# from fastapi import FastAPI, Query, Request, HTTPException # import pandas as pd # import transformers as pipeline # from transformers import AutoTokenizer,AutoModelForSequenceClassification # from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline # model_name = "Sonny4Sonnix/twitter-roberta-base-sentimental-analysis-of-covid-tweets" # model = AutoModelForSequenceClassification.from_pretrained(model_name) # tokenizer = AutoTokenizer.from_pretrained(model_name) # sentiment = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) # app = FastAPI() # @app.get("/") # async def read_root(): # return {"message": "Sentiment Analysis API using FastAPI"} # @app.get("/analyze-sentiment/") # async def analyze_sentiment(text: str = Query(..., description="Text for sentiment analysis")): # result = sentiment(text) # sentiment_label = result[0]['label'] # sentiment_score = result[0]['score'] # if sentiment_label == 'LABEL_1': # sentiment_label = "positive" # elif sentiment_label == 'LABEL_0': # sentiment_label = "neutral" # else: # sentiment_label = "negative" # response = { # "sentiment": sentiment_label.capitalize(), # "score": sentiment_score # } # return response # if _name_ == "_main_": # import uvicorn # uvicorn.run(app, host="127.0.0.1", port=7860) # model_name = "Sonny4Sonnix/Movie_Sentiments_Analysis_with_FastAPI" # Replace with the name of the pre-trained model you want to use # model = AutoModelForSequenceClassification.from_pretrained(model_name) # tokenizer = AutoTokenizer.from_pretrained(model_name) # app = FastAPI() # @app.get("/") # async def read_root(): # return {"message": "Welcome to the Sepsis Prediction using FastAPI"} # def classify(prediction): # if prediction == 0: # return "Sentence is positive" # else: # return "Sentence is negative" # @app.post("/predict/") # async def predict_sepsis( # request: Request, # Text: float = Query(..., description="Please type a sentence"), # ): # input_data = [Text] # input_df = pd.DataFrame([input_data], columns=[ # "Text" # ]) # pred = model.predict(input_df) # output = classify(pred[0]) # response = { # "prediction": output # } # return response # # Run the app using Uvicorn # if __name__ == "__main__": # import uvicorn # uvicorn.run(app, host="127.0.0.1", port=7860) # sentiment = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)