Spaces:
Sleeping
Sleeping
SoulMind01
commited on
Commit
·
9163080
1
Parent(s):
7205e49
Updated `app.py`. Made it accessible from external machines.
Browse files
app.py
CHANGED
@@ -1,43 +1,42 @@
|
|
1 |
-
|
2 |
import numpy as np
|
3 |
from tensorflow.keras.models import load_model
|
4 |
from PIL import Image
|
5 |
-
import os
|
6 |
-
|
7 |
-
app = Flask(__name__)
|
8 |
|
9 |
# Load the trained model
|
10 |
MODEL_PATH = "vgg19_fine_tuned_block5_91.keras"
|
11 |
model = load_model(MODEL_PATH)
|
12 |
|
13 |
# Define class labels and confidence threshold
|
14 |
-
CLASS_LABELS = [
|
15 |
CONFIDENCE_THRESHOLD = 0.7
|
16 |
|
17 |
-
|
|
|
18 |
"""
|
19 |
Preprocesses the input image for the model.
|
20 |
Args:
|
21 |
-
|
22 |
Returns:
|
23 |
numpy.ndarray: Preprocessed image ready for prediction.
|
24 |
"""
|
25 |
-
img =
|
26 |
img = img.resize((128, 128)) # Resize to model's input size
|
27 |
img_array = np.array(img) / 255.0 # Normalize pixel values to [0, 1]
|
28 |
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
29 |
return img_array
|
30 |
|
31 |
-
|
|
|
32 |
"""
|
33 |
Predicts the class of the input image with confidence-based filtering.
|
34 |
Args:
|
35 |
-
|
36 |
Returns:
|
37 |
str: Predicted class label or uncertainty message.
|
38 |
float: Confidence score (if applicable).
|
39 |
"""
|
40 |
-
img_array = preprocess_image(
|
41 |
prediction = model.predict(img_array)
|
42 |
confidence = np.max(prediction)
|
43 |
|
@@ -48,44 +47,16 @@ def predict_image(file_path):
|
|
48 |
predicted_class = CLASS_LABELS[np.argmax(prediction)]
|
49 |
return predicted_class, confidence
|
50 |
|
51 |
-
@app.route("/", methods=["GET"])
|
52 |
-
def home():
|
53 |
-
return render_template("index.html")
|
54 |
-
|
55 |
-
@app.route("/predict", methods=["POST"])
|
56 |
-
def predict():
|
57 |
-
if "file" not in request.files:
|
58 |
-
return "No file uploaded", 400
|
59 |
-
|
60 |
-
file = request.files["file"]
|
61 |
-
if file.filename == "":
|
62 |
-
return "No file selected", 400
|
63 |
-
|
64 |
-
if file:
|
65 |
-
# Save the uploaded file temporarily
|
66 |
-
upload_path = os.path.join("static/uploads", file.filename)
|
67 |
-
os.makedirs("static/uploads", exist_ok=True)
|
68 |
-
file.save(upload_path)
|
69 |
-
|
70 |
-
# Make prediction
|
71 |
-
predicted_class, confidence = predict_image(upload_path)
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
)
|
82 |
-
else:
|
83 |
-
return render_template(
|
84 |
-
"result.html",
|
85 |
-
prediction=predicted_class,
|
86 |
-
confidence=f"{confidence*100:.2f}%",
|
87 |
-
image_path=upload_path,
|
88 |
-
)
|
89 |
|
|
|
90 |
if __name__ == "__main__":
|
91 |
-
|
|
|
1 |
+
import gradio as gr
|
2 |
import numpy as np
|
3 |
from tensorflow.keras.models import load_model
|
4 |
from PIL import Image
|
|
|
|
|
|
|
5 |
|
6 |
# Load the trained model
|
7 |
MODEL_PATH = "vgg19_fine_tuned_block5_91.keras"
|
8 |
model = load_model(MODEL_PATH)
|
9 |
|
10 |
# Define class labels and confidence threshold
|
11 |
+
CLASS_LABELS = ["NORMAL", "PNEUMONIA"]
|
12 |
CONFIDENCE_THRESHOLD = 0.7
|
13 |
|
14 |
+
|
15 |
+
def preprocess_image(image):
|
16 |
"""
|
17 |
Preprocesses the input image for the model.
|
18 |
Args:
|
19 |
+
image (PIL.Image): Input image.
|
20 |
Returns:
|
21 |
numpy.ndarray: Preprocessed image ready for prediction.
|
22 |
"""
|
23 |
+
img = image.convert("RGB") # Ensure the image is RGB
|
24 |
img = img.resize((128, 128)) # Resize to model's input size
|
25 |
img_array = np.array(img) / 255.0 # Normalize pixel values to [0, 1]
|
26 |
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
27 |
return img_array
|
28 |
|
29 |
+
|
30 |
+
def predict_image(image):
|
31 |
"""
|
32 |
Predicts the class of the input image with confidence-based filtering.
|
33 |
Args:
|
34 |
+
image (PIL.Image): Input image.
|
35 |
Returns:
|
36 |
str: Predicted class label or uncertainty message.
|
37 |
float: Confidence score (if applicable).
|
38 |
"""
|
39 |
+
img_array = preprocess_image(image)
|
40 |
prediction = model.predict(img_array)
|
41 |
confidence = np.max(prediction)
|
42 |
|
|
|
47 |
predicted_class = CLASS_LABELS[np.argmax(prediction)]
|
48 |
return predicted_class, confidence
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
# Create a Gradio interface
|
52 |
+
interface = gr.Interface(
|
53 |
+
fn=predict_image,
|
54 |
+
inputs=gr.Image(type="pil"),
|
55 |
+
outputs=[gr.Textbox(label="Predicted Class"), gr.Textbox(label="Confidence")],
|
56 |
+
title="Pneumonia Detection CNN",
|
57 |
+
description="Upload an image to classify it as NORMAL or PNEUMONIA.",
|
58 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
# Launch the interface
|
61 |
if __name__ == "__main__":
|
62 |
+
interface.launch(server_name="0.0.0.0", server_port=7860)
|