SoulMind01 commited on
Commit
09c74ec
Β·
1 Parent(s): a16576a

Updated `README.md`. Added project setup documentation

Browse files
Files changed (1) hide show
  1. README.md +113 -3
README.md CHANGED
@@ -1,4 +1,114 @@
1
- # Pneumono_Detect
2
- link to the [CNN model](https://drive.google.com/file/d/1-4L-8HJ79W5k-0l8FchG4HH1SI2dLi2W/view?usp=sharing)
3
 
4
- link to the [Dataset](https://drive.google.com/drive/folders/1BhxsscDaVBamuyUv1HoyXsixeGvTWHt5?usp=sharing)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Pneumonia Detection System
 
2
 
3
+ A Flask-based web application that uses a fine-tuned VGG19 model to detect pneumonia from chest X-ray images.
4
+
5
+ ## Model Links
6
+ - [CNN Model](https://drive.google.com/file/d/1-4L-8HJ79W5k-0l8FchG4HH1SI2dLi2W/view?usp=sharing)
7
+ <!-- - [Dataset](https://drive.google.com/drive/folders/1BhxsscDaVBamuyUv1HoyXsixeGvTWHt5?usp=sharing) -->
8
+
9
+ ## Setup Instructions
10
+
11
+ ### Prerequisites
12
+ - Python 3.8 or higher
13
+
14
+ ### Installation
15
+
16
+ 1. Clone the repository:
17
+
18
+ ```bash
19
+ git clone https://github.com/yourusername/Pneumono_Detect.git
20
+ cd Pneumono_Detect
21
+ ```
22
+
23
+ 2. Set up the environment:
24
+
25
+ #### Windows:
26
+
27
+ ```bash
28
+ setup.bat
29
+ ```
30
+
31
+ #### Linux/Mac:
32
+
33
+ ```bash
34
+ chmod +x setup.sh
35
+ ./setup.sh
36
+ ```
37
+
38
+ ### Activating the Environment
39
+
40
+ #### Windows:
41
+
42
+ ```bash
43
+ tf_test_env\Scripts\activate
44
+ ```
45
+
46
+ #### Linux/Mac:
47
+
48
+ ```bash
49
+ source tf_test_env/bin/activate
50
+ ```
51
+
52
+ ## Running the Application
53
+
54
+ 1. Ensure your virtual environment is activated
55
+ 2. Run the Flask application:
56
+
57
+ ```bash
58
+ python app.py
59
+ ```
60
+ 3. Open a web browser and navigate to `http://localhost:5000`
61
+
62
+ ## Usage
63
+
64
+ 1. Upload a chest X-ray image through the web interface
65
+ 2. Click "Predict" to get the classification result
66
+ 3. View the prediction result and confidence score
67
+
68
+ ## Project Structure
69
+ ```
70
+ Pneumono_Detect/
71
+ β”œβ”€β”€ app.py # Flask application
72
+ β”œβ”€β”€ requirements.txt # Python dependencies
73
+ β”œβ”€β”€ setup.bat # Windows setup script
74
+ β”œβ”€β”€ setup.sh # Linux/Mac setup script
75
+ β”œβ”€β”€ static/
76
+ β”‚ └── uploads/ # Folder for uploaded images
77
+ └── templates/
78
+ β”œβ”€β”€ index.html # Upload page
79
+ └── result.html # Results page
80
+ ```
81
+
82
+ ## Model Information
83
+ - Architecture: VGG19 (fine-tuned)
84
+ - Input Size: 128x128x3
85
+ - Classes: NORMAL, PNEUMONIA
86
+ - Confidence Threshold: 0.7
87
+
88
+ ## Dependencies
89
+ - Flask 3.1.0
90
+ - TensorFlow 2.12.0
91
+ - Pillow 10.2.0
92
+ - NumPy 1.23.5
93
+
94
+ ## License
95
+ [Your chosen license]
96
+
97
+ ## Acknowledgments
98
+ - Dataset source: [Add source]
99
+ - Base VGG19 model: [Reference]
100
+ ```
101
+
102
+ This README provides:
103
+ 1. Clear setup instructions for both Windows and Linux/Mac
104
+ 2. Project structure overview
105
+ 3. Usage instructions
106
+ 4. Model information
107
+ 5. Dependencies list
108
+ 6. Placeholders for license and acknowledgments
109
+
110
+ Remember to:
111
+ 1. Replace `yourusername` with your actual GitHub username
112
+ 2. Add appropriate license information
113
+ 3. Fill in the acknowledgments section
114
+ 4. Update any specific details about your implementation