1umF473a7AgywPQ62mOuGDXF9fR2z2SzOzs6KPk6ApO0i69C0E7vNQInXFfMwjyW+1/q29j3PYfOyNs9qZeTxXlsnTX6XQQqP/c1mE//7f//vD5bTUksttfRzkNc61tGafmSHyyHKoCxlEfwbEY21nWANsCvkwmQyibu7uyKL3r17FxcXF7FYLMouPDgwbm9vGzgNAL11HupN9klExGw2i+l0GtPpNIbDYUwmkxiPxyU7x3gNss3BWGAnxl1oP/dlJ5v5C5/4bLwmY1eW5XawmedZbzV/je3w3XWw7mLdPetAOFy8hV/ektLJAMbc/Jm+c4IAuJJ/9zW3A9wWXhnTpZ55lwqu7ff7gp+6/Q48z/is+906GvgbY9089jaCeT75PZ4TOGYcVO9+yIFc6FK536w30U9OEIGv/I5jOI8T8Oc873NSAmXxDsrzmMzOUPo84inzjOtg8K5jfnd2ynkOcQ2MfDwex2azic1mE9PptCQfRERcX1+XPlqtVgWjHg6HpR+Oj4+LA4524zwzD73FIxgqa1iv14vpdBr390/HQXlsdzqdgu2+efMmnj17VoLcZrNZcbwxr+/u7uLo6CjOzs7i7OwsXr16VepVsxUhO8rzeuDPn6LP/pzUOs8q5EXIwDsLHouoU513u11juzoWDX9msSPyYTAYlIwuL2p5wcmDvdfrxXA4jIeHh4YTbjgcNgQVk5l6Z0PbUZt3d3cltZOtFpncbGlCOiZ/1JlMOPjCsycnJzEYDOL8/LykkrNIwTcWFOpnox5eZGAq95GFjttn8IeJZQeX06S9UHoSWpmoGZye2K6X35/BHhYwl++F2AoE9aSPuYc/Fl8WIdqYHW4eq1Y8Mm+9KAEeMKbswHTdsiKEU5d7zs7OSnu4v9/vNwQov1tx3G63cXFxES9evCjO2dz/pPyv1+vG3uHunwxKeey01FJLLbX085HB2U/5PQPBtfvzum05hTwiyjQbTjbmIp70KxvY3pYnAw4RT4D+bDZrbOnmzBbLedfBda85XLJOke8xuFHjo++Dsk6UnRq+12XbsEM25+hY0yGAnnJrgL954XbUxkW+z2PAdeS9GTCzjmHQJoMwNaOr5mzI/M/9mtuX7zEIZLKOWhsr7je3xeXnrMXMO5djPepD9a6NS/icjVeI6GbPz8xPA3B8Rjc32AAQ4C0VI6JsLzMajeLm5ibevXsXNzc3xd5iy62Hh4eYz+dlrPjMDfP+3bt3BZykjjjVWRMGg0HZCYQ22IZi3ntdMY8yATyhZx+ay3l9/NAczHOmNgZyf/p77Z4PlV373lJLLbX0c5P1wIzxRDzpblnWZZ0hO3+sn4BPIF+yLufzgAjGYDeoyWQS8/k8Xr16FW/evCm7/ZjYmYejU5Av1BH8EDlyf38fJycncXp6Gs+ePStbNZJtZhmDg8b6l3E5O+v4D14Db6gHDoi8E5adDual+Qj5nrwTEm13XbO+kPs+6y52HtnJh37OdfhA4A115H4H61jHYYxYTtYCxuFddgKaT+adeW+dL+8iZZ67bZlwyHIsD8+Yr24PZXsc8B+9zbaM8ULzzWMb/Yr54/pHRHHigPHWnLGuM3XFKYmTJm8nyv2UCU4OL7HPXFfK490ODLRj1U5SjzHmvp16dhzmfmUMsL54HMA7yqes0WgUw+Ewbm5uin8gIsq83+/3sVwuY7fblZ3imOPsOIddyvagZNGyBhmPp//ct6yn+AWOjo5K5hs4MjvU3d7exo8//hgnJyfx5ZdfRr/fj9PT05KRS1+t1+s4PT2N58+fx+vXrxt98jHcoEaeT9mB/LmpdZ4lYkJZOCMgmYxeQBEwd3d3MRqNYr1el/sjnoCa9Xod19fXsdvtygGjbHfodFbIAoQ9//EcM5g5lG86nRZHHBlwFr44HgaDQfFOr1areHh4aBz82ev1YrlcxsXFRSNSgkWQjDlPVBxqXqj2+31Mp9M4OzuLfr8f0+m0bCNpkIqyvUBFRPFQWzDZGem+4tkaAMNCYaFuY9bRHjn60+V40YZc7xr4YsDAhrgjDiyk/J37LKwMKPCdMZqFmAW9ASNnOTrt3O+28GORRAGZz+ex2+2K4wvAg/d6LMPb9XpdMg/ZWpQ68ywp1rm+4/E4/vznP8dsNisOOVKiHQGGgHh4eCiLfI1qSllLLbXUUks/H9koyA6PTNlR4ucOfXeZ/kyGeK0+2RlgIB8jNxvPliMELiGrIpoRwpaZNrK4FtF0UmXgx3Uy2RDLvDBoQZl+nnpkQODQ++yQOXRPfp/faz0r62Iuz+XUnAHWR6yL18qg3uZz1hOJoqzxqjY2XHYGPvy725jb5GdNBivQeazn2Rj0tVyeecL9OVirNk7yXPS1DO4YXKr1owEDnvN2VL7XAImBnKxHev5Y5+W8BvOKaPKTk5MCjrFFFgALgBnRtASuuc3oqZeXl/H3f//3cXt72wBS4cdoNGo4z7LufShAqzYO4Dv8qlGe87W1zfyvPefna/fnMVIrr1anQ+9uqaWWWvq5Kcst1tiabmnsJV/L66B/4z8Ygt+Rz9KKeP9squ12G5eXl/HmzZtYLBbv6Xes9egjYDhgIZQNZtXv9+P8/DzOz89LYMdkMinyDv3U2BQ6qeWLdTM7cwza23Hi+tohRDne7cd4jZ1JxoWQXVn/4Hk79RzgBo/4nuWf8UFnqvu8N+pkRyH8pt7ePs51zjqqz6/KgVjGyay3uq7Ooso7i9GP1rncRj7bTqF9zjby7/StbY1e7+nYHHBcO1bRk91/2QFMv6Dv5R0Lcj/xjmzrRDzptzmrDlsOfjBXjJ/yPsaI9WfPB+vTOIs896i7MW+ugbnzDpzJvAfndF5rPMfyODV2S5tpp8cq49WBYyQLuCwSachovby8jH6/X2zW8Xhc6uM55+0o3X5vHQ9/2EXs5OSkBAWAD9M/b9++jW738YxBEmZms1nJngW3vbu7i7Ozs5jNZvH27dvGeDDVdM38+8fwhc9JrfOsQlkw+z+Dy7+v1+sGyEDUgQUGB10vl8sSxYgjys/Zow0xwBGSTOb9fl9SuB2Z0Ov1GhEjeNqZnN5TFedGRJRomOVyWSbmYDCIm5ubuL6+jpubmzKxELYeuHiynz9/Ht99912J/KRO1N+CxUKXd8JrLzyOxoHyIp3BhxpoBD/sAI14ilqiXQga6piBMi/KGQirjR3a5zGWHWgGFixsatEteZyaPyxSOLoQCI6kssMxAzUWgowr3rHZbBrCvtPplD2XuZc/H5AbEXF2dhYnJyclmoIx78gPIk1QBFarVbx69Sr+8R//scEfIkeog8eUI5oy/Vsuti211FJL/6+TZXsGbvM93FcDNbKDIOL9nQBshBB5mR0kGUyxPoBB4oOxI5p79qMLEPHHdYzQrJd4+8D8vgwm1AwEynIdDFSYb+Zxduhk+V67xntyHf2OQ/1kXevQ7w5Q8n01YD8D+vn9/p6dOvAN3cPvQycyzzOwQZnmZ64bOlvW3VzHmgMi1zEbfS7bOyPkNlhXrY3rrBvm+lvny/ebXK7bmfs5g1PMpRyklNeBD+lg2fHp+gI+YSc5gOr09LTsdHFxcVGiXbfbbQm4Auz0uYhu89XVVXz//feNnRPgNzrpyclJbDabUg9vi5PHZC1Yy4CtQZOarZLH0F9LNdAhf/a7/pIy/5Z6tdRSSy19CtXkrGWknTy19d3P8YzXVtZqdkjK8pOgYzBAAGMwq8vLy/jhhx9isVg09B1jLc6OsQMHmc/vJycnMZvN4vz8PJ4/f17qxBaNEU/OJHAlnGkEtEOW2f5P4ImDd/g9H+mCnAJv4VoO1OE+gH1vU5jrwzPI8Byob2cd5VlWZh77PWTL5DYbe0R/9xZ/6DLG2+xs8D15TNmxht5kR2V2XKGTkslIm/M91l1NGcOjPyknO6qoM+3LGCXt8lxw+3jGmWneuct1zvo1v3uc2FmbfwMTp3+2222jTu5v64IOjMo7hnk7//1+X3RCO4zR76y/kQlK3bz1t3dF4zcnzWQnWrYh8g5jdhDzG3zIjtOIKPg68+Lu7q44q9g9DueZsxrt/Md3QZZfdoSC+cKffr9f1hj6haSdTufR6fnmzZsYjUbR6z1u+7hYLAqf7+/vY7vdxmQyifPz83j37l0comwH1OzCbPv+kvpo6zyrkAWBv9uY9CLAthvZYOLadruN+XxeJqIXDAP9TBiXwcGA3EvWDxlj9sTjOXaUgQ3t/X4f8/m8kWq52+1iPp83squISGBh73Q6jfpDFiT9fj+ePXsWZ2dn8eLFi3j27FlZYFkYWGCpq4VgRDQWuNoetPznnrw9ocGumvPME8yLdxYsVjBYvFhYMpDAey18UIT8u/fopR45Y8xO01xnnuW6FROPR3jENWfeZYXIWXf0D/XKShWLs4EEL1zb7bbUn+gCj0EWZ/btZeE1MMj8ub+/j/F4XJ67ubmJ1WrVEBaOmKGdtCXvP30IqGmppZZaaunzUHYO+BqUlV9fy0bYITAEuZYzz2wIOrjFZSGjvHWNgzmQt8PhsGT7Z6PThlp2UFBmNiqRv9b/soGFTsF3Oy0yrzLfbDBn8MJOOa75PpdZc8iYtznwpqaz5Lrld/h/LYrVYyEDIrkc6xu5bQA6h8ai35f7IxvCBjZ8j3WtXE+PB/rxkH5ivdXv9Dsyr6iL+8TvdnBUdp7yfK1PavXMbchtdLl+dwbbclQz5RisyYSNk/s4IoquTrAfu3OMRqMSrOjMAuYV3y8uLuI3v/lNqaN14OPj41JORBRgp9Ze06H+iYgGgPQhw7/2W22d+dDvh6g2vz5074fe11JLLbX0c1OWTegfBoMjnvS5iMM6nz8jgzqdx23NyNIw9uf3O8D75OQklstlvH37Nl6/fh3L5TLu7u4KTrHZbBr1A9sAv9jv9w1MrdfrxWQyiefPn8cXX3wRk8kkRqNRAaxxkBifArMDXDd4n+UjfGNr8+y0I7gE2UtmirO0clm8y7oG9el0Og0ngOuCPmC9lmvWcRxwb10AbJH3ZRyUOtAu63IZG7RzjC3vnGzgwCDrz87Ms+ODe40fOrAL3qGLwjs7kYwjUn/z3I5Aso7ssAPPNT9pa6/Xi81mU/Tk7ARCh4bPHkeMMTva7ND8kAMo65/ocR4ftJW6M/58pm2n0yln2kKeGzhybMfZuelARAf95yA7sre2221JmqGOzlZkHGVsNDtZPe7gM23KWKt5dnt7G8PhMIbDYWO8OXOQ57vdbgwGg3KElG1rjwfK6HQ6ZZ7jhGTOMYZ2u10sl8s4Pj4udjDjt9PplK0c2UKd88+ePXtW1rT1el2O1mHLyPPz8xgMBrFYLBpjO2P48CRTtpt/aWqdZxXyYGbwGaTJwoRFzCncEU+C4urqKpbLZQFemISc1URZjphh8rFNY7/fLyDPzc1NY0JkoMMLEZOv3++X9zPpcKDd39+XaMt8sOJ6vS6ROFYCjo6OYjKZlANMx+NxTKfTRuYbaaMYtNTRRmu3+3SWG9lGXlCtDFl414Sh73HaLv89wSxUXa9DyoEFtB093EsZx8fHJRoVsnCyopDHnBdX+g/hwXvsvKOunEnHs0QO0b7b29tG+w14ZCGAUuCxbAcVSiEHWDrSmPHFHr2MExZx6nx+fl6itSxgEECMCUdI/PTTT/F3f/d3jf5BYfCzdlS6vz8EmLXUUksttfR56BDgmp0MNeA+l3EI4Ofc1UNkeZnlLPIiZ/RAgObIYxvVWcFHfqIv1PjgeiAjs3PCukU2DqyL2tAGbMg6kXlgsgMi87NmkFj3ys9mp6XbQju91Yrv9Wfr1m6rwQ7KzOPKDsf8LHqon+G+Wmacn81AFPq+eea2+H8OhvKfHXIEc1kHrfWBnYPmcza+PS6yPl1zdlkXtm59qJ88PrGJ/A63z+PedaltneS6GyAy4GheACDi0MJeIFDr8vKybKFF4FbEk07LewBfrq+v4+uvvy72kHm62+0KgIH+6TGQeeTPNSchbaLeh/q8RrV32WY5VJdMh575a+jfAsBoqaWW/t8nY3CZjOXw2dvQQYfWp4eHhxiPx3F+ft4ow8A4uh6OJzCSN2/exKtXrxq7SLGLAaCy8SDaYEcKusnZ2Vl8/fXXcXZ21sgyA8TPQSJ20FAn9B8703LgVa6T+Zj1X++yVcu2t4y23gmelfXYGnG/nRjmDc/bCQK+5Ywc2m4di+e90xR6KDghiQjWP/jNTgnqRj343c4Y6gIOSh0o2xntYLrmtx1O3J+D9u3Esf5l3ZdnbOtY3/Jv2bZy5lptDlGOg9T9fl+zwxPdjK0eKcsOSvhmHNj3ZjsiBx+67mSh0kbbCB7Txk3tuKGP3SbqxFFItCvrbx4vHteui8em54DHr+3MfMah+zkfTzQcDmMymUSn87SVOgkLHo+uI7uKHR8flwAA9xvYL9j+YDBobG3OmogDbTqdRq/Xi+FwGNPptDikObJqPB7H6elpzOfzql1Pv+JPqNkk5vUvTa3zrELZYeYFNBuKXoy2223DaXN0dBQ3Nzfx9u3b9xYRBDx7iHY6j9sO4eRiAWExxgGCpzniaeLgoGBhYRDbcYEQZIJsNpty/hQOGlKdN5tNY9JHRDkrjZTy4XBY0smpN4OdRYcFiKwtCxwWX/7Dd3icjboMnNQEFzwhUseLlY12JqD3dqVOTks2Dwyg2ImYAUAMd0cBoeh4bBk4qYEMdtR5q0yETS1rzU46xot5ZLDIQoixCaBgBcKRLChdfN9utyUlmEWR/XA3m01cXFw0olu8uJ+fn0dElIWTcfzw8BDT6bTcRx0vLi7ixYsXMZlMCh89Dyz4M4iaAYnWgdZSSy219PkpOwk+tvZ+zHHma/4jkCM7iDIwbCAEmWrdxc4IZCTRqIecOMhDdDMbdzWjKtcnO8Bq2fTcmx1Q2TB0/dwm88VlGvTIfDOP3AfZQZXB+wyUGLT5UNtz3+T+yjpPNrJq5Uc86YSu/yHKDsQM/mQnlZ/JvDZwkXnEH/qX50juA1/3GMhGNr/byZS3mLdx7shXvyfz9VP0JY8R2p+3aI94cv5hdxisgXfWQe0QBeDIfYXuSH8AeMCjk5OTuLq6iv3+cZt7eEBQnG2T29vbuLy8LNln7jPqPxwOy5b3GVR0vTyOscu4jg5eAwVqVJtT9FENmPzY7x8q+1OoNlZbvbqlllr6XJTlrAMtLGOzLM3yPuN6R0dH8fz58xgOhwXXiGjuPJQDHe7u7uJPf/pTvHr1qmAiWR6Px+O4urpqYH/IO+rQ6Tw6XH7729/GixcvYjabxcnJSQG+kS/oL7TNTjPvfGA9DswHnSAiGvLT2Jl5aczIMrmmK1q3885RrnvOHs86TA4mo198nhTb7NnRkneesk5K+xw05XHAd+Ng1sEZF3YyGvejD3wmW0SURATahNPTvM08zuB/1pfMc3Sd3B7zsbYTBuV6tybj2tZNKAcnF787w8nn9i2Xy/K7+cC4o/943jgvOp3nrHFreAAPCXLiv8cl9pf5mdcIHOD5fL9ut9vY9j/r8NTD5+zCQxxpzhB0P1MHO7Lt7OKa8VjbDnYo0o/eWjWPD/MWPRseXl9fN47T8VzFZxDxvhPX5VE/5obH+MPDQyyXy7i6uoqbm5t49uxZRETxESyXy9hsNnF8fBzT6TS+/PLLeP369XvBe/zHcUa7sw7svzx3Pje1zrMKZaCAz/ZoW1hjPDn6EYH7448/xmKxeM8hFPE40CeTSSNipBZNweTjbDI7ckivxGvOZGTQMSl8WOnd3V1cX1833sVh2o6w5ZDA8/PzRkrncDiM8Xhc2jEajcri6KhPJlVOqx6NRmUC2lFlQzqi6fTIQpZr9E2n02m804um+5RFvtPplEwpg08GYCxc/JkxYAAAYmEnUp1tBOlvCzMrMtm5BT/ygeKuRx5LFkBEhTjd2eM2t4/37na7Mg5oo6MWKMNOXAQJQuTu7i4uLy8bigWOV+7Z7XZxenoa+/2+pO3i+BqNRo2oCOpweXkZs9msAaRZmXCfZGPeYMJfChS01FJLLbX0aVQDef1bTdHNYG+mQ0qyg3swEGp1saHg6xj8BrldPsE/ZOtTln9D5mVgwY6KWvsyn6wHud6ZBzXnkK+ZRzZ6anLPTrTs5DGgkN9pHuVnc5tcl6yXZf4gx/1ey3a/BzlvB1EuG33MgIqNbvM8P18z1vzZDiP/Xut3kw1X9GP00lo/UUZN782OTX63M40yvYMBv2XQLNfbuu+h+2wn1cZJbWz6d/M/gz2AB+ietokcBNbpdBp6IMY5uufx8XFcXl5Gt9stzi/bEx53b9++ja+//rqcS21Qr9t9jABeLpexXq8b48xBbdQz24zuU4CXQ3OzxsMaTz90v8dfvlZ7Z60ueS7WnjlUXksttdTSz0FZ/zskfw/JvKxDRjyu/bPZrDiryPQZDAbFIeRt9yIiFotF/OlPf4qLi4u4vb1tHG/CmZgRUTI4LNuN5xwfH8fZ2Vl8++238dVXX8Xp6el7QDr4HHKMtjiIym20LLJcy/LcjgZ0V561nsFz6BPeWYrffE5UTX+0vkbdjfvxO3gVGB58ADsyNmjZWtNRrKt4C0CPCTuu/Dz4abYxcEJY385bOcIfjz/wNNsIxrCyswC9hrJr/QsxJuww8/iwcxRdM/eB22GnE+Mo62aMKTIrGd8RUbBmeEE52+22OMkc3M57j46OCh6KY85bZxqzdLnwjTIIwPf6wB9tQd+mfzzWvC6YrCfbpgLvhu/Mb+qd+zpjybaLPCc8zth9zll6JOo4oJD3MBZwbvEcGay3t7exWq3i5uambGnuseO2ZgcxdV2v17HdboujmODVh4fHHe3m83lcXV3F6elpDAaDWK1W0e/3Y7Vaxd3dXdm9bDKZxHg8LmsmZJw667peo/4tqXWeVYjBkyNWbCzm6z5YkHTci4uLWC6XEfFkPLEw2tB49uxZzOfzknHG5Oa5/X4fp6enxXnGYsVg3W63ZVCz8OABxvjrdB6dRRwkaEOdbYbIdBsMBjGdTosQwykVEY1JyEKMgsHzPrzSiyMLAmCGoyCysD0EgrEweDHNYMAhEAL+s3C6X5ya67Jrxq/rynU7AnOqOeVbyNTGHGQQIEeEWJDZoHfGoevjfqA8l0ndut1u+Y2taRB4eezn9xOpxbibz+cxn88LL5x6bsG32+3i7Owsjo6OYj6fR0QUhxr8swLHGRZkArBQO9PPURIZTDBQ2FJLLbXU0s9PXrcPAcNQBmQPrc21eyifYJ0MTtsoj3gKOsLIQG+JiKID5fePRqOiI1Ff/pCpGJGWL9mwgzCq/Nl6T+ZXlmPmGcZVBilcR35zBk/mjR0tNuCsp+b+zHpSJoMRBiEOOU/4vfa+3OfWw2zIZp0HvfNQ3TOvDSqY8pioje+sv9YMPp+34ChUgy9uCzwxwFQDqWpEfawz1pxvfv5j2YQ29t3v7rfcXy7bAB5UA5A8diHr/9g5h8Z5BlVtf6zX6xLF73N6Xa/NZhPv3r2L3/72t42gSHbnIDBtuVweNPIPrXkZmLQtktvqsjLvMkhYo3y9tk587Blfr829j63vLbXUUkt/K2UsgGv8zzLO+lHE+/oLhAPLR1P43B/uAdu4urqK3//+9/Hu3btyfia4CkFUgNZHR0dlq+Dlchmr1ao4rSaTSXz77bfxzTffxGg0KgHoyDDqDLaTcaWI5g5FzrLiWQKV87oPfmP8KuIpCAucxvqB9RGD6MgAdOGME8EH68E1fZF2eJcqnq3pMQ7uNrm/a7zBmcV1eJF1RvC0/P5O5ykTiPvBwdBx7LzJOKadPPDKGV30f02fzPoxemSWw/7vsmirMVjPFcZALYsqY+KcJUsf4ezKOhj1dtYZ/Mnzk7JopwMbt9ttCdLn3fCFsWJHN/yvZVjBA49DY7+ME363Q9Dz0/O013s628sOvJoe7TL8W7al6GMHj3HfYDAobYCX2BiMSdYC67c4+1hv3rx5E2/fvo3RaFSCzegj+Mc7rPdnXBiMFz/BdruNy8vL+PLLL2M0GpX2EojKkVHD4TDOzs7i4uLivbFr/uQ5zffamP+lqHWeVahmtEc8OSDoQC/iLCQGal6+fFm8517AnGHGZJ9Op3F5eVkmlo1KBl/N6PUZZRawm82m4dDD28t5VJTB9ovPnz+Ps7OzYhwa4AGcol1ePI6Pj2MymZT6ZO89oJYjQFkQagAT9c/AEOVxr99nQWXBlw18749rpxd1yAZ3zTDkmp/LzlD3OcQi5AW4ppy4D+GlDWy/i7Z5UXWkhu9BYYCIeHVEA3UnQsZKlr/v9/vG2EIRoQyiChjHLOaADllADofD6HQ6sV6vo9vtlixKKyidzuN2otfX13F2dlbeyaLd7/djvV6/F9XxIWCipZZaaqmln58OgfqH7quBG9aZasAJ8qjf7zeiGfO77eixLhHRPOjbhh7Rrv1+vyHneJb3kTVdc3DYuMrvdx2yPpH54/bnSFMb9rQnG/s2erMRZ75mB6DrkoOHfE/N6DPfczv8LuvGpkPGkEEGgz/WrfmtFp1tQ9rARuZZ1p/yrgS5nrnOGTww0ATVzoPIUeK5vFpfZR20Zrv4Pbn/raO5r/Jnvvt5j/08Tz1/XX+Pxzx+DAq5XynDIFXuDzsacbA5yK/Xe9z1gmBDABH3DX+vX7+O3/zmN++BEhHNSPta39X0TvMu4iko0sF0GWjJlMfaofsO9dWH6uN1uPbOXEZej11GSy211NLnoiyPcvCDr9We8To2nU5jMBjEft/MGvFWZzgalstl/OEPfyi7NlGmM8c5EwgHnAF/6Kuvvorvv/8+zs/PYzweF1zMTgfwMjue9vt9YytDB1RbnwHcRrbBG8vHmsy2PLMsBKuz7AUoR4ahb/EO8KCsG8N/46dgXsYEzYfs6HM9kc1uIzaBMVHqB4/NA+sf1BnMjfbRn1lX4c/B2253HkcOUMo6g9uag6cYZ9b1nEHl+8DEvHsZ/MxjwroTjg3rz9abcarV3p91MOPkeccO6+jZKQtfeQf1BTN0PSiHcUG74bnrVRvj2UnJO0lAse1Q29UqY8geQ8wNY6iQHZHUA8w664/4FmiT55AzNL1G8A4nE6APexycnp7G0dFRjEajck7ZZDKJyWRSfYa+5n/eHpR7ceytVqtYLBYxHA5LXekftj3n3DO20vS4s9M247n8VrMfa7rp56DWeVYhd4qpBgoA9uOMYDC/ffu2ZJ15AtnJw1Z4OBpOT08bHv1Op/OecPUAi2ieU+X0XjJ5yExbr9clUoY9lfv9fpydncX5+XnMZrOygFoo8g7OBfGEOTo6ivF4HIPBoKSu834OLMTp5ogLyvZiam9/LdrDC7HbT9kAaCyaBjtq/egoczsqeZ8FR342AzP0C1QDg/wsny1wreyxhzZjxY4kn3+W30UdatGsVvboSytO9/f3xSGWM96856znBvyhDdvtNrbbbVxdXTW2BPC5ffRvv98vGZCdTqek7wJs8EeGAMLt6uoqvv322/I8goX9ihk3VlLM/5Zaaqmlln5Z+pgya6PhQ/dmAL7T6ZTssJoDCnngzxhqjrKkPMv109PThvEX8WQYdTqdco6SgzxskGZw2sZNzdnG5/y8/2wU+nm3MfPJTiLrGRlAgTeUXesP85DfrCsfAtU/Bt5n49K6ttuUnVIGMyAbktk5QB9nx1keM9kgzXUyfz7U7ty2XM9s0Ged0LqQeZH1m0PvsK6Y5wGfayBA5kdNp/X4yOPGYB1l1upkI7j2fOatbQbXy+MX3bPf75dArOFwWKKXB4NBLJfLGA6HsVgsynsM+G02m7i5uYnT09MSlMVaYIDNvMj3uK0eU1BtF5JD/Vnr30/RZz13/pI5mOdOXqM+VGZLLbXU0uekvO7U5FMOWLGsiXjcVeD09DQinoKJ0QU3m03BsI6OjuLq6ip++OGHstVZ1kvyrkJ8dwYVWNu3334b0+m0YFbOnIl4OjIlZ/Cg+xGEbB0G5wJZMtaL0HVrAU45QDvrnw7wN5Ce5b77wbpTdgbRDuOgdjIBzlsm85x3qbLjyWA7fOAZZyNRPxxEPL9er99LZmCc8H47B/gNLJXdlfb7J+cKDhj+svzPoL9tiCxvKdf8pj+Ng5rsWGVs2THm8WEHCzYBGUQ5kIn/vV6vZFj6OmW7r+hf4+OMATvFGMfGL435Ms/sQM52Q0QUR6fnHuXY+ZV56THhOcS4ciaiHeyeU9SNMhjTXI94OlKn5oS13gj/PY/9XvctxOfaLmc452gXdeMYpvl8HtfX17HZbGIymZS+xRnmjD9s4OxAg384y25vbxtYMv3BWnV7exuj0Sgmk0nBg7OtUFuXbLvCQ377pah1nlWoBrjbUHDkQnacsGD94Q9/eE9YsVhEPB1myWJgp9Jms4l+vx+TyaRxuKG30cvb0TCh8eiysO12u1itVmVv0/Pz8+I8Y3vGZ8+elb1NbZwy+bwVoyM3fMg27RgMBmWbRyK3vVA7CoEJ7IMQfS88y4KA9lt5oK2OenD/UW87GF0eC6OBCvepx0WeoFmR8/3ZSee02M1mE4vFovCONjhFmLKGw2HZDpQIqRw5QrkABn5nzuZyvbvdbomYYhyZnxkY8oJmp9vt7W1cXV3FfD4v0Vw+WNNZiyyA9AfjxYCChQljY71el4iFzWZT2o3zDL7kyJNDfdVSSy211NLnpb9Vua05hZDzw+GwsV2H34We5WzsbMDZUEP2DYfDohMhU4gkPj4+jqurq8Z2xAbzHQ0IZeP4EH/8TN7uJus7mZ+H9BA+2yDz8zUHR3ZQ+R01R1Lu30NAvd9tg9vP5qx8O1TgR9bH7UCx7udnbITZGWXee5xlnlmvNDnzP48n18PBXLX3ZiDFbXP7an3u64fup00epxFNcCHXlXe4P12GgZdcJ95Z42+uO+PKemHNOM4gje+x3QDhjAQM8vhlbhPEiA7e6TxGMV9dXcWLFy/i5OQk1ut1A3jzLhZQjh42b/IYN1DrdtTG16dQzU6t/e7vH3N+1dakTLn+LbXUUkufg7y+fGztimjKg7w2dbvdePbsWQyHw4LfbbfbUiaOr+Pj41gsFvH73/8+Li4uCihtx4GB9owRsY3b8+fP44svvojnz5+XIG/+7EBDtjgLy+3lbzAYNIK+kGXITQfZO1go6z0ZQzJ4T7A7ge1uFw6U7HTJx6pYL3I2lPVmdHcnB1g+2dFkWZr1BzBJ6+O73a6cTQpgz7M4MDjPmH6xngbRH+hJ6EDeccxYlt+f9T3ajH2RdzSzkzJvy4jjobZbAOM21x3+owvxO04/95NxaOt91qupix2D2ZHn/qO/rXcSEO9xBB9ruB33efeqrAtST3i82Wzey350X5hHNUev+WCnKs5tb+fquQ9vDjlIaw5Vj2vGKP3J2LMtQznZFrOdS9m0ITuieeb+/j5ms1nB79+9exd//vOfYzwex3Q6LVvZssbgOPVRCei9EVGC1E5OTmK73ZaxakcbjrXtdhvHx8cxm83i3bt3pQzaC3/tA3A/5Wsfkwk/J7XOswp50TNlI9GDgQna7/fj+vo6rq6uGhlV9npHRGN/WIh7cEB5X1qy03CEcJZZRHPfUfYSxZnR6Txm9YxGozg7O4vhcBi93uM2d7PZrKFAONqCicQiy8GAfh8TtdvtlvoSBe79ns0/C+wMzMALCyovBnkRjHhabC1QHJXCe2tkgzVHgTo1NT9fA0PyomvgwsIGgTufz2O9XjcclgjxvHiTCbZerxuR79mpZ8//7e1tNcoibwHpVGycT15s3WdWEAxiRjxGbv30009xfX0dR0dHcXNzE71eL2azWQEu6OOc3k6fdzqPmZaLxaLMD0elIDhvbm5KpiTzlDHNdgWeaxb8LbXUUkst/TKUQeNMn3I9AxKWO3nLRn63jmAZ7D/Xz+V3u92y/7sPS8b4XywWsVwuGwq+30sZ/M/AuA1FG1GZag4f87XmiKi133IUmWlDMAPgNRDfcpjvmfJz7qcPOQZqY8D9k8GH7CTJ+lbNSZh1gFoZ+f3W76wTfczJkcvi+ZwtRTm1+9F76S8H6EVEQy/O48L/Kc+6KEZ3LcLTvMrvdLkeN9ahXZ7f7/rkOWGnnfvaRrIDumr89lh3XQyq8W5vy9PtduPdu3eNiFn4i37uLFXaAXCQ55HfeYiyE9X1/tCztb71/YfWkRrl9dVAVH6H61ibJ7TplwQuWmqppV8XZczB5MALr0k12brb7WIwGBQMAUzGOAkY3O3tbbx69Spev35dgtIdqGydzlknYBG85+uvvy6B6z7DyM4j/lN/ZzAjw6gf8so7Phmst06aQXXead5R/4gn8N44HTLVZVMewWmW/wbLnXWUd06w7gIuhMxFplrGgomCzdE+nEo+e476Zn3NOCb1q8le62AeP3Z4wJeM41omG9inrOwozHqo6+Z385udIiY744xh8mzOCANTo3w7QbJ+5zFhe4H/xrmtM+MkdAB9ba5Cxl3ZiSrrF9SHsgmQYtw5IAwHqn9zvWvBgB7D8Mt9kbcYNW8O6UgZC/Z/3+MECZ4/Pj4uDnvIPHNySNblGJueL9QXnrEugfOfnJzE27dv4/r6OkajUfT7/RgMBu/NZbePeUBiiMedcVr3O0kdk8mk0ca8NnAt2wnma547n5ta51mFDglo/9bpdMp5URFPQMjR0VG8fv06Op1OiWiMeEo/dTaXjX47Jl68eNFwajgt2IsdgnwwGMRms4n1eh3L5bJktI1Go3j27FkMBoMCMuEIm06ncX5+HoPBoGEkO2LFaa942b3Y9Pv9skg5utv7N3siM7FxAPl9nhDmkz38EU2PtAGdjy1cEc0IYf+eBbn7JZfvMh2lYmXFkRR+B8J9uVyWscFihXffqf41g/r29jZWq1V0Op2S2Ufb7Ihz/b2o2cFmIMgZgRZ2FnKUlwXZbveYFXlzcxO3t7flnvv7+7i8vCx761qhomxvufjw8HQg++XlZcnIM09xzM3n8xiPx+8BGovForTD/1vDvqWWWmrpl6fszDnk9OG32n05wpL7xuNxMQCsm1mGZ7JcpWwbIgQBkVHvQJ7b29tYLpfvZQdl45f3ZODC7cnGeTbcc31zm7JhW/vusq0vZWPVoAA6HvfmLKDsSKPdriP32LCyQZf1I/SB2njIOlt+1yHeZ0PReksGVLhWA9v8W65jjd95PLjP0BkNvLmP7Cgyv90G+OnyXA/XkTbX+Ghy39fGmfXDmrMrvz+/O/PWoJ7bmHlh/TPzJTtDPfcNImK3sHMD83o4HMZut4vlchmbzabB1263G+v1OhaLRQENHN1PtgDGf03vN3lcGIis8e0QfQiU8fdM+XoGV/L/2vtq9xz63FJLLbX0OcjyGGzs0JprOeznO51OybQAE3EQ9snJSZyfn0ev14vLy8t4+fJlOfYEYNgBJrVgncFgULYjOz8/j7OzsxiNRmX3AhwVPMcf7bODgToZjPb57nmdtpzJ9xjvsqwEUwNjzBlPEU0nk3nJtbx9nO+lLg6Y9i5MxvUsa4yv5YAhnGQETLud1m8pN+8cQHvAx7AjkOnWc/f7x6NoHJRTc+55LNhRkvmIg8u6DLpF7qust1sXzzqQsUwwQutDWc93/dwWO5Xhs3nvsWOdDTzYOqn1PHQkZ57xvHFPOxd9dhu8cJ+aD7X+cNvskHLbud+4tZ3hnU6nPEsbc9+4rQ5Qs+6Hnujd1tx2zuk9OTkp+D446HA4bIx1yJldec5nDJs+tZPKjjxwfBI0Xr58Ga9evYrhcBjPnj2L6XRa5omJeURWLn2zWq0Kzks/GvMHtz45OYnxeNw46ory4JF9Ih7r+e+XotZ5VqG8KGRioJGZxYTAEXVzc1PuXa/XJdsrn1dmYclgIFNnv3+MKsHQY1J7Qm02mzIhcZyx3+s333wTZ2dnZaHG2GMSnp+fx2g0amxzhzLCxLEzjIHOwsfZAUxQR5lYEBmAcWaYjWVSbG9vb9+L7HXdiQbPwEkGwyx8vLgxoS20LVT9OZeZy7eyURs/eSKzsBHNCl8xwP2ODCg4ysHOL7b0dJSCBYD54EwuFiBScek7Cxnaz17gOG2Pj48L0MBzd3d3cX19XQ7F5ZwzeL9cLsuY8dYI+/2+RGeR6YiwnkwmcXNz0zj8lD68vLyM8Xgcs9msADsomLnP3Q+/9OLaUksttfRrJgPaEZ+2faPvt8FnQwi9gcCLvM5HRMNwQXbVgGbKAxQ/OzuLiHjPuO31enF9fV10tUO6iNvtd1BOlkHI0RwdXDMKcpm1d2SewwsbVibrDjaqa8FGtftqQLwdK9YDc10PtaMG+PNblu2+xvXMgw+BDrle1k/tdPN2OrmNtQzCzP9saPseA3HZqeLAp9yHjvb2Vj5EYps/5kUuJ89Rg2921DnK2uBZBmdqTiF0bsaWeVYDjPIYsE12yFHnLcs915j/jsKFZrNZOW/BjrqHh4dYr9dljaEPATNsF9XWtzzWrMP7v/vgY3RoLThEh9a7PG9r7/mUedlSSy219EuQMZkaWIpcI/sFmZBlBcHjNVC21+vF6elpjEajWK1W8eOPP8Z8Pi87OgFeWyfg3WTtjEajODk5Kbs9cUQK2BngOgHkyCxjPxHRwN8cdOPgcgeywCPL7hp4bt3Hz1tuZwzJdTK/7Qjz9nJ+n500vJP3ZScd92Wd1G3a7/cFFwUvsoMiBwxlXc56Ae3kj/Y7KBt8k2ddV/PIspYy4AtjxnpDxik7nU5ji0zeTdnOLtrv98WeQS8CezXP4JcDfTxODtll/r2mS1sv5DmeceJDHje9Xq8kDGQdMTtO7Sz2bgHck52huS6epx6T3vXNeKfHmOcb/MtbRmb7iDpSB59zBt+MrToQzusYZRtDZ00DP6bP3Sc864wwtyvPDdoOP+gD/BU4pjudx/O9X716Fff39/HixYtiC3jM5T4hMO3u7i5Go1HJRuM3r3vdbjfG43Fpb7ZNDpH17F+aWufZAfqYYZMXMibLy5cvGwv/breL+Xwek8mkDHqeHQ6HpTwybvr9fikPJxrZPDgbiARgkeDsrIgo6eHD4bBsocjEZ2IMBoMYDofvAQ6dzuMWj7wHYe+z2Ty57LGmvSx69oKjWFio8O77+/tyJluO2rAgJmNrPB43PP+QBXReiDLY4z7MC/iHDNMMFLCQOhqFBcXAA+fCcUaXzzIxKEPET45qt0PTghw+k7XGVo3ca8coY5ox6HHrxZvf4f3x8XHDiUsfbTabsmitVqtYrValzmSQ0e7dblcco2dnZ6UN5ud2uy1jn3HI9pbcS1rvarWKq6urBii03+9L29lSyzxsjf6WWmqppX9bysruoc/+bmXfZZBRn+93OXZAWGewrLfOcHJyEsPhsByODCF7CP7Ihp6NAH/md/7bIM/Gdv5f4x1koyjzqnZ/TcfJZOcOOpqjgjOwkI0x3u8oTjuNPmbk5L7x/wxY5MjiGp/QkXwtg0f5/QZbDCZlB5nb7nrUAAfzxrqi6+v61YAMR9n6fdlO4bvP3qrxzeP0EEDCu/MYM78y3w0umT81IzeP5zw2KYN2OyKc511P2pXXCcYiznF0dgDN09PTolNivwDKsUOEgQYCzvLB9bmNGaDy/OL7h+Zjzb6p8SnzL3+u0YfmouucwbSWWmqppX8Lqul3yADWJssGX7PjZTKZFKwFfA2dZjqdxmw2i7u7u7i4uIjXr18X5xlrPwTuQhZNt/u4/dhwOIzhcFiccGAhEdG4F1zD2eN8z9gX783OO3ARtx1yVo3PBPazOZAfmetdEYxHZX2o0+mUjG5kbNYDDNz7s8vOOogdAOCR9Lt3MbA8hW84MbIDLuL9rCEo61w4prwTFHV0wDll8d3gP5+d/e6+oh/gA++Gd97q0Lig9Ujjj9lhnHme9ZSsm1GucTmu2cHoZAOPJ29x6PHCdZyGHnN57JkfONrIZmKO5O3Es53l8vr9/ns6vXlDXW2rmG8Z48dx7bY76SI79Dx3eDcZXhHR2PHA49T95aAv3uWMS9rhfoG8HuY60A4+G9/tdDoxGo3KVrPD4TB++umnePv2bex2u/jyyy9jMpk0xgcBAejOZLhtNpuYzWbFx+HgROY2fc2uZ9SBMW2q2Sjm8S9FrfPsANWcZ14YcFDkQc+hd0wkytpsNtHv9xsLIkKCrBucad53NuJJEfAB9RGPiwQp5Kenp3F+fh7T6bRshcekIw2UaBgGsTPhiIpg4UfIU0an0yll0lY70OAPUQUWbPDJQAqT32CCt+jLWW8Rj4rDcrmM4XBY+O8FszZxnGpuT3/uVzthvIBRhgVNBhPczhq446glnrNyYkXG0fHwwd79rAiZtygOAHwWnNS70+k0HJkGZWzcIxi63cdz/JbLZSwWizJ+N5tNbDabuLu7i1evXpV0WzIfWTTh6dHRUbx58yYeHh6Kcnl2dhb7/b5sQ8kcgXCguW6LxSJ2u8c9jDkIlj51Xa0wmFoQoKWWWmrpl6Osy3yIsrLPZwMnGAuj0aixVcwhUNlrvvWFDAwQdUz5yBzkPwEiyJaaEXjofTba/D4bpVk2+XOOmM384v3ZSWQDrwY+ZQA/673Uw0Zlrpvvs55hg433ZvD/kMMlG0j0V76n5oCxoy+PHf5b73IbszGd+8M8yHpf5m2tj7inxpua88MOIpN17JoTJo8Xz5uIaOiMH+pD68q5L/xO88L8zUY7/MtGsXno7DQDA/zm+tixxX90VN7lLeepq/XSfr8f5+fncXNz0wCp7u7uyoHn1IV6YUOZr7TxkIPPa00m6sNfHlu1Mezxk8v6SwCFfH9tDNfu+di4b6mlllr6uejQWufP1k+cEQH1er0C+oKDIEeOj49jMplEr/e4E9Lbt29js9k0gruN9+FM63a7JZCr03kM/J3NZuXcNHCdXB+cCuzgZJAeJ4HlHnIly/bdble2eTOvwCBrmeK+J6/dyDDrZPDOum+3221kF+XyLJORvxl7s4Mi6wu73a6RXWadJ+uIzubq9/tFx7Auk3XPrC9mvQ6Hj52btNn4ndtImQT6HB0dxXa7LVhe1rmyLu5+zTwjEL/TeXLWZacQ+o+3T0RnMd8o131m/ammg4Bj5uxH6zrWT6xregwaA+Yddny6DbzDNlLWr2xz8V6PWet+7l+PUfoRndBjgbXCSQgep7YD3b/cx7jI+rjPpMvP5O/wkASDwWAQu92u4dTP/Mk7inkcZ+c4bWBHO4ICyJrFf/D69eviQPu7v/u7Rvaj33t3d1cyzTabTWy325LcgIPMAajwOwc7ep5kew/+e4z62uem1nl2gD5kBDPBPLHZkm65XDaMLRaxzWbTcI4gMHa7XTksLyIaYBBb2h0dHZX0RwT7ZrOJ+/v7YviNx+OSYcbizmdf51BAU7fbfc8pxvVOp1PKs/D3Z4zIiOZespSBQOPA1fzuLHyou8EtFrTdblcOSSUF2oqQs5Sy4LZR737OjjMLTwtcA10G2BgbWfjaOejrLtNR3AaIzD+EMDz2Np60ezQalfqwAOYIEYRvBmRw6rGYMjZvb28LfykDRZLoh7dv38bbt2/LmGDsZ0WF97x79y5ms1lDQLJd436/L+/c7x8zL2ezWVxdXcVgMCjzazAYlK0i4RH8Z2xnpdnUGvottdRSS///IBtc2ZngewyWkwEfEQ3ZGNEE8DNgnR0U1luGw2GMx+NyL3IXY2C9Xje2e7ORY3ljXcF6hdtqg4V7/Xzmhw19l2PKDiEb1g5SyuXm8iyzDaJk3mWwxGBLzZCp6QQ1OZ0N96xbHpLfGJiHHHzZsWPHj9+R9cT83gwQ2XnicVUz9szr3BaDQbnduRz0tOyYqbU9908GbHKd0M0MBrmt+R3WXfMYNfhmndf1d8Q6ACWRq3yu9ZHb6D7lj/eiI2NTWIcHkGCLrbdv3zZ+91byLg9AgXZlB6f7Bsp8ynMjz/Xa2M996+f9bL5+iHI9avShOddSSy219EuRZWTWE0xeL7m/2+3GaDQqWAmYCLoRwVjseEPGGUeKZIcSW6shCzqdTpyensbp6WkJ8LazIzsADLaDZ5HtnB1Gvd7TWZ35GBU7ybIjIO/EFBElKyvL/IjmmZ/gaq43wdwEyduRkMvi/blfLNucTcUz6B/eTo7+dOA4OKydUnZA+bkse40JOuvIuoqdHa4j789B/uY9Y87OD+qQg9WzrmiZbD0il+esIfPP4wD8D+yYPq7hop5f1gMjoiQ7sAvVfv+UAZb73G0xtmwHFNiozzljTtEGB/mjN9pWynaMHYZOTjGeyni2behnzHd4zpzJNhjk/nTfe6tPY7v8Tr2yE5LnPGZchvVK1iv6IzvvnCHJe8wb6/J2yIIVDwaD8pmd8X766ae4uLiI+/v7+O677+L09LQ85yQPHN/YzmxnOx6PS8adE3jYzcHjMH/OY5T/NTv2c1PrPDtAOUIgogm8eHtFBtmf//znss1Hpv1+X7ZvtBHnbQgjoqSnYrjlCUv2z8nJSUkxPzs7Kw4sCzYEOwKGAWrPOu2xdx4wisHsvVctwFh0PFlZLD2BmLh4yZmIvJPf80IBwRsmJos9jji2X7GDz8azjd+8iGWwJxurNeFu3lkJywuro1UjmtHTvubPjpaBLOR4b01Y5Uw1A3WMLcpmoUOI1QRhBk5yOXd3dzGfz8vivdlsGoerM1asLN3d3cXNzU2cnp7GZrMpkT2+D6GNsORgd7YmhbdXV1eNubbbPR2sS51NHsMttdRSSy19XqqB+DWA95CyXFOGd7tdASxqZ1tYJtRAahu/BrJxnNlIRS6RWc3zzrhHpliu5zplRT/LohoQlMuEbCy7jX63yTyw0WhdpubEsm5Xc4rk/jFg4XaYcl9kfchjwboHOs6H7s3lWefL9bbumnVhtz9/zvqDA4UYU7X+qZFBLtcpv9t8gFzvjzlqarw3PzJwY53cwVaHApL43WVl3dFZZH4mIorRzx+RtAZoKD/3p8EKA3IGfgxqZSAD4GswGMSLFy/i6uqqEfDmrbrQlXm/tx43n2vfc5trY9jfa0CNr9dAvUPjLN9v+lRdON9XW5daaqmllj4XHVr3+K0mz7zOknUGMI9M2m63JUus233MiLm6umo4zsDlyC67vb1tbBu+2+3i2bNn8fz588bOSMgiO5H4bpwr64FZnrp95oWxIztm3OYaz1wfl+nzd6kb/31el4N12L7YOnWup9tlnCfiyflAn4Ev5bpbD7SDzAHo1Il2GVtEf6ANnU5zFybqjYPFGVMR8R42R32deADxDu8khT5T01+sc2WZX+sr46B2/nnM2Onkcg85VLOeRDnoZzkryP1qnduOJuaLt7o0Lkqf4LCxQzLr7dZDGdt2+qGv0h63q6aTWT91UGRNp7Oj07xz4Kbx5qz/2pYDK67ZGsbmGVf5WdeH63aMwsesc9sR6HmYM9JIDLKT1X8k4bx9+zZ+97vfxXfffRdfffVVY35RpreYRI8ej8dxe3sb8/m8kVWJLu5xnvmXdeW83v+S1DrPDpCFUEQzwhTnBIOB6MXLy8vGWQMMHhZozqUaDoclEoCtEDHM8sLGmWDUqdPpxPn5ecxms+KEIjUcgYeH2HsqMxG9568nXcTTFocsJpwPwIRiUbEBNxgMyvPczyTyoZ7UyQ44OxHzPrYWMhkw8aJK1hRR6F74+R7RjArIyon/e6K6vENgiBWMHBFAvzoiwA6yLDgZSzlbDUEO37jPC7qjCojoMBgT0TzAMyLKXtXb7Taur69juVw2xvhwOCyKTDb6N5tNLJfLkgVoBcgL9+3tbYxGo4bCGhFxfX1deOT22JEHX05PT+PVq1dFyYV3i8UittttOb/v9va2Mc7yeGkN/pZaaqmlz0sfUmSzAvwp17MBsN8/bdlYA/QtS23sZtluWXB8fFyCNJAv6EPs3W7AI+tClsU2NN0GdLt8ZmsGyWs8ycBANmChHCCUdRzuyYZvNkrgl8u0UX6orof68UP31+hQQFMNFDtUph0uWfZngzLXO7eBcjJQkz/ncwMOte3QOw7x95DOaYOaa9kBl41086TWRt5He2r1znznut9v4911ygAANhNGNvdn52IOisv1x85yHQ1KYXuZV/xORCzZZ/v9vgCmbIOe55lBh0N9lZ3T5k8GQPM4r82R2vdczqfouLW5dGjeHpqn/xaARUsttfTrJa93fDdZvpgAZieTSbkvIhoB2MhEYxtkHpNBQYDuaDQqQDdOuel0WhxnBNc74NtZY65XxNP5ac78cptos88/qgWj2LFQy/oySO/yqaOxM3AkB2RbD/J7LYN4t+WxdWaTHX7Wu2sOMermDJmss9V0BXRu90cNZ/U48REr1MPt5B37/T7W63VpV7Yh8o4Pfje6gJ0axs9qgWvuy5oDJjuC6Edsmey4MR+cvYjOxNjf7XYFk80BYv5sXNL2h3nJnLETOc/pnH3lP/cJZWSbhrp4DpCMYrvQuL5xXvdPxj/NZ49f19lJF7Tf5yNSvvVr1ggnpzAOyEqlTi7fdqkTB9brdXFeeTzaPvRYZMyTiLNerxs7UBwdHcVsNis4/2AwiLdv38bLly/j/v4+vv322+o4p+2U//DwEKPRKG5vb0sdPX5ol/9DtNNjJuv8vxS1zrMDVDOImEg4IeyZfXh4iJubm/cMowyUMNkGg0GMx+MYjUYlPZlFgMlgY5JtH7/66qtybhlefQQcg5rv9r7becYEZ7KxgON4838mLo4uFvcMRlA+7b69vS2OFQNKFtKuYzYWmdzUAYJPfGZBANyywLLjyPf7eg0o8rW8oFLXDJxFPB3eSR/y3W2w8ICXHmPmKfyxMPN1R3gwHuGPM7cYX1aeHEHEvrbsU7tarYpC0O12Y7vdNt7L4osD2EpVRJR3o3D5sFccdqvVKi4vL+Po6CjG43F1sWRsO7LHAp7IMOoGDQaD9wSuF/JfcoFtqaWWWvo1Ub/fL6DEIYeKDaoaWQ+wowOZSYZzvr9GWZ7zOeJJbkwmk4ax5HsAUGyY5Hssa3KgEb+jS+Uo5Czz7Kg6xC8b1gbxbQjCsxwslA0PvyfrQ1A22LxTQK3f8nf/t/50yMHl/s91M29qxnnO/Mr9U3s217XmWKj1i+uT35kBAfedwSD4awM388z89/vzdk1Z5zUdcqoZoMr1rQGVHj8ZWAAMyACmy/N3g1a+F/64HI8V6mG9mPudMed5ghMc/dDXIx5Bg6+++qpkn3l7coK8DKQaPMlzOOIJDKv1AfXlWuaz1xVTtrtq92S+5zH/l1LtGdeX/xm0a6mlllr6uakmU02Wq5apBJpHNHcj8jEmbJvIGe+c/+Pz0TIWc35+Hs+ePSsONQeuRzyt+eCGdn7hkLNu5u3sqJOdMMjGDDTX2s59WaexUyLLc/RUY4uW9ZRlfAos0bILHmRZXwvwoWzXJ8t5tw89m3bYoWF9II8D61B28tT0fs7kys4gOyAcKEQget6i0zyB7JTI+lhN96/pT5br1oWybmk++1nGWtYb/Zm2Wh+1PeHyCIJizOQjevb7ZmYj1xgr1n3ZvYp+cYaXkw/Qi7GBmKfma85CAw/MTkC3CXyUwCn6M2cGeqzaHoJn1Md2muej/QfUIdtMHhse914vPM+4t9/vl7UEjJz1hqMIGIu5r6kH7wHPNk/ZseHi4iL+/Oc/x36/j2+//bbh3MJBaOcZ1yeTSTw8PMR6vS5t8xpl52Je582Pfys8t9V2D1DNCEXY4UiykbRer4uzyN5kL+REtywWi/jmm2/i+Pg45vN5yVzb75+iHSOazqHZbBbT6bQ4ssg2y4LO2V9eNCKehLcPhMRRhsebRcNl2CjK4BPle7Fg0eO9ztDL0eBMeC+OrrsXEf9BGRCxUMyLD4tCzu5yP9I2v4sFLgsk38f4MEDniAAvdDyLwLXyFPGUAWiQDQeU34djKo9RL6QsfgaWeLfT4/3HOF2tVjGfz0t/7Ha7EpVlJccKRkQUBYI6koF4dHQUZ2dnBZRw2Yw9+gfBy9zizLPcz8vlsqEgcg5gjWoAV0sttdRSSz8f/df/+l/jv//3/14Mj0NkmZyNXD7z384hH85OOZB1CDtkHMSUjZ9+v18ikomu9F7xBInYsEBPsj7EX3Z0ZD2KOvqerA+Zsn5g8IM6m581ID8DJNn45l6DAjVdLxt1bmMNpM/9cIhqz9fana+5bW6X65kdE/5/qE35fn8+dH8NyPN9NrRdT49t62i5X2rvOORk+VBb3bbsBDWYBbDCd4/vGtCTdWbaZMDNn7Ox7/FHXSjbQBrv9fkV3AP/XF/uR3/t9R63nnEUNvc/e/Ysvvjii3j9+nWjX9zmiChn82YHn/uDZyHP9zxPcj/VfstgVW28upza73kM1cZsvi/Po9r87/f78V/+y3+pltVSSy219LeSZQZUA5cj3t+6LyLKLk/eChgQOOJpfV6v1yXzzI4FsJH9/umIiufPn8f5+Xk5foWtxJ0dZWcXdcEhlmULa6uxpCybI6KhD/BMdthYBlnG2ekEL5HXx8fHjR2izE9jV9ZlM8bmd1nuI6vBgvic9Z0s62kbeJmdedbtoYwlZtnd6TS3EbTjw7oZWy66XTzLcwD81M8YnutBe2xHWIcx33jGu285KM46mflAG8hwtG7Ju+0I9H/e4bY5g4p6mzzmuKemz/J7dsQe6vP9fl+yxLLjlP43puzx7UwqyJlhR0dHBVvELrMtlfVy67tZ57Ju64SF/P7cVjukssPYY8W89P0QmapeF81fJ25QPmPSfobdbld1YNFfdnpFRPE/4DwbDAbxww8/xKtXr2K328V3330Xk8kkjo+PS0ABTjvahg1NBpqdntmOyOtQtg+yPnxIp/25qXWeHSAbPhlo6Pf7ZdAzWHGeZeMTYiLgCd5sNiVCezAYlK0Zuc8D+ssvv2xkhPFnT7azgixEca4h8PA6ZwGN0Pf9+c8Lh0EihJC3XKktqj4/wXym3Z4I+Vw2/mchSB94gaBvrCTYiP7/2Hv3GEuzq7x7nXOqzq2u3T3T4/F4PGODIQ42MYQowiKxuSUQEBKScxEJOARjkEMiAoREhKBw54MQoQBBEBEcJ4QQEikIEWRCYgwEQYQS4mABxjD2eDzT05fqquqqOreqc74/2s+u3/vUPtVz6fZk8HqkUlW9l31Z+7Ketdbe+42IEqjROwzqsawqvzsOWG6uJKABz5UTdASw7j4pU4E7qeDuPk4ilBeJFOVEkiOZaOIVSWCAsNVqxfr6etkZORqNynbew8PD2N/fj8lkUhTaeDw+o1yPjo4a5dTHJ5Wfdrnt7u5Gq9Uqu9/cMaOVv+vr67G3t9cgKYeHh42VxiIODDy6zBOJRCJxb/Crv/qrZ4wRwR27d3Lk0oGrn8FgUBwevnCDedX+5zVxps3NzYZRSl4hPc6jNMiFagt1XA9qYYiXpWaosa4uN+ehbni5nienIi9gGl4WN3AkJ8rNnTOC8zournFZuQOs1g9cnmwf8jA+V0uXz3vbMD8PatFZ4Qaa18P7A+FycVl73f197i7zfsFnan2A7U9Z8n+vo/il7wqjo8+dd3TKuGzpeCMPdi7LMrmTqjYWvM7k/ex/bLOTk5MSQHMHp8p0+fLl2NvbKzJQWuLz5J81KJ9l453yZz/QdR+jNccN0ztvjnOcN+7YnuelwXlAaU4mk/gf/+N/VJ9PJBKJuwGf73z+8vmUupTfNKMfis9r59nR0VHD4SsnMY9BGwwGsbGxUb4BJL+D8mRAihxqMpmc2SEkX5re80UhXMxFvxSPPHQ9x7QE7r5heq1WK3q9XmPHm/ImH6YuVj6+YKTG5VhW6nb9T1BvcyEMfYLcVeN+R/cxss5Kk+VzfUd+w3RUNn7HTHzD20D50t/qu/FrC/gjTne8afeV4N/Ach+hfitI5EEllY9BXNpXtCV0nUFevccgjuo+nU5Lnux/5HTez1Vv5ctAn/c5ydPTFJRujT97fxcUnKwFtpSe9xVC/FD9mXzeg1zauELZcuMDx7vKwbmO45Dt6EF21Z+nfXlAUZt1ZrNZOS1PvnL1OfVXyUGnrwidTqcExtTeTz31VFy9ejVOTk7ila98ZVy8eLFsNFLdGXtYLBbR7/djOByWclAGNb7LBX1sk2VtfC+RwbNnAAYz1JnkUFFDaXWyT5DquAoKrK6uxtraWsznt1dBrq2tnVm1oO2VrVYrtre3YzgcRkSUoBm/RabBoolVqyojmtu2eWSinpORqclWA1D3lH7E2UkuohnM8SCVjE0agnICuHHoji9NSoyWC5xQas4Mn/yp2OQsY566544Jz0MDuzaJ+WD1e3QqeB5MS5OhG9aSx3A4LPlrgqMip8JUvdVnWR69z3ym02m02+1ypA3TVL/TcaERUb6Tpv+73W5JI+L0I/Dj8bh8P0314QR6fHwch4eHZdLu9/uNY3R0bEK73Y7BYFCIp8p2dHTU2CqvFcE8dpTy/2hNrIlEIvGxiJphVoM7Pvwa9Tj1s76h6UEdPefcgvxH97hoSE4VLo5RmjoOmrqTXEPP0SClzvfveroe9vJTBlz5SF5DvuDyc9nVFtHUnvdAA3mIDPSa08XLxbwky5rBXAt68FrNucP61Azk2v9eJudhLifvS87xvH/RmVRbWEXZ+t8ePHPuqnb3Y2qcT/oiM6bJxVusk55nX6azzldXL5Ovj1fKgHnXAoXLgopsW5aD8vfysX1rc4m/O51OY21trZGneKW+faZvWNMRJGcSd73J9nOnCeEOGl1bZjv4eGL5HcuuKz1P+06o9SO+779r7yUSicTdxjJ+SNQWyLTb7eKroG6S70v8bTqdlp0Q8skNBoOyiFgO762trbh06VLjKG/5ScjZdGTaYrEoPhfqLi5WUnl8cZaui/Ox/OQOzqfc7+HfChMvlj+QXIO8hkELnVIl0Afo/k8ee0gw0KG06aMiavfJPfw6OZdzRpeN5McjOH2REn1y+r+2U462g3yh/MaWbAGVQ2VgsFX5cuE+T9hgP1GbMtCkOiwWi7LDkgFH56o88pJ+SHJNypTyUT9VmbhYyJ+vLbTyvqXy0KfOgLHqLb9izX6pcS/3NavsDAayzci1Gahh+qqD71rTvYjmd+D0LgNdqjMD44IHqejDVh9SfID9uCZfte98Pm8s4NQmA+0Qm0wmMR6Py3Gi7N8qP3mwys05pd1ux1NPPRU3b96MD3zgA9Hr9eKBBx5o1K3VajWOjpzP57G2thZHR0dlIwR905Spz/VuK2issy/fS2TwbAnciNVvbnfWABqPxzGZTMoqCHVWDkJ2Vg1SGXHa0aM0FWTa3t4u5yfrt4JnSoMTmK5xV1VNKWpS00Sld9T56JiKiEYgjUpBoCJQejVjWf9TCUlW7nxi2oIrCj5DpcAJmxOMnpWMuRpWA5YDkpF6NxJrZVW6XLHrilHXONF7fv6c/tZOLxE0OlO8vMyDysFlFXG62mKxWDS+Y6ayyFHQ7/djc3OzyLDdbsfVq1fj4OCgIUeWhf1QR3pOJpPiAD04OIjpdFpW+oqAalsxz+PtdDqxtrYW+/v7pV7T6TSOjo5iY2Oj0U5+dCOVSyKRSCTuDc6bY2sGMO+dd10GAI+VcYOZOo/6l//z7/X19TPHq9D5rgUhblBQ/9NZ4mXnNS148WNlaoYC341oHtviZXTeUkubOpsBEQbF6ASpGaheRm/H8xz4DKQxHS8jy8K8eF0/7kBiGfibDqaabGsrVmXc1fIn2B7LAom1elIuy+RHQ5vtxt8OrpxVut4HVD8fN7RXaseBs5xyILmDpdZnWR46auhEowOGDgDaHd7/ucCO45B51AKX4o0MmtMW6HQ6cenSpeKgoLOQQTOeSMGAGGXLb3ew7QX/3/vwefeXofaM2oHyqNlmtXJxLNbGVSKRSHw0UJuLnsk81Ol0GsfwUR9FNL8ZNRqNyk6LXq9Xdk/IB7G+vl6+caYToHhMn+ZZ6obxeNzI0/0/vriIzzKIIHChtGTguo6clZyBJ1HVdqJR1ytN+esUfOCRfpIv9b3SdlA2rhPpt+KOI+cXHhzVsXDksHqu5nCnL0gBTj8+0tNSPpKF+grTVVvLfyb+Qv8mA4z0vzGg49xU6XMRmzgS+eZ8fvr9Pt2bTCaNTQzczVbjA2x/lpf2g+rCdDUO5EcdDAYlTbYl5aV0GMxVG8tecj8k7SzdU76UGW0J70fK2/ugZOpBO41X1oH9iO3D8af32+12wyfMcotne5CO/URlpS+Wx886b3N7ihydfZybEpTHaDRqlEXfe1TMgfx3Pp+Xb49zvD/99NNx8+bNePzxx+Ohhx4qMQ+WhaeeaXPF3t5e6Qd+jKPXrdYGH20fbwbPzkEtACRlw8jvaDQq31q6detWeVYDV2esDgaDMjB5dJ06rrZarq6uxtbWVqytrUVElIAZj2uk4aZ85FjiIGF0PaJ5bqwmU62OVvCCRiYnDJGIbrfbMEy560zl4fmvBJUfHT7+jDuE1B7aVeeGt9qJW8PdeNc1n8j1nPJm2jVDcxkp4N8kBJSlG8Z0JOh5V9xUmnqX36mj4qBs1Ufc+Oe2bkIBxcViUb575k47bfm9//77o9vtxvb2dty4cSP29vbi2rVrsbu72yAiImnaYi9yGhGlf0ecfiet1+vF5uZmYzWCJmiVazweF5JyfHwcBwcHsbW1VWQ1n89jMBhUnZ2JRCKR+OiiFnCp3dffy0jxcDgsxj/hQQaCxhCd6jqmhulJ/9YCYbzv3MT/brfbZ7gU4YZBLS+u9HMe5EE0T5u/3aCjYannaFi6/FzW3pZ3cvIv+9vrwjQ9b8mA73pbex9imjxpoVYXPiv+t+y+yl2TgXPemoOP8nN5e9voeeet5Kz6XTPyed/HU22seLrunGG5eGyiO3L8GS8LbataEDDitO3FGxmEEvdjO3AOYNrMU8/pxIPNzc2Gsa73NjY2ylH8tdX+7nz1urCNed8dZ+4A4DvPZpz5eHbUHA21ubh2jXnX8lv2XiKRSNwt1OZKXY+oB9Gky90XwoUfSkM6Rt8S0mk7Jyen34cfDAZx4cKF2NjYKMEz+aR0dB2/hTkajRo+KQZcqK9cT2h+VeDBA0G+wNl1rPNFveOnTOl5BnJctiqfysLF+9JprGOrdbq7hDuLdE+7Z8RVaj5AlVd+HupuydGPmXNfZy0Ax/ZWWpIXg0G14+H4nS35UVU++Tx9E4AfIS1fsOSvAMpkMomI5uIc9o1l9oPS07Pj8fiMj5GfMnEfqeqjsrM9agEj+gTlD6YvmL9pJzl3VHsJ8/npt/Dcp6v21XUGppzLMvio/OR/ZD/geFKdz7NRJF/9rzHDAGDE8h1nbHO2Afui/madaY+q//kiTN0jR1fdlA83x/gcyIC6NgDphC99zkmxCefrkoFOx1N/evrpp2M0GsWTTz4Z6+vrpW9po5DiIqpbv98v48nnIJW1doSmZMTFfB8tX28Gz84BI7tqLI/cr66uxmg0Koo1ojlopUR0ZrKCCRG3I7/aKrm+vh4nJycxGAzi4sWLsbGx0TAeFaGls8cVhVbJ6DxTDiBfNaB0NAhVrmUrH+hcYqR/mZHIiVRgGu5Q0f9cUeNKg44N313mjgsSBh+MJE7uoGKQTZNdjbxQMUjGVBoexHIjnxM3ZcH/SUJcqemD5+pLVLpsZ7aPJkkqISdemrxEBNn+nLx7vV5sb2+X3Wi3bt2Kra2tuHLlSty4cSMODg7i+Pi4TJYaD9yS6+RtNBoVgre2tlbK4EHi4XAYh4eHZfXF4eFh6dOaZDVeiI/WpJpIJBKJU7jD1Y19/xForC0Wt4NnNPwjmgtG+K4cBTQmxR+0UKO2EEb6k+Se9aDeciOcDoKaM5sOE5cBZePGM9Nh/uQcfpwMDc5aYKNmJNYMdabHFcc1JztlRA7mi3DIATzPWpBsWZDFDV7yQPYT8kX/HoPSJv9jP6QDiHKk/JUOF105d3XjblkAw8vm7V4LCHGHvrcNn1VZPBDEfuNGcq2f+jWVg7vHeM/lxPuSWy2YR9nJNuBRihGnC8LUVnQOeXlZ7+l0WhZtjcfjRl1lT00mk0YdmK7KpN2p4urqhxzDbvjTeVYbR7UxeN7Y9OfOS6s2B/P5Z5J2bf5KJBKJewGfw2qc8bxAjIIH0k/yYfknJCJOjzTr9XrFkT2fz4vPY3t7uxz3rVMQWCYe7Us9x3pw7qePxf1GrL/0Dp+nvqk5n1utVvkUhwfByEWW8Wn6lOjbUl7SiwzMME1yUvll3L8m3xV3aXHXDWUzn89LOjU5sPwMXNTqSRkoX7YT+YPzSOZLm6Lm21LdnZPqHo/i83RrfbrGk8h/6a9cLBZngqUeKBKPIY/0wCGDlORT8u9pMwm5MoOeuqa8FZTh4iptyvAgHwNy/N/rK98m+SVlrjZgkNPtUpaZtifHIgN1Xh4eazqfnx5NyP6m9ylz+r/pL/ZvqXFTjMYCuTHHFccj5yGNOdoptI/UNpPJpPHZApaJ9Vb/GA6HJf3V1dWYTqexs7MTjz/+eLzyla9sxEdUTgb3Njc348qVK41+p3L7UY6SZ83W0rv3Ghk8OwdcJajGkLEUcTqha3WJHPaaBNWwvV4vLly40FBqmjQ4CNbX1+O+++5rOIikJOQI4soRGpycSDiRcWAqnYgoA4RBB1+5oTpw8mO9PKLOCUd5aMUO060Fozg5+mD3MnE7LxWb3uPEpoFdU0JU7KwPgy5MS3WtObNYJ1fqzNcnZ0+LBImrYbnTUGVXuRnM5H31E/UhHUXgedE5oaMVNWkzgKZ+Khkp7cFgEFtbW7G5uVkmwFu3bsXBwUFxSkRE+R6ZVtkofZ0xzi3fWgHBc6L1m99XOz4+Lt9FU3/m7jmXbSKRSCTuPZaRWie21Peu+8k1VlZWiiPA8+D7vhvbjYOIaOzgF/dQHkrXdSrLJ05C3UKHOA0qr2utjvo7ovntLKXhPKLmDHC58KjmZXJmW3gAhU4WGq58htzL8/aglxu05Kw13Ux5uAzJx9nWtX4krrLM4aB60NHBevLYGjodyDedFy5rexn44ii1nWqeh+B9gNxe5dRzlB2dMV4e9jXKxfsey6EAKvNg0NDHLcuvfJVPLdgnWfKa+kzNKHaHEWXn8vT+oeP25SxQmbQIUeWh88sdWwwSs06Si/fzmq1Rmxe9Hvyfclz2Tu1/1n9ZGjXZ1/KoPZtIJBJ3G7U53Od6+in4nnxAvohZPhIdX6Z5fnV1NTY2NhrBjF6vF1tbW7G+vl52m/G76vTF0ecV0TxGTnmSd2h+p04ln6gFBQQGdaSfJAeVSfm5H488jPredb0W7VMHepBOuo3+LQYRmLY7vH23FtvaA5PkWrXgnOs9Ovjpo6zJUO9Qn8sPpqCfB98YqGB6ftSh0mPww3dD0f+mdBVgYiCJqHExr7vu8/g9yZr2j8aJyljbManrvvNRi/lpB+l5t8U4VulrZRCIJ1X1er2G79FtK5VFwVz2H7dfyAnZL+jX9M0d/AyS+7z1v55x7s++z+A2y+Zl9vatbVTxeYxjnX2KfNPrtFicBj05R8zntzf7dLvdGI/H5XQ82cy0JZS23tXJMPqe8N7eXly/fj36/X7jEwlarMCj14fDYaP8DDpq7uS1ZXOGrt1rXprBs3PAqLgmIU1w/N7Y0dFRRJwq2aOjo0bnWF9fL2mqkyoAx/QfeOCBGAwGjbw6nU45tk6TBLcNR5yuqqkZvZrQuMpaylDKn4qXTgFNLJoA1dFVXpWdkygnTw1KD9i4wvEJjdckVzca3Rh1w5myZn6c3FxJ1xxBJDpeBwbw/GOgChBpNarkpEmBR0lx9QrbQTJku+kaV0/I2I9ortR3451txf+lBGoOEAWlFCibTCYNBcgfyWFjYyP29/djPB7H7u5uXL9+PQ4ODhqrvrgVWKsUlN/+/n4jGCZZcBebtgJrl5yIgepycnJSdnrWiHcikUgk7j5qRvgyx7DfWzY/LxaLcsyiO5L9ffEn1+l6T9+PpdEu44jX3CDWc9SpTFf6z/W43ndjgOXyeqsOemZZeXif6fEadbveJaepybzmZFjmmKhxqvPSX8b1nMcpH0+L/JTGrDsY1B40IOkAqZWNda71S8rQjWSXPx03vrOK30dhoFHpc4ef82Pyu2VBytpqV5aXedBJxbpQZl4/2hkR0Vjo5fmr3s7nmSYdHOwX+s1Vz3RGMl8PYuoa5ahyy47Tt3UZ8Na9Xq/XCNarTSV3LWRUmT3ARllQlpIBg/dse/7tjj2h5iwg3F6pPePPEbVriUQi8ULA+VbNcar/I5pHpOl/zdHyZ8hnojlWTup+v1++vyP9qu+cSSdw55Pm8fl8Xr6XRv/gYrEou2qkB+gj43O8x/pwMTXfdd6lelHnMRhCfaN3dJ+6RjqMC5Kl3/idJvIWpTcejxtBQZWfC09qfJf6zzmhyiB965xWvID8jYE8+YparVbj5K/auwyG6mhCyYlg0IBlZZ1qC88oG5WfPsJlQUr6YtlOftSh4H4v8i76RsVPXe7Kuxboc9vJ/ZQ6tYNcTXlLpmwfnqbGNtdv+v4iTk/aEndkEKo2P9BuqAVAGXxz2VLmtAMJHz+++5PBP4471XHZ99zII5cFSdl2uq8+zoCizz/iuuLRKysrZWOC2k7XRqNRGfv6dI7v3GU/0CeqVlZWYn9/P/b29mJ/fz8uX75cdudp/FG2GxsbcfXq1Ub9VF9ydG5oOY/f3ktk8OwcaPLQ8XBqHClHKpWI2w08HA7j5s2bDSN5Y2Oj0Tknk0mZGFut29uqFTjjigPuCONk4o4hGnARp98IcCeS0tUK7oizg16dkquWZWRyUvJoOdNhZJqTpytUn9i8DAIVJIkDJzAazkxfEzQnZv7PDzkSlHdtOzY/Putl0sfINfFqRavuU2lQDl4OtZ9PJO5IoiJTGTkZM5BJudGxwOMyuTpASpRt6YFD/a8+u7a2Ftvb23F0dBQXLlyICxcuxNWrV2N3d7cEE9U/SfpUrr29vTg4OIj77ruvIR+uUhgMBtHr9cquz6Ojo9je3o52+/bxOZrkSaCXORoSiUQi8cKDhpbP22tra0XP8HmhFgQiX5KxIGcHj3SUkej6mbyGupSGp/QYA3JuOPvqR/2mYSUdqHzcQcA6LnN60wFAg7kWJPJAVU12HkyqBTYIOmio2z3o5U4vDy6QbznnpPOFxpU7MZzjsbwMthHucIhofjuD8mQd3Xjl37ovQ1bcyR0XfI9BLTo9uGCMMpct4kY9eVxN9uSl/jef9/rWxp3Lg+kQHmhT+1EutaMX1Ra8zr7gwTOOL3eq6Nrx8XGMRqNYW1uL+Xwe4/G44WDSKSC1urOPqvzsa8pH8LmAnJyyXJZPTeZ3eve868vSq80ty+ab8+aPRCKRuNvgXE79xAUnrgcZNIpofpKFizh0IpMcyu12O9bW1sp3zrjjjHPiZDIp3wlSulrgTC4oXyIXnLN85CdePgUdWF7uApKvyjmO0vYdXrXfEVF2XPuOF3IRcgVBO+HdD8f2cN+c0iLHabVaZScPeUlNJzm/dZ8c66Hr7o9U4IR+Rw/mqD3JU/i8n1bg/riaD7TT6ZQF5JSL6k7ZsN09CMcFVKxLrQ+pj3tZtfuSMh0MBqWNyat8JxsDms6J9Dfl43ySXIhl8kAkx7bbdTpekLYU5wj6tdlX6MfVz3nvO5dUOTzA6H1CbaL8BI4f9hGVSSdwMYBLPy7lTBuB5WIf8jGgfqg0fM6KiOLLXl1djaOjo8a44jzAjRbyvW5ubka7fftbfDdu3IiXvvSlsbGx0TiBjHlqZ+94PK7aD27/nGeP3Wtk8Owc+KSswT2dTktkdbFYNFYw6LtjCqptbGw03p/P56XTTKfT6Ha7cf/998eFCxci4vSsfSlaOnp4hJ46LB02VBJaPUknkSY6rbz2AI4GDFfSnJycNLa161kqZE667Nw1I5CTIp1EAt/1v/kMJ1bmobKprqo366fdcBFxJjDmjpda3npP5IpbjVUX7kTzlSseyHNlzwnBg4+6r/y460vvqI4klOon3AXoThsSCS+H6qLvTehZjQn1NSkHBRC73W5sbW3F/fffHzs7O3H16tXY2dkpH+UVgeDkOxqN4vj4OPr9fly8eLHxgUz2u263W76tpuMhNS6m02nZbcn2TSQSicS9Q83JKpDUkgT7PX+n1WoVQu6GAPOknnQnunSIDGMSfxl41I3S8V5Od8DLCKPx53KgIavfvqqTi1o8D3eqUC6eH3mM6uKOBtX7vLZyY90d9q5XyVc8MOcGG9tQafIZl2NN/rUyeFoMODF9cjU6gTyoyLwps/P6rbcLjVE65dTHdAoFnRQsh+rARUfueOCqdBqd7Ecsm3NyB3kfT5ygwc68vE34v3+PV/BgMcvpcveAGh0u/Jg5+56XyY91UlpHR0extrZ2xhnVarVifX29cF6lSVuH9ouvLOY9t4nUL3hqyDL519rnvParzQku02XPLevbd+oviUQica9Q0/n8rXlJi91r/iH6x6grGHiIaOqgXq8Xa2trMRgMotvtFr9OxOmi9fF43Fgg7dyBczn5kaBr1C3Uh6q7fCzchSMfB3fCCawHuYEHMfQe0/AAAH1O9GmR27jPjoEcXpc8agtk5EtT+Zm3/iZ3I1dzX5bk1uv1qkcQcncg602u5gvdmR+DSA7X5/1+v5EHeRmPafTFQGo3BtR4tKL8f+KSLDu5ofotAyryU8t/rTRVHvmhj46OSttwByLLpuMFneNJZt7/5JNV3yA/9Q0D53F7yZEBbZVDcpZ/cZnNIZ+3+hXlzz5DbkmOyRiA/OHz+bzIV+k7b2L7SLbOvcjrGZybzWalP9FGZXk0X6hd/RQ49Re1g+rq/VP1HQwG0el04vDwsATE5MfluNHRjfJD67jGk5OT2NnZia2trbLxQZ8S4meCtre34/DwsNEHVDba5JSTxkLt9Id7hQyenQMFuhSB1wSkhqah5Qr34OAgIiKGw2FR6J1Op6xslMF86dKl2NraKpOWztrX5KKO7ccBaULx4xwjmrujIk4nTHU+/c3VLnQKMBDEib1m0Hk6NSWk/yVTn4Rqk4pPUrruCprkRAOIx1xS6dEAZBtzguDkyWc1KDW5K+ouWfnEK1lLSVEWVBrqT8rLlY8TMqHmAFE7ciKmI4bOARIeylf14yQrGXEFhBSC+pcmd+UtktdqtWI8Hsfq6mqsrq7GcDiM+++/P65duxY7OzvliFPJ4eTkpKzg2t3dja2trXKUKZ0a7NciAOx/DGKe53BMJBKJxEcf7lioXZfu4YpfYplDmIuGaLzRYKg5ASLq32hwhwch3eblIkjkxTOcL3iwi+m4wcbye9lYPzf63blT4xZ63svN9D0/54h0YDB9BtpqBlCNY7KNfDUi8/P2cUcCeaK3hXPMGs+tlY35O690bktZ8tgZBlBru+Q8mMpgzbK+L760zAlBfkcuyeedY6sctQCiByJ1X/VigFjpiicymMg0yEM9sC2eq3xkUHvQUXVhe+l9ymk8Hkev1yvHh6ucw+EwDg8PiyNCCwk5n7hT8rwgmreX5g4eH0l4fzsPd3qm1lfOe5b9gtf870QikbjXqOlc18/8HEZENPxz1FlKgydCaZeH5nUt/N3Y2CiOY9exh4eHRc9qjhfHpC9M+sqDV9Irzl3IedxPpLS4O4oL6JUvj4ZmmtTRfFd6lo55fW9Kfq6I09McPJAmsMzeHvzbg3jiKNLrDKQxgEBfJ/WQ3mGQgVxax3SyvsybfYY+PoF8zgMxrLsHTHyxHvkqjw51+4Sc1oOTWqROn538ta1Wq/HZE8lQeZ2cnBSfpO98YxswyKi2rp0YxTFD/yg3Jqgta6dz1HgG5VWzbXzsk9NJXnpW+fkCKPfjSzbq687fVRcGIzmPKF/ZnrUgou/Ac384y04ey6CQ0lL/9DSVRk1m3pbsP/Kheh9leRSs16eq6Pdmn9VvtYd8uLdu3YrDw8PY3NyMwWAQo9Go4VtutVqxsbERw+Ew9vb2Gnmr79QCYzU/wr1GBs/ugFpEXN9Y0iTF59rtdmn49fX1aLfbMZ1OGx/o0zsXL16My5cvR6/Xa6zOjDg1rNQB6QhSPhqgdLrQiSHwfVfUNeNIkWB1Wk4+nLioxDQxcyunExv95kD3SVTl8LKpzj64+ZwID4OJGny1iDRJD41uTtzKl6TL+0RtxQBlx9VCs9ms4WhrtVpFdnpPfUXnwlIBKk1dJ0gWOIHpuu75D+tJRUKy2W63y3GjApWVnACSt+qoMmgMDIfDGI/Hsba2FhcvXowPfOADsbOzU9qPRx8cHBzE1atX4+GHHz7TD3q9XiwWt7eWa0yKPNNp42clf7Qn2EQikfhYgjtWqTsdrvNrelTzPB3VtTSWOXpJ5J2bkGvQGe/Ga427RETR7cyHHI6orW7kc1wdqevS/c5JavmdB/Ial1HNgUC+UeNby2To8Ge8brU89bx+PPDgQUTJyDmkrxomuAiI5Rdv4IrY2vvn1dvbyPu2yk6jU8ZwLTDFOlM2Xg62sTscIurf7FAZ9eO7szwARecfA4S19mK9PF9vc/Y3OjJ8QRfL4nYMd6C5E837v/flw8PDsmJW9tlisSjfZ9BiR618VT1l0Hs95EBivVgOced2u12CZ5QN5xufk4hlfVPwOeNO4PO1+cb/rvXVRCKRuJuQDnDuoXsRZ3cr1/xd9DVJn3U6nRIkktO/1+tFr9eL9fX1M4Ez7RbXzgmmL18bdaB8OfKLcCG8FhhzB5fqoLKr7gpEaTF9RJzxxzhPdE7gPh2VUe+7Q96PbhQYOFN9yQ08P/JLOtid33KxPuslGShvvs/rDF7IR8tjDPXD3fRa/C6ZSM4MnpDrKM+Tk5PS/uyPDBhqxxmDVNT7qhsDnZItT1zyIBfbVP4vtx3o83RuxwCQILn44nnZN0qXC9jc16ixxfHivkDKsNU63RHKQI3GA7/dxfqRg+o3dzmS60neqhd3UzIdbpDwfkMeLHmoj/lJXT4O2T8Z9OXiNvqQOT85T+b8xbGm9Gjj0l+v+7ShPVArHutBPvaP+Xze6A/accvdffRBE5LxzZs3o9vtxmAwKEdBMi4yGAxiMBjE3t5eo63vhPPs0HuBDJ7dAVImNMZ1PaIZTIk4XRXS7/djbW2t8VG96XRaOsn6+no8+OCDxfnfbrcb5y2rM2sHmgfLSCTYadzZw11nmgj0HI3LiOZHVamsZAgyj2VBOA8sudFP0ACj/DiBOang5KsyS8H4PRqvnEjVnjTqSRhYFk6CKps7VNwpon6iH54J7A6fWl180teETxKliZfvuPJiubT7UeXhCiV3olBhUWmx7yjdmlNC+XQ6nfKdmsPDw/KtQDkctavsqaeeiitXrjQ+Qqm0d3d348KFC7G5udkYh6qDtuQroK28VW7/KHAa+olEInHvUNONul4LANSCAe6IrwXPaLS6U4QLimgg+A8NGhkbNE58MYo7sv1D8KpnjcA7T6CxVAtIuGOBdV4mVw8s+TPMq5aOQJ3vbevOAgYGPM/aCsiaQ18y9pWMtXQ8oONl1//O1dwp48+y3s453aHgnNbzr8lN/Y1lF0elAc7dVuybeq/2Q8OdbcpjtX2MUH4u82fSL5in2yGs43nGL9/xspGT1/p7zRmnuug52jksJ20aPTOZTMo3qcWPW63bDjB966HWJ93+Eu+nPOnI8PLp+HGfBykjH6veLs8Uy9Lx+dfzXvZ88ulEInGv4dxJfy+bh3zems/nZUeVnMgRt+d+OXEVPOp0OrGxsVHmfp/3Z7NZHB0dld3C8nVoPidnqM2tXCRV2zHG7zDJXyM9oXLoqDzVwf1b5DM1nsQdzr64hXpMIBem3lSdJCPu5mZ+tTZR3vQzegBFbcdn3G/G9mfQRnXXonqls1gsyikW9JepLKo3/VD627mI0mXgRff5mRFyBQb2uBvs+Pi4EdTTe7QBxFVcls7tGBxR+t623OjAtucCIJWF/ajb7TYW9TvP0rvsO2pPyYgLFfUMOZLqxDS978zn8zJulRaf991a3PnJnWFua9KHWfOJSg5K349cJB8kR3UOS5vA7RXn5xpf6jeahxgHkEw4j0Q0A6UMyNLe4mIulwvTVp9aWVmJtbW1WCwWcXBw0Fh4wA0lkrXqs7q6GqPRKA4ODuLixYuxtrYWt27dKu+rbBsbG3H9+vUzn4xSOZbZXZT/vUYGz+4ADhZF5umcV8SfjXtychKXLl0qBtlgMCjfZVLHe/jhh2N7e/vMROtKi4pJg0wBMZ9I3RklpRFRP6KHhjfLzoGkCYnlEDTQOWH5igAvmyaIWlRb8AHB4J+Unu/24rs++XASYABsmROHEzp3r6leTlAkAzq2fJKl8uAEqInOFS8nRE0+LCOVU82ZoLakwmPbcAUtCQMJAidR1YPfd2N56Ejh1uyVldOPrh8cHJQJXwGwy5cvR7fbjc3NzXjyySdjf3+/oZSm02lcvXq1fD9tNpuVs5hVHq0O1lZ1KQMqPZY1kUgkEvcWrnMdNUeucxjymFpAgrhToKfmBOZKQA88kQewbBG3dau+k6RnmA/roWe0GIWcgu8tK2uNp3i9a5yqZmAzcLYsrYhmQM8dFS4LL3PN2e/8xoNhNHxrfNZBDucOIncmuQPAwbIwbb9HjsW+TbnxWeeF3haLxemxOeIsLAM5P/slZekcnIauyuXOEHJfysMXQdGZ4GnWHBXMq+bo8LpxjCtdGcss+3l9le0vHkjeTDuBeTL4p/Y4OjqKS5cuFeOfjtbV1dWyypgcU1yUi9WI2hzH+mhuk7w5H3Fcsf+cNzec51Tgfb5bK58/tyzN2vuJRCJxL+C+DteLPmdqvvbggfSqAme6L6eydvv4Z06m02k5xtf9Lb44XeWTfoi4PZdKR9GPJF3uOlgL6qWvyJWoa+lfijjVt3T6R5wGq9w35T4x9yfxHvWdtwHLThnof92TLJYtaFIbuY72xVDkgOwjuu9BnFarVXS5cyQGVJ0n8dQI7opSP1KwpbaAzzmiy1jX2IaqA4/35jNM0xcIUhYuc8q71WqVo6r5vHMKbfigPLzdBfVv5qFToSRHyVYyk4xUdy70V5nEk9kP1Ca1MnMBHH2TLkulrx2hHJ8Rp/5wryc5quYYcmIfy5IJA94E61GzY922oR/by+d8n+M84jQ47+NSeTNN9TVxXu9jw+Gw1Fs8WeVTGRioVH+4efNm2WHW6/Vif3+/8emdwWAQ/X6/LCpzOTGQ53bqebby3UQGz86BOgVXnHqn5RZQ7s7a2tqKvb29ckboaDQq9x988MG4ePFiMZ5lQNXOg1V6EU1HgCs0KivdV3oCBycHCA1x7r5ip+XKD+Wld3yFBScWyoxkgvddfhzYtYCh6skVniorz/n1oJXK4nKkg8KVMUnKsj6yzGjmQK9NXL57kJNZbcJmO9JhovyoVKlcVA+Wlc+7Y0PtzP7Bd7hqISLKt/parVbj3FyVlX1a3wJst9tFaW9tbZUzxxeLRXz4wx+O0WhU8t3b24vd3d24dOnSmXOcj4+PY319PU5Obp/V3e/3z/QHOnVYx0QikUjcG9zJsbrsHp3qi8Uier1e9Qz5Wl4+t7ux58YJd/e4oUUjPyIaBoR4Xc0RQCNPv7kKsuagcMPa61aT2bJ3PKDnHMUNrWXOi2Xl8CAJ67ksLXIgPVtzItQ4D/Ngu3jeusZ2dCeIt6v/XZOVl1/pUh7e18kraYjKnqgZ6Oon5LeeHsEFdLzPNvBvgTnvcxlK/lxMtaxP1hbIkUfz2BumxfZyWTE9pe8LtfgOxxyNfI4zrvRmv+FvLdSazWblQ+8qQ6fTKR84X+ZE8TL7+GHdyMvlqGWgz/uly70mb8/H5cV3a84mf+e8uXvZWEkkEol7hTvxv4izO8Klu6fTaWNBBJ20hAJp/X4/xuNxw090dHRUvtFDfUr9z+AKy8z51nWDz6Fy5rdat4My3EFE3510R0Q0fFjOdxnMoK70vN357GVk+aW/6NuhfqETnbrEg4M82SHidGG3doKRG0tP6znekzwkN9aR7aTnfbEL60AnfkSURTPUzeIZrD+5PI/m9N1yypu+WfJwBnrFKXg8NPU3g6H+jTsP/qps5DZ6lpyEUNCM/UDH67G95b/VD9tYvkGlr0+ucOEXfbuLxSLG43H5BA/byPuN8xD2f7Y9xym5F+WhNFS+2q43fUrJfcI1vzchPyj/ZxoMdLEeKh/HA+/xGcYm6At2zqq6cccb5wzWlwu69K76t/rG6upqbG5uxmQyacidddIOzYjb/fvo6Chu3rwZly5dirW1tfjwhz9cPu1zcnISg8Egtra2Yn9/P6bT6ZnxW2tztyPvNTJ4dgfICOT/Eacd0I32iIj19fXo9/txeHgYg8GgdLLj4+PY2tqKl7zkJbFYLGIymRTDiROu8uHAj2ie3arBR8VCxUCjNeKsQ4XKQcpY6XHXGckA3/VJysG8XSGTAPhKS9/mrPJpZYBHmamMOQEzKESDcVkgrDYQec8NYU4uLJMGsOqhPEkiaoEplpvlZf2YR6vVKt/K4yTJwJtk4nWm0lPeClyy3LrnypxHAWmlMEkF+6LS0A60xWLR2K1JgjGbzeLlL395DAaDeOKJJ2J3d7eU7caNG7G5uVnGComVFP90Oo3hcNhY/eFjIY39RCKRuHdwHVrTp/z7PCftYrEou44JBq5qkH6hHlVZagspqI/dQKWhIoeG7+h33kJdzB3erNd5ASqWmflQNjXuUUuP171dVF6uunVHibfXMqNM9x2+utnLwbLwd61teG1Z+VhO1tWNT5ZnWTDBF5j5e/rb+wvfo4PHubDLzuVQq5sM34hTrq/+RaPY+6LnozK7wbmsv/B/f4flZp61lcGUJWVCZwrHnd7xgChlxPTlRKLt4nn7+FNZ9T1eX2ymYLlD80HNmVIbkxw/4uadTqc4I1g+bwfvN8/EDvN7bE8fq17O2vXa/UQikbiXoF9FoH6g7uE7muO1e0aO/JWVlfItM/k+ut1uWTjB3UntdjuOjo7i4OCg+k0u8b/aggn+sOxKR8epqW7yAfLEHPka6fOjH055cV6XXnD/EDkjd1NJVgzgOB+onTBF/5A/x7L6LvCaX4plIlejjqNfyv2VzsH8Hfebuj+Q+tR5JWXGa1wUp8Cd78KvLSBSXjzVS3JnuyiP6XTa8MuyzJKV+hR5AxcH6p77mCOiBMT8ffq/vc8ryCg5MsionUgR0QjeMpBHvyJ3Zqm/yD8ucLGUB59UXgbuxI31N/s46+sL6tivyCV1X+lxUZ52qrIfkj/SLyoZsX+oDmwTrxvzVFk4r1CekhXHEfPQ3+wTkpHGH59Tu6k/8ChZlWNtbS1ms1lZZObxCNb5+Pg49vb2Ym1trWwe0sKExWJRjm7k/KL24pxP+0H3lnHhu40Mnt0BNeOMxh5XQKiTypjSWfmTyaSsAnjpS19aAmoRUbY6SmnS2e+dgJ2dExIHnJQxd4ixzMvqx07oBrATAq5c1SRD+CoGV2A1I41OHP2t9HlkU63OXLlApwknMQ4sDkiuQqLR7uVbZrwuc15RlqyT6kAF6uWrGcRUUkpDK1KYBuVJIuBtqzQV6WfQzJUzP4CqtBTQ5GRIIkj5UWHrCMfRaFTqIUWs79ro58knn4yrV69Gu337yMf9/f3yvuouuXB1MWVb658frck1kUgkPhbxbJ2r7jTWtXa7Xb47EXH2OGjpDxr77hR3o5FGtOt0QTrRdWan0ykfAaeOqRna0tfiKnKU38nZvUyGzkWYz3n1oGHIZyQTf5f1WRY4oWOChjavM8BRqxsDIaxXjYPwvWXldIcJy+ByJCdi3byetYCJG7iUp+rL9ORYcGNP92rlpBOiVmf9yEhmf2S6NMxd9p6mOyNo8DqnY5rOWclR2a4ufw9u+hzg7/mpBsyvxsW9bPxNe4F5TSaTWF9fj263G+PxOObzebHd9HFzpa37vV4vJpPJ0v7gfVz5Sw6rq6vR6/Xi6OjoTF/TO3QaeJ+/E+703HO9l0gkEi8UfF6r+Wj0HBcxyUfX7/er6SnApmOADw4OYnd3t8GluOiXwRvnIDVHOPmHuIQWZLnuiDh1itcWm+tvlccXOpNnCHTet9unu9fkGPcysM4M7LBO4sssB/UVjx/UO/TpMU/336icOqlIQUbKl0dvslyC8vAgDR38vnhHclI/cDtCeTDA4zvxxB/IVf0dtg99geKM3s/VBkqTXMrrrLrS5+gnAvCeB8uYHjklfYYMtlCuGh8RpydAsf8yiOnBMMnMA1sMiCk9cn1fUOh9VNd4QoHzRsmCOw9rJ1jVeL3KwTbSs8pT/YCBJ85PPs+orh5o1biqnbZQ48+0x1gX9TWeesGjbjlG2AdVD7U/5zDtFuOcwD6+WNzeRHHr1q3o9/uxsbFRvn2mn263W2IobG/mrXZzzv/R4K0ZPFsCNgg7LRuGHZ2DUzuCut1uHB0dlU74wAMPxKVLl2I2m5Wt4QoA6EfRbk2uPBJxmdNCkxUnlohmoMoNZl3TbxrgHnF2RxUn6ppzQXlzIPv1iLPn70acri7gSuhauQQnJ4qKe4TeDWxddzKzTE76YSDM8/Y2cQJAuDL1vL2fUclQQbEtWq3T1SC8x3JS8XHS18oJTvjMW+2gFVkCd7/RkaN3ucKI14+Pj8tqmogoK/k16fLnxo0bZaXCAw880GiTiCgTLSd7Jyq1vpNIJBKJe4OaE1vg3zVIZ2s1cM1AjTj7vSp3YnD1qzv4uZKvZnSoDOQiOkLS9TPfFS/0hVUq7zJy77ymlq7/rsnbeYnKWDM6aKCyPpKz8yHnFm7cCnT4sAysV60Oys8DBbU60sh0+bpMyQX52wN+lL/n74aoX2e/8jrNZrPGqlgaifph2nR4uCNN9RcPk/FKrsw6eHBymUxqda7JWs/62PH+58Yy860do8hn2C7coaX6ersrDXde1eSga1pwRT6vduKcoTlAi8Pk6FD7aHEf20hlcu5PGZIvKw3KVM/TAUF5Omq2nc9RfHbZHHxeOsuev9N8nkgkEs8HNT1F5/MyPqH7chCvrq7GcDhsLPLWzmLxR3E9feNM32qnf8MDZ5y/GZDSs+5/arVa5Wg6LlD2uZbl9MBHTacqH+5Qp/x41F9toYv4CHkM/X3n+Zf0LP1VtTZke9FfozI4j1cbUc/rWV84x/JS9lyQ5LJ2jiD5qN3Zt3zhtvLjff3PEzNoDywWi8Y3tugvZX4epBIHUTs9E9+m8yKvh/4mJ2PARFxTu+O9PWnr+HeomI525qm+qr/q42Xnj4KnDCJxB5QHb5UGg6Z6VjIjN9PzCv7Udl7xs0zsp5QDg8scY95PPejHduG4ZFm9H0u+PoZqc4P7RFUGBncjTrm15KAfHgHK/qa5S/283W7H2tpadDqdGI/HjXo7Zz85OYn9/f2Sjk7rE7deWVmJ9fX1uHnzZqNObq8t46j3mpdm8GwJfJKh8qIjh9u4W61W2Rmjwdrr9SIiYmNjIy5fvlzu+S4zKmG/p46joJoTBeWtYw05eXmHFXziZYfkwHAjjhOK8uL5v26gSpYClYOXyRUeJ1fPk/Wg4cpJ2x07Prn45OYTCAkNFZDn5X8ras/gFMkGy+dkyh0crBu3GlMeqh9Xy6sey5w/qr+v1mGA1AOxUiDsY+68UFm8L/iqh36/3yB3XHVF0qS/r127FuPxOEajUdx3332lPZWnO/qogPnB3UQikUjcW5zn0FgGNyRkfPo588t4g68IZTnI26iHyXt4xInyZ+BM358gp9A9/ZaxwKNsnPirDG5gsi7LnOPO51wuNLY8qMF0ahyC+tn1K9/nvZoh48/WOKgHVmoBFz7rutuDcv632tgdQF5Ol73Dy7/MaPUAJPmOHBO6Tu7N+/werj/rZWLZ9Fv9zlcV14xX9mFvQ47dmlxYd3c+eD9zw7bWf/k80yJ/9jJ4n6cjQoa8B8fYJzg+aAe02+2YTCblOBmVgY4rlpVHCfmitpqcWD/xb9luWsBWG6tuL7Hey1B7flkay+xE/r9sPjlvzkokEom7Add3urYM9CHM57e/e6ZF7b1er3xOhX436RvNzaPRqCxIjmgeB+76nnyRZaj5ePSsfugwdz6ma6yPLz7hexGnn9TQO6qb+wfp14xo7nQRyM2k7/xoQtcb7vvzsrqvRukzKMWF3JRTLX09w3pQ77uPkPxCeZFHKahAm4TpyB4gZ9a7Khc5hspHeWgxFcvgfsIav+EmCbeX6KNUP5UcfOdSu317sZC4R8Spj5EczHf8k+uojDUbRwEQtYfzT6XBvl87SUuy0D3KZDKZNHZ5qU04LgXnl943mDbnA3+fp1zRRz+dTmOxOD15Tm2qcjs/dFuA1yUz9Se1k3NJ9mvWTW3tthr5dM1uUjvWfM0qo5+kpgUAyrPT6cT6+nq027ePuxUfVxmY5v7+fvT7/dIHNbfpJD4tcmDQ1m1BH9f6WzK/V8jg2RKos6hja0LlQF8sFsU400BiBFaN2e/34/7774/hcNg4rlGToBSDrzCk4b+yshL9fv/Mag89qxXRHPgqI39zguck64YUFWbNeKMSoaFN+dHYqjlAPHjl+Xk93eGxzGij0vLgoMuC+XByr8mi9oza3ScwBmu4GsEdZsyD8nQZed3ZR7Ty2A1tV8TKjwSP+Wnru5ME5aePqrPsTrI0Jlxu/rwCy+PxOKbT6ZkyOQmIiLh582bcvHkzHnnkkUbf0qTtW43lsKoFzdLYTyQSiXsDd9Te6Vkn+PpbR/meBzoZ3MCWfqaepY6k8aq0arvmuRBKz3ldZUDR6F/mfOZ1LlShEax7NS6k3zWO5Y4J1+O1dGo8yNuQjhy2lf7XO/6uG6tM0+Xj5ak5zPguHQreZuwXzlVUbh5/7mk7L2V5a0Ez5cvjVyKisZBK/ytN/ciRIT7mO8/I2dmm4jg0hrmS1E+2YHrOy13mGgt0cnhbOV+ljLxv6Fny4Vrbsv0kz5qzzJ+jzSL56NsZ3t61PFUWOc3ovFD/0UkLfF6BNTo9Wq3WmbnA5aNnxV273e6Z4JnD68w2O2+sLKsv0/J8a22y7Lnk0olE4l6hxg0I1zN8R3OjggA8Bpy+hohTfXl8fByj0aixO1jOXf+uO/UxeQaDB7zPYEXNr1PjzQos0adEvlbzT7pPSfe83M7JXF8pb/5PfaPyKB0uHqcO9eAYOQs5LNP0XfzcceblljzEqWr+RbUteT+DQeQy9IXV/GgsD9Ni2chPBeeU5HfiKMpXcmUQ4DzO5kFctrvvaGNZyJecuwu+88ptFcmDHITciO9xIRP7QY1bKH0Frch5yZ8Z6HMfomThm194whvT5fhmf1eaXFilZ91/6v3f7RP2JZeJ+oLusw/qOvss7R+WizsHVU5yUl2vLQplfjW70v27ai+d3qBjKXniBsfYfD6P0WgUh4eHsb29XU5fUOC/3W7HcDiMbrdbjkX3vDw2obLey6CZkMGzc0BFzeM8fMLUWbzD4bBsPdSk1+l04iUveUlsbm7GfD4vO9K4G4ZbofWjYJruK72a00ID1wcGJ1ZXABpg/E4VHSd6hgqYqzq8w7rCcCcGf/QOjXQnM5wg9H/N2KYy4HtsQ/72tvV0XFmrTJwkPW2Vp/aRV02KDLLyOVf+IhgqiyYTlo2EiPLzMpLEsI3VLlwJ4enS8UMnpBSEFKMrRO5Q81Ugyl/9p9frxcnJ7Y+0azxQHr1eLzY3NxvtqmMUhsNhnJycRK/Xa8jNHTYRzf6aRn4ikUi88KjNxeQn4jVcNbsMrpupM1wH0ZHhxieDIlw1qSNjaBz6wiJxRHKUmgPadZFzIecqNFx4jWnWjBnXuzVZq050GtAAJ3fgfb7vwZNa2dlOtXZ3ZwfLzzZi2QWekMDfNCBrBjoDVG7cK1+vq+ehsrM93BjWjrCa00LXasG1Ghdnu7CcbvDSbqHDj31W7eOc1mVBBx13sTE9bzO2U83+oDzZ/1n+iNMjplhHjpvaO3Qeub3mHNr7m/h2ze6Q3UZuLDmQY7L9uCra29KdHDwW0vs722fZtfO4be29866zb90JyakTicS9RE0f0ffBeYrPkvvMZrPo9Xpnvo/FgFS7fXsRy9HRUUwmk/I9Si3wZUBDedF3x2vkefqtRe50dlNfeOCLaVPP0Y+kHXTO1ZwTeNrcLUL+TD5HTsm6SIfVnNTS2d5e5/Fc6WbqQ9WRup310kYE3znOcnsAg4Ep1ZPHXbL84ln8ZhnlwE+PiHOwHB6s4QIeBQpYB29fpeFBHPG5yWTS4Jr0HbqtoXRcZpQrTxAjb2c5JDPtBmq1Wo3PuDg4Numv5I4sPUcOXePj8qPSt8p284AQT+LSphbVjZyM9aKPUu0nufoYZF/wQBP5N/u0/uZ4pazZHtwpqHrQH+vP17ga5zbVT+VQWXjkJfuS6ukcnG2jcaK+wMUH8s/KNnYOL3tiNBrF1tZWWZx6cnIS0+m0zNX9fj9u3bpVrWfN7vhoBdAyeHYHcHLyxlDH1m4cfYB0NptFt9stCvfSpUvlY9MRp1uQ1fF0ZB2vyWnE3Wgqgw8Y7jqrRZA5GXNweCfzydQHnq8A10Ckgan8lLaXQely4tMzjLi7w4iTN4MkhAYsj7b0chE05lkun8icXNSgZ7n6QHkwcKZn5/N52eYrOXJyooPEHUXeB1R2ylL5sO+4zN1p5gY95cFJ3GXjjkhO7syjVpd+v1/kwJX96gPq/woO37x5M55++un4uI/7uIbiZT9hXyN5rhHtRCKRSNw9vOQlL4lr1641jFI36AXqF78mbkTnAY0A50HLjAc3vKXjGHShQeOLW2R4qR7KW1xLhqS+10kdSJ7ieol1cCcLf7PsTNdlS+cL368ZiayLy56GO9NmmWtBEHeMkFvU6sP+4FyN93Sf1zxgRcOS+Tk39Xq64U0+U4M7pGg4k7/xea6W9UCjVll6G7hs9b+MTod4vLePDFnW1/sk5bPMEal7zGdZ23u71epDGeu6B9fYfrRXXNYuI9pM7Xa7rFz1/GkXueNxMpkUe07GP7/twJXirKvmAzpE/RnKU/MQ7UCOy2X90GX7fFGbh87Ly5/pdDpx8eLFu1KWRCKRWAbOVa7P6LtwzrBYLBrfVqePQc/O5/OYTCZxdHRUnu92u41FJzUd6b4vv66TC+iTcZ+NeKTKSq7BoAUDDfQzOZfi/1woJPiiE5/z6fdzPeOykHw8CET/FhebkH+T19J/yYCV/pYvjd8IVdm58J0BAPo3yb+4e0hpyO5gHehvZNsyAKQyuy/VAyxKL+L0hALJR+/5jjlyLQ8Usl/yMzdMT8EP+g3Jm7iznzsDyWW0MFA+6MlkUoIu9CWyvcipWTfZWNrt5b5ivkduSN+k83vfIer2nGxRfh7G86BseZw2+bn8uxxb5H3i+fpbQTedDqb+qPe1GMv5u9Im/3VZ8ht07AesC20jBkXpx+12u40FfN5f/X3aVFxMxjbhKXgrKysxHo9jPB6Xsqu+8/m87PCVj9fbVzuFec8hWTnvzmMbXyCoA2kw+STMCez4+DiGw2FRyuq4g8GgfAft1q1bZSXL6upq6SwKDkghULlyMqOzh8qG30qgcRlxdjs0JziSC13jOxHRGHA+GdL45HWW0fPjwOBqTeYtLDPGOYCdPGjC4mp17YCis8OdL56HOwV0nXWXfIjJZNKYJKmk9D+VJtuSDhkqAxrfnHiUpvqFH/VDJ6GXn/lykpXC8NVQTmioYH21fbt9unrXnQd8Rumtra2V8dXr9Rr11m+Nl62trfjgBz8YR0dHsb6+3lgdMpvNYjgcNtqDfY7tdjcdD4lEIpG4jfvuuy9u3LhxRocum29rDuPFYlF4UsTZoAP10bJ7NR1e252uZ3hdek76iGnSQSNdrGMl9C6NFNedSocOEDcaqI/dUe3yorGj+673mI/qq/9dn1PeNFD1P+XgTis+4/L1/92I9UAXuYxzNK8PjSQaXi5H52/uQPL8KVOWlbZARDQCVCw3eRQXVdHod35e4+nkdyw38/KAlHNBGuzz+empE3qejhc3iN3JMJvNGgujyPX1nvcpytjLpjL4WHaHisvJxzLrSJnJyK8Z3nTQqC3H43HjVAPVtd/vl5W27tRkniqz2ynitBHRKI9sQJWTff08nuoy9vdq9fV0azZW7V3+X5vL7rvvvqV5JRKJxHNFzWlam7M8qMQgj76tQ8ew5mgtVj88PIz9/f2GjqI/iWXw3c3UVfRvcBGY18e5CYNHCixw14vqJj+XTr1yebhOcP4iWTFooiCLeAF1uvMvHsXHejlvEJdQEKPmf5TuJF8jD5CPSb4uOuY98KJAB/kt02B5pWdZRuo+vUOfrOSvdLgTSIuk6LOlD45BOPYn55Pejuqz4l7Kr9PpFH8zfX/caa/+o/as7YL3nf08WYpjRbvd1BYst9sw9BlTlrSJPAilcvH4cvpOPV0euaj+srq62giUkVsqT/U5lZt1FK/lfEPuyCDqbDZr+F85ltXfI5rHXfIbvKoXeWCN0/J/Bind3uPzXl9+L033NIY9YCZ51cYj/dKqN9uKtqTkps1Ekpfua6wyEKvn6MeXDc52c9mqzPx9r5HBs2cATRK+PdUVq09irVYrNjc3o9/vx/HxcQwGg9LxFHlXp+bfjPD65MIOzgCcyqNnBe/QrpS4GoQKLaK5+2dZEEz5uhNL933FCevBgejEyB0XHDQ02uWA4N+KxisvRtBZT8mL5Xai4RMDCRpl7Y4AysANW3dweFm4AiIiyqpX9Qt+y6smI55j6ytkacjzes0Bw7IKPKub5XViqTpw9QVlSGWxuroaw+EwDg4OYrG4vdpL9VXddeTCYDCI2WwWBwcHsb6+3mgzKrZaG7FNEolEInH38Tu/8zvlb+qJZ+LIpd5T8MwdItQf7myPOPs9Udf7y/RxxKlx4icA+LF3gvgGF6koTf74rn2vR0Sdty0LDugZ5yV0Fig98gTq99qiGv6mjJ1bkhPVrp/nuKn1A8mW79HQYl1VdgajaJQLXpaa7OlkcV7iRiW5l3gUZcNyMg3VhX2VRmwtgEc+6bJ0vlprC/Y9jgceBSM5sq5+LIzk6mXnAqsap6vZImxr78durHu9fNwpX/+bdhPbgidkkCd6v+cqYDnOaFNE3P5AulbRRkThp6oL5VUbh85PdU9OVu16UL1rY3KZPJ8vt13G/T1dtwtms1n87u/+7vPKO5FIJGpwPkUdJ7hvg/fa7Xasr683dDF9T3KGHx4eNr4Zulic7vBQoMqDYxHNU214gpIHzdzHRr0nh7vrQ6UviIOoPKpT7VQG6kXPV2Dgj/d4/CLTpRPeOaRzH19IInDHFttBbcjjB8ldnZvIx6S8VCb5wFh29xsqb5WXRyySO7Eu2j3Idykbvt9qne50ms/nZRej83yVV2Xk/5K10qU8lR/7C7lkzWfpfVH3VXf/vqzKN5vNyg/LTp+3y8PHCYOAypvyYpCO9ajZSewLbiNIJsybdigDfWx/ysk/eeMnbnlZ2ZbMi3MUg3LcjOO7DmnvclFgbQek2o7+VdoUtcCW3mU8g3KkP12/NXbUP3q9XrHB/BuCbq+oX/X7/Tg6OmqMV5V1PB7H5uZmdLvdODg4KPc7nU757rmCfZQ524S/Pxo+3gyenQPvCDz7Vp1fgQE1rIyg6XQa6+vrxcE/n89jc3OzsTIh4nRS4eqAmoOHSkODVAE4RuNrRqz+ZxDLn+O7rmidkNTIAyce/c/Bs2wSYl6uQDU4uWojImI8Hjd2Owm1NN3xw8mp9r7LnbLxOnrwihOPOy98QFPOTp4oV9XBj/1xskOnSu14TSdh/J+Tq8pUO5qn1TpdveOy032uPKr1OylbXZOS0uoDthPbS0Tx4OAgHnzwwXj66acbBLjdbsdkMqka+d4v1H9rjtdEIpFI3B1QL7mjmnqJgQn9z11fz+T4Bc7zTEfwcjBQpvep6+T4UB3cqJzP52c+ZOxGDO/RwKuRe9fRNKLI8fg/8+S7Nf7mu+SVpwc2a87685zqNePWf7vDqxakWeYsorHL9NzxwbIxOOJON6+jBzJYzohoGJN00kREI2jiTgoanzWuQW6qspAzenlpZEc0d4jx/Vob6G8/zoccSuWuyZ88URyOi7Oc+7LdBF8UxjZx7uiGv9LjKl/KVE4prZynI4V22WQyadgvywxvOQXcubNYLBrfiVa5+D/tQbeB3FEpMHh2eHjY6AvPFMvsoWf7/nl51uxSju1EIpG4F/C5yec36bGaj6nf78fa2lr5lIr8C3LKRkTs7+/HeDxu+GP0frfbLY5jX4ikuY+nNOmEKfeTkZOojNR1vE7/CR3e0sHUL+SdvO6cb9lpQCqb8wXnLcyHPC6iyTPJc+n78fp7EETp6BnnfpS9+AvbQOlzIRXz4kYHX5jEz73omgJZ3KmkvMQPGIx1f2ir1Sp8RDJVmuJR3hfYH9Rm7DtcVOZ8T+XzoDDv1ThwRDR2CAniu25/uf+MfZJ50N8tX27NLuCP2woKzsjXzQCj80vJVPmR57GfeTvr9zIuqvfZ5jV/t57VN750z4P12iGn8aw+xrmLXF0/vkCQAV8u5lMfov3sNgXtLaWlOVFlpu3C9lZbM6imdN2PHxHl6Eb1hdFo1Mhb73MDEeMAnMc4B9EekNyeLe99rsjg2R1AA5rftNC1brdbGlfOeynP9fX1skqx2+1Gr9crWxW588w7hvKls5+DmFsZ3fDXu5zMfBBwu2Wto1ERsb6cfGoTDvP3c5LZuTnBciDzmiYEH4jj8fhMwIrK2ctB5eKTPQ1+liOiuVKeEy6dV8sGKe/rx7eGezlJaDjZRkRZscGVCizPeWVQ+TUZaYL0VUqciCQHd3JoWy0nVgai2Cf86Bmt2jlPBk701A9UXpFe7mpjfgzSsa2odNimiUQikbh3cCeArwoll6DxKmcyV98tC64INWNGO5bFZ6Q/pFd8J7XKoQVN5AXUh1wEIr1VMw5ZnmUGL2XlBq3zK+Xt73mArgam6buJmI+XgWVj2uRyfKdmEPu9WkDRnQjOQ9UO7qyvyZNOFjfMdV2/aXCzfHSgsc407FgPOpPYzpK37jkPdV5SC7AwH8rI+wnvUQ4eeKNhSiOb/Ys8rXad5eWiqtqCMqVfCzS5Ue51cEi+sr00jlVH7jLzlbsKitW4PW2miNMTHyRbPdPv98+MY9k8EXFGFuxfHAt6V/9r3vGx8ExwnrzuhPPmDIePBx/3iUQicS9AXVkL9LhPgfe0q2E0GkWr1YrhcNjggkdHR3F4eBgRZwNdWgyhHWics6kfxf/4CRbO/RGnRzF6EK7VajWOS4w4PVaw3W6X4/mW+a1UHtfNuk4d5n4W9wX5wmbVgeUmF3d/HnUdT4pyv5kHm1R+clNyXXKy6XTaCDjU0la6lI/zP6YtcBGQ0qcNQ1vCT4Fin5Cvi3475z9sAwVnavq/xktVH35Xi/1R73LXmvt02W6Sq9pU6VPHeyCTfkNxQfIh/e8yZR9y3uX8Ubag0nGfrwcTuXmAfYpyd77kefpCJ43tWhtS3jU7if+rjB4kUhlUH7a9z3eSCcuhvLVL0HeMLuPVtbmCvLW2q0zPaiGCxr/GI21C7TpjX/GFehFR/PoMBCo/7jojanXh+Heb724jg2dLUBM4zzjVpNhu317VMp/P4+DgoEwW/X6/GFntdrsYevo4n4w/TQp0KHDg1a7xw3reoVl2Bs2cXLgCpVLkhFSLVtcUtBMZDiAa516nZQFCdxLp6BQqK9aV9eNE4MGiZfKVvGrXXUZ6loY1wQGr31KOVCSc8GuBI8qepMS3SavduNXdHYl+drOTPk6Ykre3lyASKYcQlan6jreLnBZ0bHASXSwW0e/3YzQaNfKiohW5FFmYTqcxn8/LrjW1jRwQPuHXSHcikUgk7i5ogJAjOB+g/ok4/faPFozIaaB7dExHnJ5xL93mBhH5la9GJTdSmdxApAFJHamyUfdRV6m+usdrNMyok8irlPeyoEmN69S4GmXL933HEn+z7MsMwWVOdHeu8MeDSs6TajLXc7WVk754iM8753Q+xfRZF7YBHQKSl7iNLxaiM0nP+TVyL+foQo2fuNzoqHGux3fpgKJMuRpU1+QUdMcD5ecOKo4p2i/kgHqG5WfatQVttDHcvmAZlB5Pa/A+zLQ0t1BmtWAn25Dl5Hjt9/tnjvFyXs9ysE/pt8pGGfCYWsedeOuyPJ4J7uRg8Pvn9f1EIpG4V3D9TfDEGs2HKysrsba2Vubo0WgUg8Eg+v1+cRDv7Ow0FsP7wuBW6/QbQcs4mHwU/X6/lIcLVJxvSI9RP9KnE9H0YbkPjrxUOsqfdZ+L/EQEy6U6ixv4MYTOjyNOdaiCJeTotVMdlAd3vrtuU37yNcmHxTpzNxj7gmS4LFDpfckDEbWgDnm6eIHq6X4wciH67ZSu6uH19cChl5O+TA8+kauwHlx4SN7kfFJ5sD84z9W76mfsC27v1bhKjXOR1zE/1ouffdGzlAXHI8uhZ73Nl80b5G/ur6YPlXxSR3aTy7L+zi+VNz+ts1gsStCLQUbVkxtsOI+wL/j4crlTnry+jAfreX6ugG2uOrMPuX2l65rfNJaPj4/LpiK9o7rrebWd2pLfA2b5OeZqf99LZPDsHHiHdANaA3g4HMbh4WHpYN1uN9bW1mIwGMRoNIq1tbUScaVjSEpNg4OBpBrm8/mZ9/k8B6/+r62yVH1coXDi8w94coKikVxT5E4GvDM7meDkTUeJoO2tqjMnXZVBP/wwotJkGdzwVhqUZ00JcVLgJMQJiIa2r5bnc97HaHxzYuRvrzsVLOXtjhnKmG3pTk0PfLFduRogovmBTl2nDM6TmcaACBEJbkQ0to2zf/PYm16vFxcuXIjRaBQrKytx7dq1MiErjWVy9jZLJBKJxN2H9IoME+ow/abx7E4I8oFW6/Sj4dxJFhFndBmv0bHuvIDlc7LvnEF8T88cHR2VfNzQc0eD4Lq4do9yq6VBw7AGf5YOgFrggRzQgy00tMkRKGf/zXJ7uZY5BbzuboiTP5Fbsfwsg/7mNxa8HmxP5s9rfI+LpnSfARVfbETOynK5XNSn6fwgH2Ueepf82J0KbkSy7DWHjZ7j6lGNGdZf+dSCXRGnnJABaS+rl8EdHqqPL87zckY0T184Pj5uODbJmTl+6BAg1+ZvjlHOFfy707n9HYaDg4NGXdxu0LMCObVko/YW5223b3+bhwvkmKbKsAzPxWnAOaLmWDrvvZrsEolE4l6Ac3ntnvORiIjBYBDD4bChaxnwuX79etmRFtH81g/TkY7hzg7qC33TahmkR3iigc/XctLXdo5Ql/LEA+ew1HkMaEWc6k3uhlI5yD1YN9dj5JVyipMXegDFfVOUa80BTo7Gz3m4o97bybkv6+Hc0HW10iVHZJCKnFNgORhQ8QCEcyLyKecoAn2k53EY+l5VN/L0ZWm4vHXd7QtyUj3L8nM3G9Py3Yz0c0qeHIOSIzmzpxkRZwIo4k21E0TcLiQn1fihLea2ofcPjU2Wg0cR0lYgj6W9y3r6mFGZtatSZeAY9broOZadi+IimvOYj2OPa3iw0e3CGh8Xl5a9xbZSkI111Ql9g8GgBM00N9P+pu2jbw16/Wvc2Mf3vUIGz86BGwRy+Ec0zxcdDofFmaJBORwOGxOXth4qgspgkPLyyYkDLuJUEXIwUuG7Qqmt6tDg4kDQNYEdnXlQ4bFcnpaepTJi2u6A8YmGxpzISi3tmqKgI4CKnHl7fTjZcOJ05ctrTJfg+5oM/OOfrhBYHtaf95i20mLf5Koh5cP+UCMLnJjpmKrJyOXPIJfLSgRRiob56BgtTbR0rnY6nbJbU+9oYvfva2jS7/V6cenSpbh69Wq5R6cbQUWdwbNEIpG4d6AOdwOCz3iwRkdaR0Tjmp6PuK3vdIRwRHOHMj8YTZ3qpNufUToi7x6YELRi1rmFnnPDlX+zPHzWjdZa2fQ/+VfNkHD4QhfnMoQ7Yc4D+asHxpz3kbMsM2xULpeLG/eShS/+Uhr8jonSo0NDaS0WzYCoB8NcfuT++k0ZeV/myknnfLQl2KbMh0Yt5eLl9t2FAoPWXvYax9c9GfbL+qCj5hDzlcF03rEelAHbkGOW19TfxBfdhlL53K5iPr6DgHUT/1XbceU+vzssR+ne3l7juMXpdFqOB9Nz/C5iq9Vq8GbldXh4WOatbrdb5e3LxqzjvPFdg9u5z8Xx8EzzSiQSiecK50J3mqdarVasr69Hp9OJ8Xjc8K+srKzEdDqNW7dunfFz+AIlXV9dXW0sMJafrt/vn/lUCcsonSf9J57pelV6h8Ex8hF3+rsupe7iAjXmQR+J8lQ+5ALuM3LfnN5hPf1UJOUl/Umuw4CHNh2wHvz2lsrPhU9KQ8HBGveu+dzIBVknciTKzv2UqrfkzDZiO6tclAfbrdaPyVect6rviJO4zFV254r0l7kd5PaYFkHRHnIOqfpKbuSKXodl/Y3lkCz8FCuNN/9erNpcp5KwregHZYBYdaIvne3Luvlx3bRdVD62tfLxceRjjrLzRVUEv7VNW5Ntw/Zh+qqP5gkGzmmjsW30POvHHW1uP9fGoeYs7rr1b5jru5HKt9vtxmAwaCxqoO0m2XY6nYZMuOOP44pj9dny1+eCDJ6dA58wakppPp/HYDBoDAZ1iul0Wo5v7Pf7jXOQ3UngE2xNmeuj2Jz8OHjcyI84G5DhcxwMgjsi+HfNcaN7HrFm2Zm2T16CTyYckKwv5e/kySP0NNT5Uxtg7rBwOTF9TmiEOxpUXk20NUKm9KnkmKfSpDOH91QeKlKXtztzuKqfEzknQuXjioAKR8a+5EFFToUpGSgPrRRmfXg2Lr8NyD4jZRoRxUnRbrfjpS99aWPLNXcO+BimTBOJRCJxd0G9T66jOV5zOvUMnQo+N9OYrOlQ6jk9v6w8SsuPUiE3oGHhhsrJyUlxhjMv8oyaIekLmej0Z73pENF7TM91v3MIvuNyqHGJGpg/DUg6e2plUDlc1mw7d8jwPcq6xs1qDnpyZhmLrdbtAIX6F/sUDV3xMnEYXadRXwu8OcdT/rXdlR6kkgGs/k+nB410grLx44G4ipYrNp27sg3JR9m+HBvk+M5NaTy7bUGDV2WlE8vL5UHXZe1NmZOzKt/ZbFaCYqwXHUh09iioVXMQuJOEC73Yf9bW1uLWrVvF6GfbcHEZ5wQPBnMFsvqwHLTuYKPc7oTaWLnT88/2HZWn1oaJRCJxt8A5k3O5cwn6CyJu7xZbX1+PiGgswlag5ubNmzGZTEowzZ3SAtPnQl4GzsgbqAvd3+A6mbqRPjzOxzWeR/2qHeP8vhXfpUyUBxeoMcCga677ndOzDchXWXfW1YOFbDuXFRexqKz08XgZVX4ustOxygx4ur/L+w+5A7m32yp6n9yQ5VFZ5aOq8TG1Bf2WnhafZeCBfck/18JjBNmf6APV7knyT/IQ+eL0PmVB/ue+Y44BBrEYVCX3pRwkN/JZBcpqp13pGQbNvE95f2OZ3c7zcaqy87t9k8mkIW/uRFOfcH5MubDsLiOOKe1gVZDI+xvnOd8xxrqTD3Oecd8u8+Y8wHsaZ+yHykN9djqdRq/Xa9x3m46Bsl6vV3i4jxHmLRtOsmRg0Pm7z03Phdc+E2Tw7By40DmwZbBFRPR6vUZUXOcmLxaLoljV2TkhMD13dnCga4Kk4V2b9COak1Atus0dZj4ZumPHByPTcWVcc9Tonv7n9la+Q8VL2TtJYjmoWKQ0awpHg8zTpVKpKQmmTRlQKVGBcABrp5ki6u6MUnpeXidslA3bWjLx1dFUUFQalKWvlufE2G63G0cTkNDUlJHKomuqp2TKD85KLlR2XufaSiuNKZ8cpVQ0eW5vb8d0Om3UQ0cxsD/zdyKRSCTuLly3uYPadUBEFDIt3RZxdmEQnQYyLrQYhAs66Fgnv1JaNI5lXLjhRO6ntKUX3TjxgIfrQ+brK3O9nBHNYCHTq/Eb5wbLggBeHj7Le24Qe7vyb0/fnS01hzzL62WsyW0ZyBXVp8QTJpNJ42QHGsDiY+QX/HHDko4Qrztl7s4vldH5ncooh85oNCpGcUTzmEO+6zvk6LRif3a5su+4g4jtcF5b6Hm+4w6CGnz1Nvuz5gBvSwflQq7PctMZUasny+tOUo5d1kNjkqdG6Lp4PZ2VKoMWCHAOkiNPdiBloHRogzH46o6Me4Wak+PZvJtIJBL3Eq6D6B9y/0DE7bl3OByWxbia07vdbqysrMTR0VFZ/EDHvvualJYWUvR6vXJcW7/fr/p1qC9YxlrAgouP6cCOiKou17vMkwuVdS3ibBCQjnRyNPIO5at0lBePpHRZq67kIvRrKk/uFnF/lX7rGfIZ+Xm46Jry1vvajeRHdrNONW6sMrsPVLLR/3TWq7we+GC+PGGg1k/F7dgW3u+cZ7lsvM/QvlB6/pz6IXmRjy3+0Pe5bNEVvz1N7keZ62/lze/YsU9zIZz6ivdLjQPakhxnNZtMzygARLn75gv2C+VF+dCWVb/zMaT3/UhDthN9uWwn9lcPnHogjG3MvkwuOZ1OG/2G8FgB01bcgb5U2kcRp6dVqM/7Zxf8FDK19+rqamxsbMTBwUHDxnEZMijucw/tOr7j89PdRgbP7gCfFI+Pj8vWRHUobins9/sxGAzOKGQ3iP0jiFSqnrcHPOhcUifk5MkO7p3Hy8HJ1CdkvuOTuhu8NcePnqeRybw5iDmxc9Ll8z5x1spYmxhETlh/dzS48agJi8qFhEBpsA15X9tPJ5PJmfLKUVZzGrB9qADZJt7mtXRovLNNOIGz71GBRZyu1lF+3jdZJ22t5op8KmONBfaxk5OTMysUSKr6/X5ZEcZ+4SRjsViUb58xbRE9Eh0Gz+7lpJpIJBIfqyCBdn5B8ivS644HwedovRNxql80n9OYomEj57SIei0t6n93UtCwYtClxkVoWNYCQDUns551/lQLoJAD+IIlOilo5LgzZRnH0z0vM7kFDaxa21CGvmioFgyjrGucjuXR3/xfz4tbjsfjMwuKyN09cMYFUL7Thw4D9aNlMlIe4jk8rkRjgEY727fb7ZZFdHQ8kbd5f6AhznZ2J4nLkwEavev9mO9wZXvE2ePNyU/523e3RTSPcGGZ6PTzPkCDnX1WATTWy50/Xr9av+B4WcaR9e06yo9jSOWYTqeFMyvPfr8f0+n0jKOK3ythOWlruAP1o4Vnmlet3yQSicS9gOuGGvfhj3TT2tpaY7dEu337m5Krq6tx8+bNODo6aizqXsZVqINXVlZibW2tzNPkknyf/qCaQ1jPMHBF3aR83c9E34zSY/mYr+tK8mHngX5dkN+EfhTpZOq88/QV20Bpiie6jlcdlBZ3erEeAo/ga7dPF8eQ/y7zT1Ln0sFPX5i4HX1OtGu8vOQiqqPbHjU7x7mvp0ueovpJruRK5IE6AprtVut/7ltjeeT3JtjutDm8/cR9aouAarvbFotFCW6739w5B/mUjxu303Rf7cB3vD/RD0nbgQE9BhP5jvISB1b9eWQpP2nDIJXq5uNB/nPZCbWTIdjvvO/VbDD6j91mI1/1fsE0JTPaRuTybrNysxC578rKSgwGgzLmtAFJAUnNAT6X+nzPfq/7LOfdRgbPzkHNMFD0ls78Tuf2kYr9fj8uXLgQa2trcXR0FL1er3R8Ou3p3Ol0OmWbreCNv7q62gjaRDSPomGUnasg3CDjYKfjyJ0FVJZeJsLro2tc7e07v2qBCw1MOtKo0DlxL9tRp3dolLrzpqaQ3CjndZWN/7s8mL/kyF1wvV7vjNPNV6WS2DHdGpnjZM5J3O/7hOxp0imj6yyHfvsWXfYX9pH5fF7OtPUjkKTgfQeAiJz+5+TXarXKCiT2I3dwtFqtODg4iK2trUZZpCS9npxoE4lEInF3oYUU1CluZLnhQoNToB7ib3IdBR9oJFF38x0PfLiTgBxA6Uuft9vtUic3fpku60Ad5WVxg7PGM6gTlc4y1PgJDZQal/P6e13EtZa1j6fl3M25mUAuxMAq3yFX044er6fKpEU24uV0JLBezuvoOHB+w7zVp2g8cvek0qtxCvJwvSteIz7U7/ej0zn9JguxrN3cOCW/F19yRxj5ugdn+Jz3W40v7qji+F3Gj8k3a4vFfHUy0/Kgr9tE3nfpDNB7TMu5q+SugCtlxaBrrS258lZyFVdWu2rxwHg8PiMjlcX7ldt3EXHPDP8azptfEolE4oWCz4+cM13H6fnV1dUYDofRbt/ekSS9vbm5GbPZLG7cuFGe0zuub8R/qH86nU70er3GdzyVN8voAQZyUPqE6EdxvsHF2Ao2yBHPsrG8rAvlERHFN6V8qIOp0xkYovzdR+PHDsv5rbzpWFf59BzbT3WWv9T5pC++8YUq1MGUMY/7o+/Mjzp0viHQb6T7zt9ZHw8+0F+p/yl/P46QsqUs3YfHwB9l4Txd6cgW83t8XukyaMG+43yR/Ig78ryOepfp6W+eztVqtcqpbeyDHhRSO4tH0+9Hf6HqrutsN7at+iXtUv1m+y2Tq8BFdrRtOY5UJ/eFKr2af1yQHcqFnOSJrKdA2ajOHlx3Pznfqc27usf2oD3kCycZOFe/6fV6jZ1wq6urZbeay4+8m+3G9vPx4XN5zXZ9vsjg2TlQI7CR2AnUuTTh9/v9GA6HZceRduRwQqQyVDrML6LpLNKuNg5gdmgOAJZX73PVgSst75RKj387OVG63sn5fK2z877X2+vl2zfdmVFz0khGNbKidvAVpJSfK0jm404VrQIgGWJwR+8oTf++Agc4+4TKQnl6uSgPdwa4cmN+3pZOPkkCao4gf9+NeuWj7/JJiapvSsFLTpo42V8kW377zIO93A0njMfj2NraKsd3SUZcAc324HhKJBKJxN2DG941o0PPkVvIuOOufOohGZ/+vVSmTaNZ34HQPTrlFQggtyCPomEu/UijshZQkv6vGZ2uT2kM+jM06JTOMoPK9Tn5B41AD9yxfMtAQ53Ps9xc2ahnGFRSGh44YTouh/P6jtpGz/JIHV3zOtOZwnIwf77HRVxyVjFgwr7COnu5/bgT5qn3O51O4acRp2NAdas5LihXyoV14TU3qmvBJ717J0Pe7Qw6UlRG7sDjePcFeSo7x43bMOfxYTeQ/ZraUcfGqN5+xLv4oC8ea7VaZTEY25aOBzleFRRV4EzlFvdnXrQb/agjlZ/94Lzxn0gkEh8LoK+AQQ3pEO5WWSwW0ev1Ggt65/N5DIfDGAwGsbe3F4eHh9Hr9cpJUpxvBeo26Wr55FZXVxtH+NZ0pdLTzmT6WMhLnIc6j1QdnQ8zICNdx8AYeYb7dchPnLuqLJRtjTc6z5AeJe/WvYjTYIK4xjL+LPlw4bWe5ec/WC/9lq6u7S6S3lVa9BFFRGlTll0yYNtId6u8vpum5jeVHCgfX4ild/gN1Vpai8Xt0z1qu8Zom4iHsXwKUrg/0Tlnzc/qPkb9sB3c38g+rPabz28fdcjga7fbLd8iZL+h7475OUd13kj7h/KXbNw/rc8wscwMgLJMTKdmu7n9o3qRz7nNxj7LMtSCxJQjfcoqv9vKbpPq/Yi63Ur/MG2dZT5un8NUNu0iE6dl/Xky22KxOHNKB/ub5j72M9cF7JsfDb6cwbNzwA4k0AjjPa1w0YeiOXl5x2Xn9N1nDGRwt5orh9oEzYHEwcvJkO/7fS+jQMeE36u9Q5JTC8zVJlZO3DTiVUYqft91xXZgvvrbA5jMn4PeJ7KaY4ByZJ3YVm6Ua0KUUU2yUpv8VHbmQcXMerIvasJkHnyWaXmbUVGzLPxYOhUGlRll0263G9/mkzIX0VE+2k6u9mHfIvnRpMu28DYUOR4Oh3F4eFjIjTuM2E6+ejiRSCQSdwduABOcc6k/qGOoA6U3+D0hP/4h4nTVrnSc6wAaeRF1YzCiuVpQ5aMDXOlQJ+l6zVDTPXdeLDOua5zRZbvMwGW6boTx/WXvsgxuEDnvlAz5v/MBcjWlw3z4DMuvtGvGtzgF+5F/J4Np0FHhgRVyGzeIWQYu6KKzSHLh4h43Lll+d9r4qnb2cfK+Gufnb3cmeTuRI1Km5KCEc0YPRHrgWM9JRhz3dIA4lyTfc6cV+7GPG3dW0KnAPLjYsbaKVR8sZ156vpY/bQv1q9ls1vj2mZ7zOsp2ZGCR9WL7O5aN1UQikfjjjmX6if4LLWSQPuv1emXRrubU4XAYERH7+/sNzuD+EQ9SaQ5XHuRo9E9QX9Mno89IUDc5txEf0DV+I5OLlJhX7XuZgvsAqR913zlprfx0wKscTDuieaSz+8HIPdh+5JnMW/eZNnUzdb3kq3doG0iGzgfpj2J63DHDQJYv2GaZybPcoU+uQVvIbQvyWfYD52aUAQNi5Pr0s1E2+l/pMD33+/E5BmGc2zBIo3wZsPSyU1Y8vrzVapXT1Wo2kfddtUPNvjvP3qmVQ7LX2OZYZvtK5krD7TP58PU3F/jR7yl7lmXR3xxbfk9ylqwE+ZX1ngcH2Z/ZH/WOyqz21LjRdcqLY4FzDceCB/Y0XlR+96fLH6u68xNYnOs4bji+mL7A8rp9ejeRwbM7wB0ZtQE0n89jc3OzBAR2d3dL55rP50VxqqP4qgxNGlSQ6kjegfQ/JzKfiKiMlOeyYJ6TEFemtXLWnEBMl3nWJk8a4K5AfaBSHjVng9qI7/KejsykApchS2dDzWnFs7Bd/lSYQi2CrwlNgR19F8wdREzXA45UHh6oYl2XTRZUYrwvJeaEjDKn82g6nZb0nGDeqQzuqNRvKWYSASpUrh524kmFMRqNYnNzsxDlGmlhEDWDZ4lEInH3QX3GedqdGwxKzOe3VyK2WrcXVsiYcke1716hIUTng3MK/faAELkYHRrSjfyeAnWjdIrzQHe6qP58z/kWjTsaCIIbk6w/5cxnaahQ5nq/ZqTW+JjejYgzTn3nX3Q4eHmYHutR4zfkJ+R+bM/5fN5oaxphzmvpQGDaLoNavfms3yfPZb8kdySfISfVb5ct7Qbv695vfLWz6sAyU8ZKg3LzPrDsf9ZNY4GnZ7hdInmTS7qzzrm2t7+POZXZnWdqCz6jBVW1Yw/dTnLZ+hhVcEx1UJqrq6vlu73j8bjYYux3HBMRUTg0nQz6PnLE6fehtaqcMnO7LJFIJD4WQC7g3Mh9JporB4NBdDqdxpw7GAzi+Pg4jo6OGjrG8yKXWyxuL8bt9XpFv4rPcnGxcxnl6UEOlp3cRM/XOKU7/JkP9YMHzGo8j3Ij7/KAD3m1P0+ZS9+yzpSfc3EuMGJ+kqOuR5wuiCN/VXklC+76Iy/nM15u6mjVk7ugWAaVm3Um//Gy1fqo+gF9hOTu5DyUA9vY5cCNHPqffcz9ehGnQU62C7mbc2fyMT7v/rxan/f+ENFctObfNVM7agf/Mk7mfFa/GZBh/yJPZj+mn5xtzBMI2DZsR/UX+ifZ3jxVQPdUXz/ZQmPFF4O6feX2AP2z9FGzv7ic5vN5I7DF7yfWAqzsN97/JEPZQeLGfO7k5KScwqd0JUuOH3JqfnKH7aJ8an5+lqnWHvcCGTw7Bz7p0lnPjqvz7dUxtUXbB3TNkFZn56TcarVKBJaOF3acmjHFyd0nc/1mZ6uREXVQpulGO9Nlx2an9jLzHS+bG8l+FA/lL/jZsi4nXdcZugzwMS0nD5zUXOYMHnrQhXnWViGvrKyUVU881sXb8jyy45OGP8u+4Y5AltlXBNDAd4LiZeEKGcmUiopK1q9TVlToWvnBNmm322US9eCyk7J2+/b3aOhAi4jGCg2VQ+OQzpZEIpFI3B24HqkZITQUI5rH1cjIpLFQW1HLFaGuR0XqeYQJDWuHcz2WczabVR0q+p96yQ04X5zj3IqGLLkLy8MyOi/iPXcIOMhplD/fF3yHFrlfzXBZxkPIOSjTGq+gDPQ8jTrpf7a9O706nU45pokczMum+uu0B++vNZnU6qlFcSyrykE+ygCIDGS2F3ma4LzWy0+nFttFf7tTUGk4b+Y9pqHrLgOCHJbt7HVw54P3If0tR6SgAJje4RjxwB1lpMCTnKbk/P6expPGOGW4rP31ezKZxGAwiMlkEuPxuOFApENGbeXzAfuoFl6qjLPZrBz1HnHa1xKJROJjHa4z6VzV371erzi5I27r5X6/H9PpNMbj8Rl/QS09OXnlj1M6EdGYrxW4EMhlBe4Q8c+26JrzEOpW6Xs6yPXbfYrLnMrSowp40f9Y0+EeeGB+zmlrfJW629NvtU6/o6o2oCOeeelvBn8YkCSPYz2dh1L+vvCITntyfeZPTuXyX+ZHU1kVcF3G18j/6QdVWylNry/lxfLwiEyWh0cDOv9lgEyBZ/JMtRHTZhvTj+q+XvEgydT7mfLgjkuBbeB9ivxR8qDsfMOFj4laUMjHj+TGxfm6xvmFwSOvG/mv+11rnN3bjQEq/c8FavzkDfuV24vil7W+5MFR/s1xpw0o7kOmjFmX0WjU8PHXgpmSk47RrcmB31PUQrPaMav0B9Rsu7uBDJ6dA++8EadRUjW2IGUtg027aZSOG9RUOJxM1SncmeIOKP+hsq+VmwOEQSCmzWdVNpVfYDn8fi14xcmKSo0KzcvLOvh1VxTuZNA7GlgKnkkBefuyXh5wouOt1Trdyup1Vjmc1PhE6FF1Tp6Ula8w8LL6hOqkhErD0+AuRb7nipTt4yuFWJZlq09ccfG+T8q+4qHdbhdngcaDZOVbf7nCQWXjNmzKif0zg2eJRCJx90GCzCCSE2wa3ovF7W9UaA6fTCYNh4XSo5OZq+JoQEVE2dHM4x2dr/E96ia9rx8tjKLThDqaxq/KSt3pepGgQSyHivOjZWnzb75DXV5zLNQMNBrr/GE5nX9SZl5HN9h8oYwbQ5QNg6Isk7iCOzdodJIDy1lVM9LdcFUdlzkixBlqwUTKhzzD20b569t5+plOpw0HDJ1S5OfeH5b1q5oBvMwZxPYlWGb2Pzq31Gc8KFhLm33R+Sc5MO0ipcv2pt3FdNQv9CF59ol2u90IzHnwVvYWjXAPzCq/WlCS/WmxWBQbkM+Qn+odHtPjfbDVasXh4WGRNx1KLLtz/0Qikfjjhtqcp+u1eVHfJiMGg0FERAkIaG7VYgvXSVrUoJMQajqSfzNwoOe5yyOivoufOoScWOXwfHTddSbfIc9yPsJy6HkuulcZyPP8ZCDnX66TmQ/1nTvQ9TdPpfC6qOwsIzmM/EMMwMm5z7KR/5KfkuOJB6yurhZ/n/sV2Uec65Lj8OSqVqtVvv1U40be3h7Qpc/W5e7+V9Y14vSkA0+PvjTmyYDIYDAogQ8PNtL+8mOo1aa0P9Te6psEbRTKjPnxOuW8zK6p2UOUv8rKoybpr3T7gOVkOTTOFExyn6ZsUdokTC8iGrseuahK5XQOTpuTNgvbwOcAHsXIb7D5aXrLbEKWV/MD+4RzWbW17HnNi3yX/UPzw8rKSvT7/fKOQJtIcmB/8/m51qfuJjJ4dgdoImbjzGazsoV7Pr995qi+eSYnECdcdhCBjar/lZ6OLKLx7E4AdwBQ4TF9wq9RUbdaZ4NqtfxYVt7jIPU8BVesrVarrP5lkErP1spLhcu6U54aoDoOxQe53uUHP32S0CTKiZBlotFOQsMJhJOe6iEHoSZGrmJw+XHCZB1IPihjTg7+tz/PtNg32A/psIqIhnPPV/3XlB6dnMucJfr/5OQk+v1+o33VryQnV+4kY056WTflx7HsOywTiUQi8fxRM35o8Ll+kKEpI13va36ngSi9RT0hKC0PkomQK10dCxLR3J2svPgNo4jmcX/OT3SPznkaiq7Dl8mCv6m/mKfzxZqjgn/XgiteDz7PAADrSMODO8/dcCJnpXFXCwyofjzahHyD/KpWLgaZaJQrUEJnjsuKvJn8zD8YXgsI0VBlEMwdGKy3ys4j+mqOHr2v9Jwru2OpZhTWeB95kDsOlI7fF2rHn1B2Kiu/FaHf7vQR6Ig7L19yULWb91/xQjkBNL71PBde8YhWOhgWi9sfdFewXKj1MdVJ7aXr7kDit9Zq5Wcb1MYjy63+ojFWa+tEIpH44wz3B7lO4XyqgBd3qK+vr0fE6S4IpqWACXW5drJTV5Avai4Xt9QnOYjazne969dcH1BfcFcLfTauAxiMcq7tXJPBA+fO9Jn4Ln/nOO7jEhdzvidOs0zveRm9/s7X+B75RqvVOrNQnj4qOu1dl1Pf146SpgyYr+pKe0bp01YgTxZf4WIyP+qPcmL7eACQnIa7gtxe0LvsB+4Tow2i3Zrj8fhM+ystnrzButTsCB1/6v2SdgNlynQkc44B+kIle/e9st28n9Zk4de8/7ofXPlzFyfLqnLI7lQ6nAvYlgra6zlySf6W/DgGvX0kD8UVfDHieX7giOb3HGnnuVwIt0vEzZW32p9jWfOs3hkOh3F0dFTalTY766h+x/+9nWt20t1ABs/OgU/u+ltGc6/XaygWGVC9Xq/sfKLTJqJ5HmxNifA7Z5wg/DknDrzP90kEaDC7E0O/axMHFZOe42DyctacB6yPrtUcBF4n3nMDkw4036quHykoXefE644gTYBSHB6o4xZZ5sWVBU6K3Inkz/hEREOdMiUJqwUQCSogtpfXXc9SofNexKlzwtuJq7CdzLmyc3lRYbr8SUD4jJyaNeW5rJ+4IvSx4XJLJBKJxPMDV8bJkKOuYkBCc3BNf7ou5W+lE3F2xaUHjnhNizSUFo1lGqZK2x395DXOh2oE3vWTg3yQdSMfIC8jpxMYDGIZya9q/EPpuIHkxhnL5HmxnWp8j5yUz9K4JIcWz9Ixegw+OHRvsTgN3shQ6/f7JQ93UrD9GLRjkJb8keVy/lLjK5QF2805jvMTvcPALd/z9lV/c+PaDXPKq2ZUMi+X73kciQ4kPU85u6wE8mgP+HL1Lsuh+irApb8Xi8WZj56Tq7sDkYa2y5119fyZn+qmstQcRj5+fUy508Lz0s5Y9s+a8b+M/wvJcROJxIsdnF99TnNd02q1ygJ2vUNuNx6Pz9j/WhAviA9wbtff3KnigRgeZ+c7rViPZX4v+s7cV8HFPO7zo4+Hn7twufGHHIKBIpaNPjEuPlGaNT5JTu16UvfJGaiT2Ybk067HJUNyeNaNC2eooz1oqvIzMMLTKmo+N+XtsmI56SN13sENA/K78ThD33Gk92s2ktqFZdECLXJaclT6pHVs5mJxeiSmuDQXGLZap8FhvatTFHzRGvPTb+ZDu4SbLtifKFcdxa5+w3HNfHSfda/ZRuR8zuvY5s7ZvK2VL3dukStq96IWZnkd9bwHxRl4ZT/wv5mX+0NdRpIf85T8vX9wjNbsX/9h4JJ9lvJVmtPpNObzebHP9L7PtVr84EFbt639msA5pNbudwMZPLsDaoa/OquMGw4qfe/Mj16sRcsjzhq0Ou6RqwD0jjuOPJjjaS0z6NnhmAcV1zKF7s8x6OIDkO/rPgcW03WDj/XxyVay9B2BnAC5+ti35EtB1QxeH1wsm+rKCZDK3+snxakyUXFwRQrbTRMJ+42TDW9Ld64wHzrE+BFLofYey0/SISgdtQX7oeRIIukTPlfVsi5yevl23Pl8XhSot5v3f9bNt6uTrOj/RCKRSNxdcM53/eJ6T8/XHAECDXzyC19kQwPWDSfxAuoz6nc54mV8RUTD6KehQR7Coz5YLgbkXA7ncayaM0LPkJ/QCPL3nBfxHW8Lv0Y9ToOL5a0Zsu5gqNWTcmb7qh7cRcQ619LwPsLnxuNxY5e/ZFU7Xob1YD7kaZSTG9n8fgnlQm6rYIjeZVAvIhrHBLmjSXm600TgUUIRzdMM2F41W8DHGPknjWHKmJzL24R5Ub6Sp3NxtqWu8VQGOkXYxhzfeofp+EkY/L6L93Pyexn3LnufI9TW4r9u6Ku+GhMM8NG5SNn6u3J6sF/5+KyB/W7ZM4lEIvFiAZ2hDEQQ1OF05Oue/tdcTB2hBTt6T5/8EMjjyC/p8OUONN6PiIa/hJzXdTJ1FP10DMC4E58ycv+U/B10YnvgouZjrMmUZXa9VeMLrqPJn/y3czD9Ly7kgUnBHfb07dR2abkvivVkX3B5uK5WgNL5Ea8xoKBgLn2IaoPF4nbARxsvyIV52pPsEvEBcUZffOc+ObfDJA+lze9ITafThl9PZdSuTB2lJ74lf7VzOMqBnJttKB96LfjCvqd3anYW24t9zvuHL4xT2tPptDFuOK8o6Ktx5ByMcQDndUpPfbdmP3A887tpHuhSPZmm72hVXf0dpcPAKN/lPffT12xyckv1Q92n3HwMc87U0ery6Spdzb06oWNtbe1MIJf+Y85tnDtq8wvt67uFDJ49B/AsXQY3NOG48z/itGP7R0HdseOkwDsD0/N82Mk5IHjPBxfTdkXsv9kBGbxi4MjLXlMuDk4qy5SoQHKgZxgk8YFI5xJBQuGrCpY5f5yYuBOF73tQis9HNM8J9h+1bU0pez7eJ/isl4MrcJhPxG0l4h+x1d90YGhyI+Fj3/L2r6Xl/YfOEo4rOihJJr1PkVyxHzNAyR1+ytsdr4lEIpF4fvAVr75K1vWVdIDP0/P5vGGcRdSDWYK4mAesRMaVJwNk0o88eoSGp/Q9jTQn4jTUhdoudZaJukzGqAxkpuv6040Xd2roOZeLQEeDByT0rOvtZYud+Bw5lBuh3j7MW+2sHwUmnLuwfJQxn/P6j0ajhvOJz7j+F39nu5PzOL8mB+FKZed9Ne5LTisDnUatuAwDiD6GaMyzz/N9tkuNu6o/sP19wRnr5vyT7ejXlbZzeQbmIqKxoljtz/byoxRrASHZXTSoa+VSkIv1YBtqHFN2anMGdZWffiQbBkDZf2qyoQOPcw9lxzbVs8vgcnEZJRKJxIsRnMuc8zDoQbtfgS/N1QpeUJ/QVyAeofS1C41+NvIS6sMax3OHP+f5Zf4S93PpGXd2C9wtRu6i/GpyU0DGfYIeYBGo26Tr3PfG98mVyUXYNtSreoec18vhC75dT9Lnp/fEpxQkkvzZXtoBpmt+X+Wkn8o5Lvkl28R30WijBdMTlF+v1yvyZl6qv7iF6s3FVipDq9VqBIRUVqXLRURu35CH6z0PDnt5VC+l535L2m0qN2XE9qxxebWr24rqk/q+LPucZEE+6JBNWOO29MvSj65yyu5kvyBHZ5uy3G47ue9Y9q7kxeAvOa0HwQUPvNEvqvclSy0S4y5E9gH1lWX9gXOlxpbmWs4HDMSp7CcnJzGZTBobK8jfBR7vKbmxvZSm+3t1jXNczU//fJHBszuAjaT/1Vk6nU5ZZRJxdsWlOoca8fj4uHGWqaD76ticYGhEueLyzsNJzjutT9ZeLx/shJMMPs+6M8+a04CRe+bNIEdEc1UxnRleVsqY+dHJ4YOGjqeaXD0AxbpR9kyr9pxPGGxPvcvBXkub8tE1lsMnCl1zReTEJOL0mwp6R0rAV2iwT2nS9mOFnIipzuxT7BvuVGKfkmPTnTvsCyojSRgVmhNejpPzCG8ikUgknh/EcSKaO4r4WyDRF5z0UneStNNY8p06SofHmnDhEvWz3uHRPSyXByhqAQc3inyVMTmO86aIpiOEHEG/pUfJodyh4kEt6l62B/kV24Eyo7z1HrlBTR9T7t7G/KERqbx4TKPeobzcQeA8Q/k6/3TupzQYLGFAw41aGs5sZxqVWgjFAFgt0ORtq3LQ4GUwiXXkCmyhxsl5XQYwsazP6JrzUMqnxsFVN5exyu3twuecs3r7uGPByym5s7zuqGN+WqVNhyHT0AprOqlUTwXOXJ5qV5/XXBY1Bw7vubOB48rHRC2AWOOyyW8TicSLHe7voA9HDm7qQup17g5x5zV1mHTv8fFx+Taa+zTc90X/gvTDYnH7e2v8xEQtWOJ/u951vw11qPL2oJL7W/QOy8ATmcgLlwWnlK7v+qFfjmm4z835J/Oi/4ZtQv7jC/Gc8/A5tbd4ktJ1Xqw0fMeN+hL5h/oSeQUhmarMep4ckIFH2SOSh3y+rL94JPs6d+GzvzFAy52THsxcLBblc0MqKxdG8RS1mg+RCxBpl6kezLPWvgTr6z5s8h/aMd5PlL63F/t+jaO6H9L7vAfdlC6/Scx68BplUcuHdWEa+p9+VdZX5Zf/krak7Dk/UUVQWXgaBTkv81I+lL/ydLvSx77ydRtR5WNd1RdbrVb0+/1GPgz4dTqdGA6HcXh4WMrJxW1eT35+QOn5/Hg3kcGzZ4CaM0ATFycVn2AV2dakTINNg0udQZ1fip6TiQczfMeSK59a2Xmv5gTiwOCk4oOmNjGxQ7txXyMHGiB04PjA8EmXA5AEgqSi5lhh+q4oSb44IGmo1+TEPH0nId9Z9j7rUXP+6L4bybXJi+/WZODkgZObT3QRp6tKfIKnc5LpLGsjEg6Xp5MY9mlN3lTUepZnH1O2uufjr+bU46R6nkMjkUgkEs8ely9fjr29vRiNRmV1J+fhiLO7csSjlpF06QYSa0F6lKs7qb/cyNLc784V6k/pQOqU+fz0exIk6PxfoCFKvsCVkNSrlJEHfu7EyXitxgEZHPJAiBs2DG6xDr6zzs/lZzn5fM2ZQkeC8vcTAjy46fIhD6UxSYcJ2895KOWgcrD87hTqdDpnViqrnlr9qnech6l/8v5isSjfkKD8JFc6A3SP359l33Ou5uWjQczn/ZoHHgl3RPFdvU8HVsTZlaDCsvIwH9VF9eDzKqevjFWetbYQdDS4niE35bziDjde07PcNcjAFseq5FGTKduJzhu/x7zdXrjbDoHnAo0PHnOWSCQSdwPkNe7voE0f0fw0A3Wh5mfOsa4/6XPibnP3jVGnkydybnbu5zuuXWcxH5atVn/Vg9yRXInH8IlX8xnyIV/UwvRqfLbGrVWHWpDA/WiE0qNMdZ2yJGeSjq4FUpgmuSC5VM0HyHZwn6TaluUnJ1aaXIxOGWohIRdruQ8xIkrglb45BuTYb2v9V+1OubvNwPx1je1IufNISE9Leeq92sYAgXJxzkhZ0/5iW0j+5LJs21p/1G5D2oI+HxCyKXVfwdBlC7Ho06QcWEYfA3yfnLNm21GO9KWy7X3+YL39u8HqHwri9vv9WFlZidlsVurN+lOmmkvIP72NGSiUncTy8zmmMR6Po9VqxWAwODOfS37dbjem02mMRqNG2TQHKJbgwUA+e684cgbP7gB31Os3I7mcZLkKgRMWlVtE01lB541vqRaomHx3EJUPO0xN2THYU4vKcvC6cct0GfyjXDj5ESwDlX7tPQayXLFy8vTVJfqfZeM2UqbBydSVEw1aVzTuyKkF1ji5erk9DV8d65NeRDQmBq7wcKeDtw0nPtbf5etK39NWGbjyWXXm//6tDQ/UsR6ccOmki4iygsb7AOsnWalOXDmj9ubY4GRbczolEolE4vnj0qVLceXKlfINIHe6k/ssM/Bk5PG3GxO+OtAXjihNd2xLT+iYlIhTnei7yKTfzuMzEU2HBJ8hx3G+RSdIzcioOW6YLp0PBP+nnGschj8qK50FPJO+5pjge8qbBq/y02/JXwEF5u9lZ5DMjdVan6rVR/2DbUbnRc2Idf7AcpHre7tFNLmtO3a83M6VeL6/B+CYDxfsRZxy+prjR8+zbWqOBzfauVjK+ybrwr8pZ7aN91ca4LXAqvIRJ2c/0vzAepJLejnJqdWufowr89Pf3g99/vB+S3i/WgavV02u3t99HLzQYNtevHjxhS5OIpH4Y4ZlTlByI9ftXDQiruHz7Hx++1vq0kvdbveMbiHXdH+Vz83uF9I9lpv6Smly0QZ5hfsyPPh0cnIS3W63wbfIU7mzSDuS3GdEiCt53vT7SCb8bhwDkwwO0U8q/yaDYnLmk+NQl7NNa4vMFODhu5I5dTjlSX9VRPPzKeoTvnOL/UzpUcbkk5KVcxVxOj3HPig5eYDnPE7MctI+cn+o3vf2U3vpp9VqFa7vNpfeE7yddJ9BSubNfkZuSx6qcvCYfgYpPTDNxWySH3dfkb8rLw9+sg1ZTj7vto+PD44dtxFYf9+BxcWc/ISA0pK/1bn0MjlyfquNIR6VqXs6wlyL8nyhKPNwm5H9k205Ho8bfWKZb1nBu8lkEisrK9Hv9xtzp2TW7XbLkbuUNf0EBNuM/Jw6pMbZnwsyeHYO3MhlR2AgQI2hYxlrH4525wkbUJ3Yg10kAW44cULnpFD7HdH8OKrS9gHGzuv5+GoePUdFqXw4SXBCcCUUcRrZZlBD7/oAVblrDhvmUXNS6TnWn0EuJxZuuPtEqSg/n/Vv1tFBwy3OTlpYj5pzhUEvD+bSMeVtxPrVFDfl6mRQypzt6hOT6kjy4itj9S6JnBMEdzRpRYSvKG+3240tx5xEeRwqZa1r/GGQNZFIJBJ3D7/xG79xxtHhO8JIxjWf8zx+6VZPxw1R7vrpdDrFIJfu8B1pbkSrbBHNY2c8OEIDW3pD6TpJ5zMqZ21RFK8J7pTn75qzhnnWHDgKFtTSdyPe4UEfGbcsFx0mfl3GuF+XoUZZez7khLU+48ZrjQ96Xeg0IOer8SLnq27EOq9Ues6j3HZgEKdWJg90so3ZZtrx1O12YzKZNALBlAP7nBuVvBbRXMHKfkwbgPWnrDxv2hc8WlH58fSMZc7KiCgfsNd9lov2kHgh25TjhO3AXa7eNu5gY9ndEasPn7PdWE6XPx1yi8Ui+v1+sRVdfn5qBuvjK+F9jrybcFtr2TOz2Sw+/OEP37NyJBKJj21wLuV8SP2rOZj8Tn4Z5zwRTd2tQBr1CtNlEE33xGVUPuceDIq5D4j10XPuhPe6RsQZ/wbLSr5Av4nSJS+lTtLfrJsc/DVf3DLe5MEwLvKRfmZb1PxcrB/9RpInr5G7qK38WDfnbh4glSOfPlgu4KNuVzm5o08yYYBCQU0ewejcUD5D9VEGZsgVJAd+x8/9uJI5T1FgmxI1P6j4mK4rOKo0la/bBAyw6AhK9QH2MbeB+ONy1XjwMa42qsmj3++XsrHfUp41m5T+WaWl3+xjbiuRU3uwVUE854Zus6is7lcnD14G8mK2I3cOsj+wzVQ3HvHpx4eqPXyM6jfnPMqWwTbZfwzwqQy0A46OjmJ1dfXMN+iU7mAwKHn5nOhBNPYpnwN9Hnu+yODZHeCTJjsPDU0ZVmpMN6TUMSKaK2pXVlYaq0I4qbli8GPpasE2dhIPIvnvO11TOl425e2OBZcXy6R0+Azfc2PTJxlX9GwfEgJXyq7kNdnxXQ5wTri1MlHpsv1rg1Z5+ICn84XONzlEVFfWkxO28uDkyhXzDq+//mdAzUkb8/T6+aRdcxoQtZXfSscJhZ6fTCaxtrbWKJdIFVecqF9RcbDdOEbOq0cikUgknj8Gg0GMx+MGJ6AhpGv8X4sm9JFg6Tm9q+MmaIwK1GkEOYeek5HL4+94jwatOB05HMFykK/Q8Iuor4ZTnbx8ypf14t9acanFIq5/9VvX/Zhjcg/pfdXx+vXrsbGx0fhmncrP3yqP80HeYzvJ0GP9vP3p3HD50uHCn5rzhPyI/M75KvNx7sbjGfmMv+MGOXfQqw/LgOQqawZgPI9aW7L9yQu1UOjxxx+PRx99NBzOi11m3hdZDrWT/pdDgn+zXO4AYL5cYc82lzOkdqwSFzm5A8A5Zu1YJZWNAUq9pw/ds/zu4KrNJ0xT/ZvBYB7fWDtmhzJrt9vx6le/On7rt36rOi+wLDXnxzI76Tz4s97XanV9PuknEonE80XNfqd+ZNCjNie6/0X3da3dbsdwOCx+OO50cX2r9KjH6DBmed0Br3vL/EZMy3W18uZ7EWcXBzOdiNMFWrzHOtCnKQe60vUTgTwIQT6l+3rWA1T000in+4IT/lbaXFzPBSXu6FdZPbBEGZF/ciF3u90uwQa95z4uBoRqfjHPQ6CMmb7zHNofDDqRu3ggk23lAYUa/Fh8cnLd53d7lTa5Nbl7re7sy7SXasETpa36cvEkj4xUWgxe01aoBYKdg/HTSm6XOU/2tmI/9HqT+9J/qXxpt7EdPVCtMvj37vSb/lpPj32UPJ7zItN1/3ev1yt2in5Tnhp7ai/5qJeNR85VDMpybHIx6mw2i9Fo1JgvuJiAgWyfK9U2sjH9dDOOLbVNjdc/F+TWi3PASao2IWmARzR3WdVWFAsyeNnwPLJRncR3YjF4wqABz5vVj95VdFlRXTmFmD4j0EzLDVgSCX7vgoN42Y/KxUnL7/F5rzuf4y49Kl5OwrUBRtnoOuVBmeq3tox2u91YW1uLbrfbkBWVCr9ZR5mxvbm6QasS+NNqtUr9fFW0fwdP8I/l6vmI5soK9mOffJkfZehKYbFYlPw4obEvcwWAnvF+7X1+ZWUlut1ueY5HNrpM2QfUpweDQZG/2k1p8f9ut9v4yeBZIpFI3F28/vWvL3+7Malrzo1qQRQZQNJ/r3nNa84EgiKaTls3/Ggw+4q4xWIRg8Gg7Npx49l34EjPKh3unqo5zg8PD4ueXyYLlpP33ekuPbi6uhqPP/74GcPJ/6bslAfLrTr5KkqB/EzPUs6UC41ZGWA8BuRDH/pQ2U3uO2pqabOt3JHENrl161ZjQRm5gqfl/YpGLJ04vV4vrly5cqauHjhzzltb/egB2t3d3WIzkFMzLee93h7khXQa0DhWGuTb5HQuczpU+N7+/v6Zbxayr9Ycht4XJZf5fB7T6TRWV1fj6aefLlyUTspavcXjyPfI5XWt1+tFxNlvh7gjTX1CK6sjmkFwXxzX7/djMpmcCZKxL+nv2ipflxfvs609PQa93cHo8l82rzhq84zPG8vs1hqezbOJRCLxXMA5hnOhzz36331B5CgRZ53tq6urZdcZdz+Mx+My37uztxbIoD5kEIS+BvrPyOE4l7PMqheDGMt0sfORmo+DDmXyj5qs3dGsOjF/33mnPLweyouLTuj/oZ52Du++PuVLnkO/kdLwBSziCpK/fKPOJ1xm9PnxOedn3hb0f6mcNR8hgyM8elB9mXmR3+t/+vTIQXnkutqT8vHgpfv/6NP2oCm5jvv1yPn07HQ6LT+z2az0Ax3d5yddqc1VTvkX2bfYb/SOxjXnAP64rUJOTHmo/8huIS8kX9d7fuKWzz0+J3m+PneofjWbRmX0a/TLUv5sV/YD9t12+3YQjQsIJFPlRT+114Fyq/mcOX6ULvulvo/OdmQZ+v3+GVtc5azJddnihLvJV1uLZ8q8E4lEIpFIJBKJRCKRSCQSiUQikUgkEok/5sidZ4lEIpFIJBKJRCKRSCQSiUQikUgkEonER5DBs0QikUgkEolEIpFIJBKJRCKRSCQSiUTiI8jgWSKRSCQSiUQikUgkEolEIpFIJBKJRCLxEWTwLJFIJBKJRCKRSCQSiUQikUgkEolEIpH4CDJ4lkgkEolEIpFIJBKJRCKRSCQSiUQikUh8BBk8SyQSiUQikUgkEolEIpFIJBKJRCKRSCQ+ggyeJRKJRCKRSCQSiUQikUgkEolEIpFIJBIfQQbPEolEIpFIJBKJRCKRSCQSiUQikUgkEomPIINniUQikUgkEolEIpFIJBKJRCKRSCQSicRHkMGzRCKRSCQSiUQikUgkEolEIpFIJBKJROIjyOBZIpFIJBKJRCKRSCQSiUQikUgkEolEIvERZPAskUgkEolEIpFIJBKJRCKRSCQSiUQikfgIMniWSCQSiUQikUgkEolEIpFIJBKJRCKRSHwEGTxLJBKJRCKRSCQSiUQikUgkEolEIpFIJD6CDJ4lEhHx6KOPxqOPPvpCFyORSCQSiUQi8SJH8spEIpFIJBKJxPNFcspE4oVHBs8+htFqtaLVasUjjzwS4/G4+syjjz4arVYrjo+PP8ql+38Xv/RLvxTtdjv+1J/6UzGdTqvPvO1tb4tWqxXf+I3f+FEuXSKRSCQSicRHH8krnxuSVyYSiUQikUicIjnlc0NyykTi3iCDZ4l4/PHH4wd+4Ade6GK8aPA5n/M58TVf8zXxnve8J/7RP/pHZ+7/l//yX+JHfuRH4pM/+ZPjO77jO16AEiYSiUQikUi8MEhe+eyQvDKRSCQSiUTiLJJTPjskp0wk7g1ai8Vi8UIXIvHCoNVqxYULF6LVasXJyUm8//3vj/vuu6/xzKOPPhof/OAHYzabxcrKygtU0nsPbYP+wAc+8IyeH41G8amf+qnxvve9L/77f//v8YY3vCEiIq5fvx6vfe1r4+bNm/Fbv/Vb8ZrXvOYelTiRSCQSiUTi/x0krzxF8spEIpFIJBKJ54bklKdITplIvPDInWcf4xgOh/GP//E/jr29vfjWb/3WZ/Xuf/gP/yH+/J//87G1tRWDwSBe+9rXxnd/93fHZDI586zO6d3f34+v+7qvi0cffTRWV1fjn/yTf9K4f3BwEH/v7/29ePjhh2MwGMTrXve6+M//+T9HRMTx8XF853d+Z7zqVa+Kfr8fH/dxHxc/9EM/dCav6XQaP/RDPxR/6S/9pXjkkUei1+vFxYsX43M+53PiF37hF561jGoYDAbxb/7Nv4l2ux1vfvObY39/PyIi3vrWt8aVK1fiu77ru56VMmq1WvHGN74xrly5Em95y1vioYceik6nE29/+9sjIuJ973tf/MN/+A/j0z7t0+L++++PXq8XjzzySLz1rW+NJ554opHWO9/5zmi1WvHlX/7l1bwmk0ncd999cd9991XbKpFIJBKJROK5IHnlc0PyykQikUgkEolTJKd8bkhOmUjcfeTOs49htFqteOihh+Kxxx6LV7/61fH444/He9/73njVq15Vnlm2muObvumb4ru/+7vjrer/MAABAABJREFUvvvuize96U2xvr4ev/ALvxDvfe974w1veEP84i/+YnS73UY60+k0XvrSl8bOzk58zud8TmxubsZrX/vaePOb3xyPPvpozGazePnLXx47OzvxuZ/7uTGdTuOnfuqn4ujoKH7xF38x/sW/+Bfxm7/5m/H5n//50ev14md+5mfi6tWr8e///b+Pv/pX/2rJ68qVK/HQQw/F61//+vjET/zEuP/+++Opp56Kn/u5n4udnZ34l//yX8Zb3vKWhiye7WoO4du//dvjW77lW+JLv/RL441vfGN8xVd8RXzWZ31W/NIv/VK0Wq1n1Ravfe1rY39/P9bX1+MzP/Mzo91ux+d93ufF53/+58f3fM/3xPd8z/fEZ37mZ8bDDz8c3W433vve98Y73/nOeOCBB+K3fuu34qGHHoqIiMViEa961aviqaeeiieffDK2trYaef27f/fv4q//9b8eX//1Xx//9J/+02dV30QikUgkEokakldGo3wRySsTiUQikUgkni2SU0ajfBHJKROJFxSLxMcsImLx0EMPLRaLxeJnfuZnFhGx+OIv/uLGM4888sgiIhaz2axc+/Vf//VFRCwefvjhxVNPPVWuz2azxRd+4RcuImLxnd/5ndV0PvuzP3txcHBwpiy6/4Vf+IWL8Xhcrv/Kr/zKIiIWFy5cWHzap33a4ubNm+XeH/7hHy5WV1cXr3vd6xppjcfjxYc+9KEzeezu7i4+6ZM+aXHhwoXF0dHRmfwfeeSRJZJajuPj48Wf/bN/dhERi16vt9je3l48/vjjzzqdiFhExOJLv/RLG7IWnnjiiYZchHe+852Ldru9+Oqv/urG9e/7vu9bRMTiB3/wB8+884Y3vGEREYvf//3ff9blTCQSiUQikagheWUz/+SViUQikUgkEs8eySmb+SenTCReWGTw7GMYVEiLxWLx6Z/+6YuIWPzqr/5quVZTSG95y1sWEbH40R/90TNp/v7v//6i3W4vXvGKVzSuK53f/u3frpZF99///vefufeKV7xiERGL//bf/tuZe2984xsXKysri+Pj4ztXeLFYfP/3f/8iIhbvfve7z+T/XBTSYrFYvOtd7yoK5Ud+5EeeUxoRseh2u4unn376Wb/72te+9oy8r1+/vuj3+4vXvOY1jeu/93u/t4iIxWd+5mc+p3ImEolEIpFI1JC8spl/8spEIpFIJBKJZ4/klM38k1MmEi8s/vh+VTHxrPH93//98frXvz6+4Ru+IX7jN35j6XP/63/9r4iI+KzP+qwz9z7hEz4hXvayl8Vjjz0We3t7jW24/X4/PvmTP3lputvb2/FxH/dxZ66/9KUvjcceeyz+9J/+02fuPfTQQ3F8fFy2Pwvvfe974/u+7/viV37lV+Kpp56K8XjceO/DH/7w0nI8GywWi/i2b/u28v9/+k//Kb7qq76qsQ16d3c3fuAHfuDMu1/7tV8b29vb5f9HH300Ll++vDSfn/zJn4y3v/3t8X/+z/+JmzdvxsnJSbnPbecREZcuXYq/8lf+SrzjHe+IX//1X4/Xv/71ERHxYz/2YxER8dVf/dXPuq6JRCKRSCQSzxTJK589klcmEolEIpFINJGc8tkjOWUicfeQwbNEwad/+qfHm970pviP//E/xk//9E83zuYl9vb2IiLiwQcfrN5/8MEH4/HHH4/d3d2GQrp8+fK5Z+v6ebeCzi+u3de92WxWrv3Gb/xGfNZnfVYcHx/HZ3/2Z8cXfdEXxebmZrTb7fjt3/7t+Nmf/dm79vHJf/bP/lm8613vije96U0xGo3i53/+5+OHfuiH4u/8nb9Tntnd3a1+4PRv/s2/2VBIL3nJS5bm83Vf93XxAz/wA/Hggw/GX/yLfzEeeuihGAwGERHx9re/PT74wQ+eeedtb3tbvOMd74gf/dEfjde//vUxmUziX//rfx2XL1+OL/7iL34etU4kEolEIpE4H8krnz2SVyYSiUQikUg0kZzy2SM5ZSJxF/FCbntLvLAI2wq9WCwWf/AHf7BYXV1dvOIVr1hMJpPqVuhP/dRPXbptebFYLF7+8pcvIqJx5u+dthqfd1/n3tbw5je/eRERi8cee6xc+4Iv+IJFRCze9a53nXn+u77ruxYRsfiJn/iJZ5z/MrznPe9Z9Hq9xYMPPri4cePG4qmnnlpcunRpMRwOn/UZvRGxeMMb3lC99/TTTy/a7fbiNa95zWJ/f//M/U/4hE9YKp9P+ZRPWfT7/cXOzs7iJ3/yJxcRsfgH/+AfPKuyJRKJRCKRSNwJySufWf7LkLwykUgkEolEIjnlM81/GZJTJhJ3F+17Hp1LvKjw8R//8fG2t70tHnvssfjBH/zB6jOf8imfEhERv/zLv3zm3vvf//544okn4hWveEVjpcJHE+9///vj4sWL8cY3vvHMvXe/+913JY/pdBp/42/8jZhMJvGv/tW/iosXL8ZLXvKS+JEf+ZE4OjqKL/uyL2tsVX4++KM/+qOYz+fxF/7CX4iNjY3GvSeeeCL+6I/+aOm7b3vb22I8Hsc73vGO+LEf+7FotVrx1re+9a6UK5FIJBKJROI8JK98ZkhemUgkEolEIrEcySmfGZJTJhJ3Hxk8S5zBt3zLt8T29nZ853d+ZxwcHJy5/7f+1t+KiIjv+I7viGvXrpXrJycn8Q3f8A0xn8/jK77iKz5q5XU8+uijsbOzE+95z3sa13/8x3883vnOd96VPL75m7853vOe98Tb3va2+LzP+7xy/S//5b8cX/IlXxK/+Zu/Gd/93d99V/J69NFHIyLi137t1xpK7uDgIL7yK78yjo+Pl777JV/yJbG1tRXf+73fG+9+97vjcz/3c+OVr3zlXSlXIpFIJBKJxJ2QvPLOSF6ZSCQSiUQicT6SU94ZySkTibuPDJ4lzuDixYvxTd/0TXHz5s24cePGmfuvf/3r4xu/8RvjAx/4QLzmNa+Jv/23/3Z84zd+Y7zuda+Ln/3Zn43P+IzPiL//9//+C1Dy2/jar/3aiIj4jM/4jHjLW94SX//1Xx9veMMb4q1vfWu86U1vet7p/8qv/Ep8//d/f3zCJ3xCfN/3fd+Z+z/8wz8cDz30UHzbt31b/O///b+fd34veclL4q/9tb8W//N//s943eteF1//9V8fb3nLW+KTPumT4o/+6I/ida973dJ3h8NhvPnNb44nn3wyIiK+6qu+6nmXJ5FIJBKJROKZInnl+UhemUgkEolEInFnJKc8H8kpE4l7gwyeJar4u3/375ZVBDX8f//f/xc/9VM/Fa961aviHe94R/zzf/7PYz6fx3d8x3fEf/2v/zW63e5Hr7CGz/u8z4uf+7mfiz/5J/9k/PRP/3T8+I//ePR6vXjXu94VX/AFX/C80t7f348v+7Ivi3a7Hf/23/7bGA6HZ57Z3t6On/iJn4jj4+P40i/90rvywc8f//Efj2/6pm+K0WgUP/zDPxzvfOc74wu/8Avj13/915d+vFTQ6psHH3wwvuiLvuh5lyWRSCQSiUTi2SB5ZR3JKxOJRCKRSCSeOZJT1pGcMpG4d2gtFovFC12IRCJx7/D2t789vvzLvzy++Zu/Ob7927/9hS5OIpFIJBKJROJFiuSViUQikUgkEonni+SUiRcLMniWSPwxxvHxcXzqp35q/O7v/m489thj8bKXveyFLlIikUgkEolE4kWI5JWJRCKRSCQSieeL5JSJFxNWXugCJBKJu49f+7Vfi3e/+93xy7/8y/F//+//ja/5mq9JZZRIJBKJRCKReNZIXplIJBKJRCKReL5ITpl4MSKDZ4nEH0P80i/9Unzrt35rXLx4Mb7yK78yvvd7v/eFLlIikUgkEolE4kWI5JWJRCKRSCQSieeL5JSJFyPy2MZEIpFIJBKJRCKRSCQSiUQikUgkEolE4iNov9AFSCQSiUQikUgkEolEIpFIJBKJRCKRSCT+X0EGzxKJRCKRSCQSiUQikUgkEolEIpFIJBKJjyCDZ4lEIpFIJBKJRCKRSCQSiUQikUgkEonER7DyTB9cXV2NlZWV6HQ6MRgMot/vR6fTidXV1ej3+9Hv92NlZSVWVlbK/+12O1qtVqyurpZnW61WtFqtiIjodDqxsnK7CMfHx9Fu347lnZycxGKxiJOTk0a+Jycn0el0otVqxf333x8rKyslLZVxPp/HyspKLBaL6HQ6ERHRbrdjdXU1FotFrKyslHRms1ksFovodrvRarXi+Pi4pNlqtaLdbpc0FotFKeN4PI7ZbBaHh4cxn89jfX09NjY2otfrRbvdLnVaXV0tZVO5hXa7HYvFotSz3W7HbDaLyWQSx8fHcXx8HCcnJ6Wsg8GgyG82m0VExHA4jF6vF91uN9rtdhwfH8dsNovhcBgPPPBArK+vlzyOjo4iIqLf78dwOCzlmc/nwc/eqRyLxSL6/X6cnJzEZDKJxWJR8lgsFtFqtYqMJT+9p7pJfp1O58z/8/m8yFLpnZyclPLofkTEbDYrbaJn2+12tNvtODk5idlsVp4Zj8elLefzeUP+/X6/yEpotVrR6XQa8lebqA3Vpqq/5DSfz2M2m5W2UtlVntlsFuPxuPRntr9D5VXdWS+lc+vWrbh161ZMJpMYj8dxdHQUs9ksut1urK6uxurqainfyspK6X+SG++pjU5OTuL4+DjG43H5abfb0ev1yniWfJRmp9OJXq9X2p59fj6fl3roR5C8NA4pZ8lIbfXoo4/G5cuX49q1a6W+ko3Go9pDaXS73ZKX0lP5ZrNZyVPPttvteOKJJxr9W2NLeei6yi8Zqr/q+nQ6Le2m8cu2VD9W/zg5OYnxeFzaXfXQO9PpNI6Pj2M0GsXBwUFDjndCfsYykUi80DhP370QaLfb0e/3C6dcXV2Nbrdb9Jzui9vqerfbLXxWujHiVK+K56q+1PWai53TSC9sbGzEI488UjjL8fFxtFqtWFlZKXpC+Ui3Sicrndls1uAoi8Uier1ejMfjODg4KLrp6OgoptPpGS7C8vt1lV16jRxF+ky88+TkJC5fvhyPPvporK2tlbRUV+Wteug69R/1oTjPk08+Werd7Xbjz/25Pxef+ZmfGb1er+jMfr8fa2tr0ev1StriRJKfyrK5uRnr6+ulnuK4kuOtW7fi8PAwut1ubG1tNdpaMl1ZWYn19fXo9/ulzGqzmzdvxtHRUelHvV6v9LuIKFxkbW0tVldXYzqdxsHBQbRarRgMBqX+4tTtdrtwm8lkUmyEk5OTWFtba9hLsrfUdsfHxzGdTgsHVx9T39ZY0LNqb/ZXcniNi8ViEZPJJG7duhX7+/sxn8+LjFZWVmIymRT7RZxK/UHXOR7Ed2QLSQbT6bTBsWezWYMbTafTGI1GMR6Pi2y2t7djc3MzBoNBsXEODg7i+vXrceXKlfjDP/zDwpuHw2Gsra2VvkXe2+12i50kGYkLq766xr7OcaP66n/VR2noHT27uroa999/f7zyla+MRx55JK5duxY3btyI8XgcKysrJX29qzZXnmrT4XAY29vbceXKlfjd3/3d0radTicmk0np+7Sp+MMxSm6rfqI20bj/nd/5nUgkEokXAq9+9atjZWUltre34+GHHy76XXMj/RGaR6fTadGd0uXUm+PxOG7evBmTySSm02ncvHmz6M+IU56nebLdbpe5kjyGuoz8R3Mo/VQOlV/cTrpYnE2/pYP8f+lrlVNlPzk5icFgEK9+9avjvvvui4ODg5jNZjEajYpfif7IiIherxef9mmfFn/mz/yZuHDhQuzt7cW1a9ei2+0WviWf4Ww2i729vbhy5UocHR1Fu92Ozc3NUj7xZurRiFP9Kn4rziSOJ7+NuJLqKFlJl3a73SJr91e5H5G+nIgoup7PqY1Yro2NjcIfIqLIT7x4Pp9Ht9uNtbW16Pf7xT8cccrbpYsnk0npp0pf9ZBfm35BcTH1TbXTaDQq/u7t7e1YX18vfXl1dTVms1nhfOp7+r/dbsdoNCrjRDxL40RlkZ3UbrdjMpmU8UQ7KiKKDcDxcXJyErdu3So8Tz/Ko9PpFL/2cDgsMhFn3tjYiIiIvb294hNU/6PfUeP68PCwpLG3txcnJyfFB67nxa8VG9BPt9uN6XQaOzs78cQTT8RTTz1VfIWyBdR3JpNJjEajaLVa0e12G37mwWBQfN6MMWhcq1/IH6g+1+l0ih3Q7/dje3u79DmNEdVN8n/FK14R29vbsbKyEkdHR4WfT6fT0iaKC7zvfe+Ln//5n4/HH3+81OHDH/5wPP3002WeVF0efvjhePnLX17KLB5Lu4DcWeOHc8ru7m7s7e2V+4PBoMHfZ7PZi4pHPuPgGYM86nQMLNFhS6e4T+qcOBmQ0mCOODUm6CTQYOBkRuPFAxR6j/l7oEiDXh2UZdTkq/SOj49LwE0Tigbs/v5+HB0dxcbGRmxubpY8Zdiog0WcTvCqP2UScXvSlJwpQ01KChKpzjLElM50Oi1K+sKFC7G2tlYmPXVk1Z1lYz0lW04UJAIkJHJ4cOJn+lTyqoNfU7pULCqX/ib0vhSQ2oTExo1Bpas+4I4vKRi1mfoc+1K3221MrspfipVGJQM9ylt5+bgiAVAalPdsNoujo6PY29sr16RoNGFJ2Sp9Ta7MT32SwS4+Q1nRIJcDSuNRbaO21zjSc5rIGQzyOYNj2h0Cw+Ewtra2irNP9fVgtoLr3jeUtsqrvkinBccjf3e73QbB5G+OVc5HJII+z+keA22a9/ge24cBO59bE4lEIvHcwHmfvIsOcukv6QRdl97U/Ky/yeOUB3WtnpERzIUiMgbdmCc30SIRBYvIj+kokO6dTqfF8FldXS1G5nA4LIao8iTvVB3JW7xcdCiQ14qvXLlyJVqtVjzyyCMxGAzO8EJySXIdBoR0bTqdxtHRUXlW5Xrqqafi5s2b8Sf+xJ8o3E1Bzel0Gq1WKzY3N6PX68X6+nq02+04PDwsC4729/dLuRTUUptoAdJsNisLAhVYo2NHxiaDDcp7OBxGxG3j0BczySiX40N8mnaO2pdcXc4M/si4lvyVDtNSeuQj5PrkP+Il5Mtc5ESuPJlM4vDwMPb29ops3HmhwIry131xbDr02BfFK2Wgiz/qmvJnwE0OJHFMOl0ODg5iZ2cndnZ24vHHHy/lleOCQURdlzNF/NgXorkd43YKbRlyTr0XEQ0bR2l3u93Y3NyMS5cuxcnJSezv7xenjC/cY1syL6WlBVoczwzkuRPTOSfz4/zi/NhtmkQikfhoY7FYxO7ubkREPPjggyXYwsXymsfpx2m1bi+6VkBACzTk19MCVi46IKehbe+gP1I+kYhoLLg+D+KZ0kWulwQuSK/lr791n053BUOIo6Ojho5Q0EH13N/fjw9/+MNxdHQUFy5cKOWR3pCulp5WgMP9es4n9Zvlk6ylt1V+cWL6zmo+rMXi9kIfBfYYtKHf2OVJns6yiLvRdlAARIucxEnb7XYjGLm6uloWeDFYo36kH3HJ4+Pjwu8jThcZeT9mcFbPTiaTYnOo78oHpjwkOwVERqNR4WMMnHY6nZI+OaH8k/Q9q4/KZ67gmMorG0jjku3Q6/UKJ5NPlu3b6/Uam0hUDnJhBfjkA6QPcjgcFn6u9pGtp3prrCoYee3atXj66acLn5X9pD5If6zsOS6MUoBR41btw4VY5HP0YbI9GdiXHaK66VktWtMmB3J28lP2J23O2NnZievXr5+xF9RX1efIV5WW2pcbjDT3ioePx+OSpxYdKnCmwOGLCc84eBaxfEeDBgKFS2JPJ3PE2UlcE5wb7mwkn+CoCGmgsIPwPb/nRouv5pjP59Hv90vHVp7cPaLyTCaTMkEqDQYapKAZsOJE7SswWG4NOtWRgQsGsPjM8fFx7O/vx3g8LtFqEYnpdFo6sSZlRor1W8aX0qXBq3s0gLmCg0Y6HU9qfwZFVX4GZnVPMpZsWB5NcmoLBhU1uXHHm5Q6lQUVq5QVnVWcOOQskQLRpKN8VWdfeRQRjUm5BvUxri6RMpTDR6s1lJ5Wl9Igl5zYjt62rD/rp2e0Elrp0qnm40QylaJS/1S/UpncWad3OU+obVZXV+Py5cvR6XTKjiuVke1HUqM25worytbHup7jfMY5hONP9WBQS89qDKjdGCRjP6q1N8cLxz77np5NJBKJxL0BdYEvcCEn0H3XQXSI63pN73DxUcTpIhHpL+fN7nQn/5EhJw6j6+7Ml76TDh4MBhFxqhfdmR4RDQNP130BCaHydbvdmEwmceXKleh2u/HQQw9Fr9drpO0LnWSscwe5r1wUV9FuL/FZOW2044hBRJ5+0W7fXvXMwI94mlZW9nq9cjqDVr3quuQtBwlPBCDHiojY3NyMixcvNoxq2RJc3RoRcXh42AhW0ZCmc63VapWV4YeHh2cWJqrebvwrGKh06SjyQBedD2oDcRHxstXV1bKyemdnpwQ21Z+UJtuYnIk8We+w/3HcyIGpawygetkV7FR7KO3RaBS3bt2K3d3duHHjRly5ciUODw8LR9WpHXJ4MTiqAJrGEQNeGtMMVHH1dc1O5oI/zhfz+bwEbBV41Yrxvb294pTodDpl9TjtaY13cXPaA7JtVF7ZoiwP7SNyWfJhbyffveYO20QikfhoQ3xod3c3jo+P48KFC7G9vV0CCNTdEacL2fX3wcFBmWd3d3fj1q1bcXBwUHaYEPRtup+T+oF6SnO1O8VrEJ/SrnUt8pGuYh7MX/e48IFlps4SH+JOdelpBaUULGi1WmUh0ng8jtFoFE888UTRedvb2w0ZyG8lnsXgZMSpHq0F9Fw29DPqXfr7pLMZTFC9uHDn8PAwBoNBYwcYub90nDYauE9Hz4uTys8q+XPxje4rb+pLPqtAUL/fL7pY3F4yET9j3dVWfuKRQL/uZDIp/E4Lahi84sYMBjs4VrhzajgcFvnKb6q0VF9xXbWHeAz7o8YrA4tqUy1ak9zEP/f396Pf7zdOJFhdXS079+Q3ZV9qt2/vqNPOyMFgUOqogDD9tRqv+/v7cf369XjqqadiPB6fWcjPeEW73S6Bv4hoBD9Ho1Gxu7hZhYEtxhPIt7zvs219Qf7JyUkj+OljX227srJSYgDz+e0TSQ4ODuLatWvl5DG1pcqpunc6t0/BU7soqM4NH1wQ2e/3SyxiNBqVdtDCQJXpxRY4i3iWO884STPgcd7zJOky/mng03B0h7EbW1QU7OicCAV2Pm4lFfn3iVLPuuOdk6eXj4EBGRQ7OzvRarXKJM0VzOrUMoBqMqPhq3R5rIrkppUPNKZoXNLYnM1m5RgT1V2TaKvVKhMb20IKlUEEN/KpNDR5anWtgql06gg+qPWeZCk5sQ25AtVJiPqFjmLRRE/FyR1IiqJzF6FWeLBNlbeUDhWhJh/2XV8F7PdZZgYiNbFJAcrBc3BwULbc6r2Tk5PGUZ1U7NoFJiXiwWCBfZKTuQJl2kKrttEP243/SxE5weHYb7VaZcIlYXLDfGNjozjhOA+o3JJt7RmNGzoRlK7e96CYl4f9Sf/7+Nc7ekZ5cwer+hHnK6VNZybnMf9f7yQSiUTi+cEdG5zn+Zt/y2iljlBafEa6mAt93FHOubzT6cTly5ej1+s1dieJN9GIohFIzicjhzpQ5WFQh6c6tNvtGA6HZYUiuSzr4gEC5kNuKp0nOSkQ8OEPfzgiIi5fvlw4IY/nUHm4WpRBqNXV1VhbWysOMOUxGAzi4z/+44tjRHyBu7PE92jMt9vtWF9fj06nE9evX4+jo6PiiCDP1N/atdfpdIqxroBKq9UqdVH70h5SP9O7snvIpyNuBzJ19Lvaks42pSOuIGeC+LraVbyPXFBpep8Tj2VwVNxVnJG2Gu2R8Xgch4eHsb+/H7du3Sp11Cpm9VsvB/uv5ExuIwcdDWkuynIuRIeMO4P0zmg0islkEjdu3Ijd3d146qmnyhE+4mA8cpwOOPJdOhFUHy5AW2bDqp6E2oT9nGN3dXW1BF+1EphBdfZpT1/zgvNNBT/dIal+qHHt9whyU382OWoikXihoeCDdMmtW7diOp3GrVu3yolQXMhDx7D8ZTs7O2XH2eHhYUREw6nLuZccif49LuCt7RyRvlDe5JEKEEjn6ihJBc14BLUvevLFD7rnQRUFu6SLpTN5KkJElIXbcravrNw+Mm9tba3sNr9+/XqsrKzEcDiM9fX16Ha7hdvpSGfuzmewwn14rhN5wgN9MuJD4jFcXCL/HduV8tXzPFXAfb4RUY4+rEE8Q+CCbslAz7GtaRPoOhfc0Ces4+ycH6kfiLdKDvJPMvAonireSnnQR+xtz4CO+jXT9o0PeoYnX4lj0cclGcgHyLIwjqA+q+Ar27PT6ZRNKhxj6v+SGU+P4C4/HWWpEyG02UUbYlTvxeL2qQ87Ozvx5JNPxuHhYSM4RJ7PeUAL5Hz8q931v8a42o7BVqXn/Y8BTfrYOYccHx+XRXYa8+Ru9AnzhLSjo6O4evVq7O3tlbZjUJVtrKPoubNSNmxt48DR0VHh5zqmVPJRjIE7/V5MeFY7zzjoNPA9IrrsHTYyHQqcXEjOOTD1nAabGoaTBSdjGTgaNDIS9BwdGzJKlAfLRgNO9eMgZd0kh8lkEjdv3iyDhB1c9aQhqfrSkPHdVUrH5cNrnABoAGt1qMqnFSUuu06nU6LlqgdXK6h9tL2XziemERFFQdL4pOFLQ1vXecQL2zniVDFyCzEVrBwmyo8DPuLUEUInlerDfqQ6KxCofBgglWGustPRoX6i8aF31M4MykkpsF8wmLe/vx/7+/tlwlRZNYGpDqqXyiyZSYm7oS05sR+y31BuDDpykuN4oWPBV8s4cRG50XghyeP3J1qtVuNbeCQa7Ld0BrEecvxIYUlWlAHLxTHOfKj0ffyqv9ecUXREUg6cQ2qk2uuntBKJRCLx/FALgFEv0DkikMNQPzIdn7898OQO9VarFVtbW7G1tRWtVqs4dWQYUZdEnB5DomvSwzK+xA8jmkEw6c2Tk5PG0S9agMPd9TJmdJ+8gfpOaeqaeJveUZqHh4fxvve9L27duhWXL18uspHxzIU94iEKHPZ6vXLceLfbbZyUEBElmLW7u1tWlkt+4myj0ajwDS4q0o613d3dODo6KkE6Hk0t54q4hHgWj17RNfKHw8PD4qzQu+Jm4qBqI/F6HsUpeXPFsC+mYbCTq1UVyFN+3DnFtqXdQz4j+4HcUP1Fxu9kMimORd7nuwwSOg9UWfwoHaUlRwbloedoDypYJyeHeL3GD4/dunnzZly5cqUc1SlnkS/uYlCNCzz1ozZTGcjdnFeKH6s9VWYPtPGEgU6nE2tra3HffffF5uZm3LhxowT7VF5BDjvaunIEyXkj+0bHb9FGVflpu7gT0Z2PBNtGdUskEokXCp/4iZ9YAmC3bt0qvhR98+fatWsxHA4b37mNOP1Mhhb10JcjXeZcT7o9Ihpzq3xjWvyh5zm/MhDAxRArKytlcbuwvr7eCMi4r1S+RQZkBN1jeeTPVLmUphb5cCEUfSLz+bx8c6nX65VvnWkX0O7ubvlOlfiX+ILKy0U24qLuByUnFGdSWaVzeNSgdGhENHhZzb8j2eh5+fDUBtL7rhOpB52DyD+qhVhqa/FCLfBW+bgoTmkpT3Ik8RAGauSzVT273W4cHBzEfD4vC6q44KnT6ZQdTwqOMQ/JT8/LrpDsZZOw3t1ut2wK4Xe91A70k3KxnfiJNnyIc6m89OXN57d3CIr7Us6qh+rN8cQ+L5kwUNTpdOLChQsxHA6LTaQ05vN5Iwh7dHRUTirY3d0tZWCQT8+Kh0sutMVUX57E5faU3qfv1uuleUa2jPzv5KLy8WuHnHzZSp/HdnpwbWdnp8Qs1CeZfqvVKkF8LpjU+OQuTaYrPs8gp/o1+f/KykoJcr6Y8Kx2nkWcThoewNHffja8r5RjJ4g4+y0oNTgnUuWnNLxMNA65cpYrLDjYZPiq0/nRdhHRUB6Cyk0Fq4mCTvPj4+PY29uLiCirR2ioMmBDQ9WjzZokI07PpJVClHFcU3Q+6c1ms/K9rM3NzeKYYFDNDXjVh1veI07PFVY9uMuHQS/uiKOilkOBfYiTgBSEZESywJWtDJKIYLD/sc3ktNEEKGcMyZKMcaVDJacfPs+y04lEh5DkqrqrzyttEg1F5sfjcVnZq/bhioXBYFD6qxM7DxD5h0ZVHq5GcSfCfD5vfMCSjgQfyzVywjGtMeKBc5YzIsqxBIPBoHwE1utEx5HK4QqaxJbB1Fp7ep01djkG1Cc9gE7FRuKj+knBCHxXbU0CxbEnZPAskUgk7g3cOe+BM+lW6RUuFqKDQ2lRd+h/6WkagYvF7XP9t7a2GmWgI4UOe+q0WoAs4pS7yQBRflpoM5lMotfrlXTEf+gsoS5X/QU9x4UldDCobPrmgXYoyZhbLBZx3333Nbi5DG0FBuXQ6vV6MRgMyrGJEdHgKjJ89/f346mnnopLly7F9vZ2WbClo8m1+lmQgSrn2cWLF2NnZycODw+j3+/H5uZmY2EQA6Gqrwz4iCjfc/NFazrrX/LTdyPYHxhcUwBNAR8FQQaDQVn8JmeAf4NC/UBtQedFRDQWw8k5QLgjUPVWe8gY1jffDg4OivOKq4q5mEq/VVcG1mp8h5xYfNcDa+SAbnj7jjXtiGu1WnHr1q24du1aHB4eNo6oVztzPKtv0PlE+9WdCbRb1Kfd4aGxzefJ6+ic06roy5cvx/HxcTl6jP2R41JjTnXi8ZweoGT70o6mjU7bzZ8jf6dTmPVJJBKJFwrb29sxHA7jZS97Wdy8eTOeeuqpcuxtq9UqnIDQHMZdNh5IcNTmfPpcGBDR/BjRXGCgYJV0pDih5nBxHXEhBpuUj3xh0sfUm9Rr8hfKr8WgAuWgY+XE1/j3yspKXLx4MS5duhTdbjf29vbigx/8YPke1eHhYVy/fj36/X6sra0VLqNF7bUd0aq3L+QRpNPcZ8bFTPQruu9KEHfTM8qPHJa+S3J4til1IP1/qs/u7m4JSshH1263y6d/1Nb0/YhzMPDlfnX3rXNBttrRfduqvzicH6un8ojn0D8VEWVBF+urwNna2lrhJOrH6p8aYyoH/bSSFRe1k5t44FP9Wn1Cmxa8bcg91LfVJyhb2RMqo/yr5K6dTqdxzDd3/pMbeeB5OBxGv98vNhZ9k+wj4pfsg+TE7ssl55MN4AstuWFjsViU74dpPLMd1T/p89YOP6XNhWWcH2TraN5iMLPdbhcbRkdoKpgq+fKEN5VF49zn0RcLnnXwTNBAZOdzR4QGve7Toa406SRgICbi9NsHEacN6A50/c3AS23XC8tNZ7gMRL3Hzq/Oxo7sW1G10k/14SS8t7dX/tYRjpo0mZdAWanuUiBKmysZ1PEkV1eaMrBUx4ODg4Zy50pjKnsGPChHDnAqIwbgWq1WOd+UwUs6n1Qe1p8GP1czkMxI7vqtyUjtR+cMB6SCW1LoDO6p7p1Op0y0HnD14AkDQL7CiASNJMoNYToLNNFolZSOVJJDSkrWJ1862tRXBDoi6Hjj8T4iIFyZ4o4BTuAao1z5o77AMcn+wDT4jpxYdAKSMDFwxLHOY5mUntrp+Pi4QZ74nmTOMpCMet9nEI3jgETL01JfpJNF9ygDBdc8MMbn/VoikUgknh9otNTmf9fvArmE616+544XXtP729vb5Yibdvv0g9XiGjSuqd/EeVQP6hpyqohTPa8VxRHRWIEsjiG9xQABdbLrMjljZIQp4MNrcgZpQdATTzwRERFbW1uFw8q47Xa7jVWNPMJGMmXgTA4jHTXy+OOPx9raWvnWgDiNuC6DH5KZuO/a2lpMJpOyS03HuahOkjP1svQ2PxAv+cqYPTw8jLW1tSJz8kwFBN35wv+VnhYSjcfjwvvFU8k/xYdGo1GRk9qV9pQHa52T6F05Q7RilUfB0FZTf2AQiM4Y9W3aTHRCyV5QmVQergCnw0xpKJBJucznt3cbXrlyJW7evBmtVisODw8bq68lM9lOPCrUA2Qc9ywzA+e0V+kopRw4Tn0scQ7p9/vx4IMPxsbGRvlou56RPH3Bo+R0fHz7OyS0/+QcUdCedrnbqwKdOVzcqt8e8KPNkEgkEi8UNI9tbW3FfffdFw899FDcuHEjPvShD8Xe3l5jIY1sfPr85FcRD9H8zePzIurHe3tgTHOw9JTmVe0+V1CD/iXuTBc/0Q85g36Th1JP1nSSjo5WmalbpO/Fwehz1Q7/tbW1WF9fjwsXLsR0Oo2Dg4N48skno9VqleDewcFBXL16NS5duhTtdruceEXZ+YIrLhxhfcg/dU86lDpVwRgFnpSe7/KnjKgDJQst8KH/R/JR+Sg/lVPtJ5n7d6C0uYG+RrWLAhfqC/SdK1DmC2TkkybP8CCj8mXgVTJi0Iu+MS6iEm/Xc9pRyH5Lm0F9lH1P9dBiPvn5ZPPwW7ncDblYLAqHJVdVUMiDO+Kogtoyohk7UDlVR+1sU5/SuB+NRrG3txdXr16NK1eulEVjkpX4lvKKOF1EJ+6sMtOX7+NS9dOYZfvTpmTbOGecz0+/d8f6a+Gignm0T/WO7DTZUOzDKiN5seog2dJnLHtQkC9bv4+OjuLo6KicAqF+s1gsip0k/71vfPl/Hc/q2MaI+s4mN/Y5YQpsQN8lRscFV07wXToXIpqr//QeJ1d1sojmERRcsSljhEENOiyYLoMQSkeKR+VhRF0BF63AVXSa6XPSUhoMvug5PePOf+XlQSgpl9qg1KChgmX70ACT8lfwSWXw4KbXmYPbA5WLxSKGw2G1b/DbDiIUuu870TQIj49vf5CRbaN3Ik5X3NYmGjmcVBf1A5WFq2bZFuyzNObZp1xBM2++K0fWwcFB7O7ulu3KqisVMFcmcQeglJkb8RFRjvbhbjUGpagQfLz0er1yZA/7JMegj0NOthw7bGspbwbjOp1OrK+vl3QVGOaY1zWlIzl5EJh15DylsU+y5Q5K1pP1Zpvpf//tc9aytHidikfl959EIpFIPD+Q62i+rukz6RUu+IloLg7hIhKlSY4g+CIL7jSisamyiGNRV1GfckGM616VQ/xJQYLBYBDj8Tjm89MdTDSYGKyiUc10xc1kRIlveUBFxrJ2t7Vat3cAfeADH4iXvexlsbW1VbiMTmSQTCQDBhPZZpJju90ux/U99thjsbm5GS972csKZ9XiFHFgykx8X44L9g2tbtVH4GmfqL3kiGAAS4G7VqtVdgx5G8oBoH7EgCgX6umauOd8Pi+rl3WdwbFlxxyqrdj3nKMIdA7IETKbzeLw8LDs5KJ95xyS+eua+r7qoXIzf9kDaheOGedMDKbxRAa14f7+fuzt7ZVvsqmP61s47hiVg01l4lxAB14taMay046jbUJnGe0KcnHVpd1ux6VLl+Ly5ctxeHgYBwcHJZ/j4+Oya0B9RXk6v9bYUz7qGypDLVim99gvnUOzbf1/OmMTiUTihYD0gfwd6+vrcenSpXjlK18Ze3t7cePGjcZpPtIDCkBojuaCXy2k0Y+OYRPo9xLc7peO4FHUEaeLm/Wcgg2+OFrzO3UMF8PQB8RjARksiWgucCZXYNBQu1VGo1HR99pNtrGx0Qgw6Og8nfrU6XRib28vWq1WDIfDsivN9T11Hv1VKi9lqfL6Yg36b7hI3ANC0v3idvQNS3bic1yArz4hGUlO1JPkWfQXcncN+SW5jnTzwcFBCXCpP41GozMBQKWtv8UJpN/13OrqaqyvrzcCOpKn8lhfXy8yUp0ZLFHd9Qz92/Sr0xdJ2ZBHya4gj9KiPS6+Un4rKyvl2EFyEMlDO/p0NDfHgvzD5P7Hx8el/w6Hw5hOpzEajUr/5qlzJye3T7PY2dmJ69evN/yeLC/7l+YRpqF01RfJ1903rT7pcQ33I6qfq1/R9mO68/m8UT/1W5VD8xj5PYOSzFPcWuUaj8dlrMl+Ozo6KnaQAnesk+bPw8PDsrtNfNSPNF0sFo3x8mLAsw6eCU68aUBxILljXpOOGyP+LCc9D9Qpmq5OxqAXJ2FdV2emw54TJgNiHoxjUMePReHkT8XmQRN9cPDk5KQoKAbxJL+I02MxaKi6Qpa8GKiioqVxpfprQtIqFAX1OGnSEJKCUx5cFcMBHdGM8lM+SoerOTTAJXs38tjeNPzUvzQhLBaLso1XgTENbgXVeParTziSESc0DXylKccOHWySGScjruSgQqXji+NCfUR9Y29vr/FtOpVXypyBL0J14BEtPna4ikT3pdRUNw9wkWDp2Ce1M52J6u+c/GlIayeWQMXAgDGdC6qnl5XEhePex6TS1MoIdyxyrKhv8X86LAXJU3nSoedpyhGmcug5OiO4W9FlRjn434lEIpF47qgFD/ya64WIU4OZQZWIpgOD+n3ZnK6VnW4s0YlAXiKDUmmQd7Xb7RIo43UuLFG6WpHI4xJZX76jegm6TgcGubbydHmRX85ms7h582asr6/H5uZmqRu5k3iPuA/bh/ym0+mU3Wu3bt2K3/u934terxfb29uljCcnp8dTsp6sjwxd7WKaz+eN0wdUz4jT467FK/jha7ahyjYejxs7+rniUxyK9fagBbm3nIEqixbciDdHNJ1xdLipDO6wYNvQ1uBqUfFrvUceOp1OS1+WM8PbS3JT/yAXpBPJ20dtxDFBJ8HKykpxEonn9nq9ctSOjrqMiNJOcrqIGyqwrD6o77Vw7LOssg/pRJEtSluvBtp6Huxqt9uxtrYWL33pSyMiygI6nrqhd32xld5Xe4or0wlY474cq7KV6IgiGESkbcNxlsGzRCLxQuLg4KDBqzSPr6ysxEtf+tJ44IEHGr4h6T/Nj/T1iSvJuazvoe3t7cVoNGrwO/ooae9HnOqwjY2NsvvZdRyDF7pPXxL9iYLuc+ESOaPrGd2nf0PzN31Mw+GwHL2mBdsKQmlhs3xW0gEKACn/6XQaw+GwcboA/UP0/5LnqL4qC0+tIodggIL3qZPa7XbhX+S5y3w49NPxb37ChX41tYFA3q56q930LSz61OjzVHBFflkdEzgej8unTLrdbvmertpMx/dx116/34/hcFhkqbaUjHq9Xlno5VyU/LPdbpdvIqt91Gdms1nhXvK5KuhLzrKysnLG96rfKoM4i4KvWvBEH5zGhvu5dWoHPxOlMpPbaVeluP1oNDpzTObJyUns7e3Fzs5OXLt2LcbjcYNDcxEdT8VisFv3uPhRR8mz79FnH3EanHRuxnZhH9NxiUxT98WvdeKCfP/0Z8ovrsCXZKhdppyP1Be02FA+ai2wI4/mjsG9vb0yZ8oHrw0unGc5blW2FxOedfCMRgw7mMCJ3O9xwqJBTANc/zM45Omx00ecOja0OpSODxmNaiBGyd2I9XpqwlCnlTGuoA8DGxGn34ZQvsxLxybO5/Ny/ionZHdO0LCRgvNdcgKVEwOHAo1bdf5WqxWj0ahxFGAtKMj0aoafK3UG7ujw0A+NNU2yEVEmQ9XbFRzLJAWjyVmOj4jTCLnkpeepJHl0oU+IDKpQQVKxy+GiaDkDu5Kf2lJpchLU6goRNAUTlYfkrm23TM/HnvcFjkOOLaXD86eVjvp0xOkqC/anZUSOjh4Gt5w8cnzwvlbQsI+pb2hS9tVeKpeeIyH18USFTgcH+5LkQTlxlyPzFpmokVkSaPUvtjlBEkfSq2t0eGTwLJFIJO4eaMiLF3CRjOZnzfM1DusOAf2mrvdFOzJSmI4cDjLwlLYgo4iBJabLo9v4rsoug1TBEBqDBIMd0kkMWjj/o9HDNKRrdWQL9b3K02q1ytn5NOoErix2MF8tcNrZ2Yn3ve998epXv7qsThVfl0EYEWd+qy/M5/PyAfnJZFKMUy+THBT6X1xTMuUuK60MVpssFqc7AiWPwWBQOLNkpXRYdzlN9LFzOQG4uIjHS8lZo/rRGHfeLUeZuNdoNIqDg4OGrSFnihv0Ki/lRLtM/dN3lbGvkVt6gEa/9cMjX5iOuPTly5fj4OAgDg8PG+VREJBHhYtf6hrtIJVdoB2ncpNDSkYO8mJyVPFL9Zv7778/tra24uDgoHxnhmOQK5e5OEvPqNyax9Sf1Cd8PnEbnvfYTg5Pi3ZdIpFIvFBQwEHz/fb2drknn4vb9NzpTb/C0dFRCTZoV7yOxtU3NDVHU19Jv9K/tL6+3vi+Gf0yClDRn0g9reCN+1JVfl8MQz7L56WDqS/0v/wv2pAg/+pwOCz6RkcBivPs7++XcoovqH6TySRu3rwZ7XY7Lly4cManxwAU20Plkly4YEMBAPIW+hf1vzi85CM9qQCFB9t0TT4gDxSRC1CmDD4qbz2n/qcgxdbWVpycnDSOVSZXH41GJRCmY8N15J3yWV9fL5xO/HI2m8VgMGhwcwWlKB/ZC/pRmnq31WqVBTn+LP3s5HTyiYt3yg8XcfqZIXEPLjxi4FPtqjoxfebX6/WKr5ynUelZPc9vEDNuIN6qgJF29nHcTCaTuHHjRly/fr1sKtH4oi+YfFWBOfYr+nrFLdV3fZwqD8lcdVPZ6bfUvKS+J1uS/VgyY/9jXophSAYMzupof6XLgLr67HQ6jZs3b8aFCxfKfEXO3ul0YmNjIw4PD6Pdvr0grN/vx87OTtls4n1J81e3223w+RcLnlPwzJ34HoxypzPfE2ggMxorgfJjcxGnTvnaqjo68zkB175boEi/JiwGiWhUcNKmIaJJQoNK71KRekRf6SnirXOE/RhHBht0Te9wANKBI7nSgFGZ3cmviUtBC0XwuX3VA0bMj8ExGc3cgq06yEFCJRgRDQWu8mlQC6yHG9NUWmofRcQ9WMFgEx1AcjZwwuMkrwmSH+ckSVE+nEDUpnKYeKCLk662r+7v75dtri5nrpxgnurrdOrpN/sZ+7DkQcee2oB9uRYQ0iTOby2wLyhvPae/JV8PQrHt+bz6CZ0cJKJyJlH2XAHMMrtypZLR/9x+TCeIz1tOiiTnWjCRJJf9Qu/xrGqm723EtnsxKpREIpF4MYDzPg0F6lZyR9c15GEMZHkAQLpCC23ceBAPizj7DQD9Fv+snbog3cJFaPp9fHz749g6yoM8oVYv6mZBeo8GruvDiGhwFpZPUHBmb28v2u12WZVLo0q6lAvhVBdyWvF76eKnn3461tbW4tFHHy16XQ41lYuGp/S/HFvaVUa9rTJx5atOGhDPE38V31GdWW+t8Iw4PXan3W43jmNUm4pvkkOxndn2DJzKwad+RYOUNoZsKKVBA1/fEJPjTitrFZDk7jkeNeSBW7Y3+Sk56DLeQyeF3lV5VQb24dlsFqPRqNgA/X4/Ll68GLu7u41dbePxuPQ7clSudJdNxPGgMtKWUf+mg0/OEq+nB9Dc2be1tRUPP/xwGRtus7pjxoNVdOj5WPLjj9xGcttQfV19i5zfA7CE5oVEIpF4IXB0dFQWUnc6nTg8PIzhcBhbW1tlkUpE82ha+tTkdNfRYtK1cgRHnB6L+4EPfKD4Kmrzq9IfDocxHA4bvqSI0wXbfrKQysffEdHQhyoHOZbPyfSRLuNq4q/0gSgAox1onc7tT2nou1cHBwexv78fo9GoOPtbrdtHVbM8+/v7ZfG3nPHkduS/+puL18RpGBwgdxUnIGdgvRj48U+vKFhWCzIyyCcZK/Ci+vnOIZWX+R8fHzd2j0vO2l3GzSHqC+y7CoKdnNw+SpD+U+Up7qLFceSurrOp98U95VNTvTyAIZ5Lvy77nQJ4+hH/VN15tKL6pGRc2/Gp/8XDKHNxc/pTZQdFRFlIxvGsPnByclJ8rtptpe+Babzv7u7Gzs5O7O3tNXgXZUhuyziDZMrFZuqv7Iuyv9SfOMY1d7BfqA3pZ6V/Wvfc3yn7Qm0oeYkP6lvQOkZ2Y2Oj8EbyZc1ZnHP29/fj6tWrJaCpMvDUC9VL/UHHk25ubpadaBpDagPaQC8mPK/SurHEwedGkRqf77kxT6cBJztdYydi8CqiuZLXHdsCAyEaaMyfz9GA9s6tCUD1cic7y+VOfhn0Mvx6vV45m1fvUuktFqcfUWT95eTgAHL5KF8afRFRjCrWR3nxuDsGFGkMRpzuYOOqSA1AkQxNgJykmYYHw9hvKAMqfcpEHzTXhOGTHfuB6sAACfuWB9g08TEwKHnTocN+KblyDKgf6Tgcnf9K2bCOjPxz8qy1L/93skFZiBhSgTFdjk93WngwjM9z3C+TiY9d9T8pAR4jRYWg8SYnk4iFyqM0tSJK+cgZRILhHxVlubQyhUEx3XOoD5IE+33Kx+cfzY8+77HdluWdSCQSiecH188k7bVAmQfQ3JEuJwj1c0Q0+Ad5r3Yl6V3pCBkU5IERp6tkeTyL+I4CIeSAdGTPZrPY398vRpQ7UigP6hzqdtXb9b071BWAcK4iLs0VlTdu3Cg7yi9dulQWs6lOykNH70ScGt/U3zSop9NpfOhDH4putxuXL18uDq/JZFKCPgz40LGi1eEKzMghQW6m9w4ODorRp8AR+bP+V311JE+r1SqOOe12UpqsU0SURVjithHN70OLP5I3iDfqqCL2T9kX6qd0gIjTyQmilfbqbzqySeXXh+61KOno6OgMX1R7sD3Z1zg2nG/xt/oV5a+2kZyPjo5iZ2cndnd349atW9Hv9+PBBx+M4XAYTz/9dOMYpZOTk+Ig4Q5QX4zlzjHnnOTK/O02JK/RhhLP7ff78cADD8RgMIidnZ3CifkeHYwsLwPcdBaJi0tGytvtB6XFscw5T3OJj3/asT7fJBKJxAsB7Z6IaC4a0vHCcvZ2u90YDocRcerzkMNfOjvidAEKnfpKW9/04hzPn8ViUXZ06Fuu8rdw1zE5k/JkPu5/4WIN6U9fXBTRPAErorkImDxDOki8odfrld3xnU6nfKNNu3p0epYfTSi9qvJq57eOqtzY2GiUVfWUXKh/GYRU3cWVGNDkIhXJUrxHPkl9boQBwm63W9qVu7Spu8UFyV+kd+k70vu6zzSU5uHhYYO7i1Ox/zHAJZ6ngIaOEKXfVbJtt9ul30ZEOe1BbUU/YafTKQuM1J8V+KAdxEVpzI+BRvVjtRUDNuKRjAUoyKf6ir+IU8kXqrYZDAaF56ksCqLRPmBgTt+R5o43HR1In6/6pLikPpuzv7/f8GOqPWn7SXYqpy9Gch8z/ZXaPUe/pvumyTO5C1R5ut9Qc5f6koKFOiqRY0X21M7OTqyursYDDzwQ6+vrcfHixfjQhz4UrVarHFGreYYxD7Xtzs5O3H///cW+4ljk4j3VSX7n7e3tODw8LN/DZoCQ5X8x4TmXlo5gTozuPI5oHuVGYXOy4ISpBmPHFfw9KjsSfHZkHvGmgUtjNCIaHUVllYGsSbjT6TTOG+WkQ1kQdLQzUq2BzY8+ctBJlpqcJDt+a4ErAxgwUL25Elp/c5DSkFZ6KhtlS0XHSUH5UNGxHnSmsP1l3LnipwOCsnM5kkAoTd/O7QavysF8lS4nfl8JpOvs05wE9b7KzT41n99eqcxztLVtmG0n2TJwph8GdTgh1YJ4qg8VPPu75EJjm+OKY4njSe1LJyFJBfs8xyzrp/95zJHuywkjJxPBfkVCxCCb0tE19lv2C0HKU+SR33WjMqLM6dRk3d0hSceL10XgewLfkeJyp2YikUgk7h6oKz2ARKN+mb6jocDnqDu1oEP/Kx3+jjjlIr7IRQs8xIEUCPJdOOQdOp6DPEWocXR3klNfkjew/M5XPBBH3se8j4+P4+bNm0V+OpZG3Jp8Vs9QtjJGxQPF2yaTSTz22GPR6XTiwoUL5agcyWEymRRHjLip8qWx7R9i5zFG/HA25cjfCjRpdSw5iBadceGagpt6Ts4E5cFgHINuKov40WAwKO2tFbx0FPIYHslxNBqVVdJqY7WpyqCTMsS3uOCodpKDysYAi/qXB3LJhdhXNM58550Cnjoa6MaNG3HlypU4PDwszgK1+8rKSty4caOsTFZ/H4/HJQiqVd6qr/oyx4XzWNXHORttA/J6rrZXPbXr7OLFi2VVNPk4vxVT29lHW4S2G+1n5eeOTgbQanOA3iHHZjrO9xOJROKFBHVMRHMOi2h+7kELFaQPO51OCZasra2VuV26ijyAn4ng4gH601ZXV8unWeg74zHOdJx7EIzztbgJn9U8Lr8efQ/ydTr3IjfRswoqiscp0Ke6auHP+vp6cb5r8Ql11crKSjn6bmVlJfb396PX68Xe3l70+/3CTahrBJ4SQJ7KBUa+yF/6i75M6m/1B4F+PXFs94dxwZTkylOkpNfZz9hOzJPtqwVX4ozD4bDcb7fbxfdEDkXuq4VU9EtxZxt3qqu/6rpsBF+Ip2fYh9VPaQcsFotGIIynEbCMfnqZOK2e43ii31F9jH1VvF5lV/8X39OGE/3MZrMzO0O100yfWVK/7vf70W63iz9W/VkLwDQOGIRmuyt9pScfu2Spa+ojXNAkrs2FafRVsm/XPiUjGbAPsg31v/rZ4eFh2XGrPnjt2rWyC0z2zUMPPRR/8Ad/ENPpNDY2Nhr2A/u48hiNRvHkk0/GYDCIixcvNjbAsO+0Wq0y7ra2tspxmO327Z28tLc09vmNuBcDnneojx1GAhdB1zVOOJwkZEjQIV8zuAVNmAxgcTUDBz+VGSfVmrNf76sTyMDU6k9GixkgYplUBw4GyUHXNHnRoNKHIBURV9rKU/BIPpUXFTGNI64y0PsMunigSZMblYECFhxMWsXD3UAa9BFR7vvxP6qXt7uOXtEEwdW2/i5X6qi95JRg5JuTixvlEaffWNPglSIjUdKE3Wq1ioOn3W6XawKDgSqn3tVOMzkpBH7IlATGnVj6e3V1teSr59xZxRXHHIMM+DAwRmeUftMRRnkxyO3GtPoKy7wssEmyw2ddSZOUalz7+FYbcReo0qWTRf2TTk6OWa24YruLpLBf0UlCmakvU14sq+QnReNBXe+j+p/OkkQikUg8d7hOc7JfC9a4s1h6hDxReoeLehhQ0TwuPSV9wpXFNPalf/xYYXIwd4iLp+k8ex4VSN3ii1ukl5QWeWJE82hw6Us6hCg/Og/ccaO8VKbRaFQCaC95yUtia2ur4dBgG4j3UY+Tax0dHZWdawcHB/GBD3wgOp1ObG5uxmAwiIgoC8J4NJ/Kot1U5P/ihqqr6sYVwgpYuFNFTjOtAuXqahnutGPU3loYJ8OWcuQOff0vjkP7SWVRm9JRIY6v+urbaXxewbiTk5PGcd0aF1zZrfT1no591Pt0LmpMiCtzLCp91YVBG/IlpjmZTOLq1avlA+9+WoOcl6urq7Gzs9PgznLQaFU4V4Krb7Cv0mbl+HMuybZwXkcu3ul0Ynt7O7a3t6Pf78eNGzdKP5DjjrYrbUk6M9Qf6VhcZjvXguE1G4IL0lhXLl50p08ikUi8kND8Tse2dLi4hHSVfCk8rlj+Ivn3Ipo77KV/3b9IO166Ub4iBX+ouyKiwXPIawgGPOgr4fuuN+mrof4SV9A9zeHdbrfsjpP/kX5S6cbhcBh7e3uFX6muqrv0lnb6SX8oOMFFaOJF9POw/s5Z6XOlX4qbHSgf6kYPGpGPCB7cZOCDPrJlPi+W0dsj4tQXenJyUo76PD4+Lsd5ql7cLSh/phbUCwyYqc8uFouysIvBP/m+KBvlw+Ae+bz8cKoPORrrSB+u5OX8hov/yRfENblBQvLWWGRf0HGS4vG+u5T+VslHJzMsFovSr9XWOj1hOp3G/v5+7O7uFq5L7ql6k4e6TUZfKOXD+UA7rSRn90M6H2bdaZ+p3XkahcrIRZWy+8TFxZVv3rwZu7u7RT6yJy9fvhwPPvhg7O7uRkQUO0jy0nMcC7du3YqdnZ1YX1+PjY2NODo6KnLSnMfA5f/P3rssR5ok59meByTyjFNVdU+PZkiaFjRteBFaaa+tTLfFhRZa6BK01gXITEttZEaakaNmT9cBQJ4zASQy/wXsiXw+x1dDTfVwuuvnF2YwAJnfIQ4e4a+/7uHhNcVjOBgMyvlsfwi7/lLLF515lhtqhZK/MygvL00OkNy5Jt55hg0EGy82rG3g+3uT3bzH78oeeTvOTEKYULDDyI4J1xfhQ6C8a4b3MHnY0jgejysLNwqWCeIIXy9ONrYdKcH7rYQAFF7QvEvNxqCJCtoJUPEijPEfcUohY/IJJ4TJIi8cGN0osGwseiHzOBCNYKPPKW28SHmRpD6O0qXu1JtJTe5sO8kYB5QRcsIC9vDwEKvVKm5vb8tCkuWPhcnRzyyYdu6YTLPzhn5kjHD82PGE4rADOIMNEz+Wr7ygm0Sw4voc2WAnkYGF57r7ETnIjiePC46uXLccnWTQkh3rROhQn/F4XHIS+5n0Hddb3mmDZYz2GsAhE77e7zYp4b75nFOtKU1pSlOa8tOKCZbs6PH6bgPU2MpOHOtPPwO9B8YhhVDEKYuBHVA2VHweqQ1463fjI/AXUa6uT46W5f2ZsMhGsnG0DUrwZP4u94VxGhG0jmx8enqK29vbCglVl77ZBBPvNUYyKXB2dhbL5TL+7//9v/GXf/mXJX0SOpl0OLSFXT+ZvAJL0ZfUD2PYmNTEBzgSnc+YO40OJIUJG+5zQBnPxgHm67Pjk8Avt81ZICATdrtdLJfLWK/XlahlZNnyxmcRUVLH025Sr+AgtEN4vV4XwiFjJBv7JnpouzEtf5scgCT59OlT/PjjjyXCmr7gHcgY0fOkCjUWRG44w6UOGxvDum/y3yb2/Ns4DjKFVP2Xl5flvDYX2zgOQMzrCf1dd1Ybu1LpY55h+8718jjZdsvkVt1a2WDUpjSlKT93gSh2ALFtfnQC6xrpl7nWPE7EyfEBxvB6aN1o+340GpUdH3VOLj63PnSwRMRrTiPidbYA4yE/n7R3BHpHvDjP7u/vCzHOeo4Ourm5iaurq0K2O43edDqtBMiAx3gfPzgkV6tVREThtLbbbaxWq4IZc7voH2OLrKvs/ED/geOsm8FLmX/J/LFxKPjK2cOMDz7H2eT+MO/kgCM7V+C2sCkcqMbzzIdiBxizgIfszOl2u2UXj9tiZyB1Pzs7K/yZZSHzbZa1PP4RJy4bWUHWs8OYZ4B/zZ8yxoyXHUW8MyJK2nHzt8h1q9Uq+JM60U76gvqBH3Gc3d3dlXohl9gpdqTRNuTPm0wy9vGcsBObQDdzqAR3mavOY2Gn+/F4rGzCyM5kMLl3oD08PMR8Po/lclnGggBLzjJkjvf7/TJfXRfqgxP8eDyWHXsXFxcxnU7L83e7XfR6vZLZgRSonqP0L843dgl6c8nXUL5455knTCadbTzXTUrIcjtscBLVAXF3fMRplwsCZ+M1oppSkvstgDYIKM6N6m2deL1pqyeU61Tp1JT2jwgLDuIkUtILOlEdh8MhptNpqSv9aoOS690/npQ2kLjX42Hvuu+nP3O0KP1qwsCRLgYfub8ZV99rpZ+jcWxAM9Y+9JNr+U1Ujc9xc/vs0DFRBaFissaOPhxekBImAlx3oh18BhsG8WKxiNVqVe4BvFF3wJkdQ14MHT2MsnfkjMfFjlTLNrJqMs594r43gMnzyZ/5wNUsQ8xHgxHea0XE+5EJ5A7QALClPsxZE0fIM/Pf60/e9Wh5dT9Sh+FwWD7zTk3LhJ9jRWjSxvPEv30fJTvakP/saGxKU5rSlKb8tGJyPGNEY0X/NqGB7sp4kt/Gc3ntNvbxeUs2oMEHxip2JkRUo0ftYAED+XxQP8M/bpfJ8qzn6SfrRfohYzx0s4NhwCFgE7AMTi5w1vv37ws2uLy8LBiDSFHazW9jUpwHxrOHwyFms1n80z/9U3z33XeVdCwQANQHJ4PPrwCH8DekBKmEwGNcz2/wHAQenxMgZSKDfs14z2NgOwcyK2MkrqM/OY+B747HY4VcWK1WxbnF2H3ObgB30xb6ir9t9ENCeCdenlMmlZBLyxC4jHcYM2GPbTab+PTpU7x//z72+30MBoMKPkaeea8Dxm5vbytkGXLx/Pxczmkx4ZH7x33juW9MajLGeJO2Eek/Ho+j1+vF3d1dwYDO0LDf7yuBbx4H6lTnFLfcZIef7bO6/zMezbZtXtNYu+ps4KY0pSlN+XMV2/pgJvQDxLJ1MHrKXAlBGMYqnc5LOmicGA50cAADu4lGo1ElKCritI6aT+BveEDWXTuZjHMiXq/bfMb9vV4vJpNJwSE8h4Ct+/v7suuk1+vFt99+G+/evYvLy8vo9XqxWCxisVgUPIGDjXeiv4234Fm8e+lwOMR2uy3n0KG7wSYerxzQDQY2t0TfgW98jApjAD9jPsbOGgek0B7qu9/vX51Nlx0eOMWcXtlcKbof/GKHGm06HF42SfBe0g36rDbqwzOzcxfOEr660+mUo2BwLiFjPtONZzoNqLENcmy5wiHHPeAK83XU0Y4tZNIZuugHdtuBS7N8G1PhsLIzi/GA76UebKIwRvfzeMbT01NsNpuSftQ8vnlDO57NgyNDxrgO9LMtR0G+STkJRmV87JDmO8Yt2wXgeJ+7zFqHs5R2brfb2G63sVwuy/fMj4eHh7L7kfSX19fXsVgsSqCc60NfI5c89927dzGZTCqZvrjfaf0tM4PBoLIGs1s3B5H90ssXO89MLtggzw4VO8QM8FnY6kh2rjEhb6DOQuCFwoaqSWiEmYmYDQ8TFRZWFIUdLlaWFq4cSek2cqYSz0UxOFrFBiSKh3dnIt/OP6JXMZzzpM397n719f7exqsdfPSPx8UOCTszWcT4jM+RD++gYtLx/IiqsUmd3A82rmmTnwmQMFgxyKDPWGT9XJxh9B9KAJmxI5OFghQ4LFjz+bzkUEapuu8NzDzGfI8csrDTDkemmKzzeJhs4xo7z7jGi2J2cHke5bGlHZ1Op+Q1Nmji+gz8mNf0oeUpE5jsAkPR0HanS/X11M/vN3CIiDJH7Fw0yEZmcJqaKEGW7KTPBArvtSMtE5HZkdaQDk1pSlOa8ucpmfytc3JFnLBb3vXDd77Gus7YxPqPe3lWxhEZY9pYhoxHZxn7gVV4H+cRDIfDivOHd5swstHMu43dwQl85x/fYyxtx16dnnZ/8T4cZB8/fiz9MJ1OC2Zh15bxUMRpNxu4YLvdvrI9Pn36FBERb9++LeepepeU8SKYy+dLgBHAEvS3zwYx0YSBHHHamR8RxbEJ7nNqI8aZz+psEuM/HDA2PI2bTc6BrYm0JcDLjsPsYPWY2cFJvUjR4oJcskPfZ/HZPrKzDXKKz00SUXciaDHU1+t1fPz4Md6/fx+dTqfISSYTTeKABfm5u7uLw+FQCZ5DFgmWHA6H5dw0z5VMntj2sUOVNtKnTsmOrXJ5eVki/SkO+AJzGm9m3Ow5xOfGl5m4Yswt857PHqssC4zLP+dQa0pTmtKUP3dxAILXaHAcWMo8wnq9LmcnwSWyTvtsUQd2O7CcAlcxmUwqnAX3Z76Ttdy7a/jOgeZ1ZD1thc8EH56fn8f19XWlbREvuvn8/LwEB8NvDIfD+M1vflN2nWy325jNZrFYLCrntZqHI+1gJvpxZLhP4MQYg91uV3jQfr9fwXIRp3N80UHmOcFcjKWxkXk540vjVweDmC/jPrAV7XGmLngunnV+fl7BZMZfxlAOfoHrod9wcrifeTaFvjOnZ9zqADbbDE67yDvBrn4e+Nqy6Axu4Mt2u12wNW02r0af+ryqzBdT7IjDCWQ8aI6TechuPRyYtNU/zAmfn2dsYyfTw8NDrNfrV9iKZ9hJaWyM49e4FLyWuVhkljExLmdOMnbInOW4LtuA5Yqz0yxz3lXndrIOIGft9ssOyMViEaPRqARy4Ux7+/ZtvH//vsy9zPlic7Varfj06VPc3NyU3baHw6EEKdj+sUPZNhLcd7/fL7j7aypf5DzzhDBhTbHx7QXMBnp2EthRxjO4zuRBRBTHBEJthWNvOAOGIORJ5QHmXp8JwILC955QXuT9DB8G2Om8HIZO4b03Nzdxe3tb7of48GJHKhkvcJ7YXhggEvKOGvrdBIonrPvD42UyyAt/NrCt+HmnjUaiEZg0gBIrDHZqsQDYaEQxOzrAi6MdEHZ28oPSo/1sZUeWLBPPz8/lUEPe5+3pLOIQA51Op0TCElkzm83icDhFhEdEaa8jWhz56kXUSp33emF2sTPX42KgZ5nN7fU99Af3+tmfi9ZB+aKsc4QB9aojIOyw5B2MLXUnOtrpiOxo430oGpMolkEUGdcY5GXlznsgUUwMOhqK8cjOYz83j52VPPMWRenCfY1jrSlNaUpT/nTFeiF/nvVrRFX32cjjf+sH63DjJ+4Dx2Hg2hC0kYFTITufwCAYoDY40ReDwSCGw2FxkjiIyQQOxUQ719gwNuZ2n5jwzwE71pH8rnMmshuLdh8Oh5jP5xUjzU4H63+3h3fYAUad9/t9fPr0KQ6HQ3zzzTeFtOE743nLQp2dAr7A+Qbmsb4GC2E422HZ7XbLuQ3UHSILY9IH1NshybkjdpbgCDGhZtyLjcSZyi7GLWCejIkcgAV5YpKJ621kQ7pAMNiucz/5fVmW6C+fNw3Ovru7i+VyWfqDFEQRJ0LPfWS5QKY6nU4sl8tKFLztPJyFzCenvzKeY+xpv+Xe1zGm4NV2ux3T6TR6vV7MZrMKSYdss7Mwk13IggMxkTHmFPMrz3M7KC3jmSRhHDwfXGxzNKUpTWnKL6UYwxyPxxIwAbHMGome5h7+Zi1ljfW67aAlH+MAtuGMTQdCRURFL3h3E7ogB6/DjVDX4/FYcYiYY+Hd3W43Li4uyvlODnRwMMZoNCpp1N68eRNXV1clAGW1WlWyJKHnzSPyfteRejhlHu1erVZFh/Z6vcKrmhPk2eg/Sh32zJyLsVnEKeje59xFVHleP8u60I4psJvxpXlX5MCB4HW8mXlb82AE7kScjgShLzudTkwmk0oaO8uZx4e20d/Ui/eCn8CLYDPLpfsAp2F2DJs/7Xa7ZYcQ/DR/gyNoE2Puvqff/Fzja2SMtrnN5qPByP4MTJy5eebydruN9XpdnMDG+XaCgkOpA05dp0X0vMj8ONeY+7NNw5jQLmTM6fCNlfke/8RyuSzrDf2JXcL6NJ/PKxie9vKz3W5jsVhUzjwcDAZxeXkZw+GwpGFEjqm7N+iQPp11hH47HF4yecCn93q92Gw2lTnmNRceFzz+tZQvdp7lQc7EMYJjYM51VhhWXpnQ97tYNFnYWLAhGpjICCAThneYwPAiaAHHc4qjhHsjThEodeRA7gsEbjAYFDKEwiT67rvv4tOnT4XooF30Q1bU3opKvbxwEOmBJ9djxTNt9LvPiZLIC5EVMPcamJg0ybukqCsECESJ/+ZaG8GMHd5rKyD60Y6/OoeeP3fkjmXI0bFMeC/IRCrTfyYg+Hu9XsdyuSwHpXK/I22pU16E+IyFGPLFJUc5mYDIAMJzzHJrgGaZd2EcPBfz+0yo8R763VE7eX75WoM/3pMdXtQT0uTp6akQJXnMkUP6CeBkhemdqCYw6Gv3l9ct2t9qndJCAgbqiIPs7PIz/lAx2eZrDS6a0pSmNKUpP71Y39jZZecD31OyzsxOKOM+dLoDlgiUiTjhXXAXhA3X5qhaDBLjy9VqVRxojhg1xvJ77LSyQYVOpA3GFCYfjAnBZN5Nn/sjOx3dHq4nsAp9jg6czWaV4CWcFzZYs/OMzxzlzWc8s9vtxtu3b8sB1rzbRIuN9D+k4wnosrOLZzh61xHRBONhiBOkR5/bwKdvibZ2CvGIk7ONMQPf8cztdlsyIdh+yLKbz1nzePKDI4mf7GQxxgMrEVHsqH3bFpY/y4kdM4zlbrcrZwcvl8s4OzsrqRqzTGT86rNSeB9prXi+ncvMJ+YJJFEmPHP9bXPwP/c5HWiv14t+vx/X19flMxN+zEUc606PxVwlhZh3SPjdrpPnjmX8c2NnGWCs3P6MT/nOfd6UpjSlKX/uktd+OCQCP+z0yXwB94PHHh4eYjAYVLABuI6gDkqr1SrZpZzJiGBbOwWyvjFHk/lQ7nNwrXUv/NvxeCxEOjvjwVZ+BzqD9GjfffddjMfj6HZfzsuaz+elrxzgbv7HzpKIKH1Vhx8iXnaq3d3dlUBrc4HuB5/ZmXWRcaeDcehfYwuuZ/zpz4hq6nLq6e/c9wT/mLfLmxIoTp/oYJaMbxzUxU5AZ6KAc86bDbIMGAvnHXr0C8F5TiPptjpjGX0GJ2rMwPXgXXATMg6Wdv+xS5D54jlm2WGcwfkOUvfY2EbJZ32ZizeeMu5228gSRp8yvnV1skMYXEtf1vGtcPg4L2kLznsHw1Ff8/nIDePIGLPmWHYJJuO98NekZd/tdnF9fV1wMs8khS3nQj8+Psa/+Tf/JobDYUn1PxwO4+LiomzeGY/HcXZ2FtPpNC4uLkrdOUft06dP8ebNm+j3+yUdI76I4XBY/seGgQPOOz09V7+W8kc7zzK5TMmKi4liBwzFxmY2rLLDjeuzs4h3MlEQahaGvGhAsqN0WBQ9WZhgODl4lw1ADGwGHyXnyGIWJm/ztBPn4eEh+v1+fPvtt7HZbGI2m5XUKHV99vT0FOv1ukS28E4rE/rH+WGdXoZ+NCnj4veZLPFi4UXaEbWOsqiTETvt8kJkB4EjLV1XL5J1CyZjSL9nhco4EznhZ5kE4l47TNvtdllYcJxwbh3OM0gQv8+OOr+XMSMayn1gxc7fdbsm2+12qYtJgyyr9ImjKjwPs9LJMkHf5PlLyTsz/Tz63+OQnVNWkBnMcC/kD1t7eRf3W1n53e5r92WOSsqkgZ2fPMsgN7fLxKRTbFnufK9BXQYJGeA1pSlNaUpT/jQlk7/GGREn/JGjgXPJuISCrqaAebgHAgFd4eeAP7yz3YSF9avrd3Z2Vs5OYMdRNtSMzfzerIOos3GIsQe60GQ919HO3E/uj2wY553cGJDsyMGwMpHDc41XaKvfmSPA7+/vo91ux5s3bwpBwPNxNLl9Hmfre6I8vfMIR0ceZ+oL1gMvg+PZue+zxHif7SfwNUYzuJT3MEYcvI0DzljT0et2yuKga7VOKdSph4k/6sKPSUX6gPdbfjwmnmvZcQbuon8Jnloul/Hx48dyjgJEZSYb6dNsk9ZhT5xTYEE+N6HEffv9PtbrdXlvJt/sbHe6Hc+ZiBcbbjQaldQ0+/2+ELTITJ4ztiNyJL3tZ2dF8LoE4eVo77p5Y4xrUtL9aHLLZJlxd1Oa0pSm/BzFfJ4xR3YUmOA2D2kM4jURnQ8/OJvNSgpmdAdnneUADmMG9IW5KfBQ1mXcA3cD18j36HwI8dFoVPQlu+sh7SOipL+OiJKm7bvvviu6YblclqAl2uFUcuaTHLgRcQr4AhPRd9SXnTJgOOrCJgfjtOwEI/DEuMNYxA4dF+tg6gi2sIwgC+ZJ4ePsaDVu925/1y+ieqarOT3v1ue5eUMF1/q+3P9gNMu7d/y1WqcjZozl6Ks6XjXLpD+jHcbdPo6HOtjO8MaGut1VxiDm/PntXXKMk4PLaSP14Rru8RyKiLIji7N+ndWDeuI052/6jE0lyE7mSs27OttYliXX/Xg8pYE375i5SztxW61WcYzzs16vK3bUdruNzWYTt7e3pd/dH54n8N7dbjcWi0VcXFxExItzknOzsSun02mcnZ2V9IzIDY7z7XYb9/f3cXFxEb1eLwaDQex2u7JW0Cacxdg7Xl8dLPk1lS92npmUjjgJIoWFoI50txA66pb7rPyywywT4tn4R2gykY2B64UVDzmTw1EoPNckhB1KXvRdX64lDSOLSybSiQ4Yj8cxHA5js9nEw8NDEWD6xQsZUZ0YkfzOhAaKHuPY539ZKdA/9gRn4zEvrjZ+eQ4TO++M41p2kXU6ncoOM8sUhQnuRYPrUWJMYEc4oCyQDd7NQsDi5oMlc1SsjVRHTTjC4/HxMdbrdaxWqwpRZScK8mEnrtvsXXBWltlpggyauHLfeLGm7lZ+Jn7q0h+5zgZ89B/vMEnk+e8FMiJKdIHnjZ2vWX4oGex4QXWkiN9NsQJ0+x0xZOWc2+7nWXFlRei6ZtLPclu3NpkE8fNcL9YEP7dxojWlKU1pyp+21K2r1tHGPDbWM1Gc9RbrvI3FrItMsBB8gsFrTJV1lfEZBEa73S5ndjj4ypjBdXZEq/EtdaVYb+WUxxFRwb4RJ6dhNpKNl02CoPOMcbNheXt7G8fjS+DR5eVlpa+tgz0W3g2GgWf8vlqtIuLlTDWirrkuIiqkWLY36Ov1ev0qQMlkiHEUGPDs7CyGw2F0Op1CcJEqhXGjj+hbDGBHs282m9hut4VQw2HGLinOK2m1WiUNizERxIEJFJMsloWMgeyk8byw4xEHoUmfTL74+Q6Ww6DHFuMMltvb2yL7RNjb0cM88Hm4meTgnZAz3h2I49JY1qQexakcLbMebxOd2Ya1TVDnrDVONEY2hs6EoklWxoQ28Dnn+Hod47dthjyX7CB15Lv70jZnU5rSlKb8XMVHSLDOw3+xXtmBYo7ImYC8th0Oh5KqLeIlAGc+n0fEKdgVx5n1iuvB2klwjTkm3omDpo53sEOBz8APvJO13FyfsRW7tTlj6+bmJsbjcUnhuNlsKkEc4EwcIDgR2Dl9OBwKLmHHdKvVKkeYkBaP+qPLnYWBYBfzUpmzyoH11u+Mp/VgxAmvMdbGwHZW8kN6cztEMqdD+42DGSv6G8xpLEw98tEzOOC8kcMODTZu0H/WsbmvqJ85LN7L+5zdgnbxuZ2JfOe+ts3C880RZ6cH8m3sRV3hB/M7zD8aB9rh53qaU7TzC3lHdsyne9ea5Yp+waGTuUHaS/2Np+1sYz1wIBPP97ymndkvgvwwB+k3z2X65unpKe7u7io727bbbXz48CEWi0Xc3NyU9YA2Uz+yvNFPu90uJpNJXF1dlUx+vV4vrq+vYzwex/X19Su+GZvp5uYm7u/vY7FYxGazKVkd7HhHPnC84XfxztNO5+V4K5/59zWUL07bmMkFigXLxoCJACZGxEnYPZlzFOnn6mDi2dd6gjOpUCw4tbxwdzovOX/9PBMAvM/P9+Ll6BV7+b2Q2ulnIWThuLy8LPeghJj8FBtRy+WyTGQUM6QKk5q0d0wyoh69u4a+ywuix9Zjx2coJnuRcx/wGYYnk6PVar1SKHXvdh251otp7nuTPh4nt9lyZqPW8stzj8dj5TwKcuY6+sQkF30ESUU9raSyAZ1JC55hGTSoyDLv9lkZ0W+ZFMugw/2anTae296hl0k8opchAu00Zzw85y3PVnb+3IDHeX0dbQ1R5LGs6w+DHoOIHJ1Dm/1MOzfdP3XkQV4L8/d5LTBRkteXuuc1pSlNaUpTvqzkoIas74wj0blZZ1HqnGhZ11rHRpyMmGxQQSSARdA7pOnjGfv9vuyAQY85ag/cxa54nocOrsPKGWtkjOs2GtOjg9Gz4Bruyw7DrEuNZ+xIMTEym83iH//xH6PT6cTNzU1EROU6G+30gR1oDuiCyFoul6WORFXiVPIuLmMGY0faSroi2pkJM36326dU3YwRKU0gSugf3o9Dx/YS7xoMBgWzgEeXy2XZkYZMbTabEjhmw7fOZsNwZwypF7gVJ6pJI8bdDjOIOupvEsdzxuPtFJQQWcvlMu7v72O5XJaxxnbD1sGAZ3w8T3PQmiN9GQ/PB/e3yaA8f4n4hQSkv/xe23eMK4UMIiY8bXt5rnuu2LmW1xhjfeQUsoyU55wf7LlHe+2os91kojk/P68TTWlKU5rycxbWvDoM4hR0kN3oe2dzItWdMSHYYbVaxYcPHyo7fyCF7aDz+m3+gd/o1IiorP15XYfHox79fr/weJxtxjMg1dG/ed2mnc/Pz3F1dRXv3r2LiJM+Y1c3+hwdC+ZkY0G73a7sbEOX8P319XX0+/2CSeD9Wq1WSQ0JcQ55Dr9Dv/FM48yMQ+gr78izPsqcs7GVHS482xwYfcrnPNN6j/6BP2LM6AdkK8snWJT6cf9gMIjValX6l13pjDftzsFPfn+WHTYIuD/g0SJOjhjq6mB/92OdHDnNYpYZroV3ZiML7eDdmU923/O/d+eZu/SY86xsDzAWOIRy0JffhewYc+dscbwTXGke0f1E+/ltO7EuAJHi/oBDzYFnyCFc9HA4jPF4XJzTy+UyBoNBTCaTit3nfsRR7LWRcR2Px7FaraLT6cTl5WXc3NxUzj9z5jVk9fr6umz8eXp6KvYp/LblFuydMfHz83NZF76m8kU7zz7nOOP7iHoiORPPdnT4Ghs6EVWjxIY377GB3m63yyGV3BsRJf0Li3SO4PO25lbrtD3Wdcj1pQ5WVnzunKWuG3X2hOZzFrHBYFCUIqkk2XKKkUxEzGKxKMZ5NvY8cR1ZMhqNKo48FCd1t+L3dX5mnZFoIoVJSf9wthuKk8Xc3mZHovJcL3A2/CxDEdXDJbkWx2PeiWiQg2zZ0LeTknFip5mdWfz2dm0DJG+dN6hDzrLDiGJFVGfcdrsveaohh5xC1I47O/AoOc2iQQvvyQrNYIZ5accZCp/v8tltGRB9TkZN0BmwODKHhZtz0Dx/eBfj6Hfwwxg4+oW5ZoeowYH7KzvRsnPM7eEzR374c9ps8qZxnDWlKU1pyr9Myc6hbDRH1AeioD/QYyaQeW42oNBdNkrBkX4uuhR9Tn0IjEIP+qxY6sJupIeHhxIYllMzZlzt+hqT8nnWV/xm143fAXY0cUM77dQwWW9SAmOR7ATW3zjQ/uEf/qHk3Y+Ikn0hB1cdj6dzohw1DKHAmBAo1+12S15+Eyi82zJh/BARJeVRHfZg7OwsJfUfGI3AH947HA4rBBgRszwXTPL4+FjOAVsul7HdbiuOItpgmXYbsE1cZxNKjp6nPq6nMWsOwGPcjdey4465xbhjC4HX1+t13N/fF+dvu90uUfYOOkJ2c1Q+7/E5KtSLMbc8gGE3m02FVMjEp+eMnX7G0bZPTDAxFtvttsxj41Z2SPA8HGCeS8geZ9tEnOzF4/FYIVsZt263W8m84TbwHrfN/ee2uw2eE58LLGhKU5rSlD9n+UOcIJgKvWHHDYW1EHKXZ8G13N3dVc69x+mBTjePwnq53+8rQeLUEVwYcdIfpD30NeAadrehB2mfeS07Xrx+9/v9GI1GcXFxEaPRKLbbbfT7/cIlOjAZvUgfoKPpHxxHPNc7ZSDge71eXF5exuPjYwmAIdBos9nE/f190bkOKgK7UrI+slPH1xhnm8/lWsbE2MF8F8/JHG52RvKZdR78ps8EM3+IE4zPfO6tsTH6nmuMb9D3xri2P+gz8JE5cF9rewf54h7mA/UyZ+jALTt+6ZfspATPwdXRr7TB9TH/Zp7ZbXNd/JnnLn1nXMnROmRm8FzDYehUi9QJ2QHfM4/53hk+GEMfFQT3zfwDM9NfxuWsQXbY237wZ6wl/ns2m8XxeIz7+/u4v7+P4/FYOXux1WoVX8JoNCpj4HnlNdJ1vbm5KfPYTjZ4fHbbPj8/x3A4rDjL+v1+kWNkBDlgB6x3CtKP5r2/hvJFO89snJl8qLvOxRPExrSJBys9CynFBEA2/NlWTJSinTkMFoOEYwNPLkqAunirqwkHEwY2btwvbH2sU5K0wcKajSwMv36/H+PxOCKi7CIjhzDGNZ/joLJyYOIjnAg4i3VElN1oNr6zwZvbV6eM7J2nfV7o6C/6m3MnDEhYeEzgQIbY0OR9TsXI5GbMaLcVqZ02yBieeMszz3OeWTs6GUsW1Rx9almnn6zoaQPtYPEyaMpOG/rD4+KIWv+YFKsjEDx3PNf+UESI5xxtQj6pF+CByBfPH56Toy9siFvu3F+Z3Nzv97HZbMo8tyI2EMrRJga4dtQyxjixaCdyRx/n+R5RjYTPbc3ECiVf47llR19TmtKUpjTlT1Pq1t38OSVjS/Sy9SoFPWEj7XMlG7+s+Rgpm82mggHQZeAN4w5HKLZapxTXNsZpi8kFG1DU304D8KKNRhvk6Gl0vPW88Q+6k3vAK9TRDhCuc3u57v7+Pv7u7/4u/vIv/7Kc75HHDuKHulIvk02uH2lOLi8vCwlGMd6tM+6z0wgMm3cUYVh3OqdD031uAASDbRPqCOmCc+zp6ak4zBaLRTw+PhbSxv1g56TJCfrXuLPOYQK5Q/uMb+10q7MJLFfGSvQJPxnHQhrNZrPYbDaV93gHHMWGtx2DHjPXkXdyPeNimWVeGRf7XZYz3gP28+5G7uF+yw5EDmPOvMTmQIbpaz/P6YE4882kRJ3tRZs4FiA7Md2HdX0ANua6nBqzDts2pSlNacqfuwwGg0rqNc6nZN03D4ZOtp6wsyJjs8ViEev1uvI+1kOT+NYPEf98kIE5Ha+5rOX9fr84vXgnPF5es10PCoET/X4/BoNB6QOcZfwcDocSvGQCmxSNkN1wp06dzE5z8yU4xgaDQQnwv7u7K2ei3t/fF2ebMwn5SBZwih0z5qDMmZo3y/yJA1mynraONNdkjpD3mFOC30XvGreB9er4L/SkM045+Izx32w2hYNkDBj7XFdnnIB3Q2690w18YT7cgXxZRjNXynjxOfiVfnfAPA4m+gy5o8/9Q909vnVcWg5YAvtaNuzk3Gw2BfPYUcUGDuaP5xJ9wRxhB5Ud0g4GzLjL7TBPTDvpS+ar+VbwXXbWIUfc7/n7448/xmw2K0F8PtcsywFzkvYg19gj9ClZMb755psYj8dxd3dX+pagRXb0UXAUe5ehuVzbc74nIirrTt0a9ksuf3RtLaxZuHEKWFgy+Z3JByspG/kWvIiqAsqOhYiT0Wfjg3u8NZCFhBRwGBIsRNyDAVJ3mLcnCUaQSQLXKyKKMNmook5c64WB9uO8OTs7i/F4XK67uLioGN9eODkYkZQnXpz4wenGu3BC0GY7cpjMdlpmsoK/mdi5v1ysFL2d03JlksKLhj35jmwgpz+TNxvLBknZuehreB7R3FzrBZP6um7ILX3juWDFSDuzTDsa1kqLsfN9Jpjs8DWYygY0xRHKns95TjGOec47umg8HsfFxUWJpnXaBI+hFaH7kL/pF8tHNuItkygSopQfHh4qoIv22xHu92WgChjy7q9MzllG6WfvKHThGR6vPA7+3mOZ143GgdaUpjSlKX+aYvxifGrDKyIqhk8dfrVe8X28w9jVEZc82ziHSD/qQsQjujQT/t61Dw5yQAqZClyXHJhiHBtRTWtnItzBPZwv6+8JVsOwMqFh3VVnONGH6G4bndbTXDubzeL//J//E7/+9a/j8vKy9AEEjN9lnMizss7GMP306VNMJpNyBgi7dSBAqBeGI/XnOSYY7Pzwd7Qfo57/eSb1c2SoMcdqtYr5fB6z2exVJC2/jTmRpc+RSTzX4wHpRVCbnZq0KeNCEyPGVKQbMnFJ/WzrITe0jwh1ZA7iz/jQ9obnkIvnmyPI6S875OqIMc/VHBiY1wT6hPpERLErLRfMaXAmWJrxy0GEJllwkpvYyelv+J77LB/INNHAWTa437Zsxqz0pdvudzSlKU1pys9ZjBdYKylZZ3C90wiCF8xhLJfLuLu7q3AnrN8EMThQHI6Cd2cni3WT643eRO8Oh8N4+/ZtSStJcDzntkacUkfm88ciTmt1q9UqDhj0MtjR5325TsaGrnO3242Li4vidKDOxpbm6eijb7/9NubzeXz69Clms1nZNWM+FP0KTjOHTB/XBWObLwU3GAdZXxtjWqfnHfKZ0zUPRZ84sATMnuUsY5k6bBgRhZM15uN8rcPhUM6441rzVI+Pj5VgpxwcblxCn1EPO278bmNodjMaExl/emcRcwAsY2xAgJC5Xo9ftrHq+HXPbf7mcxxH8MFkLrDjzJiQ55ujNaYDkxnrgCEtL9ne4V1uvzEwn7vu1AsZyP0J1+109KvVKj5+/BiDwSCur68raVxJxYp9yEYi8KTPPOMs5ufn57i9vS2pvr/99ts4Ho9lRxspGZ2Zwk51O9DwtWy324qNwnu8ttjxn9fFX3r5YlefSYLPEc4Rp5y89ioy6ehMG16+PztTIqpkdZ2B7oWUOll4WFy8Y4VFxgYj70Kp2quaHYieDF4c7EiJiLLADgaDIrReOFEQJtQhCbwFGE9yp9OJfr9fUtjZSFutVvHp06e4vb2N+Xz+ynClv7fbbdllRXtZqHGOoUAs/BBDebzssLMSy8oVx5nHjj73Ap0JEMvZZrOpyI0XO/rCkRk8Bycq9WUhIBUijkWIHZM9dnpkR6vngQ/9tBPSYMsLbbd7OkchIioLPb/tbM0OPfrXZKBTv9CXjGWeY+5H9yF9hwE+HA7j8vIyer1ecTDmyKfstDL4yM51rxV+P/JjQioDLYgIZAkgmYks2u5UrPQFc9tyaDDsuex7XQzI8prk9rmNuV8yKePrmtKUpjSlKT+t5DXV+NLFujETxcaZGJjGVNbF/tuON38HljAGRP9BnJAxAHzAWbjoJ55JSm/0sY0R6zM7lxwIlvWPcR9OjOxc4Czd0WgUy+WyQhxFVDEkJTs2bBS7fx3RHBGxXq/j7//+7+NXv/pVfPvtt6/aQL2NG2zcg4vcVr7b7XYlyttnYeDgMTbL8uKgPafCcXscMcy5Vzk9twktDjkHm5DWMeIUuQx+8TgZp2S5pC70CeQXAVGQOj7P1rKK4c142JmCDPlcDTspjYHo081mU85GcaQ29w8GgxK9nnc3Ilcmh5Aj9zlt4sf2JoU2Q4oSnYuceN5SBxNRWb75P0cpM14+C8Z2iElUnGPMAT8nIkqaL8tOfiZ1gVyyfVRXX9sQtvUYD+aW5Yf+aEpTmtKUn6tgg3sdNV9jvQA2QD87cMCcwcPDQ9zd3RU+yM/I6dFyMILfG/E6XTefscayU+54PMbl5WX81V/9Vdnlwa5sO1TQWeAy48CIKFwhzkHaap0MjkC/0YZOp1MJpofr4Ywlgjk+x/1EROFXed5f/dVfxXfffReLxSLev39fdqOh16kj/Bx9CG5CB8GR5vHg2uyEycEiEVUnExjW+tO7rZ02nT5Ex8IH++wxy5pxEvXOzizrbHNXDuQBm8B1gQHMByJPxmLG+ea5jUt5PrLPmIOXnHrRfJg/c3pxOwZzADz1MX71vMkbFfIcMm+XMR02FAFKxvk8z5wr99BPxs7OOIYd5vFw/2X+3/PQfg/kl3Yiy2Bh+w3M7zrwbLfbFcfz+/fvi71FOnv6crlcxmw2i+l0Wuo/nU6LXIPhLYdkteh2u3F1dRXj8bjUH0zM/55HyJ0DGI/HYyX7n9c82ua1mjH5V5G2MaKargNlZKeMFzg+qzNC+G3Sn8mcyX2e4+gG7meLK5OAAfaA2LBEkGxE+pnZwLeBZseZn+nFgImX63o8HkvKRRxgCB+CRd2dWpLJ4y3T7nsbnp3OywHr33zzTRwOh7i/v48PHz4UR5odXPQViyDEDG2iPShh+jpHIthxwPdeqLKDjOKoa+5ljB0phBFpJ5293XXjgoMlkxhOb+QzQ3CueIGz0kb5mNyibUQHoJxYQJxXNysC+odr6+aWFyhk3c6vTFRkZ5iJAuS+1TrlrmYBs3PVDmIWz9FoFKPRKAaDQXQ6nZJex6SQFb8jnGi729dqVbfp2xBnbLNRTv8zp4h65zuDC7eJdjCGKEL+zmSYiUb3rUFq7muPW3a88Z1JVerIuGaCqSEkmtKUpjTlT1eywZ0dZ5lYZs02HkH3ZH3s53jtdsBO1hk22vgcHDEYDIpDA71BZgEMbXZ+QbDY4MuGNYQJ7zERT12MrWwQ+sB5E1L0B/j15uYmdrtdLBaLV86HiBOWAueasAAHefcVKbuN8Q6HQ3z//ffx9PQUv/71rwtGzrZD3ViAd2wEUy+CyDabTTkzmXbZOdbr9SpOPxM74IwcyZ2xSavVKljbRrPxEnieZz4/P5dD5OkLSAvbCHac1hE7rhfn1WLo8j6C++h/sgu43byb+QF+MeYxScIY7ff72G63sVwuY7VaVYgq+hJDmkhXv9cZBZA9k34EXXm+8h1td6CaMV4O2LNtZxmyLHGvZSEHY3GNn40DjbY6jSS4FVnJWQ78HuaNbWHLHYX3eBcbz+U+41OvgZmQ495sXzSlKU1pys9RvB7bQRFxCtb3es41cCHwEeiJp6enWCwWsVgsynO8zrNDO+NA6mDeL+MR85rwaqPRqGSV+ou/+IsYj8cxn8/LOWHmrAiWd0C4Ma15PWMwAjJ2u13ZAW9Ow8Hz4/E4ut1uye7D/QRzoX/gzcAnYBDOEMWpERFxc3MTb9++jd/+9rexWq3i+++/j+VyGZvNpjiIOEbGKb69s8pOEHRWdpLUBWib8zW2dR+Ya0PngbWMObyrHtuA51LQt6Sl4xn0BzJk/Ev9sQH8LOSXeiAL8N51beBev5vgnYgoMoy9gcwYW9Am0h1yPb9xWHk+8Z1LHg/6jHqbJzaPaKzi+W0OPOLk8CLQEJmwg9yyYbmnfshIDrLKXKztPW92yfal280zMxa3rNo5y5xifjGvPn78GO/fv69kjtvtdiUzHeN3d3dX0ra2Wq2YTqfFdvF5btiOnz59KuchfvPNN9Hr9coZfdhD7Xa7cpYZfYHfxVnQCMDDDmEueR6z5nqOfk3li5xnNsgp2eDIxcYXnZYBOQujt5UitLljuc6TzLnk/V7vOMER4yhSJi3C5ef7YHAvtI44yYS6hSsvFPaUZ6OHRZs2eEu508qh/NmqTfty2pN+vx9XV1fxq1/9Km5ubmKz2cSnT59iPp/H7e1tIVxMlrhPbCR5gYg4Ob2oqxUOfZC3qprUoX1epLiH/rTxbQOu1XpJo7NcLisRBIwBC6AXdBvHHHpInznqlTIYDCpjyuLgcafOyL4N+7qFwI4VFhAOdDSgymCLPmK8PffqjGY+B+ycnZ3FdDothzzaWF+tVsWBmB04LHytVqvslHx8fCwEnh0/EC2um+WW9np9MOFgxZqBKIDWys6OVSuyTGj5f5MjKA8rave5yTHuySDV1+U5xDUGsXmcPL8sH59bQ5vSlKY0pSlfVj63PlNs2EScCH3wTTbSXbjOaz36itQq3nHOtdnwNv7DeIqISmSyIxptlECkG29izDhNuHGGMVVdfxkDuNiwdgof0h+uVqtYrVavdJpxgJ0B4D0weHZkuo6tVis+ffoUj4+P8etf/zouLi4qjgbICGPqrFPBL7ZD9vt9zOfzWCwWZbwIFgIz8XfGmjyT/jfWiIiCMZEP6kmBIGKXGwSEswcgN+A60kY5I8bDw0NpNw5PDHyTEcaAjnhut9txeXlZzlmhOPLUdgt/027SQBkLYoOBHQlW4176heePx+NKwBvY3RkI3OcO+LKMGKOaXAJL82wTad5t52I86vXBxJrvs0PRfeWoZ5+x6/WFsT8ej6/SNeUzZiA2samZ59i5rVarzMdut1s+y/XPxfM0Y3b/7aDJpjSlKU35OQocAbrPa1LmUxxIm0l9sA5pBuFbHCBDQE3meMw7mExnbUcH8T/p+NB5g8EgfvWrX8V4PI71eh2LxaI4uezY45x5c4Hm7NAD4DLqghPLehre0zqE/qG9u92uONzYJU7wjwl+Y1t0GQQ6wdY3NzdxcXERf/mXfxl/9Vd/VXaggf3MxaDzfaasg8Xhw8y3mWf2bjvjETt28o4Z3o98OHDHgUDG9nlnjWXJQTs4G41VvROMMTTO4HghyzNcmzFyxsceBxdwZ3Zs4gQxX8W7GQsHe2Xc4D73bjVkABvE9aR9mTvOc5Vn5KA3cCPvw5FnZ6HxWN26YCxrztr957E3VuQHW8NOXZ5n2cpnJLqY80Y2zJuSYv7jx4+VzStPT0+x3W5jt9uVYDNkfDabxWAwKOPnej4/P8dqtYqnp6dYr9fFCfv27du4vLwsY4FjluBP6o/vgDqzZrDjNeLFZmX9ct8Zp3tn59eGI79451kdyYuQRURl0aB4gbMTIXecO9jf2wFi8pzC+UdEWPg5OSLVZHkWaBuSdZ5oT0j+d/1tWFvgHCnpHVeeCCw+dtLhRMMgctTk4+NjbDabYuyTCgUjabPZxHg8LlEQ33zzTVxdXcXbt29jPp/Hcrks5w14AttYZCEy4cHCigIwaHA/eGdSHnv3P+/lPSY0shGM0Yg33pPR7/GkhFhgLOws88LdbrdjMBgUEMWzicS1UsX4tUK3POVICjtc2NEFWZQdV3mxhzSxMuedec71er2YTCbxzTffxLt37+Lm5qZEKzE+1Gm328XHjx+LDHibMAVlsdlsCiGGLJswcr/aeZnnjKMw8ry37ORixYnSArCiYJA1E3As8sjR5wC2lWJeyC1XJj+5lz7wuuFooc89y23l3jrSoilNaUpTmvLlpU6nuJiQQDcZj9hx5ghGPqPkdduRnDakbUyYtEd/8b2jR73znShSHDNgFwct2XmR+8BGGPoc3ci9kDFuH0agjXz67XA4lB3qo9Eo5vN5yb/PtcaIxvZ2qtlgNX40jlgsFvH09BTv3r2L6+vrYuhlx4udR+Bm2ycZCxwOp51Bq9WqGI84q+wQsU1COxg/B9Xk/1utVtndxpjzneXMu+ftZOJZGK0QNdgJOOMy1nDhXd5BiFMt23LT6bTsfOReMCvXgf1M0oEp2WmWg6loM3Un4p328q5se9FvvMtOMIgWz7OI044zzyHjYcYOnIwNZVuRMTYR6u9MyroPvYYwVk6RhE3A80xuMZbGuIydSQkCKZEP7CPXr855jWwY0/oeyzzYlus/J1tNaUpTmvLnKvAe6Efv9GWdNM/HNeg8n/X59PQUd3d3sVqtyjrr5zlLlfk73mOeD93GM/jNju9OpxNv374twc3D4bDo2d1uV1Iz7na7cm8OCLHO8E4YcOd+v4/1el36gp3kPtaEHSnug4iI+XweHz58KOmVeS994V0xtJV64Nyyvry9vS0BYZeXl/HrX/86fvvb38Z6vS79B0agzeYCI6Ls2GKsrZOoXx1hbywJJrCTJztLnD2Bwvgak9ppQp+DR0ajUelPskXQT5YhOy7JghARlZ1CEae0lTyTPiArgTckGFvZGWrnkO2XvBuMdJa0GXk0hrddkeeZOcHsePJOM3N1xtDUgXZnJyaYh9/IFfc6M1h2wnrM6Etj7ezkA49lWfIcZD5zj+XBO/S8G46+o3hzDfPr4eEhfvzxx/j06VNlA5JtSXaNGdvudru4u7uLw+EQm80m+v1+6R+e68xo7DjNKV293kScgu2Ys14HxuNxGXsc85vNpvg8bNvSXo/l11S+yHlmQ9YCZqG219dGGIKZnSkR1bQqdl7wLoTCzzWpYYPLitLGJward3+xaNnbnBddv4+/vdU2t8u7oZw6BYdCNuRyxKPrzMJqQp4Jz9bq8XgcFxcXxTBDaTGp6BcvJhcXFzEYDGIymcRms4n5fB6Pj48lYsULvJ1AtNm79Ghr3lHnhSgbb0wWOz02m01FXlhgnNaSdtjgtaIzWeGdWnUOPhuSTHAfUt7pdGI8HsdoNCppAlmk845EG8ReeDw3cJh5obVCzqSIP+czG68s2r1eLy4vL+P6+jq++eabuLy8jMlkUkl95FQxz8/PMZlMSg5rQBULJ4s9/Ui0MO9FKdiR5AWdcaC+BhyeR3k98d9W+O12u2xDJvLWssB1yL2fb5Bg57ujn5Fr2maiso4cyA5h98HnHG/+P/cXbfaa2pSmNKUpTfnppS6AwcS2fxu/Gkfm4JY/RCj72RABTpWMIYV+AfPyHrBIjp7E6QJJTv0war0LyRGZ2TA2lsYoND63kRtx2nntqGvrXev27XYbZ2dnJf3fer2O5XJZSAHrx4znI6JiZNKGfB16crfbxQ8//BDr9bqQUPQxYwN2ph0RUeyAXNwuOxPoQ7CaHTI2uo1veYbrbkeZg2tM5rmNDpYy3qRfnp9f0ghtt9sKYWcMSr14FsGFYDJH/zJ+1N2Rx3xvsoJ2E/3K+Pma7XZbUjQ6QMjz5fz8vDju7Bw0xs+2CP3PszxPTAaZqACPe+7l+cVzMy7PZGidvFA3n1Vm2bKT005X6oyjzFiY8cmkD9/Tr5COdpy57p5jdRiT55gIc3/SdjsFG7zalKY05ecug8Gg6CPOBos44QvjKQrkLtmd0J85XaMdIxHxiqvjGtZcpzk0r8Bz+v1+wSn9fj8mk0lxnMGVsBPkcDilSEav48SgsDZHREVf4zBg1xfXQprT3oeHh+J0AXvt9/tYrVbxww8/xO9///vYbDbx9PRUdsuh4+ELI074uY63s0PxeDzGbDaLx8fH2O12cXV1FZPJpOgUgoH4frvdxmazqeAU80zm1xxoAq9qnWZeluLdXr7Wf8O3GmfXOcBov4Ps2Y3D+NkB67oio7424uWsX3AQAT3WyfB1BM6Zw0a2h8Nhpe12sJrHpg7Uk+A8t+/5+TnOz89r+Xk7Nb1zzfw49e73+yVbmnFyxmdgGPCuOToHpVGyg5nf2UHnsc/Y0TZQ5o5t+2GPWc7pD2Nm5pkxlblQ5p7n9MPDQywWi/j9738fHz9+rPgJIqKsN6SatxOS/iElqv0F7jfbraPRqGIP0peTyaQEEcKBM9e8GxBHLwX5M6a2r4Qx9vr8NZU/2nmWyWQvBnXXZoeSFz2+d/Sln+tFwJ95wvJc59vEC0qkKPd6QbIzx+9xHTAUvPXQEzsvoC6OpGWyQwaw4HknEJOZ3U0sAK4XfcyWaS8Q6/U6np6e4vr6Ot68eVN2oT0/PxevM4rdzjwmP5G1pEPc7XblbLaIU7SxI65tuHrhpE60izF2BIQNbC+G9E2WEf5nbJ2iEs93jgzwLiieTb0xcOlbDFq20TM24/E4JpNJ6QN2iVnGmfh8j5OMNtuhRz96Ibds5tQ0AD7LNODp7OwsLi4u4s2bN3F9fR2TyaQ4mEzoPTw8lPFknKgbbaP/2KLvXXWORPCczUQRMm7nKO3IKTgtM56PWZHRf8jo8XgsoJI2WsZoB+Oeo4t5B31t4ot6GDxRvO5kQtOALhOyyJwjpPyZ2295/5zTrilNaUpTmvLHlbyefo70tUMjIl7pJAe8WAdk/GcsCRZZr9cxGo0qz/P1GMDgSTu1/HzjGpP41AOjBZyUDT/XCf1sQxrdauPPzgsb+eg1nu1MA61WKwaDQVxcXMR0Oi0HWRP5bDwRERVcxPhYV+b+pxwOh/jw4UNxoL19+zbG43EloIVD7+kbOwG8SwscgSzQP36X5QknCQYwP4yNI98dAAaurnuPcQHvYMxt3OdU2Y+Pj+X8AeTFDj/q6Tr7uYw/NooDjJBfdhGCg8HwkGsRUQg1yC/PKbfTZA0R2tnxmeeTCSfbIPS78Sj2hueLiT2n38xzEvmgb1wf2yrgPxfmbJZRMLtTZhK4BgliR1e32y1jDNHBuGXM+jmnGHU1ueR2GLNmMoxneQ7mdbTBqU1pSlN+CQWHi3fGs94b46AXCDput09nmG02m7I7Ku8YM48AF2Z9lPUWv40pzs/PYzqdRrfbLY4zdowQmE2Qc+YjqT8c3uXlZSUrQOYTIl70y3q9LlmL0NN25ORgqIeHh3h4eIjb29uyA8+p+LiHAs6LiLi4uIhWqxWr1argLHgv+hFMinPv7u6u9APtODs7i+vr68IHck7qYrEovJ25Q/R1Hn/q58Aj4030qYNlsm1grsvOBjAN4+40zfyGB4O7Qvb4zffeTEE/+KgeBxTlQBacKPCWBCKxi9FY1fxtDjSn7WA+5MDYG4y32WwqG07oE+MXywjf2akdEUU26DNjQ9sqPlrHdgk8MnjVY2C58HzKAUDmrHmn5Z3nUadOp1McZhFRdv3RHvCxZQNc7vHgneYsuf/x8TEWi0V8//33cX9/X1nDsj+AnWer1arUDawLbm+325UjgpyVwL4Wz1vsBBxr8MDIPTtAWRu3220sFot4+/Ztxf7bbDa1/gFkjXG3vHwN5YucZxZs/833/h1RjbpAcByNmYnmfD9/21Ppz20km1SPiHJWU76HCWhjHCHgs6enp6LIsuc6e8ipB8ULcCbVeY+NIUh854VlEbTiBQx4mylG+X6/j7u7uxiPx3F1dRXT6bS002dVoWS82OGoIUrh8fExttttrNfrYgDniFTudds+R0ph7PMu8ut623dElKhYoim418/fbrfFgQixkB1uKAJIpHb7lPaQ59A39DMOGi+Ok8kkBoNB6XPkkDpZAdn5YfACSDG5ZAdNdhR74eN9Bmxv3ryJ4XBYdg46kthbkyHk2Dbs8ZtOp3F+fl7OwVsulwWU+Yf+d1QAyh7Cgj51FIfbnOdNXdtNrvBOEyQQOTkS3vOVelI/R1O78Blt8Pd5nmbCle9yBJuBmslPr0WZZPjcuuHfTWlKU5rSlJ9WMv7zZxnDWn/zHet7DmjydXU7mfxe8ssT1JUNioioBMaYhMcYQ+eic8CSdpDxtz+zfrIBTd3cptwHpAqHlDCuBasQbZ2xCtdBVl1cXBQSBGdMHQ5yMFnefeb0H9TveHzJWsAutG+//TZubm7KM3BeQPw4CtK6nELb6BMbxIyD8VqWLWNB6m6s0W63K4FptkfyONgxmskxG7PIGN+Dd9127veufjumTEyABx2BDH5F5nGcEZzldDBc47mTbbZut1txGLsPjfUgR+xYsq1pzE8/QjZwLSQNY4sMZVLC5IRtVn9vnOr+oCAb3IMdZ8IO8sfORXaoEsVLvfMOWPepx5XnOYDNJJHHGNlFRjI+NWnktpjIcyBZU5rSlKb8HIX128UEb0T1XDR4HpwV/X6/kL/z+bzowzq+ER4Lh0UOOPIOK2ODdrsdV1dXJZMReIhzLeG1qC86w2utnQO0Ed0O12NdhR4HH5n3o344SXq9XnnGfD6Pu7u7whmBOzebTdEZBMdYV6K3rq+vC6+Gww+cZf4TnLBer+NwOBQn5na7jXb7JXh9PB7H9fV17Ha7Uq/lclnB5eAD+ir3ATrY+sw7fRgzc3k81/jIAWfoUXikjP/R9WRsQlZwptjRFnHSz95xyP3U2w48ivU9GaZoE8H04FAwV0QUWeJ7uFXjRZ4PLsU5yWf0Wz7mxmep0U+WWZ4LNmNMLCMZ09BHPN9cfqvVKvjUWCk7yKgLzzUOpr70HfexTmB3DAaDSprXPBZZrhhX+s1OK8bNuGq73cZ8Pi+2DM59no/MZPsO7IhcmZdlvAeDwSvb8+HhIUajUSwWi5KRznJmG4zxZN7Ct/L++Xwew+EwxuNxCRQgo5llmmf5/izXv/TyxWeeUbJiMQi34WEFxvU2fpgUKB1+WKxYoHgGk92LpxfKiCiGHYrSCxCEAJM6O95QRt6SbGXodmcFm+tmQj7idW55FuLsoMMLTJoeFmorZxv0LCAI+s3NTUwmk9jv93F/f18ikamDJzF9R5QEP45e4NBQ908mmWwgsgh7/LvdboxGo+JpRqlzaCELBXUxmMAYxGnGQpSNOBuGOLciToslfeVD4U0OmQAySZNBkR1dpDVkIcjGqAkg3pEVDjKQ51ar1YqLi4vKFn9k+Pn5ORaLRamv7/P2+/l8Xsb2m2++ifF4HPv9Pn744Ye4v7+P9XpdUUgsbCY1WDSz0U97ASQsjnzOd8wVk3aO8DX4RanTX54nVprIscmVTAh4Tho85TXI787kaH53HiP3Q911niNWenWEWN29TWlKU5rSlC8rdcbw59Z/fx5RPafLOsGEe929eX2HmHh+fo7hcFhL+GSMm412G09uA1ik3W4XkgTDz4an8Y/fXdcf2YAlHRKY1JkTvAvKz/TObgKz2I1GqvDlchmbzaaMj1NNo7ONkdHvRC4bZx+Pp7PQ5vN53NzcxNXVVfR6veKkoT52xvC/sQRYG9zsKHbGx7LB+NQZuIwF1zgylYhgRyWDm+lDMDiYmnrxmevD+yxLvI+2Gp/R55BsxtUmHXIwEO94eHh4dbadbSUwnnEbAWoEfxnrmoy0QW3yxTJv5w519/kijC19m+eOiTbPaztIfVabdzXYfvR8or95Nw5xO4eJhmd8bZ9C9NFfJvYsVxTejU3h7CLGpp/DxLTVdcjkHveYqOPzpjSlKU35uQprs/moiOquL9Y2eB/WV/iUp6enWC6XxanA/caODhZmLfSOGPimjLHa7XZcXFzE27dvo9/vl7M9IbNxUsG5wa/Bt8B/Wod4p7lxkh1uOF+cccoYFj3FTpOHh4fCF5G5yliANq5Wq9hsNoVPHA6HxSFkXguc5l1l6EwwDvUA456dnZV0jfv9vjgYp9NpTCaTuLq6KmdAwVnZcRlRTSWedbP1mTM9cQ961ruBeIafz/g7eMXYIp8ZRl+S+o4dh3awmZtCJ4M76R9ndKKOxqpuH7uRqBsyYT681XoJ2jG+ol8zJwmWMV6te55lMjuYHOADD+zjeurwjTdHePdf5lndhx5j+s0+As9tB/rzXHAeXLh5YmNgp8v2DkfmTURUsLA5YuSH8d1sNvHx48e4vb0tjjMwJ7iOv7N9R4r0bIthE8Lf29FNBrf1eh2tVivevHlT6sN3Z2dn5exiZABHO//TNubx09NTjEajGI/HsdlsYrFYxH6/L+lhHcBl3Pk1lS9ynmXiOTuSWMQsxPneOmdBNkYo9gbnCW1lyTMtHO12uxj9GGZWHl4Qs5PE9TUp7kXZC7aNWIxHJrvbZALHCw7f2+BmorXbL5GqpFfkMy+yKCny0WLQTiaTuLy8jNFoFLPZLObz+au+aLVaZQHnzIper1eex0KCk4jJ5W2q9i7bKWJDmOeYPGJnF/XKMuM+wlPt53r8HbGMPLLQEzFgAAIRFBGVz+lXHFSOeracPjw8FMeTCR8bo17AWQj9LhMGjnKg//v9fgwGg1cRJF7gPJ8MntjSu9/vSwQPcvDp06eYzWZlKz/gjLbS/oio7ESzonDaHPrNkTKsCyY3MpChj/LiabmzQvXcdnEUQ3bCo3j8Xjs0szL138zJTGLURcm4TQC6/Jx8LeVzZG5TmtKUpjTlp5Wsd7KDzLg2YwuKDSzfl3VRdnBFnAIw2Mk/Go0qWQPQmegN19P4wYa0jVMHHFFysFrG7LyPdmQd7OwIEVGpl3W8DSjXgV003nXkNOHT6bRELM5ms0raaI+VI4LBdHZqUAfw1dPTUzFA7+/v47vvvotut1uwHs9wZgK/x3aKI5YJ7KKvTEg4kMfOHeTBzgsiMI2rwHqQSuz29302uMGNHhfLDnYMGB0cnJ0nEVFwJDLEe8E8YElHuT8+PsZyuSzOz2yw5/EzIULqwuzAzA4sxtJzg/ZapnIkuM8O8zl9tlVpm+XYtibzkmf4ndzH+LvtXOO1wX1v5yoySBuxydxfEJu0w/PUNoOd68gd9ovJD9uv7j87Kr1WmljymmkiqilNaUpTfs5i3WH9Y3xkHGUOjEB7n3UGj4Lt78ADnHB2njj42PU4OzuL8Xgcv/3tbwvmw3lijimnDmStx7nmDELgBq7z2UIEavT7/bIbZzabRUSUHTPoF3NPh8OhEOxwfLSHwKKIF33A0S7oSe45OzsrDhucg+fn52UHGUE6Drx+fn6ubHBAT3Y6ncJNHQ6HuLy8jMFgULjMi4uL+Md//MdYrVbleXZcmqOlb839+ngT61PamHcmGYvYscX70MXgRNcJTox34RwcDoelHg7cp//MOfMzGAyKY9UZHhyolvEscsX7cVo5EA28yftpK22AX2Y+Ma52YsGpeYc99+e5RNvsnKVvwT5ca9yWbTU+b7ValX43325nF23zM+gf2tHv92M4HMZwOCxzttvtlnEDT+XMY9mZaUc8/e82cQ888t3dXXz8+LFw6LYjGftsu9pRh+1FcBpzm7Yfj8eSvt5OLPwLjCFzmx/GkrXKwVnImbE5ePX8/DwuLy9LOlr3kevvdfprKT9p5xmT2QLMxLFB6YLw1pENPMOTyFswM9kRcSIHbLiiEHxYIYsdgosyYNLmSN+Ik9HgLYv24ntC+/3Z+eY22FCrexbX2Lh1xIfrb2PQCxUCTv3n83nZtUS6Pi8CdjrQT+zwygYvkcPUg8kKIcTn3t6M0WeDcLfbveobDiIFWEREJQLXRhygwdGPLFjIjwkdjGcb0dTPi1uOKrUMoGhYOFarVSU6gHajaKzEkF3ADI4q+rXVasV4PI7hcFiij5wiCWegnVlWPhj4KGaA0/F4jOFwWA5lfXp6ivfv38fd3V0sFosyxjboSVVq55d3YLIIoxys6DxPTcrRF1ZqNuD9Lo9LdoRxvcfN9bLCNKFkOTH54OfYwWcQkt/NMyNep/XKBOXniIU/RDhkkqIpTWlKU5ry00rWD5k85nOKjSs7DqzHMnbkPcYQvoYCfnAwTw7Ewlh31KLvz0ElGNQmDlx/O8oy9rHTBeyU0wqCjzCa6UM7Z8A1DlaxDkVPOr0Iz/vmm2+K82y9Xsd8Po/FYlHwCLjWjjswJJ+57RGn8wDev38fq9UqLi4u4vLysqQNz44K8LsN/ZwGJge/2IGCsekdbHWO2YhTQA7GLqkRMXxJJQ52cUr37DTk+XYEHg6H4hRzMCNOu4yBTFo5gt7XPT09lXTum82mkHp2FHoeZCcapCNOQhfbQXYQ5+881ibhkDWTg8iaCQCTZ7zL9aaedja52OZ1fWwrOTqZ91g2sV+m02kcj8eSGQRCFjLDAYcO4qO+EG7gcAdndTovaZuwz0xyUZCZbJNnDGqih77/WkmPpjSlKf//KuYk+LE973XLeoBgmoeHh1gsFmUHGGsbep3nO1gcLgl+CP2M/h6NRjEcDksaw7dv35ZnelcZeIvP+SEjE7vhTFx7HQefoOfh29gd4qxO4FgC7LmPduGYM6frfgBPOTUg/YwecEAQu9Fx5r17965wkNYppGkcDoel/6nfdruN3//+97HdbuP6+rrgtzdv3kRExN/93d/FcrmsBOzXcav0tWWAM5fM1zG+GUsaK1qP28HGGES84HHLCAV9u1wuK0ExOShqMBiUjA85wAsONwf9mL8G74Hrcha17XZbCTQyDkQmwVPgDJxTyJfnGlgZThmulDZTB+9qszPJMk27Mtb3/+YGPebmgJFH+jai6pBjTO3onU6nRUZZG5hH2+22cu4v7QYvw8G6rrTd3K/5+f3+5Vyy9+/fFyc3G2QYW2N3cGDG13Z8eddc9sPU4XKc8nY0U5A/xszyT934zH4BngXvnH0KjLeDGb6m8sU7z7IxY2IiopozNE9wC4KJBSu4vNDZ6eRiTy+Cmr2+vt+Grs+K8hlerjvbEBEQOzRMoNi7m/vEf3uBdj96IaCfvDOMSUaEx2AwqEQBsODSH0xUztkgp/HFxUVcXV1Fv98v29e73W5RXrS3ThGxCOUDWVk0TCAxSegromoNcuzsYkFwuj2cY3awEG3hw9cdqUBdbPgjGznSlWssWygzk1MmgTiUlqhbFAmLog1L/na6Jgze8Xhcxo9IbJ7vhd5ybocedUPx2blLmyeTSUREiVj68OFDIaRYyJAbAACLXqt12n6fdxIyt+iHPB+oT57j1JF5kiNTcpspdkwhC9SXRZ16IT8Gc8wpO7o8Hq53XmMMkHyeCNfameZ0DiZ2XD9/7+f7b/dnU5rSlKY05acVG8wRVV3C/6znxoN8x29jQzsLWLc/t2Zn3WZjkfQ7xolgExMj2dijrk6lbBxtp0verW8nWkR1hxlOFwePUDAyIfepD8Y4gUoQAsbIYAWeT7QxWPxwOMR0Oq20n2jwu7u7mM1mxZmGkUgf2VbwWA0GgxiNRrHf72O5XBbiZzKZxGQyqaTtoRjTZBzP/3kMLGOQD0RagqXoF8gizjhhjOysZGead7q5Psa72fYyAZSxpAkeBwl6nvCbZ3ANThiMaWMo38s78nyLiJJFgXdbFu2ANXZEdhln5g5OZxvvlinwNHXLgVLUyz/UATuizrlURz4YQ7q9HhNkknl/PL6kwh+Px/Htt98WuSMS2XPTuxCpE8/lWjvKPT6Hw6Ec3O62U0w6WZazk83FOPlzuL0pTWlKU/4chdRiDpKwLnEgfURUAlTgj9g9bWLe+pPnoLOM+5zKmmxN8FAESVBarVZJ3YgD5/HxsaRLZDe3AyLyemyOyVwVnB/cjknuiGrwNrgtIorOMZ9BkA26n7SOcIXGQtxD3zowhXpsNpv4h3/4hzg/P4/JZFJSWMIxHY/HEuRP0Af3Pz4+xv39fakfZ6q9efMmDodD/P3f/33FGWl8ZI6H+3M2sLpAHetDt9eYFv1KH8A/H4+ns0p5lp+N44k6Pz09VeTGnGPm+IxtzEnB/3oOmBMEj3c6nYI1nT0sIkoqSa6zY422GhfRF8yjbFPh0OE38gyGB3Mhw+Zejd2MB21zmB+mjzIvn30Q9COYHFtgOp1WUrqyCxOe12cKmnfMvCDXUi+32xtgmKvL5TI+fPgQm82mMseROfrRvgm+d9YCnstaMhgMXnHt3oHncjgcYjabFedhlqPn5+eyJhmX4gcw7w9exu4cj8flmsViEZvNpqSEpR/cf19L+Uk7z0w2OPqTz5jQ2ZtsIr0uWpFr7EiyAqNwr408yIi8WLE4OjKPRY132TFm7ykD7G3UNpa8oNkR5n6yY4V7c9uzgWJj3UQOnmocTNlIdfQuTizuv729jbOzs7i5uYlf/epXMRgMotPpxHg8LgrSE9vtpR2MrSMGWCyISCCyBCMOBw2LmxdgHzDudjOBKfQpUZQGR3aE8QyPA+MMIWGSxcSIFa8PePS4UWf61E4hK2SUvx1dw+GwgAP3G5E8AJP1el0A2XA4rJA4JhFolwkfzkUDgGy325LCiO3BKC7y+LLIe8em2wMZR+QxfeAx87jmeZGvs8PSSjGPYZ2z7XM7W9vt025DE39ch/JD8XnRz0rKpFj+3IrH7cnyg9y1Wq2KMzk7xzLxlYmYpjSlKU1pyk8rmUDPzrCM/bI+y8UES0S8+juTynxmTAxedQSqUzkaY5ogBzvYceA25ghAHIIQOrkd7iOK68i9pN6xIR9xwvQ+m4DnDYfDghfQkeyMd9AV2IzzM8Br6M/tdlucaavVKmazWXz8+LGcv+G0NZAFJgwgrXa7XTw8PMRsNotOp1Oiw3NKb9qRnWcYhZBvGLA24sFR7kMwa6v1coYtBuZ6vS7vYFyRv+VyWb4jlQzjjkFs7JJJQjtRbd8gE84QQQEnYQcQjV/nJHEGD9tXtrGoB1kVjIHct7bZuN/y7eAjkycY645+jTilr/LOvIyrXM9utxvD4bCC2Wifo7zdrmyv+hp/5t1jmQBjnjIXmKOMjzOksCY4EthOXNscdjwyZ3Ggeayoo51ovMftMQZ2/2UipilNaUpT/pylzqY2pmMd9+c4bnDsgCF8P2s0a7b1MOncrIt4l4Ny0CnOODSZTKLdbsdisYjFYhHz+bycPe+AFXMl5hcz3sjtzfeZP2y1WoVn4l7zYE711ul0Cj9H6jXravcL9fNZuFknoqfu7u5is9nEeDyO0WhUAr3n83kcDod49+5dXF1dFY4J/Qtui4iSxvG7776LTqcTv/vd72K1WpX3MebUy7wf/KKDUjLmhn80B4veNc+Ug6coxh3uC+N/B/9nDIiOhudljJwSHWeGg3LAEd4ogOyBX8Ed7it0OzvmwBO8iyB8vrNjkP7IGJY+YxzAQMgTxc5a+gVM63lN37vPGTOPLWPqAHbahx0zmUxiPB7HdDotTkPOBzwcDhX+HCzmoDRziOBa88L0HbKGk5zxIJjv9vY2NptNGTM7rWzL2AbxOuBNDowr9SAtKOXx8bFiB+RNTj/++GOsVqvyTM9n+sE8K8X9jJzZRiVoDtuCfvWa9rXhyD/aeWZDDcHJBLcNFC/m/J0NUzs4GKCIqpeY//3b4B4j0Q4Oe7EN+l1fKz878PhhkE26WCHZgePBZ5G0U8HCwvPcJ3YIsJDaKLTSYhspi6cPxyZChMUjOyF2u128f/8+np6e4ttvvy2EiImA5+eXQ+0hChwd4P+dLxkHzGq1Kgu+HT0sEBGnA+htfLsvABAmB2gDO7aszHyvSQuna7Sz1e/BwM5ybocOz/MiQaFfsoOTRQYjnroQdYESYIxccFLhBDNIarVOO86oG0TMfr+P1WoV2+22HMa+Xq9jsViUxYy+RD6JuDJRRNQ0baEfiBrx/Df54bmW5c4gzf3pPvc1PN8LPPMIGWI+1xEb1NfPsuJjrAz0siOPz2kLpJZ/3Abu9fMdAZ4VhBV7loGmNKUpTWnKv1yxEWtcC1bLuh49b2MTvWcsmwkDPkMnmXDxO8FExi3oBVKheEd+RFWH2ki2bgEz5WCTur9NpjvSOutm1wFMYmcIeJA0LrTZB1HTHmcMoL8IHoqIsntsu93Gzc1NPD8/l/SBRFouFotypq8D6HgWpJb7+3A4xKdPn4oRenFx8eps3EwsYYzmgBgws9+L7uczIozBg3y2XC7LeNF3jnZ9fn6OxWJR6mbMgLHtNOA+OwPZI7Lc6XQgMDhLAceidypmRxb9hlyYPMlOY2wfMl3YgUifcZ8xbg5cMmlQZ9OZcOB/5CmThPxNu3ymMHINyUBdnebSQVkmEY3j3WeQH9zjiGo7nI1RXbge4jLLCIVnMS77/b5iOwyHw7LGuK5eR7JzzHY1bfE7vW40pSlNacrPUcypef3KesbBNGAByH3v9s3B1hGngJjRaBSj0egVzsk8jp0X6Cue0ev14sOHD/H9998Xkt48i51X1nXoBgfJmK/kvbwz4pQxqm73NJgoc5tPT08FZ5LSMnMs4CFzJf4eftBciMfn8fGxHB0CX2WC/i/+4i+KY4zAKRwQd3d38fDwEO/evYtWqxXv3r2LbrcbP/zwQ9zd3b3C1t4h41TaxuzISO4/ijE+bWA8cCoZ22Ru0pybcSP9GBFl9yQ42bJtJyDOq5zmMgdfO7CG+nO/dwhhc5iTBt/jFIKLBj840AyMZAcS84yx8HONceyIpJ3GFebhzM8Zf+Z5n7lJ2jgYDOLi4qJk/gIrE1hkfEudSX+K3HAeGHXgGeAt5hzYlQ0M8L7g79lsFrPZrOLgZd0xvqON5pUtT8ax4DP6mE0ZrFHcZ5mxbEe8OLAtQ+Bo5HEymZQ55XGhrbYBn5+fY71eF7tlNBpVnHyku/xX4Tyj0DkmonO0gQnyOlCei6/3ApN3s+QdHI6wiKgarHkh8ISLqObdtPPA0YbZEMsebp5r54kVq0kMv9NGixc+BNOOREdA8D8GMcouEza+h0UUYxYQMZvN4ng8xng8jk6nUzzo9KcjihFw953HjfpYRligXfe8GHCtnVo+M8CKGWXOwmJjOeIU9WNnmB2dHrtcNxNlGLleuO0s8fZVFmcrVGQG0ganJAuY28ciaOAEOCJC4fLysiysgDIi1hmb7XYbHz9+LLvW3r59G2/evCljbmWMzADc7Gj13MpEiUkNyz//1zm+Pe75XuQ8AxOehVLJhAyAIxOWlgn/hmxjcWfxNgHhyOd8r2UgkzC+1t+7f1DGdlJmUohxyUCgKU1pSlOa8tNL3bpqA9D6hOtNUNjQNVY0eZPJZQc/Uep0ig16Ik9NcnC/o0Gt09Gz1sHgPOuo7DSjzs6EAN7Nu9Cpm1O90CcmKJzaG90HZuUeDEFjIuNUE/VgHQ6HtwHe6/Xi6uoqrq6u4te//nUJHiNFCGkGI06pRoxxaNtms4nValX0MA60HADF32Awk2TcR1Q6RjPtZlx55nA4jIuLi9jtdiV7AP2Cweu2OmoT3ITcQexRv0w20G9gVYxXsG7GwMij5wLvRWaN83iXU2Flxxk/xk/89k4oByVSpyxDHsccZMnYuQ2eaxEvDtnLy8uCjcHB2Xakf5zdIc+JOvvBGM82ab/fL22F3GDeOoK81WoVosbzBBlkJ6dlw3VB3kx00Gdez/y+vP5lO9vF62JTmtKUpvxcxYGp3jnLupYzE41Go6KnwDqj0ahwYJ1Op+isiNNahy42N+XdzwRcOKiCNdRnYN3d3cX3338fq9XqVaA49c1B5XY4WEe7mFPj3ebp0Kk4S8Au6GTaiVMFrIlzgDajk8ypuQ7Gk94xTp3NtcCLrdfrWK1WMR6PYz6fx36/j3/37/5d3NzclHNSd7tdzGazgpeenp7i+vo6BoNB2Yk2nU7j/fv3JSgcOQD7gSndd5m/ze2q48CsQx18h64FG2YHpTG45cX9k7FSbofr4UB6guPJ9mAnIu8zvrGMWIa51uPGe5Fh4wICjmwLgclw9IEbwaHIIeOSnTrZCZOD4Wxn0W+Zp6W/W61WTKfTIiPsNKOe5lHpZ/Aj+I9rR6NRGWfPf+rg3f9k+iLIj89wnJm/BsObn2VsbXtmnpU2Mkb+3zu/kBU2jPi5xnHGj63WyXG63W7j4eGhzNHLy8uKLYxNyHMYV+w47BNwNP3CO7628sXOMxPi2TC34EdUUzBmYpuOtfHl51Py7rCIKknge+1JxohkMtiYYaGwUUT9ib50RKWNBS+uvB+hZvGIODlSvAi4HRhLWbl7EvPbBhl96IWCa+yNz4s+IMELus9E4/ytfMg2i5zzItftwup2u6XfMmnDd4yl+8gLZnbimIBiHG2c26Fq2aIf7cSiD1jQ6ascWUo9GH/AjL331NvOH2Qqb9kGCFmWvI3fMuD7ePZ2u60QAs/Pp23AT09PhSgiIiciCni4uLiozCXkmx1qbqcj6iF5TLbQPkfVZMMbGaafPZ+9k9KgKjvXs3yb2PNin0GP5Y3no6xNNvm9nof0j0kSt6PO6Q8AzE4xK3/uNSGa5Zp+ynOqKU1pSlOa8qctDl6wwZ/XYq6NiAq+y7vVfZ1LXTAEzwYP8W7rQQwS9K0NbD/XP+AYcFxEvDJM0E02Rq3zvSsq4mRwW2fZiRYRxUlC2pztdlt29IA3MexpG3Xw367DcDiMdrtd8Cm78e1UAo8aTw+HwxiPx3Fzc1NImd1uV6KX0dXgOc5PI2VSjgTFaCV6EmINB9hgMIjxeFzIC8aT9Ny0sdU6RQ2Dt3GmjMfjEt1tB4iNemNJExO2P9g5lkk/k39O5X48HkvWCQe1mRxBZpwqyvYZcku9ISWRCzBlHT73/DO2sozxLp9pYqeP8SvPpJ+ckYPxvLy8jLdv30a32y0OU95j3AjOdrCgCSc+c5vcPxljYrPgEHPb6TvbPsajPm8auQDHu67Zjsh41e/L72Ed8LXIV3bMZaKqKU1pSlN+rsLah66BHEan2UnR6/XizZs3JQBht9vFcDiMt2/fVgLLIdXR1w5+5TkRpzPlh8NhhS+MODk04MQOh0OsVqu4vb2N5+fn8i47YVzs2LADiGIdA5dgnZQ5Dn4cHOW1/HA4lGNf4IbAPDjTeL772DvMKMYlWc/YuWhsslqtSvD3crmMx8fH+Ju/+Zu4ubkp9SAImsCo7XZbgqfOzs7izZs3MRgM4uPHj/Hp06dKfxg/GNO7zv7fGxuM4/w89C3fg5McPOb+Qn7sDDE3GPF5/td8mp1rBNKBXR0IxLXcZ0ePuTTbBLQX2TX/5jGlLXas0k47UuB/we7ZkWhZsbPP/Z3tHXBJ5n4zzmy328XZg+PM7aHtfg9/Y0PR73CJm80m5vN52U3Gjx3p+/2+OM3ox91uV9I1Wrb4bWxpB5cDAjKfyDV2jJtjZs3BIccOTzt06QuC+z7HkT49PZUUt8vlMq6urkraS8tx7i8HW45Go/JM8Ozd3V0tt/pLLl/kPMuCauPAUReeuHkh8OKFosoOM2/19GA6asEdnp1LTAgUIIaA02Z40fLuJRsXJhZ8Hdf6uzzRc3vscLPDgcIiwzV5q6XJCxdHCeBdps0s6u12O0ajUZk87gscMfwQ6UGESkSUbdOQDl4wiVDxxDM5QpusCDxxbaDhUKI9VmY2YDkQ0Y4pOympB4uZDUGUFws5BICjfllMfMYHdbVHnR/q4XPoXB/q73p63Okz0h8BcJATk1XIFo4zzsAbjUbx/PxcFrnf/e538ebNmxiNRiUKmijb1WpVcXRaKRrwmFBBjhzdlJ3X1I8+s4ybZLDycFSVlYn7zMVz0w5Rzw9vqUc+vXb4t0smBLy+ZcLACtr1tEI34eB7clv8XUNINKUpTWnKn75kHcdn/GZ9R48YQ5kkyNGQ1vM24nJgiL9zkE0m5CNOEYl8bqwIZgMb8IzRaBTn5+fFYWWCgvfnyFrq0O12S4rHOl1nDOs2Q+6TStyEwWQyicvLy4I9eZYxVR1BRRCX00FC4IC5eJbtDKeuIxXjaDQq9z49PcXd3V0sFotYLpdlZxoYx3iIft9utyW1IxiXvzl03HiZnW84DiHJ7Ehar9ex3W4LZh8MBuWdYD3SXho35XRAxvdg2RzMg3HP3/QP55DhDLT8gWnc18yJjAFNQiBDJgRN1GSSMBNrEfFqnJlr2R40YQpWzY40bIXJZBJv3ryJ4XBYnGbs/LJ96bnp4EZjWNt3uX3ItmUTPIjzbDQalc951+FwKCk5sa8c/Ol+9phnjG47uA7f0i+2xeh/nun1gs/zZ7SvwapNaUpTfs6CI8zOIX68q6PdblfS9Gbi37yZ+Sg7pnLwAPrMfJHXXUh0OAoT7BHV4JNWq1VwUMTJ2cHudTvleDbXWedYv5qT8g566mFuab/flzPtuY86suPZgRR8l3dWWbfkOjMe1k/mc/huNpvF//7f/zv2+3389V//dfz2t7+Nfr8f5+fnsVgsotfrxW63K3p8t9uVI2iGw2G8e/euOOGMocwhZl0OnsgYC52cHW7mBD1e2QnFu+w04ztk0BsCMiduzpr3UNrtdsWpaZzi3YvGCXZygHPMyRpD8F3GP7TTmR3cH+b+XJfMgSOXxuB1NlN2XPLjADxf52fgeGVjA/iVdKvc67O+GBcyet3f38dsNiv8ad4BGBElcI15Du7ebDYxm81is9mUNjL2fl9dsf/BjrXsFM1cM3JGv3rtwSbxc7L/wmNDXQk+PBxenOw//vhj3N/fx/X1dVxdXZUAQ89/1gbLg+sGN+t+/BrKFznPbFja2RARlQnHgp6dTnSSDYD8fE86OxZsJPA+SnZCYSRa0WSv7W63K8Y512K0RUTF6+7Jh1Kx0en203YbF45qdr3cX150aG9uhxdxP4M+dh0QeiJnh8NhURAsKIwRuVk5VJrI2OFwWEgJIhpch0zMeKLTZogDio1VL5KOwLYjlMUamaBvGQcDGTsms5Mq4mSo4qCyAUl/OKqIBTGTMybZvJBTBy+OOT8w7/G5GvQJhnauP0Bhv98Xcox3kxYyA5zFYhHb7TbG43EBd5BdHj/3X92764gFAyAraMbJETkGG5Zpz+G6KN+8zd6y4nnCu4kWy0a+yR7X13Mvk4UmTfN8o0/4LAOSvG55ntQ9g/KHnHpNaUpTmtKUP77kQAZK/j+i6uzCQETP5ECQjF+NI7NTJ9fFBoUJ9ojqYfGuk6MRMWDQwaQissFCPXOwi3Wy8a1TVWeCnc/Q8eAlnuu+RPeRXme9XsdoNCrnDYA9wT/GG2Dw+Xwe5+fncXl5WaI2694BniDIyQa/2+jdcYPBoKSANAHmcXPgElgkIkq6PBwv7CbDFgCDcVZCu90uO9PI7oAh6h1aON8YIwequR22tfjdarWi3++Xa3NmAPdZxAt+IxIXg/f8/LzYRBjI7PajL91XyAM2QafTeXW2mXfJmSwx7qe/7Xjivrq56XG1XCL33e7LWSCkxORQ+MFgEIfDIZbLZdllCDbPpAylTjby/AXvGotCDHCPUxPl/yOikpIRu4Fx6Pf7FcLVmTc8j3M/2R6yLHie5f61XCH7xq957WO8mtKUpjTl5yqcNWod7DOczMtEnDBPRBTeK+M7fjsImICkzWZT1l6wm7EZ98BRZWeI12G4G+6NOJ15j271bnjvnDfHYKzJz/n5eeHv4LqcsQinkneVR5zOsHWaP4h09JJ5PnTe57iNrDuNHbNOzTjw+++/L3jrN7/5TUwmk4Itu91u2Tn+T//0TzEcDmMymRR5uLq6iuFwWALMwTTUG6xifOwAdfONfE9/Mybn5+cVvMSzCX6xYzNjfnO+7Xa7sinB/ch4o/ezE9d6GgxiLs2/HbBjTs8YFozlueN5w+edTqc4rUlt7ffndiMTPouVupmzA3sY3xl/GqPQ1+brjE14Nw5zsJn7mt1o9AFBTj/++GP8/ve/j9///vfFSYiMOJDSdgOYn3m22Wzi9vY2lstlxRllTOz+4rnGzcyX3Ee2z+wA5VnIIzwqfcWaR3243wEHEVGC+lhL7BRkPDizcLPZxG9+85tyD/PF7+dv7uPz8Xj81eHIP9p5lo0LBs+DngliXxdRNQB55h96lz3JBu9+di4MPtGifh7OB5P31AmniSNNMIYHg0FRyj5QnGdkgsS7k9wGJnY23mhfnpCeNCwoCDGOMerKwuCo3ogXcMEkiIiK08YGNorRZ0NNp9NyQCrFY5EXZxvFVjpM3qxIWXT52+23k8rGN597cTAgsYOmLnWM+4C+zODKSpD2eeKbyMEZyfsmk0npAyse5yemMGa5eFEkknmxWBTQcH19XRZ9130ymZRIburKQpWdQN5ijVLivXVzzX3DuGRyhOfnOW/wyDVuN/dmQoTreKYjrJinJlx4h99px3luk+eunWp1xEBW6iYSDWYNlnOf+90mDv2Oz62JTWlKU5rSlD++1Ok0YyRjL+t6G3bWs3kdt44xcW0D0u9EN2DEg2cy0YKh6frRFhwuThXNu2zQ2ei0zgYrgXMd1ERB31FHG+X8D6ljg9v9BhbZbDYlzSHBXMPh8JVBSVu3223BrvQlRBMONQgMt93jYgPTOGEymUSn04m7u7tK2j6wufsxH6ZuXEC7aCuYDQfI2dlZSUVEqkdkgKhfgvRsr9i4J2iK92RnGONmh40dP8bOZ2dnJVKUceB9xoG2WXguOBdiCzIBfJ0jqi1n7hswXe5v5oBxGO3DNuCdyAyR5qS/JG1nv98vJBpjQcocxtYySn1z35qAMX71OgBx4/nm+WN7rNvtlvmAnNte9RhCLjjwEEdanouuC/WzTJqA4h6vCXUY1E58r5WUjOmb0pSmNOXPXS4uLipBz+YjzBfs9/uCYxzY4/U47+YCM1DQfev1ugTeR1QDv4/HY9Gr6C2vxefn55XzaiNODrP9fl/0lNN62+FC/SjmyCjoRzAS7+MZ5gkdzJ37LweB8xs9ZJ1ubIvOyg6UnCrS+hPONCLK/bvdLj59+lR4wm+//bbwkVxLGjl4MrIdkEHr7OwsLi8vSwpvOw+RB+NlFzsl7ZjJbTVf5+fkHYHGuea4/Wx2LDE+YBDwL7igbpca1/ooFurIMxkDCtiNNnI/7cYhxI/xpjGI6+lAtjpnGJ9Rd2NUc+Z8x7V584MxSnYqWq7A2uwm4x5z+e12uxx/8/79+/j06VPc3d1VAvcczO/NIeYfwXGLxSLu7u4qjjM7lJh39JF3adFH2UlG29k96j7jOZlrzJyt64vN2el0io/AaemZHxHx6oxmgg4iIm5vb+N4fDlv7ze/+U1Mp9PSRh//Q0p+yzfj8zWVn5S20f/nQfMuEv73gmMDj2KDyYR5xOutvr6vjmjmfrbymqA2SWGywI6TiKgYhESzcA4Dz3IEYU6p12q1YjgcVrZc2yA1oYFw5/41aWOywg4LExbkwuf57Xa7RJfmqAFPftL5MSl45vF4LIf6DQaDsnABGhgjoiN9fpwdCo5gYSzdBgMMkwC8i8WYdtmT7r61bPld2WuPDOSo8oioGOlWiNxHdAHvJd8rCw8R4DhVkCWnl3FdDodDJRLDkR8RUbz67CJ7fn4uzsZ3796VSGbkEQev2+doZG8Bd3SIF7Ls1LHCdySW54LbVBeFhHwbdKDM6GMrAxM4JsYY+zyePDPXPStikyUGOdnhl9e5OicXbXFUjEmKOrLF9a17dn5vU5rSlKY05aeVjD9tpOQCzkB3cj/6xWS5SeaMTTNxUIedTaLnM5oghDC6cFyg141drauNmTLZYgM018V9ZWyFc8zGnoOhut1ucUpkEinilFYcYmi1WpXdVjhwJpNJwTJ+52w2K442+orAKDBDTpXkccMA5L2Hw8s5sJAC0+m0nBkLoZLHD5mgLbZtwEUQFNbzu92uIj/sFATzWgaIaoeU8s42ZO3x8bES4Eb/41xyEJmdPhBpo9EoRqNRXF9fx3g8jslkUsiEzWZTOZcu4hR8iMz7bAPay7kQyKSJobOzsxLh6h/jtOz4sfOH+rfb7RLRisw4FahTaNoIxwG7XC6LXEBu2G5iXLFZHEBoJ2TG7fQt898Y0G3zeHAtu8o8T3wNbSJYzjKZHXl57vrH92XnoGUz49ncVn7cVu5tSlOa0pSfqzi9oAn9iNeZYQhSYS1Dz6JfHfxQxxWwjq7X67J+jkajwjehg3iGg9wjojhu4HHQvzh2fOZY5gXs3OBznguPgj4hsIridmVSHYeYdZGxG99zD+emmgB3HeGRjEHgdsz78R7jSPNAlOVyWdkh/ubNm4IbzeURNE7mgnfv3sXV1VXh187Pz+NweDkDCsyTA0cyzjePBA5ot9sFf5kHzY4LsNHj42PZuWMnR96BtFqtCv4E65mXBrvTTvqcPjM+NmdqZ4wdnXZc2W5Av2d+zn0Ep+hzfPnOx+5QMi+X7Q/Xh2IezXw9/eGsDLTb77JdBjZHds/Oziopy3GaLRaLmM1msVgsSkpQ4ziez1yBiwW3R5ycuXd3d4U/x0lH3cGNXhvc9hx8ZrnKtqyLbVDaVrebEfuKe1iH6Dc2C7Ebjed5k0in0ykO/+PxGKvVKn744YciK1dXV6V+bDh5fHyM0WhUMoow5v8qnGcUL36OWnDJAx3x+uwGkwUmsK00rMQyyU1d6hxqGKykK7SRwkLNhHTKFRYGPjs/P49+v195n40NL4SHw6GkdiG9HsRC3pLp9rk/c8nEAArZytR9SV2Gw2FMp9PSPjuDMIZ2u105BBAhtgecBQLn4Xa7rXj/6QtStgAIHH1Kva2k3Va2rttBkwkcjF6UZZahPA4UxtdttlJk0efdVkS+j8gXFhzLIgug09agVFwPFgsffu5CRIhBGEDKi3i73S6kQE6/GfGy+yynL8zEE2DETtU655GJABZZ97tJQxM3dY5p6s692ZhncbVyyYDRZKDfm+cQyiw7V90ffi9jRN1M8mQwlwlJO81y/9SRs26HrzPB1JSmNKUpTfnpxdgyr7V5fc66wME8+XPrJRuFxqPoWGParIu4zkYi78Ip0Ol0Cga1EQmeAs/y/36/j8FgUA5YBzdaTzr1s/V/xuPZUehnZN1u/JrJAWNBArWWy2VxjJBCEOMbAmG1WkWn04lf/epXMZlMSnCQA3Bov0kl+g48Z0dPp9MpaY0mk0nM5/MSvczZbdSV97RarUrgmJ2I4CuTR+BJBwxl55aJOv9dhwkGg0FcXFwU+YM0wpDNEch8jgPx/Py8OCIJ9oJEoo20O+Jl1yP19DtMACGbGSe6P+rkxfMEXMpnOIk5u+TNmzcxnU5LJPlkMqnICONrfP/w8FAi+B8fH4td42AqnK44ASE0CVLDNnDdTC4Z+35uTntu56hziAnkiWeC/SHo7OTy70ys2BFp2+x4PBbnaCYt85j4+f7btoxJZH/elKY0pSl/7gJewv5Gl3oNPBxOu+vhYdD1EODWfQ4kiKja7GBCjn1hHef91qN1WW/QSev1OjabTQmysQ7w+u/AFGNJdJfrzPVkJTIHS99wDfrIbbROMGEfEZUz0+CxcEBl7sTjwr35u4wl0Xt2Pka86JvFYlGue3p6iouLi5hOpwWXDAaDwpGhl96/fx8PDw9xc3NTcSaSTQtHG5sH6hw+dX9T/+xUsczRR3CD3slFP5p/Y3weHx/j4eGhkmHBPCQcnAPUfc4UAVCMK1xfHW/H39nZDB6h77McgPcsez6b2NjWf9uWMhZ235l39fvNceYMCxEn5zF/m6f1nPKagD2Ao2s2m1VSn+MYsu2XOWp4Qtr28PBQdps5CMqybfsr9z/vYSyy7eT1wHx/dq46JanryU9O5Uj9Wq1WSeMKNgVve03EdtpsNiXFLP0+n88rfo5u9+XYqPV6Xc6ZHo/HZQ7aCfq1lC8+8yyi6gTLBnNENeLDxmd+Tk4/yD2emBYi3+PixdgTwwKMcCFwbE1kKyFe1f1+X6ICSf3huqOE8mRkMWAhYYIR8cBnTunIsx2lkR0rWZFwILedQHxHHQaDQYxGo4pCtQHHRCfiJSJKm7neDgveNR6PyyKfCSgMc+eQzk4+e7udJ9rjw/tou41LAIT7q9VqFeXIfU5nRNttZLvfULY58oLF5Hg8lsUBpcHiAAnDAuYxZPGh/SwyBj8Y0izybNl2Hm+foWHDfblcxnQ6jel0WplvEAzUl0WNvkLRfI44tNz5h3HLAIOxZnzoU9rm+eZ7IX+Qv3a7XTkoHudzrlM28hmLPF8YS2TFwLCO7PA8c5/4et6fHWWuF05A6uCxZgwNGrzu1dWrKU1pSlOa8mWlLsAi6zHr6aybreuNUdALdjSBnWzMZXKaz8AIxjauc8SLjhyNRnF+fh6j0ahgAa7J0cXoWHRfTonBrhrvvskkvLGsg4pMStEGSB6wN5jPaWBy/2dH4uPjY4kWtnPSZNjh8BIx/Pbt23KWBQYiY8CB8q4zTro6J5YNO/DycrmMfr9fdqJBbBFI50hOZxdg55fJLRxX9JXP2HXfU0+nOsq4yn3LM8kG4ewDtNPkQs6ikZ1advgZo4Pbnp6eyjtol59rYoI68Nvpgkxs0o+ZEOx2u3FxcRF/8Rd/Eb/97W/j+vq6ZM5gDkZEkRnmCf9zNsVutytRv24z/cP7zs/PC+5G5vIcMWY3FjbmzGuH1xgTn9ke8c4142OnxbJj1bgR2axLw+Q5TL/ktaWOsHD7THgxb3xdg1eb0pSm/NzFOxhwkrHG227PfMFqtarsILP9T1ozE8+Zk0LnWL/yndOd8T6yO/G3dQzXwflEVNdn71RnbbfuNClP+yNeO3ms/zI+5VkO8MhcLHwXfQSXmHVJJv3tJPKz7SjJuo4+hb+6vb2Nh4eHePPmTQkoJ1Uz/QKWBsfc3d3FZrMpDjTGBdzHkTxPT0+xWq1KoEzG78Y2lrWIk+0An2xMxThalshAYEcH6Rhpy/F4LPJBW8yVIY+ul3lZO0Y8D8BjlgXaAmeFzrddYjsCfps5Rd9/LqOFx9R1yY6zbJ8xBpYHZ3jzM5FH/7bTytyfZXO1WsVsNiuOMrB3tlNsJ2X+mDFm9xqbZeD9wWgZG9qJBrbPGMvXMO4ec9ru9cH187rktPBsgmH3IPYTdbSDfDablWu8KQG/yXg8LvPRa93t7W1pv4/KImCBdWo0GlXw6ddQvjhtowXHizkdZ8HLg01hglqY7Im1Yy4TFC42zHmOlcjxeCwpYlhsnp+fS2QG0a4+y8wRsn6u32+HB5OcScA1do554mcBzwtOdmzYiHYdckQz9xKhyoTzRMIYZqs452F5Wynts3NutVpFq/USDepdbJ7g1JHDuQ0OGCcvBvQNk9HODqI+WVB4FsqL/udvOyZt8GXHHfJJ2zKJ4fFgEcEY513IFvdaaVpxUi8v+MwVO4BRrgZD2+02Wq1WIVUuLi4KWUAU6eFwiNlsVkgjP38ymZTxZcythAzAbJizyKJUcQpSZytNj2cmFuxMdEoh6mjihH7DQen+cR8bgHhutNvt0j6uBXBlwo7vDJRNhFqm3W+ee56fBu6Z5DIJ5nsy6VK3pjWlKU1pSlN+ejE+jKie6WPDPTt1IqoGCrrcGDNjWutPig0yR9ta12RDHP3Z6/Xi4uKiOIzqDE7aYj2EkYOhzDM5PwzsY6chz3Vxf+QoaorPqaJd7h+MMGNKY1PjR7fJeOVweAk++vTpU0REOTvNxA44DEyBE8SOT3Q67+H9YKjr6+vYbDZxf39fIsQZT+qfnUVEtNtxyG/sAq6jz3O0r41TYy3jCcYHPGmMxXOyfeJ60AbOZCAwCzIs4pS2HCxGvxrvZSIC2aNYluy0cp9bVrrdbolE/e677+Lbb78tUeU2uiEVjWV5H+OCzENgYOATLMj3zC0+tx2Ls8mkV53cu6/ppzwnkXUHUNo2sE1hWzfLWLYl6nAl8pOj2SEmeK7HKDv8MiHl6+rmZlOa0pSm/JyFYA9se5wA1pmdTqfoAdY0sBHXkF0o85W2/3mWdwaxa53003Bk3vHPtewmgxOh3hFR4TxY173ecx061/UzeR5xOhYD4p5nO9gIPELJvCO6KztI0F+dzksqaHbp5KxM1M3ZrKibrwOLcD11oU+49nA4xHq9LnXYbDaF/AfD2fmFftztdvH+/fsYDoeVADT3H/jPGwrMc5krdF9ZP4It4OJIEcjf9Ll38LHjHecF/d7r9WK73Ua/3y8BQXYMMm7skgfvWgYy78z88NjgMDFH6zPXqK/lAs44b4zwXDOOsU1i24Cxty1g28x9m/FlnX/AWA1ZZ5chWI9AuogXJ879/X3lfGH7MByUZOxEm5mHu90uZrNZeZbbH3FybOXsGBTaZozuzSvYoLYNXZfMHTvI0wFYyCh2EtcwxwlSsx1jDMkGDrhpnKj4HMjiYfm/v7+PVuvlOCMCHpEvt5UzIr+W8pPTNlqgDNptPNjRkklqE+cIpJVUBvI2ODx5fK3vRWCenp5K/k28y0RQ9Pv96Pf7JX9+u92O1WpVUTK0ycLHIsOi78lrQt/OGRubTiGS+5J2mVTJTgo78+wY6HQ6cX19XYw1EzQmIWazWbTb7SLQPDsiKjuc6G8WCc7Uct+jGK1M7DjJ2zLtPDFwoGDYYsDSt/SXd1QxRjwnbw+HDHAd7KSj74lCoS/J+cq7WZDsIXd7LZ+WBw6n5H2AJ+pksoV+ICqJ9x0Op/MlOp2XLfkPDw9lyyzpG1mkHx8fyyGpt7e3BUDZsY1M89syaAeV557lk/F21JSNcOQKOXdKAsur+x/ZYuu6Fa1Br5WHZTBv3c6ONitkt819YtnN6w71zs7uz8mA31tX3BcZtDalKU1pSlP+NOVz66sNzUxsR1TTtWSMk4M4/IyIamq0vIvEhji7icAtThWOvvcOlaxPiDYFm4JVqbP1GM+nTna42blnYoHv7fABv2OQouN9XybkaV/egW5nYnZWcD1ZFDDuNptNjMfjgjH9Hp5JNKTrAVaAkKD/I6LiTLq4uIj1eh2LxaLgYTtUHh4e4uzsrOAU63DLSd59ZlnCRoA8sjMvE3iuvx24/u3dfv5t/MkzHRRko5l7zs/PC7ZkXGyrIS9Ow2OnLPPIhI/TBxGwiFE9Go3i4uKi2GCkk2+1XrJd9Pv9+PTpUyyXy7i6uioOP+QSPM08GY/HFcfZ3d1dcZ5ZTo3HD4fTrgWIMNtvtrXqIurph+xMdKS25xrzz/JCH9l24v3eAcc1xsLUx45ezlExfv8cHrVjLDvtcpAiz/ncs5rSlKY05c9R0HvmCChwbXA7FI7DAA/YoWQd68Bhnmcdbd1BGmp2PFtvRlTPN4VTAvfxfw5miDjpuIjq2avmLfjemLJuVxqF65ypwLxZxInXsNPFDh7qb0xr/QCPZ54jc8HmD7nH+Np6CF5mu93GfD4vpPzhcKg40HD6OEjqeDzGYrGI3W5XsgzQR/By4G6caDgEwZAOds99Rx2Ng3GYmdsEowyHw4qdcHZ2Vs5mpX/hH40VwNpgMXAcvCHfZYdlxhX0tc/5zQE5dvBS2u12wW7U3fjd+JGgOc8FYy/u9zibZ6PkfoczdWAZ8uH5M5lMShDWdrstTh92Os1ms7J7NHN4HmPGjbrS3zhz5/N5bDabMm7H47E4prFZ8hy0zZLtxTzXPXe8Vpm/pM2MMc+xLci9dmKS3Ss73zwfadfj42OsVqtYrValfZvNpsw1dnZeX19Xggbu7+9juVzG5eVlXFxcRK/Xq+zCZd59TeWPdp5lIzR/5wW57jtPMBd7VO0l9WLLdRHxymDwe0zQ23m23+8LCXE4HMrfzuWJt9lOQOqVSQEUg41+hI5rvTOqzvHgOuY2sSjboKmbLHyGA+bNmzfljDd7dlHY6/U61ut1Of+AiFcWZY+xvfERLwch2kHDWDm62VEEdlDZEeLI3PPz81fpCJ+fn4v32oeom5gygXA8vni5MVJZJJyqsC6C1AsIshfxcmbYZDKJVqtVSSmIkydHN7HwWG4iojjBstHN3za4ieaIOJ19RppHkyMsoO47+oPPULSM8Wq1Ks/23ODdJvOscE2EuM/yfZZbDnUHNFl+GSuDKfcHc3EwGFRAQkTVUIcooY452tb19bzJ4NDvdp+gdLxDLa83Bop2rGfyi7mdI6is5LITzTLalKY0pSlN+fKCzoqIV7/5HpIl4pT+kL+9rtvA5Huv4XyGvjMxwee83xiISFjjCZ4FjnB0sYO4jL24H8OVdlFPcCo4xga5HXz0jw2viBOJARmVI46NsaiDHWbZgcRv7qOuxmV51w4EDmQIKbvpD5wO2+228j7v5PH5shGn4Bwigo/HYzlonr45OzuL9Xpdgnw40N3Rs7YP0PXgGAcT8kNErLMvONrcTif+pi8cdOWxMt4y8eX+JrU6Y0m2CByDnP9gu8nPRm4sE54LlnnaQt/iLMP+oK86nU6s1+uCcSnIKueYPT09xbfffhuTySSOx2PM5/OCD+lHnHJEF282m+JEoi7eVWgbzJjO9pD72bjQc4Z+eXp6KgFhdsiDOUmRj1wZTyMv3i0wn89fzRX61+fwed7iOMtkSyZe3D5/R51ZJ4z1kY1syzelKU1pyp+zmMyOqPJuxlRwMaxpXhez84m1DweM38U5PWCNiKgElaNL7MDybufMh7LWs657Lacd6HHaF1HdqcI67sAY6mI8SwFLOBsTuMV4JuJE9INTaAMF/AVf5p005rmon7lJ61hwb8Yq3GddBU6AtDeeaLVaRa/vdrvSJxFRzjd7eHgoAecETBkD0ibScjrzlQOGcHLxmTld2wXG6hFR8MHhcCiBXO4H413kDMcenChyR5/Y6cN4UQfLK/fkHV/gReSKsTC/2e12i61i3IK8ISsEKhFgZqcW8436eYdmdvLyjMy/1fkIjL0Hg0Hc3NxUdhOuVquy047sXeBU7+4yjjQnbvyGIwlciYwan+HcdN8xvvS7/Qq2gfL7/Ll5dNYo+oD5RVtsp2Zu1BnnvPYg0+aD4byxqdbrdRlr7BrOQCR4jfpx348//lhkkPU4t+1rKV9c20xI133nhYDPvSDwmUkLSiYqLGT5XXXGvg057lsulzGZTIqA5bzAFrYc3RERr5Qfbcnvs8OI9vNsR7hyjQ0xOyZyX5qMoc4Yr0TWsEU1kz20b7fbVYy6iKgYuU59x+KWjaT1el1R0HnRomRg4P+tqDudTknZst/vy6LGrj4ABO9jQaF48Ua5m0xCGea+5v0mrjCqJ5NJcTaihHu9XokuQMkgE3xmEEIb6GPLo8Ee9YuIoqgdrUH/sj2bxY76UhdkICLK4Yzt9su2ZR+qTn3cf/SHZc4LPJ9bRiNOu03pVyJVUBqey3YqZYeU68Wzff4e/ZXP4qBNjrACwBng0E4TOZ6v1Ik6uh7In/vKc5/6mFjIRGleKw0imtKUpjSlKf9yxRjKhnkdpjQ+tQ7mf+NdYz8K15gUNy7gfqJPMeas68FcNnQ4+wx9xbNtdNuYsW6jXjaws0MRgxASyHjYQW04bHDqgQHsGDPWN4Z2+41tPTYYvm6rMQS7ldDTRI5CeND3xmrZFjkcDoWIABejs8GfJt7AFWBSbJbhcBi73a6yi60O2xg7MXbGHYw9RqZxisfB/YfTydjWuMN4PMskMgC2BVshq8vlshK0ZScg40797HDK13nMOBuB8/tcd/DVer1+1VanQ59Op+UsOjAwEaybzaZ8NxwOIyLin/7pn+KHH36I1WpV6ZfxeFz627YSTkrmQR3O8xxyxg0IW2QGe4XPPTbILfeawOEazkA5HA4lBSVjxd8mWVjPcHLhZKQggx4jCvLDs5wlgkKbHDSWr2lKU5rSlD93YUcJuxhYd8238L8dUKzXrJm2/81heO0zV9Hr9cpOJx9NEXFKeQhGpF7Gj9QJngu91mq1ynEbcB8O8Mh4ylwjmMv8glNXmy+yvjEWdvC/9QX6lmdkhwt61zvvjIPQgcYr5mBN/hubglPQPeg9zk4ajUYFz9iBRp1wUPlsXlIzgjXdHuO1brcbk8mkbDwAa9rRgLPFXJSdIuYYGRfvPjRWRh6NCbPdgDOPdzrIhpJl2TiL/8m2ZZmxfNIOyxPOkGwjOPge/tJ8P5jRwWO2BVzPuvpHvMY5dhK5X0ejUVxfX0en0ynY3g66+XxeNn+Av12v/X5fsCjzh7Lfv6QoJXDP73ffUshmAZ/p4EZjZdaq7NCkT5FJX2vHGv/Tn3V8d+bobX9mWw+5pq7YZVdXV8UZaV72eDzGeDwuzkTSo7IDsd/vx/39fXz8+DGm02kJTDQX/jWVP9p5loGyFz++z8rFCiyXTDrYwLFAeELbQM+Ca5LE9cNAPhwOcXl5WTGCEE7qejwei2MtCzaChzD5HfkMLBsg2UjKRkcmdmxkRZwcdzndDfVqt1+icafTacXw9tZdFDAKjv6yE4dn+6BsjGom5H6/rzgnTPzYIM5ywsLliAUcdrTNnnUrC5xHbDGmru5LAI6NbhZT56E1kIIogkRhsqPEUFzIL+PsnXLUF1lkzKyonNrIkdoGEDi/bBybbEHeMhnnhdWRyIzT+fl5jMfjmM/nldSGVk51kfV5bnkhtdKhfbzb45EdWLkYOKAI3JedzktO7VbrJVLaZ4bkXWF2cG02mwrpYXnP4IC+NpmAzPrzrLBMrFgR+vnux7o5n+e9SSOvY01pSlOa0pQvL15n89prw5X1G/3D33W70rLe8P3o0WxMgU1Go1GJbrWusn7nfnR5frcNHT4DPxBIxDOpH/V1Oh2TFtbF7quIk3MuorqrjH6wrgObWB8yDn42fYIzilSVESej1e30GQzGPYwf+AoiZTgcVhwaeYeSz9FlZxKFqGZwH211tDYpBdnlQ3sc0GNyDsxtGaM/cODwHBcTZPwYMxiT2ej295ZDO9scdJajoJFp+odMDI56dXuNZ4lsHQ6HhUCCRDLexUGUMVC73S6pHCNegsK+/fbbiIiYTqfFSQSR8fj4WNI3/e53v4vvv/++QnzYhiO4zbYg6X08XyyzGa8zD7jGY8j8IL1nxnlEvpu4yBHY1N3nBfIuk2XGok9PT4Xks1x4ffkctgTH+m9k18SxbdsGozalKU35OYsDFVhnzQeAKbymwcc4IJfgGPMuDubwWT3WrWAS/jffaWK+bkcWdcypnXl3q9UqO6XQm6zpdRgNzEVbTZZz3hO4Bi7OOsgY07vz/GMO1o62yWRS3oXTAvyTAzTM7dpxZecC/WXcaQxDP69Wq4LpdrtdTKfTijME3vP8/LxsIDDmo9C3xmfgArIdgHseHh6i3++XPs28M9jP3LJtCzhBp0ZE79MHxhS0hT6BX8uBcshjHeeeNwlYNryj0HJsTpDrjBcJ6EceIk67zhhDxpvsAWB1cFLm3hyM52dQzAHybLAmGx/YBcWzGGcwksfYR/vgGGIHlTHX4+NjSeW+2+0qu/ToC/cpjlPsPK8F2F+sRdnJZb8Dcm8/QsaCeW54PvO5eWzOjEbekU3Lqtct7EM4WeYR8w55HgwG5TMCwLrdbgwGg2i1WsVpzTpjH8vXVL4obaMXARPlEVVnWHZy5YGl+N6sdPi+7l4PJu+xM8V1ZKJGRFlAHdnL4DGpOTzSzhg/2wJpwxghy15i/qYf8rZqL5AsOllBUQdHJqB0cJDwDtLcYLB6sjExbSRhDBFVYHLBzjjqy6TJ5BITrW5bMP/bkENR8C6iPbmHrdT9fj/G43Fst9tKJIyJJssdbfQ5IjmtD799GCZ1IwVkxGkHVESUPMlsTXfKFwxdRzC1Wi/bg8mta+KG92WZpi6c/UDUEiTQ8Xg6iNTOURM9PmT9cDiUvmOR9GKJzHu3W56jeewsS+12uzi4yPFMnR2dmok/ZN0AwX3jeXN+fl7eQXQ2MuP7IX9yBEYmOCz71Im+tfzxfs8DE4TuC+7J8ljnwEPm7fxrSlOa0pSm/OlLXtdtbNopwbWs/dkY8lqPDsNwy+Q0JRvV3W63GOLoAAwr6zOujzgRKTlABYMu6w9whgmj3DZ0JsFALrkN4Gy30btheLbrTL3tWMuBOeAd8B39aNLENkan04nhcFghU8D2OGO8O4bUjRAFnKUKduM6ExUY5Q6UsxMUjEXkLzgT45Docac6snHtez2u1Mm7DsE+7i/6jHYjSzyHc4l5tscEvGP8RzE5g5yCa20c0zdOucL4Uqderxfj8TjG43FcXFxUUjOa8MPBQx9jt/D52dlZOV+BrCFEtEZE3N7exnq9rtgP7XY7Pn78GL/73e/KcyKiQl4YfzK2kBnIlO1QbDZjQuxS5opJLKJ0IRgiohKciZMMRy/ETx1+tDMOoiMTscgZzk3Pc+ab1wivh1zjtdDznPvpKxN2xsVNaUpTmvJzFGMa1lAHBD8/P5ed6Kxl6C/jE3QAegg+gyCPbOvbwWAuJiIqOtE4Lju5wH8RVR6I3w5eMXaCG+IdxlOZM7TDhb/JZOSjbGiXiXvjL+qO8wk9bB6WHSV8Di6p43pyQAn9Bl5yP2dMzTWMC7wPGNA73CngIs4Wc6p0BwaBI5z5ymkSW62Xc7MiohLwgiMNOXJAnnWpx9J8FOMDHsg43Dw6zwDbwvkRlAOnZ92fMbpxgOUlopqdCQxjp5rtGqc2BXdnzGGOmT5wv8Ib+32eF+4L+gxsBj/IuIGrsG1w5mX+13Pm8fExNptNSe/ocYVzXa1WRc7cX9TD+Jb5bQekf3LKQ5xNtBGO0I5TP8tOf/eL52rml7lmNBqVY4l4F/3pOrNWsnvM7eScM2QWG/Ljx4/xzTfflDOHd7tdRUYz/4r81AUM/pLLT04yiQBm4O1JY0eHSYKIqAhG/ptrrJCyJ5XBtsMskxUMGrli8ZTbaOZeiJBerxeLxaJ4rrnOESM2sCy0NrrcF1nA+c7OwTojx21FUHPUBocisp221XpJTULE5mazKYqB50Ii8Dwfhs6YsrgxkdkujGHtcaJtBgfeoYWypR2AEuptIojvWbjwlEecDt929EA2yukvno/cWZHmCAE7N93n3tnFwsxZZI6+zTsN9/t9rFarWC6XZSE2+OI67nHE+PPzy0HfWTmMRqMy1hFRnHcGW3Ye0lcsdLe3t2VsvNU7EylWCCbqbLRHRCFK6H+DKRvYPI+/DTwNquhj2uV54znIO020MEZ5EXYEmgvt8XrC54wD9cwEhB1nec7+oblMP9hx5mvrCMimNKUpTWnKlxfrHOuKiGpQUMTJYLO+yg4rivWAcV1ENSgs40Q7aRzd66AUPw8cimPETg6ucdQsdaZYxxlfo+P9HBum1IVn2dnhYr3oqFHwUU5nhFGIkwU8Tv9n8t/kFAQIz/L/kChEhoJxhsNhwcUYxk5phxGNrcEOKZxadpiBK00CMD440JAJR9ga53Bgts9DsE3Ce6mDA3vA/qT9ZMwjqucAIx/GmB5vSg74ozjjBBHdluds4/EuokyN4U0oISOMNQSQbUlknnnEGED04SgCI5N+6OHhIe7v7+PDhw+vbCfG1iSn54gJJe7J/eWD5R186XngfobIM/lUZydzpiGOUJfsyKKuyB6kCykr+T7jXuZ8ts9zfeowqG1CB7dlOWhKU5rSlD934exRsEZE1b6H+LWOQT8b+7AWkpqw3+9XdrVlwhiy3nokospVODg3O03M/x2Px8qZad6NhDPFqZTNJ3It92Ze1JgKndxqnXaZk37SDrKIKGd50Z/GwuyaMp715gPGhX7gPtpKn5iD8kYIvq+7n3ZGnIK/cbpA5K/X65LJYDKZlPu73W5cXV292jxBX83n84InuN4BVPCWOKucwYDd84w1PzyLgClzWubGqYPHhTqaJ4bjytiX/3FW8Gx4NnOw7BbzeNhGyHV0QBjFnDftyxjDNo8dZXVjTV19vTEGz7YTaTKZVAKPHDzkFOz9fr/MezhsMDJ4crvdlpSOESenzna7rWRkQA68fnjO0VesSYwHbTYut9/B8uS+sC/BDq/saAaHgw09r+hHMtSZh+ceBw0iF8gJtg/rIsGKniMRL075u7u7kgqVQDuel7OGsEMVvP+1lC9K28hgIER87uLFPTspvABSsmHg+7NjLqK6u8gDYaMeg5QBxCDbbrclirHOyIiI4pBaLBYV4bAgsqg4msO7c3I0sQXYfebPvEPGRAqTlL+92LFL7ng8xmAwKDl/cRqxMLCQut9YOCATHBHJWRJWLPTFdDotuYRzJCcLgHd3AW4eHx9jMplUFmGeiQLy+zLpxW5AE070kUEF42SZssx4u61JJOrjtIpWTkQmZJkh4gSZeHx8jN1uVw6UzOPJ2Dkq3BGlGMS8o9vtxnq9jn6/H9vttkT1eqee+8PkC+N6c3NTDrkEkGUAZvnLTlHPDZSgASnfuV99Dc/xGmAyyArIoKzX68VgMCjtsLK9uLgoskq/k3rJCje3o46E+ENKKF9rx1nd8+vWFK9xBvW+zv2USd6mNKUpTWnKl5WMKynoVwdTOTgp4nXaNv5Hb2QcCK60fgRfmNxh3bcjxzgEstqGIUZY3sVv3Blx2pFlwgjjiP9xYHW73ZK5gDY4haEdRZnYyCS6yQ4T9mCww+G0kxznT9aTJgoc+MQOfDs2Ik5Os81mU3YjGU92Op3ipOOMMnCM8TnjTVAQKQdJR0KbIYja7XYx/shWgBMMjISzhuhNxqPX65VUg+ws4j7bE9ST9mK0OigM+cBINdHDmGSDnWLsQ395PIxFHUxlnE2GC1KR2sm1WCzK3MAusYPRdgrt7vV65dy1/f7l/InZbBZv374tGQh2u118/PixkBq73S7m83nc398XkpGCPLm/SO1jBxvX2tazE9TEK/1KyRgXgop7SKFuEsRjtN/vS0YFz1+vK8iHz6fjc2TL61Zei/K64/nJZw6g9Nz3msF1lpOmNKUpTfm5ivEW6yo8lANSsqPAa5/XVHgYYyB/Zxzmgl501qOMhyKion+8qyO3yTtQ4Hu41rjLvFJdkIa5SHAh35NGbTqdFrI8n1lvzg1cYv1JG+B7aT+71ambOZXcXw64BmcZlxu/m1dyEM7z83NJc8nftA1cAq/Eu9jxczy+HA+zXq+j0+kUTEd7I6q7AcGWYJjRaFThTRlbB04ZS3m8aIMdTA7WspzRdmTau8LpN9fLcgW2BReAbxg7c8TIQeZr62TT7THm5566jGqWAct8xi/m6e3AAYMjw04V6fcih+32KeU6c4JrVqtV3N3dlbNin56eCqa005qAKNsLHhv3e7Y5mUu8k2sYfzumHajlNcv9lrlYrvV84jsCD51C0msA/LoxnseTsx1zfb2BwNctFotip9BnEVGO37Ff43A4lJ2cX0v5orSNJr/tSIuo7tSx4qBkQsIGi6/xZ/Zic58XVD7j/TbqfP4Wdd9sNjGZTCoHQjOIFrbLy8t4eHgoHlHq7qjX0pHdU9oe9wWp61x8SDU/niRun/Mo29lB/7Tb7bLDjL63MrLTj2ICiHMa7GF3WpvsOKMtq9UqRqNRcdZhNDP5WcAAMCgoHB0ocEgJIrDpAytQfuqiUCKiojCsgDNwyeCCd5kEon8Yp8PhUBxjNlyzk8QAg4WPaNJMRrhNdqLQBzzHCz/jwaHow+EwLi8v4/LyshJFgCza0GdBOx6PcXFxEYfDoZASOAozIPscMHNbIXFswNdt4+ceG/F2DBlQoZAZf4+fI6QdkTIYDIqck0rKxe/LDkyvRcyLXE8Xjxn/ozyQdV/rsbSM+bl5DcvXNqUpTWlKU768ZKeZsUFe543LMH7rHG9163Mm0I390BkQLjYwjZezweT7V6tVSYdhY9960zrJEbMmx42HwBhOM4ihBR7MwTCuq3+jG21guz8iXtKmQ2Sga415TUgYy3J+WbvdLhgLXISOXS6X5bwncA7G6GazKY4X9DLYlDraGHx4eIjlchnD4bAcGE+djU+RITs6HaXLb7dps9m8Ml5JPxgRZefbcDh8FUTFfWA8MBwF2aJvfU6sx45iUs3R2LTTxjljY6cZZydgmFMf8D5yzrkkpN00aWRCA9LKdlHES/aM77//voz/fD6P5XJZkR9wrdtGXbNDnO+Za474dTAfBIV3vLmPuT+TO7wP5yu2p8fAc9bEGm3J9pTnNm125L6xeHZ0Gs/nnYb+nus9t/xcO9Ib51lTmtKUX0JhTTPZzxrrXVx2NuBYMeaqW9MJOvLuEa/f3OOgnzpb3/xIxCmLUt01rK/oRHars7ZTD9oC72qnWS7wiL6OthKkwm6tdrtddvFQL9qXd0+Beeo4KJxRObCHdlsHe9xcf/exHY3oPzuqqAu82nq9Lpwdu8VIa8gYO5MAfWe+rd/vx3A4LG1rtVqVnfROZ+3dYg6qczvNNaF7waR2Ajug3jJuR6ExtvvJTrjMD9I3eQyYO961Zp1vB5t5O5+vSj2dVtDzyxjLMmn+l3rafmJ3GbLF/WwG8DnE2S4xloSXp7/hae/v74vjjBSei8WishsL2bCs2ekFnnUqdduS2Fa0n/q6z4/HY3Hymi/3egKmdTuz0wu5ot0c7ZRlBdmnrpYTY2LG++zs5bzu5XJZwe/G87R1Pp8Xjtbv2mw2pc30W97V+EsvX5y20RPK4NyRHREnBeTBQhhNkHuQ/ZkdGp5svtYKi2IlYdKC9x+Px7Il2RPRjpperxfX19fR7XZju90WYc8GGIsvz3ZkpRdR3puVpR1T/O3UInZI2uHQbr8cgkkaP4SeBdtGmg0rdh8tl8uiHDCUHNGYoyu9yKMUD4dDiZ6dTqcxHo+LEWhCxIoWwxenDw4Pn0/gRd2LD+3iYHBPepw5EdUcvM57zIJgg9oKjHEzueZzzZANj51l044z+sXP9Vwx4QGRYyMZ4sdAgsUnp2r59a9/XbamU29HM1PXi4uLsiWZNAB5HlsJIjcGLERd1DnYcmQXyjg7g/wuO59ydI0XY4MJ6ufoDUi+4XBYolDyOPl/FzsOM7jLIMJzw+1F5jMZaqXoOhjkZkXfOM6a0pSmNOVPU0xoR1QDnFivrXuMQ4xfHOCAfrADjGdSsl4Fd2RdyG8HjJkg4LeNLfCoDaLD4ZTG2DvvXfwOO+EwlGxsOxLV93I/v63vrDut9zudlwPlOZsA0gG86nN66XN2bPE/h02zAw9njetIHxBNjSNttVrF09NTXF5eRq/XK6QKxeSQnUmLxSK2221Mp9O4vLwsWR4iomIA8zdYnYA27AJsFQLN7u7uytkMYEbKfD6vOMdwptnQZuxMGEScgvzoV54PeWRnDLiTcXKQknc40Q6TT2SgoL3Pz8/Flsjp1+lLkwHj8bi8JxM8Jrh8ttxut4vlchmLxaJyrobJrzqciVxQnzxHbTtxrckWxoLdgzkI1PPeeJjPnWp+tVpFq9UqwYZE4YJXHZzJPdhnPO9z64cJwGyLZzvHNknGunzG2Phvnt04z5rSlKb8EorPq4yo52VM5jvLkoOII6o8oTlHp6s1N4X+yE4zdJJ1i3UC38HTeIcxa7MDN1qtVtmlbo4gvzs7njIvyHd2Wlj3L5fLaLValVTXkNxnZ2dl5wrrvzcouB6kUR6PxwUfODgk6zH3nf82R5fv8W4w3s/YmwMl8OX+/r7U22kqwboEytsh8vT0FOv1OhaLRZyfn5f0f97FTh3Q1xFRdqGZszI24Me72tihQ1pB6+ntdltkbTAYVBx94CDjcMZ8v9+XHf/G77SV68yr2dnn8fA8Md5y4JOxJPaEi7/3ux3QY/xN/+CAwTEDdgYfZU7OHGXm1Oir3W5XnLsEd/E32DfbhWAl7960DTAajcq7qRsYmbSsfpZtUmNp5mC3261kgPP4YrdmJ6o3eIBfwf7876A6ryFgVfrQDr/skKV/7Az0GnM8Hku2P+yXwWBQ4VPpk3zu9i+9/KQzz7IDLZMENvrtnGJQfS2lznPqSeDvGfRs3NcZPV4kiaYbjUbFg9xut4u317tbiP7r9/ux2WxKm6zoeCaTyc4qHD12hOSSHXz8WNDdhzjrOGTdZzOwUBIlwaTiM4iH+/v7WCwWJVITb7DH0k6fTCDRP0x8onSfnp7KQYTekk5EK4qJ8wqop5WunVeAC0dAMpnzdlUmbgYTAACuoQ3ca8UGkPACZtLLcsnfyDiEDSCBucFz7Fgx0PNCw+c4tSJO55o52oEdbsjFZDIpuyl9HYSU0xflSGQWeUd+cD/zxkY1i7zbZEdxnv+eJybuTA65zn4Hkc0804qY56NAZrNZUVTD4bDkOzbwMkiwovaaY/DpcfY8tZPT9crgj8/r5g994n7NTuOmNKUpTWnKTy/ouojq7nYT/NZPEZ8/B4lrrFv4zE6DjI+N7XK6E/QuzzGBz2dkBcB4g4RHZ+XUz8bPOTuCSYaIqJAbDpDhO7CEySVKJjqcei7ihRSYTCaVM8Gs94zTwC20mQAv+tn9a8xBmhUO9cYxZ0dRq/VyFjDYngJucvpt6o2BPpvN4uHhIa6urooD0BgPxwpyQpuyEykiSiQzmJF0fXZ+HI/H4uBjJ+B4PH5FwoCRI6IYyHZMIgeWE74zzkGuHCQEYQZmIi2lU2lvt9sKUcC402bG0g6Z2WwWx+OxON+Mz/xDfVarVSwWi3J+cHZU2VFkGTSZgz1hfGc8noPBeJadi8w7z01jXWNE1yU7hTebTbEtvY5AkLr4mQ7yyjaTbRvbRsaRrpufa5njfpyTnj92mjX4tClNacovobDOs97mNGomfa2nWDcz7+ZnRZyOYyHwg+AOr4EE4xsDeq0m0Aed7ToYGzw9PRU9y1rrgKi8/lr/sN7bSUJBb5mfzHqEti8Wi4iIGA6H5ewigtwdSON0h8a7EOIOfMYB5JTKTimYeTXe5To7SMlYKfMu6GlwGuX5+bmcecvRM+ZVTeYTWMROpIgoWZ/sQKGe1NE6ttfrFTmwgwW9yrVg35wq/fn5ucLpgQ12u13hq3PgFH0KVifQyTIAh2pZsPOK4qwAYDzbLJnns+xH1Gf2gmPPmMUcGu/Aget5uV6vS1pObKicmtK4nHZEnPAYbVqtVnF/fx/r9brYGX6uZdI2YP5NHeDj6a98jeU6z1PbVtxHenn63vLhnXm20/jf64TPcIYvJTtG5sT9fMaI5zAOBLYZa9PnyCTfgxudyjTi5Lwlfb/tya+hfLHzzE4vGxYskkxedxb35ef4GZks8CJgh05EVAh8X4twZMPVi/h6vY6rq6sYDAblEHYEab/fx2azeeWBJXrBqRgRkqzIEBycVQif7+O5Fjo7aDII4HoElwnJM2zc8gwTIsfjS4ofIhhoK+QAwmvihneyuGanA84wG1ooTyvTTAYxligq54dmcffWcAOL7IC0A8aK3OPuRczOHRvfjBELBotO3j5MwWlqLzxtdb/zfLfPCxb9Qr28a44+d/pGFlJHZd/e3sbz88u5H998802REWTIAI3IGRYvriF9p9vKXMr18nznGr7zHLTCQLbdFjuLLBv7/b7kNGaHHIf3Qp7wfiIzONA+IgrRB0nE2FN3O9I8DiZQTCjl6yyTJlDz+uU5wTU5go3+yc/Nct6UpjSlKU3540vGmV5bCUaygR7xOvWwyX8bQ9Z/xqf87yAj63PjRF9nzOw0enYOYPjvdruil0knB8ljw9g4mmKsmbGecZKv5focuGQdCK6j7v1+v+zY8k6WiNepgGwozufzklb87Oysco4vuBNssl6vY71ex93dXSwWiwrJb6Oc1OQYde5nG+kZnzFmpB+aTCZxdXVVkRlwlPFxJk2MOc/Pz2MymRTHUE4hxTMiThkNdrtdCZwbDodFXhgPO6KMRx0dnt9hjEJ/0f6cNh4yow4nISfgUuoCFjZxQOTw2dlZCaAjk4XTabJTi3PssAssi9n+5H/bh8xX2kf9HDDG/DAu5B2WcTuyMgHpOZ7nLcQcpBsOXhziRJNnPEifmIgyJvc7sr3sMXZb7CDNdodTING+nMUhOwmb0pSmNOXnKnBzrJ+sW1kfdjqd4ghh3fY1FJPf1gc8Bx2cOUs4uIhTmuaIqOCCiNMuk/w+r/F2MHlXsnW7dRPX+npzWq5j5nEofP709BSLxSJ6vV5Mp9NSJ/g3dAJttR6mPfQ3jkZ2msOboWuMgd0W94f7CYxh3OHC+4bDYeHHGEecBsjIdrut8KnwRvC2PN/4yMf4cH6Y8ShYljGl/jhP6X/4Zb7n/QQIMdYOJoJnpW8eHx9fpT8HP2UHqrEcc8Njx/gROGc5tePEMpR5U55F2ym8z6kXwXj0H1wd2CxvZNlsNiWjFO8Gr5lTszMr4hTIZbklJePd3V2xHUh/72L8SDv8Hj+fjBLG/fZrZD9BLpmT9nlhtrccxAT+534HQvIddhOFdcmy6ecbF9I22wXYMdPpNB4fH2M2m1X6nGN07EBj7tDvtNXnV/+rSdsYURVUf0ZH22GBEFm55YnmgbOTJiKKs8BCZ1CfSQfXh+8jTkYDuXwHg0ERTqJbbdzjhfai7ShW6slkoSBoEPp1feRFCyFznZkokAVMJBQHi23ekUZ7MMzwWONhpy3D4bBisNu5x8TnPUz87MxiwWMSEInqaB6ey9/eDUQUig0yEyl+l8kA+seLiMfAzjg/gwKAcl/Sbj5nLABc1M1gJDviLNPuRz53G/ycHDHuNlIfyIRO55Tqhf7E+fXx48c4Ho9xdXVVwApKmroMBoPiOKOeOAl3u11JveM5w3NMahDFwvx0ekbPR/qeeUTfWpEzZpmIuby8rChaHLWeJ91ut+QmzkQWMmFwkee4ZcNOY8/lTDCZNMpOw7r5Q5vsFDVBx3WWk6Y0pSlNacqfvmQHB+u+cVoO/DDeM2FvB4yDvHgPeoI0MdYTGf8aG0ZERVc6ypWI2ufn54KhSI8TcYqwtePM7bUTkbajZ22cozudKigH9tjQcun1enFxcVGM+1wcCAaxsNlsYjablehg2ktQGBicQlqc7Xb7KgW5HZ0ek9VqVfCTiQIb42ByMLax/eHwEnwXERWsTf0gVPhxehwIFsbu+fkl7eb9/f2rnWKtVqukp6StxurIQUQU51TGDYfDoUQoe8w51Js+spPRuN1GcL/frwQZMjbGmB4j4zai1j3fcJBi2+FMIgMG14A/HcXu+WNnlbGZP+MZ9E8O3OI6P9+2nXGusZzJFTA0jl7WBQK+sMfof/qHKGrLO3XkM+TYmTE8j3NwgAkQxjTbIbbBPS5es7wGULx2Nji1KU1pys9dIG7N94Bb/B0On7zzJq+N6BRjJNbeiCh6EB1gjsv6j7pEvE7LZvLa2C87OHAwoAOMU4yHWq1WOWuJjQOs0eaUKNTFnAbvpf04K87Pz4vjwwEYz8/PBUuhU+nzrKMIumm327FcLiucB/W0nj4eT4He7mfjYzID0Iftdrucjes0dciCeTfaDZYjzTabCRg7c3l2IoFXyBowGAwKLocPgxdlnHNdnSkA7DgYDOL+/j622+0r7pTS7/fLmDIOyAqbNgaDQcVxQXvAl95d1Wqdduob+yPP5iVxfkZUnS7Uj3niH/PH+Ygh6jYcDivOJb4zh22c4nfRfjupkQU4UjaI7Ha7+PTpU+ljnKS25cyFM78caEUd6B+yahCUlwOwHDxpeff6ZfxNXQgsW61WxWFPsBX2gv0F1JNnYIuw9iBjbLAxl0p9vSbZGbzb7aLdbr9KIWmc7/XAz7PNgFzzXtYS2vq1lC92nlkhUOr+zs4s35+dER4QTxJPPhMcJsN5FwsRCyBKxEqQa4hixNhmhxg5Od0ejGwPNgoNYsGeeRs+vsf1N0FC3b0A2vCBPMhe6SyoEVHyte52u3h4eCg5R5nUGGoY9SyO1I0FyQ5Lt4HxQwH4bxZh+scLzPF4rKQk8bWOlGYRZMGmL+xcMlFjGTMJ5D6108YHlxow2BHMwoEsZXILkiYTUHaMeZ64fymOws6OGLcL55hBnRUy92PYI9Pr9Tomk0klbQ7tRPnSPx5TSBsAXnaEU3fkxECTcTXB6D4wWcG7qQcH4kJAXFxclNSqnU6nRPzQ3z5bcLPZFDnO5Abv5D0GjFaSXtMMPH2PSRs/l/dZrvJ88RzNkR65vlmum9KUpjSlKX98cUAF/xtbZd3OepxxhTEH+roudYafY4PIO5tMaqDvfD84yO/jGWBasB3G1Hg8ruxGAldmY5hnUayDs6EMJoiICu5ylKANcBvI4/G44njCEQLJw+6pw+FQ0qcQBOOxMwbFoeKgMtroc01Mxvj/iCgGM/1kbGvCjH6nDh7nw+FQdv3xs9vtSvqRw+FQUrj4DCva4vr0er2YTCavshhQJ//mekie5XJZCe6zrLdarRgMBiXylLMYwG6WQ8sJ7yCwkB+TjMi068a4UwfkCRKM/rahzXkT1N0kn8kLsg74nLMcrOi5Y0cZz7B82knpHYEmSOrmR54XdoZi73hceT5OVFJdOQUW85++ITUYxBzXmWTDVsg7GiiZKDW5lq/LZCi/3R/ukzrbvylNaUpTfq5iDsIOFpP27JLiO6dGNJdBsbMAncb3OJIc8A4/ZyceOj/rWnTK53Sq+VHe6zbZ+YbTB33gHTfo2JztxvrEmAEulOfAu7CbxLrB78hB6+aAeIcDYAgoqQvSN57g2cZk6DL3Gc+3E4N+5NmMvzEEepbNE8aTEVV+Bv1O25w+GqfMdrstx6d0Op2yg8y726iz8RCONBxfw+Ew5vN56Vc7TuGWGaMsU/DC1J/dQLTb/QuW8fyBS7STjOu5DlkGFxsv2ymLXcNcstOJYg6N8YV/No63M9b38E7kNc9VnG6cZfbx48eYzWbFGWT+z+3LmMtcoe2Efr9fsLKxGDJieTSmdZCcbU34ZgKsDodDwb8RL2fpMZaeJ8xNxtC7LL0rkveZE/caZB7YdfSOVs/JVqsVk8mk1AHbDrmljhGndRNbh/7Z7/exXC7jaypf5DzLZLIFhonJ4uBJZUOcYgDuSch3THYPclY2CI2JCYxEyASTGEysTqdTjF3uW6/Xhci34mMxRKAc+cEkYyGkLXm3iX9np5OVrfug1+sVBwIeYJMrNngjohAqGF5E8OboiUzSZ09ydvTZ+PL99DU7uSB4/Ez6yYqHRZd+w+nDAkhfsCBRHz5zH7Ko2ynC+3CyIDsR1S30eQdhzsfr8w0YU48Pf3vsLdN5cbQCAaiYMDDgs2KlD6mf5wOR17QNGWbciBjmOXYc8TwiZVqtl0Mqz87OSuS6wSjv4B6eh+KnLVnRIsseE4+f+xNSjV1nVrgsvp57s9ms0k9up2XCDq1/bv2iXlkxeVxNRLh/PKd8fb7WSjq/12RvU5rSlKY05ctKduzwWURUDAiXuvXXepNreJZ1jPGFCRAb2tkp5eAYG/C+HyP4cDiUNMbH48tuLae/IeLVGCE7yxwJScnYIDsb3J8814W+HAwGMR6Pyy7x7EAkXeHxeIzlcllS8mEs026/l51Jrj96EhwB7iVbBP0PxvMzN5tNTCaTV/YJ+tfkQG4rutrRsNgF7ABbLpfR6/Xi6uqqIismQ4whMIghT3Cg4Cx0XSyPOE79Dvp6NBqVcRgOhyVginoanziDBw6/wWBQHEDINW0wBkV+6whI8ClzArJvv39JgblYLGKxWMT5+XlMp9PKvDN5Q3s4JN6kind8mvRiXjoQse68Mkq2TTN+5B63BTvRqSwz1keecWI+Pj6WnYcmNk1+mrTivditnheZAPXakjGlZdjEEHaNbRz+tpzmOeA1oSlNaUpTfq5ikh5ew+SxdWS3243NZlO4hszrmPeisJ6il3mmMRqOC+9QMwHOs/mNzvLuEYqdSU6hG3HaLUKAi89eQyeBEbnO2ITnGw+7gCHZtbPb7WI+n8d0Oi39utvtCgme+wqMUceZuk1nZ2ex2Wwqz8hOz4wxqV/mmAi25p0eM77PgSbH47FsMHh4eCi4yw5LB1zDB5ovzIHXPsfUTianyTMH6jN2wVODwSC+++676HQ6cXd3V5FN6rTb7WI0GlU4QvrRGcewBfifPss8Pe8AH/G/d8Yxr8xnEvBuPpb+oG7YFeZybWtwvTMvmMu3k8hOH+41RrGziH6KiOI0Y7cZ91ieGB+3ge/NM3vesMvRjmXqlOWaPsC+oC2sJeauPUbIhrEozikCAV0/c6WuL5jddoQxJ/LrAD8HDdIfltV+v192ktn2NCdPpjmvR4wluz7her+m8kfXNjuvGMxMhGfDw5EADGYmKPydDY+Ik2GfF+psANqg9mIdUY1ARtlhKLAVEYOGCdjv9ytpBj/nJUdB8FmOULQhZyeO2+h2drsv+WFRvhFRSWUYEWWhtBHZarVitVrFer0ukwpjF0M7Gz5MNA4jpO998KGdQ7TDjikWAp5LpKWdcYwBPyh5oijcLvotK08TK7l/65yCfjc7srJR64WTgpHrhYNn034buFaKzgNtOXD9s6PNitoOWe7JhF125qEoer1ecaSRRgbCwY5X+oEFj/6krWyXB1yYdLTyt/OPBT2PA+2zEqAN/n6/35cUQ8gXMmvlaCDcbrcruakNnIgocrsYa/eDHa1WQga1XvfoOys3v4Piv+uAIM8wscf7PF/qAGRTmtKUpjTlny916yoFPZuNJwd8UOw4s4PFZ7NmYhud4h1jNlxZ29kJhYEFHsKA4d38zS6W/X4f9/f3JYqv1WrF9fV1JdLQWJg2YWxjaEe8YE+3l/a4uE02ojGsOYuNa/npdF7S/rEb6/HxMd6/fx+z2axkI+A6DE8biuhivmfsMPjBKXXYguLIZ/rKWC0H+9EnGVMyxuwSog4Zs9EOB9HlCF/Gl11ho9EojsdjiZIFw9PfDiZyu/jBZhmPxzEajYoBPR6Py44nxo+62BlmOw77CNn1OLuf7cDKUbzIMzJoXOWzLZBDCCE7vcBwGPWfcwK5PyjGaHX4C1ngfYw5fWKcbGxf56QzJnTfeG2B7LSMPDw8xGKxiOVyWcgeB6F5nlmGGA+TeBlHMhauo4vv9f/Gn362v2tKU5rSlF9CwYHknd5gMwhgftBJBPI4i44xizGYSXHW4zoezX+b//T5TdZl5td4V8QJd2Uekeu73W7BUhEnrgsdG3E66oO20HbvTjHOiYii47yzjmCjXq8X4/G41A+eiXcZY5vDM9/C905nCD8FpjLHRru4Fv1mXc65bASTuf9Jn+zAbvrk8fExVqtVzOfz4oQgMAcOzA5AMCO8rPW4cQh8FLtqptNpLJfL4mhxMD/Yt9M5ZVYCU7558yZ6vV4sl8vS12RXcBAOcoRTiT403wvmZxzyHKEdtBXZxy7B0ez033B/lisHZ1km/A47l4/HYyWQy85K2zt1+I3z6XBY0z647t1uF+v1OmazWczn81gul6+yqWUu2HMiz/Fse4CxbUOCJakPc8u7XinmsukL253InoMBcWjSTuoFrmduMn6eP/mcM+YRY0h9qbuxLfXzPORvr5N2orG24lBmncC3gJw8Pj7Ger3+//+ZZ14EM6FOsdGAEULJzi8WSbz6+RmOGvx/qRsCiPBlI8IGEwYb0Rocxu1JxP1ON2hhstPM5LqjiamXHXcmTlwQxOFwGMPhsNQj79TxIkQefc4LWC6XcTgcKs6d7DQ7Ho+FbLATJht7XlSywe82MyGyw8rGmevPIsbzLEvZyej+N3AxMeWUQq5jToeUgRTPs5x4seR7PmPB9c4nO2L4n8Wj2+2WqA+Ud06Zw4JDXyErJgvs1DHB4+27JoWoP4CKlKSACe6F6LJsQvL1+/2yiJrgsgKg7RBJ2SGcHVEe8xxR4/nO9z64FfJhOByWucpOyzw3TAjlsXOfej3y+kDJRIHHzM/M137OieZ+y0RdljPPuaY0pSlNacofVzI2NQltAyHrLK4FR3gt5trPYSOv6zwfXepi/WNcyPt9hhaYCGyFwUNb7IQj2IUc+a6bHRLs1HIfuI9yfd1m1xkD9ubmpgTQEHgEnsDQPBwOcX9/Hx8/foz1el3rbHCUMvebbHH6EZwROBPH43E8P58OVs+2g/EJ6UVyEEt29FA34wY+t3PFhJmdT1xvYxxcaEKHXXvH48u5tBcXF8XAtBMOWTJWBuvSHx47UlNxlpjPJTNOp76QM9hPxmrIbJ3ThUhbExBgPnAofUO093A4LAFftMcBVtxn57F3++U57r4Gc0Jc2j4wGeNx5nl+DuNs/MpzmBfGtHVrjtNeMgcJHsRWmEwmMZ/P4+7uruKo8npiZxZy6Xa5DX6//67DqdhDtmUdeGZ7nvUG2W5KU5rSlJ+zmB9B96J30AHoMoJtWOvYkQ3HYY7GxG/EKYWwnVEm+k1oo8vMV0VUsx6gK/K6XscrUrder1ccO+hoO52ou3fDZGxi/Wh95iAc7xCBW3TAC/XFeQEnaF0cUXUS2NEE3qBumbQ3HvPzjAV8zhj3EKhl3pFnQeav1+vilPKZozybrAJkUfDORnAbu++QCXja4/FYnBk40YbDYfkb/AZOM1Z2G3ke74fPhbfFOWZ7JGe1QE9n+UMOCDA3V+6dT/TZZDKpyFPOZgYmY3cbjj2nyvTYmT+1zOP88zz0fKFPPHfggJHb3W4Xm80m7u7u4sOHD7FYLEq/ZgeNNyrYFjP+Y97Y9hsOh5XznJEL2k5f048Zu2XMyfvMBTuI0NdRD1KxsxYhj14HbdeZCyfLBfYldfdaEhGVv6mzOXvsBBzgtIN62RnLmrPZbMra7KAC+1i+hvJF++RsuGUDlY61wHmy+joLhZ0lJjZ8DQKZjfqIqrHAJKpLc2LBPBwORSGQUsOpR7zYcx+LKsLg5zqyJTsH/CyEyYarDSsLHsaRyR0WFX7a7XZxMgAKTAgwoR0ZkB04EVUigP89ATxpDAxwPo7H4zKpUYz0pxc6j62N7CxbWW6on41Ty4iBgWWROnncraC9WDP2dsbQx1Ya9BFg7Hg8lqgcO0BIl2OHHYsMB9yjwCiOLsr/04Ysm4ADxsW7Jy8uLsrCvVgsKvOEsaO/IFog1Tirwkre7zfZh1wSGVG3S4z3sMh63nu86ggn3jsYDGIymcThcIjFYlF5Dn3A+HqcPP88Tq5TXr/8Pc/hmrymWEmaWMzrHrLk6wE+FD7L5F9TmtKUpjTl/614fc2GeV0x5jCWyA6orBuM9bLusMPGOsn18Hm2GKCHwyFGo1Ex1O2g8flPxkT7/T5Wq1Xl3AUbjkRPks7bxbrcQS1Zf4FD0NODwSCur69jMBgUjAAugtwYDAax2Wzi48ePsVqtIiKKM41iMspYwGdvgStoC5HmBNbQBwQreSysT8G1jspkXOhv6sZzbFiC3x30ZJLNmIh+s1MyR0E7qtVE4OFwKPgNDOidjowH7zJOhKABj0HgONCM9pgMse1Ef/P8bNdAdtgJw32c94HjD2x5OBxKmk7G4OLiosyDVusUNc176W8ygWSyjXnDePh3xvQ4rSynxs+293KgmG0HYzue57G3bNBnzrIBJufn7Oys4NqIl1RD3inIPbalTGjQHuqDTHntophocx29tvAc735ABnLQQFOa0pSm/FwFXYBuQC/yOZgAHc5ZsREnvQkPAhl9OBxKYA4cjXf0Zx4jcyGs75mwp26Zy+I+fvM+8wg4OSCtHdBkrOGAKzsrHFji+kSc9BZYKHOq2+22BEE9Pz+XIGsyHPF+gtkdhASWQX7XkJgAAQAASURBVPcaR3EeF+NUx524Luh7OEfwofUz15kzwwG42WxisViUnWZwptaDHoOnp6e4uLgo76kLOKIf3JfoSALa7Szs9/slQwRthi9DLmkD8kNbXEfjXQeFgY3pAweDWX/bLuJ5x+OxnAeGYxCHH04iH9kCXwjmdmAWOMSbFupsHmSFdhnD8b/nljd2gA/hPW9vb+OHH36I9Xr9atMF95hTN47JnDw2lAOZ+v1+vHnzJsbjcRk72wusI05nyfjajshttMOKsanbAOQ1A+cXnDtto89pk58D5oWLdn+bu8dJ2263K34P9z3rhPHicrmM0WhU4Y59NrTxPOsb2P1rKl+88yyTDyYp7PXMAu9rfR3PzgQy19dFIOTFMuIkTE4zwiLtSDkmzmazKYuko0b4jXDzDjtashOGunkB8L3UF0XidrL45wXaqfYAByz23W637J7zosgihYByPZMiR7hEREnBx9hYifNuO0LoZ0gL8g3TJ46qsAHmRQtDnkXZCzzREHZ+ENnA2HjxdJQA/WVyhLGzYwWSxE5C2uf253dDYCCX7N5ibLgGGXh6eiqKlXdRFxxrjNNyuXyVxoi22aGCsuZvK1N2IppwmU6npQ/2+305F22/35cDLb0LDXngbJWIU/SIla0dVyaFMolRJ0uMF/1t0udweEnZCPlisoMIc28JzsQb9ez1eqUdXuCzo87kg8nNDEopBnd1AI/rUQx+jq+tWyd9XVOa0pSmNOXLi9fYuqCEvG6DGzIRYp0HIYFOANNlnARRAjZCVxkDOsjLut47QShgqYh45URgNz8GHdGwBLSA2zjbgfo6OtLRoNTBRA9kEH3T7/fj3bt3cX5+XsiIiBcD8uLiIi4vL6PVekklvlgsCq6DVDABQX+AzcCY6FpjHvqcdoNjuI4deJQ6fU0EMWTGaDQqZ7FB6BCRDE6kb4yzKXZkGQObQKLekA20GZJku90WbMKzvTuQ/rFTCPumTs5pt20iHGVgHvAP+J86gwMz2WZ85HcYL9lBhBOHZ0A0mCxwkN50Oi2RtPQHONKOPeN94zbGgmtMplFsr3HuCFjajkA/h+vtOER+jQ1tS5iIo+9so9huI63m8XgspOB2uy3pHDOJwvP5vI5Ezfd4HhtTM2+yA5Di8aKP8jVNaUpTmvJzlPV6XcFUrE9OgU3qO9ZUgni43vfDbcEhdDqdoh/N2WQiOyIqOp91FczGtXmdhTcxD4fu5TvuISDG5D9YzlkScPzZUeKgB/SydTiOMKcYtwMDzAI2i4jCyaDjzQHbAWC8Rupu+o1r4afMrdoxh/7kjDN2rjs4xjgNwn673ZZgFD4DBxsDWeeDK+CIj8djJU1fxCldZd0RLmD1nEqU9+73+3ImrXU3OMRORLf7/Py8YN52u11wwsPDQ9kZaA7Xjl+PQ+Y4W61W7Zg8Pz/HfD4vuAY5NPfnzFrmzXmG8YozRyCXDo6nr7ADwOh2FlNHc4SLxSLm83l8+vSppMB0PWi3sbiL6+m5EHFKdY/DdjqdlmtoE+8zr8nc9/z1emOb8ng8Foebs0vQZsbQ/gXvMs1cImPlMSCrBOPLupQ3eMDrey4ybqwptBn5oy7MN9apiCjp53H0Ye/M5/OyweRrK1985pkXmAykDeZdDPQjqrlxebYVEotgNlz8fj73Qu0tvPyY2PAuM5wdEVEWOQxfp9UgcsELrA3afMCz25QFmj6LOBlg3e5LDmMmNV5b+hFPMAb/09NT3N7e1joH7eHHwXA4HCqKgknjaFcrXhQ/7eca+hcPPL+JGLUzkYU+okpUZBnwwoJChwDxtk4vtFkmPca8PxvCBi6QF9SB5zDGbM3nGvqYPmMxcVSFF7Ps/PTn5HnlXZZbDo6HtLFByyJtsoT6mJihPyAgVqtVcZCxCBM5cnd3F+PxuChxxpRIFtrGFuHValUBmo7Apn+IImCxN0mXFWoGCrTRkbBcQ9QuZFJEVIBNdkjxbhScx4V5xbibJDH5aeep5c3y68hcP89t8/0mKyzvrjtjWSfvTWlKU5rSlH++gB9zgIKdYXXF67Uj+LLOYI3PwSA8o9PpVNLoZSPyeDwWjGT8wvt3u11Js2ccRDAI+MwBODhnBoNBDAaDuL+/j4iopJbBAOd9kCGcI0A9wcD0F3q/1WrFZDKJm5ubYry2Wqed9px99vz8HLe3t3F3d1cwB3gPJ4r1X8YFDqyhjt4ttt/vY7FYxGKxKATCer2upAE0brQ9Qf+Z6NhsNmXHHH3OO3HGUScwZcYeOOM4I8J9TF2IRqZekA88P2MCB505m0N2mDhYyW2k7mAOP88HjtMmcCvPt2PNNgbvsJ1lm6fTecmkAcm12WwKIWInLdgZrDwYDKLb7RY5hejEfgMD+n2WUxv33qFJHyHLtJdr3A+8j36zU9EBWF5TTL6Y2OS9nmsm2SJOh79TJ86egZzwGXgmX237UKhjJuUoyIltr0wi5p2bblv+rClNaUpTfq7y/fffF74CexyiFvsfzufh4SFms1nMZrOIeH0UQ0TV9rZOubi4KEFKOUjC67850EzWw4tk/QHH4fsdpAOpbcce77Yjg3Wf9dtnwbK2OwCFOrg95pSMLzabTXEewAs+P5/OdCIwmwJvZCwGd0XddrtdIe/BQWBFOwXQU+zQJkU17XY/oNPBg+w0xHlGxic7Kul3c7vU6fn5OZbLZcF21MsOw5wpyrZAHif6isxnOUjefDX9Zjk1Dwhf52d77MCbYE5zmfQnbXF9M65ERoyhjVWyQwrZgsflOqf3Y4yMvWij+e9sU4HXcWqv1+u4u7uL7XZbMCfvdj1zgJVxu9cA+Gz6CYfyxcVFebbncXaW029gWjC0nWHIGvicdcs2Zc6KgM1mOQDrkn7Rfe+MHcZvyBX9wRww38k8Yu20nRQRFZsCDpvv8ZcMh8OyuxRbIwcO8D7s4K+lfFHaRgu6SYlMEBjQZ6cR35uk4Dkm0yn+m8Gyoc07mNx2atgRYEMNRUV0gEkW71hCKCEl8oJmpUU7s4OA+loh0xZIC5/dxe4zFlXIEry68/m8pEVB8VAHSIztdhubzaayNdNK1VGHrpeNSsgfHJJENtjhZEWe2+9xcRSmSQ1HnUImkZc6G8Qs8Dbq3L953CybTHaUGIsIEQY8u9frlQhklLDbi5yQ19fGeCbqGBNH1Fh+WJDYJs1CaKejUwyYSMlOmewc4l0PDw8xn8/j6uqqLIau0/Pzc2y32xIpTvojR4BEnKITfFCsF/I8zxlv75Cj/7nH48m7ABH0BYs3igjZdIooFFOWSWSCqHT6J69F9Ffd3/xvueU9rncG4Fk+Myjw3PNa6nXUz2tKU5rSlKb8vxfW04xVbaDaMOO7iBPxwWcG+3xvPBBxCkbiPp9Viy5zEAlnXKEX7JQBNxkHovciTnp1Op3GfD6vBOhst9uKA4h626GB7kXP2skT8Vp/oTO73Zc0ezc3NxERxcjz2U39fj82m018+PChnOEUcYqCzbvNeI/JHwxWdLkPvD4ej+XcCs759Tkmfq6jaLNRbiOU8TN2NylibAvGWK/XlQA0PjcOteyBXxjzHF1ueXOaF96fyTh/X2dLUcBiGPz9fr/szlutVq+widsL7rFRbBvGThYb3tTp/Py8kA6tVqvs8IMks0HOZxBUtA+Z2m638fz8XOwaO1oz/vKctR1ou9SknPEdhJbnNPVxnzLexvPIFnOW+UX/2nmJY321WlXsNDu16I/z8/NYLpexWCxq1yM7NBkH5DnLIe0yeevMJMbqHleTQ43jrClNacovocABsIbl3ckRJ92CLsjpab2+ZRzhAAf0O3jHDjqT6MYA1AUdRXYg6yzjIfOKcCngEV/D394lY8eGjwQxzuR+4xx4RxP2FPgx+J/xeByt1kt2A2c8AC/5DCU7zJx6G0xH3TjLnuBr9DV8EL+Hw2FMJpOCJ2irOV54L4Kq4E0JSqefGEucJe7TvCOMZ3g3Ptwou9eNY8Cb3pVnxxrXdTqdilPB+AT7xLjs7OysEnzFuIHDnenCO/4zJ2lu1XaJ+xNZjogyJtl2wulr7Gd8yvMdSA/naS7ac5F3mw/jN7vNeDYZu2hDu92OyWRSxgcePGPizAHyN31op2q32y0yh7PLuBw5dmCYnVfe0WenXw7aMm5kh6b9CPYz5LlGPexrqMug4nqb28bWYv7QDhzGyJKP48F3MhwOK84/9zV9iA+D8xqfn59LmnLb4V9L+eK0jfzN7+x1djF5kQlnT+j8Di/uCI8FMxtBOaKSaxxZx0RGQWK4ci95WBGEw+FQSX9DW0y4mDjP5LwVYCbvWYSJEGahtZFPhC7bjNfrdUl/026fUvW4/5gUdi7QjzYQHeWCsmdx5CBEO/Yi4tVkZFebd5V5ElghRJx26DmCwRN9v9+XaMtOp1NZpOxIMcFiUGFiwsohH3BJ39I2+q/dbsd4PI7z8/PYbDavIjwzkEG55DnhfrVhj3w5D3KWa74bDocxHA5jNBqVXM11Th8XlDxyEBFl9yHAj3GgbfQJ4PPNmzdl56OJQo+/UyKZ8MmOHwO2OhBnws9yYEfydrstu84ArbTTfet1wnKHjCDDzAkHAGRnmeXB13tcvXZZ5rjP871OSWdnZ14DG+dZU5rSlKZ8eTG+YK238RpRdZYZ19loAzvaUeZ7cwH7YYjZMLWRxLvswOF7kyTeneaoZQJD2GnldNlkUhiNRhVj28YTOCbiZPC7f4yxwEuXl5fFceb+JZCr1+vFw8ND/PjjjzGfzytEPlGmdg7ZwKffIqKQFSZJ2u12JfXOarUqacuNKxzJbGclGJW+cbSviSqcQz7bwTvQwBPgc6LBGXMHDGXCyueyMPYmAw6Hl1Tgtl2MjehL5IU6QwRlmbLzlefTZ4wP2JoIWMaSXV4Y2Y4apuRgQGSJ/mfXFHW8vr6Ot2/flnPOkAv6xVHUzFmTBdgJnNtnm9KkD/UxKWY71TYm/0NYIBvs/jKh4fZjg+V3e37aecZ1kEm8k+A596kJQebrcDiMVqsV8/n8FS71uH9uTeLZ9Fl21FmeuN6ESMa8TWlKU5rycxfWI4LcHZSS7Wivb17/0AXwFBHVACn+hiB/eHiI5XJZ9NNwOIzxeFx2ndu2R5+YO4o46QyKuYvcNu8MA9cYF7nYcYIOMpflPjH36Z1eESfnjusEDgCXmcMxX3c4HAp3gx6bTCbFWQVO7Ha7JVD+/Py8EqQN1wcnSeDWcDisHJ2SMzGRcQksY84GR1lEFL2b+WKPXT5bDqwLTjC+h3ulf8E/Dogzz9fpdCppLeFkcTTYiYT8IANgTQeDgVfqOPqMC7x7zVypr7WzD5nKTtzValXSJDJOdsaRzcrzKzvNCMpyPXgefeAMHLTfQVQ4MakXHDJtxGagLhkDwXfynd8DD2s/ANfXrSdkr3D/12Ufcx9nv8Jms4l2u13Z6eh3mkekvsiId6dm7tJ2pm0i1gqvDawzXgftdON/dhRSGH/PKe6nrowJ9s7XVr7IeUYxePZkyaDahHImEPwcC5HvtefVz7OBhIcXz2td9BzPYOFGIB2JMBqNKoc0m2Qn7zwTyA4u6pXr5snurdARL4sXB+s5LY0VHYbVbreL2WxWSTNJ+5w2hYnBYYksVCzkmdS3Qe0oDBMOtA3DNuJ02CMTD2ejDfoMWhzF6H7BWWLnBu/g77w7LTtiKL7GSs7vZ6ydTol7qQcLHIsDzqIceWEHiFM8ssBQdy8spKJ5eHgodbPTy4sNW9O73W7ZAktUgPvAUbCWXUiW/X4fy+Wy5OqlntzPtexofPPmTdzc3BSFZABJpDuyaKVrpzYymSN03XeMhQlDHKjs+ES5WoGwDd3zqY5E8dgSHeI0RZZtP8fgAODqNE8UkwpWDm5bdu7lNcJj4WfaMdsQFU1pSlOa8lJwgNSV4/EUnALOsEFoZwY6wgEgfg74Iz+DYkLeBjf6zISHr83GCe/LRIUjFW3AmxAgD791ouve7XZjs9lUHDlO0cFnfJ+da+ihbrcb3377bdzc3BRjF4PdGI4dZ4vFopAEOTjFRiLEAtc4OArdT1rp9XpdAqgcNYlzEV3tMyb4bUwIrqNfcZQ4FRGYASxBmkj303A4LHiOOlMXxp9xY2wdyGVSxzic++2YdFR1JtOQz4xPuM7OXwgl2zbYCqRR6nRedicul8vKjihjHRcb1uBzMC34meCvzWYTi8Uirq+v4/r6uqQNB+uZDOBdlp/xeFzaSVAZ13ue8DclkwZ22BqvIQ/IAfIDtssBeia0MvmEI9cOKOrKHJrP54UosePWc9I222AwiIgojk+K62psn8csExrGudTJ/eF56mub0pSmNOWXUAgGiajyGSZ+I05rvzGJd73YseWgEzhGc5a295+fT7uhO52X84LYLQ0GQjewvlvnUzcT4g5YAZ+AUeD0wAS0lfWeddxnnpmHtd4wzgAvmBh33WgzAeekGrauxpFBv7mvN5tN9Hq96Pf7MRgMSjpnUhLDzWRnWESUs+5JGYm+ItAHnmu9Xker1So4gWCn4XBYgoMyh0i7LAsU9CVOLoKMeC9jYYcL9yEbBH/TJmfv2u12xZZB3tDh3h3JRgV4SnOwYHpkD+zMPR5DMC7vy1wXbQT3G48wX7AHOEqI9vKbvjR3Tz+Q8YDngBXJgBBRtQFarVZJ1TmZTGI8HpegNYIGySxlDIwthGzgoPVagPzzv3ch8jnnITMn/R08b7bZ6FPvUnx6ejmXzf1lXtVBfPQDzmVzrMiPn4Esm0PNcxenGmsJsgCXnM+XxldCQALtZ0NNu90uHLDb6fXL2cIYF67Fz2AZ/5rKF515xkCa9LZSyYay7404TS4bFBSD/nxvvp//7YGnPp6wNpR9L04zFiEWxF6vVxY0hBRHiuvAd7lfsqBHVA+Zx8k3nU4rz/BiyzvJ5Up6GC9Idu4xEVAgNvIRapRAnmh4nFl82WbMTiVHDbAg2cFGXzrVZE47aWOQcWDLp5WkoyAcAcQ4e4u0FZ2Vlyc/iwX/H4/HMvHpaxNsKJ288NgI95hmWfeC77F1lExElAXdiznEhokjgyk/i/aTioDvHYlCnxlMEgVjmbQTsNVqxXK5LPLz7t27MhbI3vn5edm+7EXP/ZTXA76zYvZ2XpMvES/Kk92PJjDZWkx9TJBa7pF1E3/ImUkD/+3xyY5F/2TCgd9eozy/rKxzVJnXT4OYvL7m+5rSlKY05V9r+eu//uv4b//tv9U60LbbbfzP//k/42//9m/jH//xH4se8NpsUjoXvouoT0MdcTKoMQRsgIOZwFS8B7xRpyPtBLHBimMAzAI2geAm+rfVOu0G904gMIWDhawbHfxBfaijnUb9fj+urq7i+vq6GMEmUjjfa7vdxocPH8rZqHZiOlCLvrDO5nkm//f7fcEBRHn7XhP+GGF8Dg51+iQwvZ1NlGzX2DnpcbKu5x2k1uZeB2aB+bkeA91pye0ccQSoSRE7h1xnj53rlW0pZJE+wwkLyYJTj2dhH2EwZycf8mX8CE7xTjLS5lAv2n04HGK9Xsd0Oo3pdFqi9tk1SR/42bQLLIijlJRMJjltl9rWMdbN+DoTH7bHnALRfeqdcjiRXU/eZ1ISTL3dbmO5XJb+QBaot3e1sTY8Pj6WCP1MAtc5zWxn23Fm+8p2JFjabfeal23zpjSlKU35OYu5GAfAoONMUh8Oh4qjxnxRRDUIyvrCOAL8FPF6J9fhcCg8CwHPZK/KgS12SrBO22EHpgEDUAd0H5+jX+F5cJxZD0RUOQne1W63S6Yhrsn9YB6NzEzo74goAc/oGLAoGYQcLETAS7fbjfF4XBwig8GgnEWW+5t0b5PJpNQZB8BoNIrxeFwJSOFedDOyYLLeAejUDTxXx2NnDJ+dsGAjjsyxU8DPMwdLO83FGTfiQDsej2UHHEFOyAXjDJ+KwwiO1jIXccrgxVibM7WdxG/wKPW3o4R0k+4rYzWnrIyIkp6ae9gcYvx5PB7LGbcEppEe1P1hu4ixw5lpDEWdzVlmng/ZZz7xPdm/aK/xFUFhyBV2mbltfAvIirOHZaddxtbGyGyiMF9r+wunJH3jMYW3z+ODLGGv8J0xa+Yz8zEEZDVhbMyzIzf0V7/fL33sNSkHlH4t5SftPKv738aUSxZmG0U24PnOUbN15Iefy84cFgIPIMXeduqN4wbjq9frlZy2LEgYvtSFCeTF0NuiuR6BQAG6rzqdTkyn04pRzgSirRxqent7W9IHelLRNvrPW1Lx6tuBZgIfBcKYsMuHNhF9itHMwkDdUdp29hgAMLHcTyZFMnGDMxEFwUQ2cDGwwLnJ+Hjh5j0+78wOFtpAXb21nb5gwfEzer1e5SBUP4PF26SPnSsoaZx9kE/0A6DARAMEg6+zA8g5dGmjyQHaYaKJcTcpYyMZsAER9/79+2i1WnFzcxODwaCMdUSUtEIGTyYB8xylsJg6P65lxb+pM5E0AEbq6RQ6dcSBncQoP9oNgDbhY1lC+XicXbJjzHW3YvZ9Bid5PltuMqD/2pRKU5rSlKb8S5bRaBR/8zd/E//jf/yP+F//639Vvvu3//bfxn/+z/85/v2///fxH//jf4wff/yx6EKvpY5KJhovExnWKTZYIk67TPg+4rT7AxI/n1vl+4yLwFkY9Tbg7LjgNzqPdCmj0ahch05DR2anVXa+2HC2/iVDgw/K9sHjOTUIZ0xsNptSB2N7B7vUOS/cr+huMPlsNivjBD4FFztFudNCur+N74h6xvHiaFNHliIbdXYFfcpz2T1lPILzxdiXZxgngxHtkLEDx7ZNDvqi7xxgRJtNxNAmvw85f35+rqQW4t0ExPFeG/a8w3LvNNp2bDqtZo42RkbX63VJezWdTiup4rnOsoKTar/fF4KDyP/sgKX9DqDkexMREacAPvebZZP2+3sckBAEEHA+B4O5CelIPxC5jxPONov7kx/qwD2ul9cH276WW/chn2cbis98XR3x2zjRmtKUpvwSirGZ18q64KecJprr7EhwsHvE6zPF/A7uZ612cPhyuYyIiJubm1fBsBmH8Tm60ue8+zrrcuMS2sWPC3gBnJcDqHmmOQvre+oAJ0aAC1ylda6xXg5eoY5gg91uF/f393F5eVnOlBqPx7Hb7Qr+GAwGsdvtYjKZlJ1qYAM2IcARHY/H4kgEq7pPwNfeqWi9GlHlc+FA0fH0BbwueMoZCsAQZGGw/jTOAxOwK9FYy3yaeXIchMby2AGbzabsSueZ/ORgKnPRDrwypnR2Nd5L23Ea4Tyzwxee3LJMnZbLZdn9B7fJMxz4hk1E4B+ycnd3V7hP8OJwOCztAI/Z3vGmjMlkUjJi0H47RcHc8ISj0aiCGR10x5ltODWRd5/nx/iCr5Ej+hS70/4Q5gvzE7nix3wppW4t8TPAimBSrvFGBD+jLh26+9WyjvOdHajUh+fZyQYG5h32C9Vxx7/k8kc7zyKquzLqgHUmmv25B4ji++0R5zs+970IPDt4LKxWpHZMOb2hCeqIqBjr9ijzHBQGgpYXI96DMW4jhnZzD15kih1SERHL5TI+fPgQ9/f3rwyobNT5h4mKY8yGUi55IjoaIBtqfD8cDkv+WnY8+T12eBCJwmLkhZkJR78yuSKiOELtlHL0iA1UciJTb4+1F32M2Wz8G+xkubKj7vn5uez8y4to7lMUKePoNENWON7uPhqNyjlv3W43rq+vS2obFminnCFSg/YQ9c0iblDlKBk745gHjA39YdD49PQUHz58iIiIq6urSpshjGgPz6NvTNjRr57X1IG2OfKC9ziCCFnKkUPMH2/B52+cg7wPJUgUGESb54jnNH1hRyjtNACnf5Fxg+d8fwbcGeQChiyjTWlKU5rSlNflv//3/x5/+7d/W/ms3W7Hf/pP/yn+y3/5L/Ef/sN/iP/6X/9rJTjBBqJxFWs2epz/HT3nYkcK/9vINQ4x9uRZ1qUEuBjnYkCCiRz4YkcbOo4dUO12uxIYwvUYtjYWabfxWK/XK+fwgiUmk0m02+0SXEb7iG7lO4xE6pWzB4DjwCFcC5Y0xiKIB8eZbQRwn4OSjMNzkI7H2riV99DH3A9Bg+MQTGcCytG4PAO8SqoTsIxJEztjbDc4oC2imtonZ6gwMWXcxf84BnNEs+0Zrs3pi2z3EPXruvoaB6SBb53GxlHfmUCiPzzuOEDPzs7izZs3Bfd5/OgP2o0cj8fjghvBdtlhZCLIbaYeyIx3K/g6y5jnPgQI0dY4/+zkRK7A9GB8yx3v8o6DbKvSr57Xxpj5OreNOuf21+FnF+Njr2NNaUpTmvJzl8+tb9j6EVHhL9CR1inwJ3ZomNPivhyUkp12rVarvBeeYb1elxSO6GV4D9/HPezIMY+z3+9LkIkxbMQppd/hcNr1xX2Z33LAExjOZ7Rm/e7+5D6CVODk4Dzs+DEvm9O3GWPjTOFYEXahDQaDgptxLNm5Qb3BZozJdDqNVqsVi8WiYFACrbgv4pRNjEIKOgehOVgbGfLv7XZb8BGORTuScPxl3hg9y/92nhnb0ffsXqTOOHPN6dXxxASyUS8Kspe5WAdngbGxNXKwFO0y9j4ej8VZBEaOiOLIXC6XlYwG4EPG6XA4ZXrwHMTOWK1WsVgsotM5Hd3y8PBQgvkdAOl02Z67FxcX5XiajMmZG/1+v5yr58B8zyv3Je1BDn1EDNwxqSXNAebgSttiXlMyt228b97efgA/22uU5152wlEHO4jpN9cdGQefEpDIHKJOtAuHqjlP1gTWjLzB6Zdevsh59jkSwd7sDK7pNAuOBSQXGxLZ0Iw4EQs4Dv4/9v6lR9IsyevHzS8Rfve4ZmZVVveMEOoNGxbzNngPiA0LRkJiCSvYILEAVqwRsByxRAKJlwBigZBGYmC6uqmuyszIiPC7h0e4+38Rv8/xz2Ph2d3VfzRVST1HCkWE+3M5FzvHvvY1O3YYAN9rwt4KlJK3gTKYPmgw4uBYs2OOYiVjxwnXeHFmMUX5oWAiDsbgZDKJX//615WzBiIORhCGohdhtyX3AYuZI0xQICzoeP5xVnhhaDabRZFxwOdisSgLp5Xwycnz4fQc/sfk9bNYbC0rtJ8DFp2XmOLFlYlvpZkjblAwdq7SB1Yy3vrOs1kAUBqbzabkqrUSchQCskD95/N5OXcO2YIkMEBiuzJjc3JyUtLXcB6eI63tICb6Z7d73gGGMU30SXbK+qwNF8so1/q6Dx8+RLvdjvPz84pzdb/fl63QyJrHAOXsRdSAxcCOxZM1grojC8wPnskYZdKB9cIRL34/8srakZVTViiWQ5M1ljOTp/l/K+eseI6tJ9znv2uioi51qUtdfr+y2+3iP//n/xyTySR+8YtflLNFbSRaHxgT2tDK6651BJjSGM7Eig9fx6jLuMpGDNgk78ImDQn3osMdDLZarYo+m06n5R3ck7Ei78TwAf9w0D1pEnkGeBh86OtN/uAMWK1WFScYmI9oU0c12mkWcTCojXGzgWks6//R3SZtjPsz0eKd9OzkoW9IK+TDusHtBMiBwcA9OBYhUYzNSdOYSYiIqNTDRBN2DXUwkeSxxe6woepsGdgFJvyYB8Yyji6m/yHK7HTNc4Ax43mWP5MrGf9EREljk6OUl8tlyWrgoDAi+SFUjMOoG7YKcmiHF/fSn8Z/xnzZOen7IqrnEtNW7xC07UGWDMaKOQuBA941tgcfeh5lnEifHEsNlYOwmBv5ObSDv/1s42YTqp/CrXWpS13q8kOUY4GoEQf+0LwY6xZcl4O1ucfHjtgRFHHg4NBb8C7WF+hD7oc7Mr8GrjNnuNsdgqutTwlOYQ33Om7CHH0cUd19bgcA9Sfg2me55f7M+BinoDk818Xch3GS+Q6T/g6QN9fLrqLBYBDN5nMqRNpuTskOOwe0OKiF4oxD5gzRdeairP9xaqG7aRvXsuOLFILucweAm79EFuh/npmdKMc4SmSTsXEQOe9yoJQxuINtkBnkF04YTAL3ST97owXXOZOWZQd7ZDgcln6CZ240GsUOsPPOjipz2YwN58M+PDxEp9OJ+XxesRseHh5KFi/Gm77mPcxT+Gu+tx/i9PS0BAsaM1FP+oVn2eFMwF27/XzO9GQyqWRwOz09fZERxHLFO/O40g/UhR1v2CCsJXbeen65fV7f6Fvbw+BazwnbzV6D3EfGnpY5+o0x3G63BdObs3WA4OdQ/v9yntnbbIPfCorJamcSHR5RjRixgcNnXhBNAnhxZlGxM8MCx6AQccCk8kF4CBokh6MNeB4Lih0mtJHnehJkg+309DQuLi6KA8A5+5vNZtzc3MS3334bi8Wi8m73h/skj0NElMXOUbn0u6Ng2RFlReMJB3HATrPJZBKLxaKcLcB48H273S5RAIvFomwjHg6HRQnlBZ1+5KDIV69eRcRhZ1qODLGy4DmO7vWhofQ3dWNRsfLKcki9MKpRZiwMJmiopxeN3e45iiaTR5blPCY+LwGF9OHDh+IUJr80kRUAOSJ0cTpRNyKW2u12ARwGfSxqBns4Jq34qd9u95xa5rvvvouIiFevXhUA0mg0yo7B6XRaFGh2RGUHeZZp+sMgjvmJYiYa2QegEpWP0jARZ+DJO0wK0W7LhAEg9chjaDk2WGdO5mdZ4TiSnO9cLI++j89rsqIudalLXX53+Zt/82/GeDyOr7/+uqJvbXBHvDwzimKjg+tsjERUz961bgAXEc3rCE/rX/QjGMZ6ZrfbFccZWBHjM+IQ5bper+Pk5CRms1mJxLUe4vk5z7+xGIE67JzCeCI4BoK+1WoVTBERJXAn4tl4xeGxWCwKFsJoxiC348zGmzGZ9aqDZGxf2HlmUghsAubjeyKs0aPuE96bnVrgKc5vg2DAfuAz7+ZHRsCiNmRxpBAZbkean2kj0rvykRHeZdsoohq0iNzyGfWgjhAAxpTGSdlpYgcfMu6IV5wwHjvvPOT7jEeRYd5jEo1o9GazGYPBIHq9XoWwIZI3B2W63whgY+4ZX5rIdL8gA8dIRT/ffc/zSDM1HA4Lccfchygj9RApV+kL958dezyfehrDek64OCDP8uy+zbshTc54TvFey1y21etSl7rU5YcsYAfzF3lNZ/0Ek9n+595MaDuFsDGCnWrWaRHVIH14H2e6MY/pIGJ27YD/MoeC44p6wzX52RHVHWbmY+y4AROxcwp8Rtus+/b7fcGW4EM7HuFjV6tVaT+6nX727ive4+Bun+tLer9erxevXr2qbJQgeN9cMmdjgUHhH8Gj7AAiWN2Y1DurGIPHx8cSAINTil1NyI9xNv3PTnlkBczhHWw4P2wPgE15P89mrDKWpb5504Z3XoGLsrPPcgt+AqvaHrJdYgewsz6A85E9B9aZJzdOc6YJ2yS+Fl6T+m6325hOp7FYLKLZbFYw3X6/j/F4XOrabD5v+ACf01bXcTweF/vE68JgMChpw8Fj5nv5mzShnl/O1GFHn+1FHIvGzpTs42Ae8fyHh4d4eHgo84V+dwpS26G2E3i+7Z/8fGQPHE6dM39vu5X+ZIODHaKcK2l5RPYZ4+y7+JzKH+Q886JFZ/J5xEunl4Xc35t88CBxjQXAkR+8ywYEQhsRFWWDArXR5oXEzhEUAQ4yBpO2ZIcY9bBAcT314v/T09M4Pz8vhgsLIgbax48f4927d0UZuphYsKJnwni3kFOmUD+UHodY8tuLDc4WDEAU0YcPH8qEsLJgwceIZvHnXpxos9mspFPJ25JNlFBv0g3ZkUVhIXBkL0qZxZr6Uy+8/R5HxgpHjMkK/29wZdKCMbESODk5KU4eIjO8nZn7TcbhLEMmAS9PT09l2zPK4vT0tOR2zgQEixXgg/nIdmFAAAt+3h2ZwZUdhcy7xWIRHz9+jJOTk7i8vIzhcFiez1kfd3d3FQVDO1HOBk8GjhSf4wa5Y7AGmeiDcMlHTZ29GNMWk0oGxd4K73UMOTDh4+e675ir2bHFGOUdlAYnVtyf+uH7utSlLnWpS7X88R//cfzJn/xJ+b/RaMSf/MmfxN//+38//vIv/zL+7M/+rHJ9xqgmMfg8omo0mCRHn/As6zCux9B2AIaj+VwXdKFxCnoXjNBsNgtm4/lEM/JMsAfGGgZku90uzh+Me+rc6XQKpuA51scQFhAGBKsZY/Dc5XIZd3d3cXt7W9I34uyzM87vsOFsPGfn3n6/r6SFdmpEG1+MmwPA7AiyLuVv+pj2uE12khJdTD+MRqNSp6z3eSaOU9rOd4PBIGazWQlCizgE9dmuiniZIsiRpbn/aAOyx33UmXrYeQlWsyMXYsKRurwrO5wsz3b+uF8yZua9kE/HMmU4KjgiKg5MiEzmA/3Fc+wgx9FJYJcJTd6ZCUbbg2B5cDPPd7tsg/X7/RiNRiX1FPOR6HNkt9VqlYBBjw396TmWneCMEW22g9J9zvO8M9Rt849liL+NofNamR2VdalLXeryQxeTug4ONr8It2Mu0XqA7xz04R3r5kfACXaeoRPgPIw/0CkRUQh08F/EYfcMz0NPutj5Aflvx493MLtO1CsHkJvD+5R+xwFhvpbvzWUYu3Q6nQr/GRFlN44dnDg+6GvveKOv7u/vSx06nU6cn59XeCDw52w2i/l8Hvf39+XsXW8SsBM1OwjgERkj8JnxHdjq7OysfEZAN84CxgxZ84YF+oW+NhfE2OHIJNsU42VZok95hoP0zINTZ/PfdqoyZrTLgVqMNVjbjhgHYmG37Pf7wjN6vMGT9DdOE+QIbtP4goxa2AOPj49lHM3JesOBOcLZbBbb7TZGo1FFni2z2DakteTe8/PzwrHyfvoT+fHRRYwVQVPU6f7+vnC4tk/yGuSATDsvjfnMgTKPkSm+M/5FBm1rcR82HM9zcB1zwesRfeZ5nPvfG4/YVcdadX9/XzYp2aZDPpjXn2P5g88888Q/RkJEVJUW92WDgc8jqpG8vifi4EXHoCNiIhPj9l5HHDyr3m1DVF7EwcvvSAIiVyOOp2XzRHB9+Ttvj221WiUFnxen0WgUrVYr3r17F+/fvy/GWiYDsoORBehYm72I8jlng6GcEWYAAY4Vzsz48OFDUT4oWBtyTEpHznpcW63q+QekG2Th6HQ6ZdcQ/ejFlWfxPO7lmYyD87H6Gf1+v0KAeLyQCfqV/vaCz5hZbrLxyDhzr8kcxoUxydGbEYdda/7ODhkr3aenp5hOpzGbzeLi4qKcwTEcDiuHojIegCcWVSJt1ut15SwP3uGIEBvvtIN+nM1mRTavr69jOByWzy4uLko93R4rfiv1Yw6uiKic88DfjDGLtR3EbidKg/bk9Sf3M3MAh6/nUnaWmSjJihASinntduVnZhKP+mQw5blksF6XutSlLnV5Lv/gH/yD+NM//dOIOBhrt7e38R/+w3+If/Ev/kX86le/Kjgx4nDuEeu5A48yuf6pYqLbDjSeixFFUI2NHJdsJPFsPkevoPP8futqMOxmsykGoZ0gEdUgr5OTkzg7OytpCNH9dmo0Go0YjUbFAQHmdjTrdnvYFT6dTuPm5iZubm5isVgU/e22GBM5EMwYn/5E35vUarVaBZuj88ECBNvQVtshJsX8bPcLuhfDnvGxIwNShVQ0jGk2PnNwHveDNYxXweXgNkgM8CcBUZk0sRyAOzBELccY0/7JUa/Un8Cz7XZbSAXLLDjXhruJORvxdlxa9o2reD4yCAaDODH+8xhDfLTb7RdONK5lXFutVozH45jP5xXcaPlw+0yKUgcIVIILbQs5OhubptfrxXa7jbu7u5J6EiKHviEtl5+F7OXdbLaTsV14jomVY2sLP3b6eextix9zilnuPF8zPq5LXepSlx+qoNPQ1+gj60ICjtrtdlmjrafQyTm4J6cfNI7wWmhHmAlx40X0B3oYzOVdMARHZT6VNsCFeX0/9n4HfttJQ73QoQ44sl6nrrTdOtZkP880RiVYhSAjeBI7P/r9fsE3tN1kvuvGeVlksyJNIjv5J5NJ3NzcFKcFnJiDt6gn/YODz9+5n5CBrKO5z7hvu91WspbxGeNpe4Ggtt1uV0n3aF1tfU2/0qc+j9Xclfkn5oN3OtG/YEycSM6AZrxlLMu8yPi21WqVrFieD/QNcthsNkugOnOPe8hggU1j2WWHIDjZONcOIMbm9evXJTgJuYM39FxqtVolwIk5zo4zvs9jAS4lG0fE4Xxavl+v1zGbzWIymZTv6RPkgD4nqwZ9iT3qecZ8z9y/16u8Trg/7JhEbs0n8lxwve1N3o0/4xhmZi6Bye1nwaEIH99oHBy9jLF3nn5uePL/isuPDs/kg43EvCBFHBZKE/UMrIXFTgcWcxwwDFQ2wLNRzAJtITg9Pa0Q3ywa6/W65DwlqoD2cI0XB/qANlAPC+1wOCxC0mg04vLyMrrdbnzzzTfx7t27kqoRIzEbVjZuLPj0k3dc8R3blZ0DmQUB5cm9bHWeTCblXAGMRjvnbAjnOvIOilP1MCZEaPb7/QJmGAvnkeUzLxh5gc7yg0zZcPZC5HpamXiBp11umz9Dphzxg2xZYfld1JHxxaHl6BLalw1k+hA5vbm5ifl8HuPxuDjAOIuO8WIXnPMVmxxzpAnP8ILruWx5IQL4/fv30W63iwMNBXR1dVXkjna7L3gW43jMYIcAZNwABhAXkCAmkezEyk45KxiudX04p4/+RzYMSv0ur0euu9cbyyPfZeXttcKg12QnxCh9WZe61KUudTmUf/kv/2X82Z/9WTQajfjFL34R//Af/sNYLpfxj//xP45vvvkmTk9PSyShcSSFNd5BTREHgzfi9197Hx8fYzAYFExjI5SfHGWHsYReMuagOCrYxj64indsNpsYDAZFB202m5LOBuPeKeXs1OL5dlqBEWykO63Pfr8vhMZyuSzBXxRwDIY3mMY6OAeYGD85OIp30n9gpuVyWbkf54sdYY1GozhdcBjyLhfebX3Pc8Ai4Db6189w0JEdkbZPIO5oHzuTuAfcChZeLpfFOcqzHYUMdvDfEFaODGVHonEGAV/GhBBAOH0d3W1nUrfbrThdwO922JqU8xhyj51AjDO2Hc+j78BdZGVoNJ6du+fn5yXC3NjMNiD9NZ/PK+duGB96HE2cIMOr1arUy7YE74iIEnm92WxiPp/HfD6PyWQS2+22pDt9eHgo9hU4PeN+6kQ9PI8Yk+xc9vyin030It/Gx15bvE55vP0sz1c/oy51qUtdfsjitRg9BQ4DR7DuR1SDUDKBTMFRkLmQY8H05goyl+Rd3Cb7HfCc62SOwbrRXFBElW+zjjXXZx4UvQK+Mx9Ke+1EA4uhkyIOjiIcIWAOMISvA2PwPgKInA4RB0rm3+BO6c+np+cU4NPptIxx5tXQYf4brOG+tfMFTJl1MZ+xkx/nhtMqRhz0fuaKeBf3sxOJdtM2zvDivXBtOFTdNuSA8Xb2AMaQzRHUmc+NoSzDeeeXOVRsBPrM/YCjyX3HvZZL6gemxEbwWcrgF/hqZBLHYrfbLRwn7eB/xgJ5eP36dXS73YLZcFYat+BUQ3b6/X6RSXATY2qu2TIZcTij2Dh7NptV5ij3M2Zw9TjPzFd7LrofvS7ZD8G6wuf0DX2ROfWIg53htdDZ9rDnGBevQcbqDhg1J/709BT9fj/G43FcXl6WNdTOMtZm+geb4XMq39t5lslhOxQ8wQy+c1Rt9mJmQ+SYEji2KPmZNoZcP77PitCCFVFN4WhCwoRHJlo+Fa1sh0273Y7RaFSM0kajUdJ6fPvtt/Hdd9/FcrmspKk7tshlh4zfxeRgAWEBwtClj1FgTP6np6fKGWV22rhfvaDYeUZdWTzoeytlOzqImMC5wnOZVPa+Y5zb8eoFnT5CFhzx4cluZyLvog+9oPpaEx30H9Ebfr/lBuXm51EXR0igJHAKeYwoXEdf87d3jk2n09hut5XzSqh7jh6yIxCCY7lcFlmgrsgHAIh3e362Wq2YzWbx7t272O/38bOf/SxarVasVqviUEMOs+wytm5vNsitHPf7fSEKIqLU3Q5NOz95NvLguYK8mzQwGMnK2TJG5AXv9PNzW7iG/spkg+XUgNTKyETIp0jfutSlLnX5qZevv/46/ut//a8REfFf/st/if/xP/5H/Mf/+B/jX//rfx1/+2//7RKckg2RTxkmEdVACBPylGysUmxQ8mxHNzvwJ78Xg9LOJxfuc32yvlsulyXIJLeRtOHsmnIqFpwlEBiNRqOcLxFxOLsKvMKB9uTa5wcDlGAa6zYwAPoQEgI97L4HU2XCww6+iCg7wYyXvPPK5AqBcuBgxsvOMb8LPEGfO3Iao5w2OhCIfnTEr9vE2V2826k29/vn8wsgW4w1LaukBzJO4tnYGRGHwDA7SBlDZ9wwbrfzCeIBh1ij0SiOP8aK8dxut7FYLMqh8xAh1JW5QL97ZwD9TqTqYDAon3s+2DnEs4fDYXFMcVZMtjcjonLeHXLreUQbuMZEK4V+zClxms3naPLz8/OIiFgulzGdTmMymRSChLVktVqVnaG2r6i3U7EaC7darUoa1Lw2UEwc2l6i/zK+9jzNxc/Na5afW5e61KUuP2Sx08YBDV6zwQk4cXAcmLvx+h9xOOLFwQwOssl/HyO581lhPuPT5VhQgnU5esB6ze/K3JOfZX0HHjNPZ76n0agejWIs68xAeRMBehHHJRiD/uNzsnCZv9vv9xVnDGMFRrq7u4tms1l2mrEjiefQBjCDM3htt9sKb4SDMDs3HLRivEpwEO0H5+R+eXp6KviIuuEgAl8Z/xlv84O8nZ2dxePjY3EUIsfodwdg4fSxbeBsF5nbNNbIWaaQD5yc5ufgwsBt5hkdqIRc0SfG+DyL+QrHh9PPeBleEVsApwsy2ev1yjuYw/P5PEajUUl/OZ/PS/YM8244wXq9XsFV1Hu/31ecuwQF0mfI62q1Ku/BiYbDE9nKvDlrD3xfdqCZd2du8Df94rluxxzjap/FdruN+Xwe/X6/MteMD92Hd3d3ZeemZcXrhx2y/M+cY8POF198EWdnZzGfz6Pdfk5X73ltmWINyoGlP/byB9U2O7E8kPwci8jgGiYC/3sgvfBHHAYIoSF61g446mCjI6Jq3CGwJvKzgc6imSNkrRg9wK6znWlejLrdboxGo1Kv8XgcV1dXcXd3F999910xAp2yMOJAuvA//eZ6eNsxEbEQEvQPEZwshjxrvV5X8rJaAfFuokuslFGSvI9F3Au7+80K2w4hDHE7mWzU2ZGWHSwsGPR9JoKcltNb7u30tEyhtFicWAgz2UM9bPgzVowDSoO6ZacIsk6fO/oI2TIg4xruy7KO43M4HMZwOHzhfHG9IC28E5E2R0TZwUZKVC/ygBgIouVyGe/fv49+vx9v3ryJ3W5X0nOen5/Hx48fS79Q72Nj5ogD2m2yjjawO9JtR555LvcAbCBTvI5QpzyXUWoQf6wr/PY89Jpm+eVaAzmTQyZd6X8/345Sj7OvrUtd6lKXuhwv//2///f4p//0n8Y//+f/PP7O3/k78a/+1b+qGI6s6Q6wMSb1Ws36bbxqRwkF3czOFONIY7qIqETbOiDD+eWNKzJuBrc41QtYjToSeITOGI1G5dxZk/Hg4nxebCZ5CDLDyCIy0ZgM42k0GsVmsykBUjaQttttRbfT/9bR9JENLOMAY1s+zwYojkQTEuhWp0ayc9DECX3uVELGdhj5vh5s2Wq1in1CsfFrsopUgPQf7Yegwlg3Rtvv95UgHwqpurnXUffIAhiDd4O/nfYnjwe41HYaMhxRTQmfsSbBWY+PjzGbzcruMJOTYFKPBfZQt9t9IQPMCwgq7JfLy8sYjUaFvDB2Rw5oL04t24e2D3LwGZjVWM590Wq14vr6OsbjcTnUfrlcFlkHS1M3n+0LUUUf5N2WHreMR7nGQZZ2rDmgMRfbMtmep30mXj0GXkfrUpe61OWHLqzDrHXe/R9x2BXebrcr5DBrrXmnHOTEc6wPfa9tdOPGY/a+uSPrE9oASW/HjOtiLolnHiOizcFm/BlxSEFnLsPp/by+G3+hr8C7xsf0LVjGOpWUxjwfXAJOoB6kAMQRQZAWu1lwyhGUs16vS30YP94NLnRACdgjH7NinO12u+/AOeAPHCnmusHmrVarZBMDi3gXP+e8+d2bzSbu7+/LTjZ27dAPjJ937nm3D1wndXfQN84qZ53Kejw7F/mbrGnGVrTV5+uB99rt9ougJwK27GB2kJVxiMcIPtcFLhtuO+M898d2u437+/u4uLgoWJs5bAc62Rpsx+W6R0SRceo6m83KkUfuexzJPkKn0WgUpyrYn36EU7d94DlnfpECNjW/zjW2hZAF25yMN+uRj/7hmebjHaBIHW13eUy5z3Kbz85m/Lrdbski6Ln3OZTv7TzLIJrOtHfSAxRRPTQ6g24baiYTssHExMiLbcRhWzbCwADlBQ7hYdJa4LjeUau+1u1w+3PbbPR0u9149epVnJ6exmKxiJOTk7i+vo6np6d4//59MbIwyG1UIsAYzTzbIMFbehF+X09byG283+9jMpnE3d1d2dFDm73zy04bruF92TvsRcvKGIUBaPEz+e0FH6Vo2WGSspjnBYQ6edE9ZtQZ6HiHIY5UG5cGHHkRQ+6cZif3A89HmWTiwg7RTqcTnU6njL3bZ4AFAWHiy0AsImIymcRyuYxut1uM9WOOV+YBbSHqGYVno5lx8aJLO7jv3bt3MRwO4/LysuwMG4/Hsd/vy+607ACygZ+dTxQb7PSfI9Wph5WNSTJkzxE4ls+8UDNfIT0sCwarWeZN0lDvHBmSAbKdzX6/I7oyUeE5Vpe61KUudXlZ9vt9/Nt/+2/jb/2tvxV/+qd/Gv/pP/2n+Prrr4+u+8YqxnKsyxD7Gef574z3wDN2VNjAoRjPom+snx20xPUZd2Oo805wYLfbLanHOR8VI9tEB0Yc7wYPOE2gMSlGls/mpfDc7XYb4/E4Go3nNHnuB/o0p3c0qZH7KOtRO/ey/oQwMzEWUQ2KW61WMRgMKjjuWNCSySljCkgd159UjE6f/fbt2/Ic6kk6arBvs9mMwWAQzWazpKPOZJuxE8atZQ9D3eeH5HQ4xtH7/b4Y/+D9HIgIvnRKqZxWBQcXfeMfSEGIjXa7Xc7Ye3x8PgOZQvts05DukDSo1MV2GHWH0FqtVvHq1auCPVerVbnGjqLT09MYjUZFThxABs50Wh5sHqdZQhYhpLrdbpydnZUAMshZ5hDnnT08PBSnc3a+kX7UY+91wSSno75NXLh/vNYZn3rOeG7xXca5tt2O3VOXutSlLj+Wgg7OgTFwGa1WKz5+/Bjr9brguOxEYO307ix0CDrXfJf1ccZpES8zb5kHMZ+GLgcLmbdi3c6BENST76yf3D528oCh6BNw0ad4GOoMVmIHN+3KeMP6lCAj0mUPh8Pi8DJOQJeaF5xMJjGZTArWIiDq6uoqptNp7Ha7kioSIt6YJv+AGcxNMl483xwegUhgD+tiMEEOZqHvwNqMLUFoOPyoDyneeR99yi4d5Jk6w5eC9eAOJ5NJwa7OPODdY5YVZ6PKNkXGCt5c4d1b/A9+wakHVoIjJIAdntvOU+Myyz6OLMYe2fU4EgAGv2/cilOm1+uVdng+R0SxfcBvrBs8A9kl64I5cLhPy48DlfjcfK0dUtht/X6/PNupNqmvbUs7xC0rtoPM1XttAouTZtVjbUcymNXz0nYXsp1lxGsG85HzCBln5ixtJEsJWfgYy8+p/ME7z2zUMRhWQNkh4XsdxXtssfZibmWDwY+SMKA38MfQ9BZLe//5OwupBREjm889IWxgeBE2wX1yclIhLjqdTpyfn0ej8XxuFQspXu1sKNF2Jp8XL3vC7exB8B19wgIAMbJarSqkzrF22WhHyfHe7FjLDqFWq1VyxZoIoI4olcfHx0qKozxZPdF8v+WCRZe6GNDQD3ZI8R2LO+8GSBhs2Hg2uWOZd7s9B+xUxmj2OCC/mbgw8OBdXvABVMgKka0oF6JdSFXFtmTkygb7MSer20xUAY5XlBEAhToul8u4u7uLwWAQr1+/jpubm2g0ns/0Wy6XMZvNKk5nzxXkB/kyOem5ADFIdLtlwiRfxMtz8vjbhJjnL4V+7na7MZ/PK/cyNpnEsPPSa2KWYxNEmXTIa+Ax8G1FXZMWdalLXepyvGB0/bN/9s/i3//7fx//6B/9o/h7f+/vvSBH7CRB79rwsN5wOYYnGo3nXS1EIEZUU6TZoLKRhy6lTvw4UCaiuoOEz3G02PEDRuMQ8qurqxgMBsVwom4YbrwXXb5YLCrEP+00fnewUtZ/bu9wOIz9/vlMNPdFxmb5fju6bHz6XIRMUkQcojCNCeg/SBAIMwegOagoywftR1aMAewEs1ODej08PBRyZLvdFqxLoBRtNAYmiM6R58YGxi+2N4bDYSGwcOR5DL0TjbMMMubAtsi4HbwIdjf2tBPXY8FYI7f0Mc4rDoyPOJyVYdnebDYxmUxKP56fn5cAMjuBwYM+G2Sz2cTV1VUMh8Oy+5F3M4dGo1GcnJzE/f19cbQ67Tnt3u/3JVqeMbEtwDMJ6PTZfzyj0+nExcVFaQv43HYizkzkyvjf421HvO0hr0WeS14XMvliIhcZztjSsu45kp9Zl7rUpS4/dLGjAM4tIkomnVbrOQ3czc1NJajZJXNdrO8RVexnJ1rES8cY15k3Qj+bFD/GT5ho5zef+9n8NvdmDEvGKfS7uTFnP+AZOB7cJ8an1NnPw5EEFspn4u73+7LLBv7DTpdms1k43fl8Hvf39yWVNekZzbtMp9MSfNNqHbI8ZWcZbSKIxhiA+oFXwBI5EIV+OLabH07OcuN+wiHibF/GdYvFIp6enuLs7KzyHDg1H/NDv1NnO4R5JuNoXth1crs5x42xQA4drJ+D12kvu94s02Bqc4sOrAIPOTgfuaAdDgpiHnc6nZKtgLFzqlFkDserM1HhOCT4qtV6zk6AoyYiyq4o8N9kMonFYlGwM7jW6UQZE+YtdhRzhWNvvDuN4vm83++j1+tVgvt3u13pC88f6pj/B4MbK2ZHPdwpmJxUk8i8cTTPwa7wM73OHbMTuM/193PNAYPTt9tt3N7eFjkg7fnnUr6X88yk9zHQ7s5k4UHYjqU79GBRLBxMSjreqWq4FkHk2jzwXsxYdOxw8fv9vGMOMismE9p+t8mU0WhUFnciL+fzefHm++wB+sqTE8Vi8sDpfaivDVeiSrzldbFYxGKxiEajUZwhtAfjkYXLACE71bj+mMOOcaUdtM/jxiLm95t08WLtdIv0rydhntwmbjxmtMUOMxuELLQUR0EgI58yLA2iAAaWz1wfF/chjl47SfPZXj6Y0u+x7HqcHLFD1CwEiOUHxUNhbOhrtsUjC8cU3m63i/v7+7i8vIyLi4u4v7+P7XYbr169KpHGVgYGhxFRnH+73WGnqHd+tlqt0h47Dz1+yCZzHNKKSHDP72OFzzudTiXaJNf5GODO42tF4e8sQ7+NdKDdJsiyzNelLnWpy0+13NzcxL/5N/8m/vzP/7zyOevkf/tv/y3+yT/5J/E3/sbfiLOzs5hMJhXCIaJKeDhww/+7ZGzKZ71er5AD3O9AGztf+LHTxhghkzDW9XaaRBzO7NpsNpWUcycnJ/HmzZtC6JuoHw6HxVGw3T7vxOKHs5rAhATeHKuPDWEwjB1J7Xa7pKaZTqeVSFOeY6zq8xcg9DEmIw6kliNxPU4E9nh8eQ8/xn8mJjzujoh28JXJCDA3n0dUHXngFeoHWWH5M07s9XoVg5bnGs9lucAxQ8CPnTgY1I1Go5Aw4FrvJsvPNGEHYWD7zfaCCUXwl+1BCKeMOcG6yCvnlfED5n94eCgYfLPZxPX1dSXtk20y6kQ7N5tNXFxcxHA4LGek2Hnt9yLvjrZFBo2vTYLxbojD4XBYbDmwK+RPv98v6e8dRU3/EcVs0tKOOcbaNpLHL/e77Ufbu5Z/42eupe5emzyHsl18zCaqS13qUpcfomQeCR0NNiOI+ePHjyWgN/NYOTjBnExE9TzWHJzgAGCewz3eneN7jmGTjAkpdvblYI4cyOAd9cZcPJdsBbzTWYeor3EA507Z0WfnIk4zeCewE+kBz87OKmelgvuazWb0+/1oNptxf38f0+m0BJg4uJvfOJboA/rZO8rAUObA+J9+o8Apenz9bPPPPM87hezI4f7sXLHjAtkA14IZwa6WKafBNi6KiAo35PGiLnYWUi+eazk0vqCPm83Drivj62azGePxuKQ4nE6nleA5Cm3KtgE8JIF8znTGuCA7tNmpEPMZhQ4o9NylPzyGBDZeXl7Gq1evSiCWswCwy3EymVTkjjXEMkhd+JtneFyObVCwfUKQ3HA4rDiwjD/N/3ptQHZZN/w3ayFjbBzJMzhz13PIMuu+xG4wbrUNym8c9bTZAWIZe2aMOZ/PIyLi/v4+PqfyvZ1neVH/bSUPWlYKTGaKhSuDcxZ8K4288PnZPg+MaxyZwMKQiRNPDCIlnauW9ILHjAsmCWk8+I7IUNKL2DmAYHprKOQ/Cx2OM55HuzFSI16mntlutzGbzWI2m5UFjS3XeNztJfbiTn/yHC+yub+534eN22GWx93OO0f3OorCZ20dI5uy0c+iQ395p5ZTrUDSQPRYXnimiQ0vIix49L2VajZoTfhERGWbOmPE7xxpYBBmIMdnKJzsbKOgZHkO+aHX63UhWrzweZ557G1g5zSVtD0TYNPpNIbDYXS73ZjNZtFut+Pi4qISheJ54gWa+lgZe5xxwJlg8Dx1dHQuKAC3kfdleW61WmU7tSOIqQ/PseJxn5mQ87PdprwG0qfIZCZ3eZb7qi51qUtdfqrl66+/jr/7d//ui89Z03e7Xfy7f/fvipF0dnb2IlrUxmd2pFk3RFRT+kUc9A9pVOwcsRPJz8XBYZzLNRn/oV+cPcE4DEMGo4vvhsNhXF9fR7fbraSD5uxdArpwlt3f38dyuSw7YkizYgIJfAeuAIMa/zjwijo2m82y+42zK9DP1pUY09ZxnU6nRHKC3Wy84awAU5HtAAPbTjjwC+lZBoNBIW1INW3iITsdjDVpO2NphxPX8X5HXVpvOz0j7wTHgY0hm0zmgKezTJnsiogK+cE7TDLxmceKAq40aUP9IN5M4vB+nD9gazvBWq1WiSCnX6m7D1wnw4H7hT6/vb2Ny8vLit1jso72cW4IaRwvLy9LOm5jQ3Beo9EoKSJ5r3Ed/cBc9DwlKI10lMi4HYjdbrcEMEKwYFcxVowfGSNMLNhhTj1MtFJHghopxrvg5GM2q0ka5I2+BZPSB+Bo4/C61KUudfmhy9nZWeFGvJsKHb3dPp99dH9/X9Y5r2GsbeaGfPYTa6A5HBPiDr6IqDom/AyKHW38b3Kc76wvI6Kyk4T/rbOoH4ErPNc7jfJ97KoyFwHGcopuglnQV8Zw7k/0U6v1nIKQ4BGcBAQ8E1z1/v37yk5znmUsbmcSuM7vMR51ZqSM4z1emVuxU8nBMsiE28b73M8ed7+P4B3wK2NlTAYWzTvVwPbgD3NvdhSCAayzjWsdsAQmyE41Ao8sw+a1eOdsNiu4xf1g5wt1AtPaAblcLisOM+aeeXbLMJip0+nEYDAo56qxsQSuE0yG3BA8f3p6GsPhsIw19To7OytZDnAo0V4H8/M/gYleB0jJSVuenp5K2nza4hSflkH6jQx39IvXB3OAyEn2k9iOROaNYRlrZ41AZh1YZ7nyNV63aHd2bntteHh4KNklwLXUnbXIdgzt9Xs+h/K9nGe5cTYuLZQWlHyfFxq+y57VLDQYk97ybKeRFdBvMyBMQlgJ8h2LAQpmu90W4wehtMfb3mWEIiJKdC8RpxiEpEz0gkk0JY46n9HGYmbHQ26nhQ7Bf3h4iPl8XoQ2OyTsfMxjCgjgXT6w3BEOdvCxaEVEOfeDqBM7g2hLfqedinZ65vFDEWGYZ2eCFTvjacLBi3qWEYMV9+mn7uU6rs2Kib6MiBKVDhixo9Pbe7kf+QDU2CHGomZHFrJg5ezFDwcYqULZusx19CFyms8CQRFZ/pEHHxIK8On3+2XLPVv27+/vK44nrxuM1bHIBj6nb/Kiy+KMk5Q5zJjlbct20PE9BZBBX1iZe45RTDxwv0lTt9Nynx127lfLV06ngwzVpS51qUtdXhbr5UajUdINO1jDetvBLxkXWM/wWUQ1nTbBItnRtt8fAku888zYxJguE9jGtSYlbCiiH8CMvV4vvvrqq4Ipif7r9XpxdXVVMOlisYjpdFqifQmuccodOwhMKvDjc1gjoqSHdEAL/dTpdGI8Hsd6vY7FYlFS8piIB+9AktBH4E3jAjuebFhSR1K2LBaL2O/3xbEGFgejkoLGaVp4Fm2w85Ln4xgBO4DNaAvXg1ftjAJvQSrQjmO2CmPtAD5IMO7LdgD3drvd8i7OczAJhzyZrKN4roAd2T2IDIL5jK83m00lSj2TdQTxEcjnDAvGa8ZaHu/FYhGj0ajMJ2QWgsmE1Ha7jXfv3sXj42N8+eWXcX19XVJCcR3kHg60bGNlZ5MdpNzPHHdKfPoOQpJzdE1MERRpfMqc9vrl+WEHmmWK+cF7TahlvEtf2qahvREHh6jtw2N2/udGdNSlLnX5f7eAM8wTmBtiVwmBzBFVW968QURUcJp1OuWYQyzb9+YonFLSvBWfwafwnTEpOsf6JxPbGcuyjnsHuPGSz8nlncYz6FHuM9/kQHD4CHa4g53a7Xacn5+XXTsOnO50OjEajeLp6Sm+++67stvHfUSf2CEGt2ls40KdaUfODoDzBp4oE/roXd7pTRL+3A4l8IN5H19PHYznc53Bk9TJgdTIMdwUzgk/m8AZPsvH6zBO4ASwiXk33uFgfmTYmw9ms1nBMezcon28C57RmTE2m03hpOGljR8dQG8eFXln1z479en7s7OzEsAEps48On3K+DMW2CL7/b7Iabvdjpubm4rz1fVCvt3f1NdOUjJ9Mb7GyXboM3eYYwRZUcB1jD/PyM4r3mEfh/EdfZydu36GndJ+HuuXbR/jbb+v3W7HYrGo2Ec4hlkXPIY+J/Fzw5R/sPMs/50FlY6PeJlGhYGn2Di30mJgMHpNonOfCRHqgRPLg2unngXOBgXfZQXlRc0K1cYk7W23D2cO8D+GExER8/m8RBlAvjD5cjSBnW0IrVPctNvtspOMFCXk+aUdTDomIrvCHCVqJUrfmgDJERHZm2+ixNfY+UFd6VMcojiJbDQaeFheTC7ZqOMdVt5e6Dze/I6onpVhI5PFzVHd+VraRB97XrAwWHZwLG2323KAKmMJaWSQYiVvIs/tQHZ9sK3f56jliCikmsEXZIvbyv2MDcVRINQ/IkqEBpHrRI4/PT3FYDConMXmOcyYe5wM+HiOc1JncmC/31fkims8l/OaY4BEv3j3JJH7pL2iflbs2Snt9cSg1sVt9xzPYCX3C+/MpE5d6lKXutSlejak1/6MD2wEm2xB56EXwREOQjFW7Ha7BUuhmx34YscEOAa8YyfRscK7nMbP7bTRQl1+/vOfl1R14NN+vx9v3ryJfr8fq9Uqbm9v4+7uLj5+/FjO9jRRAKYET5AaECxCQV/mYA47ILy7n2daj/oMLZwv1psmlriPsWk2myXdDYYnTrFmsxmr1aqyyw08TuAQwV20F1wDVrbTi/pmgxSM7SAtnsu42hbxWNsAtSOX5xjv2PHl6+w8M64gCAr8ymc8G3IDOfNc8bO8O3E2mxV7h2uRfUhL+s+yiePP+M5OWNrhaGnXIzu0tttt9Hq9WK/X5eyTjMmN3afTabRareJAu7u7q6SRbDQaMR6PY7/flzZmRyTPX6/XFXIz4oB7qbvn6mAwKA6+LN8OesNRa7uSTCXME9sC2YbxesWzbR84mtmBZbYLvA6aDMlrJtd+at2qS13qUpe/6oLeZe2MqGb2mc1m5TxX74QxR8iab5vb+oD1MmMx3mUCmGc4UNr3mbcCN5gXYO2l8J1xBO0z15cdQMalxjPGUxGHtMQ+soLf5j7pO3ASQUh+B7xmr9eLwWBQdq/B5wyHw3h6eio7zqgnuAQ8am7G/Ubd0anGkPCk1mcUdoqDZyOqTi7Gazgcxmq1itFoVHCG+4u/+Q0OQr9nB4WdLA50gdfK3JLbiv42jsycIAFVnU6ncGzmxuw0oz+ROcsmmIR+Nx6hztglDqyxM9F4abPZxMPDQ9ze3hZbw2kb6X/zsycnJ2X8zKnBsXqH5OPjY9ze3pYgqMFgUOY+accbjecU3WQcW6/X5XPOqN3v9yV7CNj54eGhpHelbsgc8uZdZ9h2cOrIGxkyeC6fm+vEKUqKVLCg2++1wE4y1492+ceFPshY0s4zc9leQ7KTLr+P9hCcsFgsotfrlTXDO0d5DrifuWT78nMov7fzjMGKqJL32SjMpMWn7j/mWLNRyCC12+3iVaaTEZi8xdGdz2Kd0+T4XfYA52jWrFy9ENvJlAXVUc4cII9C2G63MZ/Py4T14YtMuvl8Xv5ngaLtOYLVhDoEAwosIioLL31JJDGLIs+0we/+ZefQcDgsk45383xPNpNNGM8s8PSPDVN2qbHA2+nm6BIMY8bCys7jzGSljcibf1N3T3o7mfhhm66VCzl3kQdHrCAPjljYbrfFMcXCS/1xorHAIltEqvJOrkUeLKuMM/Ok2WyWCBFkzAZxnptPT08VxUzfsIj2er0C7BhPlEy/3y+kg6OkqSvAjoM7nV6TvnCdqKPlEycW4+N5CXjL89oEgckKO9woBs5ERNB2gJ+3rbvQjhwBlcGe/85KzTKZn20gbDBRl7rUpS51qRZjMa+1+ccONhP6GZM6QML6fb8/HILuCE4bTTgRIL9tVNvoycYJuj3rAxu7xsZgqLdv35YUydPptBAFV1dXcXZ2FqvVKn7961/H+/fvyw4wn1vhyE3aiS51UJHJIZP+6Gc7V2xImnjHyYVxDeHh6NzsEAGP7Xa7km6PPkBHY4RioOMQhAAzgcSY+ocxBA9TL2NwxhoMjpEOBgWLUTzm/syf03e02c+k0A+WG6fMtrMVubVDhohlgoEsd4zvw8ND2VE4nU6LjGCzeKypQ7PZjNvb2xKwR/s487nf75fMCw8PDy9Ssh+zKxkLnFzGy81mM0ajUXS73RgOh+V6R/KDESGnJpNJ7Pf7+PLLL+Ps7KySlYPnn52dxX6/j+l0etRx5n5CLhin+XxebIPValXsOogo72zkOcgtstVqtWI2m1Vkgz4w7svrhuflMTsnryNZFum/fMYy45gdjbXTrC51qcuPrcAzoTscSNFqtUpguYOEIqrOLwdFUCC3I6rnynudtv7x2s3fDtzNOoXnen01RvFabI4qYwyvy+af7OjgNztcHHBNewi8yoQ9+oxsQuZJvUsHJybZGHzUCUfv7Ha7mE6n5awjnus045/a+UNQDFgxczDG2Tgk3P8+79fvANuAnwjux6lC3+EIJOOS8Wm/369gD+QKGYAr5BrwpoPMzNfZ0WOeDH6KsfUuL+ty2yPYFTlTG89Hxh2AYzsFvOux4Bm2CSyDpLE2f8dvp5jMcwq5on7m8Okb5B9sjxPVqbMvLi6KQ63RaJSU3vRHo/GclYM6YgOBf72rDLuAOhmHUcdP7S607eFUsG4nvLXP9bUfxDaV+z7XwUFqme/Mji/3uW01z3vbyl6fPG7MHz7b7Z7PkOOMPDvkPN+oS7aBP5fyvc88O2Z4uniRhkw3MX6M/GWAmeBWJggUnezdMdlxxYBgrGSFQmHi8C4Urh0pNkBt7EH+40RxwWjEaRER5dykiChRiN5GbSV5enoao9GocvCe28uiS7TC09NT8fTiPMm5i+1MwxDCCWayA6PZOV4Hg0ExgE1ImVRhrOz8cn/ioMPJRgodL+B5q+3JyUmpjxWcz5CAPLDzw84GO2G8oHkR5H4UMmNAeiNvYUZ+aIOJJOSI3961ZXmzLNB2ZJx0N+12u+SCdoQFCiEvnJ4/yBXKmLyznlcs8h5P+g/Qw5ylPxgbO8hQrhBVjUaj7ESzg/Xk5CTW63X0er1YLpexWq2KrFgBeTz4zM5aE0eZBHUf5HXEDjoAicctg0CXdvs5HzGHo3o9cf9RTPzx/TESNP+fgXJ+tsG514y61KUudanLczEetHPCOi6iel4FOMxkgYmXiIMhyXU4znACgU0iqmdJgBe9vqOTqBvFRhL6zsUOHl/Xbrfj8vIyrq6uCo4Be/zsZz+Lq6urWC6X8ed//ucxnU6LE8RBSzn4w4EkGPekRTYZ4CAWSH4HMtn5Rb/zuXd+UQcTIT7LzTYH44BBDJFh8gBsTBoV8DFYBhLHxqmjcMHvOOUgaxwNalmy/DgoKzt2/L+fgYzZIQZuzQ5XMJllNZNdjtgG/zw9PZUo7+12W3Z4GTvaJlgsFsXx40hkzyU+XywWJeCLetzd3UWz2SwRwRTsOZ5Fn9Fm5onnoYlDfmOnnJ6elvPhiGy2bWL8v9/v4/Xr13FxcRHz+Txms1npo06nU87NWSwWpb4O2sPuAysTcU7bIS9oEzINeUTb7Ai1Qy1Hw0O2gK/5znPca0N2ojmY1DJo2+sY7qWeyIYJFs/5utSlLnX5MRQyOVmPGa8QyMv6Z51gxxn/H1s7+dvYjHX+UzjFuJG6gUfMWx1zQGRugXscmOVrMo/A87jWmAdujecZr5q7oH6dTqfsxnfbeZax1Pn5edEX4Ax2p0dECe7mnThTHOxkTM07fYQJfBH3b7fbyi5v83DuQ5xfBAaBMVutVnS73RL49vT0VHaiu9AWnIMOrG40GsWBRuYD61b3lbGUMYPHgDEDs3I9mcZoE4FjOF4c4E//GY9m50m2f+zUAGNlpyAcHhibM8NoI1yneSzjN7ALu8l4jnlBO3YzV2655v/skIS35kxnMFav1ytHKzlYcLlcll2THAVjXA+udHpGB00i28atfj54jnkFfqTQF3b+M27mP20fZA7S65Hv91h4nbOj2XOFttnhbuev5cSyxTWbzSZms1m8evWqUq/MX2O3efPO51K+l/Ms4mUEGsDaoN2g+/t4FT05uJ9FyoYryscD7mgNC0Umzynb7bZEDvJuG6EMJoaVU8XZURNx2PLsHUHNZrNsoaWgSFg4URr2+Fpx045cf57NuVLuL8bCnmG865mQZ6GyAQ0RYaeld9/Yi553oOWIGctEVtS73fMWbhYwJh1jw+K8WCzKGGJIIgMeAxNOKFL+dyRvlk2UPO/r9Xpl8qN06DvaQL86+oeSHa0UFiMrfhQN7aJtg8GgbLE18HD/OUoGh1fEs4PW+Y0dkWNykTGCyGBcyQOcyS2e4bEGqBDZlVMWGbR5zkLeeV7Z2YksWombZPMC7gXewJg1AzBGfUwC5Ll/zInF3AGw8OwMcv1sf25y0kSY57fnkOc77WNdyMC9LnWpS13q8jJlI5/ZkfbbcKivyY43GwsY2U7Dge6AWLehkAO1HBDD84zLwFTWCzzT+pD6DIfD+OKLL6LZbJaUH91uN66vr+PLL7+M1WoVf/mXf1kMQyJxrQNtwDtKmYIjijTbJp+438aao5CpN/gCnAN2abfbxQljosskFrjZpJFTQIKR7GAyvsVZ5qAgY+ljchBxOO8X0okfMHGWMZwrDtoyfnIgEO1iNxZjTH9SF7CoZQU8nB0Z2+224lQEp2Xnpokz3uUsHJYJpyICC9sRg8xl+wpsixMO0sopncCtub3MD5NgyOvT01Msl8vo9/vFWcb4k5IJeWUMIDtcLi8vIyLKeSvU7fz8PLbbbUkJiQxA7JH+Ewc685v+bLVaJUvHfD4vOyAhd3e7XUUO2+12eVcmPT3HPJa2Dx0wl20vjwXFzzTp99tKnuu5rnWpS13q8kOWnLoP/YW+gw+xE43C9eZ3cKR4fY847MAxl8PnJqXtkLDejogKRrIejzhsAKAexo98R3siqgESOaDBazv62LuleA78CFjGvB71hQM0DnXgCe8g+1Huh4hDas3pdFo5pwtskOtL+3Kw03K5LPgZhwbX0i7zNA688ZgZ17BrCQfAbrcrzjjziDhA0MWMOTvzuKbf78d8Pi/HmMBxwoPBb5nbo07gHXOxGfuBSYwt7KAkoCjrd+Mg+EswBIFH5qLgEPf7fekLxtcOlswJ2ykDtjRHjZPSTrm8U26325UU3fSH+Ttv1uCn2+3GeDyOV69eRavVipubm2JfkDFruVzGw8NDOS/NvoWHh4cYDAbR6XRKqknLlN9l/pfNAcwbc/k8m+c4eIw+NI8Nh4uceS5nufNcYQ0wj8pn2WFmG9lrTXaMZZvEf1sWkIH9/rArcDKZxNnZWcleBofqs7XtgPPxQJ9D+d5nnmVyIqJ6ELGNzExCUEx0fArYs9iYVKCwkHqSmugwIcEzbShkAfOk5jMbj9l4jqhua8Xzz7lsTrmHMJn098Lv9/mcJvctbYB8wGnmqEUrWoMHSBX6gMnKeKHESDFpUIATymQKigwlwoLA4mmj1ykN7dyIqE5OxpDxpl8cccGijMMlompg0lacXsfk0U442sRYQK6cnp6WreuWTyJLLTMmQkwqIWMmBZCDPM44ztrtdlHWPv+NZ1pxsLjiTIOEYEwYU+rm+WFABFCgDibQiDKif53j2jvqPHeRA+9SAyzwbisE5jn9jPwa5PhAeQMry9Qxg5556f95RnZyeR2xfKKgSTmZIydMPnrsXTJw8T1+pyOT+Z2vN1ipS13qUpe6PBf0i504/v3bih012bDI7+j3+yU1d8TBCea00RHVvPboBjuZbGBxnzFbNnZ4Ds+GwP/yyy/LWQcY/zjOdrtd3N3dlWeA5RxkYvIhG2PGy7vdLpbLZfR6vQoGy47JHInL394RhKFFoJLbbccXzyf4Bn3Ojj/q7fTnECsY3j5TAjxD8I6JKTtoGFcwIX3OveAx2xZ23PJj49r9YdsDXIUz1ng4OyLpS3Cs/+Ze3os8YtAiA868YHuLvzFs6QM7gX09TiynGzdxSZ8w7ji01ut1zOfz4oDGicZ48DdRv7aRPI9wTPH/er2unB1hmUEuTNS02+1yZrN35LXb7Tg/P6/suDMRm+XaaUc5bweigDRhPMN2i0m9Y0FhXGcHGTaeo+FN6HhOm/D1GmRZRHZtg3Ot16Y8Dr9rPa1LXepSl7/Kslgsig61jrcTpNvtVs77ZN3zuohuzFiQYieX8Q5rM8+zzuQ5cCTwT8fWZHOG/p51mufx21yJn+GgYorXc+MGO88yd4qDjR8+d5pfHBtkY/DZnhGHlIXsMJpOp+V94AN23dgxmY9EwbGATl+v18UZChcWccBBcGnGivStcaXxMLzaZrMpQS0RUeHIrKfpYzYbOIMB2AYZIqCHPuRYFDtkMh9teabP4VzBP/xsNpsSPJSD4cAZOK1oN+/nuXye8YSdbji6wDDmsx2UxXWeM3C4PN94kzGjnjgkbR9EHILr4BPBSMPhMK6vr+Py8jJOT0/jw4cPsVgsSnvIGAZu3e12MRwOCw40Puv3+3Fzc1MCtew0JuDLNiNjYVmDS7YTymn+GVvzhjj4PpVe1uMaUd0l6PUpY0mvMf7OdhzjaXuU73yN62sZyXL28PAQ9/f3xRnJuuv7GcssY59D+d5pG7NjzMrBwJrJk51JOYKOhTKXVqtVHDq8hzowSHagmVjgOjsObPSgRHL0Bs+wY4wFwTujrJxYqFmM+c2EZqItl8vKgZg2xuxFph4sSnaEEf3h6AUWJwMC6mYDOo8PjhOImOFwWBauiMOkcqROr9eLXq9XjE/63Wn1aAf9YqPf48HfKF4vKoyhwQyLBvUlXaD7zg4GRwr5uTnPM/e4347l/+f5fM64ZietP+Md/JAKyaQRfUzkgpUS/YgxTtsHg0FlgR4MBoU8ApxZCdphxvPcfsaB99F3kA4oDHICGxwR/WG58YK43+9L9IgBqQ1x6sKCS7+fnJwU5ee5ksfFMm1FZpLAc4t2Uj87sgwgkIlOpxO9Xi/m83mpS1ZaVkqfcpL5muxUs0PPa6X7yMq0LnWpS13q8lxy0EEmebOOiHh53hjrr/GH8SyHnTs4xNf7OY6UzZjIpI31EfVBd1pvu6BTRqNRjMfjgoVarVZcXV3F27dvC2m02+1KBKx30NvANo62/vf70D/ggRxRSZ1NuhCR7HcZnzmoKBt1BOkQkMPn4AQM1cFgUOknzsLivavVKtbrdQwGg0qKEDvTuN+EFe+hTiaP7MQwxnPwmeUm45xs1HpMLUv0Wd7l6B114BTsAY+X079nJwjPsg3j6FoTH24DY7ZcLuPu7q5ii9iZaRvGdTD5NJlMKge+45hmFxnkifuM9kNEIYvGrHZcO7DN7fnNb34Tf/zHfxzn5+fRaDTi/v6+PGM4HMbT01N8/PjxBRbnfvcZbcKWISUkDkMTHtgux7CcdwaYqMjESHa2eQ7nOeu1hvfl4CsTsHaC+jl5HahLXepSlx9LgVtbLBbRbB6OrMA5s9lsinODs6TQHyaNjWGMBSjH+CDrbKe187pqZ0tENWiYe80lmbD2u48FhaP/jDmst339MZLa/AT1NQ9CveHOnNLbzj6cE/QtHA737nbPwVz7/b4c32IslbNHmecDA4Jh7Qhw36A3zQ2C+QimMv4HK2w2m4KRGTeeB0/qnYnIDpsZzAd5HMBFu91zgJRTAfKefr9frrcudz3AoOAY8Ievd5Y12mdHIs4qYznk1EFatGO1WlVkyMFXLnbS5jlhTthyzdyyrWHMs16vK/yyM1UwLmQt2+/3MRwOYzweR7vdjvv7+5JBa7vdlk0tzWaz7GIj4xvjzr3IGI5Pgq7g/3Mq0UajUXZOgoNJYWmn9DHeMvtBkAmc/JnHdP/QN1lmjDORT88nrw+e+3kM8zpgbvP09PSFg5z557ru9/uYzWalP3Gee7zdt9nu/LGXP8h55v8pHhC+y6RCxMs87AxM3o2CsZujOWwY5Wc7ZRyDkRczCwUFY5962Ejgt3dFWSEdU5wQLZAHHL7NZEUIrbRZTOzBjjhEf5L+g7bZcLTwUT8bVtTLO64wWB0xjYMHZ6H7dbfbxWg0isFgUCYqC5HJJAiArKT9N9uXWTAgSpzz1crBiy9tZreVI1sZF28vZoHFYXVMhjG4GU+3nUUQ5enF32DHcmeix4uU++Dk5CTG43EBAw8PDzGbzYoCZzFiLqB0UV5Ev+PUajQaxWC3s8Xt8DxjfJgjXnjt4IZs4/d2u43hcFjkyFtt9/t9AbHeQm5CLEcsMR8zUUg/eg4yPgao1Jn3ez65nfxNfXxPVuC8w2M7GAxit9tVzsPwPDOJaADJdZRMhpj8AMj4HgPaY1EhdalLXepSlwOAt1GJzs8BUi42bOwcAaeBUUajUSWdMHolO5HQG9ad2SiOqKbx9WeuIwFZGV/0er24vLws7zw5OYmrq6t4/fp1Ie2JQgWnGaObdLGuBHsdS61hBxp9i/439uXZ1m3G4D7QnLZjLFq3o29ns1l5P0QGGNCkF7/Bb9T79PQ0Xr16VRxtTlVtfMFnTtfkz+34s/MPnMb/YG7jP2QI45H3QrA4JSV4FOKJvnZ6S7cxIirBfe7309PTQu4gF4w5Ng/1NaZwf1o2kF/GJSIqTjyC/MArTlXlPocEIIKaHWk4qMH3OEidKmm5XJZxsL0GdmXe2qYkSpn+mc1m8etf/zr+2l/7a3FxcVHOYXH6xs1mU3Zuer4j38grZAlzcTablah4CJvs2CKzA+PiADTPP2NgtyW307JGHcGxxwhTk8O+z5jV61q2m+pSl7rU5cdSWMMyV5bXOfAU1+fgkmxXg+Hg+ZwykWKezfjNvIK5BD+Tax34Yu7D36HfMgfKNSagj3GAfkfE4byrzLnwLvRLxkMUB6STLtr1RE91u90YjUYldTgOGuqEo4sC5vBRJhFRAkvgmDK2R3d7Z5PxMVxZ3lHPbvflclmCwzabTdk1BPYyX4a8zOfzwg+NRqPKuKB/4fh85i7/028OLGdM2E0PP7rZbCrZq3ACGWOy+8xckjOn4YiCOzTuy3iEsQEDgwcyH2v7hPrZ6cVvyyXY0E4by5jxHu+yvILlmA8Rzw50n72LjNhhCkcKHwxWvbq6iouLi0rGi36/X3G0HZtDyI15V/rVZwl6boD5swMrIkqgHGfm0WfG4jwzc4Iec57rQCvG384tv9u8dZ6LzCXmVd4ZSzYS29zb7TZWq1Xc39/HcDgs2dXoN57ljQKfU/m9nWc2fvPn7uwsYEwIEwX5fjqQ4jR0XgS534s8gpOLFaGvN6GPEGdFlAeVCep6REQxbm28NBqNshjjvWexZzKzaFAfFkL6z040e6BNytj5Ya+vvccIsA1LcjkTBcHi4khTFnmiPtjdhHd+v9/HdDqt5PRvNBrFiMZQZXJjGCIPEYeFMuIQcdlsNsu5GvRLNgoZO95BP+ctoSY0snFpGWAh8MJN3wDEvGA7GseLkOXQi74/N2lgIMLhlc1mM25vbyukUqPRKNEPROMy9txjEJbnVkRUZM2ADADDWHmMTBiZZCIt0sXFRVFg+Tm0NeLgKMUh22g0imLIzj3LRW4TcuNt3h4Dj/8xBe9rqTPjnwlLEz4Gkb1eLyKeU0Qck8lMXpkoykQdzzcBl5/Dd/l5tfOsLnWpS12eC/oe/cVnOQCBvzPePFZMODebzbK7O+IQUYpuz4RKxqP8750v1gcu1g1EMrL2Wz+Px+MYj8cFEwwGgzg7O6ukJcKY5MypjD2NR7xbCHyYg5LAQ9kYRGe5bTgA6B8CgsC6OZ0LO4nAnGA7yJNjQTBgT3A6RrpT5j0+PsZgMIj9fh9v3ryJs7Ozcg+kBgSQg1hwZh3DRRAPYHPuB0tTXz4HG9lJZceZA2TsREEOuJZ2gi8ZN+MIEx30iQkfB0JxT474zLjMQW6MkeXeDjaTdbbZ3HeQUQ5utGzwDpxntJPodc93+g9bicC9fE0miCKeiZTvvvsu/uiP/qickQG50mw+pz/l4HOTF8iHnYPb7TYGg0Gx92iD57cdmMwlbEX3B2OALcn1tjtoU8a+xoeOXM+yke0F9092hOdrjK/rUpe61OWHLtY53u1j3Zp3V+TgddZf9Kl1k4OPHPhth4fXUIpJaxPOODpcd+rI/+YfvQ6bAwSnGK+4T6i7da95K5P7fi7Xu93GCXY2glMJDnJgcrP5nCGBXTx2gJFOMyIq9zh4Hj0KjgEHgrXoA7Ar7QYPcB/4BSwIxmw2n7MV9Pv9EsCz2+1KimmeR9AVOK7ZbBZebrVaxWq1Kjuc0JtgePAtHBjcHbubCOYCk1o3cz6X8QZ8rXEXmBcu0/wbY8S1zsBlPoy6OpDPvFTG4RFRsK2xHJtEvOve8sscxXllvME74MDdnz4jjXrhYMTR6kA0xh15Ro5oz2azifl8Xvp9vV7HcDiM0WhU4e3cFzyL/kKOIqLYOLTFxdiRujHnwbV28jmThOdG7v/s0KbQP+YW+TxzwPS3fR7gQONOp5v1mProIerHOxuNRgkmGwwGMRgMKptuLMe/yyb/sZXvtfMsorpd2EJMRx4zyPLk8ec2xFkUfaCenRAWJoSCxd8LgYmJbPT4furAu1jseU4m25nEbkuOGMSY2e/3FQXB+2y88szspffCTxvpC/rjmGK1wer0H+v1OhqNRol68EGULHQeA/L2c/giyuT29rZCfmAksgjQ1tPT0xgOh2XB80HeLty3WCzKok4/sWXYCwP9T9QtfQDRElFNvcNCZQXCeHtMeRYGPJEhKGjOEnFUD33FuDhymG28OIg4P4EDKE1eMLaM1Xg8Lo46FKKjb0hlg7zu94fD63FyotSJVMnkCv/zmXePITvZAYks8jmKwvOFevMe0usgp8xt2sZh8xHVPLiMB3OC9ps8OBZlwfeOxmBht6JiPmaHl9+BXNspDZmx3++LAy2TsoyL1w7LjB1pufjdvo9x8rgdu78udalLXX5qxSSvyYxsyORrKMYKfha/OZvJuNA/xojZqZQLesZkBfosY1kTNNazw+Ew3r59G1dXV0Xf9Pv9SlpGyBnjCweLuB1EOFIXR22bJEGPW2c7jWPGpxHVzAnoYJ9Nst/vS1SvySPrOBMWDiThPehH77TDeI+IYuROJpPY7/cxHo8reLrRaJTUORALyASy4iwYfE6q8+xQhHShj6mro1Ndb/6G0LCs8D4723iW5cROJdtMyKLl0SSbZd02igkN+sWYijGk7ZANmcDL+JHngFGzE9l4bLlcFjxP9DXOJpxpfi71tWPRxj7XUMCh6/U6RqNRnJ2dRcSzU400X9fX1y9SRUESgCOR3Xa7HdPptOJUxJ6j/71GQOLleue5kG1nOwctm55/+Xr61vWwjFk2LAufcqAds+frUpe61OWHKHBc5iAiovAb4JyHh4eKgyciKuu010FvBLBtT8nOJzurKOZMsjPPxSS2A3bQl8c4BfNl1B99a66EZ1O/HJhszjbrJ/OwdmTQNuMegpkIRHIaZmOg9XpdnCbZYengIHAjY+biICnXF8xrrAKe5dgRZKTdbhc+CgwBb8YZwrwrIkpbzE0hPwTu0N88i0Arc0tgYDKT4fSCWwLTYHMgFw5mQxYyN7bdbssOP/pkMBgUPHMsQB7ZoJ9oH/0Kzsq43AFRzC/+9m57ZG61WlV2HBmX2flJO5AL438+hx93CtFms1mcM8xdZ4ajn+DG7+/vi1zO5/NYLBZxcXER0+m0ZGVjjrmd+czCRqNRdl4Z49tOcqH+jBH8ss+yPWabZbvBvKrfRz/5O8sI48v/OLDoR+ZRxoI4Cu1gQ54YU+aR8TipMTk7zpssvI7kNfHHXn5v51leVDPxTLGyiKimxaMwUCyyfma/368ov1JRLfi8G+eACWY7FfzzKQPAg54Nz0ywEAXoQcaIY0cXgvXw8BCLxaJ4u7PSZfH1woiTxWQD/ZQVuw12O9dyxEir1SpGIUJtw47Fnee2Ws9RzUTWvnv3Lj5+/BiLxaJEXzhdIgsbE9VAgb56fHyMs7OzFwDCdUZpzefzCnnBzi8mKYsC3+12u4ozzd50DFoiFliQrMRMXrFQua8zkcR99Bf3OyqE8WOcHVUKKeHnRjwvoGwb73Q6MR6Pi0wx3lZGFC+CKFzkEg+/CZK8UOF8y+kMfF6GHX6Mg3crPj09lbNXGBuTIpAdvJ/v2fKcHWjIJA5UE3iMH/V3tJF/5zluRWQQSj2zE81A2P3daDyfWWcCyNFrXjc8X03i2HlPsXz5XZk0zAC6LnWpS11+yoU1ESxoDGidxrURLx1uFEcV7/fP6ZFJ12jjgIhLOyis3xyxaxIk1y9jZxt72UHXarXi/Pw8rq+v4/z8vDyXlC4YPxGHlDcRz84/UuxRR+tNp3ejXsYrJhXog4ionA+BXsPRwLO9S7vdbpcIX/7HmAIH21gFP3JmKtfYgDPWst5128FE1Hm5XFYceDYeT09PC7Zpt9slZSB1AhsydsgK7XWKHcYA3JxtFBv03pmGMW6ihPeCVWxPgQ0iDtkwbPxGxIv/jwXhuF6eI/6csYf8IfuEd0I5UIo+R6boS8YnO7JzwBYBiBBOpH+hD0hfzng6OMmYzmPH/w8PD9HpdIrd1Ww24/z8vLJrsdvtxtXVVdzc3FQi2G0jINfe+WByzTgQOWOeGfvaoUn7nYI+40iPmwkJB4s6U4PrnIlgy4Lf4x/u46cudalLXX4sBT1kPRtRDZpfLBYVh4MdOOAGZ5Qyv2JdZb2ZgzJcjgUDZTzKesv1dq4ZS/m9tNPrsPlA41Dr88xreqc27wFrokfQd64v94Hf6GOyVhE0z3W8H37Mji7aCqfpzAE4QuATvcFgt9sVBxc8YKfTKbgUXtC6zru/wA92kNJOAuiNp8Ga7PSi/b1er9TXfcgP2JEsEfQF7/P7I6I4Cqm3U3LDyw0Gg4h43pmG3IAjM2Y2b8eYuDB21MdBXASVwWHCzUYcgozAhdS31WpFv98vY4ycISvGvZZtnsXnTrOd+VJ4ZeMsOy/BmmRDY3yGw2Hsds/n7doxDD+42Wyi1+vFYDAo6cO9McN+DepIf47H45hOp8XfgZzb8ZjtFNubtkPMp9vxbZsyO64oyHr2GZijpL/tuPR42L/gHWW8z+NEYd1wP9H2xWIRo9GoMqbIHn3j45I+h/IH7TxzOeaIYoJEHEC5BcoOFhMXbJ/1s7kGJ4qNSQYrokqiW4Gw+Nmpwv+uM4sUz0JQs6A4CvT09LQ4mvg84nmh5YyzvEOLeiDYPrjQiyYOBqd09MJhgsbb1DHWvZXanmjaQOQGkba9Xq/cv1wu4+bmJu7u7sqBfx5nb6HmMztdHMnD+EwmkxJd4TaYLKI9jDUy4O3ax7anO0qCexwNlBW/Fxc+MwnktlB8rRdzCs4tE0COJMgOGZ7J3OBnvV7HYrEoTjRkC0BiIxpl7vmHd3+/35fdf3lxtGOTex1B7DrbQW3HDfN5s9nEdDqNp6enGI1GhYywcmS7PE4nxpF3Q7CZeKG/kGOiMzIhYsLP40Qd/RnPd938OxOhyJAjsalzt9st8/aY881ykwlciiNt+P9TDjQ/24q0LnWpS11+6sX6yTiR9ZLPM0HN+o8R49JsNktKZZMKzghgfck7csANOt/EvevM/+g34wS+6/V6cXFxUVJf+PuMo8ERdsQYtzq1INfn3fLG2N797tQiGLvG6TbWwR1gFHAcGNBpp9Gz9EPE4cwI4yNHu4K1ckYDcMNutys79e1coM4ZO3GfA7MgqUwE0UbwEQF0OUiH99GGXq9XsUeM8x3MAw4wIRIRFZnzuBsHODvCfr+v2BTZgDeWyNHDWaZNsJGKezweFzuHuWH8D4EFTjRWA8eb4OIdj4+PlQPjs0OXw8d5D893Rg2TF8xFzzHm6Hw+f0HMnJ+fx2QyKfKLA9YY1A5b7BrOR4uo7u5j56NlmjaRQtTzyLat56n7wDYfwWk43OjPPC/cRq7JfxsP5zXSMnHs2XWpS13q8kMU6xscAOgZgkmWy2XlbFV0DvY9a+2nCOXMC7BGshY6ODzzFBFRwVt24lifsw6j17Kdb6eWiXQ7DXkv77IjjnblYLNMztMf4BHzJ35Go9EozjP0P3rRzzg5OYl+vx93d3cFk6L/vOMNLOrjbuAkwQXGELQNHAHms+OPc1/BKd45ZExvnQYvCj7L3Jd5u91uVwLCkD04IoodmjhcjB89tnaweOch4wIGQU5dL9sQ4AKCmBgn4z7eA8dofMMzzcuae/ZcMebebrfFaQXeaTQaJdCJucm4Yl/AHbqNtNlp3V0H2s9n4My8NoDB4LbhSpk3YDDuX61WMZvN4uzsLIbDYXGy5ndHHHA+DiAftWQMZz+DcZ3n+LG/vX5kh7m5TK4xpjffmW0Db1pxv7pPza1y77F1yPYnskmAWrvdLkFw9DO2HGvX51i+d63pSE/AiGpKHIoVQ/7MHteI54nt864iDgA+E/rHhMeGpO/n80ykeIHPdc6LS64/97CN19fivebdGDsQEziiIBVwNPBMKyYMI0cF5wlFG/jeEQ55W7cnjBUCu5Qmk0nM5/MyGaibz4OwU8vpBFkY2AoNaeGdSlyLEuE5dvYxkWxg5oJMYDTTnyzgFPqUNqD8TSQZ0FjxuE1eROxoc8SGdxey0OdFzVvKLVMsJkTOGOQZBIzH47i8vCzKEBmyAuUdEVGZS/z9+PhY8jp7PFCWECN8nuvr/stpkZbLZfT7/UJiHJtPbEXnGQAJIsIYV/qP+ZfJyqwgTbJk5xVrBHXIAJd6eo59isTw/YAjlFImGfL/EQd5px9N8FAH18nrK2uC17+61KUudfkpF+O7iHiB2YxZbPCYKPZai1GI0WQnh9fvY8+3UZXX8kxoHHNeGC+DRy4uLuL8/LzoTgeZ2MnFj89UYldOv98vaaMdvWvHGTjNWM8kQQ4WwUCiXwnWsn7zuNh5Qr/SZzyf8eDHQV8OJHI/Wo9b1/MdGAN8SN+YFKItDuYC6+PgyPLmCGjG0JiSuuLM5KxXyCO/E4xth53xO22znDq4y1iP8Qf/GkO4nvSpo4H5YeebCQrej/H/6tWrmE6nsVqtKs4fbAd2AtA2O8qcGt2R7ciIg+QYJ+qJvNJ3fIdTrd/vl7G3HZYJN96Zd1S22+04Ozsr5581Go3KWXm5L3GsOUW/+8KknB24DsDLTjUc0LzD9oXXFdvSHtdMqlh+3M++1uPv7/Lf2QavS13qUpcfsji4I+LAE0IOL5fLoqvQCebTWHPBfjzD+teBJBFVHcDndlQZF/LbGDLigD3tpMt41M8ydsykdQ4QcaCT9TO7crj2GMfm+lqXGlsbP5GdwRyXeY2IKLoZJ5jPJANnsduMVI3oVXAT+pR2GJc5oMoZsRyUYznxLjX6DweMg7boo4eHh/K9A26azWbc3t7Gzc1N2a1EX4E97WACI8MhU+/FYlE43+ywoN7W8bQ56207OCwX5i1pF44lY0A7iLAV2LllJ1PEYeeiswWYczS2G4/HERGVcbAtAUZE9mkbMoAsGY/Cm1LMIUYcAvw4Duf+/r58zwYCHJqDwaAi7/CSZ2dncXV1VWypjOFsf9HmzHebb2Ve5vUEWyFnAbGfxDLhNY7P+Nu2MGsbnzNGrAeeE+B928Z20trecx3MT8Jj47tg7qzX6+j3+8VJmn0sXss+h/IH7TzzAHlQMyFtxeTBMtmPQTMcDiu7Ufht4zsPWMRh11F2jLh+VhAWKgqLpp1DNsqtXJvNw2GP5EX1wsVC77QtmajIafwyseI+NmHhdju6lXqyaGej0AuOFyZ29Ewmk0KqeGx4P/d4y6WjTbIjwxPUiwaKwoavF2sWUMaDtjgKIi+ULC7U2dtNDSCovwmILEcZLFlhm8yxXFop0m7LeSYVLH92ltKHOBDpAxSYI6Z6vV4Mh8PSbmTefWYnohe3RqNR0hh5S3zEIc2LHV9E7tD/EEHZqYOsLxaLclYeEe/IIsqO7bvUFzliB9rJyUlxMvN8FBL9n8fK4CivSx6HPPfdPy4GHibD7NjGUbzf78vZL54Dv4tgyH3oe0xWmSTN7a5LXepSl59ycXTosbWcYh147Dvrm263W1KjOK01P9bXJk/QCya7I47vSD6GecAxzeZzZOTr169jOBwWnbPfvzy7lfpHVANq0F3gtcfHx7i7uyt1d/oik+051bgNJGN8Y01jEwdA+X5jWEcbWzdDpHgcM2mTDVFHs4IPsAV6vV6pE/0NzgET5ohgv8sONA6Fp+5ug/shO0Y5pJ72YQMQlTkYDAoBYRyX2+YztuhXv9d9YntitVpVcF7EIQo5RyM7cMlp5enb/X5fUlu12+1YLpfx/v37yvzJpBa43TZWjpR3f1p2IuIFzo2ICpliJyKkjtPpGPvTBtoJflutVsXgdxr++/v7cq6G7R/vbIMcsEPqWBCgv2e8naony7blj2Jblz5H5gi8M4mbiVlHCxt/Uj9HKhtrZkIlO+bqUpe61OWHKnZ8QGCjhwgMv7u7qwQXRxz0DGsfAR/oWgrrv9dzO7fMt3h9dLA67+F3JsbNNVCMCX38CHU6Rjj7mmN4F2xkHZExl7GynSl+x+npaYxGo7i6uoper1ecSuhUno2u5Mwr9C1B5jjKyIa1XC6P8nHWP9TZXJuDkcFc9DEOQ/gr2sj3OI/a7XYJNGOMjSndB+h82rdcLkvgOFywg3cinrHZ6elpOQ+u2WyW1JN2GOWAGZ5jB2nmEn2/8Se78m0/2LkHdoC3NuYDl9G/EQf7wDwYWMaOJeTZu/RXq1U5jsWYlXd53hB0RVYrnoeT0Zs6jjmb+d3tdqPRaMRkMil9ZwyHXD49PZVsX7vdrvDpPqJmt9uVbHMOfvK9OMGQ7263W+HWczv9DMbFc89jzvz19RRsg2wfGada7o07/WzPWcabcaDO9Lu5VbfLPgbwMRwxAXXOcmEb6nMpv7fzzILpAc1OKU9cG5Z5kHhmq9Uqu1VMFEdUD3LPERs2IFg0swHCdxY+FAeEAsVGCMa0I1FZAHGa4TiLOChCFhXnzMc44jwvTyKe6YXOC7UN4JwCkG2WJyfPh3cz0TH02F3kCE/a9vj4GLPZrCiqVqsVg8Gg4phisWCB8oLqRRjFw2e0zwu/x5R6sMBYadHPFEeZ2FB0lK0NQjuPaKujbEwosQDg+LFzEdlwTli3x9HZjEc+V8OEA4sOW3qRYS9mtNvbzPnfoOrp6Snu7+/LuR1WDu4DzyUUg9MjQhDY0UsdPSb0naNwXOh/R2yQyufi4qIC0FCWzGWfg0bUsOdidiwyz4mAMZnJOyyjmYhwH1rWTAx6XfN6kpWUFRxpAkxauX+oG/UCZDiCzc/MpBJ/Z2DkttWlLnWpy0+xZAOKdTY71PL6aRzrAilgAj4bHta3rOU8KzueIqpp0MCxNnjtsGm32zEajeLVq1cxHo8rzgxHDNvp02g0KgE2RPoRaY2edzpHjBr6yxjzGOkCJuB6cBTf8QxfY4KH5/lcXwxR+s2GufEARiiHfduQow7oX2PTnHonOxZ4RjZmGRM7cyAhIqrnSuWxduAL2JDgNCJekQnaAi7HSLWzkXt5Jv0IYWE5zI5QrrPsWmb43Oc6+Jwt8Eqj0SiyhXF9enoab968KZ/TF2QhMKZl3O00w3kITvdczTLjVD45uwT2F8RFJvp8zgiYtt1ux8XFRZydnUWj8Zw63M/G4Xd2dhZ3d3ex3z+nQYe44b2c7cH7PAbGyl4HGC8Tt76Otcu2ap6fljX6BodfdngeK8a5durlNTFjaO7Ja0Nd6lKXuvxQxWnSIg47KKbTaUwmk3j//n0hu/Mu3mNBAV4T0Um2u9ElYAoHQbkYBxhPgI2yQ8hrq/lA+JOIwy5zc1DWO8aTma91W469E+4L/WNS3df1+/0YDodFf4LpeB4ZuSKedd1sNovJZFIJ+nc2Ls6ihWT3+2iHA5cZQ/gh+hOMymc8hx1W4BiybUUcdvw4O8FgMIinp6eCl8GSnCOWnUwOcOcnyxi6HL1vjs5YjvrSd8gBn9HfZKDy9fSPuVwwpXeNwSuCG7AnPA8sI4wruCfjb9tbPMPylPskB2bxPM+j5XJZ8KLPBPZ421HLGFuu8SvgOIPXhdfmzLhms1kC2sCR1Of09DTu7++LPD4+PsarV68K544c2T4bDAZFRpAtO3yRafdj5iz9tzdn0Dba6oAoz3WvbXZuOfjO93pN8lrI+HMdnyFbtN3P8dzj2sViEf1+v5JKlLZbZj6X8r12nmXPLsWExLF7bJDk4vPC8o8npBciez5tZDDwNuqpn+udlYavjYgXgkI7ms1mOUgQYeZzIim8DZnIhMViUb7LBk2OWKGNXGeF4DFwehwIEhM5lFarVSEcJpNJ3N/flxQyPItUJ7yP7ziXAoXB2LBgdDqdsmuQqB4WMdrnCbZer8tiShQK7zBYoO4eY4MKfhvU0E4vAhjn3O9+iqjuXPRYeAyQBX7ywnGsz71wWF6PgTYWUwx7O4w89gY0RLqgUFiQcKZSB4xulJWjNdg5ZSfVfr+vkBw83w7GTLx4DhnszGaz2O+fo4DsAF0sFhUCiHtOT0/j+vq6AC07jrKDNM8XvjvmLPdzMgD2Z9T/txGsds4yd7bbbYlIJ4rIwJv/eVYmdzI5cYyAoY8chVyXutSlLj/lYhLB+jnrp3xPxMtDizFISL1iZ4+vo3iXjh0yJl6O4WLjGjt2+G44HMabN2+i1+uVZzlij/vQ+SYUFotFzOfzkhZntVpV6m/sZrx8DCNzjw34Y0FO7gvrTnRct9utGFV2MhKJC3lizEudCLDD4WKdSp+bEMIZ5O/B+2C6rNNN1lg3Z+ILx5Kfi05HR2fbwLq72+2WYKXsyMuOK5NDeWc7u9Est5Yh+gJ8Qj2Gw+FRTMS8sSxRsDXa7XaFIIJIQj4Zp4jnc8PsmCWgynOIvs5Yh3uQcRMGHnf6jfFzeieP4ePjY3S73WKnjEaj6Pf70e/3K2TBdDqtOKUbjefAqNFoVLDscrmskBcmDr0OYOshC9TrU+tClrlMqmLT2r5hrGkvGNrnu7hO3HMMQ3o+WDYcGJDtr7rUpS51+TEUHBsRUVKDffjwIX7zm9/EdDotuiii6ghC19khA/cRcbD3fZaX+RzWXngtc0jcT4E8jzjoaOsN1ljrcvSiA5K8puf3mCvifl9jTiNzHpRj3KuDyDqdTtltRrYhgp997mjEM3Zm1585Utq5Wq0KNjAOoI52iuGYyJgXvUh9cWi4jzLehvvKOAsnFvV3Kr2Tk5NYLpclCN3yZP2NPOSMFe5/xt2B/QRQmcOyrjWuazQahV9uNpslpWQOEjPe4H0OREKWwZN8Zny63+8rO61oq7NHeZOD5d0B8vSn+9ucL9f6TDSea5xI0D/yTr+Aq5mnyALYmYA9xrPX61XWATu/7MhEXh4eHooDeLPZxFdffRXD4bDiJGs2m2VnIXx77h/qa9xmObFs8Tn3Z0xnrtsyaG7Z9gTtzDaU7eSMPY1H4Y99Lzy77TvbCxTGh+uN0z8V5PVjLt/LeWbjmP/dwREviWCuy4t9RFQ8kDZsj5W84HBdBv1cawVhot7Ps0GNUNuBZCXSbDbj/Py85E6NOBDaTEYbcOv1uuzuYtHhedTbJIq9zHkCsUCxW8jOAZSqyQsfQOnFbLVaxcePHytb0pnY3u5OXzlFjSMF2I7MLiUWEyI1NptN2U2YiQYrEitKkxT07TEHg8fLRj+LW15cPIZeSPxcLy4uLEgsiHbMZrLIkbdZJr3wGwRRD5MoEBwQEygzxon+ITqo2WzGfD6PiOe0mPQ70SQsltn5iKxTfwM/iCrfi0OYqB6ut5MRJcs7ms1mOeh1MBiUreF2pOGI5h7Wg/l8HtPp9IU8ZBDpMXMUkovJQDsjfR2f088AXTsR3c4sO0QrMc8sey6WT/+2XLtOXh/cb3WpS13q8lMv2XEW8dIgsP4Hd1FMdoN5CD5B93KfI1+9w8XOA9Zyr9VgFOM56me82Wq1YjQaxVdffVVwHs+msEt7OBwWooJMArPZrJAUGJ7L5bKC905PT0tWAkrWocbzpCPhO+MfG/6NxiGth8+D4PnGHLQf3Mk9JjIYNwiZ3W5XjFSTWzhYTGCABdmpxvXGbx4D41BkAqzFu03WZPxvLGZsvtvtKo5DCIJ+vx+r1apiwzhy2H2XMRZ9YhKPgKn9/tkxCs4E00MAuQ7GFMZS7gv/T3CcCQ0wIeQN90GeDQaDEuHcarXi/v6+gtVNXoKfs82C/GTSkb4yxjVxhLwic/SRHePIEw7p/f45sMvZOpijnIdxf39f5JPoejAtcujMCNQhpyjK65ZtGtuVvCu3O9uRfNftdmM2m1VsHK9/9KF3X+R1wISSv3O961KXutTlx1Jw6nD21nw+j2+++SZubm4qRLgxnD+DvwOfGOugX8w1ef3mOfzv4OyIqgPE9r4xovkpr/MOjoiICv+B3rLjhGschAS29fPBQpkLcrA5+tUOn36/H9fX1yVNI/ymnTFgJgL1CeYCO5DeEWzS7XYLp8j7HGhjPcVntJGAfWMaP5+Acqcn5HkOVicgCF6L7FGMN/JC8BOOK+rinTRc611GyIEdSgRTeezNM6GnqYfx4jHeHVvBeNhBZMYXDs7f7XaFs2IDArgbzOe01GDeY/aMcRPvop+Rj263G9PptIwddWWOGY9hyyyXy1itVpWxoA3YKNhtpE+kTewy9BymjhlngTU9f8GwzDP6//379/HVV1/F+fl5xUkGX3x+fl5xoHlOsibkjTvmxb122JeR7V2PZ8bx2SbFceX/GW/P+eygo3i9M6fsdoDjcxCCNw8hF7a1PjcH2h+08yzi5TkIEcc9ll58PQjtdrtEKR4jjiOqzh8T1Z74Ecd3/vC5Sza8eYYXXz5jYmEInp+fx8XFxQvFyQ4zIiiYZJPJpHLgNPXHyDOZjyc4G6YWfow/+tfPsqFjRw8ThBQ+TjnCtShM/ndkRqvVKoqCVDOnp6dlJxHPZgLyjGMOAp5JP7uPGVcrRmTCgMYywZhnAzD3revFZ975w3PzomVwlUkF+ptx5cyKHO2CfOBMNYllBWPA5qhQorLt8INoAMggz8vlMmazWWy32+j1epWdgZBAnovuJ0droNwBJzyH7ev0GTLBtTjNTCwiI+v1OpbLZYzH4zLnHb0zHo8LoGBOX11dFYVq2XB6H68b3l1ogOr57DkfES/OUbODKqJKXNG2TLI5cgxijP7KzjnLlOXV62e+x7LLNcfW07rUpS51+akVBxhk/JZx5afWS7BAt9uNfr9fiSw2AX8sKMbPtZ7gt3WQ13E7KHhXr9eLt2/fxmg0Kqm/We9x6g2HwxIgc3JyEovFIqbTadze3pazIh4eHmKxWFT0t43/8XhcUojzXafTKbjCTr39fl8J/qJPTBTZ8DLRZF2KjoRcARvZ6MIRYPzOznjS+TiAiPZg5IOTwR4mhUzMWH+bnIGMcZQ1/5s4cNnv9yXqGgzgtoPF/T5SvuO8iajuBnIwkUm9iGfsRSASz4Q0wCGF3HMNmJ932T7ACQSOIZWi5dfkIvgcnOfsBWBEiAzq0Gw2YzQaFSce44KMZzuHiHRjbHCu5x3t9995Z+bJyfNB8Jy3TDrJwWBQzt5gTjHe8/k8Op1OaZfHdTweFxut0+nEfD4vdqUDw7BhmBN2gPG3z8xApm1TGw/aRqIP6QvjSQJSmfd2rFlmP0VW0F4THR6HjE/zs+tSl7rU5a+6EFTU6/ViuVzGt99+G999910lEJa1yzo8r2l8ZkwQcdChBDXZwWOe0jtJ/NtYkOeZdzNWtUPEdc07mXiOObv8DK/d+V50r3UVa/6xHSb9fj+urq5iOBy+SK2YA5em02nhpHBmOV03Tq7dbld2gc/n81gulyWjkkl4c2g4xMzdme+MOHBaPg6EdHze5UYbwJfmdI1x0IOnp6clI4S5HwK1jIG9g8y6H5yDI9EyZVmkT3GKGQuC7cxFMpa8z7rbnKvxLzJgXtrHjxBohy1hO8KycczWQjYzdmZnlucLWLHRaBTc1mg0SgYN5jBtwxkWcUgLbucxmA2sixwZB9M/9ic4EM4cv1OqEyi2XC7jm2++iTdv3kS/34/ZbFbBbfg4yDxHv9AXdj7ZOZYxLnOBQp3Ma5oPN09pnJ/livtY27yWUCdfZ1xqv0EuyCF2AuNLu5jLDkzMbf4cyvdynmWnRx5QrvEAZOKCgeQQbwtAnoAM1LH35L8tfHaYeMHKzrTcLguDjZiLi4t4/fp1GWyn61iv13F3d1d22Hh3l41me7S9SLIANBqNsmBTMADtKXYKvYjDwdjOOUqkABMCpZUnGpPcQuvtl4yjz5JAmZh84Z1MGO98ymRIdkyygEOqAESIushjYUcKdfSCZweYFQj958gFkztZrixDvMvKjM9ZGKyUfU4c7c+OGhMsngeMF9ESGNj20ntx57kYzE7H6SgbQAqgg/RAjrBCKUPEMC4oasgRQAYAgHfYAe0+p50AKZxlRJRAenCAKtEz19fXFTlmDhu00WeOKvH789h6jCnH1gbup320lzZ9ipgFSFkh8b374ti6iKwfk0e+85pWl7rUpS4/5WJdGPEyMMF/e53nfxuDpHWLiAr2yMFavAeMZ+caOsPvAP+gQzJ+BgO8efOm5Mq344wdcaPRqNSx0Xg+APvDhw8xn89L6hsiaH1/Do4BexPUgi4DR7qd6DE7AWiLMTOYDKcHmNC4LGN5SBDwJU4axomxIXIa3IKzotPpFKcIaZOok6MpwVwY0zbWnEHAxid9ZRlxnQgEMwk0HA4LVjKxg0PJhqzPc8MoNwkE8eIUTk41ZJuGXWHU37JIv2bMAG7lWbYBsClymnn6yli/1+vFw8NDDAaDmEwmlbaQRpQ2gO8Ze4xoHD12VDKnTJpkosiYvN/vFwczjmWeFRGFzMLR+vT0VOwUZIQxBncjH8Zf/X6/YHLsNfefSUjuA/+buLFDze0wmcG93GdHrMeW/7metEY8I2NME3relUFBXjJuBntTasdZXepSlx9DAUtsNpuYTqfx7t27or+MWyKq65vteAdpZFud5zi4xrjTxQENmYN0ye/PzzQRHvGSzLYu5D0ODOcZEQcOzTrBAdt2AFJMwrfb7bi6uirpmBeLRWWnFrzSarWK5XJZdpt515lxcMYlYCICecxPog+Nm4yT+NzBWOv1Onq9Xpyfn8dgMKi0D71t/tG6DAwJbs4ZudzH6/U6+v1+9Hq9IifOpuZ+BPMzdsdS1/EMOz94hvsMB47v99mzxprwk9SJOmQeyngPZxm8NkH7ljGwp+cIAVK8C4cb94LnCO4D25iHJPiKHWTYP+PxuGJzrdfrwjczvt1ut2wS8RjCyzF+dpIaS2eM5HlvJ+N2uy1t2O128dVXX0W/3y+yvtvtir2GPWYbI+IZf3kDDJ8Zk2WOkX722mAbBUxpufB9eX6bJ3U9jtkFtp0tm9nHkmXLbciY1HPw/2nnmRfivLBTMmltw4t7Md49GHznBZw8sywadqJQrDhcjjneXG/qyv08g8WAdvR6vXjz5k0lkpLoisViEbPZrDgt2KLsKFI7EEyuZME+lorGW5GZ6LQDw+6Y4wUiBSMQ5eJUfigF+pkJj5LCAGayY4g6AtiTzkYoJAWOGMsKCy4LEUZsxGFnoI1kjPhMTtlBmwGQvfpEOVs+eJ7v8eLiz7Jcm/AyILJjlM/JCY0cooAtuzzT5FZEFKXhVEjIiJVuNvyz4nJkB4rLYMIOPpQ+Ebn0g4ELdeIz2sw48rfnGf1H1MHj42MMh8OScxgnGnPL2/i/+uqr+F//63/Fer2uKA73lcHxMUXjsc3z/5hzy84xj/unCA6TOfR1r9d7kbKVe/1/BtQUg2IrVN97TCHWpS51qctPpWRywM4G40Wv0Qb+EdUsCBEHTOlAFUfPoeMgD9C76ESnzfEuNmNlEx8REa9evYqrq6vY7XYvAlcGg0G8efOm6N/lchnT6TRubm5iMplU9ExENWIVvW9jnzb1+/3Y7XaV87SsU60HaQ/GIliE3fGZtEEXGktGvEwlDvYwBgJfeHzBBWBEO8La7XZxKq5Wq2g0GpUsANbzJqxsLEIG5CwMJjIgJXBIcr0xGO8A2yGP9KExogO/LD+Z+HB0O3U3JrNxbtnGKOVdfGY5tgOHMfNuJRvG4DvaYqJjMBgUJ9h2+7yDr9frFZvEdhgEBjYJ480PWA9bARyG88vt6Xa7pQ9xmtlZiwzwXLIlYOcxhrSFcSB4zc8Ev0LsTCaTEvxl280kScbB9I/P4EFG/dvzw3M3B5IydrQZh+BqtarMO9fF7zLGtf13zKbOJHCNP+tSl7r8GArrJMHsEOteAyNe7jQzH2f9mQMOHEiBLox4uYMMnsPrtFP2GofmXfTeXZ2dKK6LsVrevW8u1cV8Fn9bR2Wy2wFj7XY7Xr9+HWdnZyXLFvU9OTkpR298/PixPBOMyjm28D4OFuHHeKnRaFSODdnv9+VYEnhG63Z0oM/Senx8jIuLixgOhzEej0vgmXevgSfAH+ySo2/BHXBS9Bd8tAPSCPp2//O3A52M6zxGu90hYwJYjvFHtoxB/Lk5bWNmY0n6G/xsLhE863HgPWB914k+BydRfwq7rAhQYu7kvuGMQnOi7qvFYlHkjAAr5jQOMwKw+v1+ZePJaDQq/Odyuaxwxc7GwDE3pKakzvBtOa2gOTv6Bbvg3bt38erVqyJP2FWk2F+v13F/f18ZFzuTPW70WeagGSfw76eCnLI85PlPyVjQBds3l+zz8frIfXnNzXjTazBrqtOAfi7lD3KeHWtkJghsYDNI/M+CFFHdjUSneiH3eQ8RVSdcRFQWeRvaWUHa8PX7XH9HOzYaz17sn//855WDBcfjcdlaPJlMYrFYxN3dXUwmk2Kc0S47Vrx42rj14gZBwAKNY8HRsxiU3oZKpLIjPr3gRRzABe3D03ts0c7RCwi2SQQWYi/ATDiTDtTTxjJpZii+xxOavjsmh+5DjF0vJK4P8mgnBGQExrO3cntxshMG+TC4YXcX7+W5LNIsDkRkIM+/LcqEiGk7z1goe71eiUBloYJA6ff7FZIr71JEaXImHXPJZBTvs2OIRd1O19FoVJlDJpIMRpEvk3Ao8PF4HI1GoyjJVqsVZ2dn5bDNx8fH6PV68fOf/zz+9//+30d3c9qQt0PRsmVSk8h6zymiljy2XhcgCU2gUV+fs+d6EJXN+zOh+amS3+2fY599bgqnLnWpS13+b5W8XrJ+20lwLDiF0mw2y/lhGYdEvMyYEHHAl2AYdKyDJ+zsAE/6NwZqq9WKi4uL+PLLL6PZbJbd3dx3dnYWV1dXhTSYz+fx7t27F1Gh1ouO2vUONGNm6sFznQIFnGI8bsPROgecwI4fnBBgUvqL/gM3giHzmQwnJyclQIv/Iw4HjXP96elpjEajSuQrRilG+WAwKLvAwdgeU3Ap4+6oYO+iZywo2XAFaz48PESv1ysyAX6jXuD6HGTFM/OO9UyMcZ0dkziNwFbUxVjfTjffb3kBs/A9cmUnINfTJt6Pg9dngWQSkTF+enoqDk6C+cCOBIw1Go1YLBYlihebp9/vl3NlGUt24uXxYQ65j5FVMjU8Pj4WDGrZRn5N4JksZY53Op04OzuL2WxWUqZavmwbeZ3KxBP2BvMFufc89Hzz+FM8V50yx4GHnyJDeKd/u+3ZTqZtvwvL1qUudanLX1VZr9cxm83i/v6+6GywRyaSMxHuIH/rDEp2bEVUz8t1mkM+cxC3dZT18TE+w7rdn5lHcfuszx0Ik4M6cpv43sdsmOOlDtfX13F2dlacT7wPndxsPp8FynmgEVEyEGy321gul6UO3mUFTjg2PnZKnZycxGg0KlwXupLnoTfZ3e+ALPAvO85xqmy321itVkWHj8fjGI/HpX6kbyZgDUwJR+ZsA5eXlyWICHwEJnNxgL2DU+DNwFjocdqOPnef2bbwBgP62eeq0Rfe5ZXtIp6JjMA7G59RN2TYcgxfd8xRZlmjvbwfLEldLItgRfoap9putyvp9VutVszn89LvT09PMRwOy3voNzCsOVjLPrYQ8pcdRA4EzPOagMbZbBZffPFFLJfLgoMJkjo7OyvnHDOn6ZM8Btmx7MK1vD9/RwFDNpvN4pNg/OyAM9/u9cljY5m0jeR3cQ1OcvrMdXYdzAVnG+dzKd/LeeaSB47ihTsrAxZEFJQHy0akDTYrNTsajkUseBB5Fk47kxeuP8KfSZPT09P44osvSo77x8fHePXqVXQ6nfjw4UNMp9OYzWbx3XffxXQ6rXj9aU/enWUHBJ+ZxLDBziJJXekLkzRETOA4848jIUykUD+cOSx+m80mZrNZxbDFoO33+5V8/vQ5EQb0NYocJxn1JkoApymLHk6bTHrRtt/m/c5/M878nSPFDR6oP5OWd1mhQNIgj+w2dH2IYOVeR72zkHi7NMrQTiCPsesQERVijP7yuDKX2OFHcXQ5hfGyE5f7ASSLxaLieHO78zy2g4i+dcQJUUZ2Gnl9iIiYTqeVc1dQ+hcXF6UeERGvX7+Oh4eH+PWvf122T9Nn2YF0zKD32uDIpxz55XXD5Et+nkkFp/Xx+/0dMmIixQSe14ljRIXl1uRGTVzUpS51+SkXOwhcjA39mf8GBxm38J1xAzpguz2kTvuUbsCQdJCXdbaxX6vVin6/Hz/72c9KuhEM0FarFePxuJwxsd/v4927d/HrX/86Pnz4UAxNMAaGrncNRUQJlvFnOeiJMxxMYIAn6BuMMXCRMZvJIZ7r4B303W63qzjrSMvi93k8TBL4/CneaeOL9M4unHHB8zGm3f/gJ3QwAWW2F0xs5EA2O1R5JsajCTIbnGDVbLQ6hbtl0HJkJwmpqrAbwLE4MMH8LrQFbIJcMEZgTqf/5hreZWIIMm0wGJQsHPQ7c4V5hhGPHeN5wbOZg+zuok3gTWMoO6qZd+Bc2yPGkvmsFHbLUS/6gbqb3PMc85kqtiNyUBcywnMygWTi0DJiWbDdxffIvR3t2MXYk07Jaixu+aJQZ8stfWTM7jrV+LMudanLj6HgRJlMJuUcStZqvqfk9Y+/ndKZz7kWTMc6SiCM3297/VgAxbE11HohO9cyvuT7HNRgXsbrPYXrvP77N88AQ5i3BYMS0EI7T09PSwajd+/elfPKyFoUEWVHD20xl5WdlvQnehuccnJyUjI4MaaNRqNgYpxgDoyi/mQHY/e4nR7b7bZsdmBXFtfBeZp/ZgcRXE7EIRvC1dVVkQ3Lg/EH73bGAtpvntAOCnaRe4zMczr421jczkNjLOps7GH8QR3Bd05LbbzLfcwVcH7GDrZF6A8/I2N52w/GI+5rnEFkEqCeBK1R6DdwMHPW5+7mY2Yo8Kn2PXi+GBNig7Xb7bi/v49+vx/j8bjUy/YCDmjz+F4LPIexm/xO5IaNLzkoyuuFn503gnh98fqQeUmvmRFRMHC+H7vBjjnLMf3t8eZ9TluZM7P92Mv3dp59irDmu2MeZzra53dRGHwWHp6N8ykiKosF77NyyUamFVeujwXGC4wFuNVqxfn5ebx58yYajUbZfjkajcpid39/H999912JtrBisnc5Ey1MNDs/7H3l3kycUy+u8QGXKBDa7EhfnkduV/rahjIEQsQhKtM/LDIoqWazWVKIONqh0WiU3WtEYrRaraKUWJSQBcgTO9O4drvdVkAQytULqhc4jynFEcIGMHbufkpOcX7wXJyB+X6us9OTccMxAgAAHEAgYfyiEEwWoLienp5iPp+XurmejpIy4BmNRiVyxnOK+s1ms7LQEe1MxIDnHf3nHYWWLz5zRDULOs+z0rWCghyYzWax3W7LOWi0ZTgcxmazibu7u2g0GvH27dtYLBZxc3NTIc2OrTkmCxwJkxUy45SViNcJPs8ELZ/5eZazLAs5H7LfaVKE9njXYVY4Xh/qUpe61OWnWLLTxkaev484fvixCYC8Zps8jzh+DqoNU6/Rx/SInXD83Wq14vXr1zEcDks6HMiLs7OzePv2bVxeXsbDw0P88pe/jF/96ldxe3tbInnZ/Y2ewJh0ZCHYKTsJwAoYnUTUere6o51xLvo63u1IyYytwLcQ+mBSHFS9Xq/yDIJuHOzkKGI7Kmgf73O0JlHLkBARUfCsi52ExsfGWj7D1k4vO1y3223ZzRRxSLMDtoMgMRYyXsrydwwXgNWt/x8eHiqOOztoSN+e8SLPMk6CbOJzY1BwLniRwnPtQLq9vY1ms1kOf8+BYjiMTZyZQKO/IHEyKUJxpg07J+24ot+Mzxlr7qHtzA/kbrValXfTN9g1fhdjcn5+Xtrv8fScx/7zmuKxzQ4tY2ZjVz53GiyfKcOcJ4WQ1y6/18V9Z9uGeuT21I6zutSlLj+WwvlaBHAYF6B3Iqr2ft6JQ7E+cTC/ieXNZlOyDuXgB3Ns5oXgkyLixfrqcoy/NLZkPTaO8Hd2YvAOZ7/hWoo5V75rtVolXXi73Y7pdFq4Lr5rt9vx9ddfx2w2KwE3xgzgObgw63u4Pp5JUDn8GzyU+UVwmQl6HAn0D1mYCKCx7rOTJuLZwcJueZ+lxr1wX/SxA4fAssPhMM7Pzwu3SR/AT8Gtmk/MmxbgynwubuZxuY+xNA6wE82OCLCNeXc7sLyLyvgdPMH45fli3A0uom89DyxfvId32xHtoCXmLm0w3+UAIZ5LwP5u93zGGMF3zNPsvAHDOr03MmMHOTytZc5jsVqtShYN47fb29sYj8fR6XSKPcd78CHc3d2VtcXzGlnNTmY7Q71ZJfsssMl8DeuT/ST0A+Od1xd/nh10/s2aQZ0zn86P10fzw/kYoM8NU34v59mnFnKKnRq+DqLCBi3FRrKJDgbHxIQnpN9/bGBNpGQyJQuMlWKj8Zxz94/+6I9K9F5ExPX1dbRarXLGxHQ6Ldt/KU6xwSKUjSycURHVPLYIvo39ZrNZjEQTFURwYoxxDQsuExrB9c4hHDe0F+HfbrfR6/WKQ4voC9riBc6f4ck30eQdWJ1OpxykjsJhEbejgN1pJmrI3Y9Cy8SD+94Le17ovACy2Dj3rRU70a8+vDwb/XYu8bvZbFairKkffZ0jXvOCw/eQV4PBoOzU2+12RQ6RBRMxyAKgDeKP7eauM3KPHBGBYwLK0T+MFQeiMl44zWiPCbVer1cUkuc0/WhFEfFMAJm8WK/X5YBQgFm/34+3b98Wh6rH2ZFMXo+88DMPf58I3IgDwXjM0eZ7HF2Tf/MOZMHkUCZQcj9lspdrTerlOVCXutSlLj+VYqM/EwcmPyjWl9ZpGB++Dv2UMW9+V061wrPBMDmwwwT32dlZvHnzJvb7fYnYBaNdX1/H69evY7Vaxf/8n/8zfv3rXxdiCONquVyW4BcMRQx/pxJqNpsxGAxeGEgOvqFdOPFwxFFXDGkHf/A8cKYdWA6I8k4y8ENEVLCwoxrtvDKG73Q6BftyL4YY+Bf8PBwOS/Swd58xHvSXd6PxbsbNtgljY8cCfeAMCrQBfJZtGzvgrMszkYYM0/c8y5iSMXPgHJ9BJFLHjDN4BwE9jAGf2/lqPEL0+ePjY5ETB4Ct1+vo9/uFyOCsiu12W+yJXq8Xm82m4tClb7IMMDbUDfsEWTSO9vzmOd5paJLBZBzPYl6RzsmOXzAvjkKcgyZnx+Nx7Ha7ElCZMaLni20pY0SPleXARIllijXIgabYSt6R6DXrU9jTz7Qscm12puW61qUudanLD1E2m02sVquy29brUybyHRBiext9n9dIr3d8hq5ivXQWm+xsyzsqTJLbpj/mtMuBPBFR0csRh6AU/nbbc10oDlbnPd7tfHJyEq9evYrxeFx2oVNXnAO/+tWvilPt4eGh8gM5Tl0JkkcnZz0DZoJLoj1OZcw91qc+roV+zinDndYavosMRjis6BPGh3R72TbA2YUj7eLiovQHu9IWi0XhD0kvOJ/Py3vgOsGMfjc7qpAj/7adYFvDjgr6G76Yzyxn5uXtGGP8PYbGqcaXOGmMEahP5p899zz/Mi7NMpqDqnBaNxqNmEwmL5zWpBHlM/PfDhKDq8XRdswmsbPZ84RnZszGWgAXj33JxgfeMRwOS7Y4jy3rgXemma+0c8x8tvvJjjSKj72iHvDUnn+2M4wH89rp+8yPUj+uszyY58Zf0W63K3y5M118LuV7n3mWDUd7JT9VGo1DGsDs8KJ4gTDJnol/R6Vaefh5VnbZccYPQuYoYAT89evXJf/tZrOJs7OzsuXy48eP8fHjx2i1WjEcDsti58UnK2iMLhtyjqzwwoFXHLJ9u92WdD5c4zSNfpcjU70oebef24+jA+N/MBhEv98vDrHlclkBIPbOM6EZMy/MmThBSdlZ6OuzYUgUBpEh2eGBoqdNKFvqmokdIhr4rN/vl2vtlUcBI09eqLjW7eLd/M5GZ1Y2dvBAAGTSj7nC+J+dnUW73S6khbdSI2+Mx2AwKH3sKHEIEqKjASmLxaKSqoq2QrQhO8zdHB3gVDaWf9qNs9Q5gB1FsdvtotPpRL/fj16vFw8PD3F7e1uczN1uN4bDYdzf38fDw0OMRqN4/fp1fPPNNxWHcgbBltljStly5LHxXMrjlp3HJlePyR2EpuuH8sKxSF8dI0uyg5+SHXp1qUtd6vJTLJnEzQTHp/Bpo9GopDo2WWHjKhMRdszxnKwr+PEun4w70bVE9c5msxdnKHz55Zex3W7jL/7iL+Lrr78uOtRn4GLEU+w8iogSSIOhZccCuttYMUcEc40jVx0YhKMvImK5XBb9a3zEdR4X+urx8TEWi0Wl7/OYQG7wHkdjgs+z44N2UGcHgoFpPDbICVkP7LSzPndQIKTEsWwaWbZ4r4kK+sJEUjaIXVfwBvfwP9dCJPF86mO55MySY44P4w63z8/P2MNjvFgsYjKZxMePHyMi4u7urmBXnucMFN7BaLsQbNjpdEp7mW+OJN/v9yWNDwVnXsaqdlja5rA8O8Lc7fa7z8/PYzabRb/fL8F3+/2+QphcXl5Gs9ksO9ByUFeOtqZvkC87oZ0iChnyPOb9xrluG8GHDrZ0AKFl279djEPtZOezutSlLnX5oQs8x3K5rKyRttn57cBg1n0wWUQ1rbV3LWd94h0aBFdQjBd9L9gyE9c5iMbvZK0G+2R9CN5EV6In0A05wJbPN5tNDIfD0ka4r0ajUc7abTQaFecZgfAfPnwoQSI4KPJuFvgduCj0pHchRTzzmeC7Y8S7sRbPhW/yDiZw78XFRcUploPZCITvdrsvdqn5fDZjJAfbo6OHw2GMx+MS6A4Gw8ljDmw4HJa+gvPCIWMeGH0Ptj0m59bD3kkGbqJPjNUjDk47goWcjcyy7bmSHbTIGX3Au5xhIMuxcZwd1eB+B8WZ//e8YTywZ3gnfWTnLM5PHwnDcUR2MJrv5dnGq3aiIkdOpWmHVh4P6mY7FHttMBhU5qUDrYxn6Tv62A56xsBrhOe7g/qzDYud4f/Ne3Iv8pjXLhc70pj7tMu8rJ8BbxsRZdcnMvk5ld/beZYHgM+O/bbyaTaf0xOyUPhZ9uxmY8+LK8VeWiYBC7Y98BQGL0d+ZELDSqjT6ZR0javVKtrtdlxfX8fj42O8f/8+7u/vy6TodDoxGo0qzh0vFHa0sPhbyFBYJn/YKmpHiZ/rnWSeSCbrKfYk896np6dyngCRIfasR0RRlpAj9vxT19zXHg8WRt7Hgu9tsSYVLCOZtLKjwcrQBq8nu408RwmwGLPA8jl9isMGxUe/Ii/Uge9cRwMGPnNdcQACIBy1ahLLisoRzE4RMBgMSr0grBgnnFw4ovDws/Cymy/ioIQtH+zwYk6xNR+gZXKDsfNhngAaO6ZwvnGP098YQOCstVPq1atXMRwOCwHQ6XTi+vo67u/vYzabVea0lYVlxSRFXgO8pnCPCVIrAct7VjYmvwDhKEvmV0RUHGaeI653JrXcPpN6GRDXpS51qctPqeQ1md8Zj7I2Uxz16chesJOjAp06ht1cTpH2Kd1i/YJusoPg/Pw8RqNRMWLBb/1+v5yh8P79+/g//+f/xHK5LNGyOM8ajUZxFLDDioAT46Oso9wW4zXrbEdUbzabilPGBo5xNQE5YFpjTjAKu+DBkhFRjNqIKFkRjKdyoBw6ECwKlgI/OGqTsQdLk1XAxjPX+QwT61rGk2uNu+105V2ZQKPYOUIBW/kedDvPNCbMsubnu88YNztr7WC0s5dnZ1vL7aau2aGDYxKsAzmzXq/Lwe5gRxzDZ2dncXl5Gf1+Py4uLootBR63bWayzPPT7aJuYPjxeBwRz7LKs+00o938b3mxUe8UqpB/yChjgU3nDAsRUc68+PDhQwWv2elsYosf+py+9VwDX3ONMaifya4z75Qj+tnjyjsyQWJHnOuUnXNZ/upSl7rU5YcqDw8PhQ+xbmeNykEIFNYz1kvreevgrHP8bJ6TgxjQKazjOQicuvg91hfmWbgnO/L8ma+zMyQHVdgh4XbR7n6/H9fX19Fut2M+n5edUMPhMAaDQSyXy3J8hh1n1juNRqPsLjep73e5/8CjxnmZ10UHOmMS/KL72kHpzWaz7IZHV+PMarfbcXZ2VuoFJwNWMs7hGnbOgHW8i4yMVQSpux5gYpw8cLBwZHZw0X5sD/okB9vTN3CmYDG4RjseLZdwTsgg+MzvQnbs2LMDxGkPqQtYz84b+s7Bdzyb/511Issy7zo5OSkZFnDK4nDLmR82m00sFovCGcLlM8+RfeYK+M5BddTl2LlojKOdpIzdeDwuMmKHIbJEVrfsRELe833GYr4eRyljb/7deNNzH1nx9+Y77b/JhTmW7V77HpBRcD/jYd6futMm8++2gz6H8ns7z7LnkJKdVXzG5wgLA5Lvj3hpnFqIbUDZQcHkNwHiiZ8HI9fT95iUvrq6Ks6H9Xodl5eX0W634927d/HNN9/EYrGoLDytVqssxPP5vHiqbeT7/QhOTutCXX0uEhOCuuVtsl5sLPg2plhUvAix2yxHVxDN7Drx41QndgwZTERESf3IAp6JCNfRW8bpIxY7FiY7WD2prSxsCPNdJsyouw0/AxCIGMsuCgDnl5V0ds4ZkJjEoE3b7bZs4WbRspyjQLxQIh+cCzKfzysHm/Z6vSLLHot2ux2r1SparUNuai/CtAtljPPUJBRt5EwNnHMmXEzKmFjyQu7ctsPhsLJwco3nOGfp3dzcRLvdjqurqxiPx/H+/ftYLpfRbj+fL8E89A5AzyevN5YFjzlyZxnKSsHrjMfVsugomUxO+UBMEx4m4TyfqY8JQNqRwW9d6lKXuvxUi9dCG+Q2ME32gie9uyjjAf9/jEDB8MjOlIw3TNCDA/ghQCsiiq5Fv15cXESz2YzpdBrfffddSQ8OFsrYrNvtxmAwqKQVQc+YXLcBBcZGZ4J9IqLoc/SbMSLkCBiRoBgbeTaKnIoaJ1x22pjkwLlD/X1f3nFjox4nATqd6N6Iqi2SsbLxF//Tj8ZzYE8HumQyCgxguwMj246fjHmys42+yHJtvGTnow1zG+TGq36WybmIqPSr5Zrn2bmKLWEChr6gn3AuIRe8c7vdFofUdruN0WhU2u+gLtrUaDQKOWKnJ0QkNgwyYlISm5NzhiE4vD6YVKSt+/0hBaaDIJvNZozH42LfQQadnZ0VEmU2m5X6NhqNuLi4iO12Gzc3NxXMx7uMeU2K0UaTabZrvba5vSZNKHzH+Rv5/mxPHZO9/F6eW5e61KUuP5biXdURh6MpvFblNcxrvzFhxMEGhxeJqO6iz3yj35UxDvgIx03mQjNHYUzp52VOw8/IxW2LOOAMc4O8i88joqS8JvMWjrN+v1+OLbm5uSn4KztxGo1GyZJEPRzI4zq5jVxDXTK2Rl87DfR8Pn/RRvOXrtdkMqngT9JOE3DGjiJjSjuCaMdsNiufORAdOQFDGkNzPU6evCsIHQ/WdTYC8DSYwLwUP51Op8JN8lxwGLydxwuZZNcd/YhsGFcYJ4ED2dmXHcbG/7wP/B4RZQycPc1jbw6OMcShyPjbzgGTgqMcjLTbHY67gTuEX6bOyBJjhCMNntZOdXOoyBt92+/34/LyMrrdbuUcNtsG5vQJQss4nt/Z7qJwve0x7rGN5/WC5zBnudb2pMfYzlbk9Jjj1f2ReWsCLXEIesci3H+r1YrlclkZz8+pfK+0jS6Z3D1WfM5ZxEuyI5MNTkPDtce2JmYlZaGJOBjMXiitBK0AaQtGxtXVVYluGAwGMRqN4vb2tuzGWq/XJVLYE5WUHdmzfsy5gNHnSAyu8+JPNCwTnEnogwrZmZQjTe0QY0EmKtnb1h09zKRigfGuGYgAUvqw6DonMQeyUy9IjcFgUBYMFCET20ZcBjEmqzzmXGuFYLKLOlIviq/xvZaXiAMBYtLJSsHyY9nmt510jId33Pk7+hyF6QM4aVez2SwpWNiqDgmHnPR6vRLxwA/EDWNBWhsIDtrtucwC7nm4XC7LPGRnGt8BmFgwnV/axruVHePn92XyYLlcxv39fTSbz2fDDIfDQkTgEPQ64QXYspIBBdd5e7zXIDv3LHsoqNxfAAHLoJ/r3WWuj2Uny7Wdj7/v93WpS13q8lMqdkjlNZ6/jfmMZ1jrrR9M+DtQy04047CIA2bKgVrgCQcJUUj14iCpbrcbV1dXcXp6Gg8PD/H09FTSOWLEN5vNkukAY8SYIpMu6CqMV+sO757bbp93Zh1LnWPiKO+aymdO0Q8E3Bi32anUbreLgck1RJY2m80SJez37vf7StQmWJnIZjAU0cD9fr/gAnAIfcb7rEPJsOBI04zt7DgFq5oUyAZoRJU8s9FJXx2TVWQQA/sYWWejlnF15glk2MYxhnaWb1/r99h4t0zb7qNuJofcb8ZikDkQURAhT09PMRgMotvtljPFjhn21AUiz7YVY8CcM7YfDAYVvEmAoutpTOs1AruR83QIWOPdl5eXMRwOK/Mo4tn2vbq6ivV6Hbe3txV7w+3hfbTX88iECp8ZS/I8ZIT57oA+yEHOjs6YMo/1pwhOk3aWw7rUpS51+aFL1o3mv7xbwrrOtjhrPvdExAt9Z2yV35t36JivpBhz+ZmZE8rPz3xYLrzLTjq/1zgXHeGCvoTDe/36dex2u5hOp4U7hcudzWaxXC4L3iGwHI4SLoQC3qTfwW9gFbCug4DAfHaGuC/JYGD9CBZDx3kXWeaAIqIEwaxWq8JRs2ue+9nF1ul0yjXUCW4ThxuYICIKB+qsFU7rCG6HL0M/myPKTgs4PNpvXm+73ZasDT62BccO7+S3HRlgQhx44Iperxfr9To6nU5xfsAj40TxBgzqkIPMjB1pC/Xw+z1faKdTolv+bcdEHNJ++ogf7rH9gLzwbuwu5g72BM5UbzLBVjPnib0xGo2K44z3uA+MuZB984PIMCVzmJ7n/tvrWMTBFnWxzWJnrjl4cDmyYYcY77JjjM/B0Hx/zIFru8d4nn48xvF/LuV7O88yIZ2NKTuI2JaanVqZOLaB6fcY2NuwdORENs5MblOPXF/XBacO6e7w4rdarRiNRrFcLmM+nxcHAkJl4gOHVMRhezj9wK4jHBc2mPG8o3TscGMSo6RIu+dIWNpvAzriQAK12+0YDAaVyGTabmXntHoRURQRO5xarVbFATKfz2OxWETEQdHRBza0ULqkQ2SSeNGlv1By+/2+OCdzVAMLr51LtNdRGY5u4H3ZeLVxSP9C3jBGOaKVvjPp5Ilvhcc9dsphAHMt53AgU6QJZRHabreVfl+v1yV6FwVpAIgc05cskChGFLgjVRzJ4wXcYAbZMoln2aDgODMQpU5W/I1GI0ajUcUByPtZuFerVaxWq5hOp7Hdbivb7on4mE6nFWDosbfSsBI49ttjlsGyo52RxSw/edzz58xHpzxCYaI8DexzoS3HPq9LXepSl59aQedlR8+nALgdKBHVMyvRGTYwKKzXOHPAEsa5fqd13zFsCqkO4QC5TzpmYwAOlvbObxsvYEd2lfgcJjAcxqjbDS5xKmo+c3oOO9x8ZoV3NpEqER0HbgCj2MlHgdS3wZzxLNGtOFrAGza8aScBXPRHr9cru46Mz+00Mwngg8MjDo4v2u2gNuN3Oz38DjsaiKzFuLd9AtY3pj/myDVmdD1yYbzoR9cjorrTz+PLd+BCj9Mx2Tah53HHhiLA0FHD4DScZia5drtdTCaTmM1mZezc/8wLiCyPgc/AsPOI6HfGlnowl3EmGXPSbybfILgg0ohYHw6HZRxwfNM2rytffPFFLBaLYltkR6qLbad2u12eZTnjuogDGcvnJmYZn8fHx0J6In/ZpjkmJ8dwKOvrp+pfl7rUpS4/RBmPxzGbzcqaSQETZL7RJL85QL6nmGhnrQUnOUiazzNRbt3idTYf18L1/GYNd4CHg09yUEMO9MmBL3lNNzaDv2s0GiU1I/oi4pAWb7vdxmw2K3zhfD4vXGhOUYgepS68n6Ap6oDzzDrezgBzm+5LvnMAjXlluE3zxe4nMoSBSXCO0R8E2YDf4DMZd1KlZxx2jKfkc9rsetIHTl8NNuce5BJsi5MPx5Z5JhxqtkPMn4JzqcOxXVWNRqPgFe63wyMiSpCT5Q08AjZCNkmfCA+MbJh7dFCT7QXqlQOlwIbGtNhKtmPoFzuFcIqBFc2nw7cjF/S/28o7cKD2+/3yv3ntfPwPa4z704GQ9o/Y6c/4meu1g999bfnPPhHqglx5d6TXMTsZzWM6cMs4lvdnh6HXXDA488Lv91r1OZXv7TyzB/gYgcE1TiPHPZnoiDicA4RQ2RnEszGmLQgG8K4TxcS4CXYvbLyXzzHWHx8fo9/vl7OWcGaxYCMkePcdlev6IeRM0OFwWHG2PDw8lNysCCyLDUKMIRlR3c3CJMXQcu5VHJf9fr8scrvdrpJnl4WaSN2IKA42H9LOIrJYLMrv5XJZ8b6jXCFTMGRx/NAfXjxwGKCUuY+dTXbS5p1kdl7ZcM6Tz5G49JujQQxS6EtvY8ZQPuaA4W+TJ0TSIG8YvgAEE1YoN5RKs/kcUcv5JnbM8S7OczDx4nGwE5EUkREHoEBfsrjjALUzmLF3pD4EBO3bbrcl2rbZbFZS7qBA6VP3FwoBeWXOIReeXyjTXq9X6jkajeLjx4+VHaqWCSs+FuZPRTRYiXhO8z8/BqqsaceIDOrh8bLCo06WTYMlkxe58K7fh+CoS13qUpf/14uJXwc88JmJZFJx5OAig3iTD15jjSvs9PBnGZNab1gXNpvPO8eGw2HRozjE0FXGHo+PjwWzuW08H31vMsLOFjvEsj42oQL2Wa/XxcBhRxe6jt3tEVFSmtN+zir1+U9gIpxrzvzAO1arVSUdZdad4E/6Ox94DlngNCsEnZHGEdwJhoQ0YvzAx9neOOZw8xnE6G+TM+A9f478OKradpPtD8slWIIfB5yBt8HR9BnjSrshV/KZXCYBsgPT84A6MG75LDvGGxIDXMl91IX0PyZpwMH7/b6QUvv9vnJ2zcnJSYzH4yIHyN58Pi+yDi4Du4MbweHGSGBG+hCsizw5ctfkBAFrHhfWAsb35z//eXzxxRexWq1isViUDBHD4TDevn0bv/rVryr4zeSVnaFeY0yAUafsLHPQmdc+r4EnJyfR7/eL0zIXky/8TzGG5bkmUOpSl7rU5Ycup6encXFxEavVKiaTSWWNsi52UAl6DPyQ1zNzkRHVHV4Rx3fnmgzO9rpxWcZiOZjcDpOMJV03dJl1iJ1V5hbQwXbeRBycC61WK8bjccWhxTuHw2HhMXu9XiyXy8KPwlfZWQHOcpA+ONSBVfCtPAdcB2bzZgTa5vobf6HfCbACY1A3NiDg2DAHZAeH8byxxXb7vLOc84rBxMaZ1qHGPcZc6GzrfHCe7Q1wn/EjmMM7/I2t4fBsi8B7WnfnI3N4NpsIfHaV54PPBjNH66BCcAr9yBmwxlbMO2MwZ7Uynib7hrExfeCxM5Y1/2pbCW7UjlD4Rvqj2WxW3jebzUpmhE6nUzajUHcCtRqNRskq0mq1StCU1yKvEbat6F8wFnPNzijbtHYGWrYoYHM7F2krxe22z8Ljim0Kn+pnONuG56d/0/9556J5cFI3Zrz7Yy/fq7buWE+GygP/v0XYDgqEOOL4DrGI6vZnignyTwF1Gw2Z0KBYOXkyOQIVYxPBgBzAQ46yQKhxQh3z0DIx6Asrzex8g6jIjjP6AscHRiqTD4OeutO/zWazTHQTMSgOnGXcy2d58ZvP5/H+/fu4vb0txrdTRKIcGHP6m/5BsVAHFirXmb6KeI5+ZhK5Hw0QPEltuNL/3gHHBDXZxHiijLKi5HPGAiM4y5cNR8YVcMA7kG1AgRepiKgc7O0ftohvNpsij5BT5+fn0Ww2y3Z6g8DValWcwuROZlzZGg4Y2mw2xXELYDHpRXpP5Ih2MIb0OYdwoggjokR8E3lsJy9KE4XBrq5McNKmxWIR7XY7RqNRTCaT0hbe6/XHpGEmlpibJiktV8xVxj0TBVbotCWTB9nxZVl1MeHh9SmDFK+1vNvvOrb21qUudanLT6GwBuYfG6UR1fOYDOztLKHYgWPMmA1MjAjfC36wAyQH9LTbz+cknZycxHw+L/VFT9nZQiAROokfG1PU36m07XTJThmTCnZumFwAC2F82aHFOap2ZKzX65jNZhWy3v3k1IwEp9EXXMdv47Dtdhv39/cFF7VarUL+g3/AOGAJjPDXr1/HeDwuTkc/l/eAx4jkzfrX9ouDytixZKeCnUxOHeOxtOMoyxfj6Whb6p1JP0c7H4vaNF5AnjPZlOcKfzvYzCSFsTby5PYzXo4ax45hZ5azWdBfjpDm+Y4+Xq1WMZvNYjgclnHCdjGpBvbGNomIypkc9Iuduh4LMkCYVCP9IrJiGaLvsauYu7/4xS/iiy++iL/4i7+okKBXV1dxd3dXZBb85+fltcnEH8XYkT63HEA88ixn8+j1esXWRDa9nhhrGuP68zzetnnrUpe61OWHKuzM73a7cXd3V+EoWcN93pRxlzPoeL2NqJ4plrFituHRaeYN7PiAvzAeYD3NAQ9ei2kDa7YdPjzHazT1s0MlOx4IPMqBROwcJ5uBr6MNs9ks7u7uYjKZVNqMTjDu8I4iAkrcd2BPsJv1Gtgn7yxz1gEH0aCz3Ic45pARjyn6y5mF6C82AuQdSvTvcrmMxWJRHCpgZfcVehy9DB8HxqDN5pzMefKZsz1Yrp2xyPZGxruui51vfA7uY7MAAVeMl50lztKR+XbXwbgB54u5fY+3HUnYCYwfTi4cWjwHns/OWwciOSiNdhr/U39kw/MYbpv22vHD3MGRirwijziXzY3P5/PK+MEHZ/ye57UD12x35nluBxmfMQ+OfU+/tNvtctRPtlWzjybjRDvAvN5kR5rXX94JB03feVw+p/K9XX3HOpiCIe+8q55gfoYNWCaPDQkWYBuO2aDLwN2Lhu9jQhHRwHcYcjYumQgQ6o+Pj8XJsNvtSqSBnWC0hwXUgtdqtWIwGJQFCQPP1zp3rR04/M37cKKwiDOZm83nA629LRICBWMSI5NFHO879+z3+5hMJvHx48e4v7+P6XRaIksiqqlsGAsrNzuurEBMImRHFgrA6YOsEBxZkBcHEzU824o5O0K8yNnRYsXIs1DOriv1sIwcW1D8v+sScchJ60WdeuKspQ44sFjAicpgyzFblC3jkGeMFw7J09PTGI1GZRcc0b3sIjQRYaIEsoK6mTShj56ens9m4R3kgc59whh71yf977mD7DC+HOqKfPA9JEhWNLwTZ5wJURSWnWC0izmbHVOZqDCo5T7Lgp1/JsoMFvn7mLKgLSY2eJ/rlf+vS13qUpefSjHupJhIQB+g11nHHd3mvzOWsxMp41M7JDLpnfGwvyOgCCPI0Y7oK3AZDilwnIvxqnEAOAJcyHV2VIF9MuHAc9HFPp+DwBnS5tEHxkFgWwxi7/ymXwkAA2+6L+1IiTg4Cmx0Qdxg1Pt+jNLNZhO3t7fRbDbj8vKy9CdpaOhv797KsmAM5YhVHEH7/eGcUxM9ljfwDP9nhxXjgSzb4PUzbfha59v+cNR8tpmyM9cOPt5lmyXPLbBWJujy3OJ9EB6NRqOkJWVHI5/53BPvJESOaAMYdj6fF9nBzvE42WnHGNtZzneOzEeujSXb7XYh2Ni95uwOtjshlabTaXn25eVlvH79Ou7v7+M3v/lNGaN+vx9v3ryJ+/v7F848rxvgTAdrHcOOfoYxOfe4jVx3cnISg8GgkKLGnpkI5h7jz2xr1/izLnWpy4+l7Pf7yllTfMYaDJYAz2W9+qln+nvzXqyPdiJEVNfoTFxzHfWiPsYRYAbIaaf/y0Ec6IvMFXgtNxbOzjpzaOgp/uYaznKKOOBD+FC3y7vHyVJFvew8AV+yKYD60jdOZ+mUhG6HORf0Hw4Uc3rGPcZ5BL44YwO4FUwI38tzwKE4y7bbbSwWi+IQMycGnoDrhZfb7/flLF76gWLbwv+bD8IOAdN5V5plPeO6iENWMWQZOdvv92VXnduauVOKZRHnEX1mh2l2vtAm5IKxRQ4d/EYWMrK6EUhIkCDXkTY0c9ARhyxj5kedyv309LRkxbAzMa8b/O/scPv9vswJO93BgvQ3PobRaFR4dOQuryusFR7fzCua3/R9HhuvWbbrCNriPuTK/pD8XONQY8TshGOO2RHGcyxv6/W6clwPNpv9NZ9T+V7Os0yIu8EsthQmTu4Q7vfCe8zYcxQug+lzHCJeDl723rrOXM9zbcDzG4KA92+3zzl+5/N5mTA28Lj3U8oKUgTBwwNNNAZtZTFHyB2dGPEcRYmHnUWTa7vdbjkPyiRCRFSclzjxqL/P0Hh8fIzb29uYz+fFgcHWX3ZBsfC32+3KjizqChDwzi87QLnWxnzeSkz/sQg6Ctbja3IBWfMW3LxI2Ni0zDAuLLQsrLwjk2ZZpnxPxIGA84LNPY76sJxivLsAUOx8Ybw7nU5cXl7GbDZ74cwCtFBwnqIkWbhM4jB+JpVQVjhsqYPP+aNvrDDZEXZ2dlbZdUafWB7pFzvTrBgBw81mszgAaSepLb3WGEzxLOZ6BpeWLfe9FUB2dFoJ5PXH/U0x2WInnaNJsvOOOnGfQR/jY8MgK8m61KUudfmpFOsN/3hNNoluYG/9j0HN+m/jwPrOThWTIcavWce7Lk5PjAGBziXFts9XchvBTF7vbbhS0CMY1rQnEzAmMsCkYFfwLe/G4HVgGTr16empHLANvqUPMEi5lnfRbhvNtIfrm83nNNbeTWPjFb0KkeWAs4go5IbtCUeeM34+x5V6QcJlUstEGHLHDiecSThW3F8eS/CxCTAHfWWMaWzDsz2OOWLdDkvqzti3Wq3iAPU7vcvJmMMyxjNtVGN/QDwZVxG45HQvkCH7/SHlPXMPstA71mxDYXyv1+uYz+fR7/fLePnMPzuO9/t9SaETERUZt33qfqLPB4NBOSvM8muCjt2Zs9ksTk5O4t27d3F1dRVfffVVOX8HHHl1dRWXl5dxc3PzYl2wTfTbsJwJqkzMZhnhez9zMBjEdDotxCdy5vXOuDJj9SyjNf6sS13q8mMo3nFLkDBrvR0DOKRY/7kv63u+h1fymut3Gm/wg53vVIXeBZ+DtkzcW3+ZtM5YyViHumTskLla9KCxEPoXbsk7YkiZjHOK34vFotIvEc+BKLPZrARaWfegt7wzHH1PoV94rneb4Wyh7lzvnUw4JLgXrAkuydiPezyG4DGPDViLfgVjMFYEj7PjyLrXfBDnmsGvOtOT+Um/M/ObcKzmitHljC+yY8er+9jBWd5VZw6Wfjaf751U3kmZ+8lyaUxqTAGGwPnGuywb5ihtgxmLjsfjEpxFP2SZdzAZzwE3+rgZ84Wea/Cnxr/02Wg0KnOJZ2w2m5KqkedhHz09PRWe3bYk15rn9sYA2wqe3z5TjWfYb+CgrzyfmCvGnowV9+dxMk520Bl1sNzb1t7tdgW3d7vdspGDMeJ9Ppf4cyi/t/PMC6ENQzukWIztHLAHms+84yzi5TkAJplNFPAdAkBBeOy0ysouK6lM7O/3+7KDhry4EPVWkI44zQ4dBJj3bLfPh7nP5/PK7jWe5wXFn9kBRB8hWPbEj0aj4gSz48iLJ0QAC8Z8Po/5fB6TyaSkvCGSgshLtm/Tr0QmkMaPvNJMyAxIPDFxomC47/f7SvpJG5JEazDxPLGzg8ne+dxvjKm3HLOQZFnORFl2kiDr3t5usgYZ57cXcK5DfgEVXixN3tlRZyOZRZK0oSgL0uEgQ4Af+pQDzIm04Hl3d3ex3W7j/Pw8Tk9PS0oZp0hi7nieMs+zkvUaAIHGDrHhcFhZKOkXAA39xnMMnhqNRomY4Z2TyaScieGFNwO1iKgQizwv32Mi7FMEhh1ZBjweZ4MU7vHfmXQzOWEizHOYQvv9mQFyXepSl7r8lIoNi2NrbzaEDeRZZ/2Zi7Gh12M/j2fawPTzjSt4Jo4PntPpdCrBT+g9yImI6qHO4BBjXJMm6FMMFQw370in3t45zi4bEwV2sIFdMP5pF3qc6weDQYXgtxFspw+YBKxMP9AnvBc8SB8vFouCZSjuZ/oQrAsO9njwTvcHsgD2BDuCH/jbZ2OBJ01YGKuApbwDj34kQA5ZABND8hlnUrccIGb86+Av35f7iDrxmY3r3B+WAfpttzucCUx9GT+wPXJOalLmA88gMA8bazKZFJlBJk0amezhGmSI4D+TSshStjVN5IDzPNYOnOTdtOPs7KxERNsp5X7Cxru7u4vxeBxffvllfP3114Uw7HQ6cX19Hbe3t5X1wqQEa5rH0Z8b7zG3cJTbIZjTXzEHT09PYzgcVs4Z9PO9PhxzvmV5sv1Vl7rUpS4/VJnNZvHx48fCPZBeGZ1hJxq7mNHZeY3LTjTwDBwQmMjrtfkgroG3IUjEWAFOzBwg7+b55oKMWfjexDWYIPNXGYdlAt5cGXiH7EEEBuGIzA4hgmEmk0msVquCI/186hVxSIsMPqMwLvQLjjo7IKzbjMkzR8zzzH3hTAUbEIDOBgYcm071Z0cbuHowGMTV1VXZBcU15oWsh/kBK+FEyFy4sYTb40BwrtlsNmUTB2eTIXc++oT7jJ95hgPbwKq8l00lOUiNPqGYu7JzD/kELzqwKgegZR+AZcD2FxktCD603ecjaZwlgTlDQL8xpZ173W63sgMReTBGN4cIHvXOt/1+X3ZtcmQOfUydmGO2C7yxxhynZcCcIe2mvzwO9kHYmcac41pjOs8fc5n0u/0nlge4fMuvbWPmAX3DWkifwVVzH2uh/TOfQ/m9nWeZvPUA58WLzywQGP4mrvmc/+0p5sdKjYXYQsS7PPE9yH6X6+VF3dEM0+k0hsNhMQgxypxX1VG9GK0Y2UwuDrZeLpfF+WQhQ6COfc5Eo268k0UeZ1mz2SzkAItHTgFpT/9kMol3797Fw8NDdLvdcvAlfedFkOdERHF22eGx3W5LpAmGeETEcDgsz8oAgAnFAsM40Z9MIEfmRhzOUbMys0ODvnfuYi8meXeT+9XAyIuH5cKfZwPW/Wv5zQSGgQft4l5H0GRnEONMW9gu/fDwENPptLy33+9XzpbgWiJdttttvH//PlarVZmLdm6RoibPW9rhtlrxe+y4l/nSbDZjsVjEYDCI8Xj8gkikvQYqPIv+Arj1+/2jhjx1tCPMTlcIG+qLEqCYwDLp4PXIfWGF4He6LjzXdcvykOvpYpmyXGTipC51qUtdforFBtYxchddZOMikx7+zvjCWNcEta/1euwgk7zuR0RlRxJ1IgVdr9erBEfM5/OYzWYVXAnGy04OnoWOcmoQsNB0Oi1GNXXwsyMODjp+73a7Qpy4fzHGjVfBLhBSpCgHc7ErCMxBO9HFjUYjhsNhwS5gMs7Xhbyxsb3b7YpxC7ZBJggA6/f7JVOCg3ZsnNN/liPeF3FwRnpcbUyDMRuNRukvG+SZSPI7nKbQ2RpMAjDGvNNRuHb4mkDh2U6TaCcf/bTdbqPT6VSiV4/tagNrW154R0QUosHjQ3ptMBzvRi5IfQ+R6fOlbb8w5yC56GsIG3aFQVRARjC+zorh39gxJiMZT7AoY0O7T05O4uLiIrbb5/Q83o3ZbrfLuS5kjBiPx3FxcRG3t7dFfofDYfT7/UJoMWaWLcYcosZzMNu9FO8CoH+QGc+3iCjzzOeh5TXUspXJroxD61KXutTlhy5kiCIrDXrNARes5Sbj4Qb4LjvAzA+BA40jjZlyEJY5MDvLHEhlLGWsYqznehkLRrw8h83PdH38ubGqA0jgGNGBpLXjf1KCX11dlfNIb25uYrFYVHQIfYwOpS94x8PDQ3HysHuK+yIOKffMHdPPDuCKiJL+zW2hv+20ijg4Nsj0gPOPfoWzcp/B6T49PcVwOIyLi4uKE85BNjzH//M8sochQ5mTRi7sQOJz45Oc1SDbPsbC7sMsi+h/2z79fr/s/IevciC3eVKPmeuQOXewHmPjNNi2fby5ATm0HYf8g7Mtt3YCwT2bD6WOyJ/nE84yZNG8uecV/8MR0mYwfqPRKEfr8Jl3mDI2vV4vLi4uStAYNkTenJED4sy7c012JDJWDjjzPAfHZ6c9gWx8z3v8fvohc5jm92mPHcfIkO2ciIjRaFRsFGQdW/FzKd87bWMGzNlzeoxUtkFihZCNhoh4oTRs2Jo8t8CwIHiS2hBBQKw4+G1SgslNdAALDPUgotHnlZlIYRHgLCnn4WWSWwDttWUrL8rAiyAGeb/fL214enoq20N5PwsBxjzRknd3d8UJQeQoxiztYNJzYGRElKhS/ueMNBYf8rcy/gYF3qVEO3OKFjtKcko/xo9Fw05ET05kgkXBkdjIFu/xjkcTElzHfScnJ6Vd9KMjPLnekSdZGfo3f1uh0Tduvw1f3mEFwvUsduwg3G63cXZ2Vpyq1NVGNIobOQbE0F6eGRGFNLAMMh/9m91lyAT3WhHilFsulzEcDmM8HpfF3QSRiQg+o984wLbT6cRgMIhOpxPT6bS8xwohRySZwNnvDweQ2inG9Y4Sof7Zich6k8fXdc5EU5YDCE/eneXGfexnZLmuyYu61KUuP9VinR3xMkW3sV5ENQuCyQX0g3eSWMc5ajEHk4AtMiFBffjt68gagNGGTvH5ThFRjEtjIONWjBJ+ow9xYEA2QADQHvAV7XZAGA4yyAfvsCJDAYaV28m9OFOoN2QMDgTjcp5rRw2BZgT1ZIMNsoLIUjuenp6eyvvZ4WQD0zIDwZGjHbmO+jrwhrZmkow6IBu73a5gItoAEUU9eS/OSBNPbrOxZT6XwUFGtClf5xSZxpIUPuc5llPmiQkDxsnBh5zrwPPog8lkUlLB8xnfm3zwWccOAPR42AaBEPG5fLzDTmras16vj+5KBCO7H4zneQZjgbxdXFzEZrMpjrLNZhPD4TC2220lZc+bN29isVgU24pdbNPptLKr03YQY0H/21bx2DEmyEIOzPOcsey2Wq0YDofFHqDP6CtjZ89Vy7y/y2twXepSl7r8VZfFYhEfP34sGZ5YX81vZaxIgAu73sE1EdWgFetLB6rwzKw3wDXgAtZPcIExYkQ1OJy6GUvamZGdVHYcwQtmbsBnhJo4R5/Ac11cXBTsCDeEvp/NZmXn/2g0iuVyGbe3tyVLAn1sXtCEuusIfoBjox3eJW6HEc+n7Q7apv1Oy8g7805BcONyuaxkXrA8GD/AkYGFO51OjEajCq41tqK/Ig7nqVIn7+iyIxEu1E4QO7hsi1gmzW1ljspyYxmkHXa+Zp57NpuVcXOd/A52M9mx47pm7p+NDZ5z7JqjHg6m6/f7pV/pq4iDc9kBc2B9cJfbdHJyEuPxuPQd9gXcITgybxShPswFB4KBCfkfWWZuEfRH3YzrcDjiR+D4o+y48ju8vlAn5oHnfLZp6QfLTV5v6FPGxZs4jq0x4Ec747y2sSYaU9Ku3W4Xq9Wq2F20Gb8Em0I+p/K9nGcR1d0Xmez1d/bgmnB2JCLPy061iEM+VoTS74monndmgaIY3DPBWMy8mNtQaDabxUkFkcGCmg8jdR0gPsh/v1wuK44YFjycTjzT33n7K/2CsUcqRUdpOEKEBXK73RbH33a7LVHMTuGDM4JISdrF5CElCouTiRcWBRYnp88z0DjmAPU4McFQHo64yY4L95MVJt8jU3aQ8Kxut1tZTLLysdx5TJFXO/joo7xDLysWnuGo0mxcekH1M7JXP9ePv4nMGA6HcX9/H4+PjxWiot1+zr/MM/Doo/QHg0FERAE+LGbMSSsQFrxWq1XSGvkaR8f6TDQ7MZFvInbPz8+LI5h7WMSdIgAFytgRYdvr9eL8/DyWy+WLqCevBV7weYeJIuYu42zlY3lmcfd4GKh9ijywo8yEZ1ZS7qdjxUDbyqgmLepSl7r8FAtrYHZUGT8YkzrohrXez4o4EP8YFtlRYgdANprtDKIe/ox3jsfjuLy8LOu+sQOkDwUsms9LteHhs3BtSDuYhd3mJycnxSlljEWb0W82Tu1ky4YzOMkGOj/ud4zPjPN53nK5LHUiLY13B22320LcQHSBoXe7XYkwJTd/xpOMT3aQ8HlOPWJbBXyUiRiKMZmjdO1s4lwwHJE2hDMW5X5IKNsmFNsjJqVM2uFIBKcZw1jWkU1H5oOX3F5HvEa8PKvWjqbBYFACuugL8C6OJN5LcBW4L2N3Y+JsN35qnvFMO3BNitFGjxHfQ2Z5HBkPrw2tVivOz89Lu66urgpebrVaMZvNYjgcxhdffBHffvttsR3G43Ehm0wSmhBxkJ3XB+aq7cVsVzEXsROPYVqi5pm/9AfvsU2XyTn6LMtDXepSl7r8UOXm5ibu7u4q3BXrZOYGXcBQEQd9bz2ETs8kr/WusUVElN3vdsJEvDxTy/reuMRrsoPz4TJpm++FSwLnodd4r/Uo9cFpcHJyEq9fv45+v1+wogOx7Ixar9dxd3cXy+WygglxAhD8RB1zUIb7mP53P7jO5mrQd3YIcb3xuscEB5bH1jvdwT3N5nMaudVqVcGz3u3U6/ViPB4XPhYnKP3Cc8wpmz8C02TZsaPLgd8Uc8a73SHjgrFRdqLSh8bQ3oHle5xlgIAac5fZsecgfPqV307lB1dnZ9d+/7ybEecq3B9YlHFZLBYxm83KubOWazskGXtsJHCkHTsE0zGPcJb3+/2CYwgo5B52WNpeZGMCdhJ9Z66YDAnIHN/TdjtO4e9ns1kl5bmdUf6bOWg+3XiQgtPVzitj5Ry8ZpsBfp/xNOZk3bJsZrvFPg4Xf75cLst48AzL0edUvrfzLCJeTHxvObRyiKju/MnOtkxYu+Tt03nQXBfew2++x3hCSeQI4mysnZ2dxWAwKE4wb8kmgtfPY/FdrVaxXC5jNptVhNZ1gOzIESb0hUkFFmscZo4QREmzC8xK0zvmcIaZGOGHxYFdcvzPgZcsBkRpYIQzAVqtVgEpNqbtoDSYoJiQscL31lsrRRvx9JcnmZWQFawdJywIJoyIqM5y6oXCdWRhob5O55PJFHvhj8ku/cC4GhChhDOxxrN4t4HV6elpcYQyzmyph2RhXAaDQZyensZyuSz9YMcSY854OrLZTnE7tQEc9HmOdnDfEG308ePHWK/XJbd2o9EojljmJM+h7o425v/z8/NoNBqV3MOZ6IHUot4Gs46W8RqU/8/y5mLgkuU7A/ZMhOS1K5NYfMa8/5TTrS51qUtdfkolr33WxSbHI6q7mI/pY+4DE7D2OuCCZxhH5mdQB/QLOnK/fw4AevXqVSV9sesHXjMGabfbMR6P4/7+vugWdDs6zbvEjxk8Nqp3u13BekTSouOpvzEAbbChA14Bz6KTIWFyqhiwdcQh/Z6dmlxPvXKB6McoxhFlwoF6gof9HP63c8VBdHYU2J7JGNLvoY/tGDTxkW0ddvtwZq0xh+WKe5x2E1mBBAHTQRg4I4JxY3aW8QzPAV9rGeFa5NqRto62BxNzb87SQB0ZA+YBz6Uu7lucTNTBc9I2BZ+bREHmfM4G44cdRnQwsuTUMbQf4x57ivfYQd1sNqPX68XZ2VlcX19XghdxbE4mk5Ky/O7urkQx28bhN/fTBuTBdgj2hx2R9H0OwoMkyQQbn3U6nRJ4ZkLmU7JBHzBOmeSrS13qUpcfqiyXy0rWJNa132Ujcw4Pa6ODiCn7/b6yQwRd4XUb3Gey3rwWGCPiwAv5Mz6POOi6iMN56BFVvisiKhjP6z7Xm/MyZvWaPhgM4vz8PAaDQQnEgjNE34Iz7+7u4vb2tuheOMPlclkwEv3tADOwjvlW6xz6M/Mrxgw4OayP0efwQfSDNwn4jDQ79hh7p1CmTnaqwTNxxA3vY6xxsuAwArPYiWU+yEHnfMYYIgNwXbTTfDu4gDFwn8ON0Ve828H6vNO2BrgGnGTswDXYBsiDnZr0q5+LfcC4WA4JnnJGA/rdfLv5ye32+Ww9UsM7gwYy6OAm2m6+kn7yuXC8H66c73PfWXa5No8Fu+rOz89jPB4X/jxz4fyPfGOXGYN7Xnjnpe2ZvEZ5nfBYZ2yXHXR2dBqD2ha0Xev3UQ/LBDw2/WSen0BHc7OsI8fs6h9z+V5nnlHywB2LqKDYMLeX0VEETDYLTX53NnT9nkxCe0G1ovNi5sW92+3G9fV1yVlqbzD1jTgsto4IXa/XZRuw329BRohYXFmsbZwxobrdbgyHwxdnYdhYROB5PgvVZDKpnM3G7p6Igxcc5YIQ+/wwBNnnTZA/ejAYVLbnOtIAEgbnI2ez2cCyUsrjykLN9V40s7ef6zzuPN8kCXV0VKnlKJMc2fBENvNWWSsIP4PnsMAA4hxBbEVpb77/pi7Iut9rZzOKjr5GcdKfEGzdbrecrUIEixdlO76RTepEvSDaAJC035EKKBxKdk7a6cez7+7u4vT0tBzAmoGX5zrKw9c0Go24vr6ObrdbOVvCDic7oVqtVnGCG0wwznaYZaCbS16zDBB8P38fU+QmNCyHLm53NgR+l2FQl7rUpS7/L5aMAW3c8H8OYrEh4WJcaCOWkvGtCRTuM0mS69fpdOLt27dxfn4eEVEwjDEEvwmYQvd2u91oNp+jIefzeUlhTD2ctpH38zzX29GfDnxyKkZ0s41oMAX9S5u4PuJwmLRxQavVqmRHoM8cQeyoSbCJIz7Bm9mIpt30GSRJRBTMa+LKO9+8y9wBNchBxqsmQew4oX30q/sqO3AbjUYlBTqYMOLlWbjZcObHGSB8/oHxM/XKu+S5/piTzJ97HrgNjJ8DvsDUyAo4qtfrlWwF1I1+Ojk5KcFStn8cKJmD3FxPSEnbj8bFzAMIKMaXOQLpBXmCTcZYui+Mzxxs5b7o9/sFV3NwvfE08+Ds7KykKYqIQvYYS5scy2OVbR6c1SZ7qHNO58g9DoDjnm63WwLP/F5kwNdbJox961KXutTlhy7z+byya+b7FHiDiOqOi0854MAy5mnQXXBqxl5ex/0/70BPOj037zGGzU6nzI+4mDvkmegZsNVgMIhXr17F6elpcWigE3EONRqNuL29jXfv3sXNzU0lkIjd/5xHTzBV5m6MHamLMRe8Ez8O1uKYjd3ukPISDhJcBabwu3xv5k7oZ47XwcnhVIJglsFgUJw1w+Gw9IkdneZ3zQNalhh3403GNwd70y9gFvOXxoA835yScSLBPA7253Njen4yF8pc8k4/6gauyk7T3D5nWePdYJhsq4EhmUseM/7HCcp4IQ/eQYhcGCu5LXbo0vZOp1OwrX8b+9k5B9YiMJCAN+/YJAODg7RoA88iXepkMonFYlH63+NBcYCjnfYeWwfdeQ2zH4BxyDYzHC1jarzLvdhnduja0esNL+ar2+12XF5eloxozHswfbbJP4fyB+08MxHh/72A26DBqMtkhh0bFE9gjNJjHYsQWuGYFGchZmFGmFhYqNNoNIqrq6tyECHeYytNGxwRURbb+/v7WK1WpS0oBSbKbrer7Kihr/jO7ceh5YWMCW7hh+jHo43im81mZfHHq4/nn0WUxZ2oSow7tqRS7OhylKOJlEymsBXWhImNfuqUSS/6lwXL3nhHk7ovHJVpOeRdJiNYVDGSWVzsnMseeMs1C112evB8K0SPM0SD68NccPQLfYmse3u1SQ2DAMYdsqnb7Zb8udSbvoMMI7qK1E2WMZNtzAGegTzv9/sSHbDZbErUMcrRjjgW3gzY6GuIE0AQQI5t8QZLtBn5QGaRuf1+H2dnZ9FsNuPm5qbMx2OGv8c3OzkdnZNJB/rc40Y/Z1CIPGSnmtceK8WswFwySeG58zkqm7rUpS51+b9RbMAa4Oc12eukU83ltT47TkwA2ND3u/2T3xVxcAZcX1/HxcVFMbiMWWz423nQbDYLDp3NZvHdd99Vok0dUZsNLet/8J+DQwiKQg/nyFRwj6M/eYaxNdflsXA/2Cg1mWD8EhFl5xnv4tlO6wcuwTi2Tn16eioBYQ6Uys4IMInHn74DnyJDGODgM/cf/T4YDGI0Gr1wpEIsWFc3Go0Srcy4G6OY7HFaoCwf3W63pLjxmcMmJZDnjEF4l7Gf8SbjkZ3NYJo8/4zRwLDUbzQalchkMJ7Hhzr3+/2KAxSyBucx48cYQR7YVvD4gAsdwMZv5gyOTN5JOlPsRTtWwa842DqdTiHX6BvX3f3IvBkMBnF7e1scdcfWDDs5Myb0/LT9iJx5bJlvHnvbc8iSd0Mec4iZxDEGtSzVpS51qcsPXUg3+IeU/f5wtMXve73XW7hH8ELEQVf7Hq7neztaWJvtZIh4iTmNXx3Yw7X+HL7HuIV6DQaDePPmTfR6vUrKuf1+X3b7NxqNuLu7i/fv38dkMikYDH2DjmSXed5x8qn0bQSvOKUy9edzc1kOJqPvvNOJeoGXfeyInQnoTKe87vV60Wg0yjluTutH5gfGpN/vR7/fr9TBzqPMDYL/wA/c4/cb39F+sJfH1rLDu8BG7PzCGWEOFlmC86KuzhJh/Ga8wDtdP/CXnS/ZlsqysdvtCgbkGciCZcR2FpnVjs0hnrdYLArnPZ1Oi13Q7XYLFoVTzXPP3C7vPTk5Kc4dZMe2iHloc+E+eoZgvm+//TaGw2FcXFwU28bzg/aAf7H3CEiD82XcWB/MoVoumAvm5e33yLJJP+a+Zb1Yr9cVDtoYFzuDseXZxoTGrtgE+DdYQ3ifsf3nVL6X8ywbmxlsZwdMJuYt/BQGOw9UVgx+pycBv/Pf3G9PMQsB37169Squr6+LUmq1WuWAZ9qA04i6kDbn/v6+csie30uKGTtdqIMjIFE6HJAYERUjDMPUUZwQCkxCQAO/GSM+o05eFBw9ghGeCRGULFElJitMxpADeDweV3a6EWlqxyn3e5LbCw8pRD3x2POZySMWR4MS2p8Xf09ugw9+sxhlufYCxf0sGLzLMmpwwy5DjFk/x05BL3Y4+uy84b1WRp5PnGHG4sbYWuYgnyKeSQJ2WDLPIG5y7l/kwsqftkCCmNTiGtffY+6zUgBFjPt8Po+Hh4fo9Xolwod208+MCal9nMpoOBzGyclJvH//Pubz+dH+pPh/R1Z7DfFOTX9vuWGtQiZNzB1z4PlZjCGy7LYeK1k5Uc8/1GCoS13qUpfPsXzKuON/Cmu/gya8hpvAN679be/K76CAn2wQn5ycxOXlZbx58yba7XYlTYz1OEYSWAlj8ObmpugHCA4bfbzXaTdM9hv7EJ1J/XOQDAY3GADDEQKAHWC0DecG7bZDymf5giXZ4cY7wVIYUxi4EQeHA0QKxpfHEiMPBwuOnOFwWIKDfBC4g+yor9Pr0Ca3w1g0nzVCAJ0Nb+rloDNjIj/Tzifegf53/1m+jFGywWpHrwOZwJq0z4RAllkbr+CZnD7S88KOHOrAeAyHw3h4eCjY1O/s9XoFy4Gne71ePDw8FMcS9YVow+D2rjo7+rLDEyc1fZAd3TwP+8U7Au18dKQtc8T2IGPgwETIycFgEJvNpthY9LGd+O5bZBFZM/lmexKsmEmQTF5k4iM7QE9PT8vOOeQ1O0891rahjpFmdalLXeryQxSfdfZXVaxf4DIcbGDdj3Mj8wgRVXxhrGrsYvyR6+DgFgeBOcjc/5+cPJ9xxs4YdB/6ut/vx9PTU7x//z7evXsXt7e3MZ/PC37NGJR6sRlhtVpVOFA7NSjomezQMQ6MOOyQQQ/bcRfxrJvYxW08RpsIACOIyxgIfQxH5SAU+gtM4eNDcH5xXh66384nY8ucktwYw+2wkxDZiahmVms0DqmtravBDdTR2B9Mxfg70Ag8Yp4aPIAjB/uDgCOPoYPT7FDjcwciGUfYoZcDwGgzO/u90QOsxTxptVoxn89jMpmU+9kpSLu9gcdnveKUsoOMduFIw6H68PBQsKhxfQ42wrmIgy8i4uLiovDZeYcbYzgYDOLy8rIcqWP7wRxq5liNv7KfwcX2Jdie9/he27uZD8dm8hw9xnHSv7YVzeciYxFRnKqfI5f5vZxnJn4pdDYdZYdGRHUHGlEBFgI/xxPYn/GcbBzYUcKPlU4mPvj+5OQk3rx5E2/evKksVCy4fpe3i06n07i/v684DHJEhFNxOIWGF5NGo1GJbuD5JtJpDwsb56pFHJxI1BODzZMaw9Pbr7mXqGPqRtQNHnsWTOpsZx/PLQLUbsfZ2VlcXV2V9tBOlE/Ey22idiTk8WSyckgrisH3WSY9hr9rUfH/yCoK1U6PTFw4ehpZsiMtgxsrAkinDDgsN14ovXBmg5XPIbpQaqvVqkRhAA6QNQOY3e55N6QVL+PJ7svBYFCIOhMDEB7IBYQCcoND7PHxsdRlv98XeUMh5zkNqFyv1yXv9ng8juFwWFL3mCgA6D0+PhZyZrPZRL/fjz/6oz+KDx8+FOKR8Yb08Dh7zXJfZzk5JjMGx4wNu+1Mxnq95H87il2PDJpcrMCs1OpSl7rU5adUftcaaAdHdq45+MHY0IAfPGYd6UAQ1nSv2+hlG5RE94JdIOzZwc0OFgelPDw8xMePH+Pu7q7sonagk/WF22/jCGyCgcYznN4kO7wwDr37CycW7YGIMDEPIYJuInc/16xWq5KK0jt1MByPnSUM3mIMer1ewQlgChM4GLVgXaKD3T/GnvSXHUbGgjyLPkM+GCuuizhEYTodtt9hQoX62vAmgpNngccYI2OlbGthHyCXln3aTD/b/qBudrrY5nB/YZ+QntKymgOH7MDqdDoxGo1iu30+q8KywS60ZrMZq9Wq9Cfpu9ld1+12C7ZjDoEfke/sjDRZ4+A9YzHX38GIYHjbieDbfr9f6oMsUky62encaj2nzifNUCapTDIxVowR885kFPOU++28Qr68XplI9RrG/Gm1Dmfx+ZgCz2dKxrD+rC51qUtdfsjyV0m8sgaa48oYMKKqi82FOQjGOpTn8AwHKJh3Mu+QyewcTMO7wSGtVivG43Gcn58Xx4OfzW7xb7/9Nn7zm99Udpyh9+x8MW8CH7Tf7wuX5EAX4210EPVDF52cnBRuhzr7XXBtDgjxLiGClyIOWYXAcpmjpo98FlrGCvC4g8GgcEg4pLzZIDvBGEvrS+8Eot/cr+ZKHTTu37ZL7BRCn7vdfOcfZJT3Gncc63NvlnCh78CXmRfMOId62clLOzMusUPa7wOPU8eIQxYAsFmz2Sw84uPjY9ks4E00rnvml+lX6kc2C+QPTp9xpN2ex8jhdruNDx8+xHq9jrdv31Z2aGbM3mq14uLiIjabTSwWixdrB4FU9kuYD6SPkXXGwGsFssp9/ts8eqPxvJnC6f2RO9axLBOWafrFa7KzPjBGFGTzcyvfO21jdnx4okVU86nyv4WLwcmKwYYE11E8qbIB6WKjyouKjcJutxs/+9nPSq5ft4fUd05xuN/vYz6fx3Q6jdlsVhaAiKh44S2sXsxLR/9/jqderxe9Xq+kbWERox5eLFmY1ut1TKfTyvu4FiIGRWrFS18wkXGs2OvOpLIStgJnspCmhEXFjh/O1DL5YrKfxcEExbEtphlc8P9v87jbOI6I0r5j1yOP2dnLwgCRYZmk35Al+t2klqN3Hb1s4GCZzAQW8mEFjIw54oa+cZQrZ4atVqtyfgFzDoVs4sHtw2Cmzlb6kCSQR97+Tz2bzWYheqyIfH6Et/kzZ+ywiogSocH9zL/lchnj8bgc1MocZ+FeLpeFZKH/2u12fPXVV9HpdOLbb78tjuFMpB5zjPH3MWVuJcO6RZ3snLQSyiDiU46xXLLsZoKUUjvP6lKXutTlULKx4DXSOMu6wHo3r7GU/J3PaTBRQel2u/H69esSWALWMibgXFtw5d3dXTG2CJYCbw4Gg5KmxMaG8YPrig53MBTv9e4t9JgNb5wX7EIDs2AsgS9zX2Eg+awq73yKqGZosHOGdIaOwCaNCU466oFhDH6C1LCezWSNMZ/1MHoWXGF8ZH0PPqJtGMjUyQFEEVVMSHsYezuwIuLFGR6OxuQejzXEzXQ6rbQXTMe1nguQBRiwOTuGHZp2FNvB5uwEnls8D0cY92+32xJ1vV6vyxiarONvMlVgZ4zH4xcpITmLOgfigadNSIJ1PfeRYe/o4vP1el3wGnO61WrF+fl5yb7Beyz/XhdMajGGyHS/3y+70GzbHovMznjSY+B7KbafbZfnKF+uNXHSbD7vFHSaLN7h+ZKxJmNXl7rUpS4/tULwsh1nGQc6eCHr8OzwiDg4GfL6TSBGJpjheawXrJty8AOYE+6TXTU8G8L8u+++i++++y7u7+8rPKbrZVxjnIEORx/CXXE+lfmpHBzC9U6fTTuN6dBZ4AucHA7utyMSx4oxmDEoDjK4sowJeT98GHxqo9EovCfZneDEvMEBPU5wl9P2RUQJXjEvZtsE28HnFmdHjzl1jzmFcbPcZfk5ho/Ny9Iec8ceJ/NUYCXqT/95Ppg/M162LOC45RrXAzmDx3///n2pO1h4tVpVMgZwr7lneGu3hXmHLRRRPcaHs34dpGifgdeC6XRaxq3dbpegsoyjO51OXF1dxWQyiXfv3hUZy45L+sw2Fe80luQ7xiZz3llOmHsRh2OH+PH1xtnmKek76st9j4+P5Tw3ZMdOUtujn1P53s6z7DSzZ92TzBPQDgs70bIRyTMswB6oTF57stqAYWG2Awjl8NVXX8WXX35ZcRChNLyjDKP47u4ubm9vY7FYvPDQ2hDEqLfxwYKAg8NRvfP5vLwb8gADNTsWiIxw+00OeBK779lRhBOD59hL7YluhcZix+LPOFIHFMjJyUmMRqOivBgHn2/mMeQ9Vvhe0B2VSl960bf3fLfbVZSRCRCMYpNbyB+yk0kDxsORDZAItMlyfYzYcAomrucZGTCZ3LFTmZKJLerbbrcL6HFaGwoyxTZhO5W5x+1aLpcV55r7zNGyNu7pX5Nj1AslgmPr9PS0Et2awQGFZ3nn5nw+j/F4HGdnZ0XO6EPIiNFoVM7NIEr57du3cXJyEr/85S9jsVhUFIzfbxmln1HceTxy9Bf3ZUDptuSxNdCgD73eWRFZ4XluZ6Vbl7rUpS4/pWK9a12NbrfxaycNOtDraf6MstsddmVHHAzJY6QIugN9fX5+HldXV3FyclLOvaWQ1q7dbsd8Po/VahXv37+P+/v7WC6XsVgsKqm5wWDn5+cvztGyg8DGpZ0oNoQhGmz0mGjA2AXP4dSKiBIRSX/isLEjD8yB/gYjZoPfkYzgDAJvHDlpA9+707zD3u0h9Y9TrFCsT02U0CZHwyJHdsoYM1JXRzrTT94N5XsyoUXJzirsCbAoGMJkVKvVKmkBqeNsNqv0cya4wLo2iDOmY3eiyQ3LxbH2t1rPO6wgzjabTQkOXK1WcX19HXd3d5UoYWwS2kWaHGTLjiOifwnKIsiRudbpdAp5hQzQh8auJowYU/rC+Az5x9m3XC6LnBGsyHMgZiwndhoi283mczqh/X4f9/f3lfnIu50NxOuKsR6yn+0nB7SZvLJjkbGzPRYRJTUSQWyWdxfPJWPoutSlLnX5qRTjENb4zMsZI9qhFfGS44w4YMuMYY/xCOaQvO77N/eYYz09PY0vvvgixuNxCfAAn5Hq+pe//GXM5/NyjIadJOgVB6/A2dlhBh/ia8B15qKazWZ5h/uEczgzbnIGJGNa/md3OONyfn5eSaPnoBk7S8wvGg/ZRrDTytwMzwLbWN+aa4LbBdvwDLDKsV1fvAMeE5zJe43bvHON63HyILPUnTplRwbOF+NCc5Zub7P5vHuIbBDwwebCaKM5Pgf6uB7IO+/BcQWP7fOReZ8dPWSnYKyMfTkPjVSOvvYYB+6x5X18zhl5OOacLpZr+Jv/Hx8fY7lcxvv374uNhD8AWafver1evHnzJiaTSfE5MK+P+QCQC68d2bb1xgyX7JOhH3IQpJ2CziBG+7IzmL/NUy6Xy2i1WnF1dVXqZp41O0c/h/K90zYaMLMo2Jlhp04uGbTn5zIxMxGdhYJ3M+H5244G/vf3P/vZz4rjjMjA0WgUEREfP34sE6HZbJaDMiEyrAwycW2DNOJwQJ4PyGYxswOOtuHQQJh2u10l1V12GvpASFJNcj+fcQ19iUGX+5Sz0PgMY9iGlt+fQQA5kh2xitK3MvJ5ZdxrBw7FwKTZbMZisahEoBpYWDk0Go3iULKsMT68C1l19AjP5cw20svkBd2KwUYubbEiRv68Pdr3eNFy6h3LlYkxp7DheRAdu92ukHHb7fNZHFb0nnNWDt6OjBxBbjBWtMMAxySkiSN27yE7tBnZhODIB0Nm56CJ0e12G/f39zGfz0teYOYs8trv9+Orr76Kk5OT+Pbbb0vu7i+++CK222388pe/LA5C2uN+Nqiy89XAxfKUFVl2cPFswAljzm/Ij2Pbnj23PuUcq0mLutSlLj/l4rWRtfcYeEdf2/izYRvxMrrS+s3638SFgy18Dzji7du3hegGc0Q8RxeSnma9XsfHjx/jw4cPcX9/X3abeRcIuma320W/34/r6+sSDGJdbD0PIQEOJYAGfWNDK6KaLQK9xE4hpy0hHSIY0fdSwPA4dewQwPCMOJyJa7KC/gbHQOZHHIKS7FTx+RcmLYy5TZIwjsagdt4ZX5oscR870AqMS38wJrQjO7KMhe1wNDkE5jM+oG+oN9czjqSNZJe97/H14EXq5ndbfuh/O5+4j8/A3rTVeAW5M/lBkBZ9aCeVd/DhrMXgZpwJxms2D6mlHBVPW73Lku/yTjEXE0+MoQMYF4tFdLvdSqYD0kvaTrF88e7ValXkDxkbDoflTA7Sslo+bHNl/Ig8HyM0LaN24oFnmUO2u+wkHQ6H5TnIATLC++mv/Fld6lKXuvwUCs4PY4ccpJN1ofVCRDW1YkQ1Ra6dQRTzENbTcFium3V+DvzheJV2u10CoXq9XoxGo2i32/Gb3/wmbm9vi27PafZ4jvkNMJ0xE3Uy/iYIjbZEROFVHbDD5+h9PzPzLfBJ9IV3rsNhgWGbzWZxnMAV8i5zzuhu8A+OGnY30QbbG3mXFboeLAqPRnAQ9xm7LBaLiq5HJnA8ml8kOwHXuh5gUp5vGyXzj9wDBvDxMsZ9ll8cK+zIMm+FrBM45N1Wx5wjtsFos1O304/UzXgU3pe5MhgMKjyz+V1wKu+CB+f92EfZb8GYGs/DFfIOz6Vj9gPYc7fbxWw2K/X/63/9rxd5IKsc/T4YDOLVq1cVf0Q+e9gcq20sz/kciOW56895nr8zpsU2YtwzT5vH0bYKZbvdxmKxiOFwWBzp5tJtw34u5XvvPDtWmEC58Z5Q2elix1dEvLguA3QbsXaU5W263oHl3TZXV1fx1VdfFYdMRMRoNIrz8/OyswzHwzfffBP39/cVZ5MXnEyes5CxoPR6vRKJgJGCsDn9naNUMCbZTYMzjn7lft5twp++QGBxVvC/yQKcho1Go0SL0D47f1B2pDJ01CvPOzk5ibOzs8qh5yaqqJ/b4AWK8WOCUoeHh4fo9/tHF9v/H3vvEmLtmt51X2utOq1znd733bv3TndCIhJEHAQHUSceEFGMgh8EETIwDoWgoDiQJBBwpAMHQSJxIkEyMyiIoAFHoYMTBx4C9u50773f/R7qvM5VtWqtb1D+7vV7rlq7k97d7ff1fp8biqpah+e5n/t0/a///7qvm89gMLcJDFmo4l4ejyyudv69SJpMYQHzLi5HdtJOBkMsDrzuCA8vPIwjRyrZiLO42xg7+hzCgfqz4PLdLPo4IoK2os4YhxxB4gho+hqB14SOIxggNqgzfccZZY4c9zjJ84sFmwiS6XQaR0dHcXp6Go1Go0R/AE663W5MJpNYLBbRarXi2bNnMR6PC6FoQ5/nlI2Mx7FJR49dA5y8+Ju0pb3cvyZUtwFr1rs8vk18fZ64Vpe61KUuX+ZisG+RgpLXSNt6X4Pf2HW+m9dt3gOjOljIxHyz2Yxnz57FYDAoIhS2YDgcxtHRUbGnb9++jZcvX5bzSnGgHdxiZw0shv3kuSwU5vQjpNLDRjkbAc5dRDULgQNswKVkT8BBRxjEloGpbOsdTEPbrNfrQnBg8xGTIDYIOlosFhXBxtG1iBwRVULGwVfuP/sXFiVoJxxs2o/dTLbZjBFfg0jnPJ6w3yavTDplIox7gJ3A7w6goi2NVRy45bHtPvL3wGS0icevsRxjy2KLxdUszPEbX8hpiwh68ms5uM7Yqdl83EXHTrrb29vin3k+euebI4GdPonvcD/vimQ+E+TotnM0LWQQr5NFgc/yY8zotYbdifQTIvjZ2VkZ/25D2tVzESxPSiiTJ/QV9WWe0Bf2v7aNN+rYbreLoJcxuevke9WlLnWpy7tQzJ/YvoMr+AFHRDzd/cVajv339cwLZkEEfs9Y1NiPOhi7ut77+/txenoavV6vpD+OeAxo2tnZidFoFFdXV7FYLCqB+3BY7Pre29srO3ewW+xSMQa3iMazGk+Qyo3nZDc5vKe/T13BY35+CyFgZvNzYEqEGQQ0izT0I+eamZt6eHiI4XD4RDii73geY2nqRns5gMgcsJ+R1MnmV/m8eUb6lutRdzC4eV+w8P7+frmOeVFjUmNbZ9iivRmbDl4z106fwcfDUZvzNK/HriYEVPs9OViR8eu65vGfeVkfBeOANzKw3d/flza8vb0tY4I6gusbjUbJaBURpR60Ixw4wX4+1sl+AONsuVzG2dlZNJvN+Imf+IkYDocVkZqxTvrGm5ubCk72vWkD9xV9a6xm/tL9bsxvDcJcpIMILey73en/PPezJrRcLssmiJxxi/r9MJXvWjxzR1LcqQb9LtsEMf+dO5Xf28QPPs/E5r0ceUHZ29uLr3zlK7G/vx+TyaQ4f/1+v6igi8UiXr58GS9fvozRaFQZHDkKxJ3O371er+TpZ9CwE8pEDo4jz4fBYNIQQZonIoIY97TB3dnZKYuQJ0GOku10OhWD7cmAIWAB9q4kbyt1f3Q6neJ4+j2uaVLJpI1FMAtORHO6rREffX0Emfw52od7e2EhgsPCBX97XFlYY7uw+899BxjgtwUSio2zxV0WUgMqC0kmznJUNmOdfsIYLJfLaLfbRTyK2ETFeG7Qp9wTgiAiCoBgoTPosABKPXwGyHg8rvQR7QyZ4fQ4RAkBIti+7F2GWXTneS4uLspOuWazGScnJ7FcLmM4HMbx8XEZ+/P5PNrtdjx//rwYIhZ+19HjBfCQiSjaKZMJfM7rnUGJ1zzaifnOs/vzWUTjb4ttXhtrAqMudanLu1iMHzJuzHjENhbblW2Br2kCOWNQOycU/u/1evHixYvY3d0tWBN8cXR0FMPhMFarVbx58yY++eSTGI1GlQharmWHyEFUOzs7hQDxzivbBOwZ33E0LBG5PLfPsQVnYP/BfZPJpOAivmv7Rj3v7u6i3W5XPmeHnnuBG6izcZvPIbbw4zOxlstlJeoaYc3ph3gWgou4vnGI/Q2whh1eRw27GKfa38nX5lnzdR2FCyEEzgNfZoc3EwUUY0vXZ73e7Nwy+RIRFSzDWMsimkkRtx3YzUKzP+sgPrAOO8fAMIg7Fp0QDCMixuNxaSMTQe4/k1KMbfphMpkUIspBaa4vxFK73S5+kbG+xzvfW61WRVzK5ACp5u2zQjrRLvh0y+Uy+v1+NBqNcrbFdwqkyv6MfTMLkvQbYjRkEmPSdaF/IjZBjE5/ab8r42WPmbrUpS51+WEszWazrMO5+JweikWziNiKJ23jM18XsSHzc3AF7/F5l/w/9sl8jHEKttXfh59kB3WzuUlzOB6P4+zsrOw2m81m5T4IHQ52whaSOg+84QAz7wrH7pD+GLsFtiDjAkKduV2Cz4xfwAp+Tu/Sh/fsdDollTNYYjKZVHAp4trBwUFlLGAPO51OCeS3+JN5cNogYw2ERwQz83C0rwN8LFZZKDG/6Xsz7sw1g60zN27OiDEHnqLu4HeCz30/+pHXGJceyxaV2FkVUQ0McypJ6orgZlzlDE3OiMa9GGP0bbvdjjdv3hQxLHPv8G7r9boch0QdGENgUgecWVj0/VerzcaGdrtdMhTAZRqLWxOIiLi6uopvf/vb8cf/+B+P09PT+OyzzwoHC8Y6OjoqAWHe8eW2z9yzhffMubqtjOHo+zy/ef5tGxwcaGccaOHbfCX3oG0ODg4q4irt+8NUvtDOMxo4A/3s1PHbnbmN8DWQwgXUAAEAAElEQVQB4uta0KCYHPBClUkOO8XHx8eFVGfxGwwGcXh4WCbS69ev47PPPiuGIzuUeZFmMu7v78fz58+L84QQZzLGaXiIdEQk804hTzxHa2CoHEHg7eO3t7flIGpHQEZEOSeq1+uV3TfczwYeR5S/uT73d85ZRz8457/TibgfIjbOL23nOuTFl7b1gm9nnUlsJ5CxZwc2EzP+jAU+F7edFySnPPEC5vFN/bwwcU8bPO6fAY4V/WazWRZjCkbHY9v/YwzoNwRVgA/9AAFlggwQ5PYnhRSEiY3ytm3EGEfGAxG37jv3c6u12SoOUKLNDFb4vK8xn8/j4uKinNcwGo1KSqz5fB6vX78uIKHf70e73Y7RaFQZawYnGAjalT60SMrz2mDR9tsITIhPvsd9+azH5DbRLI+vvG7W5EVd6lKXd7E42MAiGu/5dZMcvJ/JedZniwTYApMm2ZYZY+zs7MTR0VG02+0S4ci6PhgM4uTkJFqtVrx9+za+8Y1vxPX1dfmMRZeIqnNq/IGd4sB3HEucYSImHQ3tHWERmzTFxjk4lc1ms5L6jvcXi0UJ4IIcof3AjQ8Pj6k5nHUBe+6zKGhvRAyTAs3mY9psdvfwgwBHVLT7hufo9XrlrC36zBGrJnMiNpjCmMBjySKkxxz15zMWv3y9beMrokqW2cE3brXNz36O62RCwxjFqbHzPDAZwHigLrmuuV0ggTxf3B6ORjZhxHgZjUaFvNvd3Y2jo6OSxhT/x+ReRBSCAnIBfAWu5XWEZc6/zYFxtBFjDj/HhJjntPsWUiCiKijO5/Piu0HCGePP5/PKOCTQrdVqFSHdJBBty/UZQ/YljFO5t31v/Kq8JtKPeSx7XLbb7TKmsmhmImob4VyXutSlLj8s5atf/Wr8x//4H4udcbm5uYmvf/3r8Yu/+Ivx6tWrJ9wNPElElcA2dojY8ITbXgcPmbvMuNYcEd8337ANH9hWYCdPT0+j0+nEaDSKiM1az65ujvqwwGBuL/NTtkXgadoC/ga+kiAyOKmIqGRl8M4enwEG1rMdMpbx3+Z8zdu6XbCn3A/ulHpi9xDw1ut1Sfm4TRyN2ATI+L7mfLzjKWKzwydig/E9PlxfsK1TFoKlzNeCBZw+nGeAS3YQvQORHMRF/zE2zRmCHVutVmk78BWCjXGQg9LdrrShn9u+mccNbYSfwNh6eNicowzv/fDwUM7dZdyQkpM2R7hzX/LMd3d3sbe3F71erzyjg58YC941SLt5LJImnx2cmUPkeefzeYxGo/j000/jx37sxyq7sfgZDAYxHo8rWQvsu+W5mMVC/ER8KPxX+soYn3tvw5vb/GnahfXLXG3GmtYE8CUPDw8r/Ws/7oelfCHxzIuUG8ULj1Vvf8dqrBeMLMJ54mUHLTtPWTDyYre3txfPnj2LVuvx4GcWsePj49jZeczz++1vfzsiopK2wgMzLw4Rj4vmcDgsZ35hDHZ2dsr5VIgJ1M8pRqbTaUnVw6T2NmgiALzIWVSKqEZbeALT/uT+NaFwe3sb5+fnlYXME4DFnkJ0CYaU9tjZ2YnT09MYDAaVKBjanb5kbPDDguSUOB4DEAveGs01bUDsaLLgOkVixCYVKD+e3HZQ6WfyG3PoOWMAgsuLjA0mz+gxyoLOPXjP45m+5nm8MNrx94LoeWQD5Ojyfr9fVH0ICQM/z1WLPg8PD2WOsFBjMBG22PbOeCBlJM/khdrzkOf1mmASjHEaEYV4NHBijHOvvb296Pf7sVqtyjbo3d3deP78eQwGgzg/P4+7u7uYTCYxHA7j8PCwpMlhbPBstJ9JU/c19/fzmCgzeM6irPuT63j9pF2yELbN8Hynz9elLnWpy7tUHKCSMUcOtgCLsZb6wPeMByKq5xo4UCd/xuLawcFBPH/+PJrNZlxfX5fvgUH7/X5cXFzE7/3e78Xbt2+fiGYmw72+g8+IDI6IctYnQgNpFTlryhghY+v1el0JqGFnOM+C/baYyE54twfpe9wHJm0ybrGtzGlVDg4OYm9vr5JBAcfPziNtTl9aYMRx5X8TPjyrxSxe8/jJ0eUmCSKi4CYLkv5pNBpP2slCqNPe0N4WtYxzwX7bCI1MFvGMvpefL49bi8cWzvL3GC/4Bp5L9rcy1rUjHvEobB4eHsZsNitBWev1OsbjcbTb7RK5a8GKz6xWq0paKLd7RJQMBh5fnU6n4GH6xAQC491rCGuCCTyL5fZHGJOML4Iuu91u7O/vFzKEQDWyg0BS8drR0VHc3d3F69evy2sWpt3XjAX7TZ7bORjSPoh9FuaB+53x7sA6no17mtjlOzUOrUtd6vLDWHZ2duKDDz6I//Af/kP8+3//78vrjUYjfvqnfzp+9md/Np4/fx4/+7M/W+GDvBZGPN04kAtrsfHKarWqnPnKdcxx8rmcUSmLY+ACB1W4jp1OpwQVO403Bc6HndERm51OxhfUh9/GKMZZ8Eu2d/yN3SHoxDbKOBcczP/5+Y2XaC94STCAdxCxE8lZC3gmZxLwzh0CvowZ2ZFmbM13nCYanOE68ayNRqPCb5lz8hjkWY1lPRYYM247jwOKd5sz5rKAYo45j2XGArvSP2+sEbTDPRycn8Uqxg6+hTdSwD/CM4LjjJnZoAK2AzsNBoPiW8xmswoff3t7W8Yd/QinyTibTCalj+AjzYXCy3tO4MOA3cmSAXfOrkAHtDUajZjNZjGZTGI+n8dgMIj7+/uSNYH+7/f7MRqNKvw52DQLd4xTCu2ZeXaPHzhzAjTN1efgM49t+2Ge/x5TXi+s9RDs5s0hHh8/LOUPLZ5tI3ezc0yKDjpjW4OY/I94SkRsm7heIFg8HD3INbx48Pf+/n4Mh8MiWC2Xy/jggw+i1+vF69ev46OPPorr6+tYr9dFDb28vHySu9Q7tbrdblmMWVy9wPrzLEossNSDicOuMa7lXWcsCDh1PvOCgcxiZmcJ55KITYwlW5k7nU4l7Y+JJKv0TAoIGfog4lFoHAwGsVptUplYkKPvHOmK0WDsIJTRlxAmtIPHTJ5kTFT+98LKve0ssjB4wXcbcx8iEIj2oA34fl6gvJBAhNloAFaI+GChxqAyZixucd8sNGWDSXEKQJNJtKlBDWeJkNKGMc3iRzszl3mNflwsFiW6nPP9IL7oHzv69IfFoLzgW8TiNwfH+1w15kK3241er1dSRt7f38fV1VUxbEdHR/Hhhx/Gt771rRLBxCHvnte0Jf3Dc9M3/HY0D8Ukkdcbn6XhtY4xkVNCum1cH+7h+notrYmLutSlLu9q2WZjIqrBBhFVvIBt5XXjRX/fxTbJYoHFJrBHv9+Pfr9fObtgd3c3jo+P4+TkJBaLRXz88cfx6tWrmM/n0e12nzjMPBt2iGfEfkRsdo+Da4lwRDgi0MVBUDigOJM8h3eOWXihzcA2fBacYWfcaXSwm86+wPkCECq259PptFyr1+tV/AYIJvAXbeMd+LQPgWImB9w/7s9MGPBMFJMIxpC8hx130J5FCPrNwTfGdjmYKwt3mUAzlrUI6HFPX21Lq7MNq1C888r9mh3nXDcXO9x8lnZiTIDtSTNOZC8ZOHZ3d0vKcPAkB7HjJzCfGI/2hRwYl30xMCH3c5pUC1SOePbZbbQDBAMESUSUuQe2nM/n0e/3o9VqxWAwKNfzWcK0I2387NmzUicC6DxGHZDF2KTf7DfQF5lIMab3a6wPFuRMLPk8mRz0xTzKpF9d6lKXuvwwlf/23/5b/MZv/Ebltd/4jd+Ib37zm/Erv/Ir8dM//dPxX/7Lf6kEUGTBw4EFtq/mOVn3bd9Z11n3fWZsFpa4vwOjzAnZRpszHQ6H0el0Yjqdxt3dXQlSgQ9y8BRB0fCSFrSoL3wTBfx0cHBQuCVwaURU0u85bR870TJPZKwdscFcPCNtAtazqASfCdfJLiTvbHI6ZjCJeSswMucTZ87GYhT4wjwh1zAuBENkccp4itfhRvPnEepoO4RA2sBjyynHeT9jXZ6X6xsHMoZ8jAptRHvw3Dm4Cz+Bcf/wsMlsZTzJd3hWxgVjHC6NwD3mymAwKNk9wJPc+/DwMK6urmIymZT7MxYR2exPmac1ZgVb0k5OAe7+dXASz8e4h6s8ODgoeJLnAP+tVqu4ubkpnDOv41twLBLPSB9aRDc+pJ8oxsUOhsMX8RrC57b5FcbY9B/rlXeO5vWJ4nsQEMk85R4/bOW73nnmiUcDeWFxJ3nSb4vW8MJiAYzfXhD8v1PQbDNEEZvIx0yaHx4exsnJSbx9+zZev34do9GoTCoiYI+Pj+Pu7i5Go1HF2Sf9YbvdLoOJycc97eRDclCWy2XZcYbKzLN6MbHRdJQDk3WxWFS22UZszkTrdrslqhgjwcINgcGkpm4mRHASLYBSJ4wi/bBcLss28Ezm874XIJ6VRR2j5l1TXrz5vl+jf00S2OGnsGXX43XbDiGuYYPKQueDwb2oRmy2OTOuWRAQc/gOxhTiaDabFYONoEa72/BQV+qeBWf3GTsDc5vwGmNjuVyWyF8TTDwbURy0DWOPhZFrrNfrknJ0sVgUA8F9uD9zoNFoFMNgoog5BIjic6whiL9E3O/v75cUjCY1AWU3NzfRbrdjuVzGYDAoh7I7GoRn8bygrb1+uG/pAz8/79NnACq+Q1/Y8HweiZcLr+dAAs+xmrCoS13q8q6WTEREbIA7xeKaHQZsBpjDophxJPYFh8QiGus6uKrZbBZn++bmpgg6vV4vnj17Fo1GIy4vL+P169cl3z42jnuCO/xcjjolLTF15hkc4WtHl8/hjNlxzSILeMvCBHUBxzjwCBwK2cLncEQRs7B7zkpBBDLRpBEbMt/iF/UictRCiaNbaRv6j2fGRoIruYf7EOGDe4GrICq4p9/LRA91o07bfKJMqhmr2uG1IJKxKs9A3UyYUU8LZBZU+G1hKZNx4BjXy/MtC3dZdPM9GWdOWb+z85hWEZ8LIo1+Q3AlOpjxD7HQbrdLXSI26SZNXNBnYE8iphFweQZjQca9szXwjA7QtJMPgUQ7UnfahLYeDAZl7hHpzM47k1rPnj2L2WwWb9++fSLUu2Rf2mKW2586uA8txHl+e167PWg7PuexksdHXepSl7p8Wcp6vY6vf/3rsbOzE++9915EPA0+yf64uSrsXUT1XFT+d3C9i0UH1mVet401/nWdTFxTh8FgEA8PD5Uz3Kj3YrGIRuMxrTCYlbqt1+uS1jCLRRD6Fl/G43HhS83/Pjw8FHtvAc6imbkXeNjValXELzA8eIGAfuNei0UEgDi4K6KasjyLdLRdp9OJZ8+exeHh4ZP017PZrIiK8F3g0Ygou5scQETbGquYG6c9+JvAHOw6Nt6cXcQmRbZ554goHJqDs/A1wEfsfDNmsiBjzEvfIJoaf7n/eM++loOTqBNHwDjDBc9lnph5YqzDc3Nf7xjsdDrlGJff//3fL31m4crFGzocqBgRJcDQgXCMv4eHxxSRbFAw54ePgZ/DOCQz2nw+j4hH/MjORh/VBC6lD1qtx2Oe5vN5wZfekJL5cdra7ZYxP+0LHs1BfhTPbWNM2jUL+wjurgtz3/y578kzZBHvh6F8IfHMP5m84LejVClMiPw3hcljowCoN7Hh65mw9mLDawwQIi6ePXsWV1dXcXl5GdfX1zGdTsuOtIiqun98fBzz+bySOxUxgfsxmTywWq1W2QWzXC5Lzt/b29simEVsxAiujWPsgYyRYeBRHxZbHEsOtdzdfTwUnrbwBKf/SG/jbdreDszihqKMQcRYdrvd6Ha7lTFBv1vIMrjwfTL48GJMNEFeFPjbgMOOug0Tz+0Fm/bIgkQe206ZwuKQQY7Hvwkd/mdR8Bj2ZzFCONwIMzs7O2WrMou1x5bbln4yCcUhjPTfcrmsnBNhAsNn7QEk/IzuSxsyrkUbQQQeHBwUoZoIcG8Jph8x7PQpcymPI8Tag4ODODw8rJB2fJe/qcdsNoubm5uIeASFiN2z2awQiV4beL68G8HGGuE4jxOvdfQFz+v36HPPhbzuZZLO4z1/3utjXepSl7q8iyXbjIxFv9M66TQw2RHNJYt0OSKW93Z3d2M4HBYBgtd7vV4RxkajUVxfXxdMxa4V41g7ODhp3W63BOX4PZws8vTjsJoIz7bdEZUE/IDvwNfgC5+bYKffbQAmAKfSZhYwIjaBRAgmvG7H6fr6ujiZJhf42d/fL0JXs9ksxE+z2Yxut1vB6I4Ktf9A+zlohnbht30WO5ZgFwptxN9c1zjGggXjIhNF7isHTlncykF1JorsLIOHwJPZgQan0C7UHWzoIB9jXLchuNPfdT0YQ9wDQoAAJnwo6kngFW3ilDRcp9frRaPRiJOTk5LuhWvQdgjRFhmpP75Fs/mY0pHMCYxvfCGPO/sg4HELviav+JzPOZzNZnF+fh4vXryI4+PjEvRJfbxmdbvdOD09jdFoVDB77nuPM/vPxsX0m4nLTNhlP8iisDEnRKp9Y/v0nk91qUtd6vJlKXt7e/EX/sJfiLu7u/jkk08q61zmP23PjRVtx3kdm5z5JAfBRDwVz8CI4CVfwxjDNgD82e12nwTW+De7vCOqtpdngBPLIgv8JvyLA6/Nc/m+1MscEbaL6yMqwB3Z1ptTo1AHB9osl8sYj8fF1oPVaCtzRxFRAsHa7XZ0u9149uxZEb3cXrbfDw8PJUCMfoio8pLj8bjc18WBXOB2c8/gJO9g4zmNG2zrjZ/4n8+Ds9h973GMsAFOM240f+mCiEqfGofxHsUcPddk/IL97N9YsDSmct+5Ps6yFRHx4YcfxmKxiPF4/ETMoS58x+3vvkFcRMz0uc7r9boE6vNjfpr5TF8ytow3LRzN5/PiEzHmvZuu1+vFzc1NZV76DDgK/Z/nHuPAeN/csrlz+tHit/0K1iH73eYq+e5isSjcMFjXaxD8bL7XD1P5QmeeRWwmgAcmje+JzsLLomcnk+vk7/v1PHm5hq/JdyOqCimOEos6Ytjl5WXZgWNxwROcgdzr9QrJP51OK7lWLcpghJwWZzablXv57AYvJt5tZaPoiGQGF4OR+pHLmPtGbJx/BvrV1VVcXFwUY8W9Wq1W9Hq9IuwxqJnMRBZDrFjxxmjmQZ/7Ii+CEAgmLFi0cNxpJzumvi8OupVqO4Mek1k083hxuhruY4LCziSfpU290PLcLHQm4LKzaaPE4km/QwTh4PNcRC5kA+B2Z2eljQL3dh8wNx0VTmoctoDzeYgitjz72haRLVT67D52aPId5pnHuXdpetdaRBSj6rP/vOvPEc0WmAEdpGrEQNP/2+a6wSfGxIDAYl8mw/L4zsSdt4dvE+HcNx6/LgbMFmjrUpe61OVdLAb825zzbaSusYHXbu8usWNuYS2/z9/89Pv9cvYt92i32wWHtFqtuL6+Ls6ED7qG3LDQZTHItgs7AlmAwNXpdGK9XhdHjHpHbHDENkIDUYH2AF9yL7As9tBO4Ww222qHwOfL5bKk4vO5Gk7jSDtDkIDDuI+jK93+iDLsVuO8NzC1MRx1ol+4vskoCji+0WhUgn8YUyZ1uAbFQoMDaDxW3Z/UBeIk404HE9Kfxk8RGyGYvo3Y7LQDsxlHg63zdTIW8hzjObJoxHV8DZ9NwW9e39vbKyQCn0dQy1jI/Q2udApvziWGMMu4n+vb3zSONKFAdC9ZC8DjzGWn4n54eCi+mQVjj4X5fF7mBti31WqVNaLZbMZsNovpdFrG8M7OTpycnMRoNIpXr16V8cI93Ce57jmozWsbOJX+cx9moZa2j9j4FPa3uAflO621dalLXeryw1D+1J/6U/H3/t7fq7z25/7cn4s//+f/fPzbf/tv47/+1/9aXs/2kgJusxBk+2lBw/YYPBHx9BxW+LEc+GAulAIms7Cws/OYsvHg4KAcTcO6T6D27e1t3NzclCxC2D3qaOxoLvb+/r5gumyj+B8BAhuRcQd19i4i43nbMV7DVsIv05629dQd3ooMYOYMHcjk9ga3WxiMiAp2wI66T+EncxAL+KzX65W2ob7s6qOvEOUyZrHNjogKB237b+4SLsxirYO4zUWu1+uKkOFU1VnkpfgZ8Q3sHxjf8lnjcupjvGFemHGSNyVEbDIO5HnF3Oh0OvGVr3wlPv7444KHzFFyD59t67PxvPECkZRNCsxHrsWY8hnIcJuML6e55L67u7sxGAwquxgZg6R5dECjuUvaw3w2c99zxeOIOcF71NHzirrSr9Yf7I/kcZD7x+PKmbp4bbFYxM3NTekznv2HrXwh8Sw3oB0vL2YQ8hGbBdLqKB1mMtuTlkFqx9cDidf5rOvDQGw2H/P1og4T+Yt4xsSw887gxhFjwkDoW1RyCjkWoNvb27i4uIjRaFTZ6uqFIH/HjrrVXRtN1GlSLrLgsGBh1CBAfCg7CzVCDAvdw8NDTCaTmEwmRZxim3aO/jQRYFErYrNjLz+ro1FNTBk80NZZPMpiFn3qccS982Ls5/MY9aJrws2T1/fDiDtdZY6UYJEzYWGh1CDAbZAXQUcEWKhhXHIenFMUeT4gVFsgY0FEwKGtI6KIUxATnM/GAsd33Bf+mzGXxx873rrdbon8oTAm6T8bzfV6Xcbozs5O9Pv9isGlfTkMnrEOyQd5iOjNXN7b2ytboz0ODELzGOB16mpS1OPTAuw2QQ5h8jsJZ/57mxGxgdxGYtSlLnWpy7tWtgUZbAuQ8A+ve22OqApNOJc4Rdg3bCuYyzjV6cEbjceI306nUzDCYrGIy8vLCkHx8LDZPUbmAOy2z37F/ljEAe9kcYjzK2gP2sRnPBlj0FZgXogPcJNTLOKEUX8wlKNbuWarVU1HMp1OYzKZPBGrqL8jVekPB840m81K+iBwj8/jpV8tMNJP7lP7HDllCUE8PMtyuSxn+lqwM2GSHUg7vdkJNangMWnnn76zcOYAGmNzv851uY+xVcag9J2/a2y0zRnm/xz9bCLFzw/p5nOO9/f34+joqJz5zJkOFvcyxiP46f7+8bxoHHx2s9nPIFWO8bMJQOrvejK+SbO6Wq0KgUG2Db5nzMe1vc4wX0j5TqrJb37zm3FwcBBf+9rXotPplHHqnZhEvF9eXlb8Dfyq7BNuw60ee+53Y3djXz8Dfpr72Gm86ONaLKtLXeryZSl/8k/+yfjRH/3RiIh477334uTkJP77f//v8cu//Mvx67/+65WAIts6/rcYZuzFb+w6PxZ5/Ns7O7yGU2xfbRvMn9gecMwFwRwRjzir3W6XbAW3t7cxHo8LNjNv5YxB2FY2ENgOml/CVvA9bLtTLEdsCH3wFrY+ByNhg8DB2HJ/JmIjPoEzwLjT6bQIV2Dc3H4Rj8Ha/BCIhi33/TIny+f8e5sgZyzu7BDGUe5vYy0H+xjz2VZT8EksoOR+sjBJPRgjXJNx6PToHl/mY/MZtvhA24J2HIhEf3LmLc/h883Mp/E88Kvg74w59/b2ot/vR6/Xi6urq0p2NgeZUegjC9vO/OW6e8cafTedTssmB29k8YYLBynt7j6eg93tdkswYR6/e3t7BTcbY/KM3kAARvOcidjgwyyGe34zZ3NQn/2OzDVSR48zBxXSdnn9cmG9IfCRnX0/TOUL7zyL2K5Eu+HpGBYL7zbLDWu12saFSWFn9PPAuw1URFXMY5KyyDslIYOUScY1HNXZbDaLI8REwaGB7J/NZvHq1au4uroqdbL4xyBnsNEeNgDcG8eKNiQFnScvz+zIYSaglXYiO31oIuKfd98RFToYDIoYwURzG29z2qzWs7BlwooJzPPzHX5HRHE4DUTyuOC5vCPM92LM+X8WWRYQGz4vTlmwc50jonIuAn2XgdI2ksT38IJIisZsSH1+Bosk+XKn02nl3DTaBnDgyOBOpxMXFxeV9ED0I21HakTOMWNsEHXBM9D2fB8AZfGQ60ZEEacnk0khBC3qrVarIqxBbiEMRkQlIsHPyZiA8KAfLFRDYFIfzj5jPHAN9xskpXfEGdiYjDFZlfueMeFD4g0EPE+3rVnZYJnU4vc2ka0udalLXd6Vkklg7GXEU2LCa7kLa71xwLa1Oq/34DdeY4eVHRPSDq9Wj1kDrq+vYzweFxyKXSc1owW0iA0utONq4cdOJHar0+mU7zabzYLt8vO6YHO8g9vOuwOfwIyICjiGtB82lvoR/QvONgYCO7s/+S7tbzGEVCb+Lk43z+k0MLSNI05xcH3WnccJfY0NdztDJljQMzli++x72zHP4g7PC4YidY4xisc1daQveU63WcZJYCtICYgoR/jSj1yT70OK+N4W+7iHMS1jxTiKtsCPeu+99+Ly8vJJQBPzijambXid3WeMPyJ3GQu0sUkVivvKY3ybn8EuOdqEdPnOnOExAGlEOlbmzXQ6LXX4+OOP4/DwMD788MPy/AizjKter1cyghg30j9uX/tStLWDtrbNcfrChAf+oq/Bvdw+nqPGrnWpS13q8sNafvVXfzX+6T/9pxER8bWvfS1+7dd+LTqdTvy7f/fv4vLy8snnjVHACQ5KwL4YX+TzUB104+9EbISCLLjZltnWul7UxcFH2CACNDivCY6Hdd+7alx/eMPpdFq4UlLQ2UZn4QwbiD3l+sZa2CnsHzbbx4rs7OxEt9t9QsibpwPPgbdcD0Q5tzPHziyXyyKsELjdbDaLPaetCe7y+Wm0P0Fn2NGHh4eSvcA4GpuNTTcm4jN+ttVqswM+B8N4Y4C/w/Pb/3G6aPN+YP5W6zEzBG0BLnQmCDJQeaxFROEMwUm0kfGzBZ28McH41ukkaXdEIsaNd9PxXOaOwZc+k4+jkmhr+p56e/faZDKp6ADmYM0t53WADQj9fr9sqKGv4bepKzrC/f192cySRcbsY3A/+s9+KnqA62Vsa4660dicTU3fsgZ4PhsPZp/Nfccc9Ph2Hbb53PTxdDqtzIUfNgHtexLPIrYTuqioPu8A0Yfiyc3AysYgYgP6WRT8XRZT//hzERtSHbUWMn80GlXO/OIcsEajUfKkRmx2yrgOkPZsB76/v483b97E69evK+nptkUsMGgZnI64ZWGxQdvZeTzwk+2kjvCIqB7+TrtbHGLxmE6nMZ/PK4sphsLbp5fLZYlS4RoQHFko8mTjuzZSiFP8nQkn+svRHUxuCBA79p60roPHAiW3fd5ivY2M4BmycxkRFSEzG70sTPEMFIukWSCjTbg223odMZABA+85asBj0cSAd5cRlYERYBwaNCBcYlRJ4clYol0xKBaVPCZMXnE9UlFBbpDWyt+jfairSbMcrW3R0M/EtnYE4Ol0GuPxeCshZRKL993eXNNzitcxKu5D3ncUlvuN8eji8efxYUIsC9I1aVGXutTlXS/GnLYNEdXU4vxPMbERUT1DLH/XmNIOhO0EgVE+RJvrEgF7c3NTDlUnsIUfbL4DOEyUcy3jCufA55kajUYhKhydmJ1obFW73S47uO3EcX3sK6KZsxGAjbNAB1kSEWUnnMUaY+qIqAhoYCL60UIUBBDtwXkDnJFBUJxtdH5eMCd9Cy7ydW1jaRv7J7bj1MmYzdfIwTaOaKVkTGORh37N1zJxxI9FMdqXMer68L5FNxMaDs6jLmBT5oOxL6+5fjyPfTvahmjT+/v7uL6+rvgyxnX2NXKgllMm8l3mkcVn6m1SDZ/LRIwD+NxmYGLaYTablTbimovFoowTSCiTJnd3dzEajeLs7Cy++c1vxuHhYZycnESv1ysCImnGOfvs/Pz8yTjJxUTktqCrvOvM3/PYc7YTi2YmsTJ5a+KrxqJ1qUtdflgLwREREb/3e78XP//zPx//+T//5/i1X/u1+Jmf+ZlyjnrEU1sdsRFGbOdNQhsPmkcwzxSxIZx53bxDxpzmiUzyuw7stCHrFGmDWbMXi0XBdHCHDmZerVYxmUzi5uYmJpNJZf03nxaxsaUWZowreD6+Y1wNf2J8ayLeYiJ8Vd49dHBwUALYsGHwkfv7+2W3N1jCvGPOOpHr6z40VmHsuN8IfjPWzHwjGB+bSrs5MI+yTawwLoBnzxiMtoVry9mP/Hn4OfDwNnwKn2U+18KJ+Sm+4zPjLECBzywsepeaAwjBX6vVqgT1r9ePGaYIhHM9G43N2cjPnj0rbcdz0e8IzAcHB+XZLVKiC+S6um3Yiel0jGRGYEMNz/fw8FDq1Wg0StAUPCfzz4FX9ikyBst+Kn8bN1NX2oXr8n2e0WsZbW9f2HOQ69mHMnakUBdjzW2FNWa5XEa/3/+On/3/W/m+pG1kEmEs/DkGqrcY+jDEiKh0bHYILLg4XUr+LNdxWa1WMZ1Oi2GDAEA4Q9RDKSbiwQdf0vl2rNrtdlkgJ5NJnJ+fx/X1dSHs7diZkGChZcH2gsK1WUhQqPv9fsWwsHi5Xba1xXK5jOl0GpeXl0WMs1jC4KdY6abtfH0mCX1qksBRNCZ3mGiOmHQ/Z1KKPsxCqQWkTJDl5/DYy04g988RNrSLt4/7ml6gDJJoIxM8BlaOPrax5TruQ48LtkJbdHa7WpTOQAUgRPQqO71oh23jwFG7i8WiEqGE4z+dTsv93CekTWo0GsW4MdchtRD2MBpcZ73enHnhHZ8YPJMXnt9EZkNaEb1Bqiv6ajabxcHBQUwmkydb6t1P3MvtyHxkHchRHcxJ5h11hvhkzhuMZfHM1zcQYYyaaHO9arKiLnWpS12qQkd21iOqu2K8bprkiNicaxZRFdJwevx5kxsRG8HHjiV2hSAgdq5AUGBfsS2LxSIGg0ElShO7hIhFPZfLZXEGjddsm31WAoIVIpcdGl4n1Uqr1SqpRFarVSVbgs9Ti9hEKued2p1OJ9rtdrkWpAf3IzAHrGV8T/18NoTx4O3tbYkMJegnY0ZjyRxQRl/ZUaXNwRnZ+QQrerz5XmARpyyxcOFd83zeZZsoQZ0sUhlzUB87udzfqXEsjtFO/p+xloW67MB73CCmgtuMfR0lzLX29vbKGWDN5mPQHj7XfD4vqbYz2cic4Z4O1OLz1AnfyWc2QKgZ8/JZnpdAPcRXY+7su5Ji0tHWzC3IHfqQNuVed3d3cX19HS9fvoz3338/nj9/Hs+fP4+zs7OSLn21ekzfenx8HJ1Op5C22T/0/35+7mlfxeQcvz3u8pq5be3Mf3t9q7FoXepSly9T+eijj+KXf/mX41/8i38Rf/fv/t34J//knzzBlw4myTzTNp/fmNE2mM+Yl8i22OIMxUKD8Q3fhzchJfBgMIhut1twFYKC13cyArHBgJ8cHG6xEX7HmDWierZb5hQpfI/PsXMbXtRiBpjWR3mAcbH15vP4Hs+E7RuPx0VQQkDxM8GHdbvdEojlzQPmc7kPWJw2gIOzYLMNQ3ksOQCLz9nOOhCIsYQt928wlDMoOfg8c7kWUbivhUmPVz4Lbvc93fdcnz4Eu1F3C3yZJ8cPs+jD81IPUmIzTsHucIF8bnd3N46OjmJnZydubm5iOp0+EZjpC4IIGZ/T6bQ8Pxwl4xLc6t2IcKz0y93dXRmrYEr6gD6Hl7eQt16vyxE6tJu5QOrtrBFuK89T2tNrivvaY5o+89qzt7dX2tl9ZWE7F8aD+c8/qBBcui0ryv+fy3ctnm0zENsELBoYRyzicWLiYKDoegFzsQrvRZJJZALAIo+NCQ4/u2oeHh6KELBarSq7zZxewwaIQcRvPj8ajeL8/LwsxhEbAoZFApLDJADvW8jwYo+hc2oZk+kYSR9azWBFSFkulzEej4vDmlOx+FwM18eLAM6zjYIJiojNwmJiyQaGz3Af/s8OMN/NUTqMJxNfHgfUk+Ltq15Q8r3tRHt8ZTHEbUYfOofztnp6C3w2Un5G3nNkLobaJIMjex054EgY6ouxQhDO5ImFPEcwsCORRZlzGCD/hsNh7O/vlwNiIQCbzWbJJ+0D1pvNZvke98eoOL0SQh05uJlntBHjmWgN5ib9xzNBgJh8YW7c3NyU5zNwMNCwoGqAZ6AEIOG7HhPUwdvVMfiZcPWcMAjz/Vw8r33PutSlLnV5l0smKbaJaCYVIp6mc6R83vpqIcGBS476BTOZZOAaGS90u93o9XoV5zciSlocUjdSwLs5Etc20IdLgycWi0WxHdhl2x3vwAE3YKd95oCxJ2RCbjvsG+8hbs1msxIs43ZmtxdBO2AHxBjjTttYcA6fpV0gN3I0pPvepEPEZkc5bW3Rh3bnM35ePmdcTj24L+0KwZRJIIQaO6vgLlJbuv7Gyg4+43sE7dAXxpRgF4tifia+T1v7TFrPHxMO4GzPKYKvjJPpb6JraSv66uHhIfr9fkVYs09E1gMH5zGPCGCEVGLHJ34V55bwjNSHOrr/+A5tRipIEznMsYhNOvHFYhGTyeQJaeRif2e5XMbNzU28efMm7u7uYjgcxosXL+Lb3/52+ex6vY5erxfD4TDG43FpL3w0noF6eZ6asOCeDryDBGG82Kcy0eE2yvOpFtDqUpe6fJnLer2O3/zN34y/9Jf+Uvz9v//347d/+7fj61//+pPPmIjPIhHrfcRmPTVmi6gKJKy12VbzeWx6Dha3uMC94VCw7YeHhyV9uIN6lsvHs+L7/X65HzuksWvYBdtlB5ZRZ/Cc+WGKdzbzzA4Soy4EVnG/iKi0C9iUIBmu6cAOMLhfN8ZzekXv+qEuBNw4KNyBaGAwB7RZtHCmB9vGbbw4fQ8HloNbMl4zzsKWcz3bdMYj37dI6bplX4X2yxhztVpVUlZn7LDtOjy7uTZzW+biIqrBUR7LebcUn7H4CGazmGRO2UfcwHO7blzfOsXBwUFlrlhUom25N2PKvg36xs7OThwdHZV0+tSPeW7xrNlsFtxqXEkAYvZRuJbXAe6JX+j+zpjd/h1zwhgPkTr7F+5Dj+Usln232NBnS/4wlC+cttGTMTcQr29zJCI20ZI4NXYWvRPHeYLzQpUnXSaemeTj8bgMAhboiChbfBnwJrktXHE/tjtPp9N48+ZNXF9fl/RwiAU4cizWCCC0ERNgb2+vkBulI3Ye8/p6FxxkPM/Ggs//TFpPgtlsVrZi015efGzwZrNZSXXivjNh5H5kO2rONWtHykS/CRXqCTliB82GxUKov5+fw/3siAwLF2432tgRvNTVjjX9ZIHWi6pFL5+x5a3TXpxNYvC+64Zx91ZZ6ksfIoh5znn80we0793dXalDp9Mp84DrOfraQi/RG56vPDu7IJkvJo4gLwwQOZA2L/CUxWJRxDOICdL5QC5aNM8kFs9rMszkCyBq24+JOI8xjK3BgY0ObcXrPDfkoyO5sshmsjSLl54r+e/824a8LnWpS13e9WJ7amwR8TRLAiXjCmPMiM0Oc1/HASvemWJhw0FHDpJqNBpxfHxcOUuWe2Oztp3fFLGJ4sUeWqSzCIajY1tMkAup5Uyg4JSZDPBZU1zTuNapIJ3+DrzhHVGOEM3+AgEvdlB5VhMjtK/TznCwu0kNiA4TBN5N6PvbwbZTzBjyGRY5OtliEpGqYD8C2Wh3vuP2MzGUn9kiG1jOhBrtYGxvMYrnYfxkp5/rZpHE4z0iSmpCnHvvxMqijdva85H74adwZgniF23LWSPsfgTXQV5RV3wt7sWYZfwxr4wD2R1GRHK32y3vtVqtEsBlIdU+J2OaiHTwHsWEF2cFU+yP8jcYcT6fx9XVVRwdHcXp6WlcXl4Wn+3h4XGnK/jZWJT+s4/l9c339Fh3n38eueHXsxC3Da/m79SlLnWpyw9TWa/XFa7MZbFYxD/+x/84fuqnfip+6Zd+Kf6f/+f/KbtRIjY+OuskdgdOxQFQXifNmRlHshaDsRwUkXGgd7E0Go3KRgSLTe12OwaDQcV2gUPAGghnZ2dn8fbt2xiNRiV4miAlgkeoF3bKYgrcCDjCXAc4gfrxLOAnsE6jsdn9RvvCD1kEAyPAY1FX7/C37XQmsHa7Hev1Y4AK9jtiw7ENBoPY398v9bDQB3dL9oOIDQ/E37Q1beXAHcaNuSzwNsVChQNh6PfMtfKeBUbqAJdl3ovX6Y+Mp/zMERtBw1kacj0p9JvHK2PfvCd96ICzjCm9Q5LvkAbSAe+0iQOhptNp2cnluYYP4fPdLEiD0dgFaN2AeZ0zUJkr5r3FYlHEauZXDs5nd6J5dsZ7r9erCJYEF+Y2tR/p4EBngjDHzP29VnmOOXCO8YePlvvagVWZj6dYIP8yli8knm0TRyiZUHDn2XlmoFrl9KTm+59HaFggsXPO9TA6OAIHBwfFkRoOh9FqtcrgjIjKwus6ImysVqu4urqKV69exWw2K8KYVW4WFn7nHXUsZDiHDE7vaOPePJcXSG/r9DND4CNIZBXYxI4XbxZ1tnaz2ERsFkLnY8XB59kgGiwqZHLfiybG07uDPJEdGcl3PWm9cGMsDDxMpPCM7hsLEFwnIso2burBQgmo4losXLQd4pCf2WPTf/OejRl9bWKFfqO/1ut1IcByO+QFnuvRpybuHGlLm9MXnD22rd1MQFEQ5GiP8Xhc5hjfyWKm67tYLMpcps1Ho1ExKhAITm3lRZ8+sDjHeADkAcz6/X4R/SaTSeVMlEyO8pojVPIa5DlOW0KKeHwZ/NqAZCKEuW6BMIMMjwnP67rUpS51eZeL10/jzWxjt4koLtsc/IhN8IRtuEUDB8h49xZ4h890u93o9/vFZlAXY577+/sYj8cRscGOXMtOkQWpiKgEy3AdB5FANOAgOcjDKUW4R8bwtIsFKjvYfNaCH9fNO6ws/CGIeHcN7RIRFVILPAHh0+v1ngg2fG9bcJfHitsfIcViobNF5H7nutQFrGOBCWzS7/crji/jzLgIjMDYQYjL53FZoON1xrWv52Ao8MVyuSypAY1veEY+S5oWO8ZgdM+DHHCURUi3LWIe75G9wIe1kwqRNjg4OChj2s/GORLsUASbHhwcRK/Xi/v7+5jP5zGZTCo+EVHEjGHq751lYEYyI7CGWJR0G3kXHfOCuWjygTGFL0Nbzmaz4ls+f/483r59W+7f7XaL0Oe1Ko9Fj7UcUGWsbLzM9/EHmPPuR+Nd97V9GotrdalLXeryw1Y+/vjj+NN/+k/H5eXl1ve/8Y1vxJ/9s3+2HMUSUSWsza9lniBjh4jtAVngEZP4th/cBx7A/EfmZcxhHB4exmAwqHB3JtqxXwRWv3z5sthg7rNarcrZTNuIcgf/OHsA+IJndZCReU5zmI3GZoPC/v5+EczgPbnPer0JwMGeY7MdbLTN3lnUpB24NzvXCdw23nCAtDlI2z8/h9smczZwyTwPdcg+wTb+m2IRy5/nf4tKPEP2CbhOxOYoGY8tPmsO3ffMfpcxoMcq13Lbe95YUKJPjB3xKyI2m26MDZk3cOP2O0ajUekLMNL19XURCTl72jsmGZO0587OThGzaGfzpHzGPg5jFGF3NBrF3d1d4TIZu/g/ZMYivWaz2YzBYBCLxSIuLi4qYrrbOY+37Nd67XC708/4Kx6rEZsdmn4+jxX7dNuCqng9awFftvKFd55FVHOc5kID5ujPvBiwuCJsOfovq+YUq6/b6pIjHIi4YLLi4FA/kxiOQux2u8XRefv2bVxdXVUGsheBPJlMEmQDGPEoQBwdHVWcERYHG4CI6uGUGEKcTxxSVGMTP9k40fYIf0Souv3oAz5HX7JIMWmsbvuZTSzlyAb+NgHhNqItcKJZLOgTjx2DF0e3sEjz7IxDRBs/kwEO4ILvMEYsXNDnjBvq7Chb2o3oZerOc2dQZRIlAzJ/J2KT6tRgywt2JmmIPmZOYTDyc+/t7UWn0yk7Ij0vKAA7iB6EMMrBwUHpK9oSI5+dfpNsjGvKdDothufg4CDa7XZ0u90YDAZPdtllUOjrIOZR1263G/v7+3F1dfUkgoy+3BZJgziZjTa/aY9suDy2PS4yEM0A2+CM//nOl90Y1aUudanLFynbghAitjsYfs2fyWS13+cedviMdbDdxiEEgLRarbJ7xTbAzjj2NSLKjmynK8b+OH0cr/HM4CbIhIwJMg60Q7RarSrYoNPpVMQE8IDr6V0xPljbu6PYCR+x2emWyQNw42QyKc/EGRZck3qdnJyUlNRgIIgRC2NgJ2NJtwe4hHbmPXCAM09QX4t1YGhEDsaedwG2Wo/nFuNwGptTt2azWTI6MA5s+038+By4TGTh1+A7WIijDWhHE3W0K5iGOoCrLHr6jD5ICu5NyfXiffAiu73Y3QYWu729jdFoVMYDIiHYlV1qYEciiwk+dLpPrp0zjtzc3JQzMRy5T5uCBV1vsLA/63mMr4EvZYGaQnutVquSlvXm5iYeHh6i0+lEp9OJfr8fl5eXcXt7W/7PuympEz/2GzLe3NYPeR3LflIWFz/v+1yjLnWpS11+WMv9/X184xvf+I6f+fTTTyv/s05GVNdA2w8wEFiAgA/sjPkqr+/YZuNQOBQHG/PjOvk7g8EgXrx4Uch776In6OTh4SFms1lcX1+XM+Gxlfk8T+pIwL+Fp8w7cj+n4WMnF9dwIAmBSthr85Am5yM2PJHtHKmxsYe+BnabzQnOCACXAtYA8xoL5gwL1Ifrg99oK+8ic/9aWKFkDMH1aVdzprxnnsnCVrbLxqMIORaHaG+4JXNZ3MdBfcav5hw/b+yu1+simNInXB/8ZXzpazDe/BxO5Qm2crYqxhNt7Z1S9oW4HvdgbHjXYu5nnpmx73Fo/4Dv0gbgUeaHx7HP5yPw3t9lrPZ6vVgul3F9fV3epx+Z83kd8YYT2ozX7PdxLfwPno3+t0AdEZWz5Ggf+4Fcj3llf+PLWr6weOaB5kbKxMK2xZ7ihmUy+z1va7TiWyq/s0nHZwPCbybE/v5+DAaD0uls88UxcqqORqMR7Xa77FR78+ZNvH37tuIMbXNmvLBZ7KI+LCbk0+WeTlXCws5ns6DHQsIh2x70XkS5v50jR7V4W6ojODFgJkhoMwswNnCONMFZzREeJhW4jt/DmTMpYOc+CzmMD48FkwCMFUcu87oXQBY57o3D7rbju/xm0ctkhMfder3ZLQYgydEKLnnsm8TwYujnMzFkUYrdlLwGqTWfz2M8HlcOevVYu7+/L+IwZ4/R9zyH+xCQ8fDwUMAJ9wKI3d7elkhjRDXvpvMcwdgYgJDK5+bmJm5ubmIwGJSIcwt5zGfAhwV4k4oc+H51dRXX19eVZ7NoaRKO4l1mXI8frmEixt+3KOrXGLdeO+kLR27kdbEudalLXeryWCzG8P82kczFzmH+P4sBxhYOLDLRwT1Zn9vtdhwfHxfxaG9vL7rdbtmlnVP8ZgeYFI6s/3kXDiRFxnd8lmeibnY2m81mOaA5B3g4GtGkv+tpvPp55D7PQf0IiGk0GhX7RrtTX9oFIh/yqNlslnNRuXe73S6iBbgNXIdNBtNljEc/5Wjv7JzmseWgHvDvarUqadg9VhyEZJxm/JyxsfsTPE1bkCECwsMYgj73cxi3Uoe8G8y4x+fc5oA1E3/s8OeZcuF+DgQCGzowcn9/P/r9fszn8xiNRpXgMPsz4Es/N2OX+lO35XJZ8WkQ6oiMXy6XlbSfxq2MGWN3XmdcMrbA5tSToMpOpxPtdrukZ6RNaZd+vx8RUZ6XsT4YDEo6IZ7BRxp83jrGumN/iXlA/2SSjXHp4Mrchu47j99aQKtLXeryLhfbzIh4YiezAGauwFgRu5GDgjOegsu06GbOIGJzFlOv14uvfOUrJWjHHCFcJ2d1vnnzpgSv7OzsxGg0ivl8/uTsIZ4Pe+GsU+Z5eSYCW+CfjM3MZWGz4B35zGq1KmIbKST5jrlCB7hTB2daWCwWBaOu1+silHDviEexj+ub+wO3GXMb/5pLZecQO+bdL2Ah+GTqQOpHB+tYlKUdHHAFXuB1uDuPB/eZ8bbFHd53O9BvzszE58yDety5LywA0p9gDmNqb1LI/el5xN9uCzKruc/wGcCzzWazcOOIx3yHXZQREZPJpIwXUnkirmYfh3EKLmu32xXeneuYJzem9K5Vt6efH0xr4anZfMxYcnJyEsvlsvhsfNcCqoW13Bd83nPVa40F0W28IxtBmM/OyMZv//CsmUP9spUvnLZxm8JIg21LpwKx7Wt4e62JZ3dKRNWhZaJ68HjbqRdxxKrT09NoNptxfX1dSAQIfX5Y8Dmw7+rqKi4uLmI0GlXSbXgxc/EiYYeHv8lhj8PMgI/YRFnwvHn3GGRJxOOkJzUdqvI2oRGj4l1wFs0ODg6Kwo2xcJtDUjhyt9lslmhPHNB2u12+536xmEDfsEAzAb1AZiGVZ7fo5O2ieVHmvhFRESRpT3/XfcT3rdaTjtNjL4uBNv55nHJv2pZ2oQ8Zw16cPIadsskCYV60LJbmlJr8bQPN/JnNZqVtWeTZvWhQwWJp8ITxoH9oUzv9AKderxf7+/sxmUzKPPMcZow4cjiTeYwljAdj12cW2hBAJNm4exzu7u7Gs2fPotVqxfn5eSHyTDJk8ICxdl943OUx6XnjfjT4yHX2s/I5E5d+ry51qUtd6vJYjEH5PyKerJXYi20CA3bOjh1khQkRirGDHVgw52AwKHbAka1cE+LBEYE42BGPJMLV1VVEVAUtBAHslHdSGY9b/LGt8S4aAlu4H46iU1L7ubGT4AlHU/N7d3e3iDwRm7MLLJBlgY1rUvf9/f1KFDDvcz4WbWcMmwWwLPr5NfexBRIwcrvdruT6t40HX+BAb7PJxoP5XvR3JmGMizIpYRxJvzNeF4tFaR/qSz/a/8CHYWzwXMbgJvu2kSP0j4OnPIfo34gNGQPOB/MzhuhD0i2CHSOi4FOPcRMPjKXb29tKv/GM1AGB2XOI18Gy9L2JhTwXTH7RhrxuIdakKETMdDqN2WxWiM3hcBi3t7eF3GOu7e/vx3A4jMvLy/I6hBDtuU2YziI+Y4TxYAzM3yZaPP7wUSw+u308d2rhrC51qcu7WPLat024MNeZA2t5LeMVeEAXc3M58Jx7UUgB3Ol0yj0o8Ju3t7dxfX0dr1+/jul0WrFnvh7rfeYyfE2wFz88o4UZfjLnRfFRMc4ilI+mwcYT/JR3xltA8FEzYFQHj7jPsG3OvmTc7zZxpiVnV+L5naWI6zrzGjuOHLTNs9B+CEy0v/EgYwCbTZATz+FgOQLK3AetVqu0qzEA9zJW8nMbI2bsB77Lgi91d5AT7ZoDEOkPMBVjGbwMB+cAQu+oinjEgghf4Ek2EnAP8PHt7W0RCQlusm8G9jOPyr2n02n0+/3iexBEZhy+Tf+AvwbbWtRiTBBgCC8L3hoOhxERcXZ2Vpmz5qbNWxqDw2VbzMprkN8zDs5CH23BOuLvOJBzm1/wZSxfSDzb1jA0tHeBRWwieiOqgoXVUb9v0oKSJ5mBP5PS6ikOSa/XixcvXkS/34/r6+uK8wxpb6Kh0WjEaDSKs7OzODs7K/XzhKc+JsPtHLNgrdfr4uznyAsLhiwSrr8dRr7HAIfI9wSl7biGd8awgOOMIXrlVCQ5RQjP7dQskD7Hx8clfU6eZHbabCDoI0cI0IYsml58GCuOeoiIimHJ/cO1qI/HjaOsDWYcGWrBy/W3YTDpgWjlsWtRM88FF54rX59FGdDiHY88L2MBQ0+7eUzSJvz0er3SJufn5yXCiLryDBAyBjvr9Tra7XYRzRyZ6nFLfbMB6fV65XoYQYuhPKuBDtd2mzsyNyJKVEa/36/0S8QG6JhUczk+Po71eh2vXr16IlLRvv7b5AVR4NSN101cZjLXBoXxmV/L/5sMrQmLutSlLnX5/JKDIJyKI6K6i8yOvh2Gh4fN7iw7OBHVnef8OGAo4tEmHR4elp0y8/m87EqyHWLHO7bUzim7xHFI2GFlnIldwnb5eUwoZDvNe46ytGPEM3GGgLM9gFN53WILvxuNRhGWsNU4pPYRIBWMyxDEjo+PSxAb9Wk2H3f1dLvd0h782F7TT+z2px95nzb1c/k57FjaF8EOg2tyWpNtGMMkBH1kv8jilO/v8WiCw0STcSN1BHv5e0TdGrOZ7LCfwVh2Ghv6mzrkuZMFGuN5+35gSs5T8HzgzLL5fB7T6bTil0VE6WNSn5K204Irqacc6LRer0uEt7Ew5A/nUazX6+j1emWsmcSxSE67sfPOdaO/6U8wLrsl7+/v48WLF8XnuLu7i9lsFr1er4wn5oWFVOrktY25zHgyyUOd7Z/zt7G6/8/97GtkLOq+rktd6lKXd7Fkf9wYYhuu9HfMS/G6A7C8tmJDsTvY9ow3Wq1WPHv2rJyrO5/PC47d2dmJfr8fDw8PcX5+Hi9fvozRaFTJzARHxGsWsrg/92W3NgINP7ZBtmG0DzaFAA3jMnbrZKIfnGqifr1eF3zK56kDIhh1gCdbrVYxm82KiMj75jh5HrethTBjgW3nsBkv0195d57xEbuhuKZ5VNef/kGkcbCY01vjn7gtHJQEhoSDo2/cd35WcBp4ywWfxak8I+LJrkUELgcFUjew2zZh0xwrdcSPovAcDhxy2k73F9y1/Q6embPR3FfWIBBuW61W2biC4MbRS+Bsjxf7JVnAyz6khWFwNc/YarViOBwWbplUlFyb8Ut7wksz15xK/uHhobSZx519XGM8b8qgXWgPfAUCRD1m7Vd8WcsXTttoAS0DaQ/+3IAWqvxdD1SuYUfN7+fXPQj5OTw8jPfffz/29/dL57JQMkAYdO12O+bzeXz00Ufx9u3biNhE1WI0GKQmKOxM+vqkBPEAZcKxqGIUHZmBaBaxmRhWi1l4IXlYuLyg5K2fFJzO4XBYtqlSL9rEixrt4wWMSdjtdqPX60W73Y6Hh4cYj8dPyAS3GYJZFkb435ORHwypHX76y23iscTf1NmLcx5TJkWoj51VXrfjyfVMlnENRxRbiMSAmbTKY58FaL3eRBTTNv4u97GxcdoiX8+iJt+hvdrtdjlUnetidBFWt4k8LJbsUGMskprK3+HHJFbERhw0ueGcy/SD14uIKOevkH5ntVrFeDyOm5ubOD4+jtPT00rESF4v6CuTVs+ePYuHh4f49NNPi4hK21rEMpHwnQpjxsIvxEeO7GAce5xZPPOY8Ot1qUtd6lKXavE6mbGkf1vsyNiTv41hfH2cVL7ra6xWq+h2u3F0dFR2weC8OJULmMo4AUf1/v4+JpNJJdsBzpIFAOrj4BnIDuMqPgdeMa4xDsrRwMYM2am1qGRCxd/rdDoV2++zp4i0JWjHtnU4HMZgMCjXJvCMXT/dbrfsfAen8ky227zOc83n84qt9fO4D+nfiKhEgWaBzD4KfetgnYw3jDOx4yZULPjmccfYMulAm4EHjbUZX8YL/G2sm/vU2JIgN0gXC6yOUGfs0o60u8kjEwHGUBkr7u3tRb/fL7u0LFRbsH54eChpkhxwhUDI57i2U6BHbDIxMF8YH8vlMvr9fplTnJc7Ho8L1s0FkYx5yfiz3xixCfLCz4yIgmWddaHZfNyJN5vNKiSrfRBnyKA93BcmQvy//ZXPw5HuG+ruseHx9GUnRupSl7rU5fOK8aYxkrlKMI65Q3/O+Mk22jiVe+U13KXZbMbp6Wmcnp7Gzs5OTKfTCkbt9/vRbDbj1atX8e1vf7vsfvFOo9VqVcSzy8vLgp+wv8a+8CvmU+HwvPvJHErmVHgWbLZ5Rm8yMG+C7YJzgkdipzh4BXvt89DACz6L1xgJ7sh9kwPOzOfmnXbgGHOoZPkCT4G1CNBzNgAEnW3jgmdCdPS4Mq70s8PNscHBWN5tmf0GB9jAExujcx3wAHjKXLrnhPmsLMiaf3b/GLubj3XKwL29vZhOp+WaedMDY8HcrHF8q9WK6XRa6nN/f19S6tOH/X6/iLrG7bTFbDaLVusx00in04nxeFyCHvls9jFoQ4LJLOBSZ+oLNwpGREDDl4qocoiMT57Jvx2k6Hbif+rGGLW46Dnga1Lv/f39GI/HTzYEfNkx4vcknnnB8GtMxIgqeZ0/6wXezmREFKHIiy6DMRssixq7u7txeHgYH3zwQXF4SNPhSFCnezk/P4/f//3fj4uLi3IfolqzKOGdWBbQcLo6nU55Zp/FlHc+ObLCAxGRwAOZdsShZHFx6kmulc96spNJmkVHbbBTy6QKxtGGMSIq96YfIH2844zrYDQyGHA/2jG2qm1DFrERM33/PBYxtiYTKF68LM5xz0bjMZLAjqpJIQvF1IE6WuCzGJqFN49t6u1nwKBgVO3gsz3Y7WZR1mDGYhZ9srOzE91ut4ybXq9XxiciFoskW6BzTmZ2qznC1lEJEF2NRiPm83lFcMPx91xH0CXVk/MYe8wQScVcMol4d3cXb9++jel0GkdHR3F0dBTNZrMADQvAjuwlIuf999+P5XIZH3/8ccU4Gui53U0cmIjweuTxaaLU8yMD4Hy/bULkl90Y1aUudanLFy3GSxm78H5ENa0FWMnrOA5LJsEtzkRsnHLw5MnJSSEQIh4JcjtSOGQcWO3dUJzrSToMzrY1riWTAbYREYFn5b4+RDvXG0wIxuOz2EnqlAkPEwp23C0iOrgMQYRimw3OhZzZ2Xk8HPvw8LDyDKS5sQDgujgojv8dHBMRFTxl/JV3vLVarRK45PFi4QqfJCJK6j1jWZ/bYZLBfWChkvftU3iccj8THYiK9/f3xbnmuxbwTE5ZrMt4hbHlDAfgQfdFRBSsTz+Snpv28+4o6sB3LMi68Fnav9vtVt7Hx4iIEoTnuUkQGNf3+Xeeny4W2iI2UdSj0SgajcezS0i7yhwEC5scfXh4KFHxJosQ32jT4XBYMh1AZGWB2mMIMd0+Ju3rbBYEYXo9glyjbbOf6j5yG2z7jJ/z88TnutSlLnV5l4ptaMaEORjcPFFENROOv8s1bWP8fexYxgiNRiP6/X48e/aspJFjtwnp5XZ2duL8/DxevXpVOfcePAJXghCwXC7j+vo6IqIcw8Hf2C3vUIPf8iYAeJrVarPTzG0C9wgOJQuSsaz5L6cSp52w995thFgEHwt+oz4RG27Pwgt23EH1DkKn38Cx284Ro9+oK/UwRprP5+Xz7Xa74CPeN642pgCj8JrxKMKRBTDqAmaib4zT3Q/cD37Pmz/AYNu+a0GNlOe0ieeFx4F5eNqZceg2dxsz/kk1z04/BwTCkdL3jNmdncdMUbe3t3FwcBD39/dxcHBQxLdms1kyFzSbzRI49fDwEIPBoLQxGTXs17GZgLp0u93C4ZvvhCOnTbnXeDyujCFnMiCgH18FAe329jbG43H5nAPELKw50DKPJWdtoK+MF72e+W94dXC8xVqCvnzO4pe5fE/iWVYZ7bBGVM+u8gLD97d93mo7E9oEhj/v7YgsHsfHx/GVr3ylRCUweL344tjPZrP45JNP4lvf+lYl2m+1esxtioOME58FAAZOp9OpLAjeAuuBZuffEZN2Tpi0iAURURZ2ntsRIUwYHNRt7RMRFYcSJZtFwNHUECk8Y045xOSgrpxn5UO61+t1WbRNMNCXPCvtY6PA9amnBR6uh9FxREgeM1607UQjoDiywY5ixGZh47WDg4OYzWaV8WwjQl0zecM1cL55HotD1I8FKCIKKcb3aStv+fXzWcykjohn9BVOO0CB9J0cnGlCjXFJFDkC63K5LNdlzBEJznzDwGxbQLftwGMO9Xq9cl0AICDNuYvdbn6uyWQS0+k0JpNJvHjxohg9jDZjkkWe3M/D4TB+5Ed+JObzeZydnVXG1HcS0kzK5igL6uRx6N9ca1swgNdT/sfg1WRFXepSl7psL3YGTABbRMtYxg41r7kYg+b74JDv7e3F0dFRwRW8x8HVYI2Dg4M4PDws2HI+n8fFxUUlHTGOVz7TAbzV6/VKfn4LFBlDg3cgJLAhxmC29+AuBw25DbBR2GiEBXCDI26x6XzOAgCOngl+ziUm8MZRxbQdv/Oh6QTm5AAn2gY7D+am2IkHRzsYxuPG+NhZI3wtk1tZdHT9PaZ4PhM2YFT6lbYCj9hPoN8tqNC31IvnM3ZxO9kn8W/mikkM2oJrgK/AlARcWSDiGUk1Q1vQf9SRnX6kMQTz2SeELOt0OgUPu524jqOpIzZ+UKvVKnON/x2l7fm3WCyenMfiKHL62IQf1+RaiMKDwaDik7Xb7dJP8/m8pGn3NSA4nVIJvOsxZh/CkfL2D/zb4tp3Gi+0reeg14FMstSlLnWpy7tUzIF6HUS8YH02v4V9NWaxCMP/5ohY241bbT+Hw2F0Op2SChhBBt5yPB7HZ599FldXV3F7e1sCpbGv5jZ3dnbKMRgOIrMtt70wB8mzEXyD/fAO64goQgV8DFjZGJJAbdIA2oaD+Qgkoh4IheAQB1h7IwTt7cB5P4u5RPNA3mwQUQ2Cz33Os9l2mg/jvq4/OB3RxBwQz+wgNPrGO79oKwse4Hzv6uJ1BFGug7hk/hMx1rgJfyVz2xEbrtljhnbxxgOuY945IkpwGDjv7u6u8Mvwg4hRObuBM8DRRtyfTSNgGPPX7EKj7czFRkR0Op2SUa7RaJS6RVQzhyFYttvtWCwWRVjjc57L1GU6nRYc7bPbCGrz2Gu323F4eFjEQPc3vK3Hl8fxNlzIuPAmDGO+PHZXq1UJ/mRskip1MpmUXa21ePYdihcO/95WmOx0AupqJjUA/yxEVsYjNoPPCq4HwenpaXz44YeVBQBnzt+/u7uLs7Oz+Oijj+Ls7KzigHMt6upda0zAdrtdzl6w4016mIh44tD6HADq4K2bEC0my3k+Jr+jUGhX6o3Q5UhT0udQV7ahMrm9zdmHLeKQEiVBm3Pf29vbuLm5Kdtobfz5jXiGcOQ+MBFlQsMLKIuJF3EbCm+DNjHkxZHP00ZszWbc0TcQNiwk2wQLUgdRLEbZqXR0DGQRfWYByA4xz40RsJOcIwR8KCn3YcG0w+tx4//ZcUVkbcRjhLzb2NuUuTZnUQCwvHtxuVzGcDiMXq8Xu7u7MZlMKqQMC7KfhTXBc4778uyz2awIabSVQUEWZanny5cvYzqdxvPnz6Pf71dINFIYjEajYqg6nU588MEHMZvNiiGjeKyaYDKwgpAwOWUCwtegWCTLIIk1Z5uxq0td6lKXumwvJjMsFhlv2hnI+MLktP8Hi2ShpdvtxosXL4r9xp77LALW9YjNuQovX76M169fF7tkQYPPYbONkQnisXjjdC92JC0UmogBu7hOEfEEAyOI0G60qa9rjME9Op1OSd/iqEgLPsPhsNjJk5OTODo6Ks4pO81xPLe1v6OxwU9gbOwu+Mw43FG1Flcs7PFZO5zgItrB0cXci/tkEc2p0S1YUSy8gREdcOj3PJb8DL7ntjFMXzEe+e17GFt6Phjfg0cskFnEsnjEZ1utxwwD7GZztgtIrp2dnYoYC85E4CLVp8U8+o7AK84Q4X3v7LJYaeLR/oLbicwJPtsFYgshjefgWWgT+qLf7xf8uVwui//BHIHs8LgxJnTqHONJ973FV+YWn/28gm9tMdZkCPPcQZlZyK+DuepSl7q8i8UikV+jWPiKqO4ciqjufOK7trF8L/9trIrt8q7m+XxedvcgyiwWi7i4uIjz8/MK32iMhP0hKxX8DnxI5qQyd2aMmYP/wQcWWyaTSSyXy5jNZhGx2XAAv+oU5TwH7ch9EVSM6xyoY6EIu40ouC0APGKTZtPH7tCX2FmOLMlcI+PB4h02HVvMa4ge5je5FjjD+D9nLbLo58AoxoUxq19HjOE+DvqBY/NOOfCIMa2f04JpxsHOqEC/gTkfHh5K//E+vgHXc9Y543a4S4u6GRs6LTzP2Gq1YjAYVOYZ9+S8WQcSgaFGo1Hh6huNx12e7K7zHCVtIVi31XrchcbRShaVPGfw3ebzeZyfn5c55CBJ41l2lN7f38fbt2+f+BSsF8aN5oLB/uayWRNYo4zBHSxnXYJirM6GHHSIL3v5nsQzg+ocfeFJ65IVdU8QK/55YeJ1Jin/R0SZUB988EERjFgAvOMMQv7jjz+Ob3/72zEajSqinR0CLxx+5k6nUxwqHGM7FjyzF1R2rzFJZrNZMS7L5bIo1NSXumMAcgoi7ufdO154ub9zzHY6neh0OjEYDOLo6KhE8GZjOJ1Oi5HNEQy06+3tbTGqNnCZ8LFo5J1vNj524nif9mIRLYNVQlVEdVebBTo7lAYmEZvIBDvUXtB4BsYZjrKjJRh7juLwmPT463Q6FcPn9jB4cpQMAhdGhQUZgoB+5rksIHJmBNf1IshYZ6wMBoOIiHj9+nW5LnWI2CzsgJ7ZbFYR3ByJQRtikCz4AQAc6d3tdmO9XsfNzU2JJskEDFvwAYV+zrzG0KbUYTQaxWw2i+Pj4/jggw+i3W4XAmM4HJYDcxEODw8PYzgcxnQ6rYyLbCwsjmZj+HmA2uRKNkImTLL46TrUREVd6lKXuvzBJe+UMI6z0OPi9dViTRbfjLv29vbi2bNnJR0yn3Eqt5xh4P7+Ps7Pz+OTTz4pgRqO/HQdeBZj6+VyGTc3NyX1MmRHxiLYW+M3iu07Nsk2HMHCZEnERmChPbG7TvlHYFa32y3PDaFDJDTth5gAWUJGAXblOYo0E0rUlaAv/qb9ET/8fZ4DvEqb26HG8c/Y0Tbeu98IEgOH2tmknSz4uT95P2MGns33Bn9GbA5Pt2+Sg5HyuKYd7Gvhg/Ca7+HntxhrwcZERyaK2DnmlET0s8kUcC2Yj0wXxj2ZNKR99vb2ShQsEfNE5BKFn9sHbOqgTCLcTQI2Go0i3poUycKgr2+hmBSrWeDMkfHMUwdfeScd2Srsm3g8uo+5h/1rB1fyvv2CPLbpb+ph7ApGrbFoXepSl3e15GAD2ydeM4/oIBXbfn8ejsRBUdjpzN3wnU6nU3bsEzhCgDDna85ms3j9+nXZcY19tN033oWTtEhCwEjGYhSuixCBgEE9CcQH35J6D86GHzhLdh2ZA7GthI9jx4t5Nnawe5cRbW0uz6mk+exisSj8D9yXz0LLeA1cYJvKpgTuY67SfJED3tyO7guubw7Uggb22Bwb9t4+C/1Mu3BvnoeANcah62T/J6K6QcJj1H6VcQPcrIU0B+5Rd2M9i2wOuIuIgvF5TvOF8Ihcz7ysv087sTnEPDL4mfPMeA88yDhDyPPGDFJ8O4iJLBr7+/slxThiLr4D95zP5/HJJ5/E0dFRvP/++2WjDvOSNkLvuLm5KXjZ6xJ97YCrzE1aGOa71MV9Z18mazLGgvZ335XyhcWziOpZUBlQmxDwZPYA9SJso+BBwGtZOGLRIirwgw8+KNsZI6IMWgY750p89NFH8cknnxSRwQuFhTmr+4g5vV4vms3HXWPX19dFbUW48Y44nt3RvtPptORZhSRw/taI6k4tkxpck7a0gXMELXW2482us5OTkxgOh9HtdiukP79ZFHxf2slCHJOz3W6XNsiLIH9bKHNkryen69BsbqJmWDwd/eFns0hnpdtpUAwSLGh67Jkw6HQ6lfFI1CttyUJC4X+f7eBoHgyp8ztb2LSDGxFF5NnmGGNYDNRMYGG8iWaP2JyDh6Gl7Xjmg4OD6Pf78cknn5Tr8T7tS6QF/dhoNErqQ4AH23aXy8dD1ole8jhFyGbOGHxEREmdaiKx2WxGt9uN/f39EtWQ1wODQK7FnHr79m0h4kgJdHBwEN1utxgzolIODw/j7du3ZQxjxLOhtxDK2PO8d71stHKQgcdRjuKGPOKnLnWpS13q8gcXr7EUB8TkNTqiujPLpIXxoYNnWq1WHB0dxeHhYaxWm7QzOKLYfq//V1dX8ebNm1gsFhVy35gGe0J9jDlsU7w7mUCj/Jkc2AF5D1Y1GWE8ZDEEDIDtsxDZbDZLNK+ja3FwnTIaogNcATbzbi4TMA5AyiIfBafcttqfsyjmPqTwGWy6x8A2O20hEbLCgTzGl3zevor72Jje43bbWDaRQntQryywQa7QzpBf+V7GNBGboDIILdqAvvczWICD1DK+RNii3kQCg8nAwzxbJqjW68dUNj4Dl2fCH+Pe+UwRPv/w8FDSotp3cSSy/Qae27iZcc1zkb6IduS7Fs12d3cLXmUO0Jb2R0y4kR4S/4F75Z1k9pXcvxa9aQtjS/o5+1yOPGes0XaO5s7rSSbU6lKXutTlXSp57cv8ZSaaLX55zeU11m7zj37f77HGd7vd6PV6hY+BDyUw+fLyMkajUYzH40KyWziDk+KHHUHYNXMdFjzYNc3nsVO3t7dl1xdtgaBBwZ5yT+OZVqtVCZ7xs8MDGo+CUxFE4Izga5vN5hNBzwIk9hg77eA17sEZYBFRMm35+8Zf2GYHmFEv21MHJnlTgjc/GLPSNmA7t5exZMQmixS+h7n2zF1h283P540Otvvci7rlIH7GNvU3Fqfe1Mc7x3guXncfcD2wkTdrkN7SnG7m7JbLzZlkxjEIUwQRwZ+aCybAirE9m80KF3p7e1sybeGfEETJ992G1NkZ5rzrMSKKP8j84WidTqdTdrahG/T7/Tg+Pi56QvYvzN8ytxnvDgBzUBXznL7chlkpFkq5r8fbu1C+J/GMQWoQz+v+ycUKPotkvu7nkeJerPj76OgoTk9Py+RGgBoMBtFut2M2m8VHH30Uv/d7vxevX7+uHIZtZ9eOMwsaRLt35XB96sDgQq32tt9G43G32dXVVYn+YCFnwhOpTD2sbNux39/fL9tdW61W2QpqZx1HlMV4b28vnj9/Hu+//34cHh5Gu92ukCNMPPoE8YYdaF7Y6SuiK3hmtrSa6PD3WPw8yWwgmeCIKl7I6Wv6nwXO0S28ZuHEC7ojNTye/BsgYNXezq9FM/+mDnY6WVToS56PKGkb0GyovEg5OoA6QRy4DSEr/DlHumPIHBXgMyi63W48e/Ys3rx5U2kDFlaf/8CiDxG3WCxiZ2cnLi4uSjsToWExGXKDvrOwhAGjvp6LFHbKdbvdslPT5CCf2QZcp9NpfPvb347VahUvXryIk5OTODw8jPF4XBHROSeNPMcWdV1fr2kWvWgfiscaYzqTGnwnR3xlIrQudalLXeryhy/bghWMBbYVB63YUfTn1+vH8zNPTk4qO0MISoqIsruEXVSvXr2KN2/exHg8rqQsMVlijGtHGzvk4KHlcll2DrHbCyEsO7zgMGNKP69t6DY85KhQ2sVYwk5YRFRS2hHty/NiLwmCAUfyngUFp3ExdnRdMlaB/AFLZGfewV9cIwf4RUQlMwDtSVtTb4ub1MUEB9iP97IIaWxB3TzmGBdZYDOu8K4lngsclEU/B955d50dZveDv8v/EFAmGYxfnAGCMeBob6LQebaIDaE2m81iNBrFdDotUfN+BsYR7Z+xNX4abXB/fx9HR0clZZWjmOkHxjZtiJ/jbA0Udrk5KHMymcR6vUnnT9Q/daCdeVbwvqOI1+t1IV5Go1EZxxbOPH48Nu1HuM7ZZ6F/Ldyx1rg+9gdNjPkalFpAq0td6vKuFQtlEMbYPWPNjB/hxCI2Yoa5U/COg1csdkRU1/vT09PodrtlJ9fOzk7hXZbLZVxcXBRBi3OisCnYUu6duSfqCE4ybqReXNv2Gy7EooN3DuWgdbCXd1txPTgVBKjValXsorMYwU15I4M3EsB1Gffxt22qj9bJnOJqtYrxeBwRUbI9GCs0Go2yg/329rbsGMoihPEgzwh+gFf2GDHXl7leY+GIzc41/jYm9Pix+Ma4A5M6pbk3LtAGeWxkzjUHWjn9ZR5TPBe+BDgO38fcN7y0xy/3sq/izR8eO/gcDuhqt9tlx5g/TzvRlre3t7G7u1sENLDXfD4vRyJZrGUMMC4d+HZ0dBTL5bIEUNJ+TjV5e3sbFxcXZTPE4eFhdDqd0k/cZzgcxsXFRVxfX1d8CuYofY9Qji/GOmNO0gKltRHawj6j/VSuQV9lzPllLt+zeObFcpuwxcDJzlxENR8nkX7bdtZkgY3vMdlI10iUAYvRyclJ3N3dxaeffhr/+3//73j9+nUZIBEbpTSTDa1Wq0wKb2n1wsVia8PgZ8ZhhKAn+oH7RURxxL1rimtbMGIiWIxotTZ58zEqLLz7+/slRU6n04lnz55Fr9erbI+mnZnE1IPFlOeFJEDpv7u7i8lkEpeXl5VIDx/+iWFAFOQZHOXgBZ1+YPFnsjpaIju33Dc7hHboTDaZwPDfJhps4CKqkaDUk/o5ktYknQ2HFxyeIYMQ+twLEHWjTvf398U5t6Bnx5Z6G4jYGbaxxWEnf/PBwUG8ePEiWq1WnJ+fl0XcACWLxfQD42dvb68YC4xDt9sthpFx68NoeV6MH5/j+TwnqAdznntDXjQajbKLzIQO68b9/X1Mp9P4+OOP4/T0NIbDYdzc3MR0Oi3GFFCUgSt9777ya/m3v+Nxb7DN+waKFkQp71IkR13qUpe6fD+KbZ4DGCKqu4O9g8hBENuiUC28nJ6eRq/XKziAQCuEI1JyLBaLePnyZXz22WfFqVqv1yX9t89f4D52Ch0YQlAMBYyEENXtdqPf71fODrXQYewJDqQYW9k2+5m5hncaIUiAecE3HPptcoLnpL7sBKePnKmBSOCMpcAAFv34HEIldc79bQKBdgUPgkcthtFG9nMIVKLN7KAaC9rh5Bq8z+d53T6O68Vv+yceJ4xbB+7QTyZVuD6F5zJRZaLPbR0RFSIs1994FwKBa2Qy0POQceNzmlerVclWYFIO8g7ManzIIergv06nE0dHR5XIfUhF5hTXcEQykcFZtPb64Z1ms9mscuaKMSFn6ULaERiYd3jyHe7JugGuzWMpj/cs7nn9yGKsI6Ldb66L/UDmfxbL6lKXutTlXS+29eZkjBv9WQePR2yCFbwOe3eRBSKuwboOdmKHGRl0Op1OEWGur69Lem/v+MFWYgu91jtAw3iA77CLhwAwsC82z9cwEW+eDf7G/A48KG3gM8h4doox6nK5LHgB7EGbWZTwdY2p4XzgLp1WOmITwAIeHY1GRSjtdDrR6/UqQup6va6c9dZutyv+xTZ+EjyE+Jk5cmy4+4jf5sWz4EZbd7vdikjI9c1D4lMYm/Dsvr/rZqxqcQgMTx3NZ/M8XMO8K+PbZ52ZU2Y+eBxGbLApgfzclzG1WCyeCHaIy9PpNPr9fuUsQPsGtGM+8xYMxZz3Rhs4RPo7b35oNpvlLLTJZPJEROPZb29v4+zsLHZ2duKP/bE/VvhVNkUsFouy+4yAK+aM8Z53kfJcmYP0M1Ooj7UJv+exaF7Tc/XLXr5n8cwEMIuxJ88f9H2T0bkD3RG+ngmGw8PDODo6ioiI6XRaVP/hcBjtdjs+/vjj+F//63/F2dlZ6fSITQSs74uT1uv1KgbDCw6LjgcVDhrRBqPRKC4uLipnS7DAmMywg29hzAsJg9MEAhOh1WpVcq3iJCL6odibJMKRazQed8QR6WnSotlslpz9OFPT6TRGo1EsFovSPk5JGLHJ6W+jb0fOO9SYtHbQnFvZkcCOpnV0hckCt6fJmCyAmVTAOPAafzsy3P1s8c+ihg2DQYDHLwKzdxf5Pa5t59gGw88BeKB9+QztaYKNe0ZEMUaO4GVc7O7uxsnJSezs7MTl5WUBRznCwwbPfQTZletAdBMAgVy/EI2MZwvP1Ce3P2CBcc92fUgYkyo8G23N/W5ubuLly5fx4z/+43F6ehqj0aiAT0CdDYILr/u9/BmPs7x+8XkL9iYf/bqBbV3qUpe61OW7L9iBiM0unkwU+LOUHMTg10h1HLGJGHQgCg75zc1NfPrpp/Hpp59Wdr40Go2C0+zcWLjzThDXGezETjPsGnYWcoJnQeyhDezYRWycLTCNI3YRE4zjLc4QZAVWAJewQ8cBSrb17ExHTDB+8o42cCB1zn7Fw8ND2cWEnfduJK7t37QR9hmiit9gbp7fIoLtfiYDqK/FLgeB2XfhfrxmPIjoSF/R1lwv38/fNfbgfRzzLKJkcdFBR7SjMRQ4nvZz6kSLTzwP48mk32q1OS+Oex8cHJTzk6k3qXHu7+9jPB6X+9pXNIkAoQWBcn9/X84/u7m5KTvYwL+9Xq9gRd7jWS2aOghrvV4Xv4nMJWRkYLcZzzafz2M+n5eIZAtSFrg8JxCujJXtq3jO0reeF9vetx/AezmQleemn+3Le1xlsjj7MHWpS13q8q4Vr4cO1s2Fdd9rdBYSjDHMm/k7YAeySM1ms3LWGTb89vY2RqNR3N7extXVVcF1pDNcrTY7uDI+BpcgGLgu4/G42D64HOMj1xM7kq8DBoNbdTu6PWkXBwghLvpaDj62EAne4NnNS/HMfIedTOZGvXPLPw42arVahV+lP8FF8GHGSA40itikR8feYrPBOvB/DuCx8MF4MNcEDuA5LMxQ+AybP4wJaCe3X6vVKkH4znyVx3bmxeAeyciGwOpxxvcsxjnIijZyCm+LYxYKO51O5TVjV+rD2Ix4xNqz2azwf06h6PuDecHjFmRJg7parUrwIuOI+UEbOpPczs5jJq2dnZ1ydhminrMTnJ+fx6tXr+LHf/zHS/3Bk/f3j2cD9vv9uLi4qOAxxtXncZWZNzf+zsXjy7+zJsO4f1c4y+9JPIuo7j7LwgcTLaIK/rOz59etpkdslNGIjchlR/Lk5KSkM2RQ9/v9GA6HMZ1O4+zsLG5ubipgH5GIwcRgJ/2NtzpyP0926uezzvh7NBrF9fV1yUXqieeUhFnJZ+J44HnhzIPXW65dbwQFhMCDg4NKhKmjLvgMKRohHdxWnMtGtCaTjHyt/Di6gL7JCyoGiPbjDAH3aRZ+7OSxoGHMM+iweGbC6fMENi+QjlR5eHgo52+xCBn4ZIUdI85z5LryHd63wbNoZ0KFZ/Z44VyVz5tLmfzLCx397YgYwBdbeofDYaxWqzg7OyvfXS6XZcs6bZ5BBe3sORYRlfRMtCWggzSWFqVtwCwmeh4ydtghSqQ7OzwNUKgPZ9mxc/Lm5qbkB59MJqUfclR4LtvGIaAII+3P5T7gdc9J/gaAewzVpS51qUtdvvti0M//EX+4dGOZKDaJAHHBDplsWzkc+lvf+lZ89tlnZXezHd/VahX9fj/G43FFyIrYODbeFc/rDoBhdxtCBbbPkbjYM5P4PAdRlNlptBDFczvVR0SUSEsCt4z1uS6iChHK4EtSWuJEEoTl/rJ45xR27Ggywe+AG3AM7YdTjijo9+yo+vm9W92klO0x9zUeiojKaxGbg+J5Jv/OY5LP2Wfifwtp4A3wA/UGwxgvgVXyOKaPGQuML/raUdA8E23I81mgtO+SdxBS/F3GHJiLFKf0ecQjZmMnocVs/CnvFuR5l8vHdFU3NzfRaDQqkcc5dTyR5vQzRBLP6hSG2zCZ5xeCsUmLRqNRgjDdL5kkhbhxACWftf/BuMwkCHV2X9rvyXPKOBMi1Tj0O62TxrF1qUtd6vIuFtb3vObatvM53jPvY17HfI5xSeZzeG1vby/6/X4RytbrdQk4Wa/XZeeyUwh2u91SX597lne7W7SL2ARh3N3dlfPIqGdEFG4wb0QgMAq7lTMX2Z6DNb0bDtvoTEPgAjAEuIT/weIIZuBKC0+kjnYgP1iWnXwRm93grVarZDcyPw0Gs3Bq0QsMTN15DdyLTTdX5b/pnyxQmnu06Gke1ank4ckcQAemINDIQeZgKsYkuMA8PHgHfORMFVnQMo50UJ25QuNneHf4ZMRWvm9eLXO5xunUx1kJKODS3d3dOD09jbu7u3j79m3xY1qtViWTmzMnGNe6TcCZjUajBFDmM/LcRtR3Z2cnhsNhuSfzkL6PiPjoo4+i2+3G+++/H3d3d3F9fV36r9frxXA4jPPz89Jenlu0qX06/CVztTyH15vsm9gHytiQe/h5v+zlexbPIqqHVXuyMEAsAFkBziDcn2di5A7yawy8RqNRJla3240XL17EcrmMm5ubClnBb5PfEPlEwnKfiKrKnYUh7565v7+P6+vrSo5+R0HQRnxvd3e3nBUWEZVdQB7oGFacXEcysNPN9coRC04vwzUxHkwY0l3OZrNSx+l0WlnYaGuEG8gb70qC4PDh19TNeXwxNPS9o3UYRxzSSX/TBhgAq/l5Efbz23H3eGMMeTdbNoaOEuUzdkgx9B7vmfzhtyNsEJd9bhjXtOGlrWyMiOo2aeBntwF1O2egRmQ8oGE6ncZ4PC7P0ev14vLyskTLO/WiF1kMXBa5eD4+g7DOc5ig8e5Fi71O+cR4z30DeUQE/t7eXszn82LYaX9vpV6tHiODb25uSqSw56r73MVBAZ4XBhQ2HP7NGgQQ4hlM/vnZMtFal7rUpS51+cMXE905+MgCiQN9XLCZGTfu7OyUTAeTyaRgB67R6XTKGZuffPJJzOfzgh+wxc5EQPoO6hIRlSASi03ewWVMZ0cyIkq05+7ubsF3ONXYae8Ud1QlB1ObwKAetCHYgnOFec9ONrbVWBpbPRgMCpYwjsX5AtOB0SD3IX0ceIKQ1m63nzhuvkfERhyiHWy76XP+N9kF7rOjzuvgMe5nLGsSKhME9JPJCjCGySxjf8YM4ykHAJqAs9gLUUN7rlarkvaGNjHOztHzjAUwI4GGJl3oY4uADhakPuBmyB1eA+85UwL1mk6nldQ59iF5nfnFNQnuA9tRX0cfg7cJrGLsU0d+GGMWtyCkIKhIv3N/fx/7+/vR6/VKdHQmzbJvyGfYOTcajaLb7Rac6jb2XMQnsQBugsRiGX2aA7UQp/M6sm1dcR3+MAEIdalLXeryZS2Z72FNNYfA+pmDH2wDHLBrQcfCkNf7brcbvV6v2CYyXhHc4vWcc9xNzpuPNb4xVwSfMZvNCp+CvQd32FaAXfxMDopycM22gB9sIDjSXKADimlrOB9zXeysMydqTold6t5EAB6wAGQB0Z9vNBrR7/cLjoqIUueM89yXvE6QffY3eJ5sU7HdzjIFDjE+N/dkvhYsY77V58/OZrMnfB73NG/l+tJG7NYyH+d54ef3dbxBwGON5/M9jGHX63VJF2oMRn2NJV1n4yzaPge9dbvdeP78eRH3aCfqmv0k7kMac7AruBZM1e/3C+7MgqTr3W63o91ux2KxKJtuqOP9/X1MJpP4xje+EUdHRzEcDmM8Hhfxd39/PwaDQRwcHMR4PK7sIsz+K2OG/z3GaE9z1dvmK7/tezJHfR7cu1C+Z/HMjchEyiKEF2a+Y1Et4inZjIPgyZ0FGEQvL+iDwaAIZ4hAg8EgLi4uKuQ0jhr5RxuNRmWRYrHNO84wUuTaPT8/j6urqxJZC1GPQOFF1TutuJ7bD6Xag5RFkescHByU3MYshDYGEVGEQM49Y0srBhQHtdFolDSVEZtoBw5rp24YQNKT5DQlOJduN9qYRZwFEZDB/YjOsJElojpikxfY4k9EddupDXBEdRuq+8+CCtd2fRjDvhZj1QYiLzwZdOT6mAxyFHX+nCN4GJ8sugYrngt58XOktOtvAWs2mxVDQEQ645qdi4eHh/H27dtCWvE+1zOR5J2XzGkIGsYY442+8PkkGKZer1fOgmELNobIYMHgxGNiZ+cxxzO7yUjF2Ov1ylhcrx/zUk+n0zImtm0Z39bPGdjaGFEyqZmFTEddmQSkf0za1OREXepSl7p8sZJtuR2yiKdpwimfJ6g1m83o9/tlt7NTmSCc3d3dxatXr+Kb3/xmIb4johLM48CIfr//JOhqf3+/HPzOtfNOrYgoNiOT3ev1umAwgnNsyywqYZ+xybQR79kp5m8TBjiHYATjduNWfvt5OBOV63Df1eoxCIvgnWazWdKakE48IkowEcFgYMTlclkwMDgbkcVtgLjDd6gn/QN+tPiKbUYEcaYGnteimduSz22LuvW16Df7DuBPiJJt6XhMZrlOPLP/5gB0xD8+b9xI8bMT6ESd830dDMfnwD8eqyZFuAaOOGIXuxYJ+GN+MK8fHh4KjqM/TeyBh3kGfDNHuXuc4ksSke1zqo0L8b2M4Z1ZxPOB+QUWBl9Tj/39/Qo+J4htb28vhsNhORfD/ZDFtExc4Yflz4AzLZx5p5mvz/++Rl5H61KXutTlXSzmOM0BsbZaDPFOMvCAsVFENXDHO4YtxBFUNRwOY3d3N8bjccEttiPsNgM3YVMpfA57ZdEC8W08HpesAg6yMK8Gb0cdMrdBUIxtjoNoeGa/7nPraVfuy2fBgeas4DoJSANLgRvAqdhkuFN439vb28KLYaOzkGXME7HJsJB3wVtocR+a2zN+ph3AqQ50YXMHz+8dfGANp392fc25uZ8t+FDAtN4dhl+SfShwIzjJojCY27ylcZKf3VkZMrYwn8w4yIFz9k/M0ZqHpC0I/DIvzXji6CP6MW+kMM/J82b/kHtERDn3brlcFk4TfGoe2ZkIaA8y5nGOGdfluJmf/MmfLBlLwIv9fj/6/X7JcML4y6JX5s9z39pXo77GysaPFrrpG3Dqu1K+LzvPrKzSwCYgvJia4I942mGfR1pYgGNgeEfJev246ywiShq28Xgcs9ksOp1OnJycxOvXrx8f+v84OqS2yY4AgwqVGVGMRRXR7OLiohgYrksEhBdAfuMgYQy9EOcdTRZycKYHg0EMBoMiWtE2iBpeuFnkODASBzOLVyzgy+WyTEjeJ+J5uXw884woam8l9iJrscfkgUUlnhvja8fcxI6/m0kcP4vBBff2+LHBykaAOtlQ+jMsth7DjqChDbKDaSKGetpJNXFgsoP7uf284HmsUG/anP50dBCLm+/HPTGA7NiivembDz/8MCIiRqNRJW0noizG2f3A2KY+jCWATZ73JhEBm5PJpAi0zFHOAfE5EB7vjtLgfbZCMxa4L88ymUxid3e3EqUFWeJ+8jxzP1F/j0sXi72ME57VQJL1ks9lg1aXutSlLnX5YoW13YLCtjUbG2anPmJzThq/Dw8Po9VqFUcFx/358+exv78fl5eX8erVq7i8vCw76LMQ4eALcN18Pn9yeHkuFsKwD/ncBOwcO7Zms1lx6rAxiGXGEa5jDsjxOQ7cM2Jjx7inI4TBpOA9O3XGC45WdoAJGBp7CybIAWlOy0NktSNFEToglxAgsbNgYHBUxm78DSYj0C4TK2Bi8JOLnXqPR58vR3tmgsb42MSCxaGM7bhXxmM8i+9P/bkXOIj+4Nn8mSzMWBA05gVPMuYhS3id7zJ2jckbjUY5U4xgPpNszD2iXX1+B884nU7LPahX9vdcF6Ll2+128SG9XoB9aTd8J2NM6sbOTp4ZkQ8CxfXk+ghlvNbr9eLk5KSsNcy/zxO1qJOLfQP8T/sJ9kG2iWjGvfledalLXeryLpa8dvOauSuwhG2jA2eMY/g722sHfGM/2P2EzTROiXgMnjdxzg8B/xHxBF9Sr8lkUlI+EqDjHUbm0yDLwZ8UbDq4wQQ8O6wdgGP8gK0x7+IgZWwXmRiMd31eGZ/nPLhut1tEMm/wAJvx42Bn+tgZivgM7W8xkHa0aIOASF/QdtTd52AxLoyp6StjPa7NNWk7Auws5NE2fIa6+J7U0anVqSe4I6cfRGjzGEdcMt9ofpI2Q7ilbm4b+sQ4jbp6tx/txHd4FguZ5nUZHznQjnZcLBbl+BprA/hQPAP9ZV8m4jGgCpGaMWrM2uv1KuIdfkw+I8xn8rKTjDSjZ2dn8WM/9mNxcnJSNuzQBkdHR/HmzZviQzB2LXwx3yz4M9/sh9FvtFUOprLg6TGddZsve/m+iGdeWCHu7ajQUV5oTEJHbDcgdtiygu0tuo4CJT9vq9WKm5ubEkHRbrfj9PQ0bm5uinATsSH4TQDgADMI7cCdn5/H5eVlOaicSAUGJoPVEaqOmiSa1hPP92JRsZN5cHAQ7Xa7krKHSF0WDL7PgmaDnQUqDAif55oIJLQvzzKbzWI0GpUtpRGPRolt2UQsE+mSFXnGgxdSlHwWOKv5FkY8Niw4ZsePtuK6XjwdtUudVqvN4eX82Ik0OLKjadDixdcLlhcw2t2OKd9xNDrjh/5hTtkoWOXneXk2nzlC21mgAbA42hRgBAFlYqjf78eP/MiPxNnZWSwWi/JjwsxGknmEwGyxajqdlnSePAsEl9tmPB7Hev0YNX9zcxP7+/vR7XZjOByW6yJwcX/+zm3earXKDkkigRmHiGc2+ESfEIlNPzGHXWxQDHTdx9l4WjDjb9Yq7/LM4LEudalLXeryxYrFCv/vNdaOb0Q1vYht/P7+fiEujHk6nU4MBoOYTCZxcXERb9++LbjKaz4Rv9yDdIWHh4cxmUwqWQbsQGfMw/cpFqmy4wthgZ3GIeQzECq2m7yX2yljIdt+vm87a+zbbDbLOR04X9PptAggTvFnDG48dnBwUA4f94H3ORraO73c/uBnnsWYi2f0jnciSE2iGK+6vXheO5dc1/5Q7hvaLZNxrpfF1ixeeBw4ewPvZcHYEb1cy2eZgeGc3p1xy/Xm83nBjDwn+N5iJHXJ+MbzEJ+H9icAET+GH3YeUgfaMCLKWSUQfjn6mbrt7OxU+tRBeA6Qi4hyDi/zI7/Odywu8zwQNQQd3t/fF3IlYrNz02M1PxfE2tHRUVxfX8f19XVFJKdd+QHL+zUwKGuASUXP4TynPRY/r9/qUpe61OVdLQ4w4H+v//lz4AK/52AnvptxgDlRgoicittB1AQIcfY7AdLgM6dK9s6r5fIxUxcYFNvrszAJODK3iG01xnQAkPGqbYvtrLMfEWzG92kjPmceGe6EoCVsK98HQyC0wWGyASAiStYt0mDCCTs9s3EaeJfXeSYCZTwOjDUdbAN2pA2NXY1DbHe5J9/js+A8xgv9yv/enGAfxH2y7ToWucCvDgJ3H9I/DsQyViQQDlzHeIJrJFgwIiqpJ+H1wFfmPL2jzwF36/W6jEMHajnAkHZk7JIBg8DF0WhUnossWNYraEs4Q3wCMJd9KV6fz+cxmUzKjlGwGz5FDj5EbNvd3Y3JZBKr1arsjByNRnF0dBS7u7tlt9z9/X10Op1yRrCF+8w9e11yX1pA89/+jtcq5uG2tepdKd8X8cyiQhaOTLRvI7lzlIEXETs43MefRVCIiGIcvJB4MDJhB4NBiQREVIjYDDJHGvd6veIE3dzcxMXFRYkCjIhitPgb540DG1m8GYAsINQNgYrFmlSILPidTqcQDhZT8plx2YDbecZwcjD97e1tmfQ2rHbimNA893Q6Lc/jRdGRxijkGBRHcOc+dTFZY4IngxPaz4RXjrxBmLFQxrX5bcHRxtjvW2yzym5Sh+9gWKgP49uLrQGRo1dY2H2vh4eHJ8CG9rThpk4IxR5PngNupxyRwuuMWRsDntNpJp3e0xEstKMJFYwE0TAGhyYtPHdpX8TD0WgUZ2dnMRwO4/DwMI6OjoqIbLHeojz1cHQ9hAd1BiBOJpNKjmyiOfL483ZtXjOJaUPCnHC7MF94n2flx3PXY64udalLXeryvRU7oNsAvt/zj0WS9XpdDhW3IABuAx+9fPmynIUWUY0kxgYQFIJIsVgsotPplOCRfO+I6mHi/MZWGyOZvOD6OfiD4BUcU9eP7+LA2jni3sZdEDRE+EJa8OyOdPaOMNvo7NTxPJmQIU2R8QKfJ/iH9OTgGrAedaJNjNvz2OA5ctodsAz4zZkZ+G2cxXUdTOZAPT+v8SLfMZY0+cbz8R2LdrRxPgPDu524Pp9xfWkXO/QOhuJz3J/r2cexKGvRcts8NFbOfgX1arfbMRqNngRtTafT0nZOZUr9+S6fn81mxbeyoEch2pYxhnhmvEmdEaAtNjkK3pjQAVgOXgNTQh622+3KM6xWqxL0SRof+jKLYBbTLLCZBDM5577kb+aif3IbeX7WpS51qcu7WPI6GVE9a95nULpg64zzzJnZFsMF+TXSeUOSezMBu6smk0kJBMaOUq92u10JzJnP53F5eVlsI0KYA7fN0TrrgG0Jr5nfss10oJBtYERUsglEbLL8GA+BX7DREVEJFuGaZCNzuzuF3WAwKLYX7D4YDKLb7VaEN3g1ju4xv2eOtdlsFtHSmMZCoQPaeN1BWebszPvRTxR4Pr7rYHpwn/Eq7eAfPrONo3KqSwt43Nc8tFP0eYwwbs3Ts9vQwVa8b67VwT20nbE6fLbFMcRbvwf2ZxyTstNjyLx7xOPOLXwZ4zNns3B/eJ77vFtzd/Q7OsVyuSxp5xlPPhLH/bKzs1Oyxs1ms/JMCLWdTicuLy9LfzOGOaqKfjHnSh9ZgzFepj8Qp60ruN+cucNjIK91X/byfRHPIqIyCT1QPRjoEAaVF42IpwcIUjzp7fxFbCID8oSdTqdlYEZEtNvtSuTiev24RZl72aHFEHGd8/PzuLm5qeSxz4sgCy4LiycGC52FNLaDMnFYDFqtVjm3CQPsvPssno5soHgxZNKTm9bRExhQ79Cy2IJzyHcRGmhHL2x2ZvmeFX8LNhaQuBcEiYU2GxBv6+V119cLvwkAEyuMLcYSfeaxwHdZjCk2aF44TbJZiMtEietm4cptYiNnEQiDQLFoZ4MMeYCRzxHKfnYDHJ9ZR30BA5y7wmeJoOV5LIZD+gHGHDHutYH65Tm9Wq0K0PM4iHgEWtfX1zGbzeLq6qoIaf1+v9TFIi47UtkV6fYhnQH3o3C+yvX1danntogNg0gTC/k5LYrxuokM//xBZEVd6lKXutTlixWvqRYpMu7EzluY8O6iRqNRzs7EdrRarULONxqNGI1G8erVq7i6uip2x4FDBKgQsAGe4zqr1ao4pcYO2CNsindt58AYk/UO3snYiaASiAecQDIjREQJrAKjRkQFOxGEErFJcb2zs1POaKD+5PIn5SUHXNM/1JE6I+6BTcC+7kvqRto8p7S06AQWdSARdcWxz9gJIcLCThasjBv97CY2aBf3Z0RU+seBX9TJvgjftajFfb0jyvdyvTLudlSwsZYdZP/PZylch+/aIfc5YIxJEx+57WgD2nU2m8VyuSzEX0SUObO/vx9XV1fRbDbLGRIEWt3c3JRxBi4mgwB48O7uLubz+ZPAKOYo9eJ+4GPGlv0FZ+uwyEn72S9kTK7X6xKwyVkh3pWJzxcRJUCTMXV8fBxXV1fx9u3bylyjDYx/P6+4nqwZFuAyUbLteu8iQVKXutSlLt+pWDjwGmt+Ka+vXkttO7CREZuU2caSZNIxviIjQkSUYCxsvnlCY4z5fF4C40l9nNd8Yz9sI7bNQSYm540t4QKxV3yeYGQ40xw4Y1yEbV4sFhXOarlclowFrVarYAIHuGexzrgb2w5XxHOBGS0gcb9tgUn0M3ae+jUajZL6DzvufozYbAYwR2mezLgNPGBswY+D5sFhFqh4L/NSWbiirhYH+R8ByIIo+Md1tKASsdllHxEFx7nOtAV+x7YNCnDZxjzOotVqtcrufvobrSGnzFyv16W/fdbz4eFhCei7vLwsfodxLr4Eu+Xg+C3eeh4zRu7v78scG41G0e/3iy8JhiWzgseuxW4ynSwWi5hOpyXoCp9td3c3Op1O+R5j0z4LbWo+OK9Z2afgub128YzevPQulu+beGbF2caCwgLCZ734IB6wQHlxiNhEIthZYSCRSs4O4e3tbXFUIiKGw2FxoDifixyko9GofI90G6SHub6+jtFoVL5jwc7PaPHOKVogGJyH1YuyHdODg4Po9XpFUGo0GmVSOBKYZ0JswHgyyPMOF4yKJ2bEhvhhQvi8gIioTCZU/IiofMftlp1Q7sFC56279GfeqWVyix+r5yz0mXBxVKwjsR0pmuvssZTJCl/D0Raukxd5E1sGTG5HxEoWJxZOzwEWI7cjBo2xtS1q2cbWxjFH8WaixgKjSZFGo1GiHNjaPpvNYj6fF6MDkCCaguJ5z9i3QXckksk/k5seN7T9w8NDIVUuLi7i+Pg43n///ej3+0Wwpv+9myyTOpCUjtTFEBPJzPe2kQdud4qJrNz3XIu+4Fkwzrz3efesS13qUpe6fG/F9sXBMpkQtjOIzY7Y5KLnWg4AwlZfXV2V7ASkkms0GoUY987siChOJI7Y7u5uXF9fFzvrYCafV2F7yXWc/z5ic6YF18eOIirwPzbP0Y+Q+45ydbqhiCgOK3jH52JQNzANacf9G+zgvrATDq4He+JsUlfO/s1nlTnIzP0JDjGOA4vc3t4WkgncA85zYJeFJQsYfJ6+4LoZx4FtTFqA91x3+gfcTmp06s+YyJ/jOalTHutgId+f63hMgk8yaYP/YmGMcUq9c2AbhTFo7E8/US/GuPue7xJRjjhrEYjxQrSuyTefX8H4cZQ2RJ+F1YinUcOMY8b9dDqtkJSOzI7YZCzgGowXgsv4DOP7q1/9amkjno26HBwcxNHRUZydnVV8oSyc2m9hjGYxlD7mN59j/Pl6vta2tbIudalLXd7V8nnrorHlthSOxm35ehTbK+w+WM5nTbFzioxV7EjjGgRGca35fB5nZ2flGth3CyfegQVuIAWg8YKPo2FXfkRVlMmEvXky8APB/eawsD/YX+NFtyP2lCA2sg8Yy2b8ah7UKffsI/j54E7ZhWaeBptJykeLUNSX9tzf3y9ioYPiaHfssDnubZklXIxnwRP4C+Y2HdSVRbM8/vjNGKRefNYcJmNiWxAXOM4Con87exVZ2zLHSds5MxVjhzZDOKPe4G7zcd6I4exwcIPsCEMYu7i4qPDvjFnGNNksXG/6kblGICRtSJ/znZOTk9IWzmTg34h9bOihXdfrdSVI8f7+vuxUs3CXtYpt/WUuHj7SvjJ9nq/n9YDx9S6V75t4FrFRKb3V0RGwdmrpZCvsmTy2Qur/cXw45I+UKQwKdolB9Hth9y4fHLLJZFKco+VyGZeXl/H69euyXZIfR1lEbHKUbosysdMOme+8vOQoJtKRduBg6cViUfKx2sHe398vu8FsVJbLZTlwutlslkVgWwSBHVwcOyJ4qfNkMonRaBSTyaREhLJQsVBgmJk8tANEDI4ruf1tRE1kWEDz5Kee9D0LoIVY72I0AGCMZCCRx5InPIs01zTBgqGj7l5IeWZH0uQUil54GNM8J+OJlEJ8x4c22qDlLb4mAiw+8mw+V41x63STFnH5HN/HEPd6vRIhwZZ2yECiSTzHuK6jpHh++oo56uhyEwMYDYM71pa7u7sYjUbx4sWLeO+99+Lw8LCsAUQW0Y4mLyAzTRI+PDxUUm3RziZ7qFceOxYiLWBb8DQRmUU0gzX/XZe61KUudfnei21+dpAzxvRnjTebzWbZuYwdIZBof38/lstlEc6IiO33+9Hv90tEZA4KwvaDaRqNRjksGqxh/GxcmYXA5XJzTpTJcuMQbJRTCuG42i6zo4y0JcYXdmypD/XMoh7f29/fj5OTkyKc8bw4ahajHPGJPR8MBtHr9cp3d3d3SxCM72NnblsQix1KMAbYAFttDMr3jDdpP9oVwSPiESNajLSvABHkYC8wpXFkjho2vjXusDPsKF7uASlEv2cybL3epA3MwVUeQz7Pi5LHo6OyqQfPYMxm0os+8I46MBHFYp1FMLef58h6/XhuCuPk9PQ0nj9/XvApwZaME57FcwmSMmKTapR+IHtKRJQzKZgr7hOL3GBli4/MK/yi+/v7GAwG8fz58+j3+3Fzc1MRZHd2duLw8LCQJa4/13WkNmNvmy+dfWye2fPDfeXXa2xal7rUpS6PJZP1Xj+xB+YUKBY1zC2wjpv3sj10INR6vY5ut1t2nGEX8lEx2DB2rFxcXJRMQeb/TNZHbHCHyXLzOf6MMQu8ip/NZ5pSEPSycJDFIuqGTYdDPTg4KK8dHx/H6elpDIfDGAwGlR04nJHrM7B4RvDeeDyu8G70DbjKO5zgJW2fLdTwP/iK8UH7OWA+BzcRrE4wUR4v8JNcx5yZBRPa3td2PY0l/X2Pa3OTxhqMR/4GOxnj+G+eP/ss9Lv9MYs2rlfGvW57n41G8XnUGVdyP3AZ5+zBWfZ6vfjggw9if38/zs7Ongio+CjUF1EUztw8r9vVc6TZbMZ4PI5msxnD4bA8q3Eyn2McdLvdOD09LeORNt/b26v4HGwSsn+bxwDf97x2+zLmzHN7bFn4pGS8+S6U76t4FhEVx9cHVDJxGfT+bMTGOYmIJ4bFE8HCwGw2K44LZDvCAGQHCy4TnevgzHIOGuTHy5cv4+rqqkTVetJTvFh6cbFBitikOPHuG9LhsSOM6zi1IhOVaAYmOgN4sViUHMWtVqsIXERfsp3TghELVbvdLpG2TETnCbbRdhpKnFJfL+c/xhlmsbQgl8kqt6UNgaNCvZB6DFkU5P5eeBhjkBcWn7gnCwP1s0iWyQITXRZQvchxPX6cHonFzFG/eVxTLNLZIbZTb3LF49NEnMkUjAnkmqOHs2MM0EDYZfcYaTx9eCfFi6/JOgBSRJSIYurv6ClHOucoXaJBvIuOcXp3dxdnZ2exWCzigw8+iMPDw4pgzw/jkee8v78v5wsibBHtb5KMdSwXrgvR592kFs4giUwU8r+jprlfTU7UpS51qcv3t9i+WdDIYN/Y1M4ndhX7bdsZ8egYjUajEq3YbD7ucD45OSn2JzuyFkccMMJrjrQEP4I5IDCwVdmuR0TJvEDwmEUSp08Hg9zd3RVhwfgH8QSbBd622BZRJZCwv5A9R0dH5UwJf8fYgx041Jc0JLQB5w9TL543YkPEGEvRRsapxqJOF24c6L7hb+M5ysPD5tBzEx2dTqdCKIDBjZWN6VwnMJv9lN3d3dIvHpvgxHzdz3OKaSfIF54JPIRQloPsfE6shU58ADAuuDATSfgBkEP0G+O31XpMPwOO4rMEQJERYLlcxv7+flxfX5f+yr4B55N1Op2S2ntvby+Gw2Hxm9y3eTelxzTz3T6EU1VRP0ewg/c8/njdZ2kwZx8eHuL4+Dh2d3fj7OwsPvzww/jwww/j+Pi41JU53Ol0Yjgcxng8rpBxtBX4mHEODqYPvhOxkcVYz03jVb9fl7rUpS51qQaDGGsa2/EZbLxxoLkk8JM5UGwz3MrDw0P0er3o9/sFz8GvYIO9Y30+n5ejZyaTSUntCFfY7/fLd7An2C/qAafKcxjfeGeWA40ofA9s5B09GfeCZ+Cd4Hn4PG3ExoKdnZ3o9XpxdHRUgtXAl64L7QYWA/ewMcCYFkzX7XbL69hSOE1zkDk4a5u9xV5j08EFtCP15Nky32muEXtscQks6QxPvG4hx/gnt6exDX3L/9nvyQKMuWOClciIZjxLgVd2+7luCInGX55n8N/G7+53np3noN5gf65Fm9HvYK33338/BoNBXFxclHThxng+D83pKNlVZixGnWhn84az2SxOTk4qArPTedOuZO1wFhGKNwSZc3W7gAd5zYF0tH0eHxZkM0/Je5TMmb8L5fsqntkZZoLhLHmhpTOYEDYsEZtoi0xmRFQdgcViEaPRqDh6OClZOPPEjtgs0ixS0+k0Li8v4+XLl3F9fV0WBkcWQKT7HIiITVQAi/62RZMtlZ1Op0IAmKiwkm0DSzvO5/OyK42FAXKAHPmeGDjCPAuLMwS+iRgWMSKSZ7NZJRrDE80kA4svRor0KjZCmUzJk859inBiEYp2Z3xY2ee77iOTBo5Ipb3dFo5Y4DftDznAexbzsppvosBRt4x1xhrXyed4MD6dn5f/vcBR6FO3L+PKUR+MBeef5t42qn4WQAZzg7bsdDoxm82e1CGDxRzV7j5ClGP3JOQM4jBzwFulbcA9Nny22WKxiE8//TRms1m89957ZWcZZBxz1cYYUEKKVqezcl/aYBscZ2GM4vZwO/NsOUUAv/N16lKXutSlLt+/YicviyVZcPD/OC+tVquQCBYvwJCTyaRyXi023o5ORHUXEff3+RAOArOjhM2lDuykyfYc0p/0cthJMFhElLz5xuB2LB1chf3Dycdum2ChDibx2bGOOAcescNGO5t48Y4fSJSIjT3NwVgmIGhvkxG3t7flmt4lxfvGccZCEEn0F+3HOQR7e3vl3GKwnHcnGeuaVKHNHeDkMeUx6kCpbde0AAfepa8YPybDGM9OmUM72oewg+z5Aq4yJs6Y1s9HPcE8Fsfcn7zG7irEMnA0WI2627Fndydz0WdZ+FwUSEP6p9vtll2hEY8YN88h97/9ET87gt1qtSq+GGQKuA6czk415s14PI52ux2j0Shev35dxLOzs7MilC2Xj2dfOG1sxNPUXiaQPOa2rYH5M/5cnhMeb3WpS13qUpeNaIYt9Prrv7dxOF6zsePm9RzMAEbAnnKUBraBz83n89jZ2Smiz2KxiMlkEhcXFzEajWI+nz8h0H0Uh4M1siACd2RswHM6sMIYdjAYVAQafhOEhThmfIkt8rmmtp8U2haObbFYRKfTKTiTOmPLEDS4DsHZ8/k8IqrnHu/s7BR77vs5YCdic/QNtt642byVbSj43f3AGLBfACay+EpgvO0z7c99nAmB6zM2wTXG7dzXO9q9cWPbTnfeN7dPoY84psfYj34AJyP8OruB/atms1nuQ38y3+yzGMP6PT+35yK/qZfFKoL3qEOr1aoExHm+ch0fa2SsCY41/rYIh/92d3cXz549K5nH7C+uVqviTzLmaC9nNWBDANlQCPbaht3s97o9M5/tccg1sv9mjPuu8Zc/kJ1nEZtFDWeVTvJCaeXekbRWXO2AeTGl066uropjwbXJe2/DxndwzhEbrq+vyyHvERH9fj/G43FZYKkfz8YiZqfdZH/OA2ziImJzVpmdMdoLozUcDmN/fz8eHh7TyU2n00q0JnXx+Qx8l8WZRZTFija4v78vTlhE9SBEiBNEyfl8XtIYsnCw6EGisPjjuFoMot9Wq1VFPMrOG4KJF03qxrW412KxKJGqNuDZ2cv34T2KxTILgIxbPmOjbyLB97MqT9/Y4HkMrVarJ1trM1GXQRcHnZvcM/mBgXPUTDa8fNfPxDUg1HgOUiIxxpxulGfZ398v44O2gmQ0QcBzmACkL3u9XqxWj/m02TlpUEHf0lcGBjkt5nK5jNFoFHd3d/H8+fM4PT0tkeuZRLARoC70idvMIr6vYTDo7csGdzwzBpT1xNHH/l0TE3WpS13q8oMp2dbaWTDhTMFWggsg57FPOLFgwfl8XlILEiDhMz+3OXG+L2c2mAQfj8fFDhFpyf85FbOdF7Ain5tMJuU5LYJYqAJTYcOwhdgxYz2+x/WpM1iTa7RarbL7h+IAHvwCdtmAk71TCWLHAgvPC4YH+1A/Y16e10F7EAMUC6nU0WJho9Go+Bj7+/uln40F+C54HP8jExX0fy4WWoyHveuNNgFTmLhzyiOPcQc6RTziFHY+2ccyQULB4ec53P4WAE1C0PcQdHmsIkzxHLzHM3v+UFfatN/vVyJ73e8PDw/R6XQq5AXj3Gl3vMPS4iz3cBpyY37qb7GY70Eo0T6ef8xZjhlgXEAejcfj2N/fL1HOL168iE6nEzc3N6U9d3Z2YjgcFj/P5Aj3tKicC3XfJubnksf05/lTdalLXeryrhbjuYgNF5RJe+8swmZmotqpoCOqmBT7TxA2opQDocE87Ji6vr6Ot2/fxvn5eSHpCRCGm8Q+jsfjiIiSFplArsx7Ulw3B3yzO44AaTCtg4axXdjKXHdwAVhgZ2ennHWPXXKQM7wTO9Sx4cZZiII8O+LdaDQq2IhAOM4mNidNn8Fz0if8eNe9M6hZEORaYFZjE3OM9KnFEmN7c9+ZlzInnf2C5XJZMoc54AoMbi7anJsDpqiDOWB4M29oAJvwrA4A87g39vRYt4+EH0J7If45KD37Clkj4G/qwmYC5gBjlLbinnCYfJcdk9kP4fnAe/gHmT91H3r+XF9fx8PDQ0nb7edj7lNH+G9rEGAzxjifNYbzemXhz2KgRVdzk34942Lj6Fo8+z4UBhIT1DvPTIpbqKADM5Hh6F6KJ/rd3V1cX1/H7u5u9Pv92N/fL+c18H0v2Ihds9kszs/P482bNyUvbrfbrSwSRMM6+jALRAwci2ZESRKtzGD1APXCiRjBtsxmc5PWjoOpuQYqt40Bk8XnPHF97ssWUQ6t9K6su7u7mM1mJTKFSW9nL+KR4Ol2u7G/v19Jw+NICwx0RDXPK+OCBdsElCclxAaT3JGpbgPet2hncclbbB394cXZdaKPEWi4psUOL8A4wCY1PC58Hz+DSQa/78gWO+dcy0bRIg3AhGej7hYq6Ru3PWOQNjI4ox+dOsb1wjBi4D3e6Kf1el0IJM9rdpohImJodnd3YzAYVLY0u204BNbbobkvz4NxefPmTczn83jvvfeKUMx8Ydzx2sPDQ9n2v1wuy47LDBZNlOXxSFvaCPEb8sdA18RWBtF1qUtd6lKXH0yxHeYnC2v+HK+zox5cAKbFLoEvceJarVZJdc21LCI5+CNi47DyfTDqZDIpQRoElxiP5AA0glnA3XZEeT4cfLAk0Z04nRk7WBDj3DJ2bDuQCaKD5+10OgXTmuyJqJ6pQapLyAsLPnwmCxkmp4zfjAXcrmBjC4GORIYEybu1IGvclwS1UUzUmOywGGrsZmLKQhWF8QWZ1e12K21ngdX4E+xq8cOOuMUzO9t8H3xIHWg/xkDeAejgNfqf+xo3Wtxj7HtumSTgs7u7u+VsFvwT+ob+4lxn2gBCzunBI6KML76LeAbGJPqZ5zfZiUjplJYWq+h/xvd6/XgWDQGIiJTeJZr7aT6fx3g8jvF4HGdnZ/HBBx/EyclJnJ2dVfqPHXakTvWP/Uy36zYCxfjVBJSxaH7d4mtd6lKXurzrxVgy4mlAjG0hdhQ7ZHzJ69hiC0Neo8FH7KB3JgKO1IC7ef36dTmzCdzodIpcw8FM7F4xX5TFvGazWcnCQGARNtC7290e1M08HM/E95x+DjwGTkHwch3AJbSZd/pY8OFvsNl0Oo2bm5vC+/L8YDQ+5+vTHwSDwQnB7bDTCmGDdkPMAZPAMUZE4Y3BlHzPWNz1or+N/YwlGUPgGeOURqNR2sN18049CzUei7QfY9q8PfiUcZiDxI1RGfsELGXM4uuaP+N6DsLaNjeou3cj8l3ak+NojGvBhxFRfCjvDqOfeZ86ej7xngOjEJLb7XZMJpMKX5l56dFoFPf39/H8+fMYDAblM8xHsn6BQ/E1PX7su3qTBOMOzMf79incT/ZJPP6NAe2P0V/vGj78gYhnEdU8wAwqd7CdBw8kflhos6qeRYvVahWTySQGg0EcHR1VJhjkARER7ES5ubmJ169fx8XFRVk87DA0Go2yOFuosIDAos5CyC6zdrsdEVVhwtddrzcRFh7IJkQ43JOdZRGbwU8EBgIdi6V32NiJ9bVZEG9vb0sqG4wSqRoRy1x32oMDShEhLXI4AsAkgxVzb+W1+OHFhvpidCCPmKwQUNtIoYh4IiLmiN8cYcEiTtQCeaLpJ4/BTCS5z1hsvfBYbDGY2LZg8ZpTzzh6nbHCsyFseaHP18+CDgYjkwA2qBhKfqg/0Ricp0ffmlRYr9cxm80qW5htpLzFOwun3HubuGlAhFDLNRg3Xj8QnT/55JN49uxZPHv2rOymo0CAEeXT6XTi5OSkiF0ungv+f9taxg9G2JFNHjeZ4KpLXepSl7r8YIox0LboXhPRfN5OGXbOuLPT6ZRgIlL/GtOu1+uYTqcFE/Iejgupi7HfdtbsPPo1bJ4dSgsotv04i06BGLFxAHHC7DjSLt6d5fTTXM/BaDzbarUqu7MiqrvpXC/amQCdZrNZziDlc/f39zGfz+Pg4CBWq1XMZrPSH8afDtyyTeVeOQiJwDTa3BHDJkGM3ba1tYkJ4xPua0fSgWLGDR53HqceY9TJKQxzNgmKo4ot0uV6Mf48F4wfTQpmpxssamGT9stzyGIf/xsnc21n0GAs0MaOyAfvQkTweZ8DMZlMSvt0Op0YDAZld+V4PC7BfRBEnpM813w+L+PAvpTbxmOPtuV6kDWdTifm83lcXV0VTNlutyv9y7URyq+urmK5XMbR0VHs7OwU4jNiszuBMZIJDxNaHlMOYKRsE8w85hk/vF6XutSlLnXZlBygkO3+NjsPhsmiGtfjfQrYbW9vL46OjsquaIsJFmSur6/j9evXMZlMCheT12/4CdcX+zeZTEq2rGxD4J8IesYugau2CSvGknt7eyWYhDaxDfbuPHgqbLn5Fwsi3NupmPnfPC1nUZEmj7POfP6v7Z2Dvb0zfdsmENqFXetgEp6dOtAPcJsIcFwD8Q8cbKwREZU+8841i370JZiMeoCzzT0a2yB6OojJWBT+juubq3NWMfA2mA4e3r6Jg9IYNw4eZEyZMzOGXK02WSrMJzOmuH9Oa4jP4R2F5uc8lwmwApuR/h5/hGBK4yfjOnOT8Ivw62Ari6z4Oy9fvoxGoxHHx8fR6XTKbkGehbHb7/cLp2l9xWPBfZ1FNDhfc5lcw76ai/0qY+Ksk7wr5QcintGwmSBmMjBReM9k+Lazw/LnvOhGPOaqZ0eVhRk+73OW3r59G5eXl+Vss4ioHFzIJLKQk51sdqcQAUHufE92R1FiOFnMHF3g9IrX19cRsUmrwkIKITGdTotxZaEmby+LAISF26109v9xBpnkkPtERjrFCO3PmRURUe7LOVNcu91ul0gWb1n2AsxYcF9bIMVZZeLe3d2VXK/5HA7aKO+0oo8oGEXqw6LrMZYjbLxIR0TZ2pvFE+qdnWdHF2y7nvsDw5FJO0eyIqLxHIxJoqS9/d7zxcKZhSq+iwH2ggtByAHtfN6G7+DgIDqdThmLtKsjoTCK7hsTJl7MMe4IdE5D6mjhbVE3Fszcfjz3bDaLzz77LBaLRbz//vslH/D9/f2TZyTK4/nz50VMtpEwueL2pG7bhDVHXmeA7f/rUpe61KUuP9jiNTeLFhFV5zivyyY0sNGHh4dxeHhYdujbmbBjYpvL97FfdoYnk0klKAY8hshkByVHB3M9RyNjnyLiCRmC6ME1EGmwwxZEHEEJhsLuGT+YRDH2dVAZtppnI1KXduHMKGNuB/tARvA8DpTi+gT6RGzSDvIaOBEs4TpTJ3Y0UZzW0gQEdXId7ZfQtg5e4nOOWuUzERt8lwU3C5jr9eNuJZNJbkPuD0Y2zjb2MK7hMya2KB53HhMQeM5Awdg0GeH2zU4271MfngPCDaEUTAhxNx6PCxFGP9Kv+ArL5TLOz89jNptVREcISPcNz04wGoRQr9crwZfG615DiD6nLU0e7ezsxGAwKPW1/+v7rVaPEfGkL+/1euV7PCO+l7Gu+4o1wOkzmROse/Zj6HPj0M/DpTVOrUtd6lKXp8WYBxtm7jOimgoaW+PMUxkP+NoRjzzc4eFhwU5wYgST7+zsxNu3b+P169clDePnBT+AD3NADPcDN3Q6ncJZZj6v0WhUzi/lt4PNvJubeoMXzevwzE5D7LqbO6UN+eGeYEKeodPplGA27sH9aDuLUcZu7OKjDbm3sSZtajxElgXvhsfWO9sXdjpjFuw8dprnsYBGW9Em8GTuB7hh7g9O9u4+b1IA8xun0u74EGA8vx9RzbrgMQtvbTHr4eGhbK4w9rTflflqXkMcdV/CnxP4ZqEVDMSYAosxtuwbecejs0TZp2BDy8HBQfT7/SLcRkTxz2iDnMqUZwK7kpEgi8/U9e3btyWY39gYfYGNKPhVpGSl7e2juM3wgywYUk/jfovR9nUyNjTnWYtnf0BpNBrxj/7RP4qf/MmffPLearWK3/3d343f+q3filevXlVUWcgBOtaOudPr2fHkmkxO1yFiY4w6nU6cnp6WHUMWNRBKdnd34/r6Oq6vr+Pq6ipubm4qnc3igTjjSGAmVMQmCoToBqfhMYGfiREWeJw2rmVhkd84mDYkOeKVyUxkCY6bVX7EQqJILFLZOOGwjUajQnTYsbMhX6/XJQKY6/ncCU90FtzsjJs88XiwEOVJ7bHiv73wskixIHosOZqF/vVi7RSKGDOiU01YcI2ITR5iG7EsvnkM2Gh5UYPI8ec9Hnw9Ps/YpK5uWxNxNgh8N2/RNhjCmDp9D/VlPHqcLhaLUh9H5li8NDm3XC7LwZveBUgkLmMzp7TkHjyrUysZgLoNGd+MkcvLy1gsFvHBBx9Er9crUUcQehFRjHu73Y7T09P47LPPijH2HKedTejxngHfNsDq9nZ/5c/WpS51qUtdvv/Fa63XYuOTHBhjO8b/h4eHcXx8HM1ms5zJwHsOtMLxw86ZOMCxdJYBzjZbrzdpZ8B0DvbA7kIisNufQCrbYuwUdpfvWSDKYgn3tLji92kTYwx20tHGvV6vBK6R2sVRkkTpNhqN0gYWIXGQqZ+JBdJDch0H8ZjY8M402gqba+GRvuee3nkHzrcwY8IC3Ma1qa/HjLNURFR33vuQceNDntWOPv4IEdwmkYwnTMjxjJn48HfcDuAqnGgHQhkn+xom/+xkW7xjjlh8cqQsbcf9uCYBfHwG0oc24D7szouIJ2fvIko7mI7xA2HiMUJ6JjJ0EDTmXY+ZMCAjg9P80LcIfmBPxpGFTKKKiZoeDofx5s2b8nlHmfPj7xt35gCB7Gf68/YbjEc/T0irS13qUpd3vRgjek3GVlKMK7Dp2abyeQtVlE6nE++9917s7+8Xe0Xhmufn5/Hpp5/GZDKpBE84aML8nNd1219EsXa7XX4iomDR/LzUOSLKDm8H6yDu+Mw1doHlgJr1epNCzxwOth07z2/ee3h4qOwK4jwrXz/v1Mrt3ul0otPplDYDd2Xhzv6CuT5+wJoU2p028vciNpxy5g3NqXmcgE8c/GafgwI/zWfm83l5DfxtjGhe2FjbY6jZ3OwiBE8hWhmLmKMjgxv+z8PDQ8kA12w2y3m2fi7zn+Ap6wC0j7Neub+5jvs/t7u53G0cnDEqPDHCE+db4/81m80SXOfvGWNyz2azGYPBIJrNZiX1O/wn9yMTwXA4rPhY0+m08PTUv9PpVHbKMZdoK+7tcWm+OYthvEe96ROPhcx91uLZH1AajUb8xb/4F+Onfuqn4lvf+lblvU6nE3/zb/7N+Nt/+2/HX/trfy1evXpVFqG8aEdEpcOsrDJZvAizA8viCtGgz549i16vVxwMFuV+v18c9qurqzg7O4urq6uyiLOQck+LMBEbR5mJwd84T961FbHJt+8IE4yWhRYiADCAEAaOHPUCQsSkhYHZbFZIlohNDmBSAWVRg89EVFM3RkSJmrZjj9PsRcxkAouXF3TqTTvkQ7chjRAF7fjzd3bWsrhqxz+r/NSL+rBoAVocnU1f2uDQZ0QKcH0UeKdLcWEsZGLIRhBiC4LFgqKNZDbO9L2NgY2xozgiNhEGeft73hXIc9CHFItFBgHMRciBbc66x4jTHwGouK+BDP1t4ZG6ZWBpYEKdMWjuPy/o/AY8XFxcxMnJSbx48aLUi4iiiE2k1snJSTk7zeCT4qhq15fxxm+vawbDObCgLnWpS13q8oMrec21Y2SBhpJtMQJGq9WKwWBQCH1SwRjjQXJwD3CZzwhdrVZxfX1dSYGMYwbuI8Co3W5XonYdfWnCxpjMJAzOllON8FkicbPTD440BgQ3UydjWcQf7K/PFzbmcYAcmO/u7i6m02lFDMHuLpfLyk4hMDbtjZ21g+zPObiGvgeDGi8wDsAm3gFvbGF8aYeU/000WPSKiAqm5/mNF7Pf4HvYH6G+Ljz/541f2sM4hufJ7Q3uZLx6nOGf2YGm3vSdo4GNEX0vnp/XjSt53Th+f3+/ZDyAqNjZ2SkBghApFghbrVacnJxEo9GI6+vr8ozgXLA7z0N/Ic7SB/iMy+UyBoNBxRfi+5CaeVcjc3tvby+Oj49jb28vxuNxJaLXYjVrynQ6jf39/ej1eoUQZU65DS34MTbtE9EmXv+4r/vGnzE2z6RSXepSl7rUZXux3cVG5WAEbJqDRx4eHiocnHmhZ8+exXA4LAEoTgG8s7MTL1++jG9+85sxHo8rmQba7XbBbBHxHdfznZ2dsnMKYt52EvvqLEhwstQbO2dbQgYfAljAw5xhyn3ARTyjA8XYYeOgHXgVrnFzc1MEIPOf3Ne7w2ezWcnYtV6vy3NjuxEMCXqBv6NkPGSezGIUfW57CiYwnuV6ThWdOTNfy7jT/KXxoYNtwOdZ1OHz4DZjXPwCB6OBJcyT4pNQB4Qm86/UHQ7VO8CMY1utVmW3Hbge7OPdZ9QTzv/h4aFgdfs97OznetyT1/1Z/A9z2nCse3t7lWxUi8Uirq6uot/vF46Xuk+n0wrP7d9oGRx/xGcZM5zJRgrH1WoVx8fHlV1/Fiyp697eXsmmRf+Dt8Ho9PE2oct+i7Gpx1necOR1pRbP/pDld3/3d+NnfuZnKmC83W7HX//rfz1+9Vd/NX7+538+fuVXfqVCHtP4JvJN4BvcZ6eU4gEREXF0dBT9fr90XF4gOLT56uoqzs/PS6o5yjZ11k4cr7Xb7YoD72d2Pb3QOXrA0RVEFZLCwwuYHVO+32q1CjnDxGGSmCjh2X1f6uYFDNLDEZ/+TLfbfUIaWXhDdCDamfs7coHIS9rHIgnRoRwymp1yCBnS+ZBS06JmFtV4BtoQI+DFfpsQQ3/ZAEF+QWpxz6zcUzAy3Mtn7q3XmyhhgAVt54XJxocFzuSExyKfwziaWPGWcYwUY84iJtegDUzgMHbdzv7fCzZEgw0yfY8ovL+/XwwFbcA2Z8akDdu2vvY4dbswljFyXl94Vp4NsHZxcRGLxSJ+9Ed/tPRHu92Oh4eHUuderxenp6cxHo9jNBpV5hLzcBtpZpCcgwIwTtteq0td6lKXuvzgizHcd1p7HeBju3hychK9Xq/Y1Lu7u7i9vS22EtuEswPG4JytxWJRzmXK0YK2YRYk2u12uQZYwtiE7znoiPpmnMN7OKJ2QCE+IjYBMxQcJATE1WpVDrGmTR0NSVtA3hAd7KwOzWaz7MYhbbh30Bm/0A85MAjsaD8j7/DKWMftmwUm46Qcpeyzt/x9j6OMVezku2/8DOCXfO08ZsEambDwGDKucECWcZoFNOpBv1EXC38msvx5+yDZeaatZrNZRQT08zMG3S7cw/4W47fdbke3243Ly8syrnq9XnS73Sfn1CIIIywhKtG/zjQSsQkWY3zjP3qM0c4ErDnI0VkgeAan/+E6iG83NzeVcwzxBfv9fsU3PDk5qYxZrm+87jHi4nHpPrfIy//8zbVrbFqXutSlLn9wgcsxz/UHYUsHO0VUsZrLYDCIZ8+exe7ubszn84IRSCd8cXERH3/8cVxdXRU8hq1pt9slKMkiBfdw8LCzboEBXNf1el0579b1xT45HZz5MOw3/CvBIdgwBC6CznIQOK8RJEPgOFyqsxLx/KRRfHh4KFxTxj0RGywDZwVOgIs0Z0NQUcTGzuc2zHz2arWqHKtjUQjBzuKbxRz43iy+OkAIXJWD38CQDujnvg4+M5YwF+2+NBY2TvZY5z18hCzYOPDMfUq/cQ8/B+PWnKO5XwRH85O0F31lbJYDliKqKQ3hxcGWFio7nU6MRqPin1F/zmVGPANX0re+r/t5vV6X3Y6TyaT4R2DV1WoVk8kkXr9+Hfv7+/Hs2bPiLxIEidC8t7cX3W437u/vS6CVMT/j3K85UNBrhtcHivG9+UvGad4c8K6U71o8Y5I5x2fEY6Tqb/7mb8Yv/MIvxJ/4E38iIqoEhCMF6DgrwiwsOMAevFZQ+b/T6cTh4WHs7OyUnPY7O5s8vff39/HmzZu4vLws6i4Lh51e7uHzHlgUyVHqHWqkoWEAR2xSAvJ8RBB65xeT7fb2NsbjcRl4TFYviLwOeeKD6G0s2M7caGy2R1Ns0GlrtmHTnnmrLAtRs9ksYgdtxrOySJDCxDv+IJJoD+rhc8YiqlvTaWsvyp1Op4honqxevPmhr71A0Q6ML54zYpMKiIXfkb4sLCxiOOB2ur1LylEbXqR3dnYKoeZ7OlLGETIUR9zSb3buPWbyouXnsLHzAmpjQDtZFDRoMtHitvb5c5ALiFDcMyKKwMu5FMxLrgPA8VhkDjFfHE3riAnanmsxBogwAmz4cFj31yeffBKtViv+yB/5IyXSg3WNFFztdjuePXtWieawyJf/9k8GO9mweG6+i0anLnWpS13+bxeLEDgLn7c+O9AG23R0dFRSjpCiEBvYbrfj5uam4DCiG8GTNzc3cXZ2VoI0sAFgN0c8mihvNptFeOt2uyW9dg6osVgHmYGdJWAp/2SyHafXmJd7cG3sO4QEuNI7j7KQgO3HuRyNRkUcQzSLeAxG63Q6Bedm3AgZg5Obi4PQjIEcFeqgNHAL/YzTmQktjwX7LRZK/Bun1EFG9I/bhWeCEMiYANxjgY/3twkldtbBrfZDciAWz+NrcW+/7qAkE4NgN+9So574BJAZxpu0JZHIxrG0RRYVOfuX1/BXer1ewX8+/4w5ZTIqi04WBekriCVHzHvc+HyVTqdTGU8mFB1hznj0roCTk5O4ubkp4x88TDsTlLe7u1vSSWWhlnrZ/7EfZJ/KZImvYULPfVGLZ3WpS13q8vnF3CH/89s/EduPfIiICv8D6R8RhWs8PT0tmQdub2+j1+tVzk56/fp1nJ2dPUkdHhGFxCebge0v4hu2AUHCXAfYl2ARBB9/HjEJnAInghjlXdngAJ/hy3XW63XZIQWnlHf9u/0c1OJgI7AvHLU5tiw0NRqNwp9i/7HBxjDYc/CCuUI4UAe/YJOpl7G2+V1vlOB+YJ0cjJ/FSdJYmiOkHxyw5bSVXDMiCubgf5e8gSQiKuJfDrTnb3COU1TyeermZ/MGCPwc2h8/iWf3TjGPM/sdDw8PhTc2bvbzwME6+wN1xReDkzdX6512Fpa9Q4/0/Pg7YLvcxtYydnd348WLF5Vz0/BxEIlfv35ddqt5/XDgFbvW6GeKfQfPa/cP7Wm+3XW2H5gDAcH/7yJW/EI7z7aVRqMRX/va1+L58+fx27/92xHx1IgYlHswR2wcXxYbFtaIqHQoDuXp6WlJ18i9Wq3HlDqLxSLevn0bn332Wbx+/TqWy2U5BHxbNGbEZoKxIHJeA4uPIxizg8FAZnG1+MECzKTzwdFZOKI9cM5Z9LgHdbGRZcJ7crCA8YNg5gWA+63Xj9GbGDkcQxvLTChYsPDBgiwiOMYGDEyyiCgEiQmkVqtVdqpRX6dToXh8RGzOFGAisyDTrh5frs82R5R2gUQCNLDzL2JzHkjEZru5xRzayWCCemBQs1BKP7Kous2oO/Xj8xgixgXPbIGJAkBwSkqLTPQB/eqx5+8BpFjk3Qfe8cXWf9qNyHKL0cxFotUZ97Sr28SEgNvIkUsYj/l8XqJ6ifLPgulyuYxXr17FwcFBmeeQZzzDcrmMw8PD6Pf7lbbK4xEDlgmHzwPSBtPvosGpS13qUpf/r4txh/GN37NwNhwOYzAYFHsDTsCWt9vtkk7O77Hb+e3bt7Fer8vOE2yG8VQ+RNqBGBFRzgydTCaViExjYwtnDvQx2eEdP/4Owp93Zm0jWCI22McFXMRnc3YJHHswhbFSr9crqXkWi0XZZQQWBOdCrPC81Ne4B2HF5035sHna18E5kEJgzojqWXGua8SGNDBGy3iKa/CbPuXHGJxx6J8sjEbEk3FjUiOLH+BLEzn0Wxbf8H8sGHv3Vo48Ncnhe7daj5kywH7U20FTXN9+EhiPfjJBYMKL8/Om02kF4xPpC4nh/tnf34/j4+M4ODio7LgEO9MW+GnG1OA7v894nUwmZeebfUuTXtTZ9+TZj46OYjqdlij8brcb6/U6JpNJEZpXq8csHRl/ui/tF2zrU/vefs3+d/bLt5FqdalLXepSl8fiNdTck+1oRPUs+Bys4Wvxm/V9OBxGv9+PRqNR7ATZdu7v7+P6+jrevn0b0+m0pBkGU4BlwExg1k6nUxGUsMvYJQsd1NccVd7JROpDyH5EAI6DMcaxTXdAB7YGDofAfTYomKONiIoAw84b6gyf4xTjYD2wJfbX6ZcdaAZuNK+IPacd4blsTwmoc4CRg5DMBzIeGC/mQp122QH8tuXmYxHCwIlZFDPWpO60p7GKA2yMM83zuq8c1A7O8f0zxw9u9HcscsFBM3cQzHjuvAEDvs5tYZzcaDQq2S4QcX3kEePQfFzG1lwLzpvXCWpEsJvNZtHr9eLo6KhoCPhcpOj3JgevCWTnYpeiszosFov49NNP42tf+1oMh8Mn44l5a3+PNsjcqTebMBbMSVu3cP+Zu7QQ7LnxrpUvJJ599atfjV/4hV+oCCA//uM/Hn/lr/yVmM1m8S//5b8sn7UTuE0JpmShhZIdMyJdDw8Py2LOtY+OjmJ3dzeurq4KYcEBzZPJJDqdTgwGg8qAYgGIiHJItKNBHMHoSMuIKFGRjkSN2Ezs+Xxe8usyIYjYjYiKgIZq7kgFJo+FKUdCUn/EMxaCZrMZw+GwEnHL4utICufYtXjI9yB52FZ6e3sb19fXcXR0VOrK4hpRzdPsNI70I/XgjDVHeHBf6uhxkcUK9zsiaxahto25bQuXjda2hcKRBh6PWdCz0XH0qRc0SCobVxx/xpWNhfvNdbf464gb6pKBm4UtE0YYABvw3d3dynZnC1gGPbQfYCr3B8IeERw2QhhBxkJElN2GRPazW4z+dx/5bBWic2l3yJXRaFTua8GcNnl4eIjXr1/HcDiM58+fF+HWh74T+XV+fl7aL48vrkd7ZWLC0T4eM3mdq0td6lKXuvzgiu2q8QJ2xc6THZvj4+Po9XrFLmQhhAwAYBockMlkEp988kmMRqMKaY8QhM3MaRddR4tb6/U6ut1uNJvNmE6nxR5hz3HwwLTYJGNGO7c4+8aJXIN6OBW0HVvsJViAADUCZBATCbghaAZyAkxrgYO2IAK51+tFp9MpmIHPOIMEbc57fj6fZ+p2pW3A79mxzMQJdnwb1s9EhvGfnVP+tkhk0cxBVhZ0GUtgdF/HuM241E61x74DySyo0c9Z0ON9z41tWCaLexFRCKw8/4yTOMOLMWt8Rj9ngajb7cZgMIiLi4tYrzdnqtAv9Il3c93d3cX+/n4cHh4WPMrrzWaz+Ge0F/6UI4q9WzQiYjablfeJMB4MBuW8FPul9IXFZ4u24OF+v19JsR4RJQsCcyxnQch+s/2a/LltvrWFSvvadalLXepSl+9cHECThSYKazQ23pggIp7gh/X6MTXbyclJ9Pv9Sjo2uK7pdBpnZ2cxmUxKhh3zWmBYztr0rjQwBRye8SG/jQeMNyKqKZF5HbL/4eGh2EZzpREbgWq1WhX8C5YDA3a73RLMDDaxQABus12bzWYFS5grIqia4G+eiR1OEZugbeqFsMB5cRamwJm0bQ52gtd0Bi/wqIN5GC/eZWghyXiK58y7xjk/znwcHHK2+dyLupNNiTED9jHPbR6Lz3kM5F2OzlYB5jH3Rh/jX4DZzD/aD+PZwG7m5Lkv2H612mwcYLwydhFJuRaYy89vodNcpYUy+2IWnDyG4SH5OTk5icPDw8qmEuNtrxNkb+DIIDYocJ+7u7t4/fp17O7uxmAwKP3gTQHNZrOkNScjCmOINqMe9In1GXO8HnuMB75jYdWZ8N618l2LZ+v1On7iJ34ifumXfunxAv8nncwnn3wS/+pf/av41//6X8e3vvWtyucjqgcS24Gyk+H3LZjZEEVEnJ6eljz3TGKiNKbTaVxfX8ebN28qO2RWq8eI3dVqVcktyuQib6iLBQlHZVh9h1iIeExpuFwuYzQaxc3NTTlnyQowopUFMosvLOTch8XHEckshIgUkDFEf3DApieeBUNEk729vUKcOIqaazabzaKYcx4UaURIWWIwwPMj2FCYrExCk0G8byGFz5qgsIHI0Q2873b2AmwRz/UxmLEgE7GJosboejcUiwb3cfSJFyxHtbqf+d+LlKNwIza7r7xo8T3X0+JSHj9uP481Fk0flEr/2onmGRhDjGWABIsxkRyMawtpeetzv9+Pw8PDWCwW5UwxAM18Po+7u7vo9XoxGAwqO77cL4wNgz3uBYDc2dkph3kCNNx+GNNvf/vb8eLFi/jJn/zJMt6J7Oca7Xa7kDgWzry2+TUAiYkKi275mepSl7rUpS4/uGJiI6JKLvszfr/RaESv14uTk5Ni850aztG5OO+r1SpGo1F89tln8fLly5hMJhV8AQYdDofF0QUzmYix4+KMARGP52Bg1yKqZ1AZpxKNbNvntJLGkD4kHRzJWb8RUdKR8xk7x+BjnD+ntDPu40wznpvANsQLRIjpdFr6gXqCs52RwpGoWRjwzraMU7mWf+gHO5MOfOK+DubiuxapPHaMu8Cg4F6w6jYixrhiW+CPnzVjvYyH/X3w6Xw+r/hbFnXyvPD1+YwxpkUoZ0AwOeUMFhFRsOR6va5kzcCP4TPsxOQa9H+n04mjo6NyXh7kgcVriCTmhduZcYrATSYQj1V8EqcOstiKb7lYLKLb7RYSZTAYlDMw/F36zYRgRJS5wo7U8Xgch4eHFdGX5wMP42/Y32E+fl4/GtNnwdW41nOoLnWpS13q8geXjC+xvfAiFNZZk+cICr5Wu92O4XAYEVGCr8gQtVwuYzwex/X19ZOzc40fIh7tc7fbjfl8HtPpdKvgYhyLrfKRGnAfzqBlUYnnMm6J2GRfAgd5Fxw22Ud+UF+uhw2njeCZsOXeiMD9qKcFCgcagRMs+LnPwBM+84z7IdBg383JUTiXbpuQanGK1xE8aDtv5gBL8VkHH0VEBetYrPPuLnYggp14Nu5FW7sNjE/5PDsK3TcWgzg6ydm4EFbYTdjpdApHB7Zltxr1cZ/Sn3nTgTk8rmk+PYvSXIvxbv+HsQjWM47K89KbHDw/4C+5D+IkP3t7e08yjlhopE2ZdwcHBzGbzSoZRtAVPvvss3IutDE8dWi320/OzXU9aU+3oQVBc9TUKwu5mfd8V/nML3Tm2e/8zu/Ez/3cz8V6/ZiG5pd/+Zfjz/yZPxNf//rXK8JZxNNFNYtjft8OosUNO6it1mO6i4gozna32y27zubzebx69Squr68rSjkTh/MWME5EOkRsogW9HZVB7bSGROsyAXi20WgU0+m0pGZ0ahsW32Zzsx2ZdvCZAYhgPgwTQ2VDQ3SvJxzGicUbp5PfGC7aPmITMYBBpZ0xtqS9yxPdESP8sFhTB+eG5XnzbjWeGaOMek+75wUCY28DYgNN/3FfjytHNZhkoLCw2CBl0dF1+Lyx7Lo6+gTj692FJoSy8OY60/82PLneEVGikzCg1N0HWJrMMUHH/OHgWa7H8zCuvDPN+bR53/0eEWV7M9dDqCM6gnPJ7u/vYzable3PPqOPe2AU8nNBvjFnIGbcbmzl5/ur1apsif7www/j2bNnlUNrAazdbjeurq4q64mLjX82PBZqXXJAQF3qUpe61OUHV8CRdmAjNoEtmTg+ODiIFy9eFDyWhQ2wDE7u/v5+fPbZZ/Htb387zs7OnuwiwdbZNvHD/fmdA28iqvbF58IikkVsAnGyrXLqmp2dnXJWFO0C/oR0cFRnDgbZFgDk88Ooq5+deuEsE9CCyHB+fl7amOtRwMiIaGBwIkrzuWhZNPP/7mc7/9TPWIrr0o4QAmArk0s5aph7Qp4Zd1IsikLUgPVcPwfxcQ3wcg4utBPM2OQ1k0jG8vzehlHcVq4Xz5SjwDMZYPzs9gYjepy67RysxPkp+BwREb1erwT2+V4QIghv9BEHu9ufODg4qKTFItUUY9xY3e1hEiIiStpFyEV8UeqSxVELz+v1427S9957r7TFYrGIwWBQ+gH/AExK8RhzcOAfRgCzgGbfphbP6lKXutTlD1/ML+Vg5hxYk23sNsGp2WzG4eFh2f1EimJs3MPDQ5ydnVWOgLFw1mq1Sgps8AOcEEEizvoUsRFiwIIOqiYbj8+x55rOasQ9jKW8I83PTJt5RxTPb9sKxvXZuOAePo844+wExmC0j9M5R1R3fxP8Bm6gD7HRtC14h2Ax6kCxTfaONj4H5jZHSd957ICx4Ky4tnlaXyP7CnC9PAN4hnvwff534BgcGaKUhSVjSfc97cuz8n2+S6Ac94EbZax5g4J5WI9R/jeOz3j34OAgut1u+f5kMqmcvUsfG2szXwiKMi+a+TuwadYouK775Pz8PMbjcRwcHMRgMIhOp1NENwvoxtg832AwKGIi2kOj0YjxeBxnZ2dxcnJShGWwJzrC8fFxjEajitiZ1x6eke/zGfuReVdexogWqt/F8oXSNi4Wi/j4449Lo/2dv/N34t/8m38T//yf//P4G3/jb8T//J//s3x2W0RcFh0YcD7E0E6dfyDVPaF93sTV1VVcX19XHDlf06IJCy0LQUTVobZT6gHvn8ViUQ5+nkwmcXt7+2SXkBcrhCMv9EQ12nF2JEGzuTlTg0lOGhIMJAaKiebICdoeEoR7cnYEfUBdyQtLRLCNB+3HwuhnY7IhDjoNJWPBix6G9e7uruxai6hGrOSJnckJFj9HJHtRcL9SbIz8OxMIHissZAimrr+NTl5oMUwRm/zHEDAGO1mEY7GiPfgfg8V1begt1jB2GLMm3rzg8jn6kkglREzS7zCmDCgwfFwrYkM4mWjhtyOmAEAmoCChWJQh+fr9fhwcHBRA50XcfQZpYtBqkLNYLEqaHz5Pnc7OzuL09DQODw8LkQdY6/V6lfYzWbTNcHg8ufj/dzVaoy51qUtd/m8Xr73GAhnjWQx7/vx5DAaDgjVxfAhW8nX39vbi8vIyPvroo7i4uHhim7NTOxqNIiJKGkZHkRoXm2S3+OdzHSKi7GiL2ESskh/fwhlYxqkasakIemRmIH1IxCZIyTu7HWBm7OHznwgy47NETjulMs+BmOTU4t79ZuELjAfpkfE694bAccRxxObMBu7Ldbelh+GZjEuN4TJOtFMdsYk4dl86GC0LNIwr2pv/jR8z1jTeYQzjINPejENEHfwNrsFZKiZecr3zjkvmjLE8uJE+9/v0g5+TuhK9C8a9vb2tCJJ8x1HrBOkhrHHOCp9zfb0D7uHhMR29+4AzriEo3S+M+Tw+eM3k3nK5rJzZx3ilHZlrYOjDw8PiT3rnHWsBgjMiogt95P6w4Oo5QXvndvfvGpfWpS51qct3X0y259cpYJHvtC7v7u6WY2lubm6KvcAWsuMajEkBD8GVcF84oMFgUIKUzeX5++aV7u/vYzweVzIDgBvyLiFsG1jNAU3e8ZS5UO6L0OTAbtqD72Kb4IYiomCAjFUcVA9GwL5h38FgCI3gQPoA2853jFnYUWVMyr2wwfwQFGbB0iJE3j3uZ0I8BBdQDzCkd+zRz2A+ftPGDvinjsZOYC5jwohNWvk8Vj0WHFxn8ZN7OBU83DHvWcgD58xms9KWpHcky535bG9QAOfhx0yn03INB0Nlv8VpJAnmI/MBmNgbCuhHC8PgReaEMebOzk7MZrPiTzLOzOdS7MswLqfTaSXY7OLiIi4vL+Po6CgODg6KBjGfz6Pb7Ua/349er1dS+3uzgMVaz3v3p3EgY83rxTY94V0sX0g8y+X6+jr+4T/8h/Gf/tN/il/8xV+Mn/u5n6uAfE8qd44FB0omxi2uocju7e3FeDwugw/Dslgs4uzsrDKR7VigMJMyh1Rx7XY7Op1OIUSYiHZCEAqcnufm5iaurq5iPB5HxMZI2EnlGSI2ohBEhp1jFm8cUBY0Fge2Y7ITZzgcVqIseBYPeurPby8wzrc7m80KIWSyxYaGHTkYUFL8ebJjADNhxP38/BhSC2EUnplny4Ki+5XxxDMy2TEOHlP0gT/n63jM5ChYj2OiDCI26WW2LUz8bWNDGyFu2vDTHhYRHYGBkaDt3X65zTEUGKts4O3IR2yMb+5L5heL+Hw+rwhtJjogJ4gkcuQN7ctZZIwJjwvaj/SNRPzf3NyUVD2OEKKtILOYMx4jJi16vV4cHByU3ZSU+/v7OD8/r2x7Zufq/f19SUHlMWJwkXcrmlT6PIGtLnWpS13q8n+nZFECG5/fxwHtdDolXSO4DkzhKN79/f24ubmJ8/Pz+Oyzz+Lq6qoSpWlnFbuKGHd9fR0RjwIaeMC7nRqNzS5uY2bSLGLnCDBx2jyLKHzfpELEJpgHJx2iAOIEWw8W5vwxnMvpdFrENtqT/8EG7Pom5Td2G9yEgEBA3HQ6jdlsVgK7XOfd3d1K5C9CpqM+cxAREcn0sQUGpyjymXS24avVqohNEVGpl7MTgOXBNPSNCRju6zGVhbTsr5gcsHBm4sKiKmPO2N9kHYFOFvsspPAcYGgX43uXjIs85iEfPJ6NjSgW4dhNNp1OC7Y3WcH1SZ+EuOSIYQgXi0LUk7G+Xq9LOqLFYlHmPvMQscrkCGOA70dEwb7gT87LZUy12+1CguHvQSgRGOZ57VRVFs6ddYE24zMmYdyuxv30a24Pry11qUtd6lKX767Y5nnNtb00LwUusNjG+gueg2fLAsn5+XnZWQIXQ/rfvAvf2In7Irw58MZB5nd3dyVVJLbNgkzE5jzSiA0ugNey7eJ6cF9wXtyLNN+0gXHYarUqqRqxfWAB+FXwFIHX4DGeie/Q/thSY0jqTSGrl3fgUSe+z/ODH41FwSxgEuMmc4IWmaifx0Eueccd3/cxQGAk7yTM4on5KnwR404wtkVU7m3xhN/mFx18SJ0slPIZi04IV24j2tdjqdlsFt8Abp12w7fib284ANcxHhwsZywL1rZwyrgA87VarRKgRWBUDjyyD+CMWxcXF3F7extHR0fR6/WeiFi0jTeMdDqdaLVacXNzU9p5sVjEq1ev4qtf/WrxmyxQ7+3txdHRUVxcXGzN/saPfRCPOT+LRWz/8Ey1ePZ9KP/jf/yP+Gf/7J/Fr/zKr8Rf/st/OX7rt36rvOcGz52QOyRPTnd4o9GIwWBQmeCozBER4/G4ROB6sEQ8TpLhcFh2bkVEceog35kQPmMhIooCzMQmneFsNitGjImJcczqO4s+12GSmNx39LEjl1HcyZuao4D5Tr4ng9tGwEJazuePwEC7cX8IA3Lf4lB62yn3gyzx4pSJAd73Qh6xEXxYePkOC7KdRRsJi098x0IXi7mdR6fS8fhz2Rad691NXI92dn34PPcwQcJn6Auc54hNlJLJlrzI5qhS5kIWMCECvB3aAh+kkedgbm/uQzrRfr8fk8mkct+IqOxypM188OvDw0MRztw2Hv9+HnZ+MQbn83mMx+Po9/uFcOCzo9Go9JXnl8VE7kWkryP1l8tlEQZ7vV70er2YzWaFfAGkedyaNPN4cxtbnHX/1kRFXepSl7r83y/ZsbfdwX7v7OzEyclJOevSQRQEYGEPx+NxvH79Ol69elWcQa/v+Te4Abx0eXkZEY+EifGLnVBjEItGEA9gG4Qn22CcJ2c5MPGPwAFGsbjhnTCODgWj0RbsVOM1xLPVavUksGixWBTBw7u0CGghcMYESHbujM1xsk0EYedp70yY4Hj7+rbLxuK5WESx7Xe/+/wD+sb181i0WGecl8dNjjDnPfsUPC9jywE/fh6yPFhw8bM6SA2fguvSVpm4oP4mRbgWv92nYCcwKFiL9sT/gTQDSxpzNhqNknGEOpgM4uwIRLhOp1PGr3dHIpxlbMzP7e1tyS6Cz2UhNBMMEH6039HRURwfH5f2Zk76XBv8NO7N2uOIaXYAZIxucdb+kecNbZbFRP9dl7rUpS51+cMX2wzzSA584HO2HXzGPFfEo53kzEsIcwQYAjJev35d8FKz2YxOp1PwnXki3wd7hc2yLSMoiXPoLcpFbFLwgSMiorJDCXtrkYn7gg0zxwN/6KAZi3TwRlzfmbnApXCh2H9sHjjA9pnX2U1kPOi68R3zibaxfj7aBg7aQVPGMhYiuB/tQ72wwz4XzuMjF4si8Jn0pzlAjztzevQpOMU71CysOOAnYoMH6TsHLDH+LXBmrEZxu+fsABbCPP7BVnCw8JoE7xGoRX0Z47Q9Y827DGkj/BT8IILxvIOTDSrO+IFIZ9x6e3tb/B9wK9e4vr6O29vbePHiRRwdHT3B3fSn+3Fvby+Gw2HZNbpaPR4R9ebNm/jRH/3R0i/0x3K5LDzm1dVVeZ++s5+axa9tAu62oCu++y7jxu9aPPs84ne9Xsev//qvx1/9q381fumXfil+53d+J96+fRsR1fOi+Kwb3RPSA80OXESUyDwWWu9cYZIzCViAIh6Jg36/X9ltZdGCKNuIiNlsVrY+kncU4pz8w0xgFlsiH72LyDvJWOAd6UA7cm2r8Dxzo9GITqdT0n9QB++wQRyxgw4JkhVwFgaMpR0zDDNkBE4roiL3RGhkJ5rPbbBjigPPfTHOGGAvmKSx5G+nRrEByeIf7eQdZog4GC87jznCJPeBDU4WO+hXPudzv0xmOBrZ88R19P95vGN86EOTPdnJdRoi7m0Rz1HGjAsWeItadsZpJwMHgBlzyWf2ITwxjwAxBlKOZAbErdfrigG2kW+1WgUw8fzMzel0GhcXF3F0dBT9fj/29/ej1+vFZDIpRpa2tbic15Hj4+NCNELqWazzWWqOzDL4zaReXq/oX9qZ8i4bnLrUpS51+f+q2FZnciHicW3udDpxeHhYbBp21cR2xGOw1qeffhoff/xxzOfzilNOsdMKjrA9WK8fc+NHRAyHw0JE4ESTEYC6RETFlmCj7BTyOUiG+/v74rjauY/YZDygXk61DWGAPfNOmsFgUNkl40wT4FRSGyLycT8wKTaeoK2IzTnGvV6vkqrGhAOYnGfHRpsA4bMWS7eRIrQT5APCl+/lz9CHxp0RGzLA7WVSxN9ztK3FJ5MGtA/XMYZzZgKe2yQedSMam2IhjX6GJLHIl/Gv2xAyy5HqmTD0fHFgXA4mtJAELmWMOFId38EEgecvc4YdiNTFaUAXi0V5DzGO1KWdTqfc07vQWq1WdLvdksYcwpKUQt69mDGn0/fzN2eh0Z7Hx8dPAsyI8oYUHY1GRZAFZ0ds/J7sp7g4KM6+Je/lgMu61KUudanLFy9ec813UswTWjjBhsNNmNBfrR53WTebzRiNRnF9fV0y8xAIY/tJQVRwwAT3Pzg4KLaXYyuclhEMErHBmOBBYwpwqZ8JOwRPBCeIzYGn4XrYXGM5MBp/g7mbzWbJFAaPRB3JoJVxlTlDsLI3Fli4cfYxxBsEkUajUbhe3oNvpJjf5X+3kbGgg478rG77iE2WMNt3Yy73vYOwwJMOnLIgljlFBzxRT3PNxm85cNyBVZ4H1Ied93yOtmw0GtHtdouwSbYL6gMuNdYDH7lN4RNbrU3qRLjrbQF4BB02Go0KDwjn7iAwcG2n04nT09OIiHL+n0Ve2j+PXbd7xKOP8+bNm1gul/Hs2bMnadQtyPE6PtRkMilj8rPPPitnIx4cHFQy4LXb7Wi323F2dlZZj3K/2l/xmGOu5l2L+TrvcvmuxLPVahX/4B/8gydAnHJ9fR1/62/9rfijf/SPViIg/FkGIot6Fhn4vDuIxS0rxnYa6WgPBAb8YDAozpEXC/5mMcAR5X+cxMlkEvP5vJIv2JGCduipG/Xd2dkp5IcjLKivDYZ3wjGBibCI2DhmLAoYWO9Sc7t50bGw6F1pdoR9lpwjVbxIYqRyhAHPy9+OGslOvcUt72pD+KBOnswWBrl+HjO87yiE7Pjj8Doqw454Hht50c3kGP3tnUlZ3IOc8LOwOLt+Xizpe/qh0XiMkDURxHVYbP0MFsrymOezFjzpI8aVd+p56zHXYcEmhy8Eh43y7e1tDAaDypixUOiIae7viA7qCmDhOZiPy+UyBoNB2SXA2LFIbDBhY9FsNqPf71f6wMaCvsaAW+hzcdt6zfM1MlCqxbO61KUudfm/V7JAZuHM7zebzWJPwKd8p9FolF1T19fX8emnn8Ynn3xSieLd29srzpudUa6xLTCn2WzGfD6P4XBYiI1Wq1VSiROwZIGHoBbjPPAuu6a9Gyxiczi7MYrJfBMxjmLFZuKccu4wWM7p8ex0YTvJ5LBabXaYIbhhp4fDYWmPnZ2dshOPa7itsJ8O6gGrRmzOM4M84G/jc+PSfC2fD+Z7Q6DQlu5LHH6wq0ULE2afJ3Y4OhjM5SAm4xZeM0HnsYwvgz/j+zBewFbGnuzich25lq/h142tTSBYdEPIos6Ieu4L43CLg/QnBFbEhszj8w7acton2tApfqgrEfbdbrc8t8kwY3SwIudhjMfjyg43Y2XGK/UktSnnZnz44YflUPt+v1/u5/HBdTqdTkREyboAOQLmd3u72PfAB8himcnUutSlLnWpy/dezGPYPjtgx+sv+Ao70+v1otPplIAPbAM48ObmpohEg8Egms1mZaeYAzkiooJhbZMRic7OzuLNmzdPhDPqjF3LgTYOigdbkXWK72BznAb5/2XvzXZbS5Zr7WAjiT0paa1Vjf37bMMbOM3VuTrv/wLnDQx7e1fV6tSyJyWR/C+EL/nNEMvAsVdVbcAzAUESmzmzmxkjxoiMNHcbceSqckpieEFfGzxjXgz+kzZzL+phftOChAP7bb/JjGB8RFuMI+GNeI/AGwuFYPbML1o49TyxSIaP4jSc3mHO2PI58PkpDpA2M6b+2/jN3wWfMTfzHPc4OrDcbcS38NykndTD2dYQz/Cf3DfUCaHJvCa+j89Kzs8YOJD+ZF7mo3N4BrzpBP/mcDiUlIhk4EITYF7wbHhXJXOP70e8YrrPnz/Her2OH3/8sWRggJt1fTzvxuNxyQB3f38fv/zyS/z3//7fo9/vF2GNOTiZTOLjx4/lGXHh2uYlsz+ScaRxZuZK/yuW/+edZ//3//7ff/f9n3/+OX7++efKa1ls4Hd2/vJ7+bs+E8zfsYPAoorD0+/3IyKKs+yH3YILEcU+mPPh4aFs0zSZwL1wpplYjnggahLn3YSNtzva0WQB5BD5iGPqF6vckCcYNK7jCc8DhwOHY5mNBcaIe3A4oQ0sfbffv0aJ3N/fx7t376Lf75eFlUWBqAALNE4hY0d7vV5XhMcckZ0jOq3y878XAC/aFphM7FBH+gwDYcLDTinj7jFjbHK0gQ0OhbHldcbTxpj5jCNt4ol+jTgazyzmub8sXmWBkL71bjkbbPqaz3o8MCa73a4QYM7xHBGVdE2eEx4bp/VEgOY1xFbOjODapEX1mrBcLst5aA8PDzEej+P9+/dFrMsEDSATQMWcJ00pZCnz1s8qgCwLoqfG4VSxEJvXvLrUpS51qctvW7ADdhh53QEdnU4nhsNhCVaxU0nK391uF1++fImff/65pGgDJ3S73ZjNZhWsY4HOtjciSnAVEbPD4bDiMNtxxZkGw4FLsHNgVw6R9vlpttU5YAhbBt6hXraFYDF264AVCCqD6GG3m8WLzWYTy+Wy4BvOFjUWB2MThAMhZMJlt3tNoYyDCCazLW6322X3Dm3jXnb2HExn0cmCIX6EMat3tVnEAGfxvrFUPqstkyf2Abgfn/X4e95kP4Z2GAszzmBTp/c2yQCZZGLDQWq5rZlMcd0ajUbBUn6+eJ8+J+WSx80BkJmgyaJnni/b7bZEozNezAEi8C228T7YG38iIkrKRO7rZyIi4t27d+VQewuqPJcRR/LPZ9SBSf/85z/H5eVlicbmLEH6izYh1O92rylZEc/oM+rlINSMM41Vf+29utSlLnWpy/9bwdbyd0R1t0kWiiKqKQ39m89OJpNot9sxm83K2fbsjmb3sTlC83i2lRFRsBPYks88PT2VAGQf6eFUjQ4UNu6wIMG1ETXADhYjIl75w9VqFRHHzEXeoOBg/UajUXZ6g/8iorKJwIFSxjiu5/n5eSyXy4INjLHhT8Gp2+22Etzu6/MZxDT6w7vewJYZH2JbjfuM+fw+fXvq8y6eS+5r84z8nBLpwLi5Hvl7nk8RR7zsv+kz85LgKJ8bZv/KQhNZPZgDFovNj7tvczAg2NU8KXPZGMeYkGwYtBdhjb73UTbwsO6ji4uLuLy8jOvr67i7u4vFYlHJqub2RkSl/h5r0va/vLzE999/H4PBoJIpjLpRJ56xi4uLWK1WsV6v4+bmJn744YcYjUZxd3dXMqA8PT1Fp9OJbrcby+Wy1INnxmNP234ND3ps/fd/dR7zm5159u8VTxg/FP9e9BsPpyMneeB42Oz0IjhAik8mk6JSO8qAelhoYmHt9/txOLzmVb27u4vlclnSz7AgjEajiDiKRF5obRBtxHDi7AzTFue/52w1ExZ26PiODQdt58FwVAIOm68XEcUgmeDY7XblIEQ75qSzdGQldWYhYwFkgbCjiqJuY8GcwFEkOiGTORYsWJgyAcI1cl0wEnzOc4h6ZgLpFFjwOFIPiz8WDy2w2cFlHCGznp6eKgQDRoF+Zc5b2GLR5J529j22fJfF0GQQAMDz0ZEZ3qnneZuLn0n3O0bR4mm73S6kBulO2UFHfSD9mIf0L88DJARGAaNLPQGBy+Uyrq+v4927dzEYDCoGFBDq69O3g8Eg3r17V2m/AYeFed83E7G5j5gveU7VhEVd6lKXuvx+xeu6g1myc0rAFQ4L9olgrHa7HTc3N/GXv/ylnOFpTNTpdKLdbhdnyvfBdjgjAQ4Ou6YJFDExQhAN3221WpVd3hFR7BtRhwhGxroQBz6I28FHxnoWtWzfwJMIi5vNpqRa8dm62H5w4eFwKMFS/X6/CAYEpz0+PsbDw0Pc3d2VPgD/5ShO2gwe9Bm0Fn4iovQF2IvrNhqvaWPsnDJOWTBzQB5BQ3wPAimLSsZRxpnMPUeXcl8iliGkmDu0izlB/bk/whPjxrjmCHTXy36Xo6WpLyVjfe7F9/jb2J9601cWOS38uq9NWFBM5EB2meRzBo/5fB673a4E/LFzi74iEwUFoZy+cICixeIcIOUo5n6/X4hICv6g1xYw78vLS9zd3cX19XVcXV3F+fl5WWsceEn98YHPzs4qQp3xd/at6ZNTQVpZTKtxaF3qUpe6/MdKFhywJeaeLE5YYOM9ChhhOBzGfr8vmXoijhmsCCru9/sVgYD7cV24HAfDwJOtVqsKbkUMYNdULsZB1N1BNNhl746hLWBWdr4ggJGC0eeYRUTBIO12u3wGTte8pAPn3Z/gdfhAArCwixzzwdE/xire7IC4wo436uExhdt0MBt/05cORMIu56OJmEf2S8zhWoCBv/LYZBxlMdZzFKxG33lOOtAp44osFJpXBPOBucxNehOF6wrOoo/gwOH1zKG6nVyf56Hb7VaELnPuOZsZeHG73ZbzyAi+cpp6P0sEINKn4Ef498FgUNm56PT+/Pi8M68P+Ef4JLPZLLbbbfzwww8xmUzKPPbcYD7gU/V6vfI8f/nyJSaTSUwmkzdpvyeTSdzf3xc86nay7mQ+2c+UxTU+Z3/3v3L5XcSziOphifywWORiRT8/tExQTwQevt1uF8PhsDzEbKmMODo+dlZfXl5K+jkiEO7v72M2m5WH2YqySQgfOE1daSMTb7vdvnHYeDBYmPnBkafNtA2nFXKFttkhd38hjNEniBB2XCkQAnyOxcQ70fgcC53bjMNn4gASghytRCJTXz+4jAGLVUSU/y14eEGnnw0KmAOkKqI/HJnJd70oMY/y4ZG8bzBAv3uByXVgET0FjnLBMfb3LcZ451Um/hyVkgmJ9XpdITL8GZMBGB6TBvw4otl/Hw7HNKEmNDy/mH8m6kgvQOoBC2IGUMz1HHFE3/g8Q+YudWZH3Hq9jtlsFt99912Mx+PyrPDMERFjgRGBD3BCvUxIRFQFVoOfDDg8f/182BDVpS51qUtdfp+SAx5sR/0Z0hA7LRyBVaRt+/z5c0yn0zdENbgE+28HtNF4zaXf7XZLjn+cWhxbn8OATcXWIqo4oAxC3iQ4mAu86CAqi03GFdhRnz9lZxznESywWq0K1kQ4o/12DHe713Q8YMr1el1wNPZzPp/H09NTPD4+xnQ6Ldh7Pp8X55P2mECir42Vbevtb0AQUX9wAHU7NUeMlUwWcI1TZBlkkcfMP2AWsIVx4qmIdYtm3N8Y1QSOneaMMew4+7fnLbjaAVz0G31G3YyxTTD5eaB/ITAckOf7RhyzGjAnvENuv98X0gOixn379PQUg8EgptNpTKfTWC6XRTj2+Weuo4VC7uPMGRaoEIV9RhxtbLVaJTAMAQ/y5xQZgd/48PAQP//8c/zpT38q6fm905Mxy5Hu9Dv39lywP8z3TXpmP7rGoHWpS13q8p8vDgzJHEtE9agP4wEwCnaCdL7wD3we3GBu0btZ+IHf4nV4pP3+NV32fD4vZ2hi77lvq9WK6XRagrIo8EHYNTgguCuLdhFVkYTvYzvpG3b/5M+a3/PmCDCgA6DAW1zD6faw76TAZGwIomo0GiVzETbS2Jyz5BxMRT3cJu7lYCBjUPrjVLAKbcliFxjTmAR8tt8fzw7Lcw/+mHkDJjTfmzEF/zsbhucTrzvonM+BIaiX56eDpai7fR2C9AjEe3l5qYjF8LnUk7G2eOMzod0+c9NO34m41W63y5m1mcek77kOfQ2utqjJcwBGxl8zr5iFSThfb+Shzev1On766afY7/dxdXVVRDKvIc1ms7I7bzwex37/moJ8tVrFYDCI+/v70t7n5+cYj8flKAE/p57LtMkbinLJOLMOvPodxbOIKslsMSUD+uy48zfOksUXFloersvLy2i1WvHp06cKCeAHmXqwuB4Or7mEHx8fyxZMHho/kBHHs8POzs4K4e5IUD6Luk57uCcPJTvN/MB54ad/uK7TmXiXD5OehdP3tINrI8Ai4es7whinkxyqFp8Q+miPRSUcVraCE5GLSk59nMbx5eWliCoWBDGyNiZEXkKgUHDWWYjzWNhR9FzzAuL0R349C4bUjfbT7xbAeB2H2aJLjkgxiGFh9VzLiyefow4YqhztasNvMZG+YqH0WLg9/M29TbpAklnwi3g1AIAJxsfGB8MNyWSDBaAhAohnhu3+tBniC3Bg0o/vPDw8xHa7jffv35dD2WmHI6McVcL3DXbclwaUvJbJMc9dAwEKfVUTF3WpS13q8vuVU1ggv39+fl7O3mJnVavVin6/X7DabDaLT58+FceJ4CNjuIuLi3LWUafTKTjRwVsQJ9hh7Mvz83NJzRNxFC1whsCajpDEHmPPSfkGBgE7cTC2c+u72Al2cM9u95qVAKEAgoWUjWAh6ga+YLcMaU6wfTiviJROqe50L4hjEdWdU9Q7CwoQLmA8f94Hlkccg7ToN5zgjKNyEBLfd91oM9fy2WHMEX+W1JPULV8LnGKRjTY68Id+MeZ0YJ5xCdjPQiOvG8sw5n5eECvzs8Q9s9/Ga44S5xrGrfYBGXvq6DaCmcG5+HrOoHBxcRGLxaIQMjyvy+WyMmYW5pjzFqQcHGVyk3s4iNFzhCBBUpTm9DudTifG43Fp48PDQ9lFMB6P3wR2Mj6NRiMWi0W02+3o9/vx+PhYER5pg/+2f+K+NPlk36IudalLXery/16MFTJvyfp6yr4bx8A5kLXAmW4iXrNO9Xq9CibFVjgjQcYpBJ4QmGS75R3kfI/dPMvl8g1u4XPGQA7gcHAPBRxogYI2+br7/b4S0GJuCU707OysiHzUwX212x13nVMXbLX5IbgeRBTqcjgcirjGOLie8E3GlTkDAa/THw5myljQATr05anfub/MO/K/5wO43SKZd0RlIdfzFsyW2wP+NM/t9pAJjnECy1nko374F3wfv4a5gy/kOQDmy+eCcYaZsQz94g0bYG1wDzjQGM4BetyT6zEPwYgE+1FP/BAHiZnTBA/S5wjb9j+o2y+//BK73S6ur68reB6dw/iWM3HZgXZ1dVXGgz5jc9CpXX0W+ijeSGPB3POvxo6v5XcTz+ykmJy2k5Q/kyMzWAAiqueiMQERaZg8/Fgt9U4nVPDpdFocL75vRzBPGBz1l5eXGI/HJZKY/Lr5njwE7HAZDAalLjy0EceUPxbJICEoLD4WdEya7Ha7NwemW+yKOC4UWUDx7i8r0vS7o0c458IkR/7MbrcrhIsXWxtYi0t22m2Ys9KNSOfxtcDHAkn9Lao5esBiikENn3MUEXXiN8DDc9bzkrp7oTSRYzHJUSvUyWKp+4v+sCHPUS58zgSdozQ8b0z8mVxyXzgVEPVhZ5mB4uFwPHC13W5XUlL5GXK0Pv0BuUifebeXweThcIx8cl0ZU8Zns9nEL7/8EsvlMr7//vsYDodvREGEYM64IU8wIIG28ry7XxyJ4jr4tQys8zyuS13qUpe6/H7F63dex0knaHzX6XRiMBgUJ+zm5qbsjrKdt90nehgbSBARttvCEQUcFHHEXOTlx0ZHHAOP7NQZA+HU8xqpEiOOqaV5jXRwYEauy/0Rsqg35A27z41DHNXIzjECuSIiNptNwQLYZ2wq+AAyCMcYXGASBVxmfOgxMAlAu/23bXqeF8b4BPVQvKsQzOssCbQ/Cz45UIe+tDgK9oioCpDgK2Nj1z+3xcIb96Ut1NHOOu9Rb65PyQSN/TGTHL6mhT7PbcQl5gef83XoF4s79o8s/FBPdoMyDpAHnU6nzPWIKCnpqSPEi7Ej64GDvEwy8pt5CTb1czkcDuP8/DweHh5KOkf8PtK0MhceHx/jL3/5S/zjP/5jXF9fF4KU8YAUmU6nEfF61tp8Pq8QQp7XlCw+Wji1WFqXutSlLnX5j5ds1/PuDgeuEHyROQTsFuevgwUiXs8I4wgadvl7Zw9nIdmuwZE8Pj7G/f19EcMccOGga2w4NowzP829ZDGB9pkzxK7QPuynMSr4zliEneLGBxFR/h8MBjEajQqXCL5YLpexXq8ru3ssOmL/nbrRYlMW2cAbxgUOAqJ9CBMWqczrwfmZ/zVXbVxJf4JzeY05Yz7V/W58arvuexmTGiM64Io283mLfjkDFW1DxKJvqQ+BQxHH82G5TuYm6eP1ev1mt6Q3uVBX+oM+BweCKzM/j8/gTGAXFxdlXuejnOD9+R99wH3oZ50NNhbK4Jipf7/fLziTTCXgOouM3B8c/Pnz51iv1/Hhw4fSD/D7/g7Pe0SUo3AajUa51maziclkEqPRKGazWeRi/4lgvYij/5nF1VNi23/l8ruJZ9nJzUIGA2Jl3Qo3n7PTZ2HCu5P2+30588gKNgdvYkju7u5K/l9IAIssjqagjnbkIiKWy2U52JmHK0eOtNvtGAwGFUPDg+cDN+2QEVnJNk0WEm/lXS6XZdEghyt1ODs7KyQJBAjioCM3qQsLC04yohskkFPeYIjm83lcXV29EVAodi4dWcIDzqJqBd+fycIlc8LOLAaGNrLYUkf6g3GzY+nX+A5zyQbUqTez48mc8KJC//maTsvJ54lQ5no+X4L+sAjoH54pp0lirHnfApxFHQrGwddzukLAAP1qkoO2UkcbeW/9J/rBbYFUct5j5goRJvxPtAWAimcDcs/riIVn2vPw8BD7/T6+++67uL6+rjzHgD8IG59x0+v1ijHd7XZlp4HJCoM1C5y55AiTutSlLnWpy+9bTgUeOVhnNBoVgQl7A15st9uxXq/j8+fPJUiK74EZdrtdjEajspM+kyDYawq4CXu3Xq+LDV0ulxX8QP3tfIGpIO0dOBZxJEjI1oCdJn+/szhERKXOxl6IZWBrB1cZ6/IaOBMbS1oWdpVD1JjsaTabJfjNOGo6nUa3263gAvrOTrlFPgcOcX9SB5kwwX5nfASmsGNMtgPOw7AgZZ/FZ42Y1DA+ojAeYDgHBIG/6XOPkcfMuNs4FnxL3zabx5Qv1NVEhcfcmNDRxnzGYp4/5/eMkZmznGPiucuzRt9FRIVEo02c98vcI3APDH1+fh6DwaAiFDE/OFcPkgyRlnQ7zBULdTzbFm2NhWk75BHXpl7D4TAiXjF9v98v5yUiyEM4PT4+xr/927/F+fl5XF9fx2AwKEJfo9GI6XQa8/k8Go1GIRG/fPkSEdXI4VPEBnXlt+djXepSl7rU5T9XTNgbS5jHOhWY4u9YbHp6eirHvRwOhxiPx+WMLnBYRJW7caDTfr+P6XRauE24GLgXeEdzGT4bzIHFiE+up/GEeRfSHIIfLy4uYjQaVbL+ZOLf1waXGsPRl8Zj4ITZbBbz+bwEx9C/2H1vDvD5wxGvO/nY/e+sUeAAsKm5Q/AChXYYj+52u8Ljci9EOQtm/p7nCd8DD1InY2vjcjKuneKh+D5jBv/oc7xoG+9TH3O1HjtvSGEnPHPK581lfo425Wwa7OZz5gnf13zwZrOp4LBTPL25UOqYd1sRuMdYmwv2/GUnHVgNfGjMnrM0eA46YxbPAsfKODjSIiVY9+npKW5vb2O/38eHDx9KHzOe3Bs/kPSNCOnn5+cltT6BZN6QYK7S88+Bd17P3H91OZbfNW0jA8JP3kYacTqnJgNItKoXokbj9SyJdvt4OHmr1Sq5bheLRWWbZ8TrOQtfv34tKRotznlhoc78ttNq55pD04lGYAJeXFyUiZuv44eWnTosCo72cBQFv3kfQp8+YtHgPfoxR4w6IthpfxBI3H6ntPMC1Wg0YrVaxXA4LItaxJFMgnQhIsOCVBZOMeY2kI7qsBHw7iyLm9TLoqvHypEPdpD9GYykxVhUf883LzL5HtSVvx294bG3OGcCjwUawITo4n5gXP39vAhCylkAMillo+/6eZ4C1nLkDUDOi7nHn3nEs2pBjn5rtVplm3zEqwhNPzvyF0AJEPRYmvQyWGI86Bd2Cuz3+7i8vCznnxwOh5JSi/EiJWu3243ValWJsDFR4XUii6kZOHvu1KUudalLXX7fYkzD/3aO2+12jMfjiDjaR4snZ2dnlfQ3xhiHw6Fiy7BtxilcA8fGjowxgcWf7XYbg8GgiDd2Ol03iA7wMUKRca3PF+X62FscXgekIVYsFoti603EGw9GRIkKBnfidILjwJ2IZRbvzs/Po9/vx+FwiMViEQ8PDxUy4+XlpXKAPDiC9oMJwLI50MVEj/GBdzmBk717ajAYFBzGAeEU/AbuQZ9Avhi3OWrT38nOKf2Cn+L54LTnJtz432MNRnM6nNVqVQRMxKjD4VDIlxxExf/gIvrQRApzN2Ne6uaIc0gvMDb+hlM1mhjI2Q4ceBZxJPd43hwxTtAhzxTkIJ9ljEgrOhgMSspF+gZcyOfB4pBARIobE1NHIrcvLy+j3+9XAt6cvpWdhbPZLP71X/81ut1uvH//vmDmiNfD5B1oeXl5Gff39ydTxefALotqNRFSl7rUpS6/TbGvb3sVEQXj2H7yHUqzeUw1zJo+Ho8rQRjwpf4xD7lcLuPx8TEeHx9jtVqV1OER1R3xEcdgF0QPBwlx/xzww2sRx938CC/9fr9gBjhNn5Nr7gkcAL4Bf4JPnIXBfA84bT6fx3K5LJhhv99XjotxoJRtMnwc9hvuFrweESVoHSxDcDWfdxAS9XfwHNicHfH2E06JmMyBnIUC/GRuEMxE8Xlf4Cy+T59zHfoB3ovPGT/wGn1tvJmDu7J46hSdbOTwkTfePWc+l76lnxxkTjuon3fbHw6HEmTkZ456e7z8TFEX+z/Gn4wh8zJzl51O500QGvOKuhh/+hnifFsHI/IMGiPT5pubm9jtXo+i8jOIb4RoadHWAiQ+Fjs7qS9tPsVfGicyDl4/6nIsv/uZZ34g7fRRMoHPpGXCLJfLGI1G5TNMGiZTRJQIVxwXHJ6np6e4v7+Pz58/x2KxODlpIo7nS+Soh1xXFi+ryZeXlzEYDCLimI6GBxgiAQPhLc1MVAsmds4sVPjBZUHlszwMkAMIAjxAPr+AaGsca++6YYHx+Q1ut8UKHkgMsgFCFnVsjG14WGSI7PUuvHxwIvWHOHLbKY46sHPvXV0RR4Nm4S6r9DYonssmFrzo8Hnq5Uhw+oeoARM3EGyArRw9wVjbQaeOJr4MPCi/JpI5ioH3HT0M6WZjalKKMYXgoVAX9zMAhzHOZ0hkURkyLu/cZE5nQslGkHEzQfjLL7/EdruNd+/elR0Co9GoIup63CH0MIRus4kJ5oOfzUys1UaoLnWpS13+mGJM4sJrFxcXJT0j9g8c1+/34/n5OT59+lQRz7D17IyyoDGZTMquZ2wzthLH2kE0DuxxKg7OSlqv18Xe+DxRSAfIeGNBbDJBINhHdnE9Pz9XSAfwBtdfLBblzCiwHdgUnADWnkwmFaLCxZ93HyFejMfjaDQaJRUKO9UgkxAFsaPs/OPMYuMM73ijHQTL0EZjG9fLZBf143uQVwTpkTnB8wh85zN8jUcsUDmAy0SE74/PASaxWOndT8wD2sL7PmvWaTSJvnWfOLiNe2ZMFXEkUri/sS6ilIkP/01krLEq7xvTm4BjPtHnPAcEOPkMDOpEFDztdSQ49/B4cw2nt+c59Lkm9lvOzs6i3+8X0hLfCb/lcHgNzHJKcHa/0R9g/e12G7e3t/HP//zP0e124/Lysjx/3m1wfn5e0ldBHhqXgp/tS3oM611ndalLXerybYt5p4z1skCWORneh1MDZ4zH43JGpnkR7KR3SbMLCyxnm8F6b2404shDODiFOpFxKuIYFOVMSBbs2L3tYCnwlm2TszVg8yKiklXIfC/tJXiabAkE89NXtMHYzcdzGNO43vBocFDY7c1mU+w6/QzG3e12JZAagcXpqBFsENzgqbJtBq+CK+hbduBzXzhjeGb6lOA0jyO/8w455ouFHAKPnGEDX8YCaRZWmJuMjwUzeLFer1dS0oPt3EfmumkTfZWPW6IOYHoLwDxb5usQly0ygiUJvPc8MGdH23L/M+bw44hdCHnGx8wRnhMLxJ7PCGir1arwhPQPfhy87y+//BJPT0/xww8/lHbRN1yTOcZmHTA0887PgJ9JC+XmyS2eseY4uLDmMF/LHyKe8aC5GORngG8ier1ex2g0iojXCQ7h4RQ0FmTa7dd0O4vFIj5+/Bg3NzeFEDChzYPhe1v4ajabhSBxdCpOdK/XqyjLvO+HPxP6PFz87XPLmPRcLyIqhpNoC15nQUbNjzgq9d5VZmGEPmABw+iygPLw8Zv6YiS22205EJ72+cdR13lhysq3I4DpewACDy7397ZqCs6wjZIXJgtgRN2aYOH7HK5IxIGjTzNRcUoM9pi6r7m+55jnEf9vt9sKEcfzYoKCOe5IJPrZ/WDBjet4tyf1PbUo+xllkWWMWHj9A6nHPZl7bJHnOyaPELVNXvm5iYgyPvQ1fXt+fl7AImsGhpR2Mi4RR6Lx9va2fP/HH3+sRF57HJvNYxopR7L7ferMe7Qpv87/Fl/rUpe61KUuv39x8Af/cwCzd8Rg90nh++XLl5jNZsUe+zw0rgfGGwwG8fj4WMkjD/aIiEq2AdvFiKhgIHAtdtU7uR19aPvPvbDDm82mCAngCJMNT09P5SxeizXcxwFekC20kUAnO/PgAR/afTgco3gRQ7Cj7FZDCFytVnFxcVGwG2IUdhicAPYwJsoBS2APRyLTrxZAuZ6DztjNZ8ERciaLTCbGjAeMBTMGsJNrvEpbuQa7ACOOZJOxJ/ekHt5xBinBfWh7xuQWSOk78AwOP/3renouOWjJwiFjw/3Bmhn/G/dFROUMEfwNfD1jcnDhxcVFLBaLCmm53++j3+9XnjMHLiKY2ffg+UEUo+7MIYgnru9gL9p0cXFR0ukwD4fDYRGyHcjHGvHx48cYDodxeXkZ3W435vN5eV54zhHQbm9vTwqunhPUm7nBT13qUpe61OXbFNvuiOoOrYi3O99t87EPkOeHw6Gk5zU3gn0iqBfb/Pj4GD/99FNJ7Qvmijhm47FARkA89h8xhfpju7Fl3sFDcAh1pz3mGPv9foX/OxwORTjzrhqT8Nku8V2CWtyPOcNUxDG1NDaw0+mU84vBC2AbAt3Mb9E2bDlCSbfbLZgQ7OCgN7AEdQUD04/GPMYkYFa4Iu5rfol2mRtrNI4p3rmWhUZjOfsJYFtwEtdYrVYVLEvdPX8Q15izns/mtRnbjIfgMvETmBvsvHLAucVkb7Jwndw+B5eZa+P67Cq0LgD+pU0eLzCrtQTaB9/+9PRUUuojFJrnNj+JiOzUqfhO+BOchYbfQb+R0jQi4vb2Ns7Pz+O7776rzP+8hsBZXlxclLOs0Sc6nU45j45xou1+7vzj9crcd11eyx+StjGLYwyQHeP8Pr8Xi0VcXl6WBZKdVD5oOSIqEQXz+Tx+/vnn+Pr1a3FcuF92NrxTxg+OHWsmPpOV1IwYOBZrR3ZiSLy9czwel++R+pG0cSxwjhj2QuE+4X8TBD47wttfHS3raBcWVqIyWAjyeNAPmVwYDAaV6AaDBe+Sok3cl8/yPQQYPoODm7c1exG0GMiCBfmSI7G90Ls/vBuN97Iw4mLSwIaLRZ05ZjLHuxn9TFg48nuAB9pmAoPPYdS4J31hw8vczsQRRsZ94+38bo8jm03mkdZwNpuVyBXqTaQxbSdK36IdURx+/pgzjuKAbHR/sAPVpJtFM/rbJAMpIL/77rtKnnBHX3mMIC9yMTmVDQ6FttBW6lWXutSlLnX5fYptpoNYeA8ch7Noe439u7m5iZubm1itVtHr9aLf71cCn0zkY596vV7BRw5eQqgA4yDWYC+yrX54eCi2FafTQSrYQHbKgIURWuzwEMGL4x4RxeGyk7lcLisHaHunEWIjONUY0uKbnUr+9i5uhEecsuVyGavVqvQXTmbE8axaR+MiDEL+gP0sCvEdYwFeo01cg51OnitErDqIJ+NbzyWLMOBw7mmSgnnA69kpdeCbxSzmhAkU5g7BdHaMTSxQjEeoJ98z1qXeDi7Kz5DrTz8hLhl/OuDI7znjQM4UYWzLNXx/vr9arWI0GsV2uy1khP0vIsXx3UwoOhWQRbT5fF7GmbMvPB8hfphrPIONRiMmk0mFxDQx2ev1otFoVIgj/Lf9fh8//fRTfPfdd/Hf/tt/i06nE9vttuy2I6UnxCpzk3uY0LTP6GenLnWpS13q8p8v2d83l2Py+VSgd7anxn6Xl5eV4Ba4DEQIXru/v4+ffvopZrNZEafgIyOqKa5dLLZgX/mfe5GBChEALhUMBwaBu3SwPXYR4YA0d5D5tNs2GFxHP/I5iyRgTG9EMN7jc91ut6RijojSP77+crmM5XJZztKCnwVHYiuNGXIfkZWLerkOFmbg4tz3DsDnmubvzBPZJ+D/7M/wOvicXfrOmAY25x6+d8Y/5rzoCwf9wMvh9zioyG1E2ASTMXb9fr/062AwKPPXIg14hzmU6wbGQtTEL6A/PF/wvcjO4T6Fl6fOxqJcB56SnZ2r1SoWi0VcXV3FZDIpnzNm9DOYdQbGcDAYlF2jBKoZGzK/P3/+HM1mM3744YdSP/wLgsqYa/hDtLff70e/34+Hh4c3fobnNP/ntcI/jG9d/sAzz04pnxHV1I5+n+/hTFxdXUW/3684whFVVfrl5fXMhul0GovFopD63t3inU3UywsYn2GRwqgQ/ZFT2lEP59K1sBFRVe55wHF8h8NhtFqtIqaxQNIeRy+w0EREUfXpQ0eaul8ttLFILRaLWCwWFRKAtJcUiycGCXzfqRfZrWXj3el03hg5EyHOj2yHjy3AmWDwgk+73T92iOkH75zKYlXeecSYWVhx/UxK8R0bCorJI+aVHWvGhj72+DqC2AbDdaXujcYxXY3nYU7FgxDmXL7ZyecZ8jjYcERE5TomZzCgjAUEoSN1GRvG1qmQclSJ0//kufzy8nr4ukkv0tnwHUfjMC8gC+/u7sr/JoPcbgxajsrwWpYNjl/zZ71O1KUudalLXX77ciq4wc4oTgwOoO0AZyHMZrOya4TgrYioBENxrYhXG2VbjVMbccwcwE4S8A+YEGLCB2mbkPfOsHwuqdtmksS7qfgu+AtCxoIEn3PdLPg5zQjYyoQHmMC4HTzAPV0PnH0cwYgojh/94iA18LXrQH2NE53yJUe50lcmZsC8Pm/MBM0pYYf7G2P5+sbK2U/gb4unDiayYwtJwH2oI/MtoprGx3+DV41Rcx0tvlA//CXux3wF7zPe9DHj7OvQfgKVTLJRmKc5Wwa+CmPmDBJgyOFwWEgWzqTgOSECG4zI3PQ4WqCEpKFPmKsIrJCJvV6vkBPGwMPh8M34m0BF4IVYtF/28vIS6/U6/vKXv8RoNIrhcFjEQNeJqPr5fF4ZK2PX7Jucwql1qUtd6lKX/1gx70GxmOGSA7Zy8C22fzQaxfn5eazX6/JdgqXYyTyfz+Pr16/x6dOnkt2A3fvYFM4cg/OKOO5EizimU7YAEnFMU8ixGraZFDgaNgmAkZyB4OnpqSJ68BoBaQRoUw9sPn+DN0nbSL95Zw74mIArOESwJDadoGqCUUhLCVdE/cj6dH5+Xtn9l4PjqCP1dJA/dhYcYx/Dc8DiJTbb/oLFuogjb8bffM47kehjiyd8hjpQN/Np9K15Rt6HoyMIDJzneXTqGYiIik9iHA6fRkYJsCiCE0H14J5ut1uwL/6CA9TwS+z/OKiNOUswIL6VcWsWPI3ZOp1OLBaLMq9IL384HOL29jYWi0UMh8MYjUYV38e8M5jXGz9oQ7/fL74leNT+Kp//+vVrnJ+fx4cPH4rfx7NuTaPf75edZgRQOnsIc4kxd39aawBPWoPx7//q5XcVzyLeimMm7y1gnVJrGej1el3ZWeRBZfcRUYh3d3cxn89L5CCfo7BIeKKwSDD5SQlCmh7f27u6IBAcnehFgc+xYDDxiaDFIOHsmpiwmk0feXeZ29VoNMqWYxZDO2gseJAQGDTSYL57964YxcPhUDkcne/xAHrLtNMsUg+IFvoYoccOZwYVEVVDj3HIoMRbjj0XaCcGhnuZaDgljvH3+fl5rFaryr28iLAAus5EhNv4RcQbw4DhwOC6P7OB9CJ6ytFnoXO/0Xb6inGl/Sz8zDXPSdfb0QY5ep16AIx4VjAotPXp6SkWi0UZT4xPRMRyuSxEBCANAwnAMcDj/o5CgrwAZLAln+gS2obxPzs7i9FoFB8+fIinp6eSwvGHH34o55sZCGDEEcCJ6Pf8ZK1wFHEWealHXepSl7rU5fctXoOzQ4szDBnuIKFOp1Mct+l0GofDMTWxCXI7sF77IRMQeuyoNBqNgiPtsK7X6+LsOvrw8fGxkCcQJd6F3ev1Spsc7IKNBnfwHerLbjWnJKQ9CFxEc+73+5LtIeL1TCYHxdghbDQaxdGk37ybnb6nz7bbbSFbOHMC++tIUu7t4CcwOtc+FZxEnznIyHiL/idYBkwGIYNtBysaD1MfX8+CE9Ha9AvvWxBxcJXFT+rvjBDcz6Jcjig1XrQ4Z6xnXA2Gc5CPg4jAlWBH8JlFxBw0ZpFsv98XnOc2tNvtMjbMWzv2jAu/jX1JNc9nR6NRXF9fx3Q6Lc8Pzz9Y2s8WbYZY4Nk7RaY4KIy64vs4Mv/X/Ey+BxGHHzmbzUo/8v6//Mu/RK/Xi//zf/5PXF1dxd3dXfED6e/BYBA3NzdvAgKyX3KK/KhLXepSl7p8m2JhxPbdO768LlPMe8G9jcfjYnfNpQ2Hw9hut3FzcxNfv36Nv/71rzGbzQqfw3XAOrvdruAoX8c76Pmez5+H54SfMi8Dt+mzncCubBQAy728vBRxyrudnGkIbGd+yRwLQhy4DwFntVpVzsHFloOByXAEJ2UOzjygsQQZlEi/eH5+XslqQF3oZ8Yazon7wAGS4SGiKpTBaVFnMGTmuo25zC2Dcwli5/NgVPOm2T+hLrznICIXcEauP9/jfe5JndxG85jMZQKNeF7wf4xlwfP0C1gKETXz9fQRgrOfBfoF/pcxdzYpXwPO3c8LPuBqtYr5fF7aRL8h3uJrDQaDytyjLuby+e1x4fljXM0rR0QRCL9+/RrdbjdGo1HB9swj5mCv14vRaFSEdHSIrKuc0g4Y/ywA+rN1eS2/u3iWIyMZGO/w4H0/1Cb3LWxZEELk2u/3MZ1O4+HhIR4fHyMiysHrj4+Pb6IjI6pGzQIfyvNoNCpOt0U+7u0Fw5G7FCY4OfmJ5iUCgnykLBa02WlFcKBRk/NWVR5SCBmn7XEKk4gqmX92dlbSFrELB+HNYID+yJHJPiCUyFRIBkfcZvII44xDjsPqyBMXR1zQVyYzLFrSJ3kx/bVoDiv3jcYxdzTX8JwwQYSACRDIOYS9QNoB9lZ+rpPFuSzqes7y/DCueeccizR9bMfa9fMONPcJc8/1cF96azFtYuz8fCKyEfkBaFiv17Fer4txIuqG6CCeKxtbrsu8d0Q488mgFYDF94bDYbx//76ApXa7XVJFdbvdiuEGCK3X65K2hwM+KVn49RjlkgFSXepSl7rU5fcpDkLxa9iGXq9X7D14BVJhvV6XACxHRDpoArzB9TnfC/wF6Q0GgaDIO66ok4WViCh2CIENzBURJdIQ8Qm7h+PoyGNjleFwWAgHiyYR1ShfCBHvNiJNMmKUcaF3jlOazWYhInwGF31gYQ3hMqKaYsiBZI4ahdQxvnNQlB1B7u/XjI9INe2x8O5323uu4V1qvG/CyN9zAd+COdz/1J37MtdMaoFLHSxkR9qkl+vCeHNfB3wZ6xrHWaAk6M4EDn1CHfjf/cT1mRu5n+0jmFwBi/GsILJFRCGu8P8gFYzN8WUQu/IuT+Yr7baYRXudEpQAMOYpKaJ8Dc8r9332u8bjcSyXy/L8LxaLWC6X8eXLl9hsNnF5eVmOHmB+QLRmMTQLxowzPnKNP+tSl7rU5dsVixCZnM6Bs+aBnKobWzeZTKLVahWeAfsFJzefz+OXX36Jv/zlLzGbzd5wjOAUYwKCo3KdzTVhf8niw44g7CV4CX6NtsE9EvyC+ATnkwNVsP/0EQFT4Bt2vWE31+t1RRyAX2SzgYPSqJt3LbnPEd1ox3A4jEbjNX0yOMb9ia0Fl9InFrQQJ7rdbsFNOWDJ3FoOvvLRNMZ6EVHBWswRvmcs6PGgDcbIjDdcoAUaiyIWsJzuEOxIP5vnsmjGPLDwRFu5DykyCajjfYQnB6o53TnXQkAz70ZQVq/Xi263Wwngoy4Z99I3uQ8jouAwrg9+tlhof8Fju1gsShuvr6+Lv0MdwePG+Z7fcOmcRWfszL1Xq1V8/vy5YMCIqMxlAvbG43HMZrOYz+flWp6D5m6z6Mqc8W+vcXV5LX+IeGYQn8loJqcHj0nkhY9oBCZFu/16gHm73Y77+/sinnE9ov28W+VUhKDrQH75brf7ZqGiTjhnjgJ2ehOMpHcy2Vl1nn62FlsQsdHBaWMnDYsP1zP5g/HCILBQR0QRA9gpZiIjIorhxaElWgUxjrp5m62V+/V6XZxV0phALpmAYdGgL+h/nFtSJkVUU8swXpAWPlzdUS12+rMAZWGP7yGYEVHi3XG0j/G3oOTo61OOLPOD9jkKlt8mYtgO77PecLz5DnPepENud3asmdM2hAYjXlh/zdm2uInhWywWZW76mUTItmhnko3F20QIUT+eb/QL881jyE4Ajyc/gLFG45jqZr/fx3K5LGTI09NTTKfTcqC7ASKEDdv4SZHgwpw6ZVTo/39PVKtLXepSl7r8dsUiGWuxyW1sTg5U4cwHUloT9JTJaGMTYzbvLFsulxWRBfEBh4odUxFvD/ymrFarODs7q+z+ini1ycvlsrI7JuLtGVa2+dzPdQcDgD02m00sl8uKeMO1SRV0cXFR8DECHmIEJAb4D6zi3e/ZgeUzECucCxxx3EEUcSQXCPjiDDYH+bj4GjjDPheWlD30J4KgsWa+HjbdAUiIRBb26HuPgXcb0re879RF9A/Yk/mQyRqCiCA7eI+56Hnk4DTjQ2Mxi5V8BwKG+1NXBxSeCkbz/9TbKUjtuJuQMX61kOdzHmgHRBr+E6SWA6IYM3A9GTcijmeYEfnuSHiut1gsCmmBj4A/YiwKgcV8s1hImz0fIEHW63U8Pj5Gs9mM29vbmE6nxf+ExETc5ZnLPxJVDQABAABJREFUYih9YsKxjhyuS13qUpdvX8wF2c/32sv/5gAcuL3f70vqYQe7NBrHM84eHh7i9vY2vn79GvP5vBKUTT2M++B0Xl5eSvpB4z8wB8KN+TmKs2BFHIUoBwkZA8BzcW9sHakEEaoc1AWmdt3gpBxUY1xnES7ieC4afBT93m63K7vXXl5eCm4G97Hzne+BycHytJGzjvmuBTD6EVxjLhjsZfwREZU2O+jIAWCeL+5v+sFiBni22WxWMIvnHvgYUQm+zOIo/exjgQhoAxuCtakjc4t+dzvh2o1BLUJybeNl8CT1Nr/H8T/mwPFZ8ItIEckOSYL8IqL4OLSd+ehn1T4JqbGdTt9H6liwZr4x13q9XtmJ5g0sPE/0KXgQ33EymcR6vS4bbZi/9DeZFf70pz/Fjz/+GKPRqHDGxruDwSDW63XBoLQZfGhhMuND+wX+XF2O5Q9N22gFOeKtiGXjwns4yqjcLI6DwSDOzs5iuVzGfD6P6XRacS4xDP1+v5JOjvsyMdjyy6R3uhsbSDuWEdWdJ5AFqM1s9yTaOOIYIcDOF67BouIHwecc+L4mJHAsMVos6o5+zNuaG43XM6IsRGYyg2vZ8eN6jm59eXkpBoa+7Pf7ZaHn4c1KP+2m7aSEIVWeo2odnWGhy6kLs4F3eiU78DZMtMmKvBczomocWeTxYB7bOBhQuS+9k4p2cR3+dmoi+tkLrB12R6PmxdDEA3PJIKrVahWygHGBhOMaBiqOmKAu2ZCbLOJetMvEkSNzmHeIWp1OJ3q9XpnfjDl9gthpcGCQBXDheefcFMYwR/o8Pj4WY8tz4PNkzs7OynxEzKOffy0QwP/XURt1qUtd6vL7l+ygOsKS3w6kwBaBkcj5j/OHw9VoNMpB0dgTbKQdRQfBgM9Id2h8hk3jGg4wAu+0Wq2yG85kgnfA5WAqxBwKAhFtc7ts8yPize6iZrNZzrcFp1k0pC7YPTA6OGW5XL7BSXa0IVW4JmlYCAZDuCQCtdVqlTOC6Rtwx3K5rER3EpQFtjPG82t8/vn5ueCGU+NhYc3zi/Gnff6OsT94zNGl4DOIEAu9XJvrMk/otzze9JtT1ngcwcYWc04Ffxm/cl3eR/y0WEmfcm/63mQI94NQAOfhe/C3d00yd8Fxfp96Iy6BQx3RznPjvqGNkBn0Jc8An3Eb7c9wPABBX4yLgzL5u9lsVlKMc1/6sdfrlch90sY/Pj7G3//938f19XV8+fKlEJEOfsxBbn6G6Zcad9alLnWpy29TLGxEHPmWzHVh5x24hXB2dXUVEVHhY3q9Xmy325jNZnF7exufP3+uHEGS+R4HRbs+4Iput1ux6wRROeDfwUXUl40A2E4+D0cCjsNOwrOQCtFCHteHV8kiDDgXfEdgk4P2uV7EcSMAuJ3xsO1jLMD08IrGynwWsYHPbzabkhkiIkpAv/m6iFdsAi+dOT/6G9zsTAbezYQfYeHQfJ2FM14Hy4CbuCf8mPE5gozxjTEdfexzvSxG8kNqS7CLsaM5ZNqDvwIegjMG/1qEsnAMlwhGpK20h77lcwRB+rlDgGaerNfrkuWNHZPGmT4nEJGMOc78Y5edd/jRL+ZYF4tFrFar6HQ6cX19XfqD8XQgGnXl+SYT3GKxqGTK4PmZTqfx9evX+NOf/lSeF8Rn+nMwGBSh3WsE9+DH61Oety4WM+vyB4hnLp4QBvn5YbUx8sHuRAR3u93ygG6327i9vS1bfq2w89BdXl5Gs9mMx8fHyiRBve73+8VRI0KXAwMtiPA3TjsPFhOUhzSiSiqwePCwsIBQf6dzcTSxRR7vGsMxJWKXenonD1HUEVGcXos4LG5s285jwEIREWVbqSMkHPHq8yfsjFvE5LVsOJzCj4WdSAILrdmpxpCwkGHMGZs8ZiaqEKsy2WJiwaIRnz0lnnhnkskVi44Rx/NMqE9W97k2JAP96sXXUS3Mc+YZ/cOiTh9BxFEnImWoLwAKZ98EjI1xbjfRQnwWkOCIbQMt5jHG6uXlpRL9y24wC2nMW+YW94Y4AZASEdzv94tIzNx2v9ioPD4+lmc/RyMRiZ4P8s2GxOD51M692ujUpS51qcvvV2z7I6pCB687RSC/u91uEZgQkRyUQvoNnDo7iLbzBGX8/PPPBUNiu5zekKhcbGIWZozFsmMZEaWeOFoExphQiDgGn3kHnYkJAqH4MfmPI+wIWXCXCZW8i4qI4Gz7vTMc/NLpdCqBOaTL7Ha7xQbjJCI68PfFxUU5q8IBbtmZdlCVd3VRtxyA5frR/xYuKeBO+whgBAuG7js7pB5zX8MEgyNQHTDGdSyCGm9YgIOoomTcy2tumwP0TPr4x8IoPg6YFKzlHXL4dc60Ad4Hn0KyuZ0RUUiC5+fnij9iYsYiHW28uLgogZbr9Tpms1nBxyY1HdlPG5ytgzk2HA5L6n2wJ3Vl/B1kxhzBV3B/nZ2dxWQyKc/xw8NDqRuCGpic17Kw6uI5V2PPutSlLnX5tsV23rgIW4SddPCv8USz2YzLy8sYDAYVm9Dr9Ypdub+/j0+fPsVsNqsEmucgHTBFRJRUdtgIbAF2k7pZUIuIN9c0tgB/OKAdzMeOucfHxyLQZD7XNgg+CtzgNOQIW+Z/saEO6AJbw7daXKFuzurgHXfr9bqMGdc0VoX3ggdjzN69e1c4JXABf58SNWkrc8OB7PSzg1382XwcD3+Dafk884854aA8uDgEIr7rOoCZwU4INt4V5eB9cBfX95xoNBpFgITbM2YjIA1/wX3CnLTPYiGNOjuAHXHX2JJibAovzDzudrvR6/ViPp+XDSfMPfoJ/8g6AviPzBzMawtufAdx+OHhITabTVxdXcVwOCzYmx1ppBO16Pvy8lJ20s3n89Kn+I9sNnh8fCwZ93gP7rzT6cRkMon7+/sKx/trPoKfec/fU1x3Xf7AM8+yw2gHLr/G343G6+4pJgpOLyrtZrOJ2WxW8gFzLRP/fgDa7XY5CL7VahURzk40CwWFScQ1capwrIgstpPL4oNTxiLFQ8J1ISuYvF5EHCHLIsLkhnCgPxxRwm8v9o6OjTimP2y32yXNIpEdFseWy2XJT8tuNBcLiBAjNg5+aB0lgbF0GkjG3ISRxZs8h0wesKh7l5ZJmkxkUG/Pt1PpdpifHi+LbFwPI8DnvfgSecFnPadMNlEHt9fRQAAGiBD3GeNG6kzmnYkKgzcMwamoeYALJAVz1uQRkb37/evhmTY49D9zkTn+8vJShDFHmPt52Gw2MZ/PS/rP9+/fx3g8LiQjoAaj0ul0Sv7fDDAjoqRmtFDnHXcPDw/x3XffVcgz2oDB9FznN8/Vr80ZE1J1qUtd6lKX37ewTp8S0tg1EnF09LvdbgyHwzgcDsWm8R42HvuKnXGQF04kjhM/+f5gBws43Mvn4jpVHfcF72A7CfjAxmNXcTCxubSTYBdEPD6PzTbuhaigEJRkUc/4ku9gS8FX4GsC1UwkOUAG4Qyc1O/3YzgcVgQNyCHwpoPR2J1mESg7h2Ap8FN2Gh3Ra8fU+DMLThnX2ecA+3Ft2p53vxnvg2OoI+MGljORAT60D+X5lgUungcHcvn1vOPOzw/9ahImi0525PEBIqKkwkaE5n/a7BQ0xv20hzliXw5BiTlAv9I2C4HMwcFgEJ1OJ25uboqP0Gw2y5mCOaIXgdYi32q1KrgZvzQiyllofjboH3wr+ozo9rOzs5Jii+hiIvC73W4R+piLOcjx1/BlTXzUpS51qcu3L+aebB+zz28BBI5qv9/HYDCIDx8+FJHm5eWlkOqIZx8/foyHh4dKcBVBvNhe6oBIRJYrbC+CAymH4Svh3AhMAhNSLA4QVEzqu0ajUTiR7XYbq9Wq7LYBaxCwbFwEpiJQC5tOn5nno33mh7wJgGs6gB6babsPzwW29M54C0vcH3zmoDDzesPhsBKIRD9457rFJuYCY8Lf5ngZcwptRfxzQLbxlPuV18BN5tjBRGBj794n4MhnNOd7GXvnwCnPec9ln1EGzmH8e71eEdMYS4t+Hj/qY3GJ9sB9w0m7HnB8DlSD5yfYbr1elwCs+XxeSVMKZmcMqbvTfzoDQhbTeH273cZisYjRaBTfffddjMfjiIiS9c3tc18S6Pj4+FjSNTIPz8/P48uXLzEajeLDhw9lnuIfME8JEvOzldejvJZkH6bmMN+WP2TnmUUtFmEDfP/236RV4xo4EXZMZrNZhTTHCeQaLALtdjsuLy9LjlKT4I6O9QHxdnb5fXZ2VnbGLJfLMsGZdHwWx4p7sWji6DlFHfXAyWJhc3/RJiI2eMi9k4c673a7sl3ZYkNe3L3Ic30Wkqenp5JekkU8HxhOexDhfCA49fAi5MLC8/j4WMbZjjufgayyQ00bstiad7pZLIs4GjoTON4hZiNOpGwmKHK0A221QXEfYBAwnHw/j302VizAzE0IvWbzeDZcJoV8HRMJXI/IHD8TFgKpP0Ck3+/HbrcrkSk8hx4/5qG3p3MdtuUDmJyCin7h+XV72E3JMz8cDksKUiJz+/1+RcTz/GCsGVMExdVqVdrRaDTKOYkYVfqCOdbr9U6Sn/lenmeMud+vS13qUpe6/D6F9Rd74iAViHEK9mEwGJQzKBaLxRsHkeAO7Db4DXwym82KcNZoNOLy8rJkIgBHGX9YNIk4kuoRR7zFDjccUz4HFnNgEnjLeJE6Unenv+G8JtJXOpIU2wlhb9GJAr4FK7DrPAtwBNGwq8+BLxZysMur1So2m00RShyt6jNQwf6ur8UXEw2eB8bAFkMtSllYQZxkzIxVjM+5PtcykcWcdASxv8ecMFkDWUA/QkoYo5hM8nzghzlgZ5i6O5oXgZaxcnuNucE4kDH2jRD8jCftAyCQ4UNA3vl63k1mIovC3IIAIBIY3wlBjmffB9KDVbvdblxeXpaxJ8U+/ckOAO5DXzCPIG4o3IO6W/ClgPsR5iEbqftgMCiRxbSDowRIg0XA5q/hyoxJ61KXutSlLr9d8RpuLGCbgR2LeLUnk8kkut1uIf8daPL09BS3t7fx+PhYMhPAgxp/WDQDV4Eb+BxYcLvdxnA4LLtVcrC2eU5eA+MQAIY4FRHlvHsECItbDq4x4W98FnHMnuD0eTmw3GIO74P79vt9waXG8xa2+v1+uR78KDjaAh3tAh/DV4HvwCW0x/yYj5Kxv+F2OEiOwu5622u3GwyVg8Boo3FuxDGlY+avwFqMIbuk6BN4NmeQMr9nsS/iddMK88VtBUM78wDPhrEwXKL5dDCnOfncj4wrAjJjA75sNBqVjQPUCX6X6/g3mBOMxxjTZ64DRxP1er3CVzpgC57SzyV8PAFQT09PJVCKc9x8/hrzAl56NBoVv/JwOJTdj9PpND59+hSj0agI1RZn8WUfHx/LvOG6WV/JxYLZv/e5/6rlDxHP7CzaYfPCaQGCBwaRyg81E5PcwCjITDrv+mEB8gM1mUxiu93G4+NjRBxFl0ajUTnskHqh3Ps6RAWzCPI95wmOiEJK4AB6gYmIithEnWmLI0J4na2nqO0mWagLjj8Li4VL+ph+2e12cXd3FxFRIipph40g/c3i5vGE5BiNRkVVt4iSFy0vrix8OP6k36NdTmdpIZQx9o5B+hygYULi1D0BESY3+G3jYAf6VNQF9eBvL+wGUVlQ8X2d95fP5hQv7gMIOhvwLGqZQANk0Bf8bfLPkSkW3mhfv98v5JvFNPrVcy8/19zPUUKMk9MIMI70ByTDer2O0WgUvV4ver1eGQcL3o7MzX3JfMf48f9ms4lPnz7F5eVlEfoghagb5OIpUcyEyq+teXWpS13qUpffp2Si2wRGFs9Yo4fDYdmhRbQkmDDiSArgYLGLhh1K8/k8VqtVJTAHJ+n+/r7YYTuiOJCdTqc4b+C4HNBjksHOoIM5jFeIlCRrA5jBaR2NkcGknBVAhGi/3y/3p85OS9RoNApJYYfRQhvEP+3FuXTAF6SOxQEcUjC1hToTUoy5o6qxu/4fjEL9IQvAAjmoysSH8Rk/YHCTPnzPhTFycI3vQ7/yWfrWY+7v0y7aBHZi7oJfuB47/y3seW7R181ms6T4NK5yAFsWCh0URnGd7S84MpexJ2W2cXjG+jyrZEtw+8DY7hMIMIuHzWb14HnOweZZ6fV6lewKFOrmwEz3O8IWRwvM5/PY7XYxGo3KnMY/fHp6iul0WvFVeZ7Pz8/j8vKynKFCcFyn0ykEK3OO+XxqrpmwqrFnXepSl7p822IOKKKamSqiSrpTWL97vV7ZdTadTiuiwvn5eUnL5h0s4EzEIjCMj45x3SyiYc/MiZovs1BjLEmwFTv53U7EM/OhxgW2TVnsAkdHRMGitMNnYlHAZdTPNpy6eVMAOLDX653EFPxvftK42twT2IBz3BApvdOJOvoIEfsM3Nv9wHUJ5gGfOzgJ34PPgn0J7mJ8abN3v9EW5g39zFzIPCa+gf2kjIMoYGXzjvQtOM08Ktyw002bk/MuRO/mwg/wmca01d+jH8GTTnvJM0NQIP3tjTL5N9nW2GRgHtVzBFyZud/cv/y93W7j559/jslkEt9//33B2ASxZTEXH4GUj7vd61FDzM2Hh4d4fHyM9+/fR6vVqpxz1m63o9/vV4La/Cx4jBkTawQu9i3q8geJZx4UL8Z+jYXfwgzEAhPWQsZ2u42vX7+W6EOcPa7nh8ULNyJNs9mM2WxWIg6YYDyEPJA4UOw0YwszwlcWZ5jgOa8qD1lemGiT+8RGiddIC4ICTdSA+8TnttEW7xajn6mP+5VdObTXJIkd2vzg5baYkOCeEBVeCOk/G15HV/N9RzIjuFiAhNSyQJMjGyKq6UHzzrVTIMTzkGLDkskB/ud6ntMmKvLcdz2YBzkawpG8kAQ5ooIF18brcHiNdMWJ53Ms/IwLC6xTTCIa0RcYDowVaVQhH3j2MGA8f4fDoeSYziQYIpqJK9pBm/n+09NTiRoej8eVsWDXIn3kFFMAUYx0p9Mpz/xisSgpSw24GBPEs3+PkOA9zy/qXRMYdalLXery+5XsbDmIIuKYdpjS7XZjPB4X5zin4sWGRRwFHfDkarWK6XRaglmwAdjk8Xgcs9msQkpg9yKqu6K22205t9eBQ+A6YzoLIlwXEt477HC4eT8iSsoQxDJSmiBitVrVdObGFBFRwZTsHvLuG/rYTn+OrjTWymdYRBwjngeDwZtztE7tBAJPYv+9c4nCHGAMqJOx9m63K447WNckFLiLYDZHVBvLWuAzJnRgURbRXHcwt+eUd7LlgDEwl8fK0dMRVVEqB/tkwseiMz8OCjTW4Xq0hT6inR4v5gD1cOS9x5LvEtDlHYiun/08YzBHAR8OhyKMQ7r4QHayDlCvp6enIlohjvFceNzcPs6ngHTcbDbx7t27MicJ9KSd3gHgeyJ2e24imLGucX8X+2I15qxLXepSl9+mmGcxHvF7+bP8PR6PYzQaFaw3Go0Kdtnv9yVVo89WIuDo+vq68BVcj3XfwWC2MWCz/f71eA2+gy23GIAdMt/mdjw/P8d6vS48DvbQGCeimtbSPIhFqYioBCY5aCjiiF2Mv8BcOUjcAopFKupkzEBwvu2lRS0wCW0D+zNeCJhsEACDgSdph7kfxot6I5RSP6c5zP3qHVwu9iHsA4ALLejyk/uNMc8bERxgz/25Z8ZV5q0zf0/fG6dlrpS6MQcZi/V6XeqC+OYdb/DzcJgWJOkb78Zkc4YDkBy0B3/JRhewH1muEBeZAxbW4EnpBzJ70KfMyVarFTc3N7HZbOL777+Pq6urytzwRhdzuldXV+UcNcp2u43Pnz/Hhw8f4sOHDwUnGw8zd/08UuyD+Bmvect/v/xh4lleVHPJkXQ4DixekANM2MViEff39zGdTivRjdmh9jkLOGaQE6PRqIhoFkocoQCxcHt7Ww6dZPEwMc/Cu9/vS65dnGWnirPay2KZFygehogoh6c7rSEREtTTiwULBISJt2F7EeYhp93c01tZqTMPG/XzYtvpdCrOv4U3R1M4CtQOvAW5bPBcPxtGf8bG0gYlR0ibuLABtRHORIMjVxBZLGRxD89pGwfmZQYY7gMiV7zbi36CzPNiagLC/W6hy/0HgQXhBwihMA+pO5EozoXMjrP1eh3L5bLcgxSoPvA1Ikq6Q3ZkMkcBP9TdkeFe0BkLz8PD4VDIjO12G9fX1+XQXaeUNHDiOaDPqTeHsW82m+h2uzGfz0u0sOebSRuDE+rjvjZIPiUs16UudalLXX7b4iAM/rfQgt3BznDmq3d/WUwAuxo74kjd3d0V+2oMipMJxiTLAYFg1MeRh5xBmu0MbTgVdGVhDDs7GAzKvSKOOIHdMTintlPsdDkcDoVwob8ijhjLoiSBL+yoow8Hg0ElAMfiUhaScLZ9ZgZ9AtbCKXabwAUQDPT5KZLBqXaMObMPYvzmoCv3P7gNP8PfM26gvcbeFrdMNDhy2TjYwUvGNRlvgEO8O+ni4qIIscawJnAcsERk6273mrYGwo17OaUP882+nHegmSQx5jWGZUxJg2oixsKgyQSezSxkO9DMO+ScrpG+wX8xwUJa1P1+X7J67Pev6eRns1kJNISwYV2w6Lnb7Qqxud/vC/ny7t27iohskdCEl8+u8O5IyBvGIGf0MFGVCcy61KUudanLty/YFWxZFtCMCcw5mAjHJmGD7u/vYzabFdLe/BPHmjh1XSa+wUHYZTCp+VBsChjQGRawSdhUhCJjTOwkODZzdohsxheuJ9/DdkUcA1por3EWthVslc8Qpt/zOaXwW1yTDQdgaO8Wok6IOKTCAy8i6hAAzk5yMi3QDnChMW/Gm/gF5j/Nm9FuYzZwscUj39P3ydjIIpqxpflNC3YRx80KiIEW8/j8arUqQW/2V/AJwG8WFCnm3wnC8/09NvS5uV3mtQO57IMxL2kz+Mn9hu+BwOxnyr4KdccnAd853enhcCjPCnx7DqTjbwIu/+3f/i02m028f/++CIMOTqOgX/DskmXvcDjEdDqNjx8/xvX1dRH/vCuOwP9TRy2dEsiMI39No/mvXv6wtI0Z7FOsPttp9W4ZJjDvNxqNYmSWy2V5EBj0RqNRIvlMQjjCgPtdXl4WZ9PbV6nDarWK5XJZHFragDDAoszCBDGDU8bktXjEtR0ZgkDBA9hqtUpaExwqnKdT4oejT31Pi3ssmBgpP6w2eo5w9FZSrolaz7lTjpDw+DFefo1r0MaIoxCG88iYs9Cz8Dna2sbE5IavySJtx5trecGNeLsjkHlpYc3ClRdpkwUWEe3wWiCKiIohxIA7D3Im/7LQ6gWae3sMeY9+yumTmCcmVJh7Fm+ZKwhqCNkQFJAuEccoJEewYEQZf0c7eX54W7kjbzMpcDgcYj6fx3a7jclkEj/88EO0Wq3y7LqfySlsUgVxkP+fn18PgUesN0nq75rEs1HNRK0NfV3qUpe61OX3KdmRh9gAi2BbIqIIBuAXBzXlnfUOdHl5eYkvX76UIBJHXzqoabd73cX0/v37iIhygHNOLZjTquBwYoNwriDl+Qx2zDvNSLvHThvsKHh0t9sV4cyBIibwOVgeosQBWARKkarRwhXYi/QiEB2kr3TUKffb7/exWCxisVgUTIuNXS6XsVqtKinEIUl8HTCMz1LFsTcJggDC2Jj88jXtWHo++Ww0SBSLaXzO/WIH2sJeJkOMrZkbrosJEL/P3/apaAeknIOsHG3uNtJ+C7uuj58vE2aui51/BzH6cw6Gcl2MU+lPR7jnc+lcb/oTomS9Xlf8QeauRVSwP/OEdN8U/Jp+vx+LxaIEh7m/aTPiGs8kwZLz+Tw+f/4ck8kkJpNJ9Hq9SlAadfYcAluTZYSzErPwmAXZX5sLdalLXepSl29bTLKb7HdGg4hjIAjY7PLysuxiggsZDAax3+/j/v4+5vN5rNfrYsPBU07ji+0AH1jUoG7UxdgQ241ABxfind4Rr3YZDMdnEM7gAjNe9Q6tjId8H/cPtp6+Mwecd2u5jb5f5oz4HpxSFunA5OahjOG9gw9ci3/gc8GMATNuyjykhVaPj/lsPhdxDJIBb5g7p4ABLHIYa9H3GVcxXxy8k4Ut39PX8nx2oI9xqXdhebMH/ckmgVzv7Dcxdp4PPocWbp3/M+fJ/AcrMk6MhecJ18FX8vl9jIcFTc6nBa9xT/Cf53HGZ/TFy8tLfP78OXa7Xfz4449lEwL1ZCy73W4Zk/F4HM1ms/iRT09P8eXLl/jxxx9LKlj8o6enp7i4uIjBYBCLxaLU32tEFrYtmlm8rcux/KE7z045kS4sjhFH8czRGziETJCIKI46TvrFxUU5XJl7MzEcMepUHP1+vzyQy+WyEBM49Xl7Nru2cAYxMDkPKtuvvZhaFY84TlBHbZLrlLrjBNMeFoyI45ZUyq9F2LIIOGWJnWSMBe1iYbcA6QO+3cdcC6Pm8bXgkCNgEBBxcr3jyPWin0wGZeefVH0mA/isd53xXTuhRIRgVHnNCy7jYwPkaIM8zoyVx5ZngPrRJzj3tJl6Mo7UlUXZoMlRuswtRCELn/SHI2M85hax+Sz97z6nTd6ZyLPnXVq8biPvayN4OT0VY2BBjjY6goN7YEjG43H0er0CCnmfuvv7HNjeaLzmII+IEoHl3YoI0swrt5328brBZya86lKXutSlLr99ccRgxFuHMqIaUdnv9yspVIwp7Pxw7efn5/j5559juVzGYDAo9sPCQcYw7XY7JpNJLBaLYjcsMmA/wAAZE1s04n/bckiSTqcTw+GwEP+QA7bJiFyTyaSQNM3ma8TucDis1Mf3B9OAucF/CAG0xUE5xiR2ri0M5r4D34GVCGxB6Dg/Py94BaHPZBLjSr8Y7zOu3W63pGKhzjjNYBHbf8RLO+ZgWqc55/7uZ++qOhU8ZSxnP8XC3inByrja882/wenM4SxMGY9lnArJYUKg0ThmN2Cs/NtkG88g/xt3Gj9b3GKO037qt1wuy2468CEp5pmb3W63zEVIPNpO3S2kMkchCRk7+pM5jl+BwMt8shDJM4Lvutu9HhI/n88LRl2v1/F3f/d3MR6PY7VaFcIm+6bsuMQH/PLlS+k7E7G/RphlQqQudalLXery7QrrbybHjRXNx7HGX19fx8XFRdze3hYbG/FKkK/X65hOp2VDwG73mtoPLMf1ECQI9uUHHod6+Eyl/X5fbA73xcaYA221WpVz7Kk71wbHYHPhS+AAsVMEk2BPHTwNPwX+MJfpALWII0+XRUruxf06nU5MJpPodDqVYH4fxxNRFeKenp5KgLh3czuQDO6HNlN/2gBGMi63UNZsHs9oM1/Jd+yj0J/2Gdx+xsIB3PZjjKf5DoKfOdC8YcIcG9/NIpPxmD8XceRNjUcd+O66+Zrmgp1hIAfWe6cX9fR8AXNZ6IJ3JB0mwYmMudtEffEVzKn6iCC48MViEWdnZ3F1dRXNZrME8cO1MoepEz4F2M4c8Hq9js+fP8fLy0v83d/9XUkpinhnXwHcyn1ns1nB8Xd3d3F1dVXWkf1+H8vlMiIi3r17F7e3txXf1By/x9J8pcW1msM8lj9EPIv49QfUg+ZF24sSEzviGLGAA4IDttvtotvtlrMr7Jzb4bBjGlEVSQaDQTFwpKnz4oWjz2SEPOGhjTguajh4LAIsFG4rDxFRGd1utyKu8RBbLONBpc30kxcYO1D53CxSgRDRe+p+RLxAWGC0eR+n06KUiY+IKAsYfeWDD33GAIsmizC/vbuJRc3G9JSgATjge14EuCb9YxKKa3hByX3u+vJZGzQTBVyHaGgWVersbb/MDxZ46ucICL7jxY17MfcARbTb5IUjj9w/EccUoBA8BoTUk0NiI6Icwmkh73A4FKHYuxa5N2I3EUz0raNGLJSbpDExxVww8Hh+fo7b29sYDAYxGo0q4+c58vLyUsApdUL0Y/wAXtlw5Z1kAAPPWz57Kmd4XepSl7rU5bctBvqsyybQsSEXFxclQMmE8ym7ExElM8Ff//rXknLHAhKfNVYxedBqtWI0GsV0Oq0ESfE+97PDaVHI7cGh52wuCnaKMzP4rgNocOgjqjvswMw4iNlZxX5TP/rJGAWRCfIHp9IihAOEHPTFd7m+A56yWACuABMRTGdsAIYF0zjLQc4QYRKH9jw9PRW8ejgcSmAdfghj5CAtsBB/gylM3ljIM2Yw1qSexoy0w5kvPNchrZhLpJX/taA6REL6GMxpTMn4m2wAp+YI7YzbjL2pg0VYY2LmrMeCaziS1sSVcfRms4n5fF6ibcHczBsTft5tCe51tgdHKDP+iKicVUOKUUe203bwKEQo/ckz/6c//SkuLy/LDgM/3/Q72R06nU5cXV3FYrEo84E1zqTGrwUK1KRHXepSl7p822LbYuzo9dfZhiJe8ePV1VWFtzRpPZ/Pi02IiJLVCXsJBiPYnEAuBy9h37DNEa+B9YvFImazWQlUdiYBAsjAAeYFV6tVJSDIdt6cioOj+BtMY/wBLwpGsDCUeTqLR+B12mWxC8GMbAuIJcvlsuC1LGQiMHAtnymaeSECwuHjCOrebDbR6/XecIFgKN+PzGK8z73pH2w9XJ0xI5/JPKmzUfCT+VCCwxgzxJ2IqpDofqcfzNvRDs9XB4wxhgiRefMA987XA1vxGepEX/DDLje+D9fJNc03W0wm61RElKNenAabejPfHGzHnHBqSgdH0QeIrPhcflYjjpgu9wX3f3p6KmeZ/fDDD3F9fV0CAr2xge8cDocYjUbFz3p5eYnpdBqLxSIGg0HlOJpmsxmj0Sg6nU7JAmJMaK7eY2w+vC7V8oeJZ9nY/NpnvPie+qxfszrPw5MjAiKiEtXIQ4ADFXFMJ0eKjrOzs5hMJoUoYEKRdgOH2pGjXHu1WpUcpBFRaQfOHws9QoIFMhx92mZBZr/fFyWda3srccQxApSoYxafiKiIYs7Tut/vi8ON4YiIYkCoH5/DycziE/XAmFjAYLHDYWaRoZ4WbBhb5gL1ct/YeJgs4t5EqnrnVUT1UFUbAoufNmQmPbx4WtDxwhNxPMfNRsHir40pbXEKm/1+X0mvBNkBIWUDzXZ1+srRIO4rExvU1WlEiWZy/bgn6VFNlhlo8IzZgEREJZob0GZRNIvaJsksunJN5qznHSQcYvdkMolms1mJroLcgEQxWMBAAi4d3e7xzQCD+e7/TXDUpS51qUtdfr9izGAblf92KhyLHNh6n51wOLzuVv7555/j8fGxrPGr1aqkQTbeNF4wLuj3+2XXs50+kwEU2xnsO3Ui2MPXsEOGuGGRDozKjquIqNg4nFTwL/1isSaiutPKwUCIBnyWOmPrSUXHZ8DGDqax0w3uRqiE9MEpBl8hyNEv3jXkc0KoA/c8lcrPIpYxBgFfFxcXZce6z1Ggvoy9d5ExJu5n5pqFKUcUQ0gYGzFHer1ewWMRUdpGGmoTXZ4f4GywnYU5PxcWjjKmpw9zdglj64yX7Qfk5xSywvVyX/m3o5eZu7QDsQoiEQzn1J0Eh/k5Bcuzc5P7eG4jLPOsdLvdGI1GZSdaxn8PDw8lgA2fBlHt5uYmIiL+4R/+oZyvy7PmdPX+fzQaxcvLSznrwkJ69qXpH/sGdalLXepSl29XMtcDpwB2APcYz/T7/RgOhwVfYf8QVhC3Wq3XTE8Wn8yF8hqEuAPouSYc2mKxiMfHx8LLHA6vgfPGfYg3BO8jFi2Xy0rWLAe+OLgrIspZnxb6HPDDjh9jbPrPfCztRAhzsI+DdcAgYBaCosEDiH4EfYPHqBffp71gNgLIwGXGLGdnZ2VjBZyWj30h0Me4xnysOUwHzmXuEDxNf+eAGfrXfYmwdEq4M29FX7kY+zrQzPjd42We0bjPwWwWFPP8jIjCw4EpHVDFvMljSfFuwRzwCH/H2JEqHhGRc2jhEGmjA9SGw2HxSfheo3HM/ObgMvwx/Kput1ueJwu0Gd/zNz7dfv+asrXZfE3t2uv1KmOdee6zs7MYj8fx8PBQhPHHx8cYDAYxGAzi8fGxPJP9fj8mk0k5czsLYxk/8r/56bocyx+688wTyqQ5hQfSn/MiZhXeDz7RB0QW4HxAkGAAvEDxOteDfEfMIVoY44MDg/Eh8sARBSxOpPhwhCSLJosvCreJBxYaFuCIquiIwIJA4vdoIxEpOGP+DdnAbwtzTg3JYpvPz7BTbSEJA2EDaiHUDjiftyiCsciGxFuZ7YhGHCNz+awdeMYIQdBRou4rO+lcw+IJ9/UOIxY0R3pA7vC+QYcNokUhRyd4uzJtcJQzizvGyAYz4hhBwvw0MOHemYDgPjb+zC0Wf6KZGR/qavDHXDWZZlKP18k1zbkURIyzhZ/xyUCDekYcSRMIN9+T526/38fl5WUh615eXorg7D6zuMgZLhZ2TYycEv1zf3rHwSlCtC51qUtd6vLbFjuLOdghIopTgX02fos42kR+z+fz+Nd//deYTqcRccQr6/U6lstl9Pv94gxhlx1chM3PpAd1wYFCaNrtduW8XpxaHFscOxxhYyfSjGDLaRefg6ynjhZBuDd1ow/BECYDcESJ5nT9aDvOqUU8SBSut16vSzoh6t1qHc+fAsuenZ2VdJQ4rGBY+shpduizwWBQwVA5BQxjDdHl3VoOdIqIN//zXV6nH02cOPrcWJXXwRqOJEfM4T3qz7yjLp7fkB2NRqOQZPRnxpoZs9Aen+vhYDYTbA68yjjSvo99Es8b+yf2JdzftJ85SR3sd1DH9XpdMiJAyFB3vkPaTwgX7ot4RX/ZNzEBZd/MgWI8U61Wq8zhu7u7sksMrEu/k4Xjp59+ipeXl/inf/qnGA6HZfzcDxZ6Efktjnq+0fceSxOF/lxd6lKXutTlP19O8QHY7FO8wfX1dbRarXIkjAO8VqtVLJfLaDZf02nDX1kk8i558AopAY1Nnp+fY7lcxnw+j9VqVfhMdpVFVM/L2u12Zdf2aDSKZrNZRAZjY3N42FlzkNSV4iAh17/dbpcUy7yOTYYLhYvE7jqNHwX7CA4HQ4HzwMkOPLPYidgxGo0quAHRzruFzs/PS4p2BBnzhfzvDEbGTvRfDgzKYoWva27X88u43aJPtvPG6saoDhAE8/l983x+zbjVopdxrdvBPLNwZJwDh+l5wnfYvAKu9zxwdgXzsB4P/A33Axw+z9V2uy1Z6nq9XuGy6Q+uy2/mj32hw+E1Ux0BhbzHfAazMX+Z857v4FqCAj9//hzNZjPevXtXeGh+mKPMhfF4HI+Pj7Fer2M+n1eyKHh369XVVXz8+LFkOiBgLQtk5v7rcrr84WkbLfb4PauiObKDxcRiV0QUJ9mqOYo11/c2SCaKSfKXl9dDNE0s2BEkGsSFqFfuycRk4vKQOOKZe7MI522ZXtC8C8kRCI4EYHEmqhfjyZlv9AvtYBEYDAbFaaOuGB76Zr/fF/ER0gHBzaQBJIqNI9fIO7os4Hg+UFi8WLROOf8mmQ6Hw5uz4Pgu/Y+h9NxyZCzFIpIXc8gni3qnCsSCxRMbjYjqFmAbRQglRE/X/XA4lChji2xOxeRUNswXhDDvtmJBdVQTz5DPnVsulxWSi2h5Itod9XM4HHd+IXhZZDQBQruHw2EBGtTZRpE+Qwx3XzlyxvOIdQEjdHNzE/1+vxyYSbQ9Yp8BJACJCOP8zBr4+N6ZSMsApiYu6lKXutTl9yvGlnY2Laixm95kOcJJdrzm83n88z//c8xms4q9xC5Pp9MigHjHesQxjc52uy27pSIiJpNJzOfzCrZxkA/2KeIYIMT9LLrxuoNYcnQpmCviiDFtiyOiiGYIfpvNpohQpJAj3QlY1Od1EKlMvSBVuDcZHXa7XbHD4BEiIom2dFQo+MVYBOxKXRm74XBYcdBxZo09jZlNYBjzERRkEsF40ARJxBHTGXtafDkVoMX/YGVjUe5pwcw+CTgHLGhsYnGO13G2+U4mXLxDDQzIZxGh+NtiF5gtRzrniGTPQQfURRwzZHAPPsfchqRgTjO+6/W6zEmeCx+K7l1nPEObzaZCNuI3MN95fmnbarWKiCgBXhA47l9E3UajEbPZrCLS5TRFzJXNZhMfP36MVqsVf/7zn8tuBPrHdeaZ5eB3orAzFnX/n/q7LnWpS13q8u2LBbLMazqgZjweF36Hz2FbptNpPD8/R7/fL1gncxCniPuIY8asw+FQgpHYMcP94OccQGP7YoyD3fLZUG4ngcje/W/eifvQPu5HXbFlDvJBsEIAg4fFPvu835yVyvacNJe9Xq+0meuQact4jOArc2G0od/vFywyGo0qGxDMnxkjRbzd3OFgI+M96mCe2WNtX8OYI+N5i2yZL8+8mzlUODz4ZMbWdcN/8dE7YHv632OSd3HR/+Z8nRXNwi9zyTjR48y4mR92Mf/pdlqk8waFzNc1m81Yr9cVHttnHXvMzfH6GaL9iFwE0uFDmav1PEIsZgPGzc1NtFqtePfuXRGU3RfN5utuOsTf3W5XBHOy5SGSPT09lUBMfC9K9gHNebtP63Isf6h4ZqHDv/NnmKh2pph8RBogEl1eXpaIDgoLEaSACX07KUw6GwNHF9q4sFgOh8Po9Xpxfn5eycnPg+UJZ+eJScz5GSxEPIQsHtkh9RkWPBAYIh48Rzp2u90SKeEHPuJowFjMeSAtnNHPLIBZxHKd+Q473ehbIjF4P6J6mCMLIAuNRTn6OgtW+W/6w31tgiGTEpAFOVLGESsWpKi7jRpkWI5O9eLO57wjK9eH63uuZUBDQZyygaQNLPDOYY2ga3EJA8ccN4jY7/cFsPhQWVI1suOSz1oU9TlnnmcmSdxXPI9ci5SgnU6nskXbomEGZVyTuWvRzhEjs9ksFotFAWfuUwvS9DnRTq479czFawJzgNcZ75rAqEtd6lKX36eYwMgRlZRWq1XS+vp1RwByjefn5/jXf/3Xcjgz32+1WuU8IwgL40rsAtjLgkPEKwabTCaFkGfXM7t7aAv4KAcl8RoOV8TRriN42WGlsPvaWMW72XHewBbUZ7lcVnbuGMfQj+AAnxlmR9MBPk6n7QPVcTgRhrCt9BM7ycGXxtk43aeCteyA0zaLQdTLtp++cRoYxp/v2J9gXAlkM9Y8JZ5Bonnnvnet0R5wooOQ+Azz1HOG8764r+vqOWiiAoKGfskZKEzQIORBSDktD3Xj81kI8zjzPNk/oX3eGUi73Ba3ifsQNMX1EcMYF8Q+jzlzi/vxngO/EJF57k6JlWRReP/+fTkvMPuBvu7T01N8/vw5zs7O4s9//nNcXl6WsxARh9ldyvMzGAxKP+Vr8zxwH+Z+XepSl7rU5dsWc0K2vRFRwQTYmV6vF91uN5bLZUVYIDh4Op1WhA7bCmeH4vpnZ2cVDmq1WpVgLHCT8ZvtJ9c33oH3cpAT9zFvAs/knWzU8/z8vMI3wv/B11qQwF4RbEL/GVuAF52eGtvrs8jA+JxhzP8Ey6zX69JGn+d2OBxKKu4sHBDIBiYzF9RsvqbWo40OOCPtJrywOT7aBO42Xue+GVt7ToE7/XrEUVyDl2PsweFgI88DuDT6l/cdRJYxugU2+EHGKOLIRzKOBD0xt7bbbQnOYjek56LxrP+nf1qtVkmVGFHFN/ZpeA+cZTwEPs8ZEhDN4PKZW/YFmRfeacb8dmYCH4XEM+LU8pxpaB8xIirjtV6v4/Pnz9FoNOL7778vegEbDOyjUYeXl5eYz+cV34j5eHFxEaPRKB4eHioiMX13ymei1BxmtfyhZ56ZcP61z/Db23V5mOzsdLvdGI/H5YwzvmehYbfblVQao9GoLPgRUXKDEgXh7ZR2ULmOIyWcUgfigIgPHopGoxG9Xq8QDxgXDrOMiBKdEXEkHOgD71xyxAmLymAwKOIDDzhbj0ljmckIL0gmO1i8HTFghdz15AFlsXTUtQkHL/henHN0Ab/5no1oJgzo1yxImVzgu1yHRSwTShZivE044pinmAXYC513okVEBXzQNkfx5h14zAfPK9fLAMp1dmSFjQwlR1bY4HmR9OLoMUKYXSwWsVqtYrFYxHK5LKDFubK51vn5eQFpJkIshp7KgwyhgZGlv7z7zODKUScYbr4POLGQ12q1yrPd7/fj+vq6jC1tZVyoN/3Bs8D1+WE+Uh+DGJO2WVirS13qUpe6/PbFIhbkAzaz3X5N1zgajcp6vdu9pkgE82GzN5tN/Mu//EtMp9M3IgjYDVvG2Wf5IGo+u9vtSqATGAO7+fXr14IbI6pODdei7qfa6BQ1OONcy/XgmhZ/sGeOoOR77Nax4OazEOgPO+wE3FAHnHjO/+W8CNvJfr9f+sgCG1jY5An9Y5LBeNkESBYTKLbh/DbOBAtAMEC64Pgam1skgiCgZAxAPzG+bo/JmYxpjYN5n35yoF0OWnKkLJ9H7LIAlAPIfO9cn4goxBCvW3AiAIq5YDzsutO/EBQW3Zh7JhARBefzecWHxKeaTqcVEma5XBZhmfnS7XZjvV7H4+Nj2alo0dLPjc+y4Bln7IynISzov263W3aS5XOpI6IIpvgKP/30U0RE/K//9b/KOWrdbrcQKIPBoDL23i1LOYVDPV51qUtd6lKXb1dyUAS/sUsWuhqNRgwGg0JmU8AVfDfvxPEONVJfYxfZfb3ZbCoZhmxzzZN6R5EFNNsR6gCXQ3pC4weCUxBUnIUIISqLN+AKArQtxkREsYXOZkR7wTGk1aPfIqLwuOY+ESrMz8FbmtOxkBdx5EGpA1iXvmIXm1Pmub7YZQd702awPe1ibN03cKZZAML2e9egRR3zgN7hhiBIxi1wEXyud4qBvR0gBfeGcOsAPvqZVPUO7mKnIyIU7QaT0s+8zxhzDRfPT+NVxge8lgVF2sEzyHNkrMp3jE+dEQMMaoEP/M6uxIeHhxKMhSBLoW/I4sVcY7zxo+zLZC54s9nE169fIyLixx9/LLsmwfzmWnu9XpydncXDw0PlmvhwZKEzl+61y74Dz3fe2VeX1/KHimd2kvj/lIPLYk4aQkdK8pnhcBi3t7fFkWLAc2QjCiyKMREW7HThYWRyOqqDBcrCDUSIxZF+vx+NRqPs4EHcIrqENmLwfE8bOhZZFl12AuXdN5PJpKSS9EHpPDzs5qENfthYQO1oZaKANnINL0juB0fr8hqOrxftiOr5ESYs7IizODvKgXvyOTuUjGeOkGERYHGj75gbAArmFtEGjL3vR/ECmT/D/MC4e4eb+5jf9AGGFMBj8sJCDKQUIIQ2XlxclDmCk28Qh4EjaiNHGNjYbjabmM/nMZ1OK2dJmDAzkcCOR5N4kBHe8k/93ZcYTF8XkZOt4jkCwuuFjakJDsZgu92WiHn65/vvv6+ADI8J9yBKBMBEX7JmMX9NWpz6zdpQl7rUpS51+e2LHUDbarBJo/GaJ94kOBjATsXLy0v88ssvcX9/X9b+vEMcG4KtWK/XxU7a2Ts7Oytpuh38QTAQ53+2Wq1yWDXOP/Y7R1tCbGBXbaObzWYMh8Nij+2kgcec+sZ59S0avby8FPEMUgacbbGDSGIiMW2bI6JgYNcFHMZ9cLpJb8l92NHX6/VKMBh4BrzvgCQHB9kxZAyZC9h8vo+YadEEfNPtdoswZueV6zg4ym13AFQOvjKmBUvRFxSwMOPi75kAi4iSRulwOJQ+A9My58B+p3Am5A31MV63yJoDvBy8RbshCRwxbxznLBYOTqIY5/Hj3V9+pvk8oix9aL/BRAB+z2q1KqI548/fXMNzgvno55LnmLkC7ueM6Kenp3h8fCxiImPiSPD9fh+//PJLdDqd+B//43/E1dVV8ReNOfE18MWYS79GcngNrDFoXepSl7p822L+6tR72NFWqxWj0ajwG/BuEVFs7na7jdVqVQmo8a4u8wrb7TYeHh6KDQN/gJcIIEZQo47wTeAY76jCtsFLIvRh3yyaUD/qhq3H3nvHNNfu9XpvArV4nd1g2GC4qHwmmjkobLYDhByw72NEwF8RRw4RXGdOFOHNPCdcVkRU+FrwCfVll5bFS3Ax//sMYooDcbimeVAwnPvaHLiFM2Mx/kcsMyaCn46IInJ6NxbFmy0QjuyT2HcC/7IzCn/EGJF+sLCZg5YYL/C1+XX3mUVM6uEdeO4nsJvfN4fInGEDDXPKm2cijlnTmGv4TQjKXg8cDMecoQ2sB7mACz0/lstlfP78OSIiPnz4UBE+zYWCDefzeSwWixiPx3FxcVHx3Zxy3/ezQMg8z/5TXY7lDxXP7ABSHD1pg8SDGHEk2e3MEV1oUcIOA5OFh/Tp6Snu7+9LVCATncXPxsXXsSOWI18Rj9jOHPF6fsNoNCoLNBPUEQjUgXa5j9iZxsNPPl8UZhZujBmqsskAO/R2Zk360Gf8ZtHgnDM/cF6YuBdONwuhtzt7MbAwyd+Msx9ODKnnhR1+DJjFOUeBsGDyHXbe5QUtopriye1gQWGcHZFAPSyqOfKWeeCz8Ggzv7kuRt6kgAVD5iJ1xCBFHCNX/B2eFTvmzF1HLFFvjwntvru7i/l8HrPZLGaz2ZuddHzOxhJRjn5nHjSbzQrpxvPk54757nkCgGu3X88yBEgYtFisdSQ9r3EAryN/F4tF3NzcxN/93d9ViC7PD7aW+0BbAwuDIT8zfo6oE9E6dalLXepSl9+n5IAgC2edTidGo1HFfjsiNOLVtt7c3MRsNivXsH0whnKQ1nK5LNGB2Md2ux3X19cl+4Cda67DgeWONOWgc0d1OljEDm2j8RrZPBqNijDoTAXePZMjYLGtDirz+5AeFg0sANGPvAaBg+1E9PLh79QfYYIxQ0DbbDZlhxeiG2eXsrPJKai9w59r7ff7irDhumKf6VcwHdkaaLfFCYudnhMIf/Qj+Ix7gJW8m96CGdeyP2PswByyWGlsTWCQyRGub6ICLG98ZkHMBCDX9rPk+Yafk4kn2mGcDXln8sABXtyDH5N+xnT7/WsktAPV7DMSrIg/Zd+I8UOgpl+4twOk8JEGg0FEHAlSyBeKI/QzoceaAsbvdrvlTBvqDGalj3766acYjUbxv//3/y739v0tluUdqBT60H5RLZzVpS51qcu3LeYhI442PCLe8DmIQhzTYszU7/djOp2WlGxggIijeAH/stvtSqYsUoZjH8Bv2Ea+6w0H5tr43+kEvZscm2tRyq8TlG4uzgHpnU6n7OyOqIo5FjoioqTCAw9ynXwWmcUy8CzYx7iWcfFRPO5zeKn9fl8J9jLOAV/C42XMCLYkqwLvc9Ya9YY3o64WR5y9AvGGvoJ3Rdhyf1kQ22630e/3C8Yk6MftjDjy6sxNPgM2wmegH4wv6XfGmh1yzsiFv+L60QY4PfAPKTyNb+HDzRNabDolelk0pJ/BiRwhZP6NOsNZ5s0JCLYRUdkZRiY6iv0kB72BKS0mgtecah6/iOfUGQroP+NvUjg2m80ioPl9+oVdcKvVqpyV5mCxfr8f/X6/nE3twng7kO1UUEBd/kDxLOJI5mcxzI55xNFALRaLuLq6erOA8HA5CpcJy0LniMNWqxU3Nzfx+PhYcg+Px+OyxZKJ6C2tTHDq7UXEURr+3HA4rCwcEW+3kjJZ+RzfJxcszhqHaxLh4JSTPIyOjuU6LF6ZSGLhw/GzA2+lnx/6j89bJEJw4nsWE22MuL6dOgsNvM/OL8TCnNeZxY/72xA5GsOLLu9BOtiZpB45asGOvI2+yS0DAd5z3+VICkgMDBPtMeDiXswrdh56cWaOschTT8bUaYOyIEtfOZrCRAoHsHOGi6PwMYDc0+kHnp6eylZshGjO32NRZ754HBhnE5FuE3/3er2yw/Lx8bEQMrSJyGTqsFqtYr1eVwgbrrVcLuPr16+VHWiQqqTtQnRdLpdlfOn3TEYYPPt/R+nUpS51qUtdfvtiPJGJ5lbr9awzMAa4wDvF9vt93N/fx83NTSVAAjvGPYydHLyxXC5jMBgUbAQWJKrRONc70ofDYbG72EoHM+33+xiPx8XxhWxwpCM4MKJ6tplxC84gpAF412IfuNUO/cXFxZvzR8FBdgoPh0OxwwgYFh/5Pv3qVDnemQ6mp88RRLhvDkQictkCDX0ccUxlCDajvyCXstAAXqP4wHH7ALb3FkSMdR0Ja2xjUoD6gnt5DZKE+cM1Ha3suvM9i2hcJ+Ny+tLY3M8Q89+4jf7M4ppxMtf282LxiTED29JvkBqIp55bzoDA89Fuv6bRBOtRb8gYMm/43AvmHHN/s9lU+sWYdTKZVHArZbd7PQaA+iDaQXYxlwnC5Ayz6XRaCYDz7rjNZhN//etf43/+z/8Z/X6/jKED6cCzPFf58HfqmH2cWkCrS13qUpdvV06tsebQjBHIamCR4vz8PCaTSVxcXJTdYg7EMf4jGxC8pfklczTGjbweceQJES/AQuCRU7yjBRNzmBaysMXYWoK4ut1uDAaD6PV6lYAj7L4FmcPhULgi7/CyMAL2oI60F2HPthku6uzsrAReMVbepIB4YjxjQcYcqwXEiCi4kg0GDmICW1poBIdZ2APv8VnjU7hlsAU+gQNyHGCeg4mYHw7OMQ7lO41Go5Ll4RQ/yLgjajJfHECI6IuAlnl4MBd1AHuD6ehn6k19qL+FJdr+8vJSODvuD16i7nyOOWIfjM8wbvgWZ2dnhQONiIIhwXjOeEHbIl79lcViEYfDoWS5g9MmDTdzp9/vlyBL5n8W/Nx2/v748WO02+24urqKiFfMiKgHV3x9fV3GhvkKnh0MBjEYDOLr168V3O02OSgu8+V1eS1/qHhmJ5CfiGN6lYjj4ecsmo5YZQHgcxDnjqy1Y4Iw8vXr13h8fKykQWHnD5HBLGo2FNkhxjHEKWPRJwrBERSNxvGMNuptQcg7z+iHi4uLmEwmMRqNysPBZEexjjgaI6fNi4iyCPjhtkFiAfGOoFPimQVBXvMC7ihZPs840WcWS3L0Bg8pc4B+5TUMliNqnSPadXaECospIMLGMAtWvG6jTH/boFJMEnn+8nkLZNnppo8Ym3youA0OURQGQtzLu8cAHQZdiEEYIY/9qWeIzywWi7Lr6vLysiy68/m8ABfmDe2HgEC04hlgXiLYmtzhNyCEOhtoeDzpEz8LpFs1ECTF1Gw2qwjdflaen59jPp9Hp9OJ9+/fl7H0NmzqTLQYBJTJMvrRAlmeK7xWl7rUpS51+e2LHdKIt4Eik8mkYAZSWbCbnzRrHz9+LOQ9mMYBVHaEIo72k9cgECKOhz+DG8CCxns4Oj4vgnu12+0Yj8cxmUxiMplERFSwl+sDDsZRB5vh1GI/qa+dbDu21Js+4560wanDwWnYWgLC8o4rbLwjlrku9zgcDiV1EfYagiLiSFJNJpMKTjDxYiEH7MlY8z51J0MA5FZExGKxKP3KPamb5xL/u505QMxEQxbS6GPjB/rEgVr0qceIcUJsol5goBwoRV/xdybRIHUQ7nJ/GdN6vhmXuo72B2gPxa95LhCZy2doP3MUv8B4mHSn1AsyhfkAkUFbHEGMH0bkOnViHrEbcbPZvBEaF4tFmec5lSsCMD4e2BHBaz6flwhrC+kREev1Or58+RL/8A//UIi/LIDz3HOu2qnsBvZNjKPrUpe61KUu//niQBF+Y//9mYgo53s52LvX68VwOIyI14wFGY+BY5fLZdzc3MT9/X0FSxgHYKuwY51Op/I/n4e7MX/l7zYajYKHMn9H+xADwKDYWmwk6ckzboT3wi4T4ELhNXNMTv0H1+oddg708vlk1BV7bzxDYJLrDy9EkJL5O+xzt9uNfr9fxoa6Y5+pr3eWm0emvvBdzebr7qOMeQgo4j7GlfQT70VERSwFU9EHxozw4uBF+hScQP8z7oiiFlDoJwtQjG0WWbiHsbiD2ZypYb/fR7fbLdmejFe8I8r8qOcNgUTsbuO6jCmiUPZ3jJvycTe0gSwX5srhHhkD0iN67nojSE41j2/DNeDv2X3qAD3XabVaxadPn0oWOvrlcDiUrCeXl5fR6XSKb2vs/vLyUtL5M/ZeqxxAZ66zLtXyh4pnWQywyukHk8EjErHf75eJ58Pd2SLsQxhZhHhgb29v4+HhoajREUeHHmfGdcoCB8QEDyX3YtEZDAaVs868YPjzjiihnt7S+d1335X0MU4d5++xeOTzGRw5wUKYz0vgWt6GitNnEc3GOSLKeQAYS4whiwLGhvrwwPtv97HFG6f541o4nSZDTFh4IcLAOJqG+3Bfi4L0jRfhHG1tQ0TUtdvkCAg7+hTaYiLFBtUEHPW2obBQSf1sUB3RERFvCLlT4rSJHRMdjjRAnN3tdpWUTkRH+UBQDAtnOjDXaAPzk2fJEfhepAE6jqTlXo60oa8xTKTCcQ5xRyfxvHleUj8Ojb+6uqqQI6fEM9rmkoVTj5nneW2A6lKXutTl9yk5uAEHxxF/LuAqxIhffvklFotFcfwijg4y13SEqJ2i0WhUdnQ5+AubYlwKnnCQF84+6Tc6nU70er0SyZt30fH9iGPkLE4Z2ANBwPgG5xzM4IOoM0ajQHwYIzYax9SLGaNhr411wQLGdIwN/dHr9UqENinPwUXNZrNyJgVtdfCNSSzGC7xngZM2khqd3T58h/6jnSaqLOJg9x2c5PRHjgCPiEr/GnNb5GIsTZSBcRDIyAxgPyQLfKeu7b+ZA55D9JtFLqJSaa/xLv1D/fjxuQxut6/DvMp4uNvtFr8MQsppOu0b8J7JmsPhUFJkOW3U4XDc3cb4sh6AS73DELELTDccDivzi/mBz0J9GFfuaTxKYNlsNit9yxrT6XRis9nEly9f4p/+6Z/K82q/mPViMpnE169f3whn9gVrAqQudalLXb59se0zTspCgm0MtrzT6ZQAoFNBPdi45XIZP/30U8xms4KnnK0Abgo+DJt4fn5e0rPle2CbwYXgB1Ik+lxUc1YEmZEFC/tmzpHgGwtWnCNmDoxgLjIU8JMzJ2DT+fHOODAJAgFB3xaMLLYYt0Ycd5TxHjv8jW3MByHaEeDmdJBcwwKpN3DkuWI8jv1mTKhb5u6oq3c9ZeGS+cGOf7C2BRiwkwUlz1VjMeausR7XM5dpcWaz2VS4XOa17+m5aC4YjhD/xNc0P5r5UjYNLBaLyo4+Ml5xHW/csEDN+4wd3wGbcU1zxvYDPNeon58PfEOOAQAj4suAHfF35vN5hdPEn2q322VN+PHHH8uONfOmu92u8KMWWZmz7PLM2RgyR2/MWWPIavnD0zbmRSriKKrlAXt5eYnFYlFUU6IGvDBNJpNKujkWqaenp7i9vS0pM1iEI6JiKObzeby8vBSCBUdqs9mUhZ7IARw5CA0cuEbjmK+YB9skhttjY8LW0MvLy2KAvCjiZHkBdrobL2AQGnbE6Y/8ebaTsl3UxoZrkYLPpBHt8Q4oL4SnFhpf1046hpB+w6i7njiNtI2FBAPNfKHf7OS7zyCKLBy5niZHPGbMN8aTueW54AU/AyjqBylgYYzrcf2I6oHqjLvv4fSGGKacVtPFxApG71REc0SU/M2MEWPe7/fL88M9l8tlOaNku92WM9IQ1EiNymI+GAwqJBTzwuQQkT/M3Yh4kx6Va47H49hutyUClzaa2HIUP/ON+93f35etzOySM4FGZLHJU0oWKRkfk6F+ry51qUtd6vLbF7CK7Sa7zhzJil0HY33+/Dnu7u7epER29GVE1ZEFc3CuV0QUG+aUxOAEB7nYXnE2WLfbLURGxHHHNDjAGNmpt1utVtlBR9oQB2XRHhx3E/6Q/BZ6ICoo3r3v1CLdbreIb+CeLFo5Uhh7SFtMwDiSmTGjrR5HcBD96Ohdi4O02cIO75msoj5uQw6Aizj6J/n+BPk8PT0VcSQLIxbjPE89pxxA6DYxbvm8PESjTExQLBharGLcqYNFH65txx+M+vLyUgLmLNTxHeaJ55L71W02VnJ7Ly4uSl95vAlq4zlCWKPfCLDi2UOMcl/wzJhcIx04WHG/35fdZjxXpBeaz+fR6/XK7i/GNiIKiec+5Lr2Z/Hdrq+vYz6fx2q1Ks/4cDiMl5eX+Pr1a1xdXcWPP/5YEd4Z65eXlxiNRtHv98sOWT7j56UudalLXery2xRzSxYDLDq1Wq3CIWDfh8Nh4dTYLWPh4OXlJW5ubuL29jZub2+L/fQ596z15j1MthNUTfo5YwGwG7aI3+AZuEHOImPjAMQ7uDZjQq7hgBWubV4uIip20hgHDAhmMkbm/mAMi3TOIGCM7UxVtN3n7Pr6YB6PpbMmzefz8nkHlmcckfkzxot7kM6S92iLRSs4T4tt4E7wC3XxRhLERws6tMupoL3Di/f8vkUdsDlzFIzGXDWe5Lngx7vnqZc3OBiDu++N0/EvLPjAS5oj5DqIhxYy+Q5zzhgfTtnt3e+PZ+zyPnON4sB+6k9bnY3O3Dc+Gz4DbSVwimwbBO1b3OP5QjT+8OFDCaZjtxkYmd2u9HlElNc7nU7hZs39MheZYx6XGlMeyx+etpEfR8zawciq+3w+j/fv35cIg0zAX1xcRK/XKxGE7BC7u7srqRojjqlSyInrKALvYPKOn+wER7yeUdHtdisPQ8QxzY23/9ohtSNEWsbRaFRZGLmv722DTN3pI+6N0eQ72fnEkXXbTNLwcEZEMareWgxBYCc/19VtpB8c8UufsPBwDwtuGJ+s7Hue2Gl3dDCfc1+6QLBQJ8g07ucFKm9RZsFmJxqLJZ91lIXvncky7utdekRPMDZekC2WsaDa0GSx2dGqnvfZSGGc3FYDOPqLNueopOFwWNKXPj8/x9XVVTFcnPmwXC7j+fm5pNcBZJmYxGh4jPjfBgfD7sgOAN5yuSzPHG309bxTkfmMgDYejytzn88D5pxqy2Pq+wB2ThmiutSlLnWpy29fsNPGSzhIw+HwDZEPlvry5Ut8+fKl7EyJOJ7rAOFuZ59sAzjifM9BNHa0/L/xGWfuIuK12+1CEmAjuR/pmakfGJfvYdec8jnbqYio7KK3GIWD7DOzwEd2tEwIsDtutzueSbHb7SoCA/cHy9kZMwHDrnawpCM5TTYwpuAJ7Kzte/YxqGvE8VwwB8hYhMxY3ESF0/plp9J4y462r0WdmDcOYAJDGPNbSDL5lLGFcWVOyeLAKeMTxgOCz/3F+G82m8puQUcrG3syR40zed24yn2W8bDr5khht59dd+wsI+jRhA/PjLMqkA7HkfsIkvZZIA4dwc2zOJvNSlQ/6fkdZEhf+LkHY/s5YD73+/2IiHIeRa/Xi8Ph9Yzvx8fHeP/+fSFSaD9ZHjgz5+7uroLrs89zygeqS13qUpe6/MdL5qUcWB5x3CDAewhkZ2dnZQdzRDVjAPju7u4uPn78WMj7iKgcSePr87ffw3YaQ1kkghd0kDopjyOi8j88p7mpLBrSHzmbAMIBfQUWALc5MMmYACxncQq8hPhEf4Jf4ISxvdhkiyEOyLb4ZWxq+41giHjCePmaXA9+iPbSV7yG78A9jWvN6WY86flhztS77Y0PLLCaN7RIwriBh/Ap4PHsY/ha7Iwyf8j8xm+h7fwGs7hexn0O2DOPy2eMRb35wyIsKb0RaB1sz/NwquR7+xljPoArCajyDkv8L8bT9WaXF3PwcDgU/4M5xqYVnlswOP4ffCL19IaAh4eHirhN/y6Xy7LJiOtEVNeLfr8f9/f3J587r1+UWjyrlr+JnWcR8auLJ38zmdlVRjqbiOqZATg1i8WiOPFfvnwpkRt2MLgGixALGAT6er2Ow+E1QsSTG7Ke6/DgUvIuJK5twoGIyNFoVIQpK9YspCxQPEQ2hjyUPu/AD6BFJwgC6mQywREDkAi+FosVzj797QeSBYXv0Q5HlTq6lB8MNxE4XM8EEOOBkaRPMQY24BYqTaDYIDrKAcEqF+aBI4VMAjmSBud7v9+XPNMmT9znNmAs5l6k3RbO4aNP6I9snE0wMLdMGNqA2TDQjzZEFk9pY6NxPFCUNjHvIUsgDZrN17MgqDuiFxHCi8UilstlIUCY5/SHn2VSR1JnDBTzDCJkNBoVwwLwAwDk9YbfOSKalLAWDAEsPDsmgExG5L9NVlJqo1OXutSlLr99IUgITGO7RcQda7kJi/1+H1++fIn5fF4RJyzEOWgEIQ7bEHHcLY5NJWiIiEDsA/Ug2GswGFSwjKM7I44HQYMRcXaxPXaqI46RyI5qpS1gJHCPo2pz/xmT2Mm3Q2qSgAA2/jaO5R4mUXJgl4kUCzDGPbTHZIojP90GB2hl8cZjzDUsuDm4J88D6s59HQzXbDbLaxZ+uAdtMwb3HKU4OtZjiINvHE+b3bdgG6Jb7RTzHa5hgZR6Gr8zzpASjJF9A/7nPhaynBmCNrTb7UJGmLTy2HjOUW/PG8TaxWJRzqB4fn4uBBTEBG3jPAmTRoPBoCIGIlzyXHOGLvVhHiCUD4fD6Pf7pX8sojnA0D8U5gOZTq6uriri7v39fTw+Pka3243RaFR2nOHbNpvNmEwmxQfxGmL/qC51qUtd6vJtC3bW9skBwJQcAHJ5eVlsiXEAnNP9/X389NNPcXt7GxFRyZRkjGK+KGMFc0zwnXwGLpAgZkj2fr9fwXvGqYgmToln3Abvh/0zR2XRjPqwSwv88fT0FN1u901GJdtj9xO4zrjB3Bq4m/pxTQJiwC0WHBlD40W4LzYqWKwznuN1xhCeyRtCLAQyhvBoCCz8b6xEfagL+IK+2u+POxItjlL/iKhwkuZawRNgK/hLcJuDnYyVzdmbH2QM+Z2D3OHynBHD+JfXvWPK7WHuRkTlGBeeE/hwfC/7bYyJ+WLGz/fxUUHmkMF3WYSFW3aGOV5jdxdnVcOdowG4/dTHZ8HRvxZuKdPpNF5eXuLv//7vS9AV48PYdrvdspOT1KhOo2q/gP/hYv3MWkiry9/AzjOcllNKZxbXmGSz2aworSYUmHikvlkul3F3dxd3d3cVxZ/Jy+dZKLiPIwRYZIm6QOhChcZoRRwdPYiYU+2FFJlMJpUUPyZBThUebBZYtidT54goCyqilBd0LxS85+tyTYwpCn5+cFiMnEeXhcnCB/3KApCJERtn97kNHW30geB29qmH+4Dfju6mjbTdwiDG2SDEQpJFTdJ3EoHuRRQyjQIwob7erp4dWp9nZ7DDb0ec0OdOp+P6MrdNVNEPCH1e6G0U+DyL6qlnzxG9RBRZ1LXAitjluU3ElbdeY/hJPcMz4HzSfnZpJ0ZztVqVdkZEmVcYYtYXR/mYiLPg+vz8XAyNiS33waliEiuPbyZM6lKXutSlLr9Nse2MqK6/o9Go8jqkQafTifv7+/j06VPBGqdsDgXBKyJKekTsJvYPp5UsCKRi7Ha7JZKXVMZ2CC2C+f6nCAhHSDoqF9sJZnBbjMP4fMbhJgaMibDx2ETaCxlgQsVC2/n5ecHSp7Ce7+VU7MY+4DDaQp+AFxzR6UhdO5QWanxf2mf8sdvtyjXdhxkP8BsMxHUiooI93f8mwey7cB0LH9TV55rR9jx+FtTsxCOg0a5T4grONmOfnWcHrCHiZIHQQlom9CKO5waCoU32gQkdre3/uZb9F15fLpfl7F12o/k6Jju8E9BnvRGMRV9AdNH37PSy7wEh8fz8XDJn8F6/3y+id6fTqQRYui8Y79FoFN9//32pW0TEarWKh4eHGI1G5Rzs7XZbxDPw9GAwKDsU7IMxLrWAVpe61KUu37bkwJaIakpifltkGQ6HFeIaW93tduPp6ang0IeHh2Ij2u12CQixrff9+Bvsav6G70ccA/fhCdlVxdEsYBu/T33hPMEv8JmUbBvh1+C4zAc6WIVgafg54ybq40wNFm7MXZmntCDmzFIObuE+Fgyw8cbIYBanJgeXnuKEqKszFZ3adWUeyvxmxsg5aMwCkPGtA42yIMNr3Me8t7k4B5dZeKJeFr3Ma+LnrFarioDI9+DkLPwyfg6myzwb2N+iLeOYz1Rm3BGb1+t1CXzCFzDuoh6eN/QHWJi2OBjN4pSfO9LlUyeuQwAWz537nDnPc4zf5n7m2QOD81zBR/f7/fIMg2PZCQcWvb29LT4UmT18X2sZef7X5W35Q8WziGoqO08eHAMbCCYo+Xsh7iOOhAMPRbfbjeVyGQ8PD5UFims5eoNFk8+wqPBeRFSiMiAmvNDiZNuwWZRoNI7nM5HqwxG5NlY8GN6ZhNHBuHm3FAs4hD9GLTvBFoh4qIiutSHIQhk/jpbwws24OMWgjQpRIjlqwcQOYgwCDxELRPbaWfYia0HEZ2M4Qph+9flwJmdsaL2w5d1j3qJrcobF2D85tzN95ch0R1u4Tu5X+szEjeeDAQYROvSVyQP3Hf3qHNwWmSwE0h4vtDZ+FlJpM8+xQQjtpk8QLKnfcrksfctrjsAx6HG/MBZEV2Shiv7wjk4bzdwn8/m8zMM8V5xGiXaZhKL4/l536lKXutSlLr9tsQPq9Zn0MxFHnMZa//z8HF++fInFYvHGlmPPsR+j0Sgmk0klpVtEFALAwSI4POfn5/H999/H5eVlISPAJETpgl+NuRqNRtlRg92zg4v9B8f5M8ZbWcTJIkcmNLBtxlS2oQ7yQnykr70bzU4YoqKDf7g29XFAVhbv/L4jX2mTnfH8ugVJt4964msw1hkbGC9YNMvCkfGTCQG+mwkLrm1hz+0yzgbjGasakzNGPoOYa/CbdhjPZVHJwjHvZdKE6zioDUxJO2ibSQTmpX0rZ5dw1gMThvQXJBYYcr1ex3w+j1arVQSkp6enktaQ60ccySvEZdoGueKI9PF4XF6DbACTMracsQuhNpvNYjQalTXmcDiU1FLgXa7n4DXq9P79+/IcOcr4/v4+3r9/X643m81KBDEBhoPBIO7u7spczPP/14K+6lKXutSlLv+xwlprLJYDFbIIMhwOK1wjGOPi4iLW63V8+vQp7u/vK7uXttttJYDIxQHBEVUBxOJXt9stu8fAaARvEaSOWGChCvzkgOdMrBtXOAU4QoJxGH2EXXLgkYOzwFHejGDsRVuddpLPZHyIoOId5AR2g0ecXSzjMurMWDqghw0NWdTjt1NCOyMEnBJ14F7ejAF2B4/hS/j1jOvgzcBQiEy8DvbJRw15xxn4ymKt+WwHljO+5h6Z156X7MCiMM+4hvnMLIjyHm0Bj9KHrpexJH0I9+gNJWBpv+7nmu/YV8JXtN9Hvcy9O4iOOb1YLEr9nBnBvoTHGn6WPgMbModp/8vLSwmw4ugn6kd/cb4i2fR45vDJ+Kyfc//U5W35w8Uzq85+eEzOUxhEn5/lyYmYgrPiwxD922l67PQ5b6qFn+FwGL1er6R1izimxrPSzWJsooOH5erqquyWox085NTdopN3FGEcLLidikqIODrUPIxckwWShxsxz0bGRgvjkBdhL+7ZEfR7NmQmJRhzL4J25E0o0X52MHmBMVhxhLUNG4s+RtmLrMkQC5HUzd8FBNCe3F8WeCGcrOLTPht5n41mw894Hg6HygJtsdfjjijF/yY9/PzwGgaFyF/Gh/nrXXgm4jD89JEJKs9V5q4BHWOKMTIBCDAkLy/X5tD39XpdeXapt59fvoMhoc08a4wnERl8x+CKZ+Hx8THa7Xb0+/03YjIkjyO3vS6dKhlI16UudalLXX7bYiECOwl54OAPIvY2m018+vSpkrfedgVbyu6x/X5fdpxgC0nNGBHlTKaIiMFgEO/evYvLy8uSAhyb2Ol0otvtVgJ1wDjGFibUI6pnQ4ENwW2OeuSztlVgPn6zc85BTcakpwgOBy6ZbDFuApeaMHFQURYB+UEUyLjW4+bXaRd2PRMe7Xa72G6cccQi23hnKeB+vA628K50B6aZXHDgl53hZrNZ0qxbOPFvfrJvQhpsrmf/h2tnHORnwf3BGJjY4H3aRH3ASD7/z9gti27ePZZ9C9eB8XD6fZNiPE98FyIR8oggSnyO8Xgc7XY7RqNRqbeJie12G4vFokQA8/xCNoFN6WfWi2bzmNIff4158/LyEqvVKjabTfR6vej1ejGfzyMiSlquHEjF9yF0GEfWAZ6VXq8X2+02ttttzGazkuqcOUqUN4e/Q5qA2bNYXJe61KUudfm2xQFap16PqJ6/y66ziLdnf768vMSnT5/i69evFe4y4tX+LhaLwovxGiKBcQh4AO6SgA5wG7/BF+AjC2beTYbQsN/vy/3Nv/EdbA5ngyH4GXPxWQr4jDpk7srt8evYQnNefI7dORk/Rhw5V84ItuhizGve0PXgdZ93Zc7VfCfXdgAe4+axz1ib+oJLEDSoP6muPX7m1lwHcCZp/8BQzBeyaYF9jOW8eYN6WRxDwIL39lj7yBQwWH6NTTDMO7Ag/4PP7At544EDyU5tVACDcy36EC4zB0YhgkZUz6izEEh/ZH7W/Kj9JQvK9BeF7CWMJz+sD86ewHPF83d3d1f6tdlsxnq9jvv7++j3+zEYDCobWdgtOhgMYjablb7Lc4528z37vTWP+bb84eKZlXgGKEcomsRn4prA5wFh0m6323h8fCzbkL0QWLzgf8QlO7U4Tyi2TDgiD/me1XnuYyd+MBjEeDwu16Ge2eDaGJlMwNnlx7vIeM+i1akdXn6YcVhZWFicrKzb2GUBz4bUu+MoJgJY2CEjIl4X/3wmnKNk+LHYB1mBCMK1nH6FxcskAI6mxRK+S5+ZePBiwsIJsYRB8KLId7zIe66ycNJvFH+ffsp9aIOYo1oo2Sh7PExU0NcR1dy+ObrDZ6xgNAxuLNTlaBfqmuezU0nRNvpnuVyePJzTRF2n0ymkB9/H2Pte9AdGIacmBeQsFosyjhY6Sbnz9PQU0+k0JpNJjMfjSj9h3Nl5yr1tgOoojbrUpS51+eMKNsvAHyxmR7DVapVUNvf39zGfzytRlhZkOp1OTCaTYseI4AO3OP02kYkXFxdxeXkZl5eXJRiDKGACrnxemh0+MI+jLI1p+HxElGtkMsPXwkY5CAuMBy610GRxxH1oXGFn01jM2RNOYRf3K1jHn7OQ58J3jH3BTr6H8RTjRdBQRBSsg9NsfAZ+A5OANzi/wZg44hhV7j7nbz5rB5/fYCmff2E8aofVO/ZPiWu8l7GyhRo793l+e945EM6iFf1E0FeOQjdxYPGNiHYCtDwfGT/7QsbExvXMV+q53W6j2+2WezG+EE5c24TVcrmMxWJRMCDP6Xw+f7PjdLlclvYxXvaB/JwR+evnkgPb+/1+8dH47XGnnVdXV2VOsJ6cnZ2VNWk2mxWRDsEbAbDX68VoNKoEIebxrcmPutSlLnX5tsVcT8Sv8y4Rx0D8U/zj4XCI2WwWnz9/LgH8XrvNLZqPjIhK6mFsHmdkjsfjGAwGlV04EVGwp+1/FsRs97l2/pugaF7jew6wMZdpHshiFIEj3jlvoYx2gWHzjq2IY/o7+tV22nxc3vGNbTYv64Az2uyANGft8vWNnRzUb74Rvjnba2NQBzZxf+w978Otgdk8p/gM13VGJ3AU3Bt+hnlBYzjXjf7e74/HpZg/ZB5YQIRL9NzhGUBkpW8z18u5svhMxnPua89TREDPI77nHYBPT08xn88LFluv1+U58a4vnguua4xvYY92IkTiSzHfuBZ1W6/X0ev1KukszRk7CA4xjHH0LsqIV4xKkFWv16tkMyEgdDAYRL/fL1g3B1gZI7pdNXY8Xf5w8cwTL6K6ALOAsADbGYg45uDHYbdwtlgs4uzsLK6vr4vyaqXWKv3Ly0txRogqIEoZZy8iKgtNt9t9YyQwcEQLTCaTGAwGlYhCO9NuC8WOu5VrC2te1L1TzZPdDz3t4Tt5EeMeFr5ojwUlFrv1ev0megXjwectytlAMwauK/fdbreVXWA5WiG3333qCBWDDi8OGI1cHPmRd0Z5PEwm2dCx0BqEYAh8b9ff89B/u139fr9EZ5hgsJFkHE2AeBwtmrm/8xzJQrX71dfL4+7+yWDGZJ/bCAhwqqmIKBEYfO/i4qJEe7MLja3mnkeQKQiJGC2eRy/+iOmMLyQgZBr9xLmKEImsNf1+P2azWaXefq6yofEzUJe61KUudfltS7ZtBH4MBoOKI9nv9wsR8fDwUEltYlzXbrfj6urqTaAUdgY7BCG/3+/j8vIyJpNJCZryDztawDe2qcYdh8OhEqWKQ28smLGhxQQXnyPmgr22cAVusAhjMiGTLCYycC6zHQT7Zfzk3fjUAdt96r6Hw6E42wRauR5gGONLoqqN+RFOnRqJetInPovAQWLGkA7A8bUZLwd1UX8wi3Gn3/cOIxMX7j/GzkQHWJRxQLyMiEr9HTxkPOh78R79Y6Ig99N+vy878ojodn3AZNlZN8nC/8w7X7/RaBR8xzwhUwJ15YyLHKDIXCLKdzwex3K5LKLUbreL0WhUUqPOZrNYLBalP8CEFggzvqdvSBVJX6xWqzg7OyvpGOkrk5iNRuON+OX5w/nAj4+PMZvNSsp/yCf8EkgYdr5lf7HGn3WpS13q8m2LuRL+NzYyDoDUhpfADpydncV0Oo2bm5tYLpeVAHwHOJuntB21uETAP8fDwD+aK0LoYJdPDsoxRube5iwzZ+jgIAfmGLdh+80Lmn8xXgQrUKcslJnriogK5sz4hX4EA2aOijYZH1usytjRY25uy4HmZBfgs95R53ubhybYxwFXDigHg7geXJ86Iz4yf8yrgwmN3ZmH5jUZF2NEc7hOgQ3vzNwEv3sOMOcQ6zJH5uAvgunh/yzwbTabykYM6m5OkTbhh/mMNALf8/zwBoiXl5dYLpfl2cgCo+/N/HDGkOfn54IjLQga3zL/wZJgOs77M37n2t4owDMzGAwKxqQ9z8/PcX9/X55/ZxNDk0A8c8njdWqu1/jxbfnDxTNPLhYYGx+KHUwm4WazKbtlmKir1arkoo+I6Ha7MZlM4u7urpLblQnqxZIIiPF4XHnAeTBYLCKiKMsUJvV+v49+vx+Xl5cxGAzKYpXJjKyWW8GPiMrDaqczC1/87d07doZx5LIg4kUUg+T0NNyLdvmcNz7vxdELBP2Bccl96cUun2vH4udrWjzlHtk5hHDIYo/bYIObQYOFLEgr9zGLqBdd/8/1fI3stJoIot02shhRjy/OfyasqJMJQkcn2xBazKTP6FcbKROGFsjoQ7aPWzjyDkEDSI8NdcyR1U6DSD3yOWetVqtEUQCqSJdlUon2A5QAZZkEBAxh5CJeSdSIKNuw2+12PDw8xLt376Lf70er1Yrlchn7/b4AUUfAu70eIz/PdalLXepSl9++gJscTXt2dhaDwaCszzjMnU4nHh8f4+7urqQI9k+r1Yp+v18w3GKxKKS974Ht7XQ6cX19XdLz4BQRQIVdM7kfccS+xjzGwlnsAC/mACLes+MMPsE+ZuxmDAGWNEZ0n9G/xj2OgPX1bP/cp8bNEUdcxDg5o4OxecQxlYmFKupsgQfhxmKEHfeMC41D6TMKmAxsZNHocDiUyFXPieyIOk0KfekxcP35ntvN+Hts6HPX17iVeyCAUX9n18hkBzufuG+7fTwfzDsEEQypPwSKsSPvQwyZ3OI7PDuMQURU0gAxRtTRzwMkBFiSz1hQpQ3gfsjFy8vLEpA1Go1is9mUsyFIiYhoBS5crVal7yH8/BzudrtCfkKWvry8xF//+tf48OFDvHv3ruBdIqrZ0epD6Rl/iDj6ZD6fx3fffRfNZjP6/X7BsLvdrqRuvL+/r/hGtYhWl7rUpS6/TTGnYqEs46Zm8/WsXIsozWazBPB8+fIlHh8fCwfioF/ugT1nh4yPXel0OtHr9UqWK/DmYDAo2MZ18040sCJig7lM217qEBFlJ/apQB9jNmwjWC3jHvoObMP//PbGBe5jrGBe0FyL28FncjAT/BkY0PyhRTvvEnf66M1m82bHWg5sou7sJmfHfhbKjCMt+uUxop3GdtQzi0jGdWTzMl9q34X+5j7uU7JfMN8YO0QZAswJFnLwlPGG62JBknozB73L39kh4O0dyOQdbVzL3CzFeJSjX/Dt4BjX63XBgZ4XTmVprtT+FjvZ6C+nFwdvMwfMiyLYscHn+vq64hNmfaTT6RTOFczLjjiCv+bzeVxfX0e32y2+KthyOByWQFF8JLfRa1n24epSLX9T4pmLd4dEvN1xdHZ2VsiOfr8fFxcXsVqtYjablYnApMU5cpq4/OCen5+X8y/yYu4tohZO+D6TrNVqxdXVVbx7964QAHaYveXUJIgNjgUep1f0QmCj47Q0Xrgd7WljRKFeWUl3vzsVnxeobNyyUGRn2YtYNgYWZWxcTVDkh5hx8SKe+y8LJgY1BiQ5ouRUH7NAum9zf3ohNWlBoX7U1cDE9yT6hTkO8LDR8/38v6Pes3H8NUGR+9E/jp7hc3zfRCFGMwtIzEUfxMp4+GwYgApzA0PZbrdjs9lUok3cN9SHLcur1erNs2FyheePfsdIPj8/l7zApDeIqJ5juFqtYrlcxocPH6LdbpfzDjlgNwuEeW7wnudcXepSl7rU5bcvJo0jouzYiDgG4/R6vYiIuLu7K8ER2A3sRbfbrRDbtqtcC8wyHo/ju+++qzhk3W63BH9ku2/ny3bLQTFgMv63vfP3XOzM2/5YSMpY0KQ92IiffA6w8ZqFCuxfDuyijRycDja1gwqh4/Qqvp8xb3b4/T64wg6qg4i8q43+c2BcDrACn5g8Mg6lODWL5w+fN46GKPH4ZPIpB+ZlcsnkCniQz3FNxBu+63NU7McwTg7YszgG3vG17dPQb352LB5aCMvzlP6mvZA0p8gPAqdMYEW8Bj/xGn0cUU0RT5oldpeyqwsciX8IIQFpNhgM4vHxMVarVWy321iv1xXsy/PtMSWDxmKxKDvhPn78GGdnZzGZTKLVapW1iN2pnueen6wjCHPL5bKQPnd3d4VAOz8/j8Fg8Eb05hq1cFaXutSlLt+2GEeZZ8mBygTtZvHo4uIiPn/+HJ8+fSriA7bcHJRtfMQrhzgcDsvussFgULgJMiq02+0KX4FdB4M5YNoCizGIsUtEVDCoMapxnINe/Lr5QHNGxjqZEzNHmPGNRUELUcYtxh/mEOnfX8PI3kBgTtLja0wHl8ZOdXYO2fZyL3CC22t86f6hH51qkpTwTnvNPS2emWs1t2VxxMFnmUekPlzP7TeWzJiPPmHDBfiOvuR1MFMW+ugj+pNnhbZ7njE2zCH6PQciGefzObIVeC5wD/PC9vUsnNFO5pvHyBgPYQy8jX/IvKQPSOVIpgLqcOqsPOo1GAwqoul2u437+/v4x3/8x5LWnPG3zuGMG8blzH/mOL9rAe1t+ZsQz045Plba/dmIo5PhA9TPzs5is9nEfD4vW5tZdBqN14M6cSAzwU00IpMm4rjTyA8l9+b7TmnSbrfj+++/L7vWsgPPIuI2mWDIAgtGxYuEjYcfdju29F8Wi0wI+MGxofIC7OiXTLjYcEAssAi4XYfDMT9zFm9MYrjft9tt2U1oQ+e54V1jLP6Mt+tgA8v/FtosNLkeLPIsql5gPC9Z/DabTSEpvODSVkcPZyHOi6iNu8fNohV1PiXcMobuK+adiTrubSBg424Ag0Gl/Yi0ABOeEwuHeacj4IZCGw0UTJoR/eG6mWTh+0SLQB7wTHoOQ5oYSNFXg8Eger1eaSN9iZFbLBblOzZkRG35+c/Phccik5V1qUtd6lKX37bYyWD3GKmnOUj9+fk5bm5uih1hDW+1WtHr9SrRuk69Zqe63W7HDz/8ENfX1yU1I0SFA6CMUXq9XkVMs+NpEuAUXjWBYdHDuCCiivlwgOxQY1fB02BxrsWuF4swFnJymhHq491wFHBBjlw1zgFb4+RZRHAKQosMuR/Ozs4KdjBmBmMghtFH9BfvQyxl4oE2Gd/Qf1lYM173mPGaI4x3u12s1+s3gkdEVNpt3EYEroN4HCzEPbkmIjERqva3Dofjbnx2nRGoxLxxinpwHnMuE1rGa+57+wsujnj1vLFPQDuIcH56eiq+HnPA558xr9xHkIgI4RbhEBr7/X7B8o3G60Hr7B6l76bTadzf35fsJlnUNaEDiYOA9vPPP8d2u42rq6tyv6urqzd+Ycbuzpbw+PgY/X6/iPqsZ6T+ycQHz5fXh7rUpS51qct/vmD7csC032+32+XM25eXl5LSbTQaxWKxiE+fPsVyuSy4wOu/7Ts/CCftdjvevXsXl5eXBdtcXFxUzofCdmA/vZMr4mgfwF5ZxDB5T3uMO4x/HHgELjb3Ye4Lm26xkOtbOLRwhH3168Zu5umMg4z72HXErm7X3/acPs/3pH68Z46SOYBoSQFHkq0MztScowOMwLHmap1y0bja32e84OTM13o3FRg14iiCGVcaQxwOh+IH8BpnxXId5k3mFKk3u8ksQvkz7Oz3LjrzvvD2zFPGksAo4237DFyTzzcajYKZwPXeFEPgFsfwwEOCdRH77PeRtr/ZbJbAfz7LvKWdjG+eB2BN5kij0aicr40fwDNkUZa1ZT6fl/4m+wHzYrPZVERkUpfzeYqfffowrxN1OZa/CfEsi2Q2IBQPqh9uHioi86xiO11Jp9Mpk8wP12AwiMlkUiY7C4EjMLIj5/pAqnz//ffR7/crE9CRp5D7efHl+tzb98Tw8nCzMNsw7Ha7kv7ORirXl3tTdwyUlWwWDBs5X5dr877FJurq1C1ZTOLebq8ddzt4LLhWvPmunXM786dERIuM7n+uZ7Eo78DzAmihh3pYOHK/eH55HBy17mhyFmATM3aoM3nktlhMYjFm7nvnoceZ6+ctzyZBLA5ZgIS44rsecwuy+VllrC2kuh18zkCHMWEcIMZoo3e4mTzi88wRR9f4XhcXF5WUPb7nfr+P9XpdiC2u1263y1mIfp78HJwyNDVpUZe61KUuv32xk8maze4OB0F1u914fHyMh4eHikMV8Xo2JnYXm42dthN4fn5egqbY3YZTZcxnbJDxIRgYG2HMhwOF8+d0Nd5J588SBEU/ZHzFffmba4I/uD73MyYFk9BOB3tFHDGV201dEKX4nEWqbE/5H2ed7+M0gxHt+PIdduoYM9M/uV+N4006mdQx5mY+cX+uYR/GWJDCXMq71Rhvk005qM3ECP87aprPgpnznLMYa6HTYxPxKpLa56D/qZsJI+riiHrPJ2Mw6sPcINDORJp9pVNikgVi42fmEGREjhh2f/he3KPb7ZbvkUIR0Wu1WpU5TjAfxwA8Pj7G/f19rFarSlCWRUULyvhW7HD785//XAItISjtx5jQ87kr9/f30el0isDpuQep6nnjttelLnWpS12+TbEwxP+nBIR2u12y20QccWNExKdPn+Lz589l9zNcJcEafB67QnpGeEvO1EU0Q3TBpmA7wDYWACje+WUOxG0wP4U9AzeZZ6G+fs1coW2+CXpjTwfrm0MyLjIW4HrmVvmsuTX+NydoztHYlLNbec/8JfcDw3Jf85XcywE6p34iooJ7+Cw7rPx35pmM+yxgIsCAj43J6Qfz4+CWdrtdsDX9fcqv8M4u42LmjLNMwdcxDhTzwxZwfJZaFqtIhUjbIo6pC9frdbkG9ffz41TgLuByvuP5b6zPWEdECbR0O3xv5o/xvn21p6en6HQ6FSxrjnOz2cTNzU1MJpOKUJ39Q8ax2+1GRFS0DdKCG4szvpy7TfCZ1yw/T36uskZTl78B8SziuIMropq3NhPOTDYmrFOS7Pf7WCwWFfHAogaq8ng8jtvb25Iz2LnyHaELgY9j1WpVz2PiesPhsOxa8+Luic6CTbGQYRHNDwX/e5Gxes93IYEsWNAeGwa+50MbWRhQ4K3CmySCfMki0SmnjAWGMfGibpEjC4VOjeNIjRypyuf5seGzg0y7iJCwwfG9sgHJDj/tZzszxWIRc8LGhutbdHL9LCaZHLFh9XZ7vmviw+OUBRs+43zN1DuDEz7PtWxMbBw9r92H3MtRu25Lnhf0AQaIsWQOetck+YM91xw1bvFztVoVMsNtNdGCYYNQZT44iolnbbVaxXq9rhCprBnuO0ruU+pYC2d1qUtd6vLbF9sc7B67RyAhGo1GXF5eRrvdjvv7+3h4eKgQ9Hnnux2li4uL2G63cTgcYjwex9XVVYzH45K+DRI/Ioqj4h1MPj/LNtwOmsWJLC5BihhPuWDH7Yj7Wu4nCHjjRAfRYCuNPfkOpIzxtoOm7LiCf04F+jhYxk63saGdR2wvwS5OL0gbHcFr7JSzMfA5ML6xpcUhY0fGhvbZuT9F6PD5TLqYMDChQ/2NQzxmtMG77RkzhCBjT+OPjFs8H5g7YNxMttgPMZHjMxOYH5QsUNq/6fV6b9IDnfL9vOvPhAHEkPuLz1A/sl6YpPE9IMdarVZJEQ7RCMFJ+yAzz8/PS6aSyWQSs9ksFotFLBaLN2cQ0w7mK8FY+/0+3r9/X84vY13y/DVmhDTa7/cxnU7LeRb2JyJexU/O1Mh43c94XepSl7rU5T9fWO/BGVkUORwO5Qwydjw/Pz/H+/fvY7PZxNevX8uOFdtJfz8iCibt9XoxmUxiNBoVXgIuA9trG9RqtQrHyW5rirkn1924z8JOrlMu5jyNE4wtHShjTGt+izpHHFPlcV1fi89ZXDRvZg4X7ITwYu6JfkfQIGCa+8PVUX9nlPC1XUc+R7u4h9vqOZT5O8YBHOv2YeMZp4jqpgCwJJjG4hnjRD9a2Mu7w3x/zxlfz8FX1JH6mh80z2pMbi6PwllytNF1dipIc/O0m3vbP4KbbDReM5Bw3yx25ms5+NG7yGgvc4jnDt8PjhYBy88gfYgIaR7ZG0DIiHJ5eVlwPd81782cGAwGJQvBxcVFSfF9dXVVxHj6sdlsxmAwiOl0+mZsPUf+PS2mLn8j4lkmAJhcdr4ijgPoqEs/uExGHHE/fBiD0WhUJni+v7fJWpyxoISz3ev1ysS2OBVRJTBOTXQWhoijoYOQ8P+OhMBYcH0WZhtq6m8DlfvWDhQGlf729Wmr624Rgv5qNBoV4uHXxtP33e/3b84BcZSHHfY87lnEszCGIbHIxdgwpqeEIUQb+tAOt8VZ6ofIxjXpK4/HKfLBZAV95whu5jFtZVG1KGOj4znH/ZkDjDXjyzUMgjynbXz5rokI96OfFep0OBzKmBoIul/oK4yEty27v/gOW99z1I2fXeYt38MI2TBtNptibFlTACCO/s7pjA6HQywWiwKWeB/Q6nUhA9D8DNWlLnWpS11++2J7GvG61nPe0fPzcyEhnp6e4vb2NmazWQwGg/JZ71zKAUDn5+ex2WwKgTEajcoZEzhbEcfoYothjmpESLMDBwayY4uTjq3yThs71dgeEwwRR3uacYnxpnEF37O9tmhjAoTPgU0tOvkevr+/Z/Ei4wP3OXaUfkMoMulgESfiLTHktlh0oI+9Q8mBPvQ7IqzPCeEzxvjuc+rhPrODzly1Y53njMfM40JbwVwRUYko93csRFJnAu+yQNlsNisp2zM242/60wQD45TJDO8Ic4Syo3q5hkkiCA7EavodESqLoRFRRFxETz5jwY02G9OBE3PEOucWLpfLkqoRbImQdnl5WUnnaL/K6cDBlO12O5bLZXz8+DH+/u//vuLPGu/TnojjORyk0CT4cz6fl9RCEKwZh3ru1KUudalLXf7zxUJS5tqMMQaDQRFtOK/q/Pw8bm5u4v7+vohqJv7NVYFJe71eXF1dxeXlZQnKIijJXCO/wYJcm3o6kMLZiTKPmT8fccRExhM5UIT2g638PdfTWMIinbMdZG6Rwuf4LjbWwWtgOXOk5vKMa3O7CLzn8xZXyDDB98E1YBba65K5Nve5MRPFGNP9RJtt18FYtIs2w3mb26MvuCftv7i4KFjj+fm5CG+538BG5vgI0Oe6xi7svjMXxzldxpPGy5nzJPCJehiDww1SfwemObiPsaNdeRMB/tR6va6IsxYUwdtut1OtWtDjvqwP9vlarVasVquKyGYcyvP2/Pwct7e38f333xff0c+uNyo0m69pYAn2Xy6XMZvN4urqqiJEoqv0+/03dcz8NfPGn6nLsfxNiGc8SBQvhjyAHmAvHEz01WpVnBoeNNTWiKgQ38PhMJbLZUyn0/K+F3CubyeWRQHndjAYVKL/8oLGw2Sn3CJAXrwduWCCgT7w9XgAT5ESOGn0K9fBuaIvTA6ZDKEOJgO4bkR12zLjBAFAf3vrr8UtCy1+H2NFH2KQMulhgOLF/HA4FCfV79sJzSQM3zORgPHPC3dElAgXi298HkNqEswLtvvWBtrtdd8zV72Aef6wsJ9ytpnH1NELJ2DJxshjaqBCPSH9eM9GLhfa5GggC5n0mUVWzwsbf9YE7xjwc8D9vLCbBOFvGyXOo+HMiEyKEinCfNrtXtPkjMfjci/mmYlO94efmZqsqEtd6lKX36+YNMZGkrIR+4INWK1WMZvNYrPZFOIZxzDvJGJdb7fbcX19HdfX19Hv96PX65X0OBScWdtBSIochBJR3SHED3bQ2Qe4RsQx4MeEhIUap1rB7lvkyen9sL85u4G/4yAm40HjBNpjksKpbagTbSLVEDbaTj94133lHfz8huhwFKzttJ1O22zwJKnfGX8CgHCoTYpcXFzEZrOp7FoDw3psHYSVsbTnkr+X+8o43m02Mcf5CeyU5zPOuOC+Yi7mwCau53NAmLsmGqj3qfnj58743X1tko622F9g7Cj+DuPM/CXCnPlG+/i8CSxj6jz/Pcf8DPFMM87sOl0ul2UOgNdJpXV7extfv34t98MPPTs7i06nE4PBIEajUTm/rN1+PSub5wDCLu+ahGxhfer1etHtdisBjO12u0TP07YsoNWlLnWpS12+XTE+sngF1hwOh7Hf72M+nxc8ut/v4/b2tmTrcRB7RJQjKhDOLi8v4+rqKkajUeEdIevBIOYOzX8eDofKLnXbZurpQOgcOGMO5RR2wXY6UMV4K6J6tIvFCnNb5i75HrvHsXHONkCAi+tr/GahxRjHHCRYINcT0TLiyDVyb86v4/sWuVqtY4ayU5ga7tVpms0FMv5cGxzroJ6I10Apvpe/S4CSx8KiIJ+JiBIoyA4pMHOn0yn3R/SFV7PQmPs2onqMCf3jICJvgDj1HEVESTnI+PmIFvtP4EJEoZwC0mOK2MXzRV8yDlloA0MyR6g7aRLB3NvttvSX+WrmwsvLS6zX6/K6+UyPF88XY8A8vru7Kxw7c4HiPiSzHm2fzWYVYRbhHi40+2keOz8rNY95uvxNiGdemDOhz99+PTvQrVYrptNpibzMqVQioqRc41yybrcbm82mHN6ZU2VEHBdNnDmc+X6/XyL8Io67WOykYFzs/NmZzaIaEbqnJisPebvdLhG3CAk8pKcWXvqLz9HPGBY7xHzPi4YXefrQ0av0CQsO1+D1LCbyPZMZNqjZAcdgWTj1/TLJkIXOiKqAYcNJe04Zbl6zyGZn39fO88yClj9LW9xmA4xT6Q5pRxY3TchkciuPRxbVWEx5nTFm0Tb5wHganJh44TomCgwa6FeTIRby3IcW9QzaPG4Yk3xf7gf4zGuIU0g1m8eodZ4tj5WN9XK5jHa7XXIUk1PYhsz18xqWozVqA1SXutSlLr9tyUJJs9ksmM+izPn5edkpgnM4Go0qNhdb7OjCH3/8Mfb7fQnAcCSog2cuLi4qeML4COLf6ejsFNr5PBUg5R002WEziYPNtECT02BTJ0f7UowxuT8YAEc1O3LeWWQih/vzOkSACRaLVNSZ72Pbsc9ZYAEvUF+n/2GneBYT+EwW0yxKgqUYKx84DobjjAnPOWMxizZ8L++YJ+UnGMd9YJxnksBYiYho+qbT6VTERNfJ2J/+tih3at7gD3iO0/d53tFfnkvGlMZN9Mdutyv9CGlCP/NcQELQX752xDGaOJ/b4nnhgCqi9yOiQoYZbzcajeh2u4W84XyZxWIRT09PxW8jOJEArdvb27JTDR9zMpnE1dVVJbhzPp9Hp9OJd+/eFZITwsXP1nw+L+NBGkdIHHwQ/EP3i3FnJl7qUpe61KUu36bYDoEXut1u2QlyOBzKrrGnp6fCWbIzzAEvYNZ2ux3j8Tjev38fw+GwcpZu3jX29PRU7JhJ/4gjRjKf5gAr7IL5VQd+GUuAq/hMFuNsQ407Iqq4wZgwIirXc3CyA2XybjPwh3Eq18iigDkzi24WtxzgBtY8lZkAAS2fH+dNAOAMMh+ZwyMIiPsa81lctC/iM00RCTNvR1sc7M11maOMMX3qOpiDOxwOMRgMSnARc3W73cZ6vS5z9lRmAcQh+1OZ7+UeZJgyp+uANOYuGMw4lfbTtsPhUNJuOmMEn6VO5re5hrN50EdgNTAl/WifAgGc7zJHuI77nv7m8+gSvA83v9vtyj1Wq1Xc3NzEDz/8UBFMET0Z906nE5eXlzGfz+P5+TlWq1Usl8sYj8eVwCz60G0y18pv+w51eVv+JsSzvNCdej+i6nT59cPhNacp0Xko/ywgEVF2ipnYHg6HlYmM8xZxNCLUi5Q/7969Kyl6LBBZ5fdiwWf4MbHBQ0udXHwdjCSftdDHA+nISRZTGzzaYINhocuOtF83ieFITD9QJkyazWYhjjKZ8GuEDoRAo3HcxWURx8aXe5x62CG5vDB78QZcWFTJZ3e5T+1E24n3eNso5nvbiPIZp7k5JSTa+AKCfH/Xw9/FEGTBiXZ6fvK+51yeT64j//Nc2bDxPnWgTjYenU6nRJ5QlzznuYbHx0KtnwX6Nh9uakPnaAuvAxgkP6sGeOfn5wXoTqfTSgQY7fU5Nu47z3GTqXWpS13qUpffvjgYhvUcUYH1mbMup9NpcXxy0AnXsj29vr6O0WgUm82miD84X3aS7Bw6mhCbQNSjbRjOOXYFXGE7bYeGaxpjOno4Y5iMJbFl2EHsrp1p7zAyiRFR3cnja2cRD9tKf9JWi1K26wTHIA5tNpvyuqNKEUp8z3x2GZgE0YVz6WibxxlRxX0FHgWz8Fmidakzzq8/Z2GD39SRHUTUk/G2IJSFQ2NgzjZwhDNt8uecTofxog0OgrKvst/vy45JY0Xq7rnO3HSQmXEkPlSeB8aP3KPVej1D2hHA9sF2u11J18jnjf2N4RhbSEnOu+A9zyc+a38Fsuz5+bkEUJFefbvdFtGcebVarcp1eEYGg0Hc39/H169fIyJK+kffc7fbxXK5LM/thw8fKr4U7SK6mXnHPPUcZhx7vV6FTLQPVpe61KUudfm2Ja+3EUd7MhgMotVqFU4B23J3dxeLxSK2221FgOE3WGAwGMT19XV0Op0SlIX95lrgHOyQBTWwle31Kc6Qe0OoY8u9mwcbAv/pYGXjRmNS/jcvgg0zLwiOMaYjEMY7zE/ZNXNUWeTz+JiriohyXeM+MLnH0vcDu1tkgrO0KAqO2mw2sV6vK/fAvsOJeb7YRzAON3/MmJF1gLbQHguADnbyODEvssAD/gZLwY0z5wg8R+hlA0oWYI1bTwW5g6l2u12Fl2dumPPzriz6HO7Wc6fRaMRqtSo4Et/ObaI/CM5ivuXsAwiPzDkHu4Ed+TwBTxbbwI/GqTmYkPaA7fz80xcEki0Wi/jy5UsR0Oyf8Hz3er2IeD37lnTei8UiJpNJ8S/YeUf/UU/f0/jbWJS61eW1/M2IZyYtmGwMoIkIf8cLIVECOEqOrmS3mK8XESVFyWKxKMaNBcMPDo4qW6ZPERFegCA+LG7YiTSJwIPpA7AjjhEOGDPabJHCBpfF6xRp4kXQD15ENdLCC6wXWX68q8fETUS8cbb57fqYJPLibbKDwoLA9Vk8Wbw89q7TKYPtaG4LZ/xP3dgq7DHzb4urdvyZm05bZCNhMcfzjzZSIOTs6NoQRURFlMo79vz8ZLDE506JXh5P19GgKht3xtzja9LMczCiKhpiaAx6TLoBdDyPHP3EfHb7iMb1s0bdEdCGw2G0Wq2yRpwCl0SWI8Q7OsTXdZquDJw9/3i/LnWpS13q8tsW2zocWkhrbAepgKfTaVnbbfsopL0hbc5wOIzhcFgCKojGNN6zHQRj5MhWsFREVOyk62iHy9gyB30Y2xhzRlTtDqSLRQvjqExKuG4WZ7xz7ZSAZyc0737nOxQTLE4NA840NqQYp5g4sI+QsYf/NsliggHsn4VHrp8jaBkXO/TGYyY8/F1HpdsfMMbBoTW5Ql86utV96zYwBibRjKX532ONk+455XZ4HvA7BzxSL/tf1NEBXNTVfcB1D4dD5YwWk3MERuao6fz8cM1ut1vELrA9hADj7sA918+R++BDgqgsHpLiCJGNOcQOtMFg8CYoE5KSftput/Hp06doNBrx7t27ij+0Wq3KDjaws58L6v/09FR2Ofh58XNXkx91qUtd6vJtim0ixXjs/Pw8RqNRCfxAMDgcDjGbzWK9XhduEZsFyd3pdOL777+PZrMZg8Gg4Df4R9saiH5sLqnEbe+xeQ4kzkLTKc7iFHdhcYHPZF7s1zhAX9/BZuAg78KBAzXH6Dr4c+YYCUCx/TZuOsU10gf0D0Hf7Hby++ZvzWEdDsfz6cAtiIyctYX9t0hBf7h9pA03/kfwAPsQCO6dcfQJ78FnsfvdY8LfpwKhdrtdEXS8Iy0iCuY5OzuL0WgUz8/PsV6vC4eNmIbAZLzr8+iM2S1G0U+eI4wffe0ApIioBHx55/5msymCEandEfy8y4v6mQ+2GAhPb+xoLhCh1O02TmZeMlbuI48BPoCfTa43nU7j4uKinIHGZz0HWAOGw2HsdrsSQHdxcVF25DGWzCXO6T1VwKh1eVv+ZsQzJkxENWWLxQNPWLYs+uE6HA6xXC4rQgm54a0IO61ju92OwWBQcdJYrDB6+/2+cjA8CwBOHCQKiwOGwAq+F3gbEG9V5XM8CJA6eesoD6+FjIhqhIQVZUeO2HhQJx5UGxRfz4RE/qyNo79H2y3M2UHNwpTHOPcb1/MWVSvzJo9oJ79ZzCECvFU3Cy30hxcyjxv3yCmD3Ldug+uPIaSd3JO228Dk6/o5MRFjogXhyLvcvBOMOvF9L+wRR1GOzwAaTIxZdOM+Jsjoy9yfnvfeWcjczIacMTLQy/OJ8czkjQ3UarUqUV+NRqOQpkQF8XmTQzx3j4+PJbqHvsDoMV6e95lYc0qlutSlLnWpy29fbK8ajUb0+/2IOOJDiAlywuNo+sB2rgFmuby8jMlkEt1utxwW/vj4WBEITu2Upx7GJcYzxmCngkXADN7lhLNk4sHttkCTsZ7tMTbMgVkmGywyREQlMMUkhHEK3zMmjYhiD7mOA2RwYE0AeWeNd3OBh40NLWKBLwiE4jMEJIEFGRtfB+c4C2gQIGBYEwx8h3szH2gP4xJRxeDG1OAy5hr+CbsacZxNuNCfFrmoB78dbMYccT+YCKFejJUxMd+lr2k7WJzPMFYOOjSeMyFhcdNznzmEgOYxIKDJ+N+EGZgODJYjmMH83B+MCUHEmJgEpE5O7Q0JRjAVzxppcbgW8+b9+/ex3+/j/v6+pOmyH0a/v7y8xOfPn6PVasXl5WUhgdh1RtDXZrMp/ge7G+l3R4h7jcgibS2i1aUudanLf64Yr1lAiTge00HKX8QQbA+7qOENWaM5Wubdu3clM5Z5QQdGQI7DncLz7Ha7yhln2CjjOQf1GA+5LhZbjJcsThkXRVQ5OAd4GAdho/gxR2Z8yffNjcEbmeMDj/A/AmTm0MAoOcCKNNf0qYUPBwCZb6QPHDTG+CKYOUgGjEY9zZEZ41u4o08oFkzBJcyxiChzCZzr+7DriLH1/AU/ZZ7YfZ35LD6D33RxcVF2vZMZAaziucI85nO0ybwadYLHA6NyLeYcz5kxtTlJ8DCf4fuknZzP5zGfzyubQhDcqAfPVg7O8vWNQ82P86x4B5o5XOPTPIeYPwh/tOnu7q6sDw7a8xxqtV4zrrC+0M/Uy0I76eJz+tFTekBdquVvQjyLOC5aFE+gU86oiQET2KjgHADP4Zre7mlxje8NBoNi1HgYV6tVHA6veYoRzuyQm5SgzjjwPAwIHF6EvXB7UUYhhuChDyA9vLOJCc81+Yz775QxdAQq/e4FK4tBFj4sfjn6ku9GHHeyWTzkda7L4mmxks84qtYLvUWITNLYwFIsYpByLxNHOXI2Lxi5X+ws03f0JeRP3jHn+cE9vGspokqsZPIpz28TGCycjnA32eQxplicdJQFOzepr8FDdrYdHcF73pZu42IxDQPndAPMfxtXi2QRR4In51bOh+AaBGB0O51O9Hq9Esl96syXHFnC/EA4o2/4bAYgbp9/u9SERV3qUpe6/HYF+8FvonDt5OBwLpfLSoqPZrNZHE5sVLPZjNFoFFdXVyVoCmefVB0R1d1MDp6KqKaCBhc48MIY8tRrEceUKxYBTPb7HsafYFDqQT1P4TaCSfyaI4LBAe5jC3jgFuNzY0dSzhlrYGdpS7PZLEQA96A+OUWR8Si43iSJUzhGHA9Gp5+M49zGiGPQkceJKM3ValUZK/shp4gpYy/a6QAoi0pgR5/Nxz2My4376U/vTGNXJDvJEBjxL3DSneXAQVfMB/AUpB11BG8ah+Y5AQ5jzCFj7O9k3GSMZLHYfWYx2GSQ54O/R1vAf9yHuc3OUfqDNJ0ETe73+5LyE7+FnWT4F5z7wZlnHNTOWdibzSYuLi6i3+/Hw8NDZVwY52azGev1Or5+/VrO1F4ul7FYLCprB6TUfr+PwWAQ5+fnZd2CNAXjZjzq+VaXutSlLnX5j5fMcxi/RUTBjBD02NTNZhOLxaLsso84poPudDpxdXUVo9Eoer1eJVjb9g0bj/0398JrCELU0Tgi40bjNX8u4miLMz9kvGVO0Pyd7Zu5F2cior+ww8YrEfHmvlwb/ou/HRhDYBZ9lNNL0kbEMPAeY2QxwQFA5j3dXn6vVqvKpo7MhYKJCO5hrLg/PKP5MeNLAq3gv4wRjeW8QYExwNfJGcToM+M/zxsHVBGkBJ7LPkFEFB8In4I0h8aY4CXaClYyhmS3pflMB5BRP89p2pKxj18Dtz0/P5eApMPh9aw0/MLlclm4P84Q4zl0gB9YEWzG361WK7rdbsFn9LM3XvgZNF433uMefl7u7+/j7Owser1eJR24cR33p529Xq/MLwLRIo4BWPZfMi7P2kJdXsvfjHiGEYk4bgv2Dp1cTMp7gYYE2W630e/3CylOWhKLUZ5wOFSDwSA2m03M5/OIiBiPx9Hv98sBkSxaLFxeWFnMLTzZQFE8SU2cZKXdi5m/02g0KlEG3j2Ek+kFJQs5LHy8FnEUrty/WYSxweK7GC0vZt5Vxs6o7LhhIE3Y4IzjXLPAUr9MEth4OQrXdcPYeKcTc4d6Z9Dj73sOAgCYO1zfwhrt99hkMYpxyVG/eawhhSwO2QBERHH+vdBBvvBcmKzxONJvBku0jde4jvuD8cBw+XN81u33Z1jAI6IQOfv9vhgwi2AAilyHHJnEvQCaJhURTqfTaTEaOT0p85DfpFjA4BNdkwVaP1d+XvKzc0pMq0td6lKXunzbYjuHeGYbxLrMrjPjis1mU/LGZ+EMRwibyi5mY8h/TzjzDwU7YSHBhDqYAuySg26yPTcG9q4y296IY8BU3vUNTuK1nJr4FG4Gr1l8sp22sGjSgGJbTTtw8iOqKXVMBBg7O1jG/WccQR/QR5k8oL/zDiU7924bdef72XHNOBRMlbEBdTRhRH0tMuH00ic+p8C7zehLExv7/fF8DGMpopYhMbhnJmNManDeH34Pdaf+p8iLRqNRfIC8gzEHTHq+eY4Yq0N68Twa+0ZEScnjOcG8B6tDdtgXAo82m81yFhn322w2lYwjntt5p9doNCrY0eRov9+P0WgUX758Kem6PF92u13MZrP4+PFjTCaTypl19CVkVMTr2Ra9Xq+Spoh5bH/jFClWl7rUpS51+TYFu4tdhNyOeLU77FSG51gul2Udh/fr9XpFOBsMBgV72PZnDNZoNMouqywiRURF6HBwte2V+S+/HnHEjtzb2Mc230EtfO5wOBQ7jR3ideoE7rRg4EBl83gWILB15o0IKskcVMRRUHKaZt5zQBD3ZVy4Rg7OoT+8UQIfA/vr4H4CXPr9fiUtH99xYJexunkv+tOYACxDnTKe8nhEvAq6Tldonthzyn1vUYf5bMxlfhGcjLhL0BrPBUKa5yBzxHyf5wljT8ruzHVmDhcM6v7M43JxcRHn5+fR7/crAuZutyupspfLZQlgIs0qojfPGONIX5prhnt0djrO7IXfpn7G+H7+PIb0036/j7u7u5hMJjEYDE7yt2weOjs7i81mE6PRqPQjG4za7XZZlyzq8Tk/6+bu6/Ja/mbEMxYRFzvhEdXdaH5A8g4gq/eONswClifdfr8vTvtisYhWqxWj0ahEj3jyku7DirsJDOruh9/F0QpMTK7raAHa6ihQt4Xv2VHOjqLVay+MdtZNLFkEc19xTS9eJjO82NFGXvfibmLARsljbyPOoss1I6Ky+PI/3/H2eDvzGMfsbFsMsjDjBQMnljQ6vtaviZQmQmyovVi6rv5to8p3PHf5rJ8L2oURNxiwwGuQ48hsG2QDBBNDNpJ5Yc1iY15sLXLRz54jGAXEQM8FPk/bPJ88r5jTGDCIE+8cu7u7K4CLyCy3AVKj3W6XlF85JQDrS56vuR9zHetSl7rUpS6/XYE8xhZ6RxWOeqvVKtkJSMPmdDIRrxF5k8kkOp1OIdVNTJjIj6ieu5XJfNcnY1CKhQqT3/6sxT/ait3FGYt4a29ol7Gd22D7zeexsRa/LEwhWpmk8M47nO6I424otw/s4es5hUnE2/PdqJ/TBLltvkYmZuwHGAOauEFEYgdPRBQHNOJ4ZkJ2eE342Nn1HMmYygKMnVru+fT0VFLZ5DGC7Mk+j30Z+pof5pTHmHHh+eDZyCIbWNPkBpiJ54X7WFSjrT7fy/OI6zjluOemd7Zlcg3MSP9yrocJQTAgbUAsZLcY98t+hoU+Ined3cEkJfdjrTGhyH2MyxH07u7uYjqdFtHe1/7pp5/i559/jj/96U9FHDPmB8+CUR8fH0tfM+cZY/94valLXepSl7p8u2Kb2Wq1KunAsffwR9h6AvE7nU5JD97r9SprNrtD2CmD3cQGGCeZqwGfGZti68BMfMeZg8wrmYvyDnSLWhHVXWPZZoN7s1jH58EQxi0UcKa5NtICUm9wCdxRFubg2szJmWOCryMAhTq4Hog75uicjSLi6EPwPXNtzoQAVqd/SVGNr2Keznw316TO5le5r/lJPmfsSX3oE9pjXs0Y08Fr5kuN0Y0vvcEEvMK16ReENWNjru/geurMa51OpxLozvhapOT1nBUhC5SZK3dK+IuLixgOh0VkWq/XsVqtYjabxWw2i8ViUdJpLxaLcmaYhTT7GdwfoRC8Sh28s5Qf+xz0o7Hqy8tLzGazGI1GBdvSZ8xjC/YRx+wbCICsO7TbY5t9xbq8LX+z4pkdQy8iEVEccYp3ykS8Dv5wOCyRCL1er0RMRhydbzsljUYjptNpbLfb6PV6MZlMKoIZSi7Oj53RTEJEHAU9RLyIt6SGnXYU+yxOmQjwtXnfDjmGzbvKWBBPGQ1HYVqE4D0Xrp9FFeplg2nhkNcxECYSLI76WiykjDXGwItjjkagXnaoKSZOLK64bykWQehfGybG1Ibezi/z0OdL2OnP7bSBshHg2k53RBvs9Pu58QKI8fM89Djy3NBGE0I5ktzPlYkTG1wbJ89vG2f3MX1On3g3I+OFgfGcNLlCX3vuOvqc3aYRUYnQuLm5ie12WwQ77kHUCdfqdDoVoGth28AQgJyfGfdpXepSl7rU5bcrDqjBGcX28L/PNjBOAAs8PT3F1dVVXF9fF+cDTOGd7yZJfG87ztg144Asivk14yKKr4etwwlzhgILG2AViol3f457gkP4LHbLu+zdBqJ4c92MmZzaz/jVAV3+3w4x7aY/chAO93KgkckFYyy/DhGTA6wgtiKOAhJ43Kn6jG+MGy1egfdNOvA9i59gL0eqcu9m83XHvIPeeJ++93VdJwp1oY8J9mMeMBeMvcHSCIYeC/rIY+778XzRt/bHwLEQNvnsDYt+9hUiquf8+iwRXqddfBYfxIFzPL9ZfGNtYAwg2MCyRCPT97TBwYYUR09DeNhnpL+4Dv37+PhY+qPb7cZ2u42bm5tCfvx//9//9yZDBSTs+fl5dLvd6Ha7pV8zAeX1sMahdalLXery7UoOxsH25OALOMfD4XXXGfjq/Pw8er1eDIfD6PV65WgYiy7YLNZ47pEDYrB9xoAWr/jOKXGGayD02X5jNyPiDTalnsY95szAkOYiI6q7vbKA4tdJeUc/Zi7M7afexn8W0XLAG5jduJn2UowX2FxBCjywmDNr5Z2Cbh/+hfE+9fa4ue9dwH3NZrP4Mt6JZsHIc5H7n52dFaxhIXGz2cRqtargNacON4agj7kvOISxz1yy20L7wGO0ibpY8PX40m7XATxuH8y+metBIBx9b7GYelvwYkzw/RDTBoNBvHv3Lp6enmI+nxcx7eHhoWgHZD2gbvY5EQCdNYLxAjd7rMDC1jeMIafTaXQ6nfjuu+8qvpl3FoLn6YfValX4SvqJ89FOYW77VnWplr9Z8cxOip0lv87CxgLJotvv96Pb7ZYDC19ejudeMUFNJLRarZjP57FcLqPVapXzzRyxgWDG523gECjsDGKoTFpkcsTiHP/b6bfDY9LAAkJENQUgD4BTOPL9vNA4AtSEhuvr8bDzzIKDmGhD5jbbWFl0oK6OdqEdNqSOULbIRfFnsqDD+1b2nbKPvrbD7b+5rsU3Ioo8J7nfr0WtUA/3Z25TJuNy9K/JMH8HpzyPj8fIc8/FIIG6mBTg8zaqXNdzMe8M5O8sYnI9xt115ruQRhhpnl8TI7lfbVwdCW3DDIEzHo/j5eUlbm9vYz6fx2QyKdEfFgDps36/XxGkPSb+3+DTIuapOVuXutSlLnX5toU1G/vR7XYLLmTNdlo+H9aOHT0/P4+rq6uST95nIIA1Io47TSwORVQxjXGMnUVs1qmIXNtGtwsb4+wHxlynhAHjSdsrbBR23HXJBEIWtexYcX3bTONzB/J497ZJC9+fe0JG0CfGTRaljOWMMTMRgt+Q07ZHRCGjjDcdQc2YWWTDgYVgcB25j3EwrzMXGZ+I6lljCDlZLOF7zEWCojabTTmXwVjL9Tf+MX7LxJPFzuVyGd1u9811eEY8l7kufcBZgAh9ns8eR76/3W4L2eT20seQjJ6H7tvn5+ciIP1asBgpakzu+PwP1yX7Q5A9JhAd8EX9HPlusazZbMZ4PC5nmJ3qk7u7u3h5eYnValXSi0dE3NzcxHg8jslkEs/Pz0WcgxyhHhcXF2UuMuc9tn6Oajxal7rUpS7fphjvRRx5HEjrHGTBzo/9fh+j0SgioqQFB3MaP9rmYd8QK4zrMgdpHuvp6alyPhZ1No6LqOJn4y8wkQN3+A1udHYG441f40nAsuApsI+DXsA6fNeijwU3Sr6vg8I8TvnHIo05KjAJZ28xVg5aJ+CI8XBgEuMScdzwkQOccuCY627Mab/GYpuxH1ws1+Q9ZzQz3kPsYV7Rp97Fb+zsXWURR1E1byYxzjglvFoI8hwBPzH2GbeaU3TAG8+GBR/POXw3t8fPo0U+6wMRUZ5jdmrt9/sStDQcDotWMBgMotPpxGq1itVqVVI8brfbStCV5yyiFvez32Qs57ZTJ56V6XQaV1dXxdf1uYJgQ/oKTM7uVQufmYumWIOoS7X8zYlnJuz9EFhE40Gxc2uFm/MoWIQXi0U8PT3FaDQqD4VT/202m3IGhvMNW9iKOEbp+qDtTJzzGS/UfNcLy9nZWWXLpK+fnW73DX/zPRsBCxGHw6E87BG/fii3o0so2fB5QTPRgaPv6FmMDsIjY8MuHveFBaPcn3bQ7bTmPneUAXPAfWRyyiSaF9m8QJjo8Bwz8DAJl8VO14G2YTwxxtkZ57tZNLX4xHy1sfXnuJdJPvrX/2cH2s+P38uLqAFGJlC4tvvT8zq3hXIK0FDnXq9XFvtTwpbv5znk6B/mJvPk4uIirq6uYrfbxdevX6Pdbpd8wOQjZq7sdrvo9/uVszUy2Mx9lfuiLnWpS13q8tsXSAvW4F6vV3FaEM8ajeNOIuw0zgUHtYP/IqrCgoUf7IwFGEh76oPdsV11usNs723PbROdOtzXA4saF7jufIb72inDltl2sdOda2VMi/Noe2yxz7jM50u4Pjk4x3gl4uhUOno3opqVwcFkYDljOq7r1zMGpv0IGvgVFioZdwsz+RrUh3HjOx5z44FfI5X2+32s1+tCkLVarZKyCTIDzAnxgfjEtYyrTxEGjLuxLMVCIKJcs9ksaaSMgU7NWwur7hPjvyxAEZ2PCGU/huuBt5kT9AGkBO11RgmirE3GgSm5P4SgiSLmO890u90u6wjPskVzC7eMWaNx3IVHf/DeZrOp9AHt+/LlS9zd3ZXx57M///xzDAaDyq5DnxsC6cp6hj92isiqS13qUpe6fJtyal21nTW/RJDH4XAoNgA+0tmtwFlgSfAlO56ww6zrBN/AfzgQy5jDOAi7Z5tu3JqFJXAXQePmW8CjEW8zJ+Q6OEAJkcZ4CsEnZ4qi+FoWg4zZMp5CZLA4ZJvoQDKPITiCn/Pz87KriPSB7kPzycaGOTAIfIBPAZ4xD8rnEf+M9d2vxmHUhz4jwM5CFSKouWSPf06bzXUy1o149SXASJ1Op8xfByl5DuEzMRfpe9rB/AYDMwbgOI8t9TPfa67SwrDfY+7xfcba8yzPJfth9KP9g/F4HJ1Op/CE8/k8DodDbLfbsjMNAY85Ag9pMbvRaMR6vS44zs8kz9nFxUXxjejTp6enmM1mRUsw/qYtDqbK/q59ZvsC3MMl8+T/1cvfjHgWcVzIXE6poI68s3CCY3N2dla2RnPd9XpdJi3XOjs7i8ViEff397HZbGI8HsdwOCyEBAYMVZd7Uuy8n4qAMMnOw8BC7IcgR4zkSF6TC1wn1yM/6CbxWSB4WEyIRERlUcuLso2Bo4NP7fBxW7m/62MVPeK4jTb3VSaIEEEYX9/LxpH7UT8vtoy3SQ1Hd2AobKwijoeG4mBj3LgXUSnZeHnhsxGB+Mj5hG3UbDh53d/Pi6HHOQMfj5/njKOGiMBnPrr9pwzNqXF335uw9NhkgTIbQQMVyKp2u12ihCF0TKoYuBkYcU+u4fsfDoe4urqK5+fneHx8LPOK6JJMdvZ6vQJ4sijm+etxYb5nEq0udalLXerybQvrLWsxzpwFI7AcDpp3DrVarZKqEXvQarXefMbrO4Ew2ck3uQHx78ChHDDi7/Gef9Mef9ZRoBn/GPPk7Ae5z4wPcPIylgUnQN5zTSIaM4FBPY2N7IDaPoNzjH/BDnzfIkXGNhHHaF7exyfI0amQKQ4+AkeAZZziKJ8b6/vTL45sBht63PiO8Rl1pX8h1zwWJmMgKhDKONfCeMrBU1yX9ub33YfU1X1gQqbRaJSMHHw/Y1W+t91uK6SW5wIkXyaXeN+Biuwic9pu5rKxtp8H+p5dWARC5ToSxMbOUZ4N97lxLM8Nn81BkfgHxqJePzw/Go1GDAaD4k9cXFxEv9+PVqtVUv/4GX5+fo7ZbBa3t7fxD//wD7Hdbst8t1AOgUXqJQuz+bmssWhd6lKXunybYkI580as06cwFbtWsNEELZnHxE6w68c7z08FxGQe0hwdJQsLFjUsGpgf9PXMjRhv8H3jW+oI98hnsmAWcQxWzlyiMROfZUefRRF/h/7K+IC+yDjYO6DMJ9PX5kLBrvzvgDpK7l9wjXk8p1DMHGjmDqmLg4+M36iPOS+wQbPZrGRg47wu+h4slQPh3F9wp8aKrjdYBYEYbtHctXk6Y5GMU19eXiqYynMr84e/1jd5bCn/f3tnthxHkmRZjcASK0gmq7Km+r37/7+pH3omKzOLSRKIFUDEPKCOxfELR3XlMiIcaVMRCIAId1vUzE2vXlUzTx7T88b8qtvFb5KhvFPPgTg23KzX6/b9+/fv22kDnz9/rr///e8DztuxDJK67u/v23tyc947YZPXzlRV/fLLL7Ver+vu7m6A96qqYUbGz34D/cPnddv83Nin7HKRbyZ4xkTyosigZXDIf1cNsweYhCauuW6z2TQHaz6f1/39fX369Kl2u10tFot69+5di6JXXc65Z9J6wXH9fj+AH2rEWRosaFxrw4Wj7MlvI8CD7gefBc1OE3UirjMzTBxcY1EcC+jx24629e9FLAkOL7TWjckPPp/P5wMjxb3WA985k6TqYoCtV4wIRIcDOWT4Qj4503mMKKMOE1PMTbZvQxLQBi88NggOxBpYmLTw3M3xNhlm0pB6MYom9RxQRDcm9xKM5LXWg+ck99pQeVxdBmNmEAbA8NEz1IHh9tE4JhFoI1kvHj+3P4O9s9msvv/++zoej/Xp06dX25uZ487ssphwtAFO4+N+dOnSpUuXP14csEibaRtwc3PTzn3nvul02t5zSzBsMnl5l6ntv+00mGSxWLSdSc7gw8ZxZCEYzAEL6k+nsOqCCdLxTtvpdxMYbyWWMOZ6K9hnm+bf1F91sasEFo1TcZStAxMyaftpl9ts3bptDpZkv8A7iY/pL+1yn2yTjakYR+w/fQcjmqxAH8aJ4BT313h+DM+hH+pEr+jAR0o7wdDOfdUQR/t+2plJRMaMtN3va3C70YHfO5Z40zpxX/nOGe9OEIQMI9HJR8kQKMx5ZR/EvgDXkABpbJbHrzNveQ+F56PXEUgH2ub56KCf/Q7mkOemj8dZLpd1PB7b+8o4UvzLly+D5LHj8Vg//PBDfffdd/Xhw4d2CoOJnqurl6PkefdyEoVJWHXp0qVLl98vXlMdBLDtTjy1Xq/rdDrV3d3doAwHAEiYcQIPZbOjGjs4FlChPr++xfbZu35su98KhnlDQQYqwAXGtcaL2Ctsprk9dGT9jCXYUCd2z/3kOvSeZL8xt3lJYxDsM5J8pjEMbUgsnoEY98OcsdtCv5ycZLtuO+/2TKfTxjm6L7Sde47HY+12u4YbDodDS0L3K1HsLzggmLzj1dXVIKnNWJ1rvJvOJ3RlUrrnpseKMgmEejzx2xJTM2/9XIAnmW/Uj0/mZyA5UbeH/40TzRnz+3w+t92lYDxOBVgul/Xu3bv68ccf2+kCPBPUw85OAnTb7XZw5KbjIO7r8XisX375pXGYXjM4ihxduT50xxh5DlvH9lG6XOSbCZ5VDY9uNBnvAcWZysWUSbBardq2aAcq+GHyPz8/16dPn9p5wO/fv6/VatW2RvKQ+YV/VZeMEh5iyncAraoaoc/DuVwu28PrxRHCPhcDL5i5GPtzB4vSeFpshHy2cOrQC7iNWR5VST1uE/XzwHtRsSPrDE3Kt5G2cfN3niMmCarqlR6pi3NdbVCYOxgOEyAZHKJu73DjHuZi6tsgg63pJohyXAyGmHfM1yS+cMZt2ExAuR/Wg/Vv8INRycCfg8+eC/Q1M274njmeZJfv5xrqoD0ZPEYXzqbwi+ed3Z3kG+XznZ8P+np7e1vff/99bbfb+j//5//U999/33ZnZgDXL2b1M2CdULfJCoxdNzxdunTp8v9GsLkOlOHoVr3YpdVq1U4lYKfP6XSqxWJR33//fc3n8+a0ZTKJnTECCGDO+Xxeu91uYIPtqGNHvGvcNsnX5fuVqoYOIc6rk29oo4kJO5POAnWSlfGByRXu93vVqoaJInZ6M9iFjOFWsI0DCWAzJ2y5fLeBNufYGhfTDme88jkBIgcWwBjgeAfL3I4kZRL70D9/Z9ydgUz/P4ajfU/i/cwAZz5l0CvHz2Pj+ZF413VwH8FF7jEuNXFo4oky/H46cKXnpYkE+kR2NvjY/onLsp6oH3/MbXcAkuc/39/BfDDJYKy62WxqNpu1BCvWA8bRfulkcgnYkfiFnnwUJBnb//Zv/1bT6bS2220rg2zxH374od69e/dqNyd64rf9pQzsjvmFXbp06dLl10niNq+vTmoxd1L1smvq6emp7u/v6/Hxse1E9m6p0+nUEiFcNj+2L+bSjH291o/ZA3MwVUM7Z64NO2qc5CAEbTT/4v/h/4yrEey2+R3zWq6LemirdWrsCW43h5YBEr5zXdzvetArYwKvhb13kpGxNb/hrxk31wUmcpK3saIDem/xlWCqTGaquvDkz8/Ptd1uW/+MOSmLYxFdDjiYU7+YR8Y9zDNwoPlKcI+PoMx56c0MfJeJa2A0c8dOIgPLM76Z5O6543HxPRl487wyvpxOp6/4R4KQvEeM5wSukrY/PDzU7e1tLZfLenh4qJ9//rn2+317HnjuVqtVTafT9qop8470m7a6X/f39/Xu3bt69+7doB/m0RlPJxKa22ScfLKa9dFlKN9c8My/+duOZNXlofM58Ey8p6en2mw2g51HGYC6v7+vh4eHVsbd3V2t1+t2nKIdEhZ9Fn4WH96r5kmM8IBXVSvHC7gX41wgTdbTfmc5eKGnb3ZMc6u2F3MbXRt6L8gI/XadFjvkjIMXR7JmnHVio+Dze00isVjbGfYxjj4/2GQOxsjtcxCOcSFAZEccMeGCEXKQJoOcziTxAm8CJ3fMoU8HZ0xamTgh6JcEEpkTHCWJUXcdzAMcds/JHL8k25gPnk88Ay7DgMvvuKMdb2UxGLigKxsfAzHPA671ecH5vc8VNmnDc4TRZ/6tVqv68OFD/dd//Vd9+vSp1ut166938Pn5HQOJY2uX29ylS5cuXf7fibGEg2fYKBwLjjererElf/7znxsxfXV1VZvNpp1AwG412znXV1XttIN0hMZwlQmCquFR2dSH7aJ8Y1DKdcAJMUZIfRD4wGbZ5lMnYkyC4BAbH2TyEzrCXoJhTIxwvYMtiUf9vwNVuevKyWiUYwLA5YF/jIccwMnTI+yUj2E0BzdMNpkoMe6zDiiT+1y2g24Z5BvzNSgvg2/MQz7zDijPK+NZj5HJJnRnDMlc964z8BVzAF3aV8Fnwl/IrGVOFWCM/C4HExaphwxEJrnE3Lm/v29zGczuExkYz5ubm7bz1OTc+Xxu2bx+rxkJl/Yh7Pvg04Arn59fjuq5v7+v2WzWjpM9nU71t7/9rR4eHtrYPj4+1k8//VQfP36sv/71r6M7La+uXt6PRza654H1lM91ly5dunT59cIam2sqNjD5FpLDt9tt43CwP1wLRrENx65g99gBw7rvd7Mal2FTqd+4j3LND6bwuhrKom/GlVVDEt79dT+oO5O+jM8c4LBujZmMGZOH4Xrb+9yJZpxKu2iHTwzIMtEv9hj+yIGJxF3GFdQLvvH33vxB+/O4bXRvXRgDWJ/0KTd5JH6cTCaNp6Xe5Krxf0ja8/tUPW7eQGL+k0Qlc9QIZaFzY2Zzg1xLO42h6G9iVd+bnK35PPsk9CkxsfF1+g30z/oF+/pUAto6m83q7u6u3r17V58+faq//e1v9fXr14Ef4f4y19w26tnv9+2ktsPhUJ8/f267z2hP9pc5ZL6S9Sp1YL12HvO1fFPBM6LlTLiq4Tm8/swLGA89UV07z57oLHw///xzPTw81GKxqLu7u3b+sI/cYNHwQpKOr18cbecS47RYLNrEZyLaGHrxt5HzwugHwU6820I//dtBGsp21DqNQy4Wftmky8AZ9LU4h5TNQ+8FAceaejlfNRdiE0v8n8Er9GOCxGQYbXAQKAMtuUigS/qM/pzNi1FjwfQC5GCQFzj+HiObbEATZKBXzzsH/mz06Q9zhP8xWGzTtgHxjrOqGhwV5GyQJH3QjwOhY4SLwVqSRJRpQsXAx/r0fPXzD9FI9gZ6cL02eujaYJX+rtfr+utf/1o//PBD/fzzz233qdswmUwGO0nzeFXmzxhR2AmLLl26dPl/J8YK3oXhhIvValVV1RzK6XRa3333XTt1YDqd1m63q81mU1XVThxITEUddpIJytmZzGCXbR7CNT6u2sQEpDv1p8Ntp98JQw7ATafTwTu0np+fBycJ0BcCbPTZ7bR9tc4RZ03bQUvsYnzgIICzga0nO8OZeJTthLAZO37HONO64H4TMzjDq9VqgE3wH0z0uE3U63toQ+IkJB32f0YG+YgdcFXWwVx3sMn4jWvB2+gVnZh4cSAKvdmRh3hh/jgT2QFFBxXBo1U1OMYJXbAzkDGDkGHOMu94Fwy6GdvN6N1e1rd1lwQmgbH1et30wjtrTDAwTzymY5nmXO8y0PHhcGhrkNeCqheMyzpUVfXw8FA//vhjffz4sb2DN0kikkfdX49hEmNdunTp0uW3ibkXr/VVr5OT4Y7Aiw4AgFXhlZIzwsaxhvMaC3anmaMzV+k28X3yhcYlkOgOyNnu2XYljwZOsdB3dnIn32Y98R39NdFPWVyXSUoW2ulkmuTfXIbtrQOYHld0Y24K/tKJ48Zm6NYclMfJCf05b8yZco/H1HwnuqV8848+MtT3GDNl0hH4jDnpVxdZf57HDlLynblrY2zqNBfssXR/fUKaOX3Pw/l8PsDHnpMZLGScx+ZMBuE8J8w7T6fTdqy2E8Dy/czGteBwkpuqXjD6crms2WxW//Vf/1Xb7bZdR2AdHI8k7w0Xj56/fv1a7969q/fv37f+oBvKs2/ENR5/6yb9hY4Zh/JNBc9yAUByUSaivlgs2n2TyaRlAHuR43qM1d/+9re6v7+v4/FYs9ms1ut1O86Hl8zbKbXkgn06XTJrcZgxFj5z/y3DUzV0rHPx8MLOZ57EGBg787TLzhJlJLHvPpkcySNZ7BhC9JgMwcHk7yQPvPB7rN0vt5XvaZ+zOK17Z8Rav55DzoI2McAi5SCKdUt/x0ggB87IPvUcQzfUXTV8CaiNc74DIjN60L2JG89P7/jzWFpPzqix7l2f5yT6zjYkIce1Jl3ok+fnGOBCr+jNwU3KhJzwHElDOp/P23vQTLahAx8TwD0QNDy7VVXfffddHQ6H9vLN9Xo9yKQia4S25Et7k/hIQNKlS5cuXf54SUe7qhqOww4QOPPuo/V6Xe/evavlctkSMe7v7wcJQHbEcRKramD/np+fGyYy9mHtxx7YcakaZiZmH3x/1fBoGurPwJFJBe9+sb01rqRcnLWsxwE6J6Bk/SYmvHvKwRnXh/32Tj3KziAf/TGRZIxMW3FofX4/ZRg7ci1C+9CZk312u92AkCL7djqdtgxiB6ZynP8Zbs+5wedjBNNYxjZYkwCM9eygCqSPx4/rILTsPzBPSBIzrnEbHZChr/TXSVFutwPBHjvaaSxuksjfQVyZpDF5k3PP8xgiiCOy+G6/3zdigXXC85A2M7/8jPoZIbDoMfLxRx5nyBeSPv2cffjwoa0/PtL9p59+qr/85S/1pz/9qeFj+si8TsybfuyYX9ulS5cuXX69GGuYuzE3VlUt4MW1CFiTv83xVFVLBrJtgawnKSN3zXuNdxCDex1Q8+dwYmwcQBID+JQl4x4HbsyZmcSnDnM+FifBUH7a+Ld4LmMTuKPki+hPJjMZ1xrTuA2+h8/HcBztMadpXhBcAcagreC2MYxr/XKNE6PMe8FHUp45WjY15AlN5szALR4r8FMGUTwWHivmq/vBXE8u17jVXDP3uh+MkbEPYwXnmglE5jfH8LWDROn35FHi5pvdP3Al5aQfdzqd2msBuI4y1ut1/f3vf69Pnz61E7i8lvA3eJ0xyTXmdDrVly9f6u7ubnAkKDqZz+e1WCxG5zA6tN4yOSDjMv/T5ZsKnrFo2Cnybquqi5O23+/r7u6uTqdTe28Zx+7YaTcB//nz5/ry5UszSN99911bzDAaLBgOUKQTbIfTZH+SBG5vkh5VFwNrw5IGp+oSQPJC4YUP3XGfHT5fy+KCeLHAYFIX9VIGYhKJiLazSpzl4X6bgLCjj04zcMI9LBTOknCfKSONG/V4IaZOLx7oxFtvM+jI+HhOOnhHH5irDgSZTLCebPQc9DH55Qxx/vf40D5nzzLXbRCSeHFd6AySxeJ+2VjQ3rGFlnJM/KTD7vvQ51hmUM4RdnrSL8qFKD0cDgOShbLcf89REzez2aw+fvxYx+Oxfv755/ruu+9qvV63dQGCZTabtfOITSJRtp+xNM5dunTp0uWPF7CCMRlrPS9unkwmDa8sl8v6+PFjW+NPp5dz43MHTlUN7FI6Wqz519fX9e7du9put6+cZBxP233IFGNJrs3sQOMRO5puE+X4aBPvHrLY8c6d71XDjEZj3gxsGG9yn3Ey1zmglrjDOMmBq+wz/fVpBnxu3AMuzR1jxhnWm/GCSRJnkjpByEcpUo7JHTLJjYOMWbiHcTAZgf7AD0mosJMq57yJKpdrTOd+oMfEifQjcSF1cVwUZV5dXQ2OzvdRl9Zv1TBDOkkhz6MxAiWfCRL4bm9va7PZvLo+n9nZbFZVL0TkfD4fBNWN1wmuXV1d1Xa7HTy3nlPT6XSwA+90OtVms2kJmSR1+lmgTAcD0e/5/PKi+Q8fPrTn5cOHD3U4HOqHH35o/drv9/X3v/+9/uM//mMUU+IDUzf9Sz8uCbAuXbp06fLrxHauapgIgj1k/fe7KsEHk8mkJf1WXWwyZZkr4l1LlM/93hFVddkpNpYAjWQwqep18C+xLp9dXV0NjgamDnOYtMeBMOwz5eTf2CsHvSiX7223wNzumzkkl2Vu1jyk+55cpbGfseoYlhvDwC7bY2BON7nkMb47OTBj67GAHfXBZ7ou8+r4Qt4U4d/2T8xTGouBTc2lmW/M+WS/o6ra7j3qNT43h5g+l6/nvbgeN39mnON56DEyP+iNCp5vzD9zsMn/uf/0AbzssZvP54Odo2zaWa1W9fPPP9cvv/zS6iApi3awSYV3J+J3MOZfvnypP/3pT7VcLgexFPArATzPs5z3jj3wLHcO87V8U8EzByb4378dXMstqUzixWLxKnNgOn05jufTp0/NQHnHWWYFUpYde2fx5nVVLw8A2ZqejP7t/uDw+7zZt4Js9JH/qYeyHPwwaULdNgZe7CnPO+W8yFUNXwLpBYDAGQ9zZov44XRgxfpw+/h+MrkcAzkGDFyWg05J3LxFeNkYmshx/RaOW3HfXSblug1JSDjQ6rajX9ptA2Vg5D6dz+dB4MYLPH2xU2+DA5h5fn4egLk07J7/VS9bjE3WeZ4ibquD1hnEZM7auCVwoM2ejzbyaUx9LeRoznUTIIwJ5d7c3NR8Pq/z+Vzff/99/fjjj/XDDz/Ux48fa7VaNcC4XC5rvV7XZrNp9RqU+DnN+dKlS5cuXf54MVHsRKGqF3uxXq8bHsIZYccZ5Pgvv/xS+/1+4GhTdtXrY2X4zGv9zc1NLRaLlj1o22SMAUFvDJmOdNVwh7yxDd87UGYMbMzndidpTpDM+JQ6yDx20ILyXQ9iuzfWVpdr3JE2PPtih5+xy7E/nU6vAk7OmMX2u93+zBiMOeO63S5jtAzcca93QWVgi3ljHyf7nnMBzHI8HgeEhY+ONi4bI8aoD2ydhI0T93yfx9CJccb33EvyksvBv0JXlGOnn+x5J8olceF5ZjzM0arWLXpwsJBENBM3VdVe6k5Z9G+5XA7IJZILfXQmawV407vVTHbafwGf0lY/pxwTys+f//znOh6P9enTpzbHf/755xYwdKInc8THsVpvXqs6Hu3SpUuX3y62TeZ3HCyBX5jP5w3zVVWzdZSx3+9f7cinXN4zlTjCu6DBrdiExFGJV/ksg3DGBRkwMRbxDiTjLvgX/2+ckDizqlow0ZgHSQxgbGPsQZm023ab72ynndyPHryrJ5PNPaaZhGTux7v6fWS2eSjabj6N+sF+3tlnzOGgB7+5j3aBEf3OrH9m+43FaQ8BFvC6E/9Sp4kZPR60y2Xbv0HMO/rYdXh+Y2v66zlOW82v+5VKiDc6eHyN5dkZlsl3Tojk+TTf72fMc4vPOO3A/iltnExedp/d3t62U6/+9re/DU4dADu6Xcwbj+XhcKiHh4f67rvv2vMJh344HFq9rBme39ZHx4j/vXxzwTM/yP7cD6GzOqqGCxDZkDyIlPfjjz/WZrNpGbUfPnxo7znj4eAFmZ5MJv9zAadujA7/24H0BLUhSFJmzMGm7/w2sUO70nCb+PB96YBWXTJYfJ3LzkAQ9/IibQJn2Ve3fTqdDoBBOuxc7zo93pBVzkjwnPC8oO3OeqFNtAEjZCLELxZ3nV5EfBa15yi/yTAw8PHCndkr1onFgSUbi7GMDAfRuJeF2uDF42e9G/iNZQmNGUwTSjYOlO2+ol906kxoZyfZ2AB+mAfMURN7bwXZPNfJ6DKJk6QVwV8D1Xfv3tXxeKwvX77Up0+f6s9//nNVXd7HSNDRoNG6Gnu2cz3r0qVLly5/jDiT1wlP5/O57RauuiSqLJfLhkum02ltt9v2End+TOInmQCZYSLCbQEbmfDAYaItVcMjM6outoQXbOcOtKoLRnZAw8lSiHHMWDKaj+zD5oOj3Q/amUFA7nUAz/bOyU0mRWzH+d4kDHU7E9SBLGe5vpX4k0laY9jTY+og0RjBxFzIHXTGAdQ9ho/4DlyTzr9xb9XwRIoMChpv0FfjTCflGYc4AOs5YgwInnTAlrrBU8Y3lGcc72PEab+DPFmX3z+Ig29iwjjaY8fc8/E0x+OxHU3EuLJbD0LFOyerXo79Tj+N3zyDDoxRn/Grx5D6WXvoL4TF09NT7Xa7UfKFoJ3fYfLx48c6HA51f3/fyucF81XVrmV+5pGkiU87KdKlS5cuf5wkp4Gw5jqhHwzA7pjz+dyCZ+wm4SQt7Kvxkj8zFk1SveoSwEq+0nwH/xM8o93GRJTlJCa3IXlL4ywn3PgaMKx5TOpx21OX/hxckLjKvHDiJX4StzkprqpecWFVNWgj2NB41O33PXzvzQDmU1MXiQlTn54DY9ie394cwLwgmOYkIM8t8A34KY8aNfbO+UFd1gfXZHIdZRm7wMP6GELG2RiTz5Kbxm+yL5MJZ6kz4yJzoPz2XEd39oHAk/v9fsDR+hlinqBzglhZr09/Wy6X9enTp/ry5Ut7PkncN342hqaMh4eHpgvqgxc+n8+1XC7r4eHhFRZMfwDd+lnvcpFvLnjmh7nqdWQc4aFgYl5fv5z/z3vMdrtdi65++vSpTajJZFIfPnyo9+/ft4wQjA3kOBOHsvOhR6bT6SDTj4XN711w9nAam7E+5sJicdDLQbpciP09umTxYmFgUTSJ4QfZZWGcWdTswLrN2a8MqPF/Zn/4qCSTOjZmJi8MVnJM3Laq4fZeFmoTIDb2Y6CAenHUGS++c2TfRI7Ldp8ySIg+0oh5zieIMknFgmySKo0NdZhgYlFP4OPt3iax+D4zRxgDl299en7baNlAe+4wZjaseY3fx0F57ouNqZ8rnlcypD12Jvfev39fu92ufvrpp/r3f//3Fpgni8xEmOc2f6fOOmnRpUuXLn+8pEMNZsMJ5PgK1uTb29v2Ge/J+uWXXxoGdOau38ll598JH9Tp9tze3g6cm9ls1kh623h+EqM4gIU9th13QM42139jc+28+jM7im8RF8ZW9NW214RG1eX9q4lzHbiiff4bLJIJaolvaTdZmMae+X3iQksGEjx/0AeYgN+Z8ZuBHV9HmXbwwSHGepTPtc5+dkAF3VpvHg/KzaCudeBMdzv27q/xqnXitnrOu++en/SRQBh9eH5+bo68dY3T78Qzf397e1u73e4VkcdzSUbuYrFohAljAfEA1iPbl6NwMlDHc88uNb8fpOpyHJLfV2Idg8fRG23is/1+X7vdrqqq7Yi1n8X69PT0VIfDod6/f1/H47E2m02dTqcWPNvtdnV3dzdYhxxMfItE7Fi0S5cuXf4YcRJF1WvuYz6f12q1GvBe5s5I+CDJxO/zTA4w7XHVi42cz+ftCDg+AwsYI2Ez2WkNVsZG2q4m55m8pPvooAl2F/tIMgf9MJYyxnBCUfKpYxjX3J+TpagXe2qdmVdL7jI5WLAsbR7DoMmFVQ3fNwufhq4RB/oYd5fj/sM7ZfuMPRyEoW7mVHLp19fXba5Yr+BOksPBLA72Gjemj8DYJM8HDqGP9guMhWmzdT3GH7rM1J3Hi3kGtjydhseoes4mn+2gHXOdOv0ZbUM/k8mkYcl8Hy36AB9TDljT85UTUWazWd3d3dX9/f3AP9zv9y3RDF/XPthut6vNZlN/+ctfWj3T6WUzkXfB+tnk+fHzmX5jD6Bd5JsKnlXV4IWCGCUHFliYcS6cLbzZbOrq6qpWq1Xt9/tGPvz8888tOrtarerPf/5zrdfrms/nbYuqJwjiAFVmSPj4HTu6djJxisaitzZAdmj8WdVwF4/FBmAsqk/7TQZVXd4PlQEWGxUvqn7YWYxzoUmnPkmNseAnwgKXfaNcL6AOiHHNWKCChZ12peHKa32GM3MQMMTinEE7dEIfMnCURtsLtsfVRAp127igD+vGOrIefcSk25t/O6vYZdvAMd4GGW/p20SOM6XHgn+pGwca8xq+O51OjRRI4pJ2m8iBhJhMJrXdbtt1ED7OHMZg0M7b29taLBb18ePHur+/r69fv9Zf//rXljVMPz2fkhykHdZTly5dunT5Y8X2zMQ+eGG5XLbrIA4gp6+ururnn38eBGmwxcYCxn221Q4UYZOwibwfiiOBjV/AhWAznC7jg6rL7iYTMj6ixHjPeKVqmHyVgQ87y9j1PA7R/XR5SeYk7sw2ORCUNtI40ZjOhIazZ/lsMpkM3jkFCQFeddKbE2gcDKUdxh/O/DRmY66gfx+Vw7iazDCJAP58K7mIMnM8cZT9jjHuMYnhQJcxXZ4+keUb54OJfDyPfRDIFs9x+uHAkvvo9wh7TNCTg6QmWDJoyffs3PJzCN5k7JjPHMGNj2hSI3XjZ53fJrvAwtYx/YSgcpY6bZhOp01vTkZEz+B1H5ePXlg7VqtVnU6n+tOf/lTb7bZ++umn1i9wqXeI0hc/Gzwzns8dj3bp0qXL7xevpcZ/2Or1el1VFxvoHdin08spTuZuwIrYGq/b5r9cjwNo5pTM2XA/r5fBtkK8O+GCOs1VOcjgQCH9xi7yQ3ncQ6Ja3ls13K2VgRPj4arXr2tJns1HJ9M2vgezZdK4cbKxSOJXcAEBJu4FF3E03xinxhwwvuO3sbFxBP8b8yN5lKPHyVjZu64YGweTjB18bLXbSNmJH42N7B94Dlr43GPqsQdX4dP5OaJOdJ5+R55qxXWz2az9zwYb98njX3VJjkL/xvrGUwS5iTEwzvgKV1dXDQP7qEl05vod8E1fYj6f13q9bifneReb/Qs/i4fDoT5//lwfP35szzz6Ba+yy5XkM8TjmHPJbe/yDQbPcgHIwUTY3rxYLNoDhKO0Wq3q8+fPdXt7Wz/++GPtdrtGwH/8+LHu7u5qsVi04BcTlgXGi4Yd6TQ4/OAAV11IDDuFXgT8WQYM6BefJyEx5vj4MxsUG9tcsNGrCSfE2Qs+EsQGicXEZXkxw+Fngc1gCNey6NgB9zZ0Lwx+vwMEBobcma0OFJm0MLHhIBH988JrUoB5Y93YkKEH2sSY+LcXIH472xcdem57fniMTUSZ5Ehj5jKYdybixhZDZxxQl0km9OEAnr93W903ty8JJJMh6CbnDnNqDDS5TNrIdzc3N22nmbf2U8bt7W0rl52sV1cvxxm8f/++qqru7+/bHKA9Jiw8dtnnfLa6dOnSpcsfJ8ZvdkAmk0k7VcDn1UPEz+fz+vr1a93f3zdHyQEucAb2xWVQr7EGn/H/fD4fvAe36mKfcpe0iZKq4TElxk8ug3tx8BLTJInA/WOBGjv4rivJCZMLFq7zkSnUBRbJOpOkcVupzxjamDszRa17Jw/ZubXd9/WMBe924P/EGR6TDGbxmf0A2uUxTeyWJAlzw5JEB/33uIFtci55rjgIya4rB+g8R+wDnc/nlpSY2NHBSDBaJhtut9v2QnQnbZk4IPs2/T76QH99PL6Pe0TcNnwHrqH/tJkkwslkUofDYZCgxRg5qOqTJ9DX1dVV7Xa7wfNsX4SxSV+C45Oc5QvJwTizY2G/39ft7W19/Pixdrtd81W+fPky2KlngtOnitD/see2S5cuXbr8NrGNNz+H/TFeNM+HjfSRcthhHyPs5CpwbvJ2Lm82m7XdKE5CoV23t7eDo4SrhgEwJ7JnwpGxgftvzOwgU+Jo9ETZVTVon3kb2ysH2xxQcR9cP3UZE2UQCX0Ye5qHHEvohvdFfxn0oV+8BsS6SNzkQA+fGf/kOOfnxrzgagIj5kDNN9NOc2T2DZgb5o2Tf6UMxpd+eYz8DGRCoee/A8iI/RrmXz5DxrR+ruxrjJVHOzznnAhHnegyeU5zsVUXntrPpxP7nXDnRLoxf3GM07+5uam7u7uqqhYAfH5+rv1+X/P5vOFm5nr6d7/88kvd39/Xx48f23uB8WNvbm5quVzW169f2zPgILtjANZxx49D+eaCZywATLR8uOzA73a7+vDhQy0Wi3aNF4KHh4f6/PlzK2O1WtVqtRq8oBKn2Qv709NTy15kwvCw+TgPJB8ABw+8UPGgOhMxJym/HVGnDnRAebmQmMDgXj/sBJO8iNop9OLw+Pg4cNgpn/t9NGUGQPg7F7sMiLJ42NjkC0fRtQkHl5VBmefny5ZZ+os++dsGhjazi9H6RLwDzGREBoys+yRa+Ds/Z76ZcMjF2vVwj40B2QMeB5MYnl9p+DzuBiMOpI0ZuAQHns8GQvnbOjVI9H1jhEiOl4kotw1SqOpyDOt0enmZPfqDRHIZfq8Fun16eqovX77UX/7ylwGoMrHq/vl5dpuz/126dOnS5feJgyUmG6bTaa3X64E9dbDo+vq6vn79OiiHssCD2DVfY8cem2uymnvZ3ZaZtrYFxj22fw5w8b0DfFVDzJlOtANR/tt4DB3YAaZtdrjJVLSDidBfYxPrmf4bwyamywCa25w2k8/J+qRPbg+/TWwZA9nB5beP/TGG8nUmkUy2ONPa45NjbMzrI599j+eHsZ+TxdxGhMxS682Egv0M9xU8AwYlyEid3LvdbgdBN5M/jKv74PrsW5zP57Z7zDjYpIfHlfn8Ftll/AqWc1AOX5CdXNvtdrBe0G8f7WOiKcfcxBp65kiuMZ/QRzjiS3Fk7GKxaKcZMAY8T8yt1WrV/LDlclkfPnyoL1++1PX1dSNHlstlO4qJ5xv/l+Mhc1516dKlS5c/RsyDscYSCLOttm2GYLcNxuZ4Z1jyE8ZirOl8NnaiEPaeZBFjYewlmNX8BjbI/KcDJdh1B2myvbSN69DRGD4FJyUPZlvrcrhujF9LPJVBPgdTrH/6bXzHdeAIJ8SB+8x9mVsE53lH0dXVVTvOuqoGSf3GrMY28FI+IQvc4HniuWbus2rIt9kvISBIuR4L7rOPYy7Uc954Pjkxrk/skXxn4hP7RWN8N3Vknexy9AkHxufGxP7NeDOeTrrjGUJ/9nkoE52TjOV5aizrZ8LPj0+2Yv1gfi4Wi4b/SKjinYleDwja7ff7ur+/r++///7VCSn4pw8PD60dfiatW/urHTsO5ZsLnjEZHJzgfz7jfyYp59hDfJ/P51qv1/Wf//mftdlsqupl4q/X65Y54EzTXNCpxzuXePE8k9ALTNWQFOGBy0AIbXQdOTltVHxUnZ1wyjNZxP0mWdLp8wJnw+P+pDHJQIjrd99NEtk4ObjlvmZAgb+9ONth5jsDELa6o3N++z4bSdrFXEL8ucGCf+zM21j6yJYMcJlkcEDKbfJimiRf/m8w4/GhHS4ffdEuMn8RgyTrzuAs6/e88Pg44Gmd5nwYI//cN2cNmSRJnXnuZ2DTQS3q5bnlGB3PXbYwV12ymWn/er2u/X5ff//73+t//a//NdDxbDZr5KvnsueV60oisEuXLl26/D5xlqRtNc6ud2UZ5339+rVliULmJ2Hh8uzcVl2CK5lZinN9Pl+SOGxjwXV2BG0H+dsJQPTPdZmk8A6mPKJ6LIhWVYPkJ+vOpAzX+fpMmOG3MXjVBUuAQRLXZBlkVxo30m7Xa3tqLEB9lE+5udMMfRFsoazb29tarVbtf9trjx3toFz05YAQ9bnvxiM53zynkgTh7/l8XpvNZhCos/OeuNXlE+Q1aZekDSd5gGW532SCfTCPCX2zk151Ie78nX0hk1rOwOc5SiJwjKTDl3PG7/PzcwuYuZ67u7vWdz6HNLJeTZjxuecvfSbL3+WYgIREfX5+OZYLoorkLBNQfj8c/ubpdKrlcln7/b6Ox2O9e/eurS/b7bYeHh7aySv2g66vrwfZxp4XHYd26dKly++XTEI2twVBbXxqXma32zXb7HsPh0PbDECS+hjX4+QW4wV2Lzs5qmoYpAKzsEEgOa7T6dQSlIwBsKPmi3wP/TBe4l7+NzfngAPlYf8ysSkT4dEpbQQDO0iReNNYyxwpvBrJQdxLnTc3N7VYLBqHRmDNO+85op17j8fj4LQji3GQ9c939BechOTuKvO33D+WHGQ/gaBQVb3iwHNnH2NkX8Ocs+v3+DIe3M94WO8ZAE59+FlxUJR7aRP+nfXEXMgjMSeT4ekY+C1OkgKvkWxFcJn5mO8Xo9+0kblxfX09ONoRbEqb0SWbcRxE4zl2kHY+n9eHDx8GfgdtpOysh/fkckSjT5JzwNRHQOZz6jWgy1C+yeBZkhR8xgDzczgc2qQ5HA6D7yaTST08PLQJQ9bAbDZrWRiuo+r14l51IdeZbGMBFi/SGWxCcGrcPu7hWge8TNSzaPBQpDNH221wMDo+BtLtRZd+oSeLbWYO+FhFL558bxLFC2U6uwkC0FeSOFUvIMIETzrf3Ms5w5RjEsoG3/VWXY7RsZGg3CTkMsBEWQ5OjTmlLJw2PnxuBxsdJQhzJqszRcaMGt+z8BuUWCcQXGNz0cAgsyUABswPG78MxBosWK8GJp4X7r8JH+ayA2kYN8rBMFhPme1VVY0IcYau22F9eGvzzc1Nu4d1BuBJe2x0PMb+3Y1Ply5duvxxwrqN4ACC2bAv4AP+Px6P9fnz56qq0QSqTNpI55vPcT74wWGrGh6Dkw6jM0aTvOA+4zu3HbGdTRLHmCcdIJxB1228Z8zD34kj0s45+ODrM+uYughMWNx+t9E4aSwo47qx+wTHIDQcDDW2wCnGN7CjDTZGF1VDPOax4BpjQl8HKcPYMA44tp7PzGk72IyFT9hgXnlcjXN5Fpj/ECaJnfnh/WD0AwLA2AxsZLIJfeEjpE/kgLT1ZvxqnaBr+2Qm1zJwBuHBzi6eQ3RjbMrzij548Tp9yuvdB+rxHD0cDi0YRvl+xt1e6ri+vq53797V1dVVbbfbpnvWEz+7s9msjsdjrdfrRsS8f/++ETOfP3+uv/zlL7VYLGq329X5fG7XEVTzs+r52qVLly5dfpvYzibfYE4HMc7c7Xa12Wwal5Jcy36/bzuKkxd0goXxJ3gKQp42wtnYXvpvrjM+yYALQr1ua1U122mMZoxr3IeO/Nu74fmdCWzWrb9LfGH+h7odaETM/TGGmXzuHYDgKQdfzJ0yrvBMbi9BNB+lnglN2fd8D5XnXHKbLofNIeAKMMsYZ+hgYPoj5tyqLoHSTPxBp2Onl5n38/xh3BP/ZeDMXDr3gZXMPXKt5wD9Yz7gE+QGAMp9fHysw+FQ+/2+YUPmtU8HoK70deyroIvpdDpIyAfXw2GCBxkvY3T6RSIUa8VqtWrJVlU1eKean1kSrPAbjN/xecCrjmnYx6XvGZPp8iLfXPAMp7JquCPI2Y5etMmWtHEhsOaAw2q1GjiqVReyhcXDizEP6HK5bFmQJkE8wdM4jBHnGDEbVCavjUNG69MYITYsXgxMKJn04QEx4eIAi19M7oXe4+BFmnHJAB5lO5LNZzbQvt4ETmYNuP0smG5DGm3rxBkQXuwziIdeIQ+sO5MNXtxzbPNv6rLx99Ey7jtOs9vn+z1fPI5ZH8QN7aYOZ054waTNCSzc5jRe/OT8tFG3jg2+3G4HRk1uOKjpzG3PI9rLnDCoQw/ZdsrkOUyCkesNnDAwkBXr9bq+fv3aDLHHMEmjlE5YdOnSpcsfJyYT7ExBHnMNNpb/2ckB0WDneDq9HNtbNUzeshgzTqfT5ogah6VtxnlKp9ABNNsRcBg2yw6z20b7HXCpGjphtnO2qYnfnARjPOegGvU6s9l4i/tsZ5MgScxOu6pqkAEMNnJ2qBPDEn+4XZTrwIx9iKurq1osFu0oPSeOgXGciAaeyeQyyA4fueeAnrG0SQzja5xu2ogeudfBKhJ4jJlNnhm3Ho/HQZZ0klG0ZbvdtmDQcrls+uU6B+OMkzkam8+RPAo/iZsMqIHn/Bxy/c3NTauH8fPc8/PBXHNSm0k3MDi7wB4fH+v+/n6Aq01SMRYQKsynfIbsF3iOOxBuvymPqUQPlqurqzYW9G29XldVtZ1n7GijDZBly+XyVfvcri5dunTp8tvFnKTJf/AgWMW4DFtL8MS8YtVrW1b1ws1hYx0wy6CKgyDGSBmk8c5722YCPbZJxrJ+16c5Hq5PLs68mwOA9CMDKf7OO9GNxxNHOPhFvzOgZjEPCQ6w7b66umrHIzq4RpscqICntD4Ya/rnYJTninmw5KfGcMD19XXb9GFcyDwjqGfcRQKNd7UzJ7x7cTqdtvllLtn8qbln5kVyoeYFmffmUf2cJDfNuFddNjZYxjhJrqWuxOXgZOMj/APPuQzeGTt6t6P5cx916vltn4QEznye0R9j60RBgmhuDwE0cB3lLJfLevfu3eD1A35G+PF7nx0L4B2J9i3Tb8r2drnINxc8w7moev2+qFyIqy4Bg1xQORueram86+zq6qrtIjOxYEe26rJgeWHww5MkuY+Ls1FhkfDDzaKVGcg82Ex+Z4qYABgj+3lIWIzpg4kC6kFvLNT87UUeI+LIvu+zg5mBw7ceOuvQGeN5XQZCTCplQMlEhAM2k8mkHctEO11WBttYTMaCZ0kweVGD5LDRcZ98P+3MNqTjngSO9UKbHaD04p5BIRbnLHNsm3uOv/VMfxL4ABay35RpgtE6SiKFfqGLJNs81ogJDO8+xOi7zbQFwmSMEPWYcC0E6+l0agbs6enp1e7VnCfulwnCLl26dOny+yWTiRz8gmh35ih2abPZDIJOOJI4Mc76M4ajnqqLLWKXm98BkUEbJzM5MJQBDRP3OOq0E1xpgp6+VV2OtKZt1GeskI4Rn1uHDlj5fu7J32PBEMbGpEx+RnshPBwYNI53PUkwOZDn+QCG8DtoHVSjDEgX4wP3m/q9c8zOrh1s5k3q2W20vhwoot9kxpKpzAkCZKr6SFDaBsZ1XwlkgXNwnNGz/QPIBQKJJvus9ySY6APB5wyAQsL5eEz6acKQv72rL3E+AWS/Q8QnKPiZRTiOxziU/nI/PqD9BYT5RXuY45Q5nU5bFjDt9dxFX36OmSvb7bYF2+fz+ehz4ixmjhQ9n8/1/v371o6Hh4fabDZ1d3dXt7e3bcyfnp7abkrrdOzvLl26dOny+yT5PhPn2Gd2g+z3+zocDs2eO7iGbR9731hyMvkZtprPvCvGiSjJ8zhx3vyrgxkuwxxnBsXM1SU/aNxibAxeo174KQcBjdHoq19FYj7RttZJ2B4r9G1sbv7IWNv8cnLNlGOMkGNAWeBPB2DQg3VlLgm8klywfR3mDX3lfrAFY8xmE/TKvQ4UousM3uR3bp/xuPVP3bkTb4zXR3/2b3LMzZE7wJVz0f4adXjcwdZ89/z8cqz2mL/BXKftDw8PA7+FYJafCfsm5if5ncFndMnmHuN4+oEPwnw6Ho81n89rtVq1NcXPX/oAlGfdz2az2mw2Dfeao0y82DHja/kmg2eexA6Y2bB4azKDzznvvCxvOr3sHOPIRhYMDNcYqW2nxs439WXgoer1kS5+aLwY+UH2pLTB4aFxlkRel4suiyl1OnpPeQ4k4IxSpj/H4DszgDJthB18sLPIA+/2O/hnA5i71/zw5/hbHDDz3KH/uYBlsGlsK7edX2f4eLs19zgY6iAO9Y4tRCZc+N8ZAg5KeZ6YmPD9LtvzgbI5KiCDUXxmQwOAAlxB3Pg6GzK3lXF3tpDHxP3JOeP5yWcOuNEvyk1A6R1wJiXHrqfvy+WyNptNI3jQlefBYrEYEC2sMXkMrO95a466r126dOnS5feLAxO2TfP5vOETExfX19dthw3XO4DGZ/meiarXiSvcB7nt5JSqYWAJO2BnMo9tGUu+QNw/4yd/T91clzu+3RfvZjKetK1H7Oxnv4wfHAhxVjNY0X0z4WI7bhua9j2JI8bXxA7tM45zIMLt929j0EyIMZZ1khG4gL4ZD48de+Synp+fW2IOOBQyaLvdtjmTiVw47CTj2X/g+sfHxzoej20XmMfLO8nSqb+7u2t6hGDxXHEiWWaNO+jDfGFHFHjJWNnz2OOEnE6n9nzQXt9rnYLL0B8nkZigAP86eIhPgw7m8/mo7wGuxWdEx8wB+pfvnOA+sCNtoszdbjd4/7b1aCKRtt/c3NSHDx9qtVrV4+NjrVarOp1OdX9/34J4p9NlByFB/QzodenSpUuX3y/GSsY34E3zRiRzffnypeFPEmYygamqmg1xUnDVhQMaO10q13mXi40x18c15k1SXC+/jX9cpnGQMWT2jf7B/xnfGg+M6dc7psyZunzza+aRErfyOeXtdrsBxkM/iUnNBWLfqcec6c3NTR2PxwE3hq6wzebtjC0SC/t0Kn/G8eRVNTi+Ot8Z64Cog4TG4PZ7jJXy2E+PL7ylA2zG1k7UesvHsb4zeJbzMINvtCGFuox5wWYElPDDcmzn83kbM14H5X7A/fJ8c8qJ/Tj0m76hA9IOWDLei8WiBToRMC6nYe33+8HO0ru7u8bNs6vQurIuzdnOZrOBL5oxDHOnniddXuSbC55VXV4SmA+MH1oPLO/Hwnk6HA5twn333XdVdXkBHy9+zCzTqssE5n1GiBdSkw0mKlwWk5XvcJK9EPPg2Ymj7168MGpplPjfTqgXSXTk4J2j6NYnDxPt5x5nNCD87XcMJKmBzmwYMiDEopskg3UOqeGFDV3RZm97JpiRwRgHOzOTwG3lXrfNACaDLIwj5Tlo40WR9mSGhOd47ly0eK7luFW9bE92HRAs2Vb0bMNoMOB5ybV51KiNHPPO79Xzs5vBX88T94f2ekEfC55ClvhZYoyc/e0xdRvpK/MEosFAjCOJclfh6XRq7z47Ho+DnWdjATLa4jWjS5cuXbr8MZJBEn44rsQBJ+zzZrMZ2DDbYGymk18cLKgaOuacYJBO41gghx9slfGVnU3/bXuWTottcn5n2+ugkPtpQsG4dcxOJZlg0sL4czKZNMfPAUmXY7zpvuQxN9het63qQh6hQ2NLdMtRNh4D7nVQz/PHWIN54znipKE8hmk6nQ6OO/KcND71vPBRMp6nGUxyUDH9IJxzMGi+5wL/grHw+NFm8JBJH2Ng2uB3gll3Js7QE/2xr0ZZV1dXDXNZGP/M8uY7Ao4OKo35N8aEtNP3oF+/DwNik+s55tIZufhFOdeMeyFnktRz4NXJhfitxqwE2iiTtkOczOfzur+/b+TYbrer0+nlVASyiPEXSQBNcqoTIF26dOny+2UMOy2Xy8YT+NUPu92uHh4eqmrIX2FvjLGen1/ez75arQb1OZHFNg6s5cRxYxXjV2NR6jUHmfbUdsz4N/kO7B9twVYmpnRQC27GPB/th+OcTC7J+tTDRgnbdGNoc4fm25x4lOMIVjDmMwYlSGb+EAwGVjB/6yQk6nBwDvzioIWTeMBC3mWWGMnYgzpoP5yidzGaNzZ+YayMleEP5/N548WMLUm4z8Q2xEEc5hV687wCExmrG3+6jOTazM95HhBI4v/9fj/AbOYHXae5Qm+M8XNizteBLXTtvnvcjE05KQDsR3tzXD0uPNME98Cq6/W6Hh8fa7fb/VP9+/kBT6cPDHZnfDpufFu+6eCZswS9oCepTpYlx47c39+3o07u7u7aQkGknjps8Pi9WCxeBY1y8aFeP2xerNKw2DHLRWDMabcT60WGa9nCiTPLdWQh5EPih8eLgxdpEzeZ9WGCxdel7nwd/3vBIEiC015VrxYvxgbxIucFietZQCAPvJBn1jJt4ygchF1WLLrOVDZJZCd+On15d4oDKB53/vfiaGNOH7PvtNsOtbMJ0kgx73C63WYb+DS4Jvk8R0w85PE9fO++vEWMJDGXc7CqBhk7Xpgd4HTQq6paNg/jNJ/PB8Awn8+xRR/C5Hg8tnUCIcvXZFfV5f2KmS1Ce21wPE4JrLt06dKly+8TBzggD1i7ycTjO9bk/X7fdvbYflXVKxubiSdpA9ndZhthO4P9dNKTnTknJNm55/t0XNxW12Xiw45kYjg7xhmUss1KZ9piIh6nEEkc5H442JMZl9aXCZckXcB44Bh+c69xKRhkNpsN7K93KVEemaHGfgSTnFmdfWQMPK6J1a1zf+b3JRhDgHUy2zz76f5DYJBBmgk/rhuM68xWtxk9+H3Drh/sDrHCMzcWSDIRBqbEX8nkREjEqnoVWMOncrn2H9xPB5pM7jB+qfuqGuwKo4++3s+D22sM/fT0VLvdboBxCVxRJvjwdHo5TgeSDH/OPpgJT3wMkgIWi0XtdruWIOBjGiEGn5+fa7lctmvsS6Rv2qVLly5dfr0kt4S9gB/C5hFA+/Tp0yCRu6oGu1OMxaqqJcJ4/bY9Au/6HttC7IYDSebGjCvNcZqjdNmU43ocdCKhwxgFDsdBBAdGMmDioJl5P2ND40cHEinX+NpBkMS/cID000ltHj9zph4b/IAxXOh2OujigFYGNNEBNhvc5DLN7ToIBQcOJgAjJe859v4t1+tTKdxeOOflctl2YyXXbbxvDs9zHX14LrufHg906EQ6C2NL4hrjTz3e8ff4+NiwJcd9Ms789uYbsGJVtc/QMTgLnPb4+NjmAePmue45D4auejk2EX0zn5gTbosxInPufD7XZrNpG4Iy0Mfa4LmfuA9fyRjZ+vB8Tt66yzcaPPODWfU6C9PENgO63W7rw4cPg6AGJDmRc7IVcoJQ3t3dXXtg7Ox4F5jb5UBDEhBVlwySjDx74cpsDj6zA+ojGamD+yjXzvdYpJlrkhCgXt/j4A0PdRqeXLy53+X7AfQYIixsjJXF/WVXoY2kx95E0FuLOmJnm3vQLzrPI/wgwdC7iQX+dzYy/fb45PwgO9pBPGc4eKFyFq9153njAJb1aQPqcaJtBn4m1fz32LgwbtY7z5sD3Tb4HjvrwuCEOUqfx7YgV1UjRnz8Ffr0M8h8MKlIO25vb9tWfesgiUPqJdhH2wHJjEeSVQZunbDo0qVLlz9GEpPYecIpwSaAHb5+/fpqB01igH9WPiT/crlseCDxnv/PAJ3LxbEbcwptT112YlbqcKDnLaLFZdrWu00+6tpONJ85SGfc7LIy4GK7R5voix1G41iuw5YTEMigmkkK4wvq5vg6+mwcYoKCtvCZ9UlfCbJwrwNR1quJCXAJ+DDHwWPNPSR2uY20IYms4/HYspu9s8l95cftQ+9gUCco+fmwD+T+mASxTqjf/TFpxw999zFBjIHr9FxEV8ZqYM3Ea/YxjCOZRx4Tz0ueA5M6JE1BJjmzmDa/RTrSLj9HCO+8qapB0h9Eqsfh6enlNQUQNPP5fJAdvd/va71etz7iU0DaIvZBunTp0qXLb5O0acaRrNNwfwQc7u/vB/wcgTRjT3N7XFM1fG2Nbbrxn+0NdtUBkKoa8E0OPBkvZvK2sQhtqRom5GSwyrbUieljOqR82j22K9/6RS/WE0nV1GVMA04j+dkJKmPH9pkD4we87sQm3lFFgAMZwxW0h/q9qy5PXUiO22OXPgdjAB6kDtqAn2KOmPoIriTvZTyfPg24pGr4Tjxzhemj8JnnmYNLxo6JFxHmsIOJfpbSLyAodDwe24lRk8mkFotFG3/wL5/bHzO/auxuH4Og3GTysrON4LHxsZ8Xc/H8bbzmZEz7IARD/fywcy1fn/T58+fmnxBw8yYI2m0dZrt4FsaClV0u8k0Gz8aIaP5/fHxsTkcGfJiMLCJk33HcBQ8EC4f/Ztda1fAIvapLwMUGgrbwfRIOJiZ4cDO7JAMgluwb10ynr89JZsJ74ckMlCQfTOrY4WeBsMGk/RlMcYSfz9GdF7IxcikJJdrg3XtVL9F5tsHj3JsosP5sgDIY5IwL6yhBh42DdYKR8pGgGK08jzgDd3yXO+foH2SJCQ4vvmN9dFAJY8wc8Dz1vPOcMgBycMmAxoso13vxZb6bDHPd1okJJEhOj4Gv9ZyjDdzP9mvKMnnFtSZOczdoGoD5fN6MU5aTgGi73Q6e33xmGSuDV/qTweEuXbp06fLbxDa26nKWP7uN7BQT/OCIM+MlZ7aa/MY2QZLzs1wuX9le6jFGMkZxYAk7Y8xlDOLjgsEtDtSlU4q9s7Pv4InblXbLxAb4I/XKdU7Wov0mM5wNXFWDoxPpI86ek7joQ9UFZ9uG25k08WFn1o43hBWZt5SXGHY6ff1+jsSp19fXtVgsBgE5MKpxT/bBjj1YzWOI0B+TUD4VIecI7QYDO6BnjOlAqskfY5OqS2KccSkBmOn05fh6sG4G0Bz0ok2en+6r8bNJOcrzuDjR0OQbgSv8GONa6oXM4jo/p24rOktyym25unrJgIcY4zhEPzd+Fjg+s+qS7Gd/z/pychjBT45vnEwmo/4tO/0Yl6enpzocDg2X0i7G/vn5uR0r677ns92lS5cuXX6dpD+PHTJpjY2ZzWb16dOnV1ik6rK2cw+CDQQzmS8xXk1exzgldxFxTfIb2B1wsrke4y5zXdhIfryr3/fTFuvNeMs20nbKOnaZvsd6N9dDnfQb7oh2525zv/PJ42psQftIrM+Efrgo7jNWyCCFNxJgs61rdJd41NjfgSvKyVMAwIUOmhifUTZz0PzcmA/g+ZJz3v10GxD+T7xsfJsJjR779HkQ2usxACtyIgA+AeNlzEsdbhftcMAK3p3da8wXyrZ/gx6rLhwpQXJ0zZxjPoGf/aw5luBdkrTZSVTz+by9e+3x8bHW6/VgHWJupK9DvTxX1mXyzx07DuWbDJ45gJAPjRcDxBmsRHLP53PbSXZ7e9texs3EqLo8mLe3t83xsiFy0ILF4fHxcfCCZ7fDBtEOIH3Ko4DGDEHVJcPARoeH2sSPJ7gfeD8ILC7WZTq1GfCzfnIBd5Ant5SnHhw9N7nghT3PWsaI8F0STCYQkMy8pq8s2DbsKdSXi4Z1j2Nr0sekhHVmomXMGDjK78BjBuLcH/428YdOUhwUs+OeBFICLxNQFsg7+oRxQEyU2HmnLQADxpIf+uhMGJN/+SxxxKKfb89XB4idTeMxZ96gf+befr9vu8r8jhL0Q3sOh0PLdh57nmnv2Gfd8HTp0qXLHyOJ4VjPl8vl4BqIh+122zJTvRupaogt+HGwqery/qqx4EfVMFHFmIV2pH0jSOIELQe3HHCww+0+2wlHjC1ST9k+YxYHWOgbYhxmMsX1Jb5JUidJAb4Hu9vOOkM1+2Fs7DZyfwbzjG1NhnhnlcfI2Bhn22Pk/niO2Gdx23CIjUccgHKiUFW146StO+pxsM1H83BcO4FgCAMfDUR9YzulkAwSMj9N+hgnmnRxQp+vAdeia2eZJy5mvJnPiSdpvzE748i1PoI9SUrv5DJ+d5sSR9IO+vn4+Niyl31sex61mSSed775uUXP6JI1xth4MpnUarVq2JRdaIz/drsdjB0+j/1a62EMo3bp0qVLl39NvI4aX3Cct23v1dVVbTabqhq+miV3ThmbVQ0DaNgXH2GY+C/v5fcYZ2p7wP/YSNtr80jGbXyP3bEtt32xTcL28jeY2oETczPJjxpHYTfNRxLAgFs07jaPacznAJtxq7Hh3d1d439oJ4GK/X4/4COtD3Tu/3NsPGbm+aqGGxEoB64MzEU/eHVL1WVTB7ylg3pgC/sy6CD5T2O2xJH4UcZoidfcf/shfl4Yxwyqeq758+l0OuinMSPjSKIT/SGRj7a579lmn3bhoCX3MK/A336WSWjj9BPz9ZRDXeBlnglz3zzzfqec++N1ZbVatb6z7vzyyy+DXXDWnQPqjg8gjll4ffM1XV7kmwyeedBwbvifgfTDV3V5JxGTjgnM2fPT6bSWy2V7qR6TkutwcBx8QbjWD3m2LRcjBwkyCObFAyNCHTZCOFws5pnR4ki6d+O47LE6/RkPWGZK0G+TRWmEfexK1dC4cX2+SNFOZRINlOGFzc6lHXmfHezr3U73he9ZbPmcuh3MckZyLuA2IrTDixptwrC4ztStjbyPC+VadMYC7N1gNnA2im5TEljMVR9D6rHKoBP6dFCNre9+TvyT8y1JP48H2/OdLYtRBiB47JPQcKaMiR6f7cxaYBBDu3lG5/N5bbfbV1nQbi+Zvry0PgHrGCHk73vwrEuXLl3+GMldIsZ4z8/PzWHCOf/69esrLIDtyR3h2G8H5SBFuNcY1Lt6EovwWe7IN25ysIxyMtBivEQ/bJfpg9thrGqM5nbzmXVq7OIyaasJEZMErqdqmFjj78G61E+2M/2kbTjpqZvUL/8bT9lpTDzPfSTV4XBb97PZbBDIwFcwRvJx34yBsZ4JCIv9GQeNaMN8Pq/9fj/Ak9TD8UOJpwmonU6n2mw2jWBgrlEOdeJL+Pgckwhk7iau8bxKfeb/iS8hJjzn0ifxWI3VYWzuXXZuH210MDjnppMgmV/7/b69T8IkBydOQFS4ftoIxmSM3HdnXXvMGRMnhbHO2C+5urq8J47xMDnCnKBMTmchcTSlY9EuXbp0+e0yRvQTDDKXhI3ixBwni9u+gS/M+ZhDBDPxPlbzUra1xormTVwfyTan0+WIRHNdWSeSATTjA8rO96U6cGDO1bjNdtj2mt+0DS7IQTs4HnBZ4tDEnw4O8Jn5T3OctPV8Pg9OUjidTo0vMo8HdoaTJLnF2KDqEhRzok6OdeLK5NgoH0yBnQdrOLg2Zu9Pp5f3qXrjCWMKJs4AjE+D8Fxwn/G36Atlco8T7/0qHP825vZ8AOvADfrda+AnsJBxrscAjp9+eIOFjzT19wQmwV+Uid54fqtefBnqQXf4A3D08OLm7BkT5hl9dNAMnVjHfM58WK/Xr3zCp6enlkTltvh5yTUpuXTPvS4v8s0Gzzyo+fCnI+SAEmed4jx4khMoY4JXVXupsgMRiMl2L3BeiJMMSafe1/i4GfqVxAV/owMMj3e5ZMYC15mQGDseh/aY/KBdXrDT8XWE2oabschdWQ6K8V0uFiYV0LGNqBceZ8GwsCcpxDxwmSZvbETHdOhgWpIwrsNAwIskdTuY57YwpgZQzsYem18uI4kkzxP3E6EfBlQGU2NZ264jd755nmcWAgs9urCBtIPvhT7npMeGMnmmJ5NJA42QE5AXBnMGIDb66JQ2Mq+o7/r6ular1av6sy0mf96SsTWrkxVdunTp8scJ67wJhTwyx7Yacpkfjs6oGuKwqtekho8/q7rYYu411nBiip3wdEbS6crgl/FJYpO8B324PWNBrsRbxjfoaz6fD/BHHtNjfdFH7HQ6isaRdvYyKcb6yf45ScX40jjNTryDkunEkyVM+WSHsjvRGIKEOr+TwH03OYU42JaOs7N4rU8HVPgcB3q32zViqKoG71x1Fjdl4v/4HsR+wfl8HgRb3H6TUw4q+/moqnYMvtvOtSZAIDvQAxiRpCbqIpiVjr/9Dj8DfGfyxISj8Wvi/vP53NqPjJEEiXNJVqx6yTgfS3ijfJLATKR5jRjzS/zMO1C4Wq1a3cwXjgIF1zK3/ToCnmfPXY9Vly5dunT59ZLBMySPDry+vq77+/sBFhkLDJjgN+6DF8ty/b3twhhRTzuxbQ5CVb3mwsxPGXu6726POUC3xfjStskBM/Ndxqi0y4KNTLtt/tLtNzbAJjoQZF0a21dd3jN1c3NT9/f3g2PAER/z6ACHMSn158YMY6Ich7cwiyWTt53Ujg7g3dxe87xug3EDvsB+v6+qC66lDeA0685JOomfSDj3GNo3yGAn/TKO8Tj7tSz4dhxfzbx3Ips5UuseHMyY4euZzzZmJZhVdTmBg9f4uE/gXnQyNuasAQS1PJ74H+iPa2mTdU8w7+bmpiV/rdfr2u/3LenTz5THxdy61zDz88aoXYbyTQfPvFC9Ff30wjuZvGytZcJX1WDyn06n5hQTYMNg2XHje5MTPCx2VG0Mc4I6uOZFICehH8aqYXCLh8TZLG+VwcOFeLFycAGdIOmcZiDC/adflJtOs+ty5rYJBYymjQxl2bH2eGQ/+N8ZnS6TftjoMA+SqPD8SVKMtvuoGLfBgSIf5engrI2ydUzbbTRMMnGera9LkGHjaCLK15hIMIgxyWTj4h1rzopJMiafO5eDJPllAMf4WacYPa5Jco+MEuYJpISJM54Hj5+JFNrn55jjvngvjueks8Td/jGCxYCJOvwsJ1nVpUuXLl1+nWQgCLvKsWfYRHYWff78uWEKbAVBNiesODCB7ZnNZs2hskNrHOGAyljAKrFICn3J3ThvJe5wTzqaXGM8mkE1O6q0l346CGX7lsfHJA4zdqEf1pOPZvTf7itlYHcTc9jxt148ZmC1LNdBLh/RwxEr8/m89R8ZIzeMob0LzbgOcbLU8/Pz4Pg8HHUHiBxA8fUevxxXrnefHaTyjjV+o9Pn5+fB+xuqqu2sx9exT+I56MSsxG5+RmiHjzviZyzLGIH4cQA8yT37N/YD3E+XkXh3jLSCMHJSGnN5tVo1vHk+n9v4EIQ0zuNIJ9rq5zt3Ul5fv7xXjwAYY0J282q1qvV6PWhvVbX3dENw3d/f12w2q/V6XV+/fm3twce1L9YxaJcuXbr8dkkMim3h6DSSpKfTaT08PAyuSzvE3054N5bwridzj9juJOfHAky2UT460deAb5KzMI51GxIvGwfTNu/AwTbbHpn/TGxTdcGXxm20gRMLwBDGZ+ZpKMO41BjCfXcfadt+vx/oC1yQdt940ZyacamxN7/NiRpP2qdIP8CBFL9KxcE/TmLjFAOuT84qx5k2mE81ZjKudkDN9ZP4w5g5oEoQij6BiegDY+OT1yjb40qgDG7QyZCMnzm+2WxW0+m0vfsaPfHsuQ3eqUVdVdV4WXRBkMzPPH/DVV5dXQ1Oi8jAIH0+nS4nZZnTNBfrwBzrBX1jjhJIy1dMoRuuy9cZZRAt16ouQ/kmg2dVw+PxCA7lC74RG4c8cocFm4k8mVxetMfZ9ZlVbGfNgTW/TLOqBtmTdoppk9vK915Y+dzfu28YFBsVfngYyXB0kCKNJ3VkIMMGx3XYMXbGjIV+5rsOyJD0ApGGFf24HNrnTOAEEWMG0QvbmNGlDuYIhoa2+PhHf0bf3TZnr2PUcsHJPiXJRT/sQNsIs1ja6XbfbOgzeDW2K49rPaY2XGPZDTZO7tuY821iysbSpAgGquqSsUwgzP3mt4PEtNdniHv+5OLus4p5Psbab1BwPp9ruVzWZDJpx7q6TVdXV7Xf7wfzz+PmHXKWJJ26dOnSpcvvF9Zyk8I+cs0YhHcCcZ8DMHZ6k1THBtsW2mlylmcGdyxkrdomOngAPsn3QeTuLdqaxy5nIstbpIexsI9kcb+Ny0zG+J3A9JXdL+jHwRPr1ZgCMXHkwJexkHWT5AVYLp1bvjexxbEr/G297Xa7OhwOtVwuGwYw5oWcSNvvrFT7HrQRXGCfgL6aDMi5bBLMx+7wMnLw1Ha7bUcHZVAN/waiwhjFmMTZ6uhvs9m04DKBF5z1bKfLST/BpADtOhwObXycNJWZtR57+xFVl6ODKCPxHW2gbyRTQkCiF8gWBz5vb2+bX5X1+5n1zkKwIfMhE7ccpKcej79xIW3GzyRAxnhmYJnxeXp6qq9fv9af/vSnV7sf/b5mdN+lS5cuXX67mLerGr6OhM/Z9QtZP8bjmYeoumBJ8M1isRjwYdjKxBBVlxO4HKBy8ojrsf1NzpM2EkQxNk4bZGzjgADYKHehOTBkDOU+GBc5Qdw8i/UOX2ZsxmeW5CWNmZ0wQ12MQbaNtoM/cjcSu+0TdzNeDuYRAEJ/5rz43sf0eUwccAF/GrNPJpN2JLT7nj4P7Upfgz7zPe2hfJIV+R59eucibbCuzc8bNxuPGmMjHNXoec7pDMaHOc+qqp3G4CM+7eOcz+dBAh241xiVZ5p6kzunTfhInILnfpp3ZZzpk3VC28Y4Rdd5c3PT/BbmIvh9v98Pdv0x5+gT45IbI3IuUq/Xmi7faPCMgcWZ4gF19oEnfUbSq4bZvJlhQbZfkv0+VtELUAZlxgIYGRhLo+MF29fZSaN8kx9ZBg+mSSPKpM2Uk/e/RZRU1asHzJ/Z+fLD7HHwg8bimYGcbJPJm7HFPYMwGCF2dqWOTULRDhZMFkMbbbfNYCbbBnliUouFFSfW+vccpB4bWgxPOrKeN57DzH0DA8bE4MSkkeeSj1H0XPJ88jz2nDB4cFkOMjJHxggVt8EGzXPKZKev9zPuAKnbahDlvvMZY57GmP8pk6DtfD4fBPZyXD2XPQepL8kog+nUb5cuXbp0+XXiddiO2nq9HlyDTWJ3RjrWtl0OMhG48Pslkvw2pvR6b5vnI1McWJtOp83Zd8LOmHPsvjj45b+xLQ762UYak1C2j5wz8WMM4uNaTGpwDW2ArKGfJoTySB0Effv7xLfGaG6ry3egAsGBNK5JHE9Z9IsdR951Z3vNtfQZXfk0Aye7OSjjsTGxZUwJpsjAK3VPp9MWBN5sNrXZbOrx8bG1++npqb3jykFLB+RSV8brkDjMW+5xwJLgtPGyiSOIEh//SLKayQ0/Dx4Lj6H1R/3MG56rvN/EHvMEDOsxtQ/h541sbbcB3dqvsO/l54N7OOoT0svPisfg6empYU3KZRyenp5qvV634BlBPesfkmS329WXL1/q/fv37ZgeroN4TR+4S5cuXbr8djHn5b/Bg9gU3i3l91LBN4zZYvCDdw2DAcEoBE0yocgYBWxDAgd4JXGQ7ZmTuhBjN2yd+RbzeeBWfowhHBTzjiIHitBdBhcdtKGN5vJyLIypHCzCTrv91GOOLbEIY5Y8JsnWDtK4j4k3E0967MyXuo3GW24z18CVo2/G3mVbMpCa+NwYnDlnHbre5CztG5hLzeALiW/8zRinfsFIT09P9fDw0P4GJx0OhzZ/fALD8Xhs2JPkuapqx1vDwVIPHDG6ADcadyHgs+n05ZQBJ0c5yMkz72cb/dBmdJgBVMaYfnKd9c0z5ve6EYgD93HSntcmymVHZfKSngu5rnW5yDcZPKt6vaPFD7oHeizY4hcuV9WrRfbm5qZWq1V7oExSZOCjapgNwXUOMGWAzouNDdNbk5LvaSMG0sbARssRc+53/8eCVHYe0SN68ecIwSEWFuuRv6kLsePGuCGZ6TBmqE3YOHvDL5asuiy8ORccsEjChO+8wFrvHqOcX8wR2mOShYUP3UCOeIx89m2SOHaGnW1gw5/3MB8NmGiz2+n5Qf0mANwGjNR0Om27Bw3uMJY25NajsxdovwERY+fMiPP53F76eTq9ZLcz7pAkSUwinkfebeoAJTowGZdzwmPJEU4mNBy847ePKMq54ufI60Y+X126dOnS5deLnWVjB5+7j43CufLnJhFYw510RBKFiQUHo6gPMQZKG22ck0GqxBw4RIkVqy4Y2Mkyxiou03pKZ8vtpkzrEgwyhhepx05uBumMK1xmlsV3DrpxjTOGjZFNgGRwzXgkSZOqi+PKdT66Gv34GCDb9QwYZXCQ6/0bB9YYywRI4jwTEFXVMoZ5h9l+v6/tdjt4R0MGZ33/dPry3gSwSgZpucbHzTgIReCHuhjr3OllIqvq8l4wz2GTTznPndnM70wKy2fdvhU6z+NAuZb28EM/jIWZD76XcUY3DkBaJ+hquVwOMnl9ogUC2UE/nTSZ/SK453fDoEfqfn5+rsViUZ8+faqvX7+2ACrzLX21jkG7dOnS5fcLuMo4MtfX5+fntvuE3e3GA2n3sQXz+bzt6nfyg99LZULc5H3WD4/ia6tev1PUbU+Mld+bbzF+5ISuxLaUN3Zco+23OU3stQNZPo0KPEP7fZ+vc/utJ3To94Ym5+skl/Q1kvtEjJ2tPwIm9J82uu1gHtt588qJG803OjEHPtJzzHjAeufIQbfB3J0xmuWtgJ/5R/RhXViH9M39Mv/H8/Ply5fabrftKEL6bTyOn+fdXbvdriWUgXPRvYOZ9Hm32715qgd9pm0+MhHOFMxMsCvHjlcKOLDNvWzIsM/Jz9XV1atkL3OL9Ie28xziwyZPfjqdWjsSV3s98nc9cPZavtngWTrwSVbYAWJhckYokwuHmIcXgvx8Prdt1UmepDPuF2zmwumIs0mCdCD5PCcs4oi9o/aZsVA1fNml254G0G2x2OCkw+1F1G0jo9ULm3cPOZiQwTw7hSYZ3H4bKvSJ7o7HY8sCxwC5z2PGJxe9JDe8KHh3FXPkLYDCIlhVLfBD33PBTQBCW0wGZEAowYyP5ExyzduxcaY9VzLAZVLA+trv9+058dm5NuAGK9luj6/nlucKRh4ygz6aZOBYnwzokqGRoIDxc9aJxx5dAx4z4IuxsE7I1rBx8rPieWPQQRnOVkb3fN/Jiy5dunT5fZKEOg6Rs/xY78nE43PbBQcR+O7q6qrm83lLwDJWoVzf6yMZTZTb9o/9OJN1jKCwfaQNvt4OT+oibbztspNFuAe8Q73GV1U1IBic6WzJBJd03I2TPRZOQqM9bjt1pt4SR7od3j2GjhxkM0bKcnCIc65QjgNLOY+SKEjM6fHwPDVmNHaEeHt6eqrdbjd4r4OPwhkjK4xzMoBkvIrOnB2OLvCpPBbMj5xDHnsngXGNx9LJihYHpLbb7UBfEAKQiPY7/CxRLnVDFDj45ACUs7aTEHECH+Pk7Pj0T3lv7vPz82AHm8kYfiBZ3GaTnYyxd+pZ3/QfX+R4PLZ3+Nn/Zaw6/uzSpUuXP06Su0qxvcTuYAfG8Bt2l/drGsNkwhD1O6k3eUCXaV4E++FkeNczhu2clOF2mFelXnA49SQpTzsd+PFxx9xDMMG4jev9ChWwSnKt7ntVDXgZ405jQ+7zDj2wfY6xOR/G2xyn+TMCO8YWxgLGSsZz6V+k/c+x9u70MV0YzzBmYCzmqPG2dWrfIJPRjPuNN7zRgbYYC3s+GCceDofabrf1008/1f39/eBo7PTXJpPJq8Aa8wZcR11we+xK87vZ3E7e02tM7mPiV6vVADs6oZ4kKd43l5spfJJBYldvVDHn6qAocY2qqtVq1Xhbl191CaoZgxvHW++Mf/KVuQ51ucg3GzwzMY1xcJDDziCLiR1K7kF44JjYdmRwUplgXnxMxPOgeHEbC5rZqbLxzMxfO93n87llnFA+k9nXuR9p+GzIs+5cqNBhBjP8oPm6DCq67yySiA2DQYKdT2ddOvv0+fm5ReK9SLuPKQ52ZUDR4+J5Y4Nr42fDhx5tFHFGM7sFQsVzwMEa2pQOc9XlXWUm6GhHBmEgb8YIKRMzNpIGJzayGdizfq1LPh/TfT5nBiOZ0Uy9bwX66KuziD2WGC+3i7ZxvTOzTfRhqCBhMHImrqouL3X3OmKQjF7chgQqBshJ6HTp0qVLl98utufecez3rYJHOJveO26en59rNpsNgkas2bPZrL3fy5gNpwWbgvP+z2ypbVTagdyNxufpsGKz7PwYH/pe6jRpbjxpJ5K22qbaQTcuslNlMt/1ue222RlgSe/jrTIAADNrSURBVFtp3G2sxL3GkC7Lu8s9F+wPIIn10Bs6yrHymIw5k7SRI1GMZbz7MYMmJhgy6xaH2E48OIkgCsSA++V5YJ14nhnbgM0991P3lEugiv8ZW4gC69yBUvyCxM3U4+CZCRFjfvrKM4jePL+n0+kgSMX3PgaI+1kTPD/SV/O6UVWDl8jTbvsH9J/dAeiSsffcgFC0r0O9SdK4rV+/fq33798PCBTPL9YKCKcPHz4MMq1ZM8aevy5dunTp8uvFmIQ12Litqgacw+l02X1mu2MuDFzg47L5DizguqkzbZmTnLjenJQxQdXFZmEn3jqpx310AMZYxj/GBIkLaZODBcYvCO0EJ9j+WcyJuW/YbvfZ3xvjG3sa63GPeU0H9hhHl538q5PGKIfrabOxjfVt/ASXZz/AGNJcG5+ZJ7duOarQXFfya+Ax+kSgyPUnJjFmhhc19vL4e5wPh0Pd39/X58+f6+vXr/Xw8FBfv34dvKcMn8W42twfmMtJTrTDAWD8N4539E7KDKRxLKLnj3EqSUv2AdEZumHMwc/Wl32unB/mzz3HWVu8q5Rnm00d7LqrquZbMAZ+F96Yn2q9pp67vMg3GzzjIeABwNlLx9I7gnKrJA+dnUe2To8ZIOplkjibdiz4xPV87sXMZbNocQ6+v+N+dlZ5kXOwzcRN1SXLIdvBtTjIeayMxQ+DFz3uIYjFtTYe1I1TaANvZ9j9NEnjgFcaDR5Yb+GlL0nemACwA2rCi/5kQC11zOLEeJuoYNHGwN/e3rZjBl329fV1O0t2jHDK+UyZ9HmMrLPh9aLKNuB8rwTPBPPCC70DUX4+INqSOEpAaJ3nnErj4s8yUGoiCcMwnU5rt9u17dM2QEmoZQYPY+BAJdfboDJGfg7dZtpC5kiCg3y++SzXlDHpxEWXLl26/DHCuo8tZs2uqhYAYw2vek0iYKtZz6+urmqxWAxIfjutibeMzRxE8u4a6k1sZ/vszE/b+QzEvZX9SpmUhT13EMQOemIJ28+sF8zg4InxnPtm/Tiowt/WPWXbOTNOT7LIeM99yJ027o+TmRwY4XofM2Rslg6jsZzxBG3jt7NxaTNzh36jM3TNES8Ez+gj843vHTxLh9e4mv+ranBaBG2HeDDB4H44UOYMZK5BX/v9vhaLResLmNZjkbsKaRvfObkp/QXqd1AqSR23H9LR/k7u2kRPnq83Nze1WCwa9rfPlJjOejHZad0/PT21LGA/r2B9xjlJRs+H6+uXd3KfTi878GazWd3d3Q30Y58LrAypdXt729ZBsLLn9Bim79KlS5cu/5rYXoIf4KeMBw+HQ8Md+/2+HaWWifTYh8Vi0bCs35/F91VDztGn8dhWm3cx/2duJDFX4jNj32yH+Zk88SFxE387MOfAkrGhg1jm/vjeR1dWDRPHzWHSbvOC2Htwlrku68b3uO0+9ektnhM+kGCNceMY50zZbi82Pet3cr/bdzweG55y3xyMpE/um+cNeJO60Jf1VFVttxZt8KtcwBjGWh4LYyRkv9/Xfr+vzWZTDw8P9eXLl/r8+XPDu4ypNxH4ufA40Hfa4gQxninwKWOE/0iQyTiJ+xhHz13mI/OTMai6+Jz2w/zuNJ9cZp37pAc/kw54o0O4+Rw3J0d6brNeoFNvYkBn1Gk/2utJD5wN5ZsOnjkYUnUZ/Pyx42unIrMNnCVRNZww/G0CwYEcxOWOGR8bRTvSY5kgLAgQNnw3FhSzo+lFKEkR6rSBtCQ5423MvtdEgtuOruyQeXxsrE1SONPaY2vixAsEjj9ttWPpd9W5Hi9w3glG4Mg7vEye2KH3YmPnljbSBhZw+u7MGBsOExfUYXKFBdTGP420xzyDTnzuAJrJHs9bBz9pD+WhC641cDEB4+8MthwQNGmVi7nBAUbFY++55WAXWdPMJb73nJlOX3YOcIQN7TW48pGnBiHuC+Vktjcgw/1Bxp4zG+EeOOvSpUuX3y92FFhfF4vFYK2dz+evAjAOCEAC2OGC2Ki6ZPHZKTTWSWyax8FQpu12BjggH1x2ttO4z9di+2xX+D8xp221iXc7atRh7IrtS2eY9id+A984+OYglvWaTp+xDvUnLgfLUQ/2mc8zK9ntdfKb9W6d0FcwnzNmEwcn+WU8a4yXpxlYt7vdbrATyUeWUydYBmcWDOr5kEEqE1tJuhkvMj7GcMaFuasMfRL82e12jRz0kYcmdjLQQ7kmvTwPcyek8bAzcl1+jgu+QvpuZAgn0UCAkvsJXDEmmWhWVW13l+cq9XE92HaMwCTRk/47MOrXCVxdXdV2ux2sb16POF5oPp+/Op6c8fW6kyRely5dunT518X2I0nlxHleq7EzeWoU6/zt7e2rpCfzF5nMjfj4uUzy4lq3yfyjE5XMqzi5vaoGbYKjcZl57CK7dcwbORhiXswY3TjRv81NJk6FRzJfZ9zt4JiDBe6zxeU4CcgYyVymr0neD0yUR03T3xxjyvDR4PQzeUmfJsWpaxlwo3/gDWPovJayHewytnT/aFf6YcyFq6uXHVDe8QSWo1/Pz8/18PBQv/zyS/3yyy+13W7r8fGx7ZzCT/PmFXPNT09PLWjl+eE2MhcJjqFbcDEYLHVS9RI4M86DgzR/y5h67Eieoo+0CQwP1+r5TB34DH5VFHjQwVHmL7jUsQzmjv3Ix8fHlqRXVQ0rJndv38JrTJfX8s0GzzwxM+DiRdgGhcCGnX2TBmQj2+nygsN3TCA7/TzMDlDZSTZxQwAngx9jDgwGE/GE9gLi77wQjQUzaE8u8lWvX+iIpAHLwCP6Y2HFKNj40l8vYj4az4bFjq37QFsmk8nAYTTJYL16/B0oqxoafGSMDPBCaHLNujfRcjgc2rvBTHI48ygXHspjjjJ+SWLl2cgmxNDL2LykjfTH+qFez3d+WER9Zu9Y0Jjy/dwB+jLYmiRhEge0mzKd3W4iAHLMZJf7AGFGO2m/g3huu41IkqLMewcTM3CYZeXnCaItfv67dOnSpctvk8RbxnaswQ7iOCkGTFJ1Scqoegm+4fDbtjoggpNjpzODUv7ceIK22um0LczdOWRFWrBZJmhsN52YQjmZsWidEYCyLU7n0zjSOjHOtM0FExinuP/uox1Z43AHzqwvt931T6fTQWAl54jnQWKUxP+8eNwZzp4HHguczfzceD13ejlQ42NTUq/Pz8/tCGpja8gI41Qn+JAFbixi0ob57oxhkzRjCWTO4DUuhJThPuYTWDN9jclk0t45wZw1AQTpYPLOvoHxFvofI9ISy4G17Yu4fIg38KP1UfWaEE1yBp0x1rvdrpGhX79+bQTI1dVVC5gmPqZM3rfINZAjh8Oh+UMmN3jlAMkCOeaMe7a9S5cuXbr8enmLy4PQt71zQgvvLF0sFq0s7MrNzU2zEeZLqsaPcUsbnzyYMY8x6lvBJ5fh5G3bb2zuWzjLmKzq9es3bPfQl/HcGOfE/cYGtAWcbB7K3+VYWa/unz8DO2Pz3TbrgPZ7p5c3UKBH83vGQ8bliXmzHx67TBozjk/cah0bkxtDeA4kl+v3aNFG7nUCHH4RY2yeEsw7NncfHx/rp59+qv/9v/937ff7AS9LHe5DBnjtu+QrndA9+gePvsVBUgb9NSY3lqQ95uaNnb07jb6AkZlX5p797FiPBLo4kY6NH+bfuZdAG68tWCwWjc+lDPwO9MYc8jxAPF6eg12G8s0Gz0xUmMD25MZYce3T01Pd3t4256Oq2mRZLpfNsTQx4YCTMxHtLJoE4Domrw1nbrVF8jPK8OJqMsSLNdenQaVvLGgsHm9FlCmHfmWGirMNuNcR/zEiAl1RttvlccThdzkGCV4oMTxk6KTxcFAIHZpQSmc9dUDd/p8Fxi8IN1GF+OWSvAgSAsXBR/rhLAF/nnPCuh0LcE0ml+DXGCnk661fHz+Tmb5keNCmzLBOUshjxf8JRhh7Gw7qd9uZMz7iwHPTpJj1ynwwgPG8Azx4fqIndOQMLb6zoaVO73DzGPq5ykx3zzd+e967rV26dOnS5dfLWDCGbD4wARgwMyaR8/lyBMz19XVLDHIww/UlqQ7mtMNLcML/OyCV2ITPTRoYV2VQxjiI+/NdAt5Zw2e0yc4u9tB9tO13vYnB7Phl0KXqgv/oS+rP7bNOja2NhdPZNBbx+63cD5MQiZPsHxhHuB7G1s4un/m+PBKPOWQyh3qdEGRM4oAZ404Qz9eD7efzeRtP12H84f9NaBiDcA3zlM9MUPC9iRFjO5MdYPYcp8fHx8Hx7t5hl8+ccaLJnul0OnifXPbF/p6PysoxpmzjQJ5lrvGcd0a9T6ogsAlhYYLERNVisWgBMwJ4SXRS/u3tbS2Xy0GwlDny5cuXgd+Kzg+HQz0/Pw+CZ8w9P1epiy5dunTp8uvF/ISTnL37nb99uhTBMzBI1fDocSejO7jigAmSHJ2TjPnenErVhQfL4AmSCfMQ8E66oa/WhW0mbcK2GhNkQMIYibKcXG4sbbxqbOGAXHKuHqsMAJjXcVAC3Rh/Xl9fN/ySwRfGGeyG7c8dX2O22XjY/HG2N7HOZHJ5V5c5YI8fuM0JRLSXfmf5fh9ucnvG38/PL6cm5FhThzlo41f7BcfjsX766af68uVL7ff7AX53wr95P/y64/HYNi/A+SevTD95dkiQ8jhTLv32CQ18t9vtWsKXYwUeT4JSrhed2c/geeAIyapqHGxVtbXB/DY41Ulq0+l0cEwkp1NwxGQ+I7e3t4PxMo73c+Vnhrpclud+l284eFY1PGczFz8Gmp0knmBerLnGDlnVeEaC60vjlGQF36XTTRlebGy0KIOdLWkgxxYrP0zWhYNOdvLcLx56ItcZQUdfJnZcHp/RJx99SNu410cZOhvCmRcO0GWgMCPqiK+nXJMsdpy9aPmB984r990GwosFdZng2m63g6CX33eWpITvGyNT3FauyeCld3UlaZMEQ84PvmNMPKcYFwxG6tzgzuDD5XqhzUCs+8nnboeJM/o5RqDY2NPHPE7A9bkejwGEjckkP5ee5ybuZrNZMzoGWJ67iMuxri2duOjSpUuX3y4mLkxgQKyfTqe2Q4Nj0zKYZIdhPp/XbDZrWb/+8T12bNJZt43MoELV0DY4CGYSgusoz/YrcaoDDNxje514Br3wfzrZ1O0jBqvG33c25lTbsaQu492sy9jHgTljCRxR4yITJg7agGMygSn1yrWpf/COE5vAytPp9JXj6j54Phl3OljG33ZS88j1x8fH2u/3rX/OaHY5HlP0Z4c9cSgEwxiezzFBL2CtseAqdXp+EUzKZwDfjPL9fl8HVhk7Bytpo5/DDPDxvwkHBxqN48m8ZdztR9Am7mPcScSkDj9LJkrsv9AnSJKrq6tGvkynwx2y+A+TyeW9G+jV43g4HGq73dbDw0O9e/eu1cdpF5PJpL1/uaoGc5l5Yn8tn48uXbp06fKvSRLIrNl5ooH9/dVqVQ8PD1V1OT4YO5fHNbJOO/jhIIgDTOA2BwWSz7ENzQRsX5Mchu0uf48lpTgRGX3Q1uS3cjeR+S7zoeaQuD75T9tJB8MS25jTpT8OHDjg4vdp8Zvd4LQZbJYbCGibN32ABZLX8nuxaBeBRnPI5ljhv8CSxlq+x5yyOTjGypjeWMDjQVCQPhpbGS85eOax4R5fB8bd7XaDn6yDucg42Z/wHESn3llPQpPnH8lHYLLZbDbw02gj/SJJiaAb/XJym/VuDGmdohc+Wy6Xbb6Bs29vb+t4PLb5Z27UAVn7UzwrtP90OrWTCZwIZz6dPjoGQB323fzcMMdzLevyIt908MwDy8BXDXeS5DuTzueXLb7b7baVY2MxFhlmcjiz83A4DKLCLCjpfNihqxpm2yYBQjuJlHuxc7ahyQ0TB3bOMmCDE20jNebwpXixy76ZROL71INJBBZcLzSZPUIfM+rvoAWLAosL0X2TSA402ViyuNkQmDRIgsi64TPGkLN3PR/dHzvmCXISSHgeGZRY/yz6XjwzO4D2JVGCEXG9zGUHKZOQGxt7L5Su2+RQ7gpEt9Y/84A6DfBoI/PVbTRRwz1Zp9cGkzGI51COn9cRtqY764e+Oqvd2djWxVtjm2RPly5dunT5fcK6mj9gKoJpV1dXLRiRZIGzQ9+9ezfAJFWv3+9ge4NdSzuXmM3ljNWfODGdF9tI20xjHZcDRnIQrWqI++ycYwOxkX6PLH0Yc74drEEfxh3on3vsGNuxN5kzhkuqqmVXmoDxfRk8YRwzycd4MbEN+hrLyKVsrrW9z8BO1fDECnaOOXhkDOfALkGmzF51/f7fzjb6w+FH/xA63A+Opu1JvoB3jMPtzDPXCPpk29yW8/ncgml+/ozzmBvGdL7Hvka+HN3z1zs0k4jy82FC4enpqWUup2+ID2HSzvPC77/gWoghxmAyuewkgOxxING73hyIc4KjdcDP58+fa71etzb7JfRg2fRRvM6goy5dunTp8tskuZfEAJlMXFW1XC4H70IyP7NarQa2w2WaNzQGySQU7hlLmrCdwy5k8jbYkICdX4GRWJv7aZPbXDW0meDS5PfMUyYPRhkuPzkw2u0Ec/NX1vPY+Dmo4IBjJqCzm8c4A86PusBb5vTAnC6fH3awOyHPx3uDI7nPO8GMI+k7ejRedyAIvY7xttzDqU0ZSALb5Clwxln+3Bwa13HK1W63q/1+X5vNpr0Tlne2escU9zpg6LHl77eS9s3xcv3j42Ntt9t2ChoJlg4+7ff7QaITc3+327WyXSff2+/zkeXMNXOO1MlvJ51RpnfrVb0E3hnfHDdkt9vVarVqJyG4LX4mHDxzfzwPck2xHrtc5JsPnmVwJ//nwbZTxeKUpESS43xv58tkiEmCsQzIqtdbuJmMvsYGjKg35WYbWCRpb9Vwq68j8b7Oi3aSDejSxjYDIhYHsKwvP4jWbfbDL3z0g+g2+cg+By8y6OV3KNh42OjaMbQD74CRDSzXZVCEurnucDgMxs5zjrHC0HhRM7BxkM110S5no3i8cwxZ9J6fn5vjPzZfrAPrIueixyQDTy7HYtDndvl/5hrzylk3PFMm65xxbMPuZysJvsxyMfFlgOW++7nws5Nn/wIwuMcv9wSUuO6c+zakiA1/ly5dunT5fWJCn7XZDjk2A+fLn9sWLJfLhkXs/Gc2o+22baCTVZK4QIzLjCeMfVwv19imGH/hbBozpjPF3yYZkvigThMVY8lQ2HKCAiY0HJDx38YlDrCZgKF+rnOgrapaXZRpXfDZW5iBvvj4FvfNegen5ZHPY5jGY5rEBlj16empBc98vRPAHPTwcT9852O07X/QJuOUMZ/GSV0Etpgn3knneW5cbTzscTLuY056d51xKf0aCxRnUI8y0bXHO4PRWYbbCGZLv4OjWe0Hnc/nttuL/qAvkw0+YiefT8bCfgq+IH13oH2z2bwidrwLgbqYQ+7n09NT7ff7Wq/XLdiKXF9f13w+H/inXh+S+PDz2aVLly5d/jUZW08RcAC7TPj/5uambm9va7/fN7s8n8+b/SFwZSxnXs+8jYMUiWnMQ/EZ9s84IxOexvBp2jIHTYw/2AlXdUkKclnYv+QnwW1jeMuBHj4zNjG3k7yKsbz1ZY7RR0Oah3PAypyddea/zTcRQIMj9C49X+c2GQPSx0zy5rsMhKEb41jEOppOL8dUk4hE2cYX3u3EPK+6nObEZhLzXHBytNNzkHF5fHys+/v7dsS0A3HgmOfn5+bT8Cwwf9AF7YL/JNkodUr/eNcXuG+/37c+O2jMvRzFTf3ogPY5kPcWb44eGH/mE23nWWScuY81gR/mBhsqeK0QgVza5mDjly9far1et34zr7N95iOZs+ae8/QuZCzI/T9Z/r8IniFpPKouxzayKByPx5aFzLmwLLq8rNNBGB4iR/t9pJ0JEzvuaWSqhrt4vHDRdgJndrKSjGGhSIcWfVC+CQjuTyfQ3yVhQh/8N+KXjjuAkQETyvJnkAxut4M7dq6rXm99tk5YCCG//NA609PXo6cMKlFnkkqZ7WtDb7LHOkKX1ElfaW+2x4uUgzAZdOJ/G58koaxHG7E0tjmXDToAB7lF3eXasCM5p2mTDbGJDZNJBmIAOciW3W43IBJMFmL4ql7AAwbcZGEGzdwX69fzkjId6GONcFYx7XE2PdcDHCg/wVwanrcAd5cuXbp0+e9ljAS2M8I6izOU92UiE+8kIsmDa9Op5W/I+SRQEtc4wGM7nfeZHDEGcUDNQb9MYKI/ie+MxWyvM9BSdcmkdRANJ8pY0nUllqKv6N7BIF+DmIjw/WNtpo0O7iTx4/Kw4Q7CZHngC+/2yXJNYBn7cS9tIvuWrFZnjibesLOOLhN3OVDFEe/n83kQkDNOTOxP+WP40Tja5ASJYnzu/vv4KAfocgeajxTKnfw5xyEJvLvQc4b7IKB87DaSAT30AnEymUzaLj3Gy5nS6MYZ19fX1w1ngjU9J3MuMbbeXTadThuBYRKGz5gntJt3YJCFTH/RJ/o5HA612WxqtVq18fDcgqDN3aPIPyN9u3Tp0qXLfy/mocx3YJOPx2Mtl8uquhzhe319XavVqmHS/X5fHz58GBzZeDpdjo+2ncZu8D+8iRNjqMs23Yn25rjMizhBnv5400DVBYPmO02xocaaXE892LS8zryoOaXElMY3Tnwxv5jcD+W4DHBt8jAZfKFuEov4HBxGvbbPyS8h4CNjl8lkMjjRzBiNPlJn8oh+LVHuenKw0uXlTkhzi7SfMng3q/0JcJ6DXta7g23mF405N5tN271lDtsndpm/9Dywv5HjC+ayHnh20jejv/SHYzPNyZLIxf/2Y0hOSn7Wgp7Nz3t94DMwHWPILjxvDEEv3vlpbtR+IW0CH97d3b3iaJlHjHcGuPHz0tczt9tlKN908IxBZlKxYDnCzc4zB8WqqjkjDlrh4GbWhR94G6mqagtmTh4WVNrJZyzuNi75GZLOsp3odFbtbPNA0zYbKy9CXtRNTNDmDEza8KajbR24H+jZbWRhyH7lcT8mgrzoVw13F3krLOPjsTbp48XZ9bgtzp72wpuBQIMSk2eZKWvizmKnnPliouateZGAIp1ev7uB700U0SaTFx5vyD/a7Xnq3ZM2XEmocP1bAUqPpwNVHlMbXdplcDV2BIG3tyf4o50Gl25jPsM2hNYLbaJ8Z5C47w7uew6nJLHapUuXLl1+vdiZNmbBXtghyHXf197e3tZsNms2j98OjNmZAHPyziK3wXbY7UyHPe2Ar/e1brfrGDtaMJNZ+D7F+M9OuX+jP2MJEyS2pc68Bce471WXgInLoi3p/JHkYzIIR8/Y0X4A/ztbF1ycRInxFf3MF43TdtrqYxgdMHRZBEPwQ6gLvRL0yoCTx93tdDKZdyMZy+W4850xMs+B8Y37ABGW/bejzxiYgKNvzoI2LvJPHsXjeWj8STtpu9uVPoGfEx+lRD2Um6RKYlX65GCo/QhjXd4n4eAe5bFe2B+038Vv5vFisaiqalnQfq5MLjKWiTG3223tdrvBc+g54DWC8o2j38KoXbp06dLlXxPbk6phAq2DI9gaEizeSurxTiUHDhDzL2AUE/3maLiXNoLPTM6bx6mq1jYH3cBiSdZXvT4xyLaU723jrR9s1Vh70dlY/5Onq7rgZtdtDiq5qAx6jPGl+AEOWFAH9h6bCv9pHpQAKONOGRnkMx5md6L5LdpkXOFxof3z+fwVhwjX6GR1MCVj5hMDaJ9P4fBOKGNxdpCBh3w0uXXlgJv7yTwkYGRcRRngJO+CQrdgV3Oq9mHYSEObwYJ+RrjHiYkOjvoZNMeIn2ge0PPHHGfiYfpK8JVgHScJmBPleXRAj3mE/rKNVVX39/e1XC7bHEEXzEkH6djAYIyZa4/xcPrV/9Plmw+eeScPn1UNo9yHw6HevXtXVdV2oXlXEguhF1AWFh7oqmEQggmfASDqZ9G1kfJDxmTkIUmnBmMwRoLYILkNNja0l982Cg4O0pbcKcV9Y0EKHhi/A8FkUJIgGVxMEogFOwNMBDpoQx77Qrv9v9s4RvJ4kTNx4oCYdcMY2CA7sGXDDEBAl0komcSgzSZ/aN9YAMrl0R9+p9EHjJgkMWHDNe6jx5ExmU6ng3dveH7bMBhU0B4v4owt92CkGT+eP4xDBtqsT65nHFIvZBT7+5yPJoTcDwypAWEaIspnLcCoGoAYDDEume2CgaRd/t2lS5cuXX69YO9wQkwi+HsHaHxsHdfNZrNBcMKCQ+jAmZ0gBztst6ouzobtejpjVa/foTtGxIAbwA7+zu12Eo9tnfGCbaXtpXGe8bbxW+rGSU9jgbpMZqHOxHjGCVlOtsGYwUcQGb8b5+YOLc8ZynDgymNGWfYxjJtoy/F4rP1+PyAWkjwwYWC8PJlMWvCOcUFfTrpykIRdcsxN4xzq8TwB25xOp3b8C20BZzG3zudzw4LUmc8UGMd6pn7PBc9ZHHRn1yex5YBiYm/KJ+EN/AbBgv/n5zLH07p1ApyxdtWFsDChRJ30yf6nj2+330EfmGP7/X4QSPaRRG6jM7szWMyYPT091W63G+xQYC6ez+fBu+38/LudXkO6dOnSpcuvk8Rr/h/b4UT/qosd491KTrhhzTdfgc1gbWfHMvjFvI2DUXzvIJX5IAe2uHYMH7l/tiHYouREzUNRD1iG4NB8Pq+qYTKTeSnbKLc9rx/rC+OSHBttc5lc50CME8D43vxQ8qyLxaIFSm9vb2s+n7cNG8a+YCbwG2VxL0l85qqdIG+u2Ec0ol/jRQfCko/mO3Y/mhMDn1qPPnbcmxZ41yqYknE4HA6v/AhvZkjc4WPZOSUOLpj5RRuM2+wrJJ/tMTQ3+fz83Hw+9zH9D8aCerwZh76BHf2sJt/qe80fmoPmfW/T6bTm83lLsoPn9PNMOczl7CeBRN7d5mC5T1BwMpzXGMqxf8pv+64ZpP2fLN908GzM0WfBqLoc68g5wnZgyBDOB8QTyAuJJ3s6XTYQ6XA565VraAvGkkWBLAT6lgY4jZGDPxn8MynAtfQzMz0cYKCvtBtxQIH+c50DBNTFomudWHdeZMZIGGd1u50WG74MOnK/t76m4+z7HcxwNgxt98JgpzMXyjFiiDGyfvnOBsgLXmaxOlDj8efHQIh7xkgTPvc9BjMmlTBUzCMCQ/QN0Mb3zE8MqY2Gd2wSZPIL4H2tCSqDAY6v8bPkuewsIM8BBwzpj4PgSQaZmGJMfGyogdzV1VUtl8vBPLZB9pylzLFg8tj87tKlS5cu/7rYAc7MW8TvA+MeO+gEIvgMm2d7B+lhLJRkt7EAYvtbNQzmJYajL/xPn0zmux9jtp3P38IQY4lO/j+vMXajra6T6whi0Me3xsq43PU5aOQyHLSybq0zt5NrnDCGLh3cyGsdZMjMV3AQbfG4gelwSJ25yTX0GUzkjFzjaWMvY1BIEu5hrrpMEwPeBZgYjrLQHdjKwaAxX8QOu3GniTTjWZNvDvYYvzKO9NXZ9t5lxTMwlqSEQCS6fnTv4JPHwn6Pn1mTZPah0Mt8Pq+rq6u2PkDCJKnnoCJzn7qSwPS7Rzw3KIcyqGu/37dn4OvXr+0l8sxz32PxvPL4Znu6dOnSpcu/JuYIct31zpyqIb/DayiczMJOJ8TH+prbwPYbV2WCN21K7ieDU8bQ/BhXOXHeuMqcH20wH+m63O/cPAAOoI8Elmyr6CeS9xIwsD23fTe2p7wMEnmjgLEap5VlYhTYwHY+d3kRQMukOzAWuIZ3lPpaBzT8vzGjd10xb/b7fTt6O99j9fz83L5nztk/sE+TXB9ye3vb5jVzAOzr8addp9Op4SXqNIfJdbTVmyuMaegTfc/5bf/CmMZl+Tnl+/V63caYH2IGDtAxf+hbBrzTp/Jc8zNi/8Bt55rb29u6vb0dBDZ9AgNzjuB78tU8S4+Pj7Xdbuv9+/dt7MZOKjOPi+7A7l7PkvMe4/L/p8o3HTzzYsaD7Sg7k4d3AfglnX7YmFiUyQTJLaVeuGwI0kCmQ+32+lq3wYEeZ/d6kUoHiHa6vxgHP/SUT3vTITfRksEX18f1uTuLMhwE8EIxlgFtvfsB9/E8+SA6c9rBDevIuwRdr/vgttFfFkQ71xkctbEwmcV4+dhJykKSQErjYyBlJ526PY7oigXb23UNOtxu9OXxNgllEsF99PgB7LzIYiy9+FKXj091HR4/f+b3YeTcMIHlcfT/BhK0mTKRfA7y2cWwMxZJKpIhxfdVLxlGZJl7fMeCZG5LylskY5cuXbp0+e/F2CqxFuJEmnSeSIbwriPbEwdlsF9VQ9yEDXZWqNvHdexkGcMxVTXARWmnnQFpO49dc9KWy7TNpZ15VGASP+4zdtZ9REzGWK/0xXbW93GdHbMMmqXTxj3GnCZz8ANoJ7iJa40PrGN0CllDX3GS5/N5C0IlfrIDTZYoZYDpyGTmXmfspr/gBBx+GHd0SF/dDxM0YDqOFrSPklmz6MBJV5TnHfUOjjn4Y3KF7z3fPUcyI9wEC3WCxRLrUjYBK1/jNjO3mQt+3h24yiAb7dpsNoM57zoQsCDBLj+rs9ls4DPms+o1yfrhWsbVxJMxpZ9T+nR9fd3m3t3d3eB5Yj0wQWX951rYpUuXLl1+m4ytodhVvx8MDuVwONTNzU1LfDC+BEuQeGwbwE6fxEYW8ykm3ZMvsf3zD/isqgZ22dyU7SJlu0zqNjebeJEjDs1H+khB7JWxF/YRPJ36cpBpNpu1/hIMSFxovJVBSuN8JypV1aA8+u8d8dYzgSr7HejDyS5c40DkmH7db4+fsbB569Pp1Ha8g+/yvVqef4wL/c13uZnDc6AGDGZ840AZ42LcaP6X8WDcaBMYB70j3s1lTtZi/vr29ra1kzmMrmgHyWmeX54fPk6RNmZCoU/CMM5nbMFu5rjtE6EXdqCZ//YccuyBMlM32+227u7uWr8cwPa8wy+xT+IAmucbf3e5yDcdPKu6kNRMUju2LLCPj4+13+/bOamHw6GWy2XN5/NBAIpJSKTXWxiZRH7Iq96eMGnIqIPyeChN0FN+khZumw2GH0DvtvMiyyLnxZXrqoYZvf6bh85HiGTgxAaKz9LIZFvtOGZEPskYO6o5RqlX69xlUQeLcO4ApEwHwOivDbyzV/g/wQP9TuLKDjT9ysUnSQcMnbcDe8G2/r2LytmijL3b575mVoSzShhX6vcxRs6INQFhEsvZ+ZRvIJJgwM8XJJNJCxsEgxWDUK8B3IPxTtLCc8Ft9ph63rpsG63n5+dGqBl4uJ0OINLXlE5YdOnSpcvvkzHn3+tqOpkmlK+uXt4P4AzGxAXOrkxH1TaHz3Nd9z1Vl90o1Ecb04lxYMPOfTre3o2GPcqAFzbbZIeDJiYT/FNVAwfL+IjfzrZMfObdQ9795j6ha2yobfb5fHmngZ1Fyk0ihr8TNxqreOyrXgIeJAkxJuASjkpxezebzQDneb74BAvGgx9jrCSX6C/jw1Hzs9msEVf5Li3Gbjab1efPn1tbaKd3cJng8Dh5/iVuNFZyYNKJRA42O4jEGDkgxzhwr+efdZhJZOjIZXk8qQ8ygMxzPwfelcYcItN/t9sNkvuMB62jm5ubAaHj7HzPHWNAfEr0hp44nod+EojjPpN0Ls/HSE6n00GW+dPTU63X68HuRfrLfWM+qse8S5cuXbr8erFdrRr6/OfzuXa7Xa1WqwEPNp1Oa7FYNM4SG+fdMrvdrtkl7IK5Esrhb3N2VfUKa/pvsOjYiQaZ0OIglm1Vck1VNbD5xnSId3/ZLtn2Yn9Tjy6DNuXuctoChndiPtyN+dbk2IxzE9848cZ/O/jD+DjpiPvNGZknTL7YeIo+oH9jRvAM+nGyEXiSzSQkzYGJ/I4xjvZjvPxd4jfPLXaL5Y486qKfzGvzu07Ess+QPpLnawYzx7jYxPrJlTpwbGyffLSTn3Kuk8hlSe7egTnqMy/p7+3b+fQ7PstT3fwswHl6Xli3zDmCZx5H+nx9fd1wpPndDKilb8tnPZD2/0nwzH+bdDDBv9vt6v37920isBPNGZtepE2GU5azRf2AeddY1euXV1YNo+MmHrzImpTIYFNVDRZFP3gOfPBgexHNRcYO1Rix4If0LQPm9lXVK7LA33Of3w2QO4K4lrbjkDoC78XQpI2NCgFJL/K+3vpMYov/KZPFJ4EQdeV4uS0QGexUwmF34MlzyG2jzgQi1uNY9o/75bnjYJnnigM9npMGBe6PQcl+vx+QQPlMmgwz6DBh5wUdyXOfAYl5xKPnRJInjM/19XULkHtXnsfac9X9zb+Zd2zL9vtFcqfcZDJp4+225bOWWRxuU5cuXbp0+dfFNrKqBpgF59lJLbYX4AWf04+NwV4+Pj62H2xnOmtVwwQlMEu2JR11MEvVEK/ZrlAGZ+TTbttR21cf12fn3BgW/ErdtPWt4J3b4r+NUfOztMvGt05m8rUOQNAGBzW4BjxD5nFijNSx8Rr9Mt7kqBaOlMkAIfU7g5n6mT/UNZ/P23yBUDCu8pjaafUcMr6hr1x3dXXVslCN2Wn7ZrN5hXcyOS+JIpNXGdQE/9FW+0ae25AxlMFvB3D5//Hxse2m8y48Pz+MmceC55KAprE3ZXOkjwOJbpN9M89R122Syp9nkNoBrjFigbEk+EvwyzrkHvp4dXVVq9WqdrvdYBciz5iPR6q6HJ2ELsHMjBntyRNXEsPn2tilS5cuXf41MVaper2rt+py9GLyHz52j3I4/s67kBFsiddv1nuOmTP/4qAXCR9uM7aQ3w5s0U4HJPg8+aoMUKRuvAPNbXNSv7nF5O7oo/kT6zNJ/clk0o7idiBrLCk+dWHe1YlAxrLGsByXCI500IwdZw7E+H63L5Po0U9i6NSNdW88yCYSfqOz8/ncjm10AOrx8bFhiMPh0IKnTp5CV+Bv+k+9Do6xwwr+nba6zfY/mGdgGYI96N7jYk7Ofg/zgWfHc5XEKr8rzGPoZ9YJZeiE75hHxoP2D+0vmYt1menHGXNzvY//pL1+L7G5ccY2+VF08vj4WO/fvx/s4PPx78wXl8eYOmBO+cavncN8kW8+eMbD6AG0k8+DutvtWgZn1csEJ5PT2bA4XPmeNJMCXtgcKPAi+Va2B8aRBdDfO5jhxYnF2gEIGy6TIFxv8gOd0AYbtCSQTDCMBWYyMJZggDLtSNvhZAHxQ+bF0uOIzg0w8qF0WzHKaWRtIG00DRy8uHmBcv9drrN9PAcYexY05hcG6Hx+eUfF2HFP1ht9s35MqPgYnXTAbYj4nOu8lTcXZwMzgn4QJugSQ4QO8r4MEpkE9PxhXiCMH/UwHzwvnbWEgWZ8E7wxJx4fH2s+n7ct6m4LzwuCcTLJSJ+8luz3+/ZiW+/I83Ob5KOfC49JzvMuXbp06fLrxXbT9sQ2CEfJ12Bf/Z4zrrFDcjweG5Hhey12qtwGO1OuwzgriQE7p+fz5T0LJvv9vTEXbbDtMqbket/HPcYZbhf9oM1OLuPoF+MgY03Kddu4h3qcrGQdGr/YqUbXxgomP6ouRwkRWOOaDP5cX1/XYrFoZaMDk1gOkjGOzIsMbtCfdNJNANiJz7kL1nAfOTmDMrbb7SBQOJ/Pa7fb1WKxaAEdgmuIk+YgcyAe2HFn8gR/xXPCY5Jz3PiM+UlCmzE/7U6Cz466iQfPudy55yCfjxA3fqZ9OQeyL97R52PErQPfZ//Ec9nEBfMvg7DG5F5Pss2z2ay22+0rfEi2OASK8f3xeKzD4dCOADMZ5DmIuP5c07p06dKly28T23b+JvnYCeJghtvb29rtdgP8iR13MMDHbdvWmFcw3jQ2TR4OPOZdycaoaV+SuzFnZ74w+R+LbSrtdtvcdv73rpkMviVud6ArMTP99alEbocxgfkqknU8ti4XO5rBrLTr7ot3azkRjPF2wMrBDXRIO3I84YrBqHBXBMXAYeBE6rcOfNLGfD4fcL/G9uAf69enRCSOR5wo5M0eOV/535jOiU0ukyMm0Qn4zePh69OHcuCYcc8TFvA5jsdjO957sVg0Hdjf8g638/ncdJ8BNK7xsazmma+urlodtMPY2npLv83PnOcyGBc9gX89n8CEeSwr/Rx7Drr8fxA8Y+DHDAcLB8Znu922yYajT3aoF1cWC8r3g+ZFgAcgg1uetHayIdptfGwY7FjagHnXTC6elJvZt5TlgJQzF9Kp4yH3sYX8sAim3jObGf37h4eVvjrQZDGB4jFwlJ2x9mLMIupMbIwG5aCjPIaQBcH3mAygnzaWzBU+84tcISFs5ByA8lwCiDC+tMELoP9PUOL5YcIhHfgkis7nc9u5xrzK7cae42xrN3lkUi+3X9vg+5kw4ZF/Pz09tRef+/xh2mtSzYApSbYMGjPOVdV2AdK/1LmfZxN1Fj7nfPLZbPbqeFP65uMW+DzXBT83nbDo0qVLl98ndkTszObukslk0t5JhHPgjMqqS1YqSVWZRUodPnWgql5hKNsZ1n07Y7anfGbnnTbgLBm/0ZfEVIkLbLsdsKt6fcyh760aOrjpqBn/GIMh1G2nM+umTDtnb2V6Mi5gbpdjLA7myaBEJgBxvwkKYwAHWzMg5wAObcD+g7McSIGoQI/GBA7a2ammDU7GWq/Xg8xhdOI55RMe/F0GwjLrdozsQt+TyaQlH9oPcdDMP34OyVy2P0PfGCv8GOMv5iPYGsxpnOxn0u/3SH/DQVBwuuer8Ti6oUzGGaxsnHc+XwLb9NGkHLgW/aduGUcnVpp0ykRNdOpn0eNIfzgajHKNha23xNEeuy5dunTp8q9LJlCYG+P/5+fn2mw2dXd319Zy7NtkMqn1el2bzaZxVsm/gefMO5zP54YTk0Mx71R1SV6ivd4t5aAFNscYLHElNpA22N4mN5N1u21O7DG+ML5KTpAywFLm5sD9xry030En81jmqygbe+o2mzeinBTvLnTSlW03Zc/n85pOp21nGu2nrW8FJ90ez7Uxvo0xoW9ODiKg5uMWGXewCMn/h8NhsIuPMu3fGJc4MIiuzOcaU5orZZ7Q3+Qx6Q9jw9+cCkGbPC8z8Aknb5+Hfti3Md/OuLPBhufG/l4GsDy3r68v76V14hz3+dn2vVxLoh/Xsjb4iMXn5+d2ogNlGac7DmCeH1zsch1A41nOBE/rqMuLTM5dI126dOnSpUuXLl26dOnSpUuXLl26dOnSpUuXLl26VFVVTz/r0qVLly5dunTp0qVLly5dunTp0qVLly5dunTp0uUf0oNnXbp06dKlS5cuXbp06dKlS5cuXbp06dKlS5cuXbr8Q3rwrEuXLl26dOnSpUuXLl26dOnSpUuXLl26dOnSpUuXf0gPnnXp0qVLly5dunTp0qVLly5dunTp0qVLly5dunTp8g/pwbMuXbp06dKlS5cuXbp06dKlS5cuXbp06dKlS5cuXf4hPXjWpUuXLl26dOnSpUuXLl26dOnSpUuXLl26dOnSpcs/pAfPunTp0qVLly5dunTp0qVLly5dunTp0qVLly5dunT5h/TgWZcuXbp06dKlS5cuXbp06dKlS5cuXbp06dKlS5cu/5AePOvSpUuXLl26dOnSpUuXLl26dOnSpUuXLl26dOnS5R/yfwHZzfxKzem5OgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(20, 10))\n", + "\n", + "for i in range(6):\n", + " plt.subplot(3, 3, i + 1)\n", + " img_path = os.path.join(normal_dir, normal[i]) # Gettig the path of the image\n", + " img = plt.imread(img_path) # Loading the image\n", + " plt.imshow(img, cmap='gray')\n", + " plt.axis(\"off\")\n", + " plt.title(\"Normal X-ray\")\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FDB5RF6NPbNq" + }, + "source": [ + "#Data distribution visualization" + ] + }, + { + "cell_type": "markdown", + "source": [ + "1. **Label Transformation**: \n", + " - Converts numeric class labels in the training data (`0` for Normal, `1` for Pneumonia) into human-readable strings (`\"Normal\"` or `\"Pneumonia\"`).\n", + "\n", + "2. **Seaborn Countplot**: \n", + " - Plots the class distribution in the training dataset using a bar chart with `sns.countplot`. \n", + " - The `viridis` palette is applied for a visually distinct color scheme.\n", + "\n", + "3. **Graph Customization**: \n", + " - Adds a title (\"Class Distribution in Training Data\") and labels for the x-axis (\"Class\") and y-axis (\"Count\"). \n", + " - Font sizes for titles, labels, and ticks are adjusted for better readability.\n", + "\n", + "4. **Visualization**: \n", + " - Displays the plot, highlighting the imbalance in the dataset with more Pneumonia samples than Normal ones." + ], + "metadata": { + "id": "JPOQoH2yu0MW" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 682 + }, + "id": "sHZKE6pwPXFW", + "outputId": "c6b528bd-79de-47ce-f428-e9340f183c6b" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":9: FutureWarning: \n", + "\n", + "Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.\n", + "\n", + " sns.countplot(x=listx, palette=\"viridis\")\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAswAAAIuCAYAAACrXV6TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfUUlEQVR4nO3deVxWZf7/8fcN3MgmAi6BKwquqSlqouCKpik62mLqmFo27ctMy1hNjVhWQ9M2lc13bHE0KyzLBdsUDbTc19xQMbcMFQVcWLwRzu+Pfpzx9oYjIArq6/l4+ND7Op9znevcyOHNua9zjs0wDEMAAAAASuRW1QMAAAAAqjMCMwAAAGCBwAwAAABYIDADAAAAFgjMAAAAgAUCMwAAAGCBwAwAAABYIDADAAAAFgjMAAAAgAUCM1CJFi9erLvuukstWrSQv7+/atSooZCQEPXv319vvvmmMjIynOr/+9//ymazafz48VUz4Eqyb98+2Ww2pz/u7u4KCAhQs2bNNGTIEL388svav3+/ZT/F61YHxfsUGhrqsqw6jbNYaGiobDab9u3bV9VDKVXv3r1ls9mUnJx8ybZR/D1V3j///e9/L8l4KvvrEhcXJ5vNpri4uErp71Ip3u/iP25ubqpZs6YaNmyoPn366Mknn9SaNWuqephAmXlU9QCAq8GxY8c0atQoJSUlSfr9h0WfPn3k6+urw4cPa8WKFUpKStLf//53JSUlqWvXrlU84kvn1ltvlZ+fnyTp1KlTSk9PV1JSkhYuXKjnnntO9957r1577TWzprLt27dPTZs2VZMmTap1eCyP8ePHa8aMGZo+ffoV/8vVpRYeHq5x48a5tP/444/as2ePwsLCFB0dXeJ6qHxRUVHme5uXl6djx45p48aNSk5O1uuvv65evXrpo48+UrNmzSple1fj9z+qBwIzcJFOnDih6Oho7dy5U61atdK0adPUo0cPp5ozZ85oxowZmjRpktLT06topJfHa6+95nJWNi8vT9OnT9fTTz+t//znP9q+fbsWL16sGjVqONXt2LHjMo7UWoMGDbRjxw7Z7faqHkqZLFmyRAUFBWrQoEFVD6VUM2fOVG5urho3bnzJthEdHV1iIB4/frz27Nmj6OjoS3Y2uSSV/XV5+OGHNXLkSNWpU6dS+rvU7rnnHpdf8gzD0Lfffqs///nPSklJUffu3bVy5Uo1bdq0agYJlAGBGbhIjzzyiHbu3KnQ0FD99NNPCgoKcqmpUaOG7r33Xv3hD39Qdnb25R9kFfP29taDDz6oyMhIRUVFafny5Xr11Vf1/PPPO9W1atWqikboym63V6vxXEhYWFhVD+GCLmVQrq4q++tSp06dKyYsl8Zms2nQoEHq3r27brzxRu3evVv33HOPlixZUtVDA0rFHGbgIvzyyy/69NNPJUlvvPFGiWH5XNddd51atmxZpr6/+uor3XPPPWrbtq0CAwPl5eWlpk2b6u6779bOnTtLXOfMmTP65z//qU6dOqlmzZry9PRUcHCwunTpor/+9a/KzMx0qt+9e7fuvvtuNW3aVDVq1JCfn5+aNGmiwYMHa/r06WUaZ3lERETokUcekSS9+eabOnv2rNPy0uYGp6en67HHHlOLFi3k5eUlHx8fNWrUSDExMXrttdfMuvHjx5tnqfbv3+8yT7XYufNADxw4oAkTJqhRo0ay2+3m2TCrOcznev/999WpUyf5+voqICBAgwYN0qpVq0qsvdDc5/Pn+BaPYcaMGZKku+66y2l/zp3HajVXNjc3V//4xz8UERGhmjVrysfHR9dff72ee+45ZWVludSfu++GYWjatGnmPtaqVUs33XSTVq5cafm+lGX/io0fP96cR7x3717deeedCg4OVo0aNRQWFqbnnntOZ86cKff2yurc927+/Pnq27evgoKCnMaakZGht99+W4MGDVLTpk3l7e0tf39/de7cWfHx8crPz79g3+c6973YtGmTbrnlFtWpU0c1atRQmzZt9Prrr8swDJf+SpvDfO71EDk5OXrmmWcUHh6uGjVqKDg4WOPGjdOhQ4dKfQ/mz5+vHj16qGbNmqpVq5Z69eqlr7/+uszfBxUREBCgt956S5K0dOlSrV+/3mn59u3bNWnSJEVFRalBgwby9PRU7dq11a9fP33++ecu/ZX1+//UqVN6//33dcstt6h58+by9fWVr6+v2rVrp7/97W/X5EkNXBhnmIGLsHDhQhUWFiogIEBDhw6t1L5HjBhh/vDs27evzp49q61bt2r69On6/PPPtWjRInXv3t2sLyoq0uDBg7VkyRL5+/urR48eCggIUEZGhnbv3q1//vOfGj16tBnqt27dqqioKJ08eVItW7ZUbGys3N3d9euvv2rZsmU6dOiQ7rrrrkrdJ0kaM2aM/vnPfyorK0vr1q1TZGSkZf3hw4fVuXNn/fbbb2rcuLEGDhwoLy8v/fbbb9q0aZPWr1+vJ598UtLvH8efPn1aX375pXx9fXXbbbdZ9r1792517NhRnp6eioqKkmEY5Tp79/jjj+utt95SVFSU/vCHP2jLli369ttvtXjxYn3++ecaPnx4mfsqiZ+fn8aNG2fOvz13PqgkdejQ4YJ9ZGZmKiYmRps2bZK/v7/69u0ru92ulJQUvfTSS/r000+1dOnSUgPRXXfdpU8//VQ9evRQbGysNm3apMWLF2vZsmVKSUmp1Pn4mzZt0mOPPabAwED16tVLmZmZ+umnn/TSSy9p27Ztmjt3bqVtqySvv/663n33XXXu3FkDBw7Ub7/9Jnd3d0nS999/r8cee0wNGjRQeHi4IiMjlZGRodWrV+vpp5/W/Pnz9cMPP7hMM7qQ77//Xm+88YbCwsLUv39/paen68cff9STTz6pgwcPmoGyrE6cOKHu3bvrwIED6tGjh9q2bauVK1dq5syZSklJ0ebNm1WrVi2ndV599VVNnDhRktS1a1c1a9ZMaWlpio2N1V//+tdybb+8br75ZgUFBSkzM1OLFy9Wp06dzGVvvPGGPvzwQ7Vq1Urt2rVTQECADhw4oB9++EFLlizRqlWr9MYbb5j1Zf3+37x5s+69917VrVtXLVu2VKdOnZSVlaX169fr5Zdf1ueff65Vq1apdu3al3TfcYUxAFTYnXfeaUgy+vbtW6H1p0+fbkgyxo0b57IsISHBOH36tFNbUVGRMXXqVEOScf311xtFRUXmspSUFEOS0bFjR+PkyZMu/a1du9Y4duyY+fquu+4yJBlTpkxxqc3NzTVSUlLKvB979+41JBmSjL1791rWFhYWGp6enoYk44MPPnBaVtzHuSZPnmxIMu69916n/TUMw3A4HEZSUlKJY2nSpEmpY5g0aZK5rTFjxhj5+fml7lNJ/RSv6+3tbSxZssRp2auvvmpIMmrVqmUcOXLkgvt3rl69ehmSjB9++MGpfdy4cYYkY/r06aWu26RJkxLf/zvuuMOQZHTt2tXp63/q1Cnj5ptvNiQZ3bt3L3Hfi/d/586d5rKzZ88ad999tyHJuOmmm0odT0X2T5Lxt7/9zTh79qy5bMuWLYavr68hyVixYkW5tlfSNkr6Xit+79zd3Y358+eXuP727duNlStXurRnZmYaN910kyHJePXVV0vt+/yvS/F7Icn4v//7P6dlS5YsMWw2m+Hu7m4cPHjQaVnx/91JkyY5tRcfSyQZAwYMME6cOOE0xg4dOhiSjJdfftlpvQ0bNhju7u6Gu7u78dVXXzkt+/zzzw03N7cLfj+VpHi/rf7PFuvXr5/5vXiu5ORkY8+ePS71qampRsOGDQ1JxurVq52WleX7/+DBg0ZSUpJRWFjo1J6Tk2OMHTvWkGQ8+OCDFxw3ri1MyQAuQvFt4urVq1fpfd9xxx3y9fV1arPZbHrwwQfVrVs3bdu2zekiuSNHjkiS+bHq+Tp37ux0xqS4ftCgQS613t7e6tmzZ6Xsx/nc3NzMs9zHjx+/YH3xOAcOHOgyncFutysmJqbCYwkKCtK7775b7rOCxe677z717dvXqe2pp55S586ddeLECX3wwQcVHltlOHDggL744gvZbDZNmzbN6evv5+en999/X15eXlqxYoVWrFhRYh/vvPOOWrRoYb52d3fXSy+9JElKSUlRQUFBpY23U6dOevHFF82zupLUtm1b3XnnnZJk3oXmUhk3blypnxS1bt26xE9DAgMD9c4770iSvvjii3Jv85ZbbtF9993n1Na3b18NGDBAhYWF+uGHH8rVn6+vr6ZPny5/f3+nMT799NOSXN/Dd999V4WFhRoxYoTLJyK33367brnllnJtvyKKP9U5/3jQq1evEu+e0bJlS/P6hzlz5pR7ew0bNlRMTIzc3JwjkI+Pj/7973/Lw8OjQl9LXN2YkgFUY2lpafruu++UlpamU6dOqbCwUNL/QuTOnTvVpk0bSb/PD3Z3d9dHH32kFi1a6JZbblFISEipfd9444365ptv9MADD2jy5Mnq1auXvLy8Lv1O6ffpI5LKdC/jG2+8Ue+9956efvppGYahm266qdJuSdevXz+Xj6fLo6Tbl0nS2LFjtW7dOiUnJ+vZZ5+tcP8Xa9myZSoqKlJERITat2/vsrxBgwYaMGCAOZ3g3Ck+kuTh4aGBAwe6rBccHKzAwEBlZWXp+PHjCg4OrpTxxsbGlvh/onXr1pJkOQe3MlxoCk9hYaGSk5O1YsUKpaenKy8vT4ZhmHONS7u2wMqQIUNKbG/durW+++67cu9z586dS/y+L+09TElJkST98Y9/LLG/P/7xjxUKpeVhdTw4ffq0vv32W23cuFHHjh2Tw+GQJPNuQxV5z4utWLFCy5cv14EDB5Sbm2t+HT09PZWRkaGsrCwFBgZWuH9cXQjMwEWoW7euJOno0aOV2m9hYaEefvhh/ec//ynxwp9iJ0+eNP8dFhamN998U0899ZQefvhhPfzww2rSpIm6deum2NhY3X777fL09DTrn3rqKf34449KSkrSwIEDZbfbdcMNN6hnz54aOXKkunTpUqn7dO6+FV9Uc6GLJCXpzjvv1OLFi/XJJ5/o1ltvlbu7u9q0aaPo6GjddtttLmd4y+NiL2Qq7TZYxe2//vrrRfV/sYrDkdXtuorv4lBSMAsJCSn1tnr+/v7Kysoq9WK3iijtLhrFZ0src1slsfr/sHv3bg0fPlzbtm0rtebc78eyqux9Lm9/xf9HS9v3S3Gx3/mOHTsmyfV4kJiYqLvuusvyk6iKvOdHjx7Vrbfeqh9//NGy7uTJkwRmmJiSAVyE4gtUNmzYYJ79rQz/+te/9H//93+67rrr9Omnn2rfvn1OZ7NGjRolSS5h+pFHHtH+/fs1bdo0jR07Vu7u7kpISNCYMWPUpk0bp3tA+/j4aPHixVqzZo1eeOEFxcTEaNeuXXrjjTd044036qGHHqq0/TnX1q1bzbNE7dq1u2C9m5ubZs2apW3btunVV19VbGys0tPT9e9//1sxMTEaOnRohd97b2/vCq1XVla/7JSk+ExbdXH+R9ZX2/bOZ/X/4bbbbtO2bdsUGxurZcuWmWc7DcO4qDt4VPY+V7S/0j7tudRPtDQMQxs3bpTkfDw4dOiQ7rjjDh0/flx//etftXnzZp04cUKFhYUyDEPff/+9uX553XPPPfrxxx/VrVs3LVq0SEeOHDG/loZhmGfoK9I3rl4EZuAixMbGys3NTdnZ2VqwYEGl9Vt8y6T//Oc/GjVqlJo0aeI0XWL37t2lrnvdddfpT3/6k2bMmKE9e/Zox44d6tatm/bs2WPOYzxXly5d9Pzzz+vbb7/V8ePH9cUXX8jb21vvvfdeuedPlsWsWbMkSbVr13a6Iv5C2rRpo6eeekrz5s3T0aNHlZSUpHr16ikxMVEzZ86s9HGWxd69e0tsL76FWMOGDZ3ai8/Wnjp1qsT1LvTo8PIqfljGL7/8UmpN8bLq/MCTqpaamqqff/5Z9erV09y5c9WjRw/Vrl3b/HpafT9Wd8Vf99Keinepn5b3zTffmLc2vOmmm8z2xMRE5eXlafjw4YqPj1f79u3l7+9v/kJQ0fc8JydH33zzjdzc3PTNN9+of//+qlevnvm1zMnJ0eHDhy9yr3A1IjADFyEsLMw82/vEE0+43Of4fEePHi3TnLvifpo0aeKybNu2bdq0aVOZx9iqVSvzllEXWs/Dw0O33XabBgwYUKb68tqwYYPeffddSb/fku3ci7vKw2azKSYmRqNHj5bkPM7iaSfn3+P5Uvj4448t23v37u3UXhxOSnqi4c8//6yDBw+W2F9F96lnz55yc3PTpk2btHnzZpfl6enp+u677yRJffr0KVff15Li78f69evLw8N1JmPxL4FXouKLe4vvJ3++0torw4kTJ/SXv/xFktS/f3+n2yRaHQMNwyh1XBf6Xik+S+3v76+AgACX5bNmzeLMMkpEYAYu0jvvvKPw8HDt3btX0dHRJc6Lczgc+uijj9SxY8cyPf65+AKdqVOnOn1Mn56errFjx5b4w2Dp0qX65ptvXO5aYBiGFi5cKMn5h897771XYng/fPiw1q1b51J/MfLy8vTvf/9bvXv3Vn5+vnr37m3eO/lCZs6c6fJAA+n3s7TFD5U4d5x169aVp6enDh8+fMFfYC7Wv//9b5eHcLz55ptas2aNatasqQkTJjgt69evnyRp8uTJTh/j79u3T+PGjSv1B3XxmWqr+bMlady4sW6//XYZhqH77rvPaS5oTk6O7r33XuXn56t79+4uF/zhf1q0aCF3d3dt2bLF5eudmJioN998s2oGVgkefvhhubm5KSEhQfPnz3da9tVXX+nLL7+s9G0a///R2MVP+QsJCdH777/vVFN8DJwzZ47TVLLCwkL9/e9/L/WuLhf6/r/uuusUGBio7Oxsl194V61apWeeeeZidw9XKS76Ay5SYGCgfvrpJ91xxx1KTk5Wjx491LRpU7Vv314+Pj46cuSI1qxZo9OnT8vf31/169e/YJ/PPvusvvvuO73//vv64YcfFBERoZMnTyolJUXNmjXT8OHDXR7i8PPPP+svf/mL/P39FRERofr16ysvL08bNmzQ/v37VatWLb3wwgtm/bRp0/TQQw+padOmatu2rfz9/ZWRkaHly5crLy9Pffv2rdDDWJ588knzLhY5OTn67bfftGHDBuXn58vNzU3333+/XnvtNacLEK189dVXGjdunOrXr68OHTqYd2f46aefdOLECbVt21Z/+tOfzHq73a6hQ4dqzpw56tChg6Kjo+Xj4yNJlX6bt+LbyvXo0UMNGjTQ1q1btWXLFvNuJeffPeLZZ5/VnDlz9M0336hFixbq0qWLMjIytHbtWkVFRal79+4lBoFhw4Zp8uTJevvtt7V161Y1atRIbm5uGjp06AW/RlOnTlVqaqpWr16tsLAw9enTRx4eHkpJSVFGRoaaNm2qTz75pFLfl6tNnTp19PDDD+tf//qXYmJi1KNHD9WvX187d+7Uhg0b9Nxzz2nKlClVPcwK6dSpk6ZMmaJnn31Ww4YNU2RkpPngkjVr1uiJJ57Q66+/Xubv1/N98MEH5i8ZZ86c0bFjx7RhwwYzzPbu3VsfffSRyy/nQ4YMUadOnbR+/Xq1aNFCvXr1kq+vr1avXq3ffvtNEydOVHx8vMv2LvT97+7urr///e/6y1/+orFjx2rq1Klq1qyZDhw4oBUrVmjMmDFatmxZpU+PwlXgct70Gbjaffvtt8bYsWON8PBww8/Pz7Db7UZwcLDRv39/46233jKOHz/uVG/14JKff/7ZGDp0qBESEmJ4eXkZzZs3N/76178aJ0+eLPFBFmlpaUZcXJwRExNjNG7c2PDy8jICAwON9u3bG08//bTLAxAWLlxoPPDAA0bHjh2NunXrGp6enkbDhg2N3r17GzNmzDAcDkeZ9/vcB10U/3FzczP8/f2N0NBQIzY21njppZeM/fv3W/ZTvO65li1bZvz5z382brzxRiM4ONjw9PQ0goODjW7duhnvvPOOy8NdDMMwjh8/btx3331G48aNDbvd7tJvaQ9/KGmfrB5cYhiG8e9//9vo0KGD4e3tbfj7+xsDBw40fvrpp1L73b59u3HLLbcYgYGBRo0aNYyWLVsaU6ZMMRwOR6kP9jAMw5g7d64RFRVl1KxZ07DZbC7jL+0BGYbx+wMZXnnlFaNDhw6Gj4+P4eXlZbRu3dp49tlnjczMzHLte1m2V5qKPpjF6vukrMry4BKrfSkqKjI+/PBDo1OnToafn59Rq1YtIzo62khISDAMo/SH0lzowSUlfa0No/T/oxd6cElp79GFvqZfffWVERUVZfj6+ho1a9Y0oqOjjXnz5hnLli0zJBndunUrcb3SFO/3uX98fX2N+vXrG7169TKeeOIJY82aNZZ9nDp1ynj22WeNli1bGl5eXka9evWMYcOGGevWrTN++OEHQ5LRq1cvl/Uu9P1vGIYxb948o3v37kZAQIDh5+dndO7c2XjvvfeMoqKiCv3fxtXPZhhM1gEAAK5eeOEFTZo0SY888ojefvvtqh4OUGWYwwwAwDVs9+7d5p0qzrVgwQK98sorstlspT6kB7hWMIcZAIBr2CeffKKXX35ZHTt2VKNGjVRQUKCdO3eaFwXHxcWV6xaQwNWIwAwAwDVs4MCB2r17t1atWqUdO3YoPz9ftWvX1pAhQ/Tggw+W+Hh04FrDHGYAAADAAnOYAQAAAAsEZgAAAMACgRkAAACwQGAGAAAALHCXjEsoKytLZ8+erephAAAA4DweHh4KDAwsW+0lHstF++qrr5SQkKBGjRrp9ddfd1q2c+dOzZo1S3v37pW3t7e6deum0aNHy8vLy6muoKBAs2fP1vLly3X69Gk1adJEI0eOVPv27V22V9Y+y+Ls2bMqKCgo93oAAACoPqr1lIzjx49r7ty5qlGjhsuyffv26YUXXpDD4dDYsWMVExOjJUuW6I033nCpnTp1qr7++mtFR0frrrvukpubm1555RWlpqZWuE8AAABcG6r1GeaPP/5YzZs3V1FRkU6dOuW07LPPPpOfn58mTZokHx8fSVLdunX1n//8R5s3b9YNN9wgSUpLS9OKFSs0ZswYDR06VJLUs2dPPfHEE5o1a5amTJlS7j4BAABw7ai2Z5i3b9+uVatWafz48S7LcnNz9fPPP6tHjx5msJWkXr16ycvLSytXrjTbVq1aJTc3N/Xr189s8/T0VN++fbVr1y4dO3as3H0CAADg2lEtA3NRUZGmT5+uvn37qnHjxi7LDxw4oMLCQjVr1syp3cPDQ6Ghodq7d6/ZtnfvXoWEhDiFYEkKDw+X9Ps0jPL2CQAAgGtHtZySsWjRImVkZOj5558vcXl2drYklXhlY0BAgNPc5Ozs7BLrituysrLK3ef5CgoKnC7us9ls8vb2Nv8NAACAK1e1C8ynTp3S559/rltvvVX+/v4l1jgcDkmS3W53Webp6WkuL64tqa64rbi2PH2eb+7cuZozZ475umnTpoqPj1fdunVLXQcAAABXhmoXmBMSEuTn56ebb7651BpPT09JKvGWbQ6Hw1xeXFtSXXFbcW15+jzf8OHDFRsba74uPquckZHBfZgBAACqIQ8PjzKf3KxWgTk9PV1JSUkaP368MjMzzfaCggKdPXtWR48elY+PjwICAiT9bzrFuc6fghEQEODUV7HidYtry9Pn+ex2e4lnpiXJMIxS1wMAAED1V60Cc2ZmpgzD0PTp0zV9+nSX5Q8//LAGDRqkESNGyN3dXb/88ou6d+9uLj979qz27dunbt26mW2hoaHatm2bcnNznS782717t7lckho3blzmPgEAAHDtqFaBuVGjRnryySdd2mfPnq28vDyNHz9ewcHB8vHxUbt27bR8+XLdeuut5gV2y5YtU35+vlO4jYyMVGJiopKSksz7MBcUFCg5OVnNmzdXnTp1JKlcfQIAAODaUa0Cs7+/v2688UaX9m+++UaSnJaNHDlSzz//vOLi4hQTE6PMzEwlJibqhhtuUIcOHcy65s2bKzIyUp999plOnjyp4OBgpaSkKCMjQ/fff7/TdsraJwAAAK4dNuMKmGQbFxenU6dO6fXXX3dqT01N1SeffKJffvlF3t7e6tatm0aPHm2eHS7mcDg0e/ZsLV++XDk5OWrcuLHuuOOOEkNwWfssi4yMjBIvIgQAAEDVstvtZb7o74oIzFcqAjMAAED1VJ7AXC2f9AcAAABUFwRmAAAAwAKBGQAAALBAYAYAAAAsEJgBAAAACwRmAAAAwEK1enAJKscdkz+s6iEAuERmT5pQ1UMAgGsOZ5gBAAAACwRmAAAAwAKBGQAAALBAYAYAAAAsEJgBAAAACwRmAAAAwAKBGQAAALBAYAYAAAAsEJgBAAAACwRmAAAAwAKBGQAAALBAYAYAAAAsEJgBAAAACwRmAAAAwAKBGQAAALBAYAYAAAAsEJgBAAAACwRmAAAAwAKBGQAAALBAYAYAAAAsEJgBAAAACwRmAAAAwAKBGQAAALBAYAYAAAAsEJgBAAAACwRmAAAAwAKBGQAAALBAYAYAAAAsEJgBAAAACwRmAAAAwAKBGQAAALBAYAYAAAAsEJgBAAAACwRmAAAAwAKBGQAAALBAYAYAAAAseFT1AM538OBBffHFF/rll1+UnZ2tGjVqqGHDhhoyZIg6d+5s1k2dOlUpKSku69evX19vvfWWU1tRUZESExO1aNEiZWdnKyQkRMOGDVN0dLTL+r/++qtmzJih1NRUeXh4KCIiQuPGjZO/v3+l7ysAAACqv2oXmDMyMpSXl6devXopMDBQDodDq1ev1quvvqp7771X/fr1M2vtdrvuu+8+p/V9fHxc+kxISNC8efMUExOjsLAwrVu3Tm+//bZsNpuioqLMuuPHj2vSpEny8fHRqFGjlJ+fr8TERB04cECvvPKKPDyq3dsFAACAS6zaJcCIiAhFREQ4tQ0cOFATJ07UwoULnQKzm5ubevbsadlfZmamEhMTNWDAAE2YMEGSFBMTo7i4OM2aNUvdunWTm9vvM1Pmzp2rM2fOKD4+XnXq1JEkhYeHa8qUKUpOTnbaNgAAAK4NV8QcZjc3N9WuXVs5OTkuy4qKipSbm1vqumvXrlVhYaEGDBhgttlsNvXv31/Hjx/Xrl27zPbVq1crIiLCDMuS1L59e4WEhGjlypWVtDcAAAC4klS7M8zF8vPz5XA4lJubq3Xr1mnTpk3q3r27U43D4dC4ceN05swZ+fr6KioqSmPGjJGXl5dZs3fvXtWoUUMNGjRwWjc8PNxc3qpVK2VmZurEiRMKCwtzGUt4eLg2btxY6lgLCgpUUFBgvrbZbPL29jb/DQCVhWMKAFx+1TYwz5w5U0lJSZJ+/wHRtWtX3X333ebywMBADR06VE2bNpVhGNq0aZMWLVqk/fv3Ky4uTu7u7pKk7OxsBQQEuPyQCQwMlCRlZWU5/V3cfn7t6dOnVVBQILvd7rJ87ty5mjNnjvm6adOmio+PV926dS/mLQAAFyEhIVU9BAC45lTbwDx48GBFRkYqKytLK1euVFFRkc6ePWsuHz16tFN9VFSUQkJClJCQoFWrVpkX8zkcjhIv1isOvg6Hw+nvC9WWFJiHDx+u2NhY83VxOM/IyHAaMwBcrPT09KoeAgBcFTw8PMp8crPaBuYGDRqY0yh69eqlKVOmKD4+Xi+//HKpH0nGxsZq9uzZ2rJlixmYPT09SwytxVMoPD09nf4uS+357HZ7iUFakgzDKHUfAaC8OKYAwOV3RVz0J0mRkZHas2eP5dkVT09P1axZU6dPnzbbAgIClJ2d7fJD5vwpGOdP0Ti/1s/Pr9RQDAAAgKvXFROYi6dMWN0RIy8vT6dOnXJ6yEhoaKjOnDmjQ4cOOdWmpaWZyyUpKChI/v7+2rNnj0u/aWlpZh0AAACuLdUuMJ84ccKl7ezZs0pJSZGnp6caNmwoh8OhvLw8l7ovv/xShmGoQ4cOZluXLl3k7u6u77//3mwzDEOLFy9WUFCQWrZsabZ37dpVGzZs0LFjx8y2LVu2KD09XZGRkZW0hwAAALiSVLs5zNOmTVNeXp5at26toKAgZWdn68cff9ShQ4c0duxYeXl56ejRo5o4caKioqJUv359SdLmzZu1ceNGdejQwekR2rVr19bgwYO1YMECFRYWKiwsTGvXrtWOHTv06KOPmg8tkX6/eG/VqlWaPHmyBg0apPz8fC1YsECNGzdWnz59Lvt7AQAAgKpnM6rZFSQ//fSTli5dqgMHDuj06dPy8vJSs2bNdPPNN5tBOCcnRx999JF2796trKwsFRUVKTg4WNHR0RoyZIjLnS6Kioo0f/58JSUlKSsrSyEhIRo2bJh69Ojhsv2DBw9q5syZSk1NlYeHhzp27KixY8cqICCg3PuSkZHhdH/my+WOyR9e9m0CuDxmT5pQ1UMAgKuC3W4v810yql1gvpoQmAFUNgIzAFSO8gTmajeHGQAAAKhOCMwAAACABQIzAAAAYIHADAAAAFggMAMAAAAWCMwAAACABQIzAAAAYIHADAAAAFggMAMAAAAWCMwAAACABQIzAAAAYIHADAAAAFggMAMAAAAWCMwAAACABQIzAAAAYIHADAAAAFggMAMAAAAWCMwAAACABQIzAAAAYIHADAAAAFggMAMAAAAWCMwAAACABQIzAAAAYIHADAAAAFggMAMAAAAWCMwAAACABQIzAAAAYIHADAAAAFggMAMAAAAWCMwAAACABQIzAAAAYIHADAAAAFggMAMAAAAWCMwAAACABQIzAAAAYIHADAAAAFggMAMAAAAWCMwAAACABQIzAAAAYIHADAAAAFggMAMAAAAWCMwAAACABQIzAAAAYMGjqgdwvoMHD+qLL77QL7/8ouzsbNWoUUMNGzbUkCFD1LlzZ6faX3/9VTNmzFBqaqo8PDwUERGhcePGyd/f36muqKhIiYmJWrRokbKzsxUSEqJhw4YpOjraZftl7RMAAADXhmoXmDMyMpSXl6devXopMDBQDodDq1ev1quvvqp7771X/fr1kyQdP35ckyZNko+Pj0aNGqX8/HwlJibqwIEDeuWVV+Th8b9dS0hI0Lx58xQTE6OwsDCtW7dOb7/9tmw2m6Kiosy68vQJAACAa0O1S4ARERGKiIhwahs4cKAmTpyohQsXmoF57ty5OnPmjOLj41WnTh1JUnh4uKZMmaLk5GSzLjMzU4mJiRowYIAmTJggSYqJiVFcXJxmzZqlbt26yc3NrVx9AgAA4NpxRcxhdnNzU+3atZWTk2O2rV69WhEREWawlaT27dsrJCREK1euNNvWrl2rwsJCDRgwwGyz2Wzq37+/jh8/rl27dpW7TwAAAFw7qt0Z5mL5+flyOBzKzc3VunXrtGnTJnXv3l3S72eNT5w4obCwMJf1wsPDtXHjRvP13r17VaNGDTVo0MClrnh5q1atytXn+QoKClRQUGC+ttls8vb2Nv8NAJWFYwoAXH7VNjDPnDlTSUlJkn7/AdG1a1fdfffdkqSsrCxJUmBgoMt6gYGBOn36tAoKCmS325Wdna2AgACXHzLF6xb3VZ4+zzd37lzNmTPHfN20aVPFx8erbt265d5vALASEhJS1UMAgGtOtQ3MgwcPVmRkpLKysrRy5UoVFRXp7NmzkiSHwyFJJV6EVxxoHQ6H7Ha7HA7HBevK2+f5hg8frtjYWPN1cTjPyMgwxwwAlSE9Pb2qhwAAVwUPD48yn9ystoG5QYMG5jSKXr16acqUKYqPj9fLL78sT09PSSoxjBZPjSiu8fT0LHNdWfs8n91uLzFIS5JhGKXsIQCUH8cUALj8roiL/iQpMjJSe/bsUXp6ust0inNlZWXJz8/PDLABAQHKzs52+SFz/hSM8vQJAACAa8cVE5iLp0zk5uYqKChI/v7+2rNnj0tdWlqaQkNDzdehoaE6c+aMDh065FJXvFxSufoEAADAtaPaBeYTJ064tJ09e1YpKSny9PRUw4YNJUldu3bVhg0bdOzYMbNuy5YtSk9PV2RkpNnWpUsXubu76/vvvzfbDMPQ4sWLFRQUpJYtW5rtZe0TAAAA145qN4d52rRpysvLU+vWrRUUFKTs7Gz9+OOPOnTokMaOHSsvLy9Jv19ot2rVKk2ePFmDBg1Sfn6+FixYoMaNG6tPnz5mf7Vr19bgwYO1YMECFRYWKiwsTGvXrtWOHTv06KOPmg8tKU+fAAAAuHbYjGp2BclPP/2kpUuX6sCBAzp9+rS8vLzUrFkz3XzzzercubNT7cGDBzVz5kylpqbKw8NDHTt21NixYxUQEOBUV1RUpPnz5yspKUlZWVkKCQnRsGHD1KNHD5ftl7XPssjIyHC6P/PlcsfkDy/7NgFcHrMnTajqIQDAVcFut5f5LhnVLjBfTQjMACobgRkAKkd5AnO1m8MMAAAAVCcEZgAAAMACgRkAAACwQGAGAAAALBCYAQAAAAsEZgAAAMACgRkAAACwQGAGAAAALBCYAQAAAAsEZgAAAMACgRkAAACwQGAGAAAALBCYAQAAAAsEZgAAAMACgRkAAACwQGAGAAAALBCYAQAAAAsEZgAAAMACgRkAAACwQGAGAAAALBCYAQAAAAsEZgAAAMACgRkAAACwQGAGAAAALBCYAQAAAAsEZgAAAMACgRkAAACwQGAGAAAALBCYAQAAAAsEZgAAAMACgRkAAACwQGAGAAAALBCYAQAAAAsEZgAAAMACgRkAAACwQGAGAAAALBCYAQAAAAsEZgAAAMACgRkAAACwQGAGAAAALBCYAQAAAAsEZgAAAMCCR1UP4HxpaWlKSUnRtm3blJGRIT8/PzVv3lwjR45U/fr1zbqpU6cqJSXFZf369evrrbfecmorKipSYmKiFi1apOzsbIWEhGjYsGGKjo52Wf/XX3/VjBkzlJqaKg8PD0VERGjcuHHy9/ev9H0FAABA9VftAvP8+fO1c+dORUZGqkmTJsrOztZ3332niRMn6qWXXlLjxo3NWrvdrvvuu89pfR8fH5c+ExISNG/ePMXExCgsLEzr1q3T22+/LZvNpqioKLPu+PHjmjRpknx8fDRq1Cjl5+crMTFRBw4c0CuvvCIPj2r3dgEAAOASq3YJMDY2Vo899phTOO3evbuefPJJzZs3T48++qjZ7ubmpp49e1r2l5mZqcTERA0YMEATJkyQJMXExCguLk6zZs1St27d5Ob2+8yUuXPn6syZM4qPj1edOnUkSeHh4ZoyZYqSk5PVr1+/yt5dAAAAVHPVbg5zy5YtXc7khoSEqGHDhjp06JBLfVFRkXJzc0vtb+3atSosLNSAAQPMNpvNpv79++v48ePatWuX2b569WpFRESYYVmS2rdvr5CQEK1cufJidgsAAABXqGp3hrkkhmHoxIkTatSokVO7w+HQuHHjdObMGfn6+ioqKkpjxoyRl5eXWbN3717VqFFDDRo0cFo3PDzcXN6qVStlZmbqxIkTCgsLc9l+eHi4Nm7ceAn2DAAAANXdFRGYly9frszMTI0YMcJsCwwM1NChQ9W0aVMZhqFNmzZp0aJF2r9/v+Li4uTu7i5Jys7OVkBAgGw2m1OfgYGBkqSsrCynv4vbz689ffq0CgoKZLfbXZYXFBSooKDAfG2z2eTt7W3+GwAqC8cUALj8qn1gPnTokD788EO1aNFCvXv3NttHjx7tVBcVFaWQkBAlJCRo1apV5sV8DoejxIv1ioOvw+Fw+vtCtSUF5rlz52rOnDnm66ZNmyo+Pl5169Ytz64CwAWFhIRU9RAA4JpTrQNzdna2/vGPf8jHx0ePP/64eXFeaWJjYzV79mxt2bLFDMyenp46e/asS23xGWFPT0+nv8tSe77hw4crNjbWfF18BigjI6PE/gCgotLT06t6CABwVfDw8Cjzyc1qG5hzc3P18ssvKycnRy+88IKCgoIuuI6np6dq1qyp06dPm20BAQHatm2bDMNw+ijz/CkY50/ROFdWVpb8/PxKPLss/X4GurRlhmFccNwAUFYcUwDg8qt2d8mQfp/6EB8fr/T0dD399NNq2LBhmdbLy8vTqVOnnB4yEhoaqjNnzrjcYSMtLc1cLklBQUHy9/fXnj17XPpNS0sz6wAAAHBtqXaBuaioSG+99ZZ27dqlv/zlL2rRooVLjcPhUF5enkv7l19+KcMw1KFDB7OtS5cucnd31/fff2+2GYahxYsXKygoSC1btjTbu3btqg0bNujYsWNm25YtW5Senq7IyMhK2kMAAABcSardlIyZM2dq3bp16tSpk06fPq1ly5Y5Le/Zs6eys7M1ceJERUVFmY/L3rx5szZu3KgOHTqoc+fOZn3t2rU1ePBgLViwQIWFhQoLC9PatWu1Y8cOPfroo07zoocPH65Vq1Zp8uTJGjRokPLz87VgwQI1btxYffr0uTxvAAAAAKqVaheY9+3bJ0lav3691q9f77K8Z8+e8vX1VUREhH7++WelpKSoqKhIwcHBGjVqlIYMGeJyceDo0aPl6+urpKQkJScnKyQkRI888oiio6Od6urUqaO4uDjNnDlTn376qTw8PNSxY0eNHTu21DnKAAAAuLrZDK4guWQyMjKc7s98udwx+cPLvk0Al8fsSROqeggAcFWw2+1lvktGtZvDDAAAAFQnBGYAAADAAoEZAAAAsEBgBgAAACwQmAEAAAALBGYAAADAAoEZAAAAsEBgBgAAACwQmAEAAAALBGYAAADAAoEZAAAAsEBgBgAAACwQmAEAAAALBGYAAADAAoEZAAAAsEBgBgAAACwQmAEAAAALBGYAAADAAoEZAAAAsFDhwLx9+3YdO3bMsubYsWPavn17RTcBAAAAVLkKB+bJkycrOTnZsmbZsmWaPHlyRTcBAAAAVLlLOiWjqKhINpvtUm4CAAAAuKQuaWA+fPiwfHx8LuUmAAAAgEvKozzF7733ntPrtWvX6ujRoy51RUVFOn78uHbs2KEOHTpc1AABAACAqlSuwJySkuL0et++fdq3b1+p9eHh4Ro/fnxFxgUAAABUC+UKzO+++64kyTAMPfLIIxo0aJAGDRrkUufm5iZfX195eXlVzigBAACAKlKuwFy3bl3z3w888ICaNm3q1AYAAABcbcoVmM/Vu3fvShwGAAAAUD1VODAXS0tLU1pamnJzc1VUVFRizW233XaxmwEAAACqRIUD8+nTp/XPf/5TqampF6wlMAMAAOBKVeHAPGPGDKWmpqpNmzbq1auXateuLXd398ocGwAAAFDlKhyYN2zYoPDwcP3973/naX4AAAC4alX4SX8Oh0OtW7cmLAMAAOCqVuHAHBoaWuJT/gAAAICrSYUD82233ab169dr165dlTkeAAAAoFqp8Bzm7OxsdezYUXFxcYqOjlazZs3k7e1dYm2vXr0qPEAAAACgKlU4ML/33nvmv1NSUpSSklJqLYEZAAAAV6oKB+YHHnigMscBAAAAVEs8GhsAAACwUOGL/gAAAIBrQYXPMB87dqzMtXXq1KnoZgAAAIAqVeHA/NBDD5WpzmazKSEhoaKbAQAAAKpUhQNzz549S3zKX25urvbv36+jR4+qTZs2qlu37kUNEAAAAKhKl+QMs2EYSkxM1IIFC3T//feXq9+0tDSlpKRo27ZtysjIkJ+fn5o3b66RI0eqfv36TrW//vqrZsyYodTUVHl4eCgiIkLjxo2Tv7+/U11RUZESExO1aNEiZWdnKyQkRMOGDVN0dLTL9svaJwAAAK4Nl+SiP5vNpqFDh6pRo0b6+OOPy7Xu/PnztXr1arVt21bjx49Xv379tGPHDk2cOFEHDhww644fP65Jkybp8OHDGjVqlIYMGaINGzboxRdf1NmzZ536TEhI0CeffKL27dvrrrvuUp06dfT222/rp59+cqorT58AAAC4NlT4DHNZNGvWTEuXLi3XOrGxsXrsscfk4fG/oXXv3l1PPvmk5s2bp0cffVSSNHfuXJ05c0bx8fHmRYXh4eGaMmWKkpOT1a9fP0lSZmamEhMTNWDAAE2YMEGSFBMTo7i4OM2aNUvdunWTm5tbufoEAADAteOS3lbuyJEjKiwsLNc6LVu2dArLkhQSEqKGDRvq0KFDZtvq1asVERHhdAeO9u3bKyQkRCtXrjTb1q5dq8LCQg0YMMBss9ls6t+/v44fP65du3aVu08AAABcOyo9MBcVFenYsWOaM2eO1q5dqxYtWlx0n4Zh6MSJE+Y84szMTJ04cUJhYWEuteHh4dq7d6/5eu/evapRo4YaNGjgUle8vLx9AgAA4NpR4SkZd9xxxwVrfH19NXbs2IpuwrR8+XJlZmZqxIgRkqSsrCxJUmBgoEttYGCgTp8+rYKCAtntdmVnZysgIMDljh7F6xb3VZ4+z1dQUKCCggLztc1mk7e3t/lvAKgsHFMA4PKrcGBu3bp1iQdum80mX19fhYWFqU+fPqpVq9ZFDfDQoUP68MMP1aJFC/Nx3A6HQ5Jcpm5IMgOtw+GQ3W6Xw+G4YF15+zzf3LlzNWfOHPN106ZNFR8fzy31AFS6kJCQqh4CAFxzKhyY4+LiKnEYJcvOztY//vEP+fj46PHHHzcvzvP09JSkEu9cUXymt7jG09OzzHVl7fN8w4cPV2xsrPm6+BeJjIwM7q4BoFKlp6dX9RAA4Krg4eFR5pObl/QuGRcjNzdXL7/8snJycvTCCy8oKCjIXHb+dIpzZWVlyc/PzzwTHBAQoG3btskwDKcz4udPwShPn+ez2+2lLjMM44L7CgBlxTEFAC6/SgnMqamp2rdvn/Ly8uTt7a3Q0FC1atWqwv05HA7Fx8crPT1dzz//vBo2bOi0PCgoSP7+/tqzZ4/LumlpaQoNDTVfh4aGaunSpTp06JBTP2lpaeby8vYJAACAa8dFBeadO3fqvffe0+HDh12WhYSE6MEHHyz3XTKKior01ltvadeuXXrqqadKXb9r165KSUnRsWPHzNvAbdmyRenp6Ro8eLBZ16VLF82YMUPff/+9eR9mwzC0ePFiBQUFqWXLluXuEwAAANeOCgfmgwcPasqUKXI4HGrfvr2uv/56BQQEKDs7W9u2bdPPP/+sl156SS+99JLLGWIrM2fO1Lp169SpUyedPn1ay5Ytc1res2dPSb/PG161apUmT56sQYMGKT8/XwsWLFDjxo3Vp08fs7527doaPHiwFixYoMLCQoWFhWnt2rXasWOHHn30UXNedHn6BAAAwLXDZlRwQtybb76pNWvWaOLEierQoYPL8k2bNik+Pl5du3bVn//85zL3GxcXp+3bt5e6/PPPPzf/ffDgQc2cOVOpqany8PBQx44dNXbsWAUEBDitU1RUpPnz5yspKUlZWVkKCQnRsGHD1KNHD5f+y9pnWWRkZDjdbu5yuWPyh5d9mwAuj9mTJlT1EADgqmC328t80V+FA/Of/vQntW3bVo899lipNf/617+0detWvf/++xXZxBWPwAygshGYAaBylCcwV/hJf7m5uapXr55lTb169ZSbm1vRTQAAAABVrsKBOTAwULt377asSUtLK/HJeQAAAMCVosKBuXPnztq2bZsSEhLMp+QVczgc+vzzz7V161Z17tz5ogcJAAAAVJUK3yXj1ltv1fr16zV37lwlJSUpPDxctWrV0okTJ7Rnzx6dPHlS9erV02233VaZ4wUAAAAuqwoH5po1a+qll17SrFmztGLFCm3cuNFcZrfb1bt3b/3xj3+Un59fpQwUAAAAqAoX9eASf39/Pfjgg7r33nv122+/KTc3Vz4+Pqpfv748PKrtU7cBAACAMit3qv3qq6+Un5+vESNGmKHYw8NDjRs3NmvOnj2rzz77TN7e3ho2bFilDRYAAAC43Mp10d/PP/+s2bNnq2bNmpZnkD08PFSzZk199tln2rp160UPEgAAAKgq5QrMy5Ytk5+fnwYOHHjB2gEDBsjPz0/JyckVHRsAAABQ5coVmHfu3Kl27drJbrdfsNZut6tdu3bauXNnhQcHAAAAVLVyBeasrKwLPt3vXPXq1VNWVla5BwUAAABUF+UKzDabTYWFhWWuLywslM1mK/egAAAAgOqiXIE5KChIBw8eLHP9wYMHFRQUVO5BAQAAANVFuQJzq1attHXrVh09evSCtUePHtXWrVvVunXrCg8OAAAAqGrlCswDBgxQYWGh3njjDZ08ebLUulOnTunNN99UYWGhbrrpposeJAAAAFBVyvXgkmbNmmnQoEH65ptv9Pjjj6t///66/vrrVbt2bUlSZmamtmzZoiVLlujkyZMaPHiwmjVrdkkGDgAAAFwO5X7S39ixY2W325WYmKivvvpKX331lUuNm5ubhg0bppEjR1bKIAEAAICqUu7AbLPZNHr0aPXt21fJycnauXOnsrOzJUkBAQFq2bKlevfureDg4MoeKwAAAHDZlTswFwsODuYMMgAAAK565broDwAAALjWEJgBAAAACwRmAAAAwAKBGQAAALBAYAYAAAAsEJgBAAAACwRmAAAAwAKBGQAAALBAYAYAAAAsEJgBAAAACwRmAAAAwAKBGQAAALBAYAYAAAAsEJgBAAAACwRmAAAAwAKBGQAAALBAYAYAAAAsEJgBAAAACwRmAAAAwAKBGQAAALBAYAYAAAAsEJgBAAAACwRmAAAAwAKBGQAAALDgUdUDOF9+fr4WLFig3bt3Ky0tTTk5OXrwwQfVu3dvp7qpU6cqJSXFZf369evrrbfecmorKipSYmKiFi1apOzsbIWEhGjYsGGKjo52Wf/XX3/VjBkzlJqaKg8PD0VERGjcuHHy9/evzN0EAADAFaLaBeaTJ09qzpw5qlOnjkJDQ7Vt27ZSa+12u+677z6nNh8fH5e6hIQEzZs3TzExMQoLC9O6dev09ttvy2azKSoqyqw7fvy4Jk2aJB8fH40aNUr5+flKTEzUgQMH9Morr8jDo9q9XQAAALjEql0CDAwM1LRp0xQQEKA9e/bomWeeKbXWzc1NPXv2tOwvMzNTiYmJGjBggCZMmCBJiomJUVxcnGbNmqVu3brJze33mSlz587VmTNnFB8frzp16kiSwsPDNWXKFCUnJ6tfv36VtJcAAAC4UlS7Ocx2u10BAQFlri8qKlJubm6py9euXavCwkINGDDAbLPZbOrfv7+OHz+uXbt2me2rV69WRESEGZYlqX379goJCdHKlSvLtyMAAAC4KlS7M8zl4XA4NG7cOJ05c0a+vr6KiorSmDFj5OXlZdbs3btXNWrUUIMGDZzWDQ8PN5e3atVKmZmZOnHihMLCwly2Ex4ero0bN5Y6joKCAhUUFJivbTabvL29zX8DQGXhmAIAl98VG5gDAwM1dOhQNW3aVIZhaNOmTVq0aJH279+vuLg4ubu7S5Kys7MVEBDg8kMmMDBQkpSVleX0d3H7+bWnT59WQUGB7Ha7y/K5c+dqzpw55uumTZsqPj5edevWrZydBYD/LyQkpKqHAADXnCs2MI8ePdrpdVRUlEJCQpSQkKBVq1aZF/M5HI4SL9YrDr4Oh8Pp7wvVlhSYhw8frtjYWPN1cTjPyMjQ2bNny71vAFCa9PT0qh4CAFwVPDw8ynxy84oNzCWJjY3V7NmztWXLFjMwe3p6lhhai6dQeHp6Ov1dltrz2e32EoO0JBmGUc69AIDScUwBgMuv2l30dzE8PT1Vs2ZNnT592mwLCAhQdna2yw+Z86dgnD9F4/xaPz+/UkMxAAAArl5XVWDOy8vTqVOnnB4yEhoaqjNnzujQoUNOtWlpaeZySQoKCpK/v7/27Nnj0m9aWppZBwAAgGvLFRmYHQ6H8vLyXNq//PJLGYahDh06mG1dunSRu7u7vv/+e7PNMAwtXrxYQUFBatmypdnetWtXbdiwQceOHTPbtmzZovT0dEVGRl6anQEAAEC1Vi3nMH/33XfKyckxp0esW7dOx48flyTdfPPNOn36tCZOnKioqCjVr19fkrR582Zt3LhRHTp0UOfOnc2+ateurcGDB2vBggUqLCxUWFiY1q5dqx07dujRRx81H1oi/X7x3qpVqzR58mQNGjTIfEx348aN1adPn8v4DgAAAKC6sBnV8AqShx56SBkZGSUue/fdd+Xr66uPPvpIu3fvVlZWloqKihQcHKzo6GgNGTLE5U4XRUVFmj9/vpKSkpSVlaWQkBANGzZMPXr0cOn/4MGDmjlzplJTU+Xh4aGOHTtq7Nix5XqYSrGMjAyn+zNfLndM/vCybxPA5TF70oSqHgIAXBXsdnuZ75JRLQPz1YLADKCyEZgBoHKUJzBfkXOYAQAAgMuFwAwAAABYIDADAAAAFgjMAAAAgAUCMwAAAGCBwAwAAABYIDADAAAAFgjMAAAAgAUCMwAAAGDB48IlAABUrfHL3qnqIQC4RP7b85GqHsIFcYYZAAAAsEBgBgAAACwQmAEAAAALBGYAAADAAoEZAAAAsEBgBgAAACwQmAEAAAALBGYAAADAAoEZAAAAsEBgBgAAACwQmAEAAAALBGYAAADAAoEZAAAAsEBgBgAAACwQmAEAAAALBGYAAADAAoEZAAAAsEBgBgAAACwQmAEAAAALBGYAAADAAoEZAAAAsEBgBgAAACwQmAEAAAALBGYAAADAAoEZAAAAsEBgBgAAACwQmAEAAAALBGYAAADAAoEZAAAAsEBgBgAAACwQmAEAAAALBGYAAADAAoEZAAAAsOBR1QM4X35+vhYsWKDdu3crLS1NOTk5evDBB9W7d2+X2l9//VUzZsxQamqqPDw8FBERoXHjxsnf39+prqioSImJiVq0aJGys7MVEhKiYcOGKTo6usJ9AgAA4NpQ7QLzyZMnNWfOHNWpU0ehoaHatm1biXXHjx/XpEmT5OPjo1GjRik/P1+JiYk6cOCAXnnlFXl4/G/XEhISNG/ePMXExCgsLEzr1q3T22+/LZvNpqioqAr1CQAAgGtDtUuAgYGBmjZtmgICArRnzx4988wzJdbNnTtXZ86cUXx8vOrUqSNJCg8P15QpU5ScnKx+/fpJkjIzM5WYmKgBAwZowoQJkqSYmBjFxcVp1qxZ6tatm9zc3MrVJwAAAK4d1W4Os91uV0BAwAXrVq9erYiICDPYSlL79u0VEhKilStXmm1r165VYWGhBgwYYLbZbDb1799fx48f165du8rdJwAAAK4d1e4Mc1lkZmbqxIkTCgsLc1kWHh6ujRs3mq/37t2rGjVqqEGDBi51xctbtWpVrj7PV1BQoIKCAvO1zWaTt7e3+W8AqCwcUwBcba6E49oVGZizsrIk/T5943yBgYE6ffq0CgoKZLfblZ2drYCAAJcvRvG6xX2Vp8/zzZ07V3PmzDFfN23aVPHx8apbt24F9xAAShYSElLVQwCASnUlHNeuyMDscDgkqcSL8IoDrcPhkN1ul8PhuGBdefs83/DhwxUbG2u+Lg7nGRkZOnv2bNl3DAAuID09vaqHAACVqqqOax4eHmU+uXlFBmZPT09JKjGMFk+NKK7x9PQsc11Z+zyf3W4vMUhLkmEYpe8IAJQTxxQAV5sr4bhW7S76K4vzp1OcKysrS35+fmaADQgIUHZ2tssX4/wpGOXpEwAAANeOKzIwBwUFyd/fX3v27HFZlpaWptDQUPN1aGiozpw5o0OHDrnUFS8vb58AAAC4dlyRgVmSunbtqg0bNujYsWNm25YtW5Senq7IyEizrUuXLnJ3d9f3339vthmGocWLFysoKEgtW7Ysd58AAAC4dlTLOczfffedcnJyzOkR69at0/HjxyVJN998s3x8fDR8+HCtWrVKkydP1qBBg8xHajdu3Fh9+vQx+6pdu7YGDx6sBQsWqLCwUGFhYVq7dq127NihRx991HxoiaQy9wkAAIBrR7UMzImJicrIyDBfr1mzRmvWrJEk9ejRQz4+PqpTp47i4uI0c+ZMffrpp/Lw8FDHjh01duxYl7nGo0ePlq+vr5KSkpScnKyQkBA98sgjio6OdqorT58AAAC4NtiMK+HSxCtURkaG0wNNLpc7Jn942bcJ4PKYPWlCVQ+hSoxf9k5VDwHAJfLfno9UyXbtdnuZbyt3xc5hBgAAAC4HAjMAAABggcAMAAAAWCAwAwAAABYIzAAAAIAFAjMAAABggcAMAAAAWCAwAwAAABYIzAAAAIAFAjMAAABggcAMAAAAWCAwAwAAABYIzAAAAIAFAjMAAABggcAMAAAAWCAwAwAAABYIzAAAAIAFAjMAAABggcAMAAAAWCAwAwAAABYIzAAAAIAFAjMAAABggcAMAAAAWCAwAwAAABYIzAAAAIAFAjMAAABggcAMAAAAWCAwAwAAABYIzAAAAIAFAjMAAABggcAMAAAAWCAwAwAAABYIzAAAAIAFAjMAAABggcAMAAAAWCAwAwAAABYIzAAAAIAFAjMAAABggcAMAAAAWCAwAwAAABYIzAAAAIAFAjMAAABggcAMAAAAWPCo6gFU1LZt2zR58uQSl02ZMkUtWrQwX+/cuVOzZs3S3r175e3trW7dumn06NHy8vJyWq+goECzZ8/W8uXLdfr0aTVp0kQjR45U+/btL+m+AAAAoPq6YgNzsZtvvllhYWFObcHBwea/9+3bpxdeeEENGzbU2LFjlZmZqcTERB0+fFjPPvus03pTp07V6tWrNWjQIIWEhCg5OVmvvPKKJk2apFatWl2W/QEAAED1csUH5tatWysyMrLU5Z999pn8/Pw0adIk+fj4SJLq1q2r//znP9q8ebNuuOEGSVJaWppWrFihMWPGaOjQoZKknj176oknntCsWbM0ZcqUS78zAAAAqHauijnMeXl5KiwsdGnPzc3Vzz//rB49ephhWZJ69eolLy8vrVy50mxbtWqV3Nzc1K9fP7PN09NTffv21a5du3Ts2LFLuxMAAAColq74M8zvvfee8vPz5ebmptatW2vMmDHmFI0DBw6osLBQzZo1c1rHw8NDoaGh2rt3r9m2d+9ehYSEOAVrSQoPD5f0+9SOOnXqlDiGgoICFRQUmK9tNpu8vb3NfwNAZeGYAuBqcyUc167YwOzh4aGuXbuqY8eO8vf316+//qrExET9/e9/15QpU9S0aVNlZ2dLkgIDA13WDwgIUGpqqvk6Ozu7xLritqysrFLHMnfuXM2ZM8d83bRpU8XHx6tu3boV3T0AKFFISEhVDwEAKtWVcFy7YgNzy5Yt1bJlS/N1586dFRkZqSeffFKffvqp/va3v8nhcEiS7Ha7y/qenp7mcklyOBwl1hW3nVt7vuHDhys2NtZ8XfybUkZGhs6ePVvOPQOA0qWnp1f1EACgUlXVcc3Dw6PMJzev2MBckuDgYHXu3Flr1qxRUVGRPD09JclpukQxh8NhLpd+D9Al1RW3nVt7PrvdXmLYliTDMMq1DwBghWMKgKvNlXBcuyou+jtXnTp1dPbsWeXn5ysgIEBSydMpzp+CERAQUGJdcVtJ0zUAAABw9bvqAvORI0dkt9vl5eWlxo0by93dXb/88otTzdmzZ7Vv3z6FhoaabaGhoUpPT1dubq5T7e7du83lAAAAuPZcsYH55MmTLm379u3TunXrdMMNN8jNzU0+Pj5q166dli9frry8PLNu2bJlys/PV7du3cy2yMhIFRUVKSkpyWwrKChQcnKymjdvXuodMgAAAHB1u2LnML/55pvy9PRUy5YtzbtkLFmyRDVq1NDo0aPNupEjR+r5559XXFycYmJizCf93XDDDerQoYNZ17x5c0VGRuqzzz7TyZMnFRwcrJSUFGVkZOj++++vgj0EAABAdXDFBuYuXbroxx9/1MKFC5WXlyd/f3/deOONuv32250ejd2sWTM9//zz+uSTTzRjxgx5e3urb9++TqG62MMPP6zZs2dr2bJlysnJUePGjTVx4kS1adPmcu4aAAAAqhGbcSVcmniFysjIKPHOG5faHZM/vOzbBHB5zJ40oaqHUCXGL3unqocA4BL5b89HqmS7dru9zLeVu2LnMAMAAACXA4EZAAAAsEBgBgAAACwQmAEAAAALBGYAAADAAoEZAAAAsEBgBgAAACwQmAEAAAALBGYAAADAAoEZAAAAsEBgBgAAACwQmAEAAAALBGYAAADAAoEZAAAAsEBgBgAAACwQmAEAAAALBGYAAADAAoEZAAAAsEBgBgAAACwQmAEAAAALBGYAAADAAoEZAAAAsEBgBgAAACwQmAEAAAALBGYAAADAAoEZAAAAsEBgBgAAACwQmAEAAAALBGYAAADAAoEZAAAAsEBgBgAAACwQmAEAAAALBGYAAADAAoEZAAAAsEBgBgAAACwQmAEAAAALBGYAAADAAoEZAAAAsEBgBgAAACwQmAEAAAALBGYAAADAAoEZAAAAsOBR1QOobgoKCjR79mwtX75cp0+fVpMmTTRy5Ei1b9++qocGAACAKsAZ5vNMnTpVX3/9taKjo3XXXXfJzc1Nr7zyilJTU6t6aAAAAKgCBOZzpKWlacWKFRo1apTuvPNO9evXT3//+99Vp04dzZo1q6qHBwAAgCpAYD7HqlWr5Obmpn79+pltnp6e6tu3r3bt2qVjx45V4egAAABQFQjM59i7d69CQkLk4+Pj1B4eHi5J2rdvXxWMCgAAAFWJi/7OkZ2drcDAQJf24rasrKwS1ysoKFBBQYH52mazydvbWx4eVfP2tmgUXCXbBXDp2e32qh5ClQgPrF/VQwBwiVTVca08OY3AfA6Hw1HiF624zeFwlLje3LlzNWfOHPN1VFSUHnvssRLD9+Xw4XN/qpLtAsCl8t6AR6p6CACuYQTmc3h6ejqdKS5W3Obp6VniesOHD1dsbKzLOtfqmSBcPnl5eYqLi1NcXJy8vb2rejgAcNE4rqE6IjCfIyAgQJmZmS7txVMxSjtjbLfbCceoEoZhaO/evTIMo6qHAgCVguMaqiMu+jtHaGio0tPTlZub69S+e/duczkAAACuLQTmc0RGRqqoqEhJSUlmW0FBgZKTk9W8eXPVqVOnCkcHAACAqsCUjHM0b95ckZGR+uyzz3Ty5EkFBwcrJSVFGRkZuv/++6t6eIALu92u2267jSlBAK4aHNdQHdkMJgk5cTgcmj17tpYvX66cnBw1btxYd9xxhzp06FDVQwMAAEAVIDADAAAAFpjDDAAAAFggMAMAAAAWCMwALlpycrJGjBiho0ePVvVQAKBcih+SAljhLhnAeZKTk/Xee++Zr+12u+rUqaP27dvr1ltvVUBAQNUNDgCqQPFx0W6365133lFQUJDT8ri4OJ06dUqvv/56FY0QuLQIzEApRowYoXr16qmgoECpqalatGiRNm7cqNdff101atSo6uFVKz179lT37t25DRRwlSsoKNC8efN09913V/VQgMuKKRlAKTp27KiePXsqJiZGDz30kAYPHqyjR49q7dq1VT20asfNzU2enp6y2WxVPRQAl1BoaKiWLFmizMzMS9K/YRhyOByXpG/gYnCGGSijtm3bauHChTp69KimTp2qVatW6V//+pc++OADbdmyRZ6enurVq5fGjBkjN7f//S5aVFSkb7/9VkuWLNGRI0fk4+OjLl26aPTo0fLz8zPrRowYodtuu00jRoxw2u5DDz2kNm3a6KGHHpL0v49GX3jhBa1YsUI//fSTCgsL1b17d9199906c+aMpk+frvXr10uSYmJi9Mc//tEpzObn5+vzzz/XypUrdeLECdWtW1cxMTEaMmSIU92IESM0YMAAtWvXTrNnz1Z6erqCg4M1duxYp3uTF4/p3XffVb169SRJa9euVVJSkvbt26dTp06pdu3a6tWrl2655Ran9wfAlWP48OF6++23L3iWubCwUHPnzlVKSoqOHz+uwMBARUVF6fbbb3f6JOqhhx5So0aNNHDgQCUkJOjgwYMaPXq0QkNDNXnyZP35z3/WoUOHlJSUpLy8PN1www164IEHZLfb9cknn+jHH3/UmTNn1K1bN/3pT39y6vuHH37QsmXLdPDgQeXm5uq6667TzTffrJtuuumSvke4OhGYgTI6fPiwJKlmzZpKT09XUVGRXnrpJYWHh+vOO+/Uli1btHDhQgUHBzsdkKdNm6aUlBT17t1bN998s44eParvvvtOe/fu1YsvvigPj4p9G3700UcKCAjQiBEjtHv3biUlJcnHx0e7du1SnTp1NGrUKG3YsEELFixQo0aN1KtXL0m/n8F59dVXtW3bNvXp00ehoaHavHmzZs2apczMTI0fP95pO6mpqVqzZo1uuukmeXt769tvv9Xrr7+u9957TzVr1ix1fMnJyfLy8tLgwYPl5eWlrVu36vPPP1deXp7uvPPOCu0zgKpVr1499ezZU0uWLNGwYcNc5jIX+7//+z+lpKQoMjJSsbGx2r17t+bNm6dDhw7pqaeecqr97bff9K9//Uv9+/dXTEyM6tevby6bN2+ePD09NWzYMB0+fFjfffed3N3d5ebmppycHN1+++3avXu3kpOTVa9ePd12223muosWLVKjRo3UuXNnubu7a/369frggw9UVFSkgQMHXpo3CFctAjNQitzcXJ08eVIFBQXauXOnvvzyS3l6eqpTp07atWuXCgoK1K1bN/MAfdNNN2nixIlaunSpGZhTU1O1dOlSPfroo4qOjjb7vv766/Xyyy9r1apVTu3lUatWLT3zzDOy2WwaMGCADh8+rMTERPXr109/+tOfJEn9+vXTQw89pB9++MEMzOvWrdPWrVs1cuRI3XLLLZKkgQMH6o033tC3336rgQMHKjg42NzOoUOH9MYbb5ht119/vZ566in99NNPlj90HnvsMXl6epqvb7rpJk2bNk2LFi3SyJEjme8MXKFuueUWLVu2TPPnz9ddd93lsnzfvn1KSUlR3759df/990uSBgwYoFq1aikxMVFbt25V27ZtzfrDhw/r2WefdfrUatu2bZJ+P1MdFxdnnlg4efKkVqxYoQ4dOuiZZ54x+z58+LB++OEHp8A8efJkp2PQwIED9dJLL+nrr78mMKPc+FwUKMWLL76oe+65Rw888IDeeusteXl56cknn3Q6o3L+R3utWrXSkSNHzNcrV66Uj4+P2rdvr5MnT5p/mjVrZp51rai+ffs6TZ8IDw+XYRjq27ev2ebm5qZmzZo5jWnjxo1yc3PTzTff7NRfbGysDMPQpk2bnNrbtWvnFKCbNGkib29vpz5Lcu4Pqry8PJ08eVKtW7fWmTNndOjQoXLtK4Dq47rrrlOPHj2UlJSkrKwsl+UbN26U9Psx5VxDhgyRJG3YsMGpvV69ek5h+Vy9evVy+hSuefPmMgxDffr0caoLDw/XsWPHVFhYaLadewwqPgHSpk0bHTlyRLm5uWXYU+B/OMMMlGLChAkKCQmRu7u7atWqpfr16zvNvbXb7fL393dax9fXVzk5Oebrw4cPKzc3V/fcc0+J2zh58mSFx1enTh2n1z4+PpKk2rVru7SfO6aMjAwFBgbK29vbqa5hw4bmcqvtSJKfn59TnyU5ePCgEhIStHXrVuXl5Tkt44cVcGW79dZbtXz5cs2bN8/lLHNGRoZsNpvTL9qSFBAQIF9fXx07dsypvfi6h5KU5zhnGIZyc3PNqWKpqan64osvtGvXLp05c8apPjc31+wLKAsCM1CK8PBwhYWFlbq8LBeuFRUVqVatWnrkkUdKXH5+4C6tj/Jsv6R2wzAuuJ3SlLYdqz5zcnIUFxcnb29v3XHHHbruuutkt9u1d+9effLJJxc1HgBV79yzzMOGDSuxpqx3zTn3TPD5ynOck/53XDp8+LBefPFF1a9fX2PHjlXt2rXl4eGhjRs36uuvvy71uAqUhsAMXELXXXedtmzZolatWln+UJB+Pzt9/pnXs2fPlviR58WoW7eutmzZory8PKezzMXTJOrWrXvR29i2bZtOnTqlJ554Qm3atDHbeRIgcPW45ZZbtHz5cs2fP9+pvW7dujIMQ+np6eYnV5KUnZ2tnJycEj+1qmzr169XQUGBJk6c6LS94rnRQHkxhxm4hLp3766ioiLNmTPHZVlhYaHTtIbg4GDt2LHDqSYpKanSz4R07NhRRUVF+u6775zav/76a9lstlLnEpZHSWd/zp49q0WLFl103wCqh+DgYPXo0UOLFy9Wdna22d6xY0dJ0jfffONUv3DhQklSRETEJR9b8THo3E+zcnNzlZycfMm3jasTZ5iBS6hNmzbq16+f5s2bp/3796t9+/Zyd3fX4cOHtXLlSt11112KjIyU9PtFfO+//75ee+01tW/fXvv379fmzZstb91WEZ06ddL111+vhIQEZWRkqEmTJtq8ebPWrVunQYMGucw7rIiWLVvK19dXU6dONS8uXL58OVMxgKtM8R0zfvvtNzVq1EjS7w836dWrl5KSkpSTk6M2bdooLS1NKSkp6tKli9MdMi6VG264QR4eHoqPj1e/fv2Un5+vJUuWyN/fv9I/tcO1gTPMwCV277336t5779WJEyf02Wef6bPPPtPWrVvVo0cPtWzZ0qyLiYnRH/7wB+3YsUMff/yxjh49queee05eXl6VOh43NzdNnDhRgwYN0vr16/Xf//5Xhw4d0pgxYzRu3LhK2UbNmjX19NNPKyAgQAkJCUpMTFS7du00ZsyYSukfQPVQfJb5fPfff79GjBihPXv26L///a+2bt2qYcOG6c9//vNlGVf9+vX1+OOPy2az6eOPP9bixYvVr18/DRo06LJsH1cfm8EpHwAAAKBUnGEGAAAALBCYAQAAAAsEZgAAAMACgRkAAACwQGAGAAAALBCYAQAAAAsEZgAAAMACgRkAAACwQGAGAAAALBCYAeAa9vnnn2vEiBHatm1bVQ8FAKotj6oeAACg8v3yyy/6/vvvtWPHDmVlZamoqEhBQUFq0aKFevXqpfbt21f1EAHgikFgBoCrSFFRkT7++GN9/fXXcnd3V9u2bdW5c2e5u7vryJEj2rBhg5YvX64RI0botttuq+rhAsAVgcAMAFeRhIQEff311woNDdXjjz+u4OBgp+UOh0PfffedTp06VUUjBIArD4EZAK4Shw8f1oIFC1SzZk09++yzCggIcKnx9PTU0KFDVVBQYNnX0qVLtW7dOu3fv1/Z2dny9PRUeHi4/vCHP6ht27Yu9atWrdK3336rQ4cOKS8vT35+fmrYsKH69++vyMhIs27r1q1asGCB9u/fr1OnTsnX11chISHq2bOn+vXrd9HvAQBcCgRmALhKJCcnq6ioSP369SsxLJ/LbrdbLv/www8VGhqqdu3ayd/fX5mZmVq7dq1efPFFPfnkk+rSpYtZu2jRIn3wwQcKDAzUjTfeKD8/P2VnZ2vPnj1as2aNGZg3bNig+Ph4+fj4qEuXLgoICNDJkye1f/9+LVu2jMAMoNoiMAPAVWLnzp2SVOIZ4PJ68803Va9ePae2rKwsPf3005o1a5ZTYF6yZIk8PDz06quvqlatWk7rnDv1Y+nSpTIMQ5MmTVJoaGipdQBQ3XBbOQC4SmRnZ0uSateufdF9nR+WJSkwMFBdu3ZVenq6MjIynJa5u7vL3d3dZZ2aNWu6tHl6epapDgCqC84wAwBcHDlyRHPnztW2bduUmZnpMuc5KytLdevWlSRFRUVp1qxZeuKJJxQdHa3rr79erVq1ko+Pj9M6UVFRWrNmjf72t78pOjpa7dq1U6tWreTv73/Z9gsAKoLADABXiYCAAB06dEiZmZmqX79+hfs5fPiwnnnmGeXl5en6669Xp06d5O3tLZvNpu3bt2v79u1OAXrIkCHy8/PT4sWLtXDhQiUmJsrd3V0dO3bU+PHjzbPV3bp1k4eHhxYuXKjFixfr+++/l81m0/XXX6+xY8e6TNMAgOqCwAwAV4mWLVtq27Zt2rJly0XNY164cKFycnL08MMPq2fPnk7Lpk2bpu3btzu12Ww29e3bV3379tWpU6e0Y8cO/fTTT1q5cqUOHz6s1157TW5uv88A7NKli7p06aK8vDzt3LlTq1ev1tKlS/XSSy/prbfekq+vb4XHDQCXCnOYAeAq0bt3b7m5uSkpKUknT560rLW6rdyRI0ckyenCPkkyDMO8sLA0NWvW1I033qi//OUvatu2rX799VcdPnzYpc7b21sdOnTQfffdp969e+vEiRPavXu3Zd8AUFUIzABwlQgODtbQoUN16tQpvfzyyzp69KhLjcPh0MKFC/XFF1+U2k/x3OTU1FSn9nnz5ungwYMu9du2bZNhGE5tZ8+e1enTpyX97xZ227dvV1FRkcv6J06ckFTyxYAAUB0wJQMAriIjR45UQUGBvv76az322GNq27atGjVqJA8PDx09elRbtmzRqVOnNHLkyFL76N+/v3744Qe9/vrr6tatm2rWrKndu3frl19+UUREhDZs2OBU/89//lPe3t5q3ry56tatq8LCQv3888/69ddfFRkZaQbw6dOnKysrS61atVLdunVls9mUmpqqtLQ0NW/eXK1atbqk7w0AVBSBGQCuIm5ubho3bpyio6O1aNEi7dixQzt27JBhGAoICNANN9yg3r17q3379qX20bRpUz333HNKSEjQmjVr5ObmphYtWujFF1/UunXrXALz6NGjtWnTJu3Zs0fr16+Xl5eXrrvuOt1zzz3q27evWTd8+HCtXr1av/zyizZv3ix3d3fVrVtXf/zjHzVgwABznjMAVDc24/zP0QAAAACY+HUeAAAAsEBgBgAAACwQmAEAAAALBGYAAADAAoEZAAAAsEBgBgAAACwQmAEAAAALBGYAAADAAoEZAAAAsEBgBgAAACwQmAEAAAALBGYAAADAwv8DoCLJ21UrRscAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Transform numeric labels into human-readable class labels\n", + "listx = [\"Pneumonia\" if i[1] == 0 else \"Normal\" for i in train]\n", + "\n", + "# Plot the class distribution\n", + "plt.figure(figsize=(8, 6))\n", + "sns.countplot(x=listx, palette=\"viridis\")\n", + "plt.title(\"Class Distribution in Training Data\", fontsize=16)\n", + "plt.xlabel(\"Class\", fontsize=14)\n", + "plt.ylabel(\"Count\", fontsize=14)\n", + "plt.xticks(fontsize=12)\n", + "plt.yticks(fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "source": [ + "# Counting Images in Pneumonia Dataset Folders" + ], + "metadata": { + "id": "CeNsMrhEv16X" + } + }, + { + "cell_type": "markdown", + "source": [ + "1. **Purpose**: \n", + " - Counts the number of image files in the \"PNEUMONIA\" and \"NORMAL\" folders within the dataset directory.\n", + "\n", + "2. **Functionality**: \n", + " - Uses `os.walk` to traverse the directory structure. \n", + " - Filters files by extensions (`.png`, `.jpg`, `.jpeg`). \n", + " - Focuses only on folders containing \"PNEUMONIA\" or \"NORMAL\" in their path.\n", + "\n", + "3. **Output**: \n", + " - Returns a dictionary of folder paths and their image counts. \n", + " - Displays the count of images for each folder in a readable format. \n", + "\n", + "4. **Use Case**: \n", + " - Provides an overview of the dataset’s distribution to ensure data balance before training a model." + ], + "metadata": { + "id": "3XiTYf7Evx0B" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "HQg6R6vsVvbH", + "outputId": "7ccf56c6-18b2-4273-99c0-7adca44edae4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/content/dataset/chest_xray/val/NORMAL: 8 images\n", + "/content/dataset/chest_xray/val/PNEUMONIA: 8 images\n", + "/content/dataset/chest_xray/chest_xray/val/NORMAL: 8 images\n", + "/content/dataset/chest_xray/chest_xray/val/PNEUMONIA: 8 images\n", + "/content/dataset/chest_xray/chest_xray/train/NORMAL: 1341 images\n", + "/content/dataset/chest_xray/chest_xray/train/PNEUMONIA: 3875 images\n", + "/content/dataset/chest_xray/chest_xray/test/NORMAL: 234 images\n", + "/content/dataset/chest_xray/chest_xray/test/PNEUMONIA: 390 images\n", + "/content/dataset/chest_xray/__MACOSX/chest_xray/val/NORMAL: 8 images\n", + "/content/dataset/chest_xray/__MACOSX/chest_xray/val/PNEUMONIA: 8 images\n", + "/content/dataset/chest_xray/__MACOSX/chest_xray/train/NORMAL: 1341 images\n", + "/content/dataset/chest_xray/__MACOSX/chest_xray/train/PNEUMONIA: 3875 images\n", + "/content/dataset/chest_xray/__MACOSX/chest_xray/test/NORMAL: 234 images\n", + "/content/dataset/chest_xray/__MACOSX/chest_xray/test/PNEUMONIA: 390 images\n", + "/content/dataset/chest_xray/train/NORMAL: 1341 images\n", + "/content/dataset/chest_xray/train/PNEUMONIA: 3875 images\n", + "/content/dataset/chest_xray/test/NORMAL: 234 images\n", + "/content/dataset/chest_xray/test/PNEUMONIA: 390 images\n" + ] + } + ], + "source": [ + "import os\n", + "\n", + "def count_images_in_folders(base_path):\n", + " folder_counts = {}\n", + " for root, dirs, files in os.walk(base_path):\n", + " if any(folder in root for folder in [\"PNEUMONIA\", \"NORMAL\"]):\n", + " folder_name = root.split(os.sep)[-1]\n", + " folder_counts[root] = len([f for f in files if f.endswith(('.png', '.jpg', '.jpeg'))])\n", + " return folder_counts\n", + "\n", + "base_path = '/content/dataset/chest_xray'\n", + "image_counts = count_images_in_folders(base_path)\n", + "\n", + "# Display the counts\n", + "for folder, count in image_counts.items():\n", + " print(f\"{folder}: {count} images\")" + ] + }, + { + "cell_type": "markdown", + "source": [ + "#Comparing Image Files Across Dataset Folders" + ], + "metadata": { + "id": "-AdRExtQwMOc" + } + }, + { + "cell_type": "markdown", + "source": [ + "1. **Purpose**: \n", + " - Identifies identical and unique images across different dataset folders (e.g., `train`, `test`, `val`) using MD5 hashing.\n", + "\n", + "2. **Functionality**: \n", + " - **`get_image_hashes`**: Generates MD5 hashes for all image files in a specified folder and returns a dictionary of file paths and their hashes. \n", + " - **`compare_folders`**: Compares two folders by their image hashes, identifies identical files, and lists files unique to each folder.\n", + "\n", + "3. **Process**: \n", + " - Iterates through dataset folders (`train`, `test`, `val`). \n", + " - Computes hashes for all images in these folders. \n", + " - Performs pairwise comparisons to check for duplicates or unique files between folder pairs.\n", + "\n", + "4. **Output**: \n", + " - Prints the number of identical images and unique files for each folder pair. \n", + " - Provides insights into potential data leakage or overlaps across training, testing, and validation datasets." + ], + "metadata": { + "id": "vv2rLw0jwNK6" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8asvmdOJVvde", + "outputId": "be654801-0dba-4f74-c872-0681620bb79e" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Comparison between '/content/dataset/chest_xray/train' and '/content/dataset/chest_xray/chest_xray/train':\n", + "Identical Images: 5190\n", + "Unique to Folder 1: 0\n", + "Unique to Folder 2: 0\n", + "--------------------------------------------------\n", + "Comparison between '/content/dataset/chest_xray/test' and '/content/dataset/chest_xray/chest_xray/test':\n", + "Identical Images: 618\n", + "Unique to Folder 1: 0\n", + "Unique to Folder 2: 0\n", + "--------------------------------------------------\n", + "Comparison between '/content/dataset/chest_xray/val' and '/content/dataset/chest_xray/chest_xray/val':\n", + "Identical Images: 16\n", + "Unique to Folder 1: 0\n", + "Unique to Folder 2: 0\n", + "--------------------------------------------------\n" + ] + } + ], + "source": [ + "import os\n", + "import hashlib\n", + "\n", + "base_path = '/content/dataset/chest_xray'\n", + "\n", + "def get_image_hashes(folder_path):\n", + " \"\"\"\n", + " Generates MD5 hashes for all images in a folder (including subfolders).\n", + "\n", + " Parameters:\n", + " folder_path (str): Path to the folder containing images.\n", + "\n", + " Returns:\n", + " dict: Dictionary with image file paths as keys and their MD5 hashes as values.\n", + " \"\"\"\n", + " image_hashes = {}\n", + " for root, _, files in os.walk(folder_path):\n", + " for file in files:\n", + " if file.endswith(('.png', '.jpg', '.jpeg')): # Process only image files\n", + " file_path = os.path.join(root, file)\n", + " with open(file_path, 'rb') as f:\n", + " file_hash = hashlib.md5(f.read()).hexdigest()\n", + " image_hashes[file_path] = file_hash\n", + " return image_hashes\n", + "\n", + "def compare_folders(folder1_path, folder2_path):\n", + " \"\"\"\n", + " Compares images between two folders based on their MD5 hashes.\n", + "\n", + " Parameters:\n", + " folder1_path (str): Path to the first folder.\n", + " folder2_path (str): Path to the second folder.\n", + "\n", + " Returns:\n", + " None: Prints the comparison results.\n", + " \"\"\"\n", + " hashes_folder1 = get_image_hashes(folder1_path)\n", + " hashes_folder2 = get_image_hashes(folder2_path)\n", + "\n", + " identical = set(hashes_folder1.values()) & set(hashes_folder2.values())\n", + " unique_to_folder1 = set(hashes_folder1.values()) - set(hashes_folder2.values())\n", + " unique_to_folder2 = set(hashes_folder2.values()) - set(hashes_folder1.values())\n", + "\n", + " print(f\"Comparison between '{folder1_path}' and '{folder2_path}':\")\n", + " print(f\"Identical Images: {len(identical)}\")\n", + " print(f\"Unique to Folder 1: {len(unique_to_folder1)}\")\n", + " print(f\"Unique to Folder 2: {len(unique_to_folder2)}\")\n", + " print(\"-\" * 50)\n", + "\n", + "# Paths to compare\n", + "location_based_folders = [\"train\", \"test\", \"val\"]\n", + "chest_xray_folders = [os.path.join(\"chest_xray\", subfolder) for subfolder in location_based_folders]\n", + "\n", + "# Perform pairwise comparison\n", + "for loc_folder, cx_folder in zip(location_based_folders, chest_xray_folders):\n", + " folder1 = os.path.join(base_path, loc_folder) # Location-based folder (e.g., /train, /test, /val)\n", + " folder2 = os.path.join(base_path, cx_folder) # chest_xray subfolder\n", + " compare_folders(folder1, folder2)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UNKLIvmkZBFg" + }, + "source": [ + "#Addressing the class imbalance issue" + ] + }, + { + "cell_type": "markdown", + "source": [ + "1. **Importing Libraries**: \n", + " - Imports `ImageDataGenerator` from TensorFlow Keras for data augmentation. \n", + " - Uses additional libraries like NumPy, OS, and Matplotlib for processing and file handling. \n", + "\n", + "2. **Paths and Directory Setup**: \n", + " - Defines paths for the \"NORMAL\" and \"PNEUMONIA\" image directories in the training dataset. \n", + " - Creates a new directory for storing augmented images if it does not exist. \n", + "\n", + "3. **Data Augmentation Configuration**: \n", + " - Configures `ImageDataGenerator` with parameters like rescaling, horizontal flipping, rotation, zooming, and width/height shifting to generate diverse augmented images. \n", + "\n", + "4. **Class Count and Oversampling**: \n", + " - Counts the images in each class and calculates the oversampling factor to balance the number of \"NORMAL\" images with \"PNEUMONIA\" images. \n", + " - Iterates through \"NORMAL\" images, generates augmented versions, and saves them in the designated directory until the dataset is balanced. \n", + "\n", + "5. **Output**: \n", + " - Prints the number of original images in each class and the total number of augmented \"NORMAL\" images created. \n", + " - Ensures a balanced dataset for training the CNN model. " + ], + "metadata": { + "id": "hGFnt9A8wXtv" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "iYHZq_EqVvfM", + "outputId": "ee01ead4-dc5a-438d-a7e1-04f55b5988ff" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Normal Images: 1342, Pneumonia Images: 3876\n", + "Augmenting 2534 images to balance the dataset...\n", + "Augmented Normal Images: 2241\n" + ] + } + ], + "source": [ + "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n", + "import os\n", + "import numpy as np\n", + "import shutil\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Paths for the training dataset\n", + "normal_dir = '/content/dataset/chest_xray/chest_xray/train/NORMAL'\n", + "pneumonia_dir = '/content/dataset/chest_xray/chest_xray/train/PNEUMONIA'\n", + "augmented_dir = '/content/dataset/chest_xray/chest_xray/train/NORMAL_AUG'\n", + "\n", + "# Ensure the augmented directory exists\n", + "if not os.path.exists(augmented_dir):\n", + " os.makedirs(augmented_dir)\n", + "\n", + "# Data augmentation generator\n", + "datagen = ImageDataGenerator(\n", + " rescale=1.0 / 255,\n", + " horizontal_flip=True,\n", + " rotation_range=20,\n", + " zoom_range=0.2,\n", + " width_shift_range=0.2,\n", + " height_shift_range=0.2,\n", + " fill_mode='nearest'\n", + ")\n", + "\n", + "# Count the images in each class\n", + "normal_count = len(os.listdir(normal_dir))\n", + "pneumonia_count = len(os.listdir(pneumonia_dir))\n", + "oversample_factor = pneumonia_count - normal_count\n", + "\n", + "print(f\"Normal Images: {normal_count}, Pneumonia Images: {pneumonia_count}\")\n", + "print(f\"Augmenting {oversample_factor} images to balance the dataset...\")\n", + "\n", + "# Oversampling: Generate augmented images for the Normal class\n", + "for img_name in os.listdir(normal_dir):\n", + " if oversample_factor <= 0:\n", + " break # Stop once we've generated enough augmented images\n", + " img_path = os.path.join(normal_dir, img_name)\n", + " img = plt.imread(img_path) # Load image\n", + "\n", + " # Check if the image is grayscale or RGB\n", + " if len(img.shape) == 2: # If grayscale, add a channel dimension\n", + " img = np.expand_dims(img, axis=-1)\n", + "\n", + " # Expand dimensions to create a batch of size 1\n", + " img = np.expand_dims(img, axis=0)\n", + "\n", + " # Generate augmented images\n", + " for batch in datagen.flow(img, batch_size=1, save_to_dir=augmented_dir, save_prefix='aug', save_format='jpeg'):\n", + " oversample_factor -= 1\n", + " if oversample_factor <= 0:\n", + " break\n", + "\n", + "print(f\"Augmented Normal Images: {len(os.listdir(augmented_dir))}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "auYr43yvgrfC" + }, + "source": [ + "#Data Generators for Training, Validation, and Testing" + ] + }, + { + "cell_type": "markdown", + "source": [ + "1. **Library Imports**: \n", + " - Imports essential TensorFlow Keras modules, including `ImageDataGenerator` for data preprocessing and `VGG19` for potential transfer learning. \n", + " - Includes optimizers (e.g., `SGD`, `RMSprop`, `Adam`) and callbacks (e.g., `ModelCheckpoint`, `EarlyStopping`, `ReduceLROnPlateau`).\n", + "\n", + "2. **Data Augmentation**: \n", + " - Configures `ImageDataGenerator` for the training set with rescaling and various augmentation techniques (e.g., flipping, rotation, shear, and shift). \n", + " - Validation and test data generators are created with rescaling only.\n", + "\n", + "3. **Data Generators**: \n", + " - Creates `train_generator`, `valid_generator`, and `test_generator` using `flow_from_directory`. \n", + " - Specifies parameters like `batch_size` (32), `target_size` (128x128), and `class_mode` (`categorical` for multi-class classification). \n", + " - Shuffles data for randomness and sets `color_mode` to `rgb`.\n", + "\n", + "4. **Dataset Summary**: \n", + " - Reports the number of images found in each dataset: \n", + " - Training: 5216 images. \n", + " - Validation: 16 images. \n", + " - Testing: 624 images. \n", + "\n", + "5. **Purpose**: \n", + " - Prepares the dataset for training, validation, and testing in a structured and augmented manner, essential for the CNN model's performance." + ], + "metadata": { + "id": "9vOo5t6Qw37u" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "StdmpqvGVvhQ" + }, + "outputs": [], + "source": [ + "import tensorflow as tf\n", + "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n", + "from tensorflow.keras.models import Model\n", + "from tensorflow.keras.models import load_model\n", + "from tensorflow.keras.layers import Input, Dense, Flatten, Conv2D,Dropout\n", + "from tensorflow.keras.applications.vgg19 import VGG19\n", + "from tensorflow.keras.optimizers import SGD, RMSprop, Adam\n", + "from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "GrD6HxKRVvkr" + }, + "outputs": [], + "source": [ + "train_datagen = ImageDataGenerator(rescale = 1. / 255,\n", + " horizontal_flip=0.4,\n", + " vertical_flip=0.4,\n", + " rotation_range=40,\n", + " shear_range=0.2,\n", + " width_shift_range=0.4,\n", + " height_shift_range=0.4,\n", + " fill_mode=\"nearest\")\n", + "valid_datagen = ImageDataGenerator(rescale = 1./255)\n", + "test_datagen = ImageDataGenerator(rescale = 1./255)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "CEF7fCUNg1s7", + "outputId": "f08fe1bb-a457-4e1a-d800-fe971ef8f459" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found 5216 images belonging to 2 classes.\n", + "Found 16 images belonging to 2 classes.\n" + ] + } + ], + "source": [ + "train_generator = train_datagen.flow_from_directory(\"/content/dataset/chest_xray/train\",\n", + " batch_size = 32,\n", + " target_size=(128,128),\n", + " class_mode = 'categorical',\n", + " shuffle=True,\n", + " seed = 42,\n", + " color_mode = 'rgb')\n", + "valid_generator = valid_datagen.flow_from_directory(\"/content/dataset/chest_xray/val\",\n", + " batch_size = 32,\n", + " target_size=(128,128),\n", + " class_mode = 'categorical',\n", + " shuffle=True,\n", + " seed = 42,\n", + " color_mode = 'rgb')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VmdUhTcpt8Fq", + "outputId": "2d9994cf-9dad-4234-8f2d-850b85e846fe" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found 624 images belonging to 2 classes.\n" + ] + } + ], + "source": [ + "test_generator = test_datagen.flow_from_directory(\"/content/dataset/chest_xray/test\",\n", + " batch_size = 32,\n", + " target_size=(128,128),\n", + " class_mode = 'categorical',\n", + " shuffle=True,\n", + " seed = 42,\n", + " color_mode = 'rgb')" + ] + }, + { + "cell_type": "markdown", + "source": [ + "#Balancing and Structuring the Training Dataset" + ], + "metadata": { + "id": "8zLN2f8i869_" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_HS4uMzykL9N" + }, + "source": [ + "1. **Paths and Directories**: \n", + " - Defines paths for \"NORMAL\", \"NORMAL_AUG\", and \"PNEUMONIA\" datasets. \n", + " - Creates a new structured directory (`new_train`) for the balanced training dataset with subfolders for \"NORMAL\" and \"PNEUMONIA\". \n", + "\n", + "2. **Copying Images**: \n", + " - Copies all original \"NORMAL\" images into the new directory. \n", + " - Adds augmented \"NORMAL\" images to reach a total of 2400 \"NORMAL\" images. \n", + "\n", + "3. **Random Sampling for Pneumonia**: \n", + " - Randomly selects 3000 images from the \"PNEUMONIA\" dataset to ensure consistency and balance with the \"NORMAL\" class. \n", + "\n", + "4. **Final Dataset Summary**: \n", + " - Prints the total counts of \"NORMAL\" and \"PNEUMONIA\" images in the new training dataset. \n", + " - Verifies the directory structure and image distribution. \n", + "\n", + "5. **Purpose**: \n", + " - Prepares a balanced training dataset with 2400 \"NORMAL\" and 3000 \"PNEUMONIA\" images, reducing bias during model training." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hPbY8E6Bj-_S", + "outputId": "179e62b9-7560-4332-8842-2f2528e4cc2b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Normal images: 2400\n", + "Pneumonia images: 3000\n" + ] + } + ], + "source": [ + "import os\n", + "import random\n", + "import shutil\n", + "\n", + "# Paths\n", + "normal_dir = '/content/dataset/chest_xray/chest_xray/train/NORMAL'\n", + "augmented_normal_dir = '/content/dataset/chest_xray/chest_xray/train/NORMAL_AUG'\n", + "pneumonia_dir = '/content/dataset/chest_xray/chest_xray/train/PNEUMONIA'\n", + "\n", + "# Target directory for the new training dataset\n", + "new_train_dir = '/content/dataset/chest_xray/new_train'\n", + "new_normal_dir = os.path.join(new_train_dir, 'NORMAL')\n", + "new_pneumonia_dir = os.path.join(new_train_dir, 'PNEUMONIA')\n", + "\n", + "# Ensure directories exist\n", + "os.makedirs(new_normal_dir, exist_ok=True)\n", + "os.makedirs(new_pneumonia_dir, exist_ok=True)\n", + "\n", + "# Copy all original normal images\n", + "normal_images = os.listdir(normal_dir)\n", + "for img in normal_images:\n", + " shutil.copy(os.path.join(normal_dir, img), os.path.join(new_normal_dir, img))\n", + "\n", + "# Copy enough augmented normal images to reach 2400 total\n", + "augmented_normal_images = os.listdir(augmented_normal_dir)\n", + "needed_augmented_images = 2400 - len(normal_images)\n", + "selected_augmented_images = random.sample(augmented_normal_images, needed_augmented_images)\n", + "\n", + "for img in selected_augmented_images:\n", + " shutil.copy(os.path.join(augmented_normal_dir, img), os.path.join(new_normal_dir, img))\n", + "\n", + "# Randomly select 3000 pneumonia images\n", + "pneumonia_images = os.listdir(pneumonia_dir)\n", + "selected_pneumonia_images = random.sample(pneumonia_images, 3000)\n", + "\n", + "for img in selected_pneumonia_images:\n", + " shutil.copy(os.path.join(pneumonia_dir, img), os.path.join(new_pneumonia_dir, img))\n", + "\n", + "print(f\"Normal images: {len(os.listdir(new_normal_dir))}\")\n", + "print(f\"Pneumonia images: {len(os.listdir(new_pneumonia_dir))}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "zTJkyEE6l6WJ", + "outputId": "ee87280d-9527-4ebc-dac9-f3f99b34319a" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Root: /content/dataset/chest_xray/new_train, Classes: ['NORMAL', 'PNEUMONIA'], Files: 0\n", + "Root: /content/dataset/chest_xray/new_train/NORMAL, Classes: [], Files: 2400\n", + "Root: /content/dataset/chest_xray/new_train/PNEUMONIA, Classes: [], Files: 3000\n" + ] + } + ], + "source": [ + "# Verify directory structure and image count\n", + "for root, dirs, files in os.walk(new_train_dir):\n", + " print(f\"Root: {root}, Classes: {dirs}, Files: {len(files)}\")\n" + ] + }, + { + "cell_type": "markdown", + "source": [ + "#Data Generators for Augmented Training and Validation " + ], + "metadata": { + "id": "3hWJK7pi_wcg" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "043KNSepkgZI" + }, + "source": [ + "1. **Data Augmentation**: \n", + " - Configures `train_datagen` with rescaling and augmentation techniques like flipping, rotation, shear, and shifts to enrich the training dataset. \n", + " - Uses `valid_datagen` for validation with only rescaling to normalize pixel values.\n", + "\n", + "2. **Training Generator**: \n", + " - Generates batches of augmented images from the `new_train` directory. \n", + " - Parameters include a target image size of `128x128`, batch size of 32, categorical class mode, and data shuffling for randomness.\n", + "\n", + "3. **Validation Generator**: \n", + " - Generates validation images from the `val` directory with the same parameters as the training generator but without augmentation.\n", + "\n", + "4. **Output**: \n", + " - Confirms the number of images found in the training (`5208`) and validation (`16`) datasets. \n", + " - Prepares the datasets for training and validation in the CNN model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ArlB0SOwj_JQ", + "outputId": "715fff1c-ff97-4f03-ec82-afa484619e0f" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found 5398 images belonging to 2 classes.\n", + "Found 16 images belonging to 2 classes.\n" + ] + } + ], + "source": [ + "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n", + "\n", + "# Data Generators\n", + "train_datagen = ImageDataGenerator(rescale=1. / 255,\n", + " horizontal_flip=0.4,\n", + " vertical_flip=0.4,\n", + " rotation_range=40,\n", + " shear_range=0.2,\n", + " width_shift_range=0.4,\n", + " height_shift_range=0.4,\n", + " fill_mode=\"nearest\")\n", + "valid_datagen = ImageDataGenerator(rescale=1. / 255)\n", + "\n", + "# Training Generator\n", + "train_generator = train_datagen.flow_from_directory(\n", + " directory='/content/dataset/chest_xray/new_train',\n", + " target_size=(128, 128),\n", + " batch_size=32,\n", + " class_mode='categorical',\n", + " shuffle=True,\n", + " seed=42\n", + ")\n", + "\n", + "# Validation Generator\n", + "valid_generator = valid_datagen.flow_from_directory(\n", + " directory='/content/dataset/chest_xray/val',\n", + " target_size=(128, 128),\n", + " batch_size=32,\n", + " class_mode='categorical',\n", + " shuffle=True,\n", + " seed=42\n", + ")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "TWDNbhbjhFsI" + }, + "outputs": [], + "source": [ + "class_labels = train_generator.class_indices" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "yFXRknknhI5E", + "outputId": "ffcdf530-4f23-4e39-ddda-9c0d1c69d7ea" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'NORMAL': 0, 'PNEUMONIA': 1}" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "class_labels" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "zBcML75PhRV0" + }, + "outputs": [], + "source": [ + "class_name = {value:key for (key, value) in class_labels.items()}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mMlF4LNVhUpz", + "outputId": "58534730-faae-4f30-a2cc-5065a99231e7" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{0: 'NORMAL', 1: 'PNEUMONIA'}" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "class_name" + ] + }, + { + "cell_type": "markdown", + "source": [ + "#Transfer Learning with VGG19 and Custom Layers " + ], + "metadata": { + "id": "rf9DXN_WBuet" + } + }, + { + "cell_type": "markdown", + "source": [ + "1. **Base Model**: \n", + " - Loads the VGG19 model with `imagenet` pre-trained weights and excludes the top classification layers (`include_top=False`). \n", + " - Sets the input shape to `128x128x3` for compatibility with the dataset. \n", + " - Freezes all layers of the base model to retain pre-trained features.\n", + "\n", + "2. **Custom Layers**: \n", + " - Adds a flattening layer to reduce the dimensionality of the base model's output. \n", + " - Includes fully connected (`Dense`) layers with ReLU activation and dropout for regularization. \n", + " - Final output layer has a softmax activation for 2-class classification (Normal and Pneumonia).\n", + "\n", + "3. **Model Assembly**: \n", + " - Combines the base model and custom layers to create the final model (`model_01`). \n", + " - Prints the model summary to verify its architecture.\n", + "\n", + "4. **Purpose**: \n", + " - Leverages transfer learning with VGG19 to build an efficient CNN for Pneumonia classification." + ], + "metadata": { + "id": "x3b-j-rYBOZE" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "HTkLajgfj_ba", + "outputId": "0df6f54c-b388-44db-ea6d-4b67a9d07239" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/vgg19/vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5\n", + "\u001b[1m80134624/80134624\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0us/step\n" + ] + }, + { + "data": { + "text/html": [ + "
Model: \"functional\"\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1mModel: \"functional\"\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n",
+              "┃ Layer (type)                          Output Shape                         Param # ┃\n",
+              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n",
+              "│ input_layer (InputLayer)             │ (None, 128, 128, 3)         │               0 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ block1_conv1 (Conv2D)                │ (None, 128, 128, 64)        │           1,792 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ block1_conv2 (Conv2D)                │ (None, 128, 128, 64)        │          36,928 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ block1_pool (MaxPooling2D)           │ (None, 64, 64, 64)          │               0 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ block2_conv1 (Conv2D)                │ (None, 64, 64, 128)         │          73,856 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ block2_conv2 (Conv2D)                │ (None, 64, 64, 128)         │         147,584 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ block2_pool (MaxPooling2D)           │ (None, 32, 32, 128)         │               0 │\n",
+              "├──────────────────────────────────────┼─���───────────────────────────┼─────────────────┤\n",
+              "│ block3_conv1 (Conv2D)                │ (None, 32, 32, 256)         │         295,168 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ block3_conv2 (Conv2D)                │ (None, 32, 32, 256)         │         590,080 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ block3_conv3 (Conv2D)                │ (None, 32, 32, 256)         │         590,080 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ block3_conv4 (Conv2D)                │ (None, 32, 32, 256)         │         590,080 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ block3_pool (MaxPooling2D)           │ (None, 16, 16, 256)         │               0 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ block4_conv1 (Conv2D)                │ (None, 16, 16, 512)         │       1,180,160 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ block4_conv2 (Conv2D)                │ (None, 16, 16, 512)         │       2,359,808 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ block4_conv3 (Conv2D)                │ (None, 16, 16, 512)         │       2,359,808 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ block4_conv4 (Conv2D)                │ (None, 16, 16, 512)         │       2,359,808 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ block4_pool (MaxPooling2D)           │ (None, 8, 8, 512)           │               0 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ block5_conv1 (Conv2D)                │ (None, 8, 8, 512)           │       2,359,808 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ block5_conv2 (Conv2D)                │ (None, 8, 8, 512)           │       2,359,808 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ block5_conv3 (Conv2D)                │ (None, 8, 8, 512)           │       2,359,808 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ block5_conv4 (Conv2D)                │ (None, 8, 8, 512)           │       2,359,808 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ block5_pool (MaxPooling2D)           │ (None, 4, 4, 512)           │               0 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ flatten (Flatten)                    │ (None, 8192)                │               0 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ dense (Dense)                        │ (None, 4608)                │      37,753,344 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ dropout (Dropout)                    │ (None, 4608)                │               0 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ dense_1 (Dense)                      │ (None, 1152)                │       5,309,568 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ dense_2 (Dense)                      │ (None, 2)                   │           2,306 │\n",
+              "└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n",
+              "
\n" + ], + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n", + "│ input_layer (\u001b[38;5;33mInputLayer\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m, \u001b[38;5;34m128\u001b[0m, \u001b[38;5;34m3\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ block1_conv1 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m, \u001b[38;5;34m128\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m1,792\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ block1_conv2 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m, \u001b[38;5;34m128\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m36,928\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ block1_pool (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m, \u001b[38;5;34m64\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ block2_conv1 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m, \u001b[38;5;34m64\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m73,856\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ block2_conv2 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m, \u001b[38;5;34m64\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m147,584\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ block2_pool (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├──────────────────────────────────────┼��────────────────────────────┼─────────────────┤\n", + "│ block3_conv1 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ \u001b[38;5;34m295,168\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ block3_conv2 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ \u001b[38;5;34m590,080\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ block3_conv3 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ \u001b[38;5;34m590,080\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ block3_conv4 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ \u001b[38;5;34m590,080\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ block3_pool (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ block4_conv1 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m1,180,160\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ block4_conv2 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,359,808\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ block4_conv3 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,359,808\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ block4_conv4 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,359,808\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ block4_pool (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ block5_conv1 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,359,808\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ block5_conv2 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,359,808\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ block5_conv3 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,359,808\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ block5_conv4 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,359,808\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ block5_pool (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ flatten (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8192\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4608\u001b[0m) │ \u001b[38;5;34m37,753,344\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ dropout (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4608\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ dense_1 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1152\u001b[0m) │ \u001b[38;5;34m5,309,568\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ dense_2 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2\u001b[0m) │ \u001b[38;5;34m2,306\u001b[0m │\n", + "└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Total params: 63,089,602 (240.67 MB)\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m63,089,602\u001b[0m (240.67 MB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Trainable params: 43,065,218 (164.28 MB)\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m43,065,218\u001b[0m (164.28 MB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Non-trainable params: 20,024,384 (76.39 MB)\n",
+              "
\n" + ], + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m20,024,384\u001b[0m (76.39 MB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from tensorflow.keras.applications import VGG19\n", + "from tensorflow.keras.models import Model\n", + "from tensorflow.keras.layers import Flatten, Dense, Dropout\n", + "from tensorflow.keras.optimizers import Adam\n", + "\n", + "# Base Model\n", + "base_model = VGG19(input_shape=(128, 128, 3), include_top=False, weights='imagenet')\n", + "for layer in base_model.layers:\n", + " layer.trainable = False # Freeze base model layers\n", + "\n", + "# Add custom layers\n", + "x = base_model.output\n", + "flat = Flatten()(x)\n", + "class_1 = Dense(4608, activation='relu')(flat)\n", + "dropout = Dropout(0.2)(class_1)\n", + "class_2 = Dense(1152, activation='relu')(dropout)\n", + "output = Dense(2, activation='softmax')(class_2)\n", + "\n", + "# Final model\n", + "model_01 = Model(base_model.inputs, output)\n", + "model_01.summary()" + ] + }, + { + "cell_type": "markdown", + "source": [ + "#Model Training with Callbacks and SGD Optimizer" + ], + "metadata": { + "id": "i7HFDmtHCBkS" + } + }, + { + "cell_type": "markdown", + "source": [ + "1. **Callbacks**: \n", + " - **EarlyStopping**: Monitors validation loss (`val_loss`) and stops training if it doesn’t improve for 4 epochs. \n", + " - **ModelCheckpoint**: Saves the best model during training based on validation loss. \n", + " - **ReduceLROnPlateau**: Reduces the learning rate when validation accuracy plateaus, ensuring efficient learning.\n", + "\n", + "2. **Optimizer**: \n", + " - Uses the Stochastic Gradient Descent (SGD) optimizer with a learning rate of `0.0001`, momentum (`nesterov=True`), and weight decay.\n", + "\n", + "3. **Model Compilation**: \n", + " - Compiles the model using `categorical_crossentropy` as the loss function and accuracy as the evaluation metric.\n", + "\n", + "4. **Model Training**: \n", + " - Trains the model for 10 epochs with a batch size defined in the generator. \n", + " - Incorporates the defined callbacks for efficient training and validation handling. \n", + "\n", + "5. **Purpose**: \n", + " - Implements a robust training pipeline with optimization and regularization to achieve better performance on the validation dataset." + ], + "metadata": { + "id": "VIaceKMOCEye" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "w4pVb_bhj_df", + "outputId": "52537ecc-7281-4da5-e063-70baf4eabce3" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/optimizers/base_optimizer.py:33: UserWarning: Argument `decay` is no longer supported and will be ignored.\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau\n", + "from tensorflow.keras.optimizers import SGD\n", + "\n", + "# Filepath to save the best model\n", + "filepath = \"/content/model.keras\"\n", + "\n", + "# Define EarlyStopping\n", + "es = EarlyStopping(monitor=\"val_loss\", verbose=1, mode=\"min\", patience=4)\n", + "\n", + "# Define ModelCheckpoint\n", + "cp = ModelCheckpoint(filepath=filepath, monitor=\"val_loss\", save_best_only=True, save_weights_only=False, mode=\"auto\", save_freq=\"epoch\")\n", + "\n", + "# Define ReduceLROnPlateau\n", + "lrr = ReduceLROnPlateau(monitor=\"val_accuracy\", patience=3, verbose=1, factor=0.5, min_lr=0.0001)\n", + "\n", + "# Define SGD Optimizer\n", + "sgd = SGD(learning_rate=0.0001, decay=1e-6, nesterov=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GIy0SfNRj_g7", + "outputId": "c2c001b8-a1d2-45b2-9755-aff1d0e928d8" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/10\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/trainers/data_adapters/py_dataset_adapter.py:122: UserWarning: Your `PyDataset` class should call `super().__init__(**kwargs)` in its constructor. `**kwargs` can include `workers`, `use_multiprocessing`, `max_queue_size`. Do not pass these arguments to `fit()`, as they will be ignored.\n", + " self._warn_if_super_not_called()\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m50/50\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m45s\u001b[0m 638ms/step - accuracy: 0.5126 - loss: 0.7721 - val_accuracy: 0.5000 - val_loss: 0.6884 - learning_rate: 1.0000e-04\n", + "Epoch 2/10\n", + "\u001b[1m50/50\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 489ms/step - accuracy: 0.5707 - loss: 0.6802" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/lib/python3.10/contextlib.py:153: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.\n", + " self.gen.throw(typ, value, traceback)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m50/50\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m35s\u001b[0m 718ms/step - accuracy: 0.5708 - loss: 0.6802 - learning_rate: 1.0000e-04\n", + "Epoch 3/10\n", + "\u001b[1m 2/50\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 74ms/step - accuracy: 0.4688 - loss: 0.6895" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/callbacks/early_stopping.py:155: UserWarning: Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: accuracy,loss\n", + " current = self.get_monitor_value(logs)\n", + "/usr/local/lib/python3.10/dist-packages/keras/src/callbacks/model_checkpoint.py:206: UserWarning: Can save best model only with val_loss available, skipping.\n", + " self._save_model(epoch=epoch, batch=None, logs=logs)\n", + "/usr/local/lib/python3.10/dist-packages/keras/src/callbacks/callback_list.py:96: UserWarning: Learning rate reduction is conditioned on metric `val_accuracy` which is not available. Available metrics are: accuracy,loss,learning_rate.\n", + " callback.on_epoch_end(epoch, logs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m50/50\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m31s\u001b[0m 623ms/step - accuracy: 0.5770 - loss: 0.6686 - val_accuracy: 0.5625 - val_loss: 0.6580 - learning_rate: 1.0000e-04\n", + "Epoch 4/10\n", + "\u001b[1m50/50\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 68ms/step - accuracy: 0.6400 - loss: 0.6431 - learning_rate: 1.0000e-04\n", + "Epoch 5/10\n", + "\u001b[1m50/50\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m30s\u001b[0m 540ms/step - accuracy: 0.6288 - loss: 0.6401 - val_accuracy: 0.8125 - val_loss: 0.6381 - learning_rate: 1.0000e-04\n", + "Epoch 6/10\n", + "\u001b[1m50/50\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m23s\u001b[0m 461ms/step - accuracy: 0.6455 - loss: 0.6320 - learning_rate: 1.0000e-04\n", + "Epoch 7/10\n", + "\u001b[1m50/50\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m27s\u001b[0m 538ms/step - accuracy: 0.6382 - loss: 0.6372 - val_accuracy: 0.8125 - val_loss: 0.6186 - learning_rate: 1.0000e-04\n", + "Epoch 8/10\n", + "\u001b[1m50/50\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 171ms/step - accuracy: 0.6825 - loss: 0.6107 - learning_rate: 1.0000e-04\n", + "Epoch 9/10\n", + "\u001b[1m50/50\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m84s\u001b[0m 547ms/step - accuracy: 0.6610 - loss: 0.6250 - val_accuracy: 0.8125 - val_loss: 0.6047 - learning_rate: 1.0000e-04\n", + "Epoch 10/10\n", + "\u001b[1m50/50\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m24s\u001b[0m 495ms/step - accuracy: 0.6517 - loss: 0.6192 - learning_rate: 1.0000e-04\n" + ] + } + ], + "source": [ + "# Compile the model\n", + "model_01.compile(\n", + " loss=\"categorical_crossentropy\",\n", + " optimizer=sgd,\n", + " metrics=[\"accuracy\"]\n", + ")\n", + "\n", + "# Train the model\n", + "history_01 = model_01.fit(\n", + " train_generator,\n", + " steps_per_epoch=50,\n", + " epochs=10,\n", + " callbacks=[es, cp, lrr],\n", + " validation_data=valid_generator,\n", + " validation_steps=len(valid_generator),\n", + " verbose=1\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "QEvaXG1FtqA9" + }, + "outputs": [], + "source": [ + "import os\n", + "\n", + "# Ensure the directory exists\n", + "if not os.path.isdir('model_weights/'):\n", + " os.mkdir(\"model_weights/\")\n", + "\n", + "# Save the model using the .keras format\n", + "model_01.save(filepath=\"model_weights/vgg19_model_01.keras\", overwrite=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "nnSBt0_euGuB", + "outputId": "075a1b2a-16f1-4a68-ed7d-fba5d8bee264" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 174ms/step - accuracy: 0.8125 - loss: 0.5957\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 311ms/step - accuracy: 0.6923 - loss: 0.6181\n" + ] + } + ], + "source": [ + "model_01.load_weights(\"model_weights/vgg19_model_01.keras\")\n", + "\n", + "vgg_val_eval_01 = model_01.evaluate(valid_generator)\n", + "vgg_test_eval_01 = model_01.evaluate(test_generator)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "sMAlgctouTO5", + "outputId": "d5907a86-efc5-480b-bcc2-dbb9a77f623e" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Validation Loss: 0.5860834121704102\n", + "Validation Accuarcy: 0.75\n", + "Test Loss: 0.6146875619888306\n", + "Test Accuarcy: 0.6987179517745972\n" + ] + } + ], + "source": [ + "print(f\"Validation Loss: {vgg_val_eval_01[0]}\")\n", + "print(f\"Validation Accuarcy: {vgg_val_eval_01[1]}\")\n", + "print(f\"Test Loss: {vgg_test_eval_01[0]}\")\n", + "print(f\"Test Accuarcy: {vgg_test_eval_01[1]}\")" + ] + }, + { + "cell_type": "markdown", + "source": [ + "#Transfer Learning and Fine-Tuning with VGG19 " + ], + "metadata": { + "id": "rhYu3HirDwAz" + } + }, + { + "cell_type": "markdown", + "source": [ + "1. **Transfer Learning**: \n", + " - Initializes a VGG19 base model with pre-trained `imagenet` weights, excluding the top layers. \n", + " - Freezes all base model layers to retain pre-trained features. \n", + " - Adds custom layers, including dense layers with ReLU activation, dropout for regularization, and a softmax output for binary classification.\n", + "\n", + "2. **Model Compilation and Training**: \n", + " - Compiles the model with the Adam optimizer (`learning_rate=0.001`) and `categorical_crossentropy` as the loss function. \n", + " - Includes callbacks: \n", + " - **ModelCheckpoint**: Saves the best model based on `val_loss`. \n", + " - **EarlyStopping**: Stops training if validation loss does not improve for 3 epochs. \n", + " - Trains the model for 5 epochs on the dataset and evaluates its performance on the test set.\n", + "\n", + "3. **Fine-Tuning**: \n", + " - Unfreezes the last block of VGG19 (`block5_`) to enable learning in deeper layers. \n", + " - Recompiles the model with a smaller learning rate (`0.0001`) for gradual fine-tuning. \n", + " - Trains incrementally for 5 more epochs with the same callbacks and evaluates the updated model on the test set.\n", + "\n", + "4. **Purpose**: \n", + " - Combines transfer learning and fine-tuning to leverage pre-trained features while refining deeper layers for improved performance on Pneumonia classification. " + ], + "metadata": { + "id": "SAZ2XkYSDqmh" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "RUXAc8SDv19z", + "outputId": "f889243c-6447-4d00-818c-35a923a84f86" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/5\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m98s\u001b[0m 536ms/step - accuracy: 0.7040 - loss: 1.6239 - val_accuracy: 0.7500 - val_loss: 0.6136\n", + "Epoch 2/5\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00\n", + "Epoch 3/5\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m90s\u001b[0m 507ms/step - accuracy: 0.8629 - loss: 0.3245 - val_accuracy: 0.8125 - val_loss: 0.3474\n", + "Epoch 4/5\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00\n", + "Epoch 5/5\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m89s\u001b[0m 507ms/step - accuracy: 0.8830 - loss: 0.2752 - val_accuracy: 0.8125 - val_loss: 0.2998\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 234ms/step - accuracy: 0.8809 - loss: 0.3322\n", + "Test Loss: 0.33969399333000183, Test Accuracy: 0.8717948794364929\n" + ] + } + ], + "source": [ + "from tensorflow.keras.applications import VGG19\n", + "from tensorflow.keras.models import Model\n", + "from tensorflow.keras.layers import Flatten, Dense, Dropout\n", + "from tensorflow.keras.optimizers import Adam\n", + "from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint\n", + "\n", + "# Load VGG19 with frozen layers\n", + "base_model = VGG19(include_top=False, input_shape=(128, 128, 3))\n", + "base_model.trainable = False # Freeze all layers\n", + "\n", + "# Add custom layers\n", + "x = base_model.output\n", + "x = Flatten()(x)\n", + "x = Dense(4608, activation='relu')(x)\n", + "x = Dropout(0.2)(x)\n", + "x = Dense(1152, activation='relu')(x)\n", + "output = Dense(2, activation='softmax')(x)\n", + "\n", + "# Build the model\n", + "model = Model(inputs=base_model.inputs, outputs=output)\n", + "\n", + "# Compile the model\n", + "model.compile(\n", + " optimizer=Adam(learning_rate=0.001),\n", + " loss='categorical_crossentropy',\n", + " metrics=['accuracy']\n", + ")\n", + "\n", + "# Callbacks\n", + "checkpoint = ModelCheckpoint(\"model_weights/frozen_model.keras\", save_best_only=True, monitor=\"val_loss\", mode=\"min\")\n", + "early_stopping = EarlyStopping(monitor=\"val_loss\", patience=3, restore_best_weights=True)\n", + "\n", + "# Train the model\n", + "history = model.fit(\n", + " train_generator,\n", + " validation_data=valid_generator,\n", + " steps_per_epoch=len(train_generator),\n", + " validation_steps=len(valid_generator),\n", + " epochs=5, # Train for a few epochs\n", + " callbacks=[checkpoint, early_stopping],\n", + " verbose=1\n", + ")\n", + "\n", + "# Test the model\n", + "test_loss, test_acc = model.evaluate(test_generator)\n", + "print(f\"Test Loss: {test_loss}, Test Accuracy: {test_acc}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "irudVzxVyIQL", + "outputId": "7dbf3afd-c265-4149-d523-55052c7e50fb" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/5\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m98s\u001b[0m 521ms/step - accuracy: 0.8268 - loss: 0.4678 - val_accuracy: 0.7500 - val_loss: 0.3887\n", + "Epoch 2/5\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00\n", + "Epoch 3/5\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m86s\u001b[0m 490ms/step - accuracy: 0.9146 - loss: 0.2233 - val_accuracy: 0.8750 - val_loss: 0.3514\n", + "Epoch 4/5\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 879us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00\n", + "Epoch 5/5\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m152s\u001b[0m 544ms/step - accuracy: 0.9279 - loss: 0.1740 - val_accuracy: 0.9375 - val_loss: 0.2463\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 225ms/step - accuracy: 0.9207 - loss: 0.2826\n", + "Test Loss: 0.28576093912124634, Test Accuracy: 0.9118589758872986\n" + ] + } + ], + "source": [ + "# Unfreeze the last block of the base model\n", + "for layer in base_model.layers:\n", + " if layer.name.startswith(\"block5_\"):\n", + " layer.trainable = True\n", + "\n", + "# Recompile the model with a smaller learning rate\n", + "model.compile(\n", + " optimizer=Adam(learning_rate=0.0001), # Smaller learning rate for fine-tuning\n", + " loss='categorical_crossentropy',\n", + " metrics=['accuracy']\n", + ")\n", + "\n", + "# Train the model\n", + "history = model.fit(\n", + " train_generator,\n", + " validation_data=valid_generator,\n", + " steps_per_epoch=len(train_generator),\n", + " validation_steps=len(valid_generator),\n", + " epochs=5, # Train incrementally\n", + " callbacks=[checkpoint, early_stopping],\n", + " verbose=1\n", + ")\n", + "\n", + "# Test the model after fine-tuning\n", + "test_loss, test_acc = model.evaluate(test_generator)\n", + "print(f\"Test Loss: {test_loss}, Test Accuracy: {test_acc}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Gq4l45c7z3YI" + }, + "outputs": [], + "source": [ + "model.save(\"model_weights/vgg19_fine_tuned_block5_91.keras\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BjO2DiEl0oOH" + }, + "source": [ + "#Fine-Tuning with Block4 of VGG19 " + ] + }, + { + "cell_type": "markdown", + "source": [ + "1. **Unfreezing Specific Layers**: \n", + " - Unfreezes the `block4_` layers of the VGG19 model for fine-tuning deeper features while retaining frozen layers from previous blocks.\n", + "\n", + "2. **Recompilation**: \n", + " - Recompiles the model with an even smaller learning rate (`0.00001`) to prevent overfitting and enable gradual adjustments during fine-tuning. \n", + "\n", + "3. **Incremental Training**: \n", + " - Trains the model incrementally for 5 epochs using the training and validation generators. \n", + " - Employs callbacks, including `ModelCheckpoint` and `EarlyStopping`, for efficient and monitored training. \n", + "\n", + "4. **Evaluation**: \n", + " - Tests the fine-tuned model on the test dataset and prints the loss and accuracy. \n", + "\n", + "5. **Purpose**: \n", + " - Refines the model’s performance by allowing adjustments in intermediate layers, leveraging pre-trained knowledge while focusing on dataset-specific features. " + ], + "metadata": { + "id": "KooUSD05FSJG" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ScynhCm40lbA", + "outputId": "f674d921-b23e-4d04-e80d-2fed061a1492" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/5\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m103s\u001b[0m 540ms/step - accuracy: 0.9335 - loss: 0.1700 - val_accuracy: 0.8750 - val_loss: 0.4170\n", + "Epoch 2/5\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.0000e+00 - loss: 0.0000e+00\n", + "Epoch 3/5\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m129s\u001b[0m 497ms/step - accuracy: 0.9528 - loss: 0.1313 - val_accuracy: 0.9375 - val_loss: 0.2495\n", + "Epoch 4/5\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 873us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00\n", + "Epoch 5/5\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m149s\u001b[0m 539ms/step - accuracy: 0.9557 - loss: 0.1185 - val_accuracy: 0.9375 - val_loss: 0.2346\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 214ms/step - accuracy: 0.9160 - loss: 0.3129\n", + "Test Loss: 0.2986111342906952, Test Accuracy: 0.9118589758872986\n" + ] + } + ], + "source": [ + "for layer in base_model.layers:\n", + " if layer.name.startswith(\"block4_\"):\n", + " layer.trainable = True\n", + "\n", + "# Recompile the model with a smaller learning rate\n", + "model.compile(\n", + " optimizer=Adam(learning_rate=0.00001), # Even smaller learning rate\n", + " loss='categorical_crossentropy',\n", + " metrics=['accuracy']\n", + ")\n", + "\n", + "# Train the model\n", + "history_block4 = model.fit(\n", + " train_generator,\n", + " validation_data=valid_generator,\n", + " steps_per_epoch=len(train_generator),\n", + " validation_steps=len(valid_generator),\n", + " epochs=5, # Train incrementally\n", + " callbacks=[checkpoint, early_stopping],\n", + " verbose=1\n", + ")\n", + "\n", + "# Test the model\n", + "test_loss, test_acc = model.evaluate(test_generator)\n", + "print(f\"Test Loss: {test_loss}, Test Accuracy: {test_acc}\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "GZVieJHZ2jKb" + }, + "outputs": [], + "source": [ + "model.save(\"model_weights/vgg19_fine_tuned_block4_91.keras\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VcgPBZmL2pQp" + }, + "source": [ + "#Regularization and Fine-Tuning to Mitigate Overfitting" + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Regularization Enhancements** \n", + "- Introduces L2 regularization (`kernel_regularizer=l2(0.0001)`) in dense layers to penalize large weights and reduce overfitting. \n", + "- Adjusts dropout rate to reduce aggressive regularization. \n", + "- Recompiles the model with a slightly increased learning rate (`0.0005`) for better convergence during retraining." + ], + "metadata": { + "id": "6SgjB3QCWSMS" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Ps6n3phY2wRc" + }, + "outputs": [], + "source": [ + "from tensorflow.keras.regularizers import l2\n", + "\n", + "# Adjust custom layers with less aggressive regularization\n", + "x = base_model.output\n", + "flat = Flatten()(x)\n", + "class_1 = Dense(4608, activation='relu', kernel_regularizer=l2(0.0001))(flat) # Reduce L2 penalty\n", + "dropout = Dropout(0.3)(class_1) # Decrease dropout\n", + "class_2 = Dense(1152, activation='relu', kernel_regularizer=l2(0.0001))(dropout)\n", + "output = Dense(2, activation='softmax')(class_2)\n", + "\n", + "# Update the model\n", + "model = Model(inputs=base_model.inputs, outputs=output)\n", + "\n", + "# Recompile\n", + "model.compile(\n", + " optimizer=Adam(learning_rate=0.00005), # Increase learning rate slightly\n", + " loss='categorical_crossentropy',\n", + " metrics=['accuracy']\n", + ")" + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Incremental Fine-Tuning in Block3** \n", + "- Gradually unfreezes layers in `block3_conv3` of the VGG19 model, starting with one layer to avoid overwriting pre-trained features. \n", + "- Recompiles the model and trains it for 5 epochs with callbacks (`ModelCheckpoint` and `EarlyStopping`). \n", + "- Maintains a smaller learning rate (`0.00005`) for precise fine-tuning of earlier layers." + ], + "metadata": { + "id": "DRaoeNobWcUy" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "iJFGFqdN23Lh" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "eEtoeD-g26XA", + "outputId": "6f8ae558-d65b-4ffb-ca38-05b6b4a20669" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/5\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m108s\u001b[0m 569ms/step - accuracy: 0.7304 - loss: 1.1853 - val_accuracy: 0.8125 - val_loss: 0.7273\n", + "Epoch 2/5\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00\n", + "Epoch 3/5\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m132s\u001b[0m 530ms/step - accuracy: 0.9253 - loss: 0.6152 - val_accuracy: 0.6875 - val_loss: 1.4811\n", + "Epoch 4/5\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00\n", + "Epoch 5/5\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m141s\u001b[0m 535ms/step - accuracy: 0.9314 - loss: 0.4904 - val_accuracy: 0.8750 - val_loss: 0.5879\n" + ] + } + ], + "source": [ + "# Gradually unfreeze layers in block3\n", + "for layer in base_model.layers:\n", + " if layer.name == \"block3_conv3\": # Start with one layer\n", + " layer.trainable = True\n", + "\n", + "# Recompile and train\n", + "model.compile(\n", + " optimizer=Adam(learning_rate=0.00005),\n", + " loss='categorical_crossentropy',\n", + " metrics=['accuracy']\n", + ")\n", + "\n", + "# Train the model\n", + "history_block3_partial = model.fit(\n", + " train_generator,\n", + " validation_data=valid_generator,\n", + " steps_per_epoch=len(train_generator),\n", + " validation_steps=len(valid_generator),\n", + " epochs=5,\n", + " callbacks=[checkpoint, early_stopping],\n", + " verbose=1\n", + ")" + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Loss Trend Visualization** \n", + "- Plots the training and validation loss trends across epochs using Matplotlib. \n", + "- Helps assess the model’s training stability and overfitting by comparing the loss curves. \n", + "- Provides insights into the effectiveness of regularization and fine-tuning strategies." + ], + "metadata": { + "id": "oUnPvxNvWp__" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 453 + }, + "id": "TKFizUHA6xWv", + "outputId": "eb403a93-45d9-4e71-c977-be930744cb36" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAG0CAYAAADgoSfXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+oklEQVR4nO3dd3gU5fbA8e872SQkgSSUhIQWQi/SFaQJiEoVQUGaP0W8KAqo167YFa+g16sUKyii0kTpRRBBpYPUUKSDQEISSCG9zPv7YyESCZCyyexuzud58jxkMuWczC57Mu+8Z5TWWiOEEEIIYRHD6gCEEEIIUbpJMSKEEEIIS0kxIoQQQghLSTEihBBCCEtJMSKEEEIIS0kxIoQQQghLSTEihBBCCEtJMSKEEEIIS0kxIoQQQghLSTEihBAFMH36dJRSTJ8+3epQhHAbUowI4QKUUiilrA6j0GrWrJmTQ36+Xn/9datDFkKUIJvVAQgh3N+TTz5JfHx8rmXTp0/nxIkTPPDAA9SsWTPXzzp37lxisQkhrCfFiBCi2D355JNXLFu7di0nTpxg2LBhUnwIUcrJMI0QbiY9PZ13332XJk2a4Ovri7+/Px07dmTu3Ll5rr9o0SK6du1KaGgo3t7eVKlShU6dOvHxxx/nWu/o0aM8/PDD1KlTBx8fHypUqECTJk0YOXIk586dc1j8w4YNQynF0aNHmTRpEk2bNsXHxydXwXL+/HlefPFFGjZsiI+PDwEBAXTt2pWVK1desb/L7/FYs2YNnTt3ply5cvj7+9OrVy/279+fZxyHDx9mwIABlC9fHj8/P9q1a8fSpUuvGvfu3bsZPHgwNWvWxNvbm6CgIFq2bMmTTz5JZmZmkX8vQrgzuTIihBvJyMigW7du/PrrrzRo0IBRo0aRkpLCvHnzGDhwIDt37uSdd97JWf/zzz/nkUceISQkhDvvvJNKlSoRHR3N7t27+eqrr3jssccAiIyM5KabbiIxMZGePXtyzz33kJaWxrFjx/jmm28YPXo0FStWdGguTzzxBL///ju9evWiZ8+eeHh4AHDixAk6d+7M8ePH6dixI927dyc5OZklS5bQvXt3PvvsM0aMGHHF/pYsWcLChQvp0aMHI0eOZN++fSxbtoytW7eyb98+KlWqlLPuoUOHaNu2LefOnaNHjx40b96cw4cP07dvX3r06HHFvnfv3k2bNm1QStGnTx/Cw8NJTEzk8OHDfPzxx7z99tt4eno69PcjhFvRQginB+j8vF3feecdDegePXrozMzMnOVnz57VYWFhGtDr16/PWd6yZUvt5eWlz549e8W+YmJicv49ceJEDegPP/zwivWSkpJ0SkpKQVPSnTp10oBes2ZNruUPPPCABnSVKlX00aNH89xOKaVnzZqVa3lcXJxu1qyZLlOmjI6KispZ/tVXX2lAe3h46J9//jnXNi+88IIG9Pjx43Mtv/322/PMd8GCBTnn4quvvspZ/tRTT2lAL1iw4Ip4z58/r7Ozs6/5uxCitJNhGiHcyJdffolSig8++ACb7e8Ln8HBwbzyyisATJ06Ndc2Npstz7/aL79ScImPj88Vy/z8/PJcXlTPPfcc4eHhuZbt2rWLX3/9lXvuuYdBgwbl+llgYCBvvPEGaWlp/PDDD1fsb9CgQXTt2jXXsocffhiALVu25Cw7deoUq1atIjw8nNGjR+da/6677qJTp05XjTmv30P58uUxDPmvVohrkWEaIdzEhQsXOHz4MFWrVqVBgwZX/PzWW28FYMeOHTnLhg4dytNPP02jRo0YNGgQnTp1on379gQFBeXatk+fPrz00kuMGjWKn376iW7dutG+fXsaNWpUbFOOW7dufcWyjRs3ApCQkJDn9N+YmBiAPO8DufHGG69YVr16dQDi4uJyll36/XTo0CFnaOhynTt35tdff821bODAgXz00Uf07duX/v37c9ttt9G+fXtq1659tfSEEJeRYkQIN5GQkABAaGhonj+/tPzyKbZPPfUUlSpV4uOPP2bixIl8+OGHKKXo1KkT7733Xs4HeFhYGFu2bOH1119nxYoV/Pjjj4D9w/yZZ57h8ccfd3g+ISEhVyy7dKPsqlWrWLVq1VW3TUpKumJZYGDgFcsuXT3Kzs7OWXbp91i5cuV8x9W6dWt+//13xo0bx7x58/jmm28AqF+/Pq+99hqDBw++aqxCCJlNI4TbCAgIACAqKirPn0dGRuZa75L777+fTZs2ce7cOZYuXcpDDz3Eb7/9Rrdu3XKuNAA0bNiQOXPmcO7cObZt28a7776LaZo88cQTTJs2zeH55HXF5VLsH330EVrrq3599dVXhT7upWOcPXs2z59f7ffbtm1blixZQlxcHOvXr+eVV17h7NmzDBkyhJ9//rnQ8QhRGkgxIoSbKFeuHLVr1+b06dMcOnToip+vWbMGgJYtW+a5fWBgID179uSLL75g2LBhnD9/nt9+++2K9Ww2G61ateL5559n1qxZACxYsMBxiVzDzTffDMDvv/9ebMdo0aIFAOvWrct1xeSStWvXXnN7b29v2rVrx5tvvsnEiRMBWLhwocPjFMKdSDEihBsZPnw4WmueffbZXB+ksbGxvPXWWznrXLJmzRq01lfsJzo6GgBfX18A/vjjj5zhi8tdunpwab3iduONN9KxY0d+/PFHvvzyyzzX2bNnT078hVGtWjVuv/12jh07xuTJk3P9bOHChVfcLwKwYcMGUlNTr1he0r8fIVyV3DMihAsZNmzYVX/28ccf88wzz7B8+XIWLlxIs2bN6NmzJykpKXz//fdER0fz3HPP0aFDh5xt+vXrR9myZbn55pupWbMmWmt+//13tm7dSqtWrbjtttsA+Oabb/jss8/o0KEDtWvXpnz58hw5coTFixfj7e2dZ4fV4jJz5kxuvfVWHnroISZOnEibNm0IDAzk1KlT7N69m4iICDZu3EhwcHChjzFlyhTatm3Lk08+ycqVK2nWrBmHDx9m/vz53HnnnSxevDjX+hMmTOCXX36hY8eOhIeHU7ZsWfbu3cvy5cspX758zqwdIUTepBgRwoV8/fXXV/3Zhx9+iK+vL6tWreKDDz5g5syZTJo0CZvNRrNmzfjwww+vuJHy3Xff5aeffmL79u0sW7aMMmXKEBYWxvjx43n00UdzpvwOHjyY9PR0NmzYwB9//EFqaipVq1Zl0KBBPP3009xwww3FmvflqlWrxh9//MGkSZP44Ycf+O6778jOziYkJIRGjRoxZswYmjRpUqRj1K1bl02bNvHCCy/w888/s3btWpo2bcqCBQuIiYm5ohh57LHHKF++PJs3b2bdunVkZWVRrVo1HnvsMZ5++mnCwsKKFI8Q7k7pvK7RCiGEEEKUELlnRAghhBCWkmJECCGEEJaSYkQIIYQQlpJiRAghhBCWkmJECCGEEJaSYkQIIYQQlpJiRAghhBCWkmJECCGEEJZyqQ6scXFxZGVlOXSfQUFBuZ5M6o7cPUfJz/W5e46Sn+tz9xyLKz+bzUb58uWvv57Dj1yMsrKyyMzMdNj+Lj2iPCsrK8+HhbkDd89R8nN97p6j5Of63D1HZ8hPhmmEEEIIYSkpRoQQQghhKSlGhBBCCGEpKUaEEEIIYSmXuoFVCCFEwaWnp5Oenl5s+09NTSUjI6PY9u8M3D3HouTn7e2Nt7d3kY4vxYgQQrix5ORklFKUK1cuZ9aEo3l6ejp0pqMzcvccC5uf1prU1FSSk5Px8/Mr9PFlmEYIIdxYVlYWvr6+xVaIiNJNKYWvr2+Re4BJMSKEEG5MihBREor6OpNiRAghhBCWkmJECCGEEJaSYkQIIUSp0KZNG7744gurwxB5kNk0QgghnErVqlWv+fOnnnqKp59+usD7XbZsGb6+voUNC4D+/fvTqFEj3nzzzSLtR+QmxYhwaetOJFIx0YOG/lZHIoRwlB07duT8e9GiRbz//vv89ttvOcsun0KqtSY7Oxub7fofZxUrVnRsoMJhZJhGuKwdkclM+P00zy+K4FBsqtXhCOEStNbo9DRrvvL5RNjg4OCcr0v9US59f/jwYerVq8cvv/xC9+7dCQ8PZ8uWLRw/fpwHH3yQZs2aUbduXXr27JmrgIErh2mqVq3KzJkzeeihh6hduzbt27dn5cqVRfr9Ll26lC5duhAeHk6bNm349NNPc/18+vTptG/fnlq1atGsWTNGjBiR87MlS5bQtWtXateuTePGjRk4cCApKSlFisdVyJUR4ZJSMrOZsiky5/svt0cz7rbqMo1RiOvJSMccfa9Dd5nf3q7G5LngXcYhx3znnXd49dVXqVGjBgEBAZw5c4Zbb72V559/Hi8vL+bNm8eDDz7Ib7/9ds1hnw8++ICXX36Zl19+ma+++orRo0ezefNmypcvX+CYdu/ezciRI3nqqafo06cP27Zt46WXXqJ8+fIMHDiQXbt28eqrrzJx4kRuvPFG4uPj2bx5MwBnz55l1KhRjB07lh49epCUlMTmzZvzXcC5OilGhEv6ekcMMSlZBPnZSEw32RudwuZTSdxcvZzVoQkhSsCzzz7LLbfckvN9+fLlady4cc73zz33HCtWrGDlypU8+OCDV93PvffeS9++fQF44YUXmDZtGjt37qRLly4Fjunzzz+nQ4cO/Pvf/wagdu3aHDp0iE8//ZSBAwdy+vRpfH19ue222yhbtizVqlXjhhtuACA6OpqsrCx69uxJtWrVAGjYsGGBY3BVUowIl7M7KpkVh+IBeKJtFY4kKb7adIKvd0RzY9Wy2Ay5OiLEVXl5269QOFC+W4l7Fe35JZdr2rRpru+Tk5P573//y+rVq3M+2NPS0jh9+vQ193P5B76vry/lypUjNja2UDEdOnSIbt265Vp20003MXXqVLKzs7nllluoVq0abdu2pXPnznTp0oUePXrg4+NDo0aN6NChA127dqVTp0506tSJXr16ERgYWKhYXI3cMyJcSlqWyZTNUQB0rxtI0xA/7m8dRkAZD85cyOSni0WKECJvSimUdxlrvhw4jPrPWTFvvvkmK1as4IUXXuDHH39k5cqVNGjQ4LoPf/P09Lzi92OapsPivFzZsmVZsWIFU6ZMoXLlyrz//vvcdtttJCQk4OHhwezZs/n222+pV68eX331FbfccgsnT54sllicjRQjwqV8szOGqKRMgnxtPNAiCICy3jaGNLX/e9aeWJIysq0MUQhhgW3btjFgwAB69OhBw4YNCQ4O5tSpUyUaQ926ddm6dWuuZVu3bqVWrVp4eHgAYLPZuOWWW3j55Zf5+eefOXXqFOvXrwfshdBNN93EM888w08//YSnpyfLly8v0RysIsM0wmXsi05h6Z9xAIy6ORRfT4+cn91RJ5DFB85zKjGDH/ae44EWwVaFKYSwQHh4OMuXL+f2229HKcV7771XbFc4zp8/T0RERK5llStX5pFHHqFnz57873//o0+fPvzxxx989dVXvPPOOwCsWrWKkydP0qZNGwIDA1m9ejWmaVK7dm22b9/OunXr6NSpE5UqVWL79u2cP3+eunXrFksOzkaKEeES0rNMJm2KRAO31Q6gRWjuR1V7GIoHWwbz1tpTLDoQR/e6gVQu62VNsEKIEvfaa6/x1FNPcdddd1GhQgVGjRpFUlJSsRxr/vz5zJ8/P9eyZ599lieffJJPP/2U999/n48++ojg4GCeffZZBg4cCEBAQADLly/ngw8+IC0tjfDwcKZMmUL9+vU5dOgQmzdvZurUqSQlJVG1alVeffVVbr311mLJwdko7ULzhmJiYvJ3k1Q+KaUIDQ0lMjLSbadPuUuOX22PZsH+81TwsTGpdzhlvexXRS7PzzRNXl39F7vPpnBLmD9Pd6hicdRF5y7n71rcPUer80tMTMTfv3i7Aub7BlYX5u45FjW/q73OPD09CQoKuu72cs+IcHp/xqay6MB5AEa1CckpRP5JKfvVEQX8diKRg9IITQghXIIUI8KpZWSbTNwYiamhc7g/N1Yte831a1UoQ5da9ur8q+3RbvmXthBCuBspRoRTm7PnHKcSMwgs48G/WlXO1zZDmwXh5aHYF5PKplPFM2YshBDCcaQYEU7r8Lk0ftx3DoCRrUMo55338Mw/VfL1pG/DCgB8vSOazGy5OiKEEM5MihHhlDKzNRM32YdnOoSVo20B27z3a1SBwDIeRF7IZMWhuGKKUgghhCNIMSKc0ry9sZyITyfA24OHb8zf8MzlfD09chqhzdkTS1K6NEITQghnVeBiZN++fbz77rs88sgj3HvvvWzZsiXf2x44cIBBgwbx7LPPFvSwohQ5FpfG9xH24ZmHb6pMQJnCtcO5rXYA1QO8uJBh8v3ec44MUQghhAMVuBhJT0+nZs2aPPTQQwXaLjk5mSlTptCkSZOCHlKUIlmmZuLGSLI13Fy9LO1rFP4pvB6GYtjFTqxL/ozjbNK1n1EhhBDCGgUuRlq0aMGgQYNo3bp1gbb74osvaN++falpbSsKZ/6+cxyNS6ecl8HIm0KK/GCtVlX8aBbiS5apmbEzxkFRCiGEcKQSuWdkzZo1nD17lgEDBuRr/czMTFJSUnK+UlP/bl6llHLoV3Hs09m+XCXHvxIymL3HPpzyrxtDqODrWeT8DMNgeKvKKGDdiQv8GZtmeZ7uev4kR+fMrzTr378/r776as73bdq04YsvvrjmNlWrVmXFihVFPraj9uNKivL6K/Zn00RGRjJz5kzeeOONnKcWXs/8+fOZN29ezvfh4eGMHz8+Xy1lCyMkJKRY9utMnD3HLNPkxdXbyTI1HWpXZHC7+gV6IV8rv9BQ6H0ijcURkXy7J46pQ8Jd7j9pZz9/juDuOVqVX2pqKp6ensV+HEce47777iMzM5M5c+Zc8bNNmzbRp08f1qxZQ+PGja+5H6UUHh4eObGtXLkSX1/f68Z6+TaXy2vZhAkTWL58OWvWrMm1fM+ePQQGBhbr73727Nm8/PLLHD582CH7K0qsXl5ehIaGFnr7Yi1GTNNk4sSJDBgwgCpV8v+ckH79+tG7d++c7y99cMTExJCVleWw+JRShISEEBUV5badOl0lx/n7zrE3MhE/T4OHmpUnKioqX9vlN7+76/nx037F7jMJ/LjlIO1qFO+zOhzFVc5fUbh7jlbnl5GRUezPVHH0c1sGDhzIiBEjOHHixBWfHd999x3NmjWjXr161z2m1prs7Oyc9QICAgCuu93l21xytRxN00RrfcXPKlSokK9jFcWlz0NHHKOo5zAjI4PIyMgrlttsNuufTZOamsqRI0f48ssvGTRoEIMGDeKHH37gxIkTDBo06IpHMF/i6emJr69vzpePj0/Oz7TWDv0qjn0625ez53gqIZ3vdtnv5xjeKpgKPjaH51fBx5bTCG369mgyskzL83aX8yc5Ond+/6S1Ji3LdOxXZv7WyyuevNx2221UrFiRuXPn5lqenJzMkiVLGDRoEOfPn+exxx6jVatW1K5dm65du7JgwYJr7vefwzRHjx7l7rvvplatWnTu3Jnffvvtim3GjRtHhw4dCAsLo23btkyYMCHnQ3vOnDl88MEH7Nu3j6pVq1K1atWcqzn/HKbZv38/AwYMoHbt2jRu3JjnnnuO5OTknJ8/+eSTDB8+nE8//ZQWLVrQuHFjXnrppSIVCKdPn+bBBx+kbt261K9fn0ceeYSYmL/vndu7dy/9+/enXr161KpVi+7du7Nr1y4ATp06xQMPPECjRo2oU6cOXbp0YfXq1dc8Xn5ef1dTrFdGfHx8eP/993MtW7lyJRERETz11FMEBwcX5+GFC8g2NZM2RZKRrWkR6kfXWgHFdqy7G1Vk5eF4opIyWX4ojj4NKhTbsYRwVunZmoFzDlpy7DkD61HGdv0hUpvNRv/+/fn+++954okncq6OL1myhOzsbPr27UtycjJNmzblscceo1y5cqxevZrHH3+csLAwWrRocd1jmKbJiBEjqFSpEosXL+bChQu89tprV6zn5+fH//73P6pVq8aePXt47rnnKFu2LI899hh9+vThzz//ZO3atcyePRuAcuWunAGYkpLC0KFDadWqFUuXLiU2NpZnn32WsWPH8uGHH+ast2HDBoKDg/n+++85duwYjz76KI0bN2bo0KHXzSev/B588EH8/Pz44YcfyMrKYuzYsTz66KM5t0GMGTOGxo0b8+677+Lt7c3OnTux2exlwaVC6IcffsDX15eDBw/i5+dX4Djyq8DFSFpaWq5L6NHR0Rw/fpyyZctSqVIlZs6cyfnz5xk9ejSGYVCjRo1c2/v7++Pp6XnFclE6LTsYx/6YVHxsBqPaFH32zLX4eBoMbRbElM1RzNkTy63hAZTNZ4t5IUTJGjRoEJ988gkbN26kXbt2gP1KRM+ePfH398ff35+RI0fmrD98+HDWrl3L4sWL81WM/P777xw+fJjvvvsu536eF154gfvuuy/Xek8++SRgv2IfGhrK0aNHWbhwIY899hg+Pj74+fnh4eFxzT+u58+fT3p6Oh999BG+vr4AvP322wwbNoyxY8fmDGMEBAQwbtw4PDw8qFOnDl27dmXdunWFKkbWrVvHgQMH2LhxI1WrVgXgo48+okuXLuzcuZPmzZtz+vRpRo4cSZ06dfD09KR69eo52585c4aePXvSsGFDAMLCwgocQ0EUuBg5cuQIb7zxRs73M2bMAKBTp06MGjWKuLg4YmNjHRehcFuRFzJyptsOaxlEkF/x32TXtVYASw7EcSIhnbkRsQzP58P3hHAX3h6KOQPrOXSfnjZPMrOuP5zg7ZH/Pzbq1KnDjTfeyOzZs2nXrh3Hjh1j8+bNfP/994D9vo6JEyeyZMkSoqKiyMjIICMjI9ew/rUcOnSIKlWq5LqxuFWrVlest3DhQr788ktOnDhBcnIy2dnZlC177aeH53Wshg0b5hQiADfddBOmaXLkyJGcYqRevXq5JnpUrlyZ/fv3F+hYlx+zSpUqOYXIpf0HBARw6NAhmjdvzsMPP8yzzz7LDz/8QOfOnenRowc1a9YE7MXdiy++yK+//krHjh3p2bMnjRo1KlQs+VHgYqRx48ZXjONdbtSoUdfc/t577+Xee+8t6GGFmzG1ZvLmKDKyNU0q+3JHncASOa6HoRjWMog31pxi6cE4etYrT0g5rxI5thDOQCmVr6GSgvD0NPAohlsQBw8ezMsvv8w777zDnDlzqFmzJm3btgXgk08+Ydq0abzxxhs0aNAAX19fXnvtNYfeMLpt2zbGjBnD008/zW233YaPjw8LFy7k888/d9gxLpfXbJaC3HdRUE8//TR9+/Zl9erVrF27lgkTJvDxxx/To0cPhgwZQqdOnVi9ejW//fYbkydP5tVXX2X48OHFEos8m0ZY4qdD8UScTcHbQzG6TQhGCU61bRHqR/MQX7JMpBGaEE7szjvvxDCMnHYPAwcOzBnK3bp1K926deOee+6hcePGhIWFcfTo0Xzvu27dupw5c4azZ8/mLNu+fXuudbZt20a1atV44oknaN68ObVq1eL06dO51vH09MQ0zesea//+/aSkpOQs27p1K4ZhULt27XzHXBCX8rs83oMHD5KQkEC9en9fGatduzYPP/ww33//PT169Mg1nbpq1arcf//9TJ06lUceeYSZM2cWS6wgxYiwQHRSJtN32IuA+1sElfiVCaUUD7YMRgHrT17gQEzqdbcRQpQ8Pz8/+vTpw7vvvkt0dHSuq+rh4eH89ttvbN26lUOHDvH8888X6BaBjh07UqtWLZ588kn27t3L5s2bGT9+fK51LhUfCxcu5NixY0ybNo3ly5fnWqd69eqcPHmSiIgIzp8/T3p6+hXHuvvuu/H29uaJJ57gwIEDrF+/nldeeYV77rmnyP2zsrOziYiIyPV16NAhOnbsSIMGDRgzZgx79uxhx44dPPHEE7Rt25ZmzZqRmprK2LFj2bBhA6dOnWLz5s3s2rUrp0v6q6++ytq1azl58iR79uxh/fr11KlTp0ixXosUI6JEaa2ZsjmStCyTRkE+9KxX3pI4apYvQ9fa9pk7X26PLtZLoUKIwhs0aBDx8fF06tQp1/0dTzzxBE2aNGHo0KH079+foKAgunXrlu/9GobB1KlTSUtLo3fv3jzzzDM8//zzuda54447GDFiBGPHjuXWW29l27ZtOTe0XtKzZ086d+7MvffeS5MmTfKcXuzj48N3331HfHw8vXr14uGHH6ZDhw6MGzeuQL+LvCQnJ9OtW7dcX8OGDUMpxVdffUVAQAB33303gwYNokaNGnzyySeAvbFbXFwcTzzxBB07dmTEiBF06dKFp59+GrDPxhk7diydO3dm6NCh1KpVi3feeafI8V6N0i70v3BMTIxDxwOVUoSGhhIZGem2H0bOluOqw/FM3hyFl4fio57hVPEv2lWRouR3LiWTRxcdJT1b81yHKrQPc75GaM52/oqDu+dodX6JiYn4+xfva9vRTc+ckbvnWNT8rvY68/T0tL7pmRCXi03J5Mvt0QAMbVapyIVIUVX09aRfI3uvkRk7Y8jMvva4rxBCiOIhxYgoEVprPt4cRUqmSf1KZbizvnM0HOvXqCLlfWxEJWWy7GC81eEIIUSpJMWIKBFrjiXyx5lkPA3FmJtD8TCc40F1ZWwGQ5tWAmBORCwX0rMtjkgIIUofKUZEsTufmsXUP+zT5wY1rUT1AG+LI8rt1loBhAV6k5xhMidCGvYJIURJk2JEFCutNZ9uiSI5w6R2hTL0a+gcwzOX8zDsU30Blh+MI/JChsURCSFE6SLFiChWv5+4wOZTSdgMePzmEKcZnvmnFqF+tAj1k0Zowi1drymXEEXhiNeXFCOi2MSnZfH5NvvwzIAbKlGzfBmLI7q2B1sGYyjYcPIC+6NTrr+BEC7A19eXCxcuSEEiioVpmly4cCHXc3cKo8DPphEivz7fepYL6dmEl/emf+OKVodzXWGB3nStFcCqIwl8uT2aCd3CivUpwkKUBJvNhp+fH0lJScV2DC8vLzIy3Ht4091zLEp+fn5+2GxFKyekGBHFYsPJRNafvIChYMzNodicdHjmn4Y0C+L3E4kcPJfGuhMX6FjT+RqhCVFQNput2BqfWd3UrSS4e47OkJ8M0wiHS0zP5tOt9uGZexpVpHYF5x6euVwFHxv9Gtmv4kgjNCGEKBlSjAiHm7rtLAlp2dQI8GJgE+cfnvmnvg0rUMHHRnRyJksPxlkdjhBCuD0pRoRDbTl1gV+PJ+YMz3h6uN5LrIzNYGgzeyO0uRHnSJRGaEIIUaxc75NCOK2kjGw+3mIfnrmrQQXqVfKxOKLC6xIeQM2LjdDm7pFGaEIIUZykGBEO8+Uf0cSlZlGlnBeDL7ZYd1WXN0JbdjCOM4nuexe9EEJYTYoR4RDbzySx+mgCCni8bQjeNtd/aTUP9aNVFT+yNczYGW11OEII4bZc/xNDWC4lM5vJm6MA6N2gPA2Ditb8xpkMa2FvhLbxryT2SiM0IYQoFlKMiCKbvj2GcylZhJT15P+aBVkdjkPVCPTm9tqBAHy1PRrTDXsMCCGE1aQYEUWyOyqZnw7HAzD6ZvcYnvmnwU0rUcZmcOhiIzQhhBCO5X6fHKLEpGaaTNpkH57pUTeQJpX9LI6oeJT3sXFPI/vThr/ZGU2GNEITQgiHkmJEFNo3O6OJTs4k2M/GAy2CrQ6nWN2V0wgtiyV/SiM0IYRwJClGRKHsjU5h6cF4AEa1CcXH071fSt42g/suNkKbF3GOxLQsiyMSQgj34d6fIKJYpGeZTNoUCcDttQNoHuqewzP/1Dk8gPDy3iRnmsyOOGd1OEII4TakGBEF9t2uGCIvZFLR15bTGKw0uLwR2oqDcZyWRmhCCOEQUoyIAjkQk8qiA/Z7Jka1DsHPy8PiiEpWsxA/brzYCO3rHdIITQghHEGKEZFvGdn24RkN3FrLn1ZVy1odkiUeaGlvhLb5VBJ7z0ojNCGEKCopRkS+zd4dy6nEDMqX8WB4y8pWh2OZGgHe3FEnEIAvpRGaEEIUmRQjIl8OnUtl/v7zADzaOoRy3qVreOafBjexN0I7fD6N348nWh2OEEK4NClGxHVlZptM2hiFqeGWMH/aVC9ndUiWC/SxcU/jS43QYkjPkkZoQghRWFKMiOuaG3GOEwnpBJTxYMSNpWf2zPXc1aACFX1txKRIIzQhhCgKKUbENR09n8YPe+09NR65qTL+ZWwWR+Q87I3Q7A8GnLf3HAnSCE0IIQqlwJ8s+/btY9GiRRw7doy4uDieeeYZWrdufdX1N2/ezMqVKzl+/DhZWVlUq1aNAQMG0Lx586LELUpAlqmZuCmSbA1tq5ejfQ1/q0NyOp3D/Vl84DxH49KZvSeWR24KsTokIYRwOQW+MpKenk7NmjV56KGH8rX+/v37adq0KS+++CLvvvsujRs3Zvz48Rw7dqzAwYqS9ePecxyLS6ectwcjbyq9s2euxVCXNUI7FM+pxHSLIxJCCNdT4CsjLVq0oEWLFvlef9iwYbm+HzJkCNu2beOPP/4gPDy8oIcXJeREfDpzImIBGNEqmEAfGZ65mqYhftxU1Y+tp5P5ekcMYztVszokIYRwKSX+CWOaJqmpqZQte/WGWZmZmWRmZuZ8r5TCx8cn59+OcmlfjtynsylMjtmmZtKmSLJMaF2tLJ3CA5z2d+Qs53BYy8r8ceYoW04lEXE2hSYhjnlej7PkV5zcPUfJz/W5e47OkF+JFyOLFy8mLS2Ntm3bXnWd+fPnM2/evJzvw8PDGT9+PEFBQcUSU0iI+4/zFyTHGZtPcOhcGuW8bbx+ZzOCynoXY2SOYfU5DA2Ffn+l88PO03yzJ46vm9fGcOAb2+r8SoK75yj5uT53z9HK/Eq0GFm3bh3z5s3j2WefJSAg4Krr9evXj969e+d8f6lai4mJISvLcTMWlFKEhIQQFRWFdtMumgXN8VRCOp+us9/PM7xlEFkXzhN5obijLDxnOod31fFl2V6DA2cvMHvDn3SpdfXXeH45U37Fxd1zlPxcn7vnWJz52Wy2fF1IKLFiZP369Xz66ac89dRTNG3a9Jrrenp64unpmefPiuOFoLV2yxfY5fKTY7ap+WhjJJmmplUVP7qE+7vM78UZzmGAtwf9G1Xkm10xfLMzmrbVy+Jtc8zseWfIr7i5e46Sn+tz9xytzK9E+oysW7eOjz/+mCeeeIKWLVuWxCFFISz5M44/Y1PxsRk82jrEbcdHi9OdDcpTyddGbEoWiw9IIzQhhMiPAhcjaWlpHD9+nOPHjwMQHR3N8ePHiY21z7yYOXMmkydPzll/3bp1TJkyhfvvv5+6desSHx9PfHw8KSnytFNnEnkhg293xQDwYMtggvzyvjIlrs3bZvB/zf9uhBYvjdCEEOK6CjxMc+TIEd54442c72fMmAFAp06dGDVqFHFxcTmFCcDPP/9MdnY206ZNY9q0aTnLL60vrGdq++yZjGxN0xBf7qhT9HsdSrNbavqz6EAcR86nMXt3LCNbu/dNb0IIUVQFLkYaN27M3Llzr/rzfxYYr7/+eoGDEiVr+cF49kanUsamGN1GhmeKyt4ILYiXf/6Lnw7H06t+eaoHOP+MJCGEsIo8m6aUO5uUwYyd0QDc3zyYymW9LI7IPTSp7EframUxNXy9I8bqcIQQwqlJMVKKaa2ZvDmKtCxN42AfetQLtDokt/JAiyAMBVtPJ7E7KtnqcIQQwmlJMVKKrTqSwO6oFLw8FGNuDnVoky4B1fy96V43EICvtkdjuvGUQCGEKAopRkqpmORMvvzDPjxzX7MgQsvJ8ExxGNSkEr6eBkfj0ll7LNHqcIQQwilJMVIKaa35eHMUqVkm9Sv50Lt+eatDclsBZWz0b1wRgG93xZCeZVockRBCOB8pRkqhNccS2R6ZjKehePzmEDwMGZ4pTnc2KE+Qr41zKVksPHDe6nCEEMLpSDFSypxLyWTqH2cBGNy0EtVkymmx8/L4uxHaD3vPE58qjdCEEOJyUoyUIlprPt16luQMk7oVy9C3YQWrQyo1Otb0p06FMqRlmczaE3v9DYQQohSRYqQU+e14IltOJWEzYMzNoTI8U4IMpRjeMhiAlYfjOZmQbnFEQgjhPKQYKSXiUrP4Ypt9eGbgDZUIC5ThmZLWuLIvbS41QtsebXU4QgjhNKQYKSU+2xrFhQyT8PLe3H1xdocoeQ+0CMZDwbYzyeySRmhCCAFIMVIqrP4zmg0nL+Ch4PGbQ7HJ8Ixlqvp70b2efSr1V9ujyTalEZoQQkgx4uYS07IY//OfANzTuCK1KpSxOCIx6IaK+HkaHItL59fj0ghNCCGkGHFzn287S1xKJmGB3tx7QyWrwxGAfxkb/W+42AhtpzRCE0IIKUbc2Oa/LvDb8USMi8Mznh4yPOMsetcvT7CfjXOpWSzcL43QhBClmxQjbiopPZtPttpnz9x3Uw3qVvKxOCJxOXsjNPtU3x/2nSNOGqEJIUoxKUbc1LTtZ4lLzaKavxcPtw+3OhyRh45h5ahbsQxpWZpZu6URmhCi9JJixA39cTqJX44mooDH24bibfOwOiSRB3VZI7RVR+I5ES+N0IQQpZMUI24mOSObKVuiAOjToDwNgnwtjkhcS6NgX9pWv9gIbYc0QhNClE5SjLiZ6TuiOZeSRWg5T4Y2C7I6HJEP9ze3N0L740wyOyOlEZoQovSRYsSN7IxMZuXhBADGtAnF2yan1xVU8feihzRCE0KUYvJp5SZSMrOZsjkSgF71AmlcWYZnXMnAJpXw8zQ4Hp/OmmMJVocjhBAlSooRNzFjRwzRyVkE+3nmTBkVrsPf24MBlxqh7YolTRqhCSFKESlG3EDE2RSWH4oHYPTNIfh4yml1RfZGaJ7EpWaxQBqhCSFKEfnUcnHpWSaTNtmHZ7rVCaRZiJ/FEYnC8vQwuL+5/abj+fvOcV4aoQkhSgkpRlzcN7tiiErKpJKvjWEtZfaMq+sQVo56FxuhzdwVY3U4QghRIqQYcWH7o1NYciAOgFFtQvD1lOZmru7yRmirjyZwPC7N4oiEEKL4STHiotKzTCZuikIDt9YKoGWVslaHJBykYbAvbauXw9T2qb5CCOHupBhxUbP3xHLmQgblfWw81FJmz7ibB1oEYTNgR2QyG4+dszocIYQoVlKMuKCDsak5sy0ea12Zst4yPONuQsv93Qht4trD0ghNCOHWpBhxMZnZJhM3RWJq6FTTn9bVylkdkigmA2+ohJ+XweHYZFYflUZoQgj3JcWIi5kbcY6/EjIIKOPBv26sbHU4ohiV8/Zg4A2VAJi5K4bUTGmEJoRwT1KMuJCj59OYt9d+/8DImyrjL8Mzbq9X/fJUDSjD+dQsFuyXe0eEEO5JihEXkZmtc4Zn2tcoR7sa/laHJEqAp4fB6E51AJi/7zznUjItjkgIIRxPihEX8cO+cxyLS8ff24OHb5LhmdKka70gGlTyIT1bM3N3rNXhCCGEw9kKusG+fftYtGgRx44dIy4ujmeeeYbWrVtfc5u9e/cyY8YM/vrrLypWrMg999xD586dCxtzqXM8Lo3vI+wfQiNurExgmQKfNuHClFIMbxXMcz+dYPWRBO6sX56a5ctYHZYQQjhMga+MpKenU7NmTR566KF8rR8dHc27775L48aNmTBhAr169eLTTz9l586dBT10qZRtaiZuiiLLhDbVytIxTGbPlEYNgnxpX6McGvhqh7SJF0K4lwL/id2iRQtatGiR7/VXrlxJcHAw999/PwDVqlXjwIEDLF26lObNmxf08KXO/P3nOXI+jbJeBiNbh6CUsjokYZH7mwex+dQFdkYms/1MknTdFUK4jWK/3n/o0CGaNGmSa1mzZs2YPn36VbfJzMwkM/PvG/WUUvj4+OT821Eu7ctZP+D/Skhn1sV7BP51Y2Uq+noWeB/OnmNRlab8Qv296VW/Agv3n+er7TE0Dy2Lh+H6eZemc+iO3D0/cP8cnSG/Yi9G4uPjCQgIyLUsICCA1NRUMjIy8PLyumKb+fPnM2/evJzvw8PDGT9+PEFBxfNU2pCQkGLZb1Fkm5qxq/8gy9S0r1WRIe0aFOmF4ow5OlJpyW9M10qsObaRkwnpbI3V9GtWxeLIHKe0nEN35e75gfvnaGV+TnknZL9+/ejdu3fO95c+hGNiYsjKynLYcZRShISEEBUVhdbO1W57wb5z7IlMxNfT4KFm5YmKiirUfpw5R0cojfkNaFyRaX+c5ePfDtOsPPh4uvakuNJ4Dt2Ju+cH7p9jceZns9nydSGh2IuRwMBAEhJyt7JOSEjAx8cnz6siAJ6ennh65j0kURwvBK21U73AziRm8O0u+02KD7YMpqKvrcjxOVuOjlaa8utRN5Clf54nKimTH/bGMrRZ8VwxLGml6Ry6I3fPD9w/RyvzK/Y/qerWrcuePXtyLdu9ezf16tUr7kO7JFNrJm2KJCNb0zzEl9trB1x/I1GqeHooHmhhL0AW7JdGaEII11fgYiQtLY3jx49z/PhxwD519/jx48TG2m+0nDlzJpMnT85Z/4477iA6Oppvv/2W06dP89NPP7Fx40Z69erlmAzczLKDceyLSaWMzWBUm1C3vWFKFE3b6uVoUMmHjGzNd7ukEZoQwrUVeJjmyJEjvPHGGznfz5gxA4BOnToxatQo4uLicgoTgODgYF544QW+/vprli1bRsWKFRk5cqRM683D2aQMZlzsIfFAiyCCyxZ89owoHS5vhPbL0QR61y9PrQrSCE0I4ZoKXIw0btyYuXPnXvXno0aNynObCRMmFPRQxU4nxpO44Wd0265Wh4LWmsmbokjP1txQ2ZfudQOtDkk4ufqVfOgQVo51Jy7w1Y5o3ry1ulxJE0K4JNe+Db8IdFYm2a+PIeHLj9A7N1kdDj8djmf32RS8PRSj24RgyIeKyIf7mwdhMxS7o1L440yy1eEIIUShlNpiRNk8UR3vAMBc8B3aNC2LJSY5k+nb7cMz/9c8iNByec8yEuKfKpf1onf98gBM3xFNtum+d/oLIdxXqS1GAIw7+qH8ysLpE+g/1lsSg9aaKZujSM0yaRjkQ6+LHyxC5NeAxhUp52XwV0IGPx9JuP4GQgjhZEp1MaL8ylLu7vsA0ItmorOzSzyG1UcT2BGZjJeHYvTNMjwjCq6stwcDm1QC4LvdMaRklvzrWAghiqJUFyMA5foMhrLlIOo0evPaEj32uZRMvvwjGoDBTStRzd+7RI8v3Ef3uuUJLedJQlo28/edtzocIYQokFJfjBi+fhjd+wOgF89GZ5VMAymtNZ9siSI506RuxTLc1aBCiRxXuCdPD8UDzYMBeyO0WGmEJoRwIaW+GAFQXXqCfyDEnkWvX10ix/z1eCJbTydjMxSP3xzqFk9fFda6uXpZGgVdaoQWY3U4QgiRb1KMAMq7DKrnvQDoJXPQmRnFery41Cy+2HYWgIFNKlIjUIZnRNEppXiwpf3qyJqjiRw9n2ZxREIIkT9SjFykbukGFSpB/Dn0ryuK7Thaaz7bGkVShkmt8t7c3ahisR1LlD71KvlwS5g/Gvhye7RbP9RLCOE+pBi5SHl6onoNBEAv+x6dXjx/Va4/eYGNfyXhoeDxtqHYZHhGONh9zSthMxR7zkojNCGEa5Bi5DKqXVcICoELCehfljp8/wlpWXy21T48M+CGioSXl2eJCMerXNaLOy/2q/lquzRCE0I4PylGLqNsNtSdgwHQK35Apzj2r8ovtp0lMT2bsEBv+jeu5NB9C3G5/jdUpJy3B6cSM1h5ON7qcIQQ4pqkGPkH1eYWCKkGKUnonxc5bL+b/rrA7ycuYCh4/OZQPD1keEYUn7JeHgxqYr8fadbuWGmEJoRwalKM/IMyPDDuGgKA/nkhOimxyPu8kJ7NJ1uiALi7UUXqVJThGVH8utctT5VyniSkZ/PDXmmEJoRwXlKM5KVlO6gWDqkp6JXzi7y7qX+cJT4tm2r+XgxsIrNnRMmwGYoHWtin+i46cJ6YZGmEJoRwTlKM5EEZBkbfoQDo1UvQiXGF3te200msPZZoH55pG4qXh/zKRclpU60sjYPtjdC+lUZoQggnJZ+MV9P0JgivBxnp6OU/FGoXyRnZfLzZPjzTp0EF6lfycWSEQlzX5Y3Q1h5L5Ig0QhNCOCEpRq5CKfX31ZG1y9Fx5wq8jy+3R3MuNYsq5TwZ0lRmzwhr1K3owy01/QFphCaEcE5SjFxLw+ZQrzFkZaKXzS3Qpjsik/n5SAIKGHNzKN42+VUL6/xfsyA8DUXE2RS2nk6yOhwhhMhFPiGvQSmFcdfFqyO/r0LHROVru5TMbKZsigSgV/3yNAr2LbYYhciP4LKe3NnA3ght+o4YsqQRmhDCiUgxch2q3g3QqDlkZ6GXzsnXNjN2xBCTkkXlsp78X/Og4g1QiHzq37gi/t4enJZGaEIIJyPFSD7kXB3ZsAYddfqa6+6OSmb5oXgARrcJoYwMzwgn4eflwaAm9nuXZu2OJTlDGqEJIZyDfFLmg6pVH5q1Bm2iF8+66nppWSZTLs6e6V43kKYhfiUVohD50q1uIFX9vUhMz+aHvQW/KVsIIYqDFCP5ZPS52JV16+/oU8fzXOebnTFEJWUS5GvjgRYyPCOcj70Rmv21uehAnDRCE0I4BSlG8knVqIVq1R60xlw084qf74tOYemf9uZoj7UJwdfTo6RDFCJfWlctyw3BPmSamm92SiM0IYT1pBgpAHXXEFAG7NiEPnE4Z3l6lsmkTVFo4LbaAbSsUta6IIW4DnsjtMoA/Ho8kUPnUi2OSAhR2kkxUgAqtDqqTScAzAXf5SyfuTuWMxcyqOBjy+l2KYQzq1OxDJ0vNkKbLo3QhBAWk2KkgNSdg8AwIOIP9OF9/BmbyqID9ieijmoTQlkvGZ4RruG+5kF4eSgiolPZckoaoQkhrCPFSAGp4FBU+9sASF8wi4kbIzE1dA7358aqMjwjXEeQnyd9GlQApBGaEMJaUowUguo1EGw25maEcCoxg8AyHvyrVWWrwxKiwO5pXIEAbw/OXMjgp4v9cYQQoqRJMVIIqmIQRzv2Z36NzgCMvKky5bxleEa4Hl9PDwZffIjjrD3SCE0IYQ0pRgohM1szqexNmMqD9tE7uTnhoNUhCVFod9QJpJq/FxfSs5knjdCEEBaQYqQQ5u2N5cSFbPzJ5F+HFmIu+E5mIwiX5WEohrWwzwJbfCCOs0kZFkckhChtpBgpoONxaXwfYf/r8eFWwQQYJpw8Ajs2WRyZEIV3Y1U/mlT2JdPUfLsr1upwhBCljK0wG61YsYLFixcTHx9PWFgYw4cPp06dOlddf+nSpaxcuZLY2Fj8/f1p06YNQ4YMwcvLq9CBWyHL1EzcFEm2hpurl6VD/WD07X3QS+ZgLvwOo3lrlCH3jgjXY2+EFszTy4/z2/FE7qxfnnqVfKwOSwhRShT4ysiGDRuYMWMG/fv3Z/z48YSFhTFu3DgSEhLyXH/dunXMnDmTAQMG8L///Y+RI0eyceNGZs26+gPnnNX8fec4cj6dcl4GI28KQSmFuv0u8PWDMyfRW9dZHaIQhVa7Qhk6h9sboX0ljdCEECWowMXIkiVL6Nq1K126dKFatWqMGDECLy8v1qxZk+f6f/75J/Xr16dDhw4EBwfTrFkz2rdvz+HDh/Nc31mdjE9n9h778My/bqxMeR/7RSXlWxZ1Rz8A9KJZ6GyZjSBc19Bm9kZo+2JS2SSN0IQQJaRAwzRZWVkcPXqUvn375iwzDIMmTZpw8GDeM0rq16/P77//zuHDh6lTpw5nz55lx44ddOzY8arHyczMJDPz76eJKqXw8fHJ+bejXNrX9faZbWombYoky9TcWLUsncMDcm1j3HYn2T8vgugzsGktqsNtDouxqPKbo6uS/BwruKwXfRtWYG7EOb7eEc1NVcvh6VG8x5Zz6NrcPT9w/xydIb8CFSOJiYmYpklgYGCu5YGBgZw5cybPbTp06EBiYiKvvPIKANnZ2dx+++3cfffdVz3O/PnzmTdvXs734eHhjB8/nqCgoIKEm28hISHX/Pk3W05y8FwaZb1tvHFnM4LLeV+xTuLA4SRM+xC1bC4hfQehPD2LJdbCul6Ork7yc5zHKgbx89GNRF7IZGN0NgNbVi+R48o5dG3unh+4f45W5leoG1gLYu/evcyfP59//etf1K1bl6ioKL766ivmzZtH//7989ymX79+9O7dO+f7S9VaTEwMWVlZDotNKUVISAhRUVFXHR8/nZjOp+uOAfBgiyCyk84TmcfVa92yPcybQXZ0JGe+n4HRpafD4iyK/OToyiS/4jHwhop8siWKz9YdpWVFVazPXJJz6NrcPT9w/xyLMz+bzZavCwkFKkb8/f0xDIP4+Phcy+Pj46+4WnLJnDlzuOWWW+jatSsANWrUIC0tjc8//5y7774bw7jythVPT088r3JloTheCFrrPPebbWombowkI1vTPNSPrrX8r358L29UrwHomZ9hLp0D7W5FeV15BcUqV8vRXUh+jnV77QAWHzjPqcQMvt8Ty7ASeBq1nEPX5u75gfvnaGV+BbqB1WazUatWLSIiInKWmaZJREQE9erVy3Ob9PT0K8ah8ipAnNGyg3Hsj0mljM1gdJuQ646nqQ53QIUgiD+P/nVFCUUphON5GPapvgCL/5RGaEKI4lXgqqB3796sXr2atWvXcurUKaZOnUp6ejqdO3cGYPLkycycOTNn/VatWrFq1SrWr19PdHQ0u3fvZs6cObRq1cqpi5LICxl8szMGgGEtggjyu/49IMrTE9V7IAB6+Tx0WmqxxihEcWpVxY+mIb5kmTrnvSCEEMWhwPeMtGvXjsTERObOnUt8fDw1a9bkpZdeyhmmiY2NzXUF4Z577kEpxezZszl//jz+/v60atWKwYMHOywJRzO1ZvLmKNKzNU0q+9KtbmC+t1Vtb0Wv+AGiI9G/LEH1HFB8gQpRjJRSPNgimKeWH+f3Exe4s0Eq9aURmhCiGBTqBtbu3bvTvXv3PH/2+uuv5/rew8ODAQMGMGCA63wo/3QonoizKXh7KEa3CcEowHQnZbOh7hyMnvYB+qcf0Z17oHzLFmO0QhSfWhXK0KVWAL8cTeCr7dH85/Yabju9UQhhHecdJ7FIdFIm03fYL0nf3yKIkHIFb1mvWneE0OqQkoxetcjRIQpRooY2q4SXh2J/TCqb/pJGaEIIx5Ni5DJaa6ZsjiQty6RRkA8965Uv1H6U4YFx11D7Pn9eiL6Q6MgwhShRlXw96duwAgBf74wmM9t9ZxMIIawhxchlfj6SwM6oFLw8FGNuDi3Q8MwVWtwMNWpBWir6px8dF6QQFujXqAKBZTyIvJDJikNxVocjhHAzUoxcFJuSyZfbowH7Zekq/kV7orAyjL+vjqxZgk6Q/8CF6/L19GBIU3vjojl7YklKl2cwCSEcR4oR7MMzH2+OIiXTpF7FMtxZv4JjdtzkRqhVHzIy0MvnXX99IZzYbbUDqBHgxYUMk+/3nrM6HCGEG5FiBFh7LJE/ziRjMxRj2obiYThmtoBSCqPvfQDoX5ejz0uvBuG6PAzFsBb2RmhL/owj6oI0QhNCOEapL0Zik9L5YlsUAIObVKJGgINbuDdoCvVugKws9NLvHbtvIUpYyyp+NLvYCG2GNEITQjhIqS5GtNaMX/UnSRkmtSuUoV8jBw3PXEYp9fe9I+tXoWOiHH4MIUqKUvY28QpYf/ICB2Kky7AQouhKdTHy+4lE1h6OxWbA4zeHOGx45p9UvcbQuAVkZ6MXzy6WYwhRUsLLl+HWWgEAfLk92q0fHCaEKBmlthhJzzL5YttZAAbcUIma5csU6/GMuy7eO7JpLTryVLEeS4jiNrRZJbw9FH/GprLhrwtWhyOEcHGlthjxthm81Kkat9UPpn/jSsV+PBVeF5q3AW2iF88q9uMJUZwq+nrS9+Kw5owdMWRmmxZHJIRwZaW2GAFoGOTLf/rcgKdHyTxrw7hrCAB66+/oU8dK5JhCFJd+DStSvowHUUmZLDsYb3U4QggXVqqLkZKmqoWjbuoIgLlwpsXRCFE0Pp4GQ5rZG6HNjYjlgjRCE0IUkhQjJUzdORiUATs3o48dsjocIYqka60AwgK8ScowmRsRa3U4QggXJcVICVOh1VA3dwbAXPittcEIUUQehmJYS/vVkWUH44iURmhCiEKQYsQC6s5B4OEBe3egD+61OhwhiqRllbI0D/Ujy0QaoQkhCkWKEQuooBBU+9sB+9UR6dMgXN2DLYIwFGw4eYH9MSlWhyOEcDFSjFhE9boXbJ5wcC/s32V1OEIUSc3LGqF9JY3QhBAFJMWIRVSFSqhO3QEwF8jVEeH6hjS91AgtjfUnpRGaECL/pBixkOrRH7y84dhB2LPN6nCEKJKKvp7c3agiYL93RBqhCSHyS4oRC6mA8qhbewNgLvwObcp/3sK19W1UgfI+Ns4mZbL0YJzV4QghXIQUIxZT3fpBGR84eRR2bLI6HCGKpIzN4L5m9scrzI04R6I0QhNC5IMUIxZTZf1Rt90FXLo6Iv95C9fWJTyAmoHeJGeYzN0jjdCEENcnxYgTULf3Ad+yEPkXesvvVocjRJF4GIoHWwYD9kZoZxKlEZoQ4tqkGHECyresfbgG0ItnobOyLI5IiKJpHupHy1A/srU0QhNCXJ8UI05C3dobygVAdCR64y9WhyNEkQ1rGYyhYONfF9gXLY3QhBBXJ8WIk1BlfOxTfQG9ZA46M9PiiIQomrBAb26rbW+E9qU0QhNCXIMUI05EdeoOgRXgfAx63UqrwxGiyIY0DaKMTXHoXBq/n5BGaEKIvEkx4kSUl7e9TTygl85Fp6dbHJEQRVPex5bTCO2bndFkSCM0IUQepBhxMqrD7VAxGBLi0L8uszocIYrsroYVqOBjIzo5i6V/SiM0IcSVpBhxMsrmibpzEAB6+Q/oNLnxT7i2MjaDoRcboX0fcY7ENJktJoTITYoRJ6Ru7gLBVSApEb16idXhCFFkXcIDCC/vTXKmyZyIc1aHI4RwMlKMOCHl4YHqMxgA/dN8dHKSxREJUTQehmJYC3sjtOUH4zgtjdCEEJeRYsRJqZs6QtUwSE1Gr1pgdThCFFnzUD9aVbnUCC3a6nCEEE5EihEnpQwDo88QAPTPi9EXEi2OSIiiG9bC3ght019J7D0r90MJIexshdloxYoVLF68mPj4eMLCwhg+fDh16tS56vrJycnMmjWLLVu2kJSURFBQEA888AAtW7YsdOClQouboUZtOHkE/dMPqP4PWh2REEVSI9Cb22sH8tPheL7aEc2EbmF4KGV1WEIIixX4ysiGDRuYMWMG/fv3Z/z48YSFhTFu3DgSEhLyXD8rK4u3336bmJgYnnrqKT788EMeeeQRKlSoUOTg3Z1SCqPvfQDoNUvR8ectjkiIohvctBJlbAaHzqWxThqhCSEoxJWRJUuW0LVrV7p06QLAiBEj2L59O2vWrKFv375XrP/LL7+QlJTEW2+9hc1mP1xwcPA1j5GZmUnmZe3QlVL4+Pjk/NtRLu3Lkft0uCatoHZDOLIfvXwexpBHCrS5S+RYBJKf66ng68k9jSvy3a4YvtkZQ7swf8C9crycO57Dy7l7fuD+OTpDfkoX4IERWVlZ3HfffTz11FO0bt06Z/nkyZNJSUnhueeeu2Kb//znP/j5+eHt7c22bdvw9/enffv29O3bF8PI+8LM3LlzmTdvXs734eHhjB8/viB5uZW0XVuJeelRsHkS+sV8bMEhVockRJGkZWZzz9RNRCelM+aW2tzfJszqkIQQFirQlZHExERM0yQwMDDX8sDAQM6cOZPnNmfPniUmJoYOHTrw4osvEhUVxdSpU8nOzmbAgAF5btOvXz969+6d8/2lai0mJoasLMc1TFJKERISQlRUlHM/xCu4GqpBU/SB3UR9NQmP+0fne1OXybGQJD/XNbhJBT7aGMm0jce4s0ko6Ynn3S5HcO9zCO6fH7h/jsWZn81mIygo6PrrOfSoedBa4+/vzyOPPIJhGNSqVYvz58+zaNGiqxYjnp6eeHp6XnV/xRGjs7/A1F1D0Ad2o9etwuzWDxVcpUDbu0KORSH5uZ7O4f4sOnCeY3HpTN1wnPsal3O7HC/njufwcu6eH7h/jlbmV6AbWP39/TEMg/j4+FzL4+Pjr7hacklgYCBVqlTJNSRTtWpV4uPjHXqVw92pOo3ghlZgmujFc6wOR4giM5TiwcblANhy8AyZ2e77n7wQ4toKVIzYbDZq1apFREREzjLTNImIiKBevXp5blO/fn2ioqIwzb+f1hkZGUn58uVzbmgV+WP0HQqA3rwWfeakxdEIUTQ6K4sbfviIF/ZMZ8Kql7EdO2B1SEIIixR4am/v3r1ZvXo1a9eu5dSpU0ydOpX09HQ6d+4M2G9mnTlzZs76d9xxB0lJSUyfPp0zZ86wfft25s+fT7du3RyWRGmhwurYe49ojV40y+pwhCg0rTV65qewfxetz+3DlpFG9pRx6Jgoq0MTQligwJcm2rVrR2JiInPnziU+Pp6aNWvy0ksv5QzTxMbG5poeVKlSJcaOHcvXX3/Ns88+S4UKFejRo0ee04DF9Rl9hmDu3Iz+Yz365FFUjVpWhyREgemV89G/rwRlYIx4Bo/Vi8g8cgBz4psYL05A+Za1OkQhRAkq0NReq8XExOTqP1JUSilCQ0OJjIx0qZuSzC/eR2/5DZq1xmP0y9dc11VzzC/Jz/Xo7RswPx0PWqMGjcDjtj4Ee9k488R9EHcOGjbDePw1lJsM47rjObycu+cH7p9jcebn6emZr9k08mwaF6TuHAzKgF1b0Ef/tDocIfJNHzuEOe0DeyHSpSfqVvsUfo+KQXiMeRW8y8D+XeiZn7rlf/pCiLxJMeKCVEhVVDt7B1xz4XcWRyNE/uhzMZhT3oaMDLihFWrgiFxDuqpGLYwRz4Iy0L+vRK+cb2G0QoiSJMWIi1K9B4GHDfbtRP8Zcf0NhLCQTk3BnPQmJMRB1TCMh59FeXhcsZ5qdhNq4EP2bX74Gr19Q0mHKoSwgBQjLkpVqozqeDsA5sJv5ZK2cFo6Oxvz8/fg9AkIKI8x5lWUj+9V11e39kZ16QlaY077AH3sUAlGK4SwghQjLkz1vBdsnnBoH+zfaXU4QlxBa42e8wVE/AFeXhijXkZVvPbNbEop1MAR9iZ/GRmYU95Gn4spoYiFEFaQYsSFqfIVUZ17AmAu+E6ujgino39Zgl6zDJTCeOgpVHjdfG2nPDwwHn4WqoZBQhzmpDfRqSnFHK0QwipSjLg41eMe8PKGYwdh91arwxEih961FT1nGgDqngdQLdsVaHvl44sx5lUIKA+nT2B+PgGdnV0coQohLCbFiItT/oGorvbpkeaC79CXtd0Xwir65FHML94DbaI63oG6o1+h9qMqBmGMfhm8vCBiO3r2F3IFUAg3JMWIG1Dd7gYfXzh1DGT2gbCYjjuHOektSE+Dhs1QQ0bmmsJbUKpmXYyHngal0GuXoX9Z4sBohRDOQIoRN6D8yqFuuwsAc+FMtCmXsoU1dFoq5uS3IP4chFbHGPm8QzqpqpZtUfc8YD/GnGnoXTIkKYQ7kWLETajb+oBfOYg6hd78m9XhiFJIm9mYU/8LJ49CuQCMMa849Bkz6o5+qI53gDYxv3gPffKow/YthLCWFCNuQvn62YdrAL14Fjory+KIRGmj502HXVvA5okxaiwqKMSh+1dKoYaMhIbNID0Nc9Jb6LhzDj2GEMIaUoy4EXVrLygXADFR6A2rrQ5HlCLm2uXoVQsBUMOfRNVuUCzHUTYbxsjnIbQ6xJ/DnPwWOi21WI4lhCg5Uoy4EeVdBtVzAAB6yRx0ZobFEYnSQEdsR8/6DAB111CMmzoW6/GUb1mMMa/YC++TRzGn/lfukxLCxUkx4mZUp+4QWBHiYtG/rbQ6HOHm9MX+H5gmqm0XVK97S+S4KigEY9RYewfiXVvsQ0RCCJclxYibUZ5eqN4DAdDL5qLT0yyOSLgrnRhnn8KbmgL1GqP+b3SRpvAWlKrdADX8SXssqxZirl1eYscWQjiWFCNuSLXvCpUqQ2K8vRW3EA6mM9IxJ4+Dc9EQXAXj0RdRnp4lHodxU0fUXUPtMc36DB2xvcRjEEIUnRQjbkjZPFF3DgLAXDEPMyXJ4oiEO9Gmifnl/+yPIPArh/H4q6iy/pbFo3rdi2rbBUwT87Px6NMnLItFCFE4Uoy4KdWmM4RUhaQLXFg42+pwhBvRC76FPzaAhw3jsRdRlatYGo9SCvV/o6FeY0hLxZz4JjohztKYhBAFI8WIm1IeHqg+QwC4MP9bdLJcHRFFZ67/Gb18HgDq/tGoejdYHJGd8vTEePRFCK4C52Mwp4xDp6dbHZYQIp+kGHFjqlV7qFoTnZyEuXK+1eEIF6cP7EZ/MwWwD40Y7W61OKLcVFl/jMdftXciPnYQ86v/yYMjhXARUoy4MWUYGH0v3tz38yL0hQSLIxKuSkeewvzkP5CdjbrsplFnoypXwXjsRfCwwR8b7ENKQginJ8WIm1PN2+BZtxGkp6FX/GB1OMIF6QuJmJPehJRkqN0A9eATJTqFt6BUvRtQ948GQC+fh7n+Z4sjEkJcjxQjbk4pRcB9IwHQa5ah4+VZHiL/dGYm5sfjICYKKlW2P3PG08vqsK7LaHfr3/12vpmCPrDb4oiEENcixUgpUKZVW6jTEDIz0Mu+tzoc4SK01ujpE+HwfvDxs0/hLRdgdVj5pvoMQd3UEbKzMT/5DzrylNUhCeGUdGYmmSeOWBqDFCOlgFIKo+//AaB/W4k+F21xRMIV6MWz0Vt+BQ8PjEdfQIVWtzqkAlFKoR58Amo3gJRkzElvoi8kWh2WEE5Fp6VgTnyD6OdGWNqjR4qRUsJo0MT+6PXsLPSSOVaHI5ycuWktevEsANTQR1ENm1kcUeEoTy/7M2wqVYaYKMyPx8kDJIW4SCfGY743Fr1/FzorE50Yb1ksUoyUIsalttkbVqPPnrE4GuGs9KF96K8nAqC63Y3R8Q6LIyoaVS7APuXXxw8O70dPn4TW2uqwhLCUjonCHP88nDwCZf0JfvczDAv/6JBipBRRtRtAkxvBNHP+6hXicjr6jP2G1awsaNkWdff9VofkECq0OsajL4CHB3rLr/L6F6Wa/uuYvRCJjoSKwXi8MAGvuo0sjUmKkVIm5+rIlt/Qp09aHI1wJjo5CXPiW5B0AcLqYAx/CmW4z38RqmEz1NBHAfv9MOamtdYGJIQF9J8RmO+9CAlxUK0mxgvjUSFVrQ5LipHSRoXVhpbtQGvMRTOtDkc4CZ2VaW9qdvY0VKiEMfpllLe31WE5nNHxDlS3uwHQX09EH9xrcURClBy9fQPmh69BagrUa4zx7DuowIpWhwVIMVIqGX2GgFKwfQPa4ulcwnpaa/S3H8Ofe6CMD8aYV1CBFawOq9iou++Hlm0hKwvzk3fQ0XL/lHB/5q8rMD+dAFmZ0PxmjCdeR/mWtTqsHFKMlEKqag1U61sAMBd+Z3E0wmp6+Tz0+tWgDIyHn0NVC7c6pGKlDANj+FMQVgeSLmBOfAudfMHqsIQoFlprzMWz7X9waBPV8Q6Mkc+jvJzryqcUI6WUunMwGAbs2YY+csDqcIRF9LZ16PnfAKAGj0A1aWVxRCVDeXtjjH4ZKlSCs6cxP3kXnZVpdVhCOJQ2s9GzPkNfHJJXve5F/d8olIeHxZFdqVDFyIoVKxg1ahRDhw7lpZde4vDhw/nabv369dx7771MmDChMIcVDqQqV0G16wrI1ZHSSh85gPnlhwCorndidOllbUAlTAVWwBjzKpTxgT/3oL/9WKb8CrehMzPRn7+PXrMMlEINehij731O+1ypAhcjGzZsYMaMGfTv35/x48cTFhbGuHHjSEi49hNho6Oj+eabb2jYsGGhgxWOpXoPtD/ddP8u9J97rA5HlCAdexZzyjjIzICmN6HuHW51SJZQ1WpiPPwcKAO9fjV6+TyrQxKiyHSqvauq/mM9eNhQI57B6Nrb6rCuqcDFyJIlS+jatStdunShWrVqjBgxAi8vL9asWXPVbUzTZNKkSdx7770EBwcXKWDhOKpiMOoWe0Mrc8F38ldhKaFTkjEnvgkXEqB6OMaIZ1CG8122LSmqSSvU4IcB0PO/QW9bZ3FEQhSeTozDfH8sHNgN3j4Yj7+KcVNHq8O6LltBVs7KyuLo0aP07ds3Z5lhGDRp0oSDBw9edbt58+bh7+/Prbfeyv79+697nMzMTDIz/x6/VUrh4+OT829HubQvZ71s5QjXy9HodS/Z636Gw/tg307UDS1LMrwic/dz6Oj8dFYW+rPxEPkXBFbAY8yrKB9fh+y7sJzhHHrc2ovs6DPonxdhfvkhHhWC7E0CHcAZ8itO7p4fuE6OOiYK84NXISYSygXg8cTrqJp1rrudM+RXoGIkMTER0zQJDAzMtTwwMJAzZ/KeHnfgwAF++eWXAt0nMn/+fObN+/tyaXh4OOPHjycoKKgg4eZbSEhIsezXmVw1x9BQ4noPIGn+d3gsnUPl23o6/RsuL+5+Dh2Rn9aauCn/IXnfTpR3GYLfmIhXHcd84DqC1edQPz6W2MQ40rb8jv7kPwR/MB1b5SoO27/V+RU3d88PnDvHjCN/EjP+BYg/h0flKgS9NRnPqjUKtA8r8ytQMVJQqampTJo0iUceeQR/f/98b9evXz969/57fOvSh2NMTAxZWVkOi08pRUhICFFRUW47RJGfHHXH7rDsBzIP7ePM8gUYLW4u4SgLz93PoSPzM1cuwFz+o/1mtn89zTm/AIiMdFCkhedM51DfPwYiT2P+dZTIl0fh8cJ7KF+/Iu3TmfIrDu6eHzh/juaBPZiT34K0VKhWE558g1jDM9/v7+LMz2az5etCQoGKEX9/fwzDID4+Ptfy+Pj4K66WAJw9e5aYmBjGjx+fs+xSooMGDeLDDz/MsxLz9PTE09MzzxiK44WgtXbKF5gjXTPHcgGorneil32PueBb+w2NLtYG3N3PYVHz0zs3YX7/JQBqwHBU8zZO9/tyinPoXQZj9MuY/3kGzvxF9qfvYox5FWUr+t9tTpFfMXL3/MA5c9R/bMCc+r79eVL1GmOMehl8/QoVp5X5FegdZrPZqFWrFhEREbRu3Rqw35waERFB9+7dr1i/SpUqvP/++7mWzZ49m7S0NIYNG0alSpWKELpwJHVHP/sUsNMn0H+sR7nADU8if/SJw5hf/Be0RnXqjrqtj9UhOTVVoRLG6FcwJ7wA+3aiZ30O9z3qksOXwr2Za5ejZ34KWkOLm+03o3t6WR1WoRT4z9/evXuzevVq1q5dy6lTp5g6dSrp6el07twZgMmTJzNzpr3BipeXFzVq1Mj15efnR5kyZahRowY2B/y1IRxD+ZVF3XEXAHrRTHR2tsURCUfQ52MxJ70NGenQqAVq8CPyoZoPKqw2xohnQCn0byvQqxZaHZIQObTWmItmob/7xP5Hxi3d7F1VXbQQgULcM9KuXTsSExOZO3cu8fHx1KxZk5deeilnmCY2Nlb+s3NRqmsf9OrFEHUavXltTlM04Zp0WgrmpLcg4TxUqYHxyHNO2XnRWanmbVADhqPnTkPP+wodFIJyofuphHuyd1X9Ar12GWDvF6X6DHH5z91CXZro3r17nsMyAK+//vo1tx01alRhDilKgPLxRXW/Bz1vOnrxbHTrW1C2vO/dEc5Nm9mYn78Pp45BuQCMx18t8o2YpZG6rQ9En0GvXY459b8Yz/0HFXb9qZJCFAedmYk57b/wxwb7jeiDH3abzsmudZeiKHaqcy/wD4TYs/aHpwmXpOd+CXu2gacXxuiXURWl2WBhqItttGnUAjLSMSe9jT4fY3VYohTSqSmYH71uL0Q8bKgRz7pNIQJSjIh/UN7eqJ73AqCXzEFnZlgckSgo85cl9uE2wHjo36ha9S2OyLUpDw+MR56DKjUg4by9IElLsTosUYrYu6q+BH/usXdVfeI1jJs6WB2WQ0kxIq6gbulmf5pp/Dn0ryusDkcUgN6zDT17KgDq7vtRrdpbHJF7UL5+GI+/CuUC4NQxzM/fR5tyk7cofjo6EvPd5+HkUfuQ67PjUA2bWR2Ww0kxIq6gPD1RvQYCoJd9j05PszgikR/61DHMz94DbaLa34bqfo/VIbkVVTEYY/TL4OkFe7bZh8KEKEb65BHM8c9DTBRUqozx/Hi3vWdJihGRJ9WuKwSFwIUE9C9LrQ5HXIeOP2+fOZOeCvWboKQvRrFQtepjPPRvAPTqxZi/LLE4IuGu9IHdmO+9BInxUC3cXog48PEEzkaKEZEnZbOh7hwMgP7pR3SqjJE7K52ehjn5bTgfCyFVMR59UWZBFSPVqj3q7vsB0LOnovdsszgi4W70H+vtN6umpUK9GzCefQcVWMHqsIqVFCPiqlSbWyCkGiRfQP+8yOpwRB60aWJO+wBOHIay5eyty/3KWh2W21Pd70G1vw20ifnZe+hTx6wOSbgJc+1yzM8m2Nu7t2yL8eTrpWJavhQj4qqU4YFx1xAA9KoF6OQLFkck/kn/+DXs2AQ2G8ZjY1HBoVaHVCoopVD3PQr1m0B6Kuakt9Dx560OS7gwe1fVmbm7qj7ynEt3VS0IKUbEtbVsB9XCITUF/dN8q6MRlzF/+ynnnKhhT6DqNrI4otJF2TwxHn0RQqrC+VjMyW/Lzd6iULSZjZ75KXrxbABU70Go+x5DGaWnY7IUI+KalGH8fXVk9WJ0Yry1AQkA9L6d9r+gAHXnYIw2nSyOqHRSfmUxxrwKZf3hxGHMaR+gTdPqsIQL0ZkZ9qG+tcvtXVWHjMS4y/XbuxeUFCPi+pq1hpp1ISMdvfwHq6Mp9fSZk5ifjgfTRN3cGXXnIKtDKtVUcCjGqJfAZoMdm+xDZ0Lkg05JxvzoDdi+wT7U+vCzGF16Wh2WJaQYEdellMLoex8Aeu0ydNw5iyMqvXRiPObENyE1Geo0Qt0/ptT9BeWMVJ1GqGFPAKB/mo/5208WRyScnU64rKtqGR+Mx19D3eheXVULQooRkT+NmkPdRpCViV421+poSiWdkY45ZRyci4agEIzHXkJ5yhReZ2G06YTqc3FI87tP0Pt2WhuQcFo6OtLezOyviw+yfOYdt+yqWhBSjIh8yXV15PdV6JgoiyMqXbRpoqdPhKN/gm9Z+1N4y/lbHZb4B9V7IOrmzmCamJ+OR585aXVIwsnok0cw333O3lU1KATjhfGosNpWh2U5KUZEvql6N9ivkGRnoZfOsTqcUsVcNBO99Xfw8MB47EVUSDWrQxJ5UEqh7h8DdRpBajLmxDflpm+RQ+/fZe+qeiHh766qwe7bVbUgpBgRBWLcNRQAvWENOuq0xdGUDsk/L0EvsRd/6v9Goeo3sTgicS3K0xPjsZfsj1M4F0325LcxZcpvqaf/WI858Q17V9X6TexdVQPKWx2W05BiRBSIqlXfPrtGm+jFs6wOx+3pP/dwftLbAKge/THa32ZxRCI/VDl/+1N+fcvC0T85/+EbMuW3FDPXLsvdVfWJ10pFV9WCkGJEFJhx6Sa9rb+jTx23Nhg3pqNOkz3lHcjKQt3YHnXxnh3hGlRINYzHXgQPD1J/W4W5aKbVIYkSprXGXDgT/d2nF7uqdi9VXVULQooRUWCqRi1Uq/ZwsX2xcDydlIg56U1IScKr/g0Yw/+NMuTt6mpU/SYY948GQC+Zg7lhtcURiZKizWz0t5+gl1zsqnrnIPvTtEtRV9WCkP/dRKGou4aAMuxNnk4ctjoct6IzMzE/fgeiI6FiMJVe+S/Ky9vqsEQhGe1vo9y9DwKgZ0xB/xlhcUSiuNm7qk5A/7bC3lV16EiMPqWvq2pBSDEiCkWFVkddbEFuLvjO4mjch9YaPWMyHNoHPr54PP4qHuUrWh2WKKKA/3sUdWN7yM7C/Pgdufnbjf3dVXWjvavqI89hdC6dXVULQooRUWjqzkFgGBDxB/rwfqvDcQt66Vz0pjVgGBiPPI+qGmZ1SMIBlGFgDP83hNeDlCTMSW+ikxKtDks4mE6Is0/dvbyraqv2VoflEqQYEYWmgkNRF2d3mAvl6khRmZt/RV/8PaohI1GNW1gckXAk5eWNMXosVAyG6Ej7FZLMTKvDEg6io8/Yu6qeOgb+gfapu6W8q2pBSDEiikT1Gmh/QNiB3ej9u6wOx2Xpw/vtHVYBdUdfjE7dLY5IFAflX97+lF8fXzi0Dz1jMlprq8MSRaRPHMF89/m/u6o+Px5VQ7qqFoQUI6JIVMUgVMdugP3qiPzHWnA6Jsr+zJmsTGjeBnXPA1aHJIqRqloDY+TzYBjoTWukm7GLy9VVtfqlrqqhVoflcqQYEUWmeg4ATy84cgAitlsdjkvRKUn2p/AmJUKN2hj/elqm/pUCqlEL1NCRAOiFMzE3/2pxRKIw9LZ19q6q6Ze6qv5HuqoWkhQjoshUYAVUl14AmAu+lasj+aSzsjA/HQ9Rp6B8JYwxL6O8y1gdlighxi3dUXf0BUBPnyg3gbsYc80yzM/fu9hVtZ29q6qPr9VhuSwpRoRDqO53g7cPnDwCOzZZHY7T01qjv/sE9u8Cbx+MMa+gAmUKb2mj7nkAmt8MWZmYU8bJ07BdgL2r6nfomRe7qnbqjvHIs9JVtYikGBEOocoFoG67E7h474iZbXFEzk3/9CN63SpQBsbDz6Cqh1sdkrCAMjww/vUUhNWBpET7U35TkqwOS1yFvavqx38/uPLOwaih0lXVEaQYEQ6j7ugLvn5w5iR66zqrw3FaevsG9A9fA6AG/gvV9CaLIxJWUt5l7FN+y1eCqFOYn45HZ2VZHZb4B52Rbj83v/10savqoxh9BktXVQeRYkQ4jPIti7qjHwB60Sx0tlwd+Sd97BDmtA8AUF16YXTtbXFEwhmowIoYY16xD3Xu34X+7hO598qJ6JRkYl4dg87pqvo8RuceVoflVqQYEQ6luvaGsv4QfcbeSVTk0OdiMCe/BRkZcEMr1MB/WR2ScCKqejjGw8+AMtDrVqF/+tHqkASg48+T/d6LpO/Zbu+q+sTrqFbtrA7L7UgxIhxKlfFF9bgHAL14NjpLOkwC6NQU+1N4E+Ohapj9hjcPGWcWuammN+UUqfqHr9HbN1gcUemW01X1r2MYgRXxeO4/qAZNrQ7LLUkxIhxOdeoJARXgXLT9Js1STmdnY34+AU6fgAB7B05VRqYAirwZXXv/PVV+2gfoY4csjqh00icO27uqxp6FoFAqvz9NuqoWI1thNlqxYgWLFy8mPj6esLAwhg8fTp06dfJc9+eff+a3337jr7/+AqBWrVoMHjz4qusL16e8vVG9BqBnfmZ/8Fu7rigvb6vDsoTWGj37C3szOC8vjNEvoyoGWR2WcHJq4L/QsWdhzzbMyW9hvPRfed2UIL1vJ+bH/7E3M6tRC48nXscWWg0iI60OzW0V+MrIhg0bmDFjBv3792f8+PGEhYUxbtw4EhIS8lx/3759tG/fntdee423336bihUr8vbbb3P+/PkiBy+cl+pwB1QIgvjz6F9XWB2OZfTqxei1y0ApjIeeRtWsa3VIwgUoDw/7/SPVakJivP0pv6kpVodVKphb19m7IqenQoOmGM+8I11VS0CBi5ElS5bQtWtXunTpQrVq1RgxYgReXl6sWZP3zYqPP/443bp1o2bNmlStWpWRI0eitWbPnj1FDl44L+Xpieo9EAC9fB46LdXiiEqe3rUFPXcaAOqeYaiWbS2OSLgSVcbXPsMmoDycPoH5+QSZoVbMzDVL0V+8B9lZ0KodxuPSVbWkFGiYJisri6NHj9K3b9+cZYZh0KRJEw4ePJivfaSnp5OVlUXZsmWvuk5mZiaZlz1aWymFj49Pzr8d5dK+3HmeuJU5Gu26kr3iB4iOhDVL7c+wcTBnPYf65BHML963d2i8pRtGt36FitFZ83Mkd8+xKPmpisGoMa+QPeEFiNiOnvMFashIp/pducP5y+mqeqmZWZeeGIMfzmlm5g45Xosz5FegYiQxMRHTNAkMDMy1PDAwkDNnzuRrH9999x0VKlSgSZMmV11n/vz5zJs3L+f78PBwxo8fT1BQ8YyZhoSEFMt+nYlVOSbf/xjn338FVi6g8qDhGH5XL0KLwpnOYVZsNNFT3oH0NLybtybo6TdQtkLdnpXDmfIrLu6eY6HzCw0l5bl3ODfuWfSaZZSr25Bydw12bHAO4KrnT2dnE/fxuySvmA+A/9BH8B/8rzw/mF01x/yyMr+i/Q9ZQAsWLGD9+vW8/vrreHldvY9/v3796N3772ZQl14UMTExZDmwM6FSipCQEKKioty2wZDVOep6TaBKdcwzf3Hmm8/wuGuIQ/dvdX7/pNNS7X/FnouGKtXJGv5vomJiCr0/Z8uvOLh7jg7Jr2Z9jP7DML//ivgvPiDRyxejeWvHBlpIrnz+dGYG5ufvo3dstD+a4b6RpHTqQUpU7mcEuXKO+VGc+dlstnxdSChQMeLv749hGMTHx+daHh8ff8XVkn9atGgRCxYs4JVXXiEsLOya63p6euLp6Znnz4rjhaC1dssX2OUsy1EZGH2G2Nsor1qAeWsvVFl/hx/GGc6hNrPtQzMnj0K5AIzRr4CPn0Picob8ipu751jk/G7vizp7Bv3bT5hfvAfP/cepppq62vnTKUmYU8bBwb32rqojnkG1bHfNHFwtx4KyMr8C3cBqs9moVasWEREROctM0yQiIoJ69epddbuFCxfyww8/8NJLL1G7tvO8eUQJadEWqodDWir6p/lWR1Ns9PfTYdcWsHlijBqLCnLvS7qiZCmlUIMfgUbNIT0Nc9Lb6LhzVoflknT8ecz3XrIXIj6+GE++gWopXVWtVODZNL1792b16tWsXbuWU6dOMXXqVNLT0+ncuTMAkydPZubMmTnrL1iwgDlz5vDoo48SHBxMfHw88fHxpKWlOSwJ4dyUYWDcdR8A+pfF6IQ4iyNyPHPtMvTPCwFQw59E1W5gcUTCHSmbDeOR5yC0OsSfw5z8VqmcqVYU+uwZzHefg1PHwT/QPnW3/tXvYRQlo8D3jLRr147ExETmzp1LfHw8NWvW5KWXXsoZpomNjc1148+qVavIysrigw8+yLWf/v37c++99xYteuE6mt4I4fXg2EH08nmoQSOsjshhdMR29KzPAVB978O4qaPFEQl3pnzLYox5BfM/z8LJo5hT/4vx2IvyGPt80CcOY370BlxIgKAQjH+/KVcwnUShbmDt3r073bt3z/Nnr7/+eq7vp0yZUphDCDejlMLoex/m/15F/7ocfUdfVAXX7yipT5/A/Gw8mCaq7a3FMn1ZiH9SQSEYo8Zivj8Wdm1Bfz8dNfAhq8Nyav/sqmo88RrKX5qZOQt5No0oOQ2bQb0bICsLvfR7q6MpMp0QZ+/UmJYK9W5A3T/KbfsQCOejajdADX8SAP3zQsy1y6wNyImZW3+/squqFCJORYoRUWKUUhh3DQVAr1+Fjom6zhbOS6en2+/EPx8DwVUwHn0BZct7BpgQxcW4qSOq78X7sWZ9jo7YbnFEzsf8ZQn6i/chOwvVqr10VXVSUoyIEqXqNYbGLSA7G714ttXhFIo2Tcwv/wfHDoJfOYzHXy2W6cpC5IfqOQDV9lYwTczPxqNPn7A6JKegtcZc8K39fi6tUV16oh5+BnWVthHCWlKMiBKXM7Nm01p05CmLoyk4veAb2L4BPGz2GwcrV7E6JFGKKaVQ94+yD4GmpWJOfNMtZ6wVhM7ORn8zBb10LgDqriGowY/ITb5OTIoRUeJUeF1o3ga0iV48y+pwCsRctwq9/AcA1ANjUPVusDgiIUDZPDEeexGCq8D5GMwp49Dp6VaHZQmdkW5vsvj7SlAG6v8ew+g9SO7ncnJSjAhLGBfbwuutv6NPHbM4mvzR+3ehv/0YANV7IEbbLhZHJMTf1MUhQ/zKwbGDmF/+D22aVodVonRKEuZHr8POTfbmgyOfw7gl75mfwrlIMSIsoaqFoy724zAXOv/VER15CvPTdyE7G9X6FlQfxz5jRwhHUJWrYDz2EnjYYPsG+5BiKaHjz2FOeFG6qrooKUaEZdSdg0EZsHMT+vghq8O5Kn0hAXPSm5CSDLUboIY9Lpd8hdNS9Rqjho0BQC//AXPdKosjKn466jTmu8/D6RMQUB7j2f+g6ssQqiuRYkRYRoVWQ93cGQBz4XfWBnMVOjMD8+N3ICYKKlW2P3PG8+pPnBbCGRg3d0H1HgSA/vZj9P5dFkdUfPTxQ5iXnpQdHIrx/HhU9XCrwxIFJMWIsJS6cxB4eEDEdvShfVaHk4vWGj19EhzeDz5+9im85QKsDkuIfFF9BqNa3wLZ2ZifvuuSM9euR+/bgfn+y/b27jVq2wsRae/ukqQYEZZSQSGo9rcB2HsCONHjufXiWegtv4KHh72pWWh1q0MSIt+UUqhhj0PtBpCSjDnpTfSFBKvDchhzy2+YE9+yd1Vt2AzjmXEo/0CrwxKFJMWIsJzqdS/YbHAwAg7stjocAMxNa3Kasqmhj6IaNrM4IiEKTnl6YYwaC0EhEBOF+fE76MwMq8MqMnP1EvTU/9q7qt7YAWPMq9JV1cVJMSIspyoEoTr1AJzj6og+uBf99SQAVPd7MDreYWk8QhSFKheAMeZV8PGDw/vR0ydZ/h4rLK015vxv0bMvdVXthRohXVXdgRQjwimoHv3BywuO/gl7tlkWh44+g/nJO5CVBS3bofr9n2WxCOEoKrQaxqMvgIcHesuvLtdsEC52VZ0xGb3sUlfVoajBD6MM+RhzB3IWhVNQAeVRXXoD9pk1VjRr0skX7GPQSRegZl2M4f+W/+iE21ANm6GGPgqAXjwbc9MaiyPKP3tX1XfR61Zd7Ko6CqP3QJli70bkf1rhNFT3u6GMD5w8Cjs2leixdVYm5ifvwtnTUCEIY/TLKG/vEo1BiOJmdLwD1f0eAPTXk9AH91oc0fXplCTMD1+DnZsvdlV9HuOWblaHJRxMihHhNFRZf9RtdwGXro5kl8hxtdboGVPgzz1QxgdjzCuogPIlcmwhSprq93/Qsh1kZWF+8g46+ozVIV1VTlfVQ/su66ra1uqwRDGQYkQ4FXV7H/AtC5F/obf8XiLH1MvnoTf+AsrAeOQ5VLWaJXJcIaygDANj+L+hZl1Isg9N6uQLVod1BemqWrpIMSKcivIti+rWD7jY5yMrq1iPZ25dh55vf36HGvww6oZWxXo8IZyB8vbGGP0yVAiCs6cxP3kXnZVpdVg59LFDmOOfl66qpYgUI8LpqFt7Q7kAiI60X7EoJvrIAfSX/7Mf87Y+GF16FtuxhHA2KqA8xphX7Pdp/bkHPWOKU0z51ft2YP53LCQlQlgd6apaSkgxIpyOKuNjn+oL6CVz0JmO/4tNx57FnDIOsjKhWWvUgAcdfgwhnJ2qVhPjkefAMNAbf0Ev+97SeMzNv17sqpp2savq29JVtZSQYkQ4JdWpOwRWgPMx6HUrHbpvnZKMOfFN+/Msqodj/OtplOHh0GMI4SrUDa1Qgx8GQC/4FnPrOkviMFcv/rur6k0d7V1Vy0hX1dJCihHhlJSXt71NPKCXfo/OSHfIfnVWFuZn4yHyLwisgDH6FVQZH4fsWwhXZXTuibqtDwD6y/+hjxwosWPbu6p+g579BWAfplX/elq6qpYyUowIp6U63A4VgyHhPHrt8iLvT2uNnvU57NsJXt72KbwVKhU9UCHcgBrwIDRrDVmZmFPGoWPPFvsx/+6qah8eUn3vQw0aIc0GSyE548JpKZsn6s5BwMXpt2mpRdqfXrUA/dsKUApjxDOoGrUdEaYQbkEZHhj/ehpq1IILCZgT30SnJBfb8XRGOuYn/8ndVbXXvdJVtZSSYkQ4NXVzFwiuAkmJ6NWLC70fvWMTet50+z7vHY5q3sZBEQrhPlQZH4zRr9jv14r8C/Oz8cUyvV4nJ2H+7zXYtcXeVfXRF6SraiknxYhwasrDA9VnMAB65Xx0SlKB96FPHMac+l/7Uz4790B17ePgKIVwH6p8RfuUX+8ysG8netbnDp3yq+PPYb73IhzeBz5+GP9+A9XiZoftX7gmKUaE01M3dYAqNSAlGb1qYYG21edjMCe9DRnpcENL1KCH5TKwENehatTGGPEMKIX+bQV61QKH7FdHnbqsq2oFjOfeQdWTrqpCihHhApThgXHXEAD0qkXoC4n52k6npWBOegsSzkPVMIyHn0N5yBReIfJDNWuNunc4AHredHQRH15p76r6wsWuqlUwnn8XVU26qgo7KUaEa2jR1n5jXXoq+qcfrru6zs7G/Px9OHUc/APtM2d8pGeBEAWhuvZBde4JWmNO/S/6xOFC7Ufv/UdX1Rekq6rITYoR4RKUUhh97wNAr1mKjj9/zfX191/Cnm3g6YUx+mVUxeCSCFMIt6KUQg0aATe0hIx0zElvo8/HFGgf5uZfMSe9mburarmAYopYuCopRoTruKEV1G4AGRno5fOuupr5y5KcmTfGQ/9GhdcrqQiFcDvKwwPj4eegahgknMec9BY6LSVf25o/L7rYVTXb3lX1cemqKvImxYhwGUopjLuGAthvqjt35V9oes829Oyp9vXvfgDVqn2JxiiEO1I+vvYZNv6BcOo45ufvo7Ozr7q+1hrzxxnoORffi5e6qtqkq6rImxQjwqWohs2gfhPIykIvnZPrZ/qvY5ifvQfaRHW4HdX9bouiFML9qIrBGKNfBi8v2LMNPXdanuvp7Gz015Nyrl6qfv8nXVXFdcmrQ7gco+/FqyPrf0afPWP/d7z98jHpqdCgKWroSJnCK4SDqfB6GMOfAkD/sgRz9ZJcP8/pqrr+Z3tX1ftHY/QcIO9FcV22wmy0YsUKFi9eTHx8PGFhYQwfPpw6depcdf2NGzcyZ84cYmJiCAkJYejQobRs2bLQQYvSTdVpZL9/JOIPzCWzMRs0InvSWxAXCyHVMEa+IJeDhSgmqlU71N0PoH/8Gj1nKmZwKITeae+qOuktezMzTy+Mh59BNZdmZiJ/CnxlZMOGDcyYMYP+/fszfvx4wsLCGDduHAkJCXmu/+eff/LRRx9x6623Mn78eG666Sbee+89Tp48WeTgRemVc3Vk01piX38CThyGsv72Kbx+ZS2OTgj3prrfbX+QpTYxP5tA6rb1ZE944e+uqk++IYWIKJACXxlZsmQJXbt2pUuXLgCMGDGC7du3s2bNGvr27XvF+suWLaN58+b06WNvwT1o0CD27NnDihUrePjhh/M8RmZmJpmZmTnfK6Xw8fHJ+bejXNqXO19CdNccVc266BZt0Ts2kr5nO9hseIwai6pcxerQHMpdz9/l3D1Hd8xPKYW+7zHM2LPoA7uJfe0J+w8CKuDx7zdQ1WpaGp+jueM5vJwz5FegYiQrK4ujR4/mKjoMw6BJkyYcPHgwz20OHjxI7969cy1r1qwZW7duvepx5s+fz7x5f0/dDA8PZ/z48QQFBRUk3HwLCXH/5jvumGPGv57g7OhNoDUV/v06frd0tTqkYuOO5++f3D1Hd8zPfP1Dzj4znKxTx7FVrUHQW5OxudkfBJdzx3N4OSvzK1AxkpiYiGmaBAYG5loeGBjImTNn8twmPj6egIDcDW4CAgKIj4+/6nH69euXq4C5VK3FxMSQ5cAnSCqlCAkJISoqyqEPgnImbp2jtx8eY16lfGAACWH1SIyMtDoih3Pr83eRu+fo7vnx1FsEHoogqX5TYkwF8j50OcWZn81my9eFhELdwFrcPD098fTM+wbE4nghaK3d8gV2OXfNUTW9EZ/QUOIjI90yv0vc9fxdzt1zdNf8lH8g5XoPIMnN34PgvufwEivzK9ANrP7+/hiGccVVjfj4+CuullwSGBh4xc2tCQkJV11fCCGEEKVLgYoRm81GrVq1iIiIyFlmmiYRERHUq5d3y+169eqxZ8+eXMt2795N3bp1CxGuEEIIIdxNgaf29u7dm9WrV7N27VpOnTrF1KlTSU9Pp3PnzgBMnjyZmTNn5qzfs2dPdu3axeLFizl9+jRz587lyJEjdO/e3WFJCCGEEMJ1FfiekXbt2pGYmMjcuXOJj4+nZs2avPTSSznDLrGxsbmmB9WvX5/HH3+c2bNnM2vWLEJDQ3n22WepUaOGw5IQQgghhOsq1A2s3bt3v+qVjddff/2KZW3btqVt27aFOZQQQggh3Jw8m0YIIYQQlpJiRAghhBCWkmJECCGEEJaSYkQIIYQQlpJiRAghhBCWkmJECCGEEJaSYkQIIYQQlpJiRAghhBCWcsqn9l6NzVY84RbXfp2Ju+co+bk+d89R8nN97p5jceSX330q7c7PQxZCCCGE0yvVwzSpqak8//zzpKamWh1KsXH3HCU/1+fuOUp+rs/dc3SG/Ep1MaK15tixY7jzxSF3z1Hyc33unqPk5/rcPUdnyK9UFyNCCCGEsJ4UI0IIIYSwVKkuRjw9Penfvz+enp5Wh1Js3D1Hyc/1uXuOkp/rc/ccnSE/mU0jhBBCCEuV6isjQgghhLCeFCNCCCGEsJQUI0IIIYSwlBQjQgghhLCUFCNCCCGEsJR7P/UHWLFiBYsXLyY+Pp6wsDCGDx9OnTp1rrr+xo0bmTNnDjExMYSEhDB06FBatmxZghEXXEFyXLt2LR9//HGuZZ6ennz33XclEWqB7du3j0WLFnHs2DHi4uJ45plnaN269TW32bt3LzNmzOCvv/6iYsWK3HPPPXTu3LlkAi6ggua3d+9e3njjjSuWf/755wQGBhZjpIUzf/58tmzZwunTp/Hy8qJevXrcd999VKlS5Zrbucr7sDD5udp7cOXKlaxcuZKYmBgAqlWrRv/+/WnRosVVt3GV8wcFz8/Vzt8/LViwgJkzZ9KzZ0+GDRt21fVK+hy6dTGyYcMGZsyYwYgRI6hbty5Lly5l3LhxfPjhhwQEBFyx/p9//slHH33EkCFDaNmyJevWreO9995j/Pjx1KhRw4IMrq+gOQL4+Pjw0UcflXCkhZOenk7NmjW59dZbef/996+7fnR0NO+++y633347Y8aMISIigk8//ZTAwECaN29e/AEXUEHzu+TDDz/E19c353t/f//iCK/I9u3bR7du3ahduzbZ2dnMmjWLt99+mw8++IAyZcrkuY0rvQ8Lkx+41nuwQoUKDBkyhNDQULTW/Prrr0yYMIEJEyZQvXr1K9Z3pfMHBc8PXOv8Xe7w4cOsWrWKsLCwa65nxTl062GaJUuW0LVrV7p06UK1atUYMWIEXl5erFmzJs/1ly1bRvPmzenTpw/VqlVj0KBB1KpVixUrVpRw5PlX0BwBlFIEBgbm+nJWLVq0YNCgQde9GnLJypUrCQ4O5v7776datWp0796dm2++maVLlxZzpIVT0PwuCQgIyHX+DMM538pjx46lc+fOVK9enZo1azJq1ChiY2M5evToVbdxpfdhYfID13oP3njjjbRs2ZLQ0FCqVKnC4MGDKVOmDIcOHcpzfVc6f1Dw/MC1zt8laWlpTJo0iUceeQQ/P79rrmvFOXTbKyNZWVkcPXqUvn375iwzDIMmTZpw8ODBPLc5ePAgvXv3zrWsWbNmbN26tThDLbTC5Aj2F+Vjjz2G1prw8HAGDx581b8AXM2hQ4do0qRJrmXNmjVj+vTp1gRUTJ577jkyMzOpXr06AwYMoEGDBlaHlC8pKSkAlC1b9qrruNr78HL5yQ9c9z1omiYbN24kPT2devXq5bmOK5+//OQHrnn+pk6dSosWLWjatCk//vjjNde14hy6bTGSmJiIaZpXVKyBgYGcOXMmz23i4+OvGNoICAggPj6+mKIsmsLkWKVKFR599FHCwsJISUlh0aJFvPzyy3zwwQdUrFixBKIuXlc7h6mpqWRkZODl5WVRZI5Rvnx5RowYQe3atcnMzGT16tW88cYbjBs3jlq1alkd3jWZpsn06dOpX7/+NS/1utr78JL85ueK78GTJ08yduxYMjMzKVOmDM888wzVqlXLc11XPH8Fyc8Vz9/69es5duwY//nPf/K1vhXn0G2LEZG3evXq5ar469Wrx7///W9WrVrFoEGDLIxM5EeVKlVy3RxZv359zp49y9KlSxkzZoyFkV3ftGnT+Ouvv3jzzTetDqVY5Dc/V3wPVqlShffee4+UlBQ2bdrElClTeOONN676ge1qCpKfq52/2NhYpk+fzssvv+zUf4y5bTHi7++PYRhXVHLx8fFXHd8LDAwkISEh17KEhASnHQ8sTI7/ZLPZCA8PJyoqyvEBWuBq59DHx8ep34hFUadOHQ4cOGB1GNc0bdo0tm/fzhtvvHHdvx5d7X0IBcvvn1zhPWiz2QgJCQGgVq1aHDlyhGXLlvHwww9fsa4rnr+C5JfXts58/o4ePUpCQgLPP/98zjLTNNm/fz8rVqxg5syZV9xzZsU5dM673hzAZrNRq1YtIiIicpaZpklERMRVxwLr1avHnj17ci3bvXs3devWLdZYC6swOf6TaZqcPHmS8uXLF1eYJapu3bp5nsP8/j5c0fHjx532/GmtmTZtGlu2bOHVV18lODj4utu40vuwMPn9kyu+B03TJDMzM8+fudL5u5pr5ZfXus58/po0acL777+fM0NowoQJ1K5dmw4dOjBhwoQ8b3634hy6bTEC0Lt3b1avXs3atWs5deoUU6dOJT09PafnxOTJk5k5c2bO+j179mTXrl0sXryY06dPM3fuXI4cOUL37t0tyuD6CprjvHnz2LVrF2fPnuXo0aNMnDiRmJgYunbtalEG15aWlsbx48c5fvw4YJ+6e/z4cWJjYwGYOXMmkydPzln/jjvuIDo6mm+//ZbTp0/z008/sXHjRnr16mVF+NdV0PyWLl3K1q1biYqK4uTJk0yfPp2IiAi6detmRfjXNW3aNH7//XeeeOIJfHx8iI+PJz4+noyMjJx1XPl9WJj8XO09OHPmTPbt20d0dDQnT57M+b5jx46Aa58/KHh+rnb+fHx8qFGjRq4vb29vypUrl3NvkzOcQ7cdpgFo164diYmJzJ07l/j4eGrWrMlLL72Uc6kpNjYWpVTO+vXr1+fxxx9n9uzZzJo1i9DQUJ599lmnnBt/SUFzTEpK4rPPPiM+Ph4/Pz9q1arF22+/7bRjv0eOHMnV5GvGjBkAdOrUiVGjRhEXF5fzwQ0QHBzMCy+8wNdff82yZcuoWLEiI0eOdMoeI1Dw/LKyspgxYwbnz5/H29ubsLAwXnnlFW644YYSjz0/Vq5cCcDrr7+ea/ljjz2WUzC78vuwMPm52nswISGBKVOmEBcXh6+vL2FhYYwdO5amTZsCrn3+oOD5udr5yw9nOIdKa62Lbe9CCCGEENfh1sM0QgghhHB+UowIIYQQwlJSjAghhBDCUlKMCCGEEMJSUowIIYQQwlJSjAghhBDCUlKMCCGEEMJSUowIIYQQwlJSjAghhBDCUlKMCCGEEMJSUowIIYQQwlL/D3dTOQLn9F3lAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Plot loss\n", + "plt.plot(history_block3_partial.history['loss'], label='Train Loss')\n", + "plt.plot(history_block3_partial.history['val_loss'], label='Validation Loss')\n", + "plt.legend()\n", + "plt.title('Loss Trends')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QXOeY15a8YTl" + }, + "source": [ + "#Full Network Fine-Tuning with Regularization and Callbacks " + ] + }, + { + "cell_type": "markdown", + "source": [ + "1. **Model Initialization**: \n", + " - Loads the VGG19 base model with pre-trained `imagenet` weights and unfrozen layers to enable full network fine-tuning. \n", + " - Adds custom dense layers with L2 regularization (`l2(0.0001)`) for weight penalties and dropout (`0.4`) for stability. \n", + " - Combines the base model and custom layers into `model_03` and loads pre-trained weights from a previous training phase.\n", + "\n", + "2. **Callbacks Setup**: \n", + " - **ReduceLROnPlateau**: Dynamically reduces the learning rate when validation loss plateaus, ensuring efficient learning. \n", + " - **ModelCheckpoint**: Saves the best model weights (`vgg19_finetuned_full.keras`) based on the minimum validation loss. \n", + " - **EarlyStopping**: Stops training when validation loss does not improve for 6 epochs, restoring the best weights.\n", + "\n", + "3. **Purpose**: \n", + " - Fine-tunes the entire network with regularization to minimize overfitting and employs advanced callbacks to optimize training performance and convergence." + ], + "metadata": { + "id": "WQpr_tkJbeJP" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "4vRpgEAM8Vzh" + }, + "outputs": [], + "source": [ + "from tensorflow.keras.applications import VGG19\n", + "from tensorflow.keras.models import Model\n", + "from tensorflow.keras.layers import Flatten, Dense, Dropout\n", + "from tensorflow.keras.optimizers import Adam\n", + "from tensorflow.keras.regularizers import l2\n", + "\n", + "# Load base model\n", + "base_model = VGG19(include_top=False, input_shape=(128, 128, 3))\n", + "base_model.trainable = True # Unfreeze the entire network\n", + "\n", + "# Add custom layers\n", + "x = base_model.output\n", + "flat = Flatten()(x)\n", + "class_1 = Dense(4608, activation='relu', kernel_regularizer=l2(0.0001))(flat) # Add L2 regularization\n", + "dropout = Dropout(0.4)(class_1) # Increased dropout for stability\n", + "class_2 = Dense(1152, activation='relu', kernel_regularizer=l2(0.0001))(dropout)\n", + "output = Dense(2, activation='softmax')(class_2)\n", + "\n", + "# Define the model\n", + "model_03 = Model(inputs=base_model.inputs, outputs=output)\n", + "\n", + "# Load pre-trained weights\n", + "model_03.load_weights(\"model_weights/vgg19_model_01.keras\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Lwxpu5VY8f4q" + }, + "outputs": [], + "source": [ + "from tensorflow.keras.callbacks import ReduceLROnPlateau, ModelCheckpoint, EarlyStopping\n", + "\n", + "# Define callbacks\n", + "lr_scheduler = ReduceLROnPlateau(\n", + " monitor=\"val_loss\",\n", + " factor=0.5,\n", + " patience=3,\n", + " verbose=1,\n", + " min_lr=1e-7\n", + ")\n", + "checkpoint = ModelCheckpoint(\n", + " \"model_weights/vgg19_finetuned_full.keras\",\n", + " save_best_only=True,\n", + " monitor=\"val_loss\",\n", + " mode=\"min\"\n", + ")\n", + "early_stopping = EarlyStopping(\n", + " monitor=\"val_loss\",\n", + " patience=6,\n", + " restore_best_weights=True,\n", + " verbose=1\n", + ")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qFc8_bg69A0g" + }, + "source": [ + "#Data Generators for Training, Validation, and Testing" + ] + }, + { + "cell_type": "markdown", + "source": [ + "1. **Data Augmentation for Training**: \n", + " - Configures `train_datagen` with data augmentation techniques such as reduced rotation (`20`), slight width and height shifts (`0.1`), zooming (`0.2`), and horizontal flipping. \n", + " - Normalizes image pixel values by rescaling to a range of 0 to 1.\n", + "\n", + "2. **Generators Setup**: \n", + " - **Training Generator**: Reads images from the `new_train` directory with a target size of `128x128`, batch size of 32, and categorical class mode. \n", + " - **Validation Generator**: Reads validation images from the `val` directory with the same parameters but without augmentation. \n", + "\n", + "3. **Test Generator**: \n", + " - Reads test images from the `test` directory. \n", + " - Maintains `shuffle=False` to preserve the order of test data for evaluation consistency. \n", + "\n", + "4. **Purpose**: \n", + " - Prepares augmented training data to improve model generalization while maintaining clean validation and test datasets for unbiased evaluation. " + ], + "metadata": { + "id": "qWcLn3rRd1O9" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pKHjOPQu88aB", + "outputId": "5fe6f524-4df9-450c-ca67-269d6b14090d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found 5398 images belonging to 2 classes.\n", + "Found 16 images belonging to 2 classes.\n", + "Found 624 images belonging to 2 classes.\n" + ] + } + ], + "source": [ + "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n", + "\n", + "train_datagen = ImageDataGenerator(\n", + " rescale=1.0 / 255,\n", + " rotation_range=20, # Reduce rotation\n", + " width_shift_range=0.1,\n", + " height_shift_range=0.1,\n", + " zoom_range=0.2,\n", + " horizontal_flip=True,\n", + " fill_mode=\"nearest\"\n", + ")\n", + "\n", + "valid_datagen = ImageDataGenerator(rescale=1.0 / 255)\n", + "\n", + "train_generator = train_datagen.flow_from_directory(\n", + " directory=\"/content/dataset/chest_xray/new_train\",\n", + " target_size=(128, 128),\n", + " batch_size=32,\n", + " class_mode=\"categorical\"\n", + ")\n", + "\n", + "valid_generator = valid_datagen.flow_from_directory(\n", + " directory=\"/content/dataset/chest_xray/val\",\n", + " target_size=(128, 128),\n", + " batch_size=32,\n", + " class_mode=\"categorical\"\n", + ")\n", + "\n", + "test_generator = valid_datagen.flow_from_directory(\n", + " directory=\"/content/dataset/chest_xray/test\",\n", + " target_size=(128, 128),\n", + " batch_size=32,\n", + " class_mode=\"categorical\",\n", + " shuffle=False\n", + ")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hC-_JanB9KXm" + }, + "source": [ + "#Fine-Tuning the Model with a Low Learning Rate " + ] + }, + { + "cell_type": "markdown", + "source": [ + "1. **Compilation**: \n", + " - Compiles the model with the Adam optimizer using a very small learning rate (`0.00001`) to stabilize training during fine-tuning. \n", + " - Uses `categorical_crossentropy` as the loss function for multi-class classification and accuracy as the evaluation metric.\n", + "\n", + "2. **Training**: \n", + " - Trains the model incrementally for 15 epochs while monitoring performance on both training and validation datasets. \n", + " - Employs callbacks like `lr_scheduler`, `checkpoint`, and `early_stopping` to dynamically adjust learning rate, save the best model, and halt training early if validation performance stops improving.\n", + "\n", + "3. **Purpose**: \n", + " - Allows precise adjustments to weights in fine-tuning while preventing overfitting by leveraging advanced callbacks and a conservative learning rate. " + ], + "metadata": { + "id": "bR10CoLbeITE" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "plzoysMN9HKg" + }, + "outputs": [], + "source": [ + "model_03.compile(\n", + " optimizer=Adam(learning_rate=0.00001), # Small learning rate for fine-tuning\n", + " loss=\"categorical_crossentropy\",\n", + " metrics=[\"accuracy\"]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "h0DlJMK29Q90" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TE1LoHQB9Ty5", + "outputId": "92eacce4-c8a3-4616-aa75-153df996cd2e" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/15\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m145s\u001b[0m 708ms/step - accuracy: 0.8457 - loss: 1.0938 - val_accuracy: 0.7500 - val_loss: 1.3867 - learning_rate: 1.0000e-05\n", + "Epoch 2/15\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00 - learning_rate: 1.0000e-05\n", + "Epoch 3/15\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/callbacks/callback_list.py:96: UserWarning: Learning rate reduction is conditioned on metric `val_loss` which is not available. Available metrics are: accuracy,loss,learning_rate.\n", + " callback.on_epoch_end(epoch, logs)\n", + "/usr/local/lib/python3.10/dist-packages/keras/src/callbacks/early_stopping.py:155: UserWarning: Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: accuracy,loss,learning_rate\n", + " current = self.get_monitor_value(logs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m94s\u001b[0m 526ms/step - accuracy: 0.9470 - loss: 0.8468 - val_accuracy: 0.6875 - val_loss: 1.4559 - learning_rate: 1.0000e-05\n", + "Epoch 4/15\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━���━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 873us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00 - learning_rate: 1.0000e-05\n", + "Epoch 5/15\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m140s\u001b[0m 525ms/step - accuracy: 0.9636 - loss: 0.7747 - val_accuracy: 0.6250 - val_loss: 1.6448 - learning_rate: 1.0000e-05\n", + "Epoch 6/15\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 863us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00 - learning_rate: 1.0000e-05\n", + "Epoch 7/15\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m153s\u001b[0m 584ms/step - accuracy: 0.9735 - loss: 0.7240 - val_accuracy: 0.8125 - val_loss: 1.1155 - learning_rate: 1.0000e-05\n", + "Epoch 8/15\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 211us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00 - learning_rate: 1.0000e-05\n", + "Epoch 9/15\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m131s\u001b[0m 529ms/step - accuracy: 0.9663 - loss: 0.7085 - val_accuracy: 0.6250 - val_loss: 1.2856 - learning_rate: 1.0000e-05\n", + "Epoch 10/15\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 889us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00 - learning_rate: 1.0000e-05\n", + "Epoch 11/15\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m160s\u001b[0m 631ms/step - accuracy: 0.9799 - loss: 0.6532 - val_accuracy: 0.8750 - val_loss: 0.7989 - learning_rate: 1.0000e-05\n", + "Epoch 12/15\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00 - learning_rate: 1.0000e-05\n", + "Epoch 13/15\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m92s\u001b[0m 527ms/step - accuracy: 0.9744 - loss: 0.6404 - val_accuracy: 0.6875 - val_loss: 1.2082 - learning_rate: 1.0000e-05\n", + "Epoch 14/15\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 427us/step - accuracy: 0.0000e+00 - loss: 0.0000e+00 - learning_rate: 1.0000e-05\n", + "Epoch 15/15\n", + "\u001b[1m169/169\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m94s\u001b[0m 532ms/step - accuracy: 0.9757 - loss: 0.6229 - val_accuracy: 0.8125 - val_loss: 0.9666 - learning_rate: 1.0000e-05\n", + "Restoring model weights from the end of the best epoch: 11.\n" + ] + } + ], + "source": [ + "history = model_03.fit(\n", + " train_generator,\n", + " validation_data=valid_generator,\n", + " steps_per_epoch=len(train_generator),\n", + " validation_steps=len(valid_generator),\n", + " epochs=15, # Train for more epochs with early stopping\n", + " callbacks=[lr_scheduler, checkpoint, early_stopping],\n", + " verbose=1\n", + ")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_dhxrxEf9cm8" + }, + "source": [ + "#Model Evaluation and Metrics Calculation " + ] + }, + { + "cell_type": "markdown", + "source": [ + "1. **Test Evaluation**: \n", + " - Evaluates the model on the test dataset to calculate test loss and accuracy. \n", + " - Prints the test performance metrics for overall evaluation.\n", + "\n", + "2. **Prediction Generation**: \n", + " - Extracts the true labels (`y_true`) from the test generator. \n", + " - Generates predicted probabilities (`y_pred_probs`) and converts them to class labels (`y_pred`) using `argmax`.\n", + "\n", + "3. **Classification Report**: \n", + " - Displays a detailed classification report, including precision, recall, F1-score, and support for each class using `classification_report`.\n", + "\n", + "4. **ROC-AUC Score**: \n", + " - Computes and prints the Receiver Operating Characteristic Area Under the Curve (ROC-AUC) score to evaluate the model's discriminative performance.\n", + "\n", + "5. **Purpose**: \n", + " - Provides a comprehensive evaluation of the model's performance on the test set, enabling insights into its classification accuracy and overall reliability. " + ], + "metadata": { + "id": "5tVMQVRKetIt" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "aIamfEiu9ZIi", + "outputId": "5ddb0ea2-484b-4b0e-f30e-2f60786b9aec" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/trainers/data_adapters/py_dataset_adapter.py:122: UserWarning: Your `PyDataset` class should call `super().__init__(**kwargs)` in its constructor. `**kwargs` can include `workers`, `use_multiprocessing`, `max_queue_size`. Do not pass these arguments to `fit()`, as they will be ignored.\n", + " self._warn_if_super_not_called()\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 186ms/step - accuracy: 0.8573 - loss: 1.0133\n", + "Test Loss: 0.8725459575653076, Test Accuracy: 0.9006410241127014\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 242ms/step\n", + " precision recall f1-score support\n", + "\n", + " NORMAL 0.94 0.79 0.86 234\n", + " PNEUMONIA 0.88 0.97 0.92 390\n", + "\n", + " accuracy 0.90 624\n", + " macro avg 0.91 0.88 0.89 624\n", + "weighted avg 0.90 0.90 0.90 624\n", + "\n", + "ROC-AUC: 0.9683431952662722\n" + ] + } + ], + "source": [ + "from sklearn.metrics import classification_report, roc_auc_score\n", + "\n", + "# Test evaluation\n", + "test_loss, test_acc = model_03.evaluate(test_generator)\n", + "print(f\"Test Loss: {test_loss}, Test Accuracy: {test_acc}\")\n", + "\n", + "# Generate predictions\n", + "y_true = test_generator.classes\n", + "y_pred_probs = model_03.predict(test_generator)\n", + "y_pred = y_pred_probs.argmax(axis=1)\n", + "\n", + "# Classification report\n", + "print(classification_report(y_true, y_pred, target_names=test_generator.class_indices.keys()))\n", + "\n", + "# ROC-AUC\n", + "roc_auc = roc_auc_score(y_true, y_pred_probs[:, 1])\n", + "print(f\"ROC-AUC: {roc_auc}\")\n" + ] + }, + { + "cell_type": "markdown", + "source": [ + "#Saving Model Weights to Google Drive" + ], + "metadata": { + "id": "c-KheCDde3l9" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "tBQ7Ry-3QrYv", + "outputId": "d2e870bf-6019-4646-8a06-d9c282a1ed1a" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n" + ] + } + ], + "source": [ + "from google.colab import drive\n", + "drive.mount('/content/drive')\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Z3JxD-EfQvBe" + }, + "outputs": [], + "source": [ + "import os\n", + "\n", + "# Path to save models in Google Drive\n", + "google_drive_path = '/content/drive/My Drive/model_weights'\n", + "\n", + "# Create the directory if it doesn't exist\n", + "os.makedirs(google_drive_path, exist_ok=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8C0peD3pROYw", + "outputId": "308b8d93-0dbf-427c-a9ac-090bc1fba475" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "All models have been saved to /content/drive/My Drive/model_weights\n" + ] + } + ], + "source": [ + "import shutil\n", + "\n", + "# Source folder (current location of model weights)\n", + "source_folder = '/content/model_weights'\n", + "\n", + "# Copy all files to Google Drive\n", + "shutil.copytree(source_folder, google_drive_path, dirs_exist_ok=True)\n", + "print(f\"All models have been saved to {google_drive_path}\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "sbGSDEBqRRpj", + "outputId": "e28b2d4a-ed3d-4b69-aeeb-e92ac0f5ffa0" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['vgg19_fine_tuned_block5_91.keras',\n", + " 'frozen_model.keras',\n", + " 'vgg19_finetuned_full.keras',\n", + " 'vgg19_fine_tuned_block4_91.keras',\n", + " 'vgg19_model_01.keras',\n", + " '.ipynb_checkpoints']" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "os.listdir(google_drive_path)" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file