Upload 6 files
Browse files- Data_syw.xlsx +0 -0
- README.md +39 -14
- app.py +347 -0
- cohesion_model.pt +3 -0
- friction_model.pt +3 -0
- requirements.txt +10 -0
Data_syw.xlsx
ADDED
Binary file (37.7 kB). View file
|
|
README.md
CHANGED
@@ -1,14 +1,39 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Waste Properties Predictor
|
2 |
+
|
3 |
+
This Streamlit app predicts both friction angle and cohesion based on waste composition and characteristics using deep learning models.
|
4 |
+
|
5 |
+
## Features
|
6 |
+
|
7 |
+
- Predicts both friction angle and cohesion simultaneously
|
8 |
+
- Supports Excel file input for batch predictions
|
9 |
+
- Provides SHAP value explanations for predictions
|
10 |
+
- Interactive input interface with value range validation
|
11 |
+
- Supports custom data upload
|
12 |
+
|
13 |
+
## Files Description
|
14 |
+
|
15 |
+
- `app.py`: Main application file
|
16 |
+
- `requirements.txt`: Required Python packages
|
17 |
+
- `friction_model.pt`: Pre-trained model for friction angle prediction
|
18 |
+
- `cohesion_model.pt`: Pre-trained model for cohesion prediction
|
19 |
+
- `Data_syw.xlsx`: Default data file with example values
|
20 |
+
|
21 |
+
## Usage
|
22 |
+
|
23 |
+
1. The app loads with default values from the first row of `Data_syw.xlsx`
|
24 |
+
2. You can either:
|
25 |
+
- Use the default values
|
26 |
+
- Upload your own Excel file with waste composition data
|
27 |
+
- Manually adjust individual values using the input fields
|
28 |
+
3. Click "Predict Properties" to get predictions and SHAP explanations
|
29 |
+
|
30 |
+
## Input Parameters
|
31 |
+
|
32 |
+
The app accepts various waste composition and characteristic parameters. All inputs are validated against the training data ranges to ensure reliable predictions.
|
33 |
+
|
34 |
+
## Output
|
35 |
+
|
36 |
+
For each prediction, the app provides:
|
37 |
+
- Predicted friction angle (degrees)
|
38 |
+
- Predicted cohesion (kPa)
|
39 |
+
- SHAP waterfall plots explaining the contribution of each feature to the predictions
|
app.py
ADDED
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
# Disable OpenMP
|
3 |
+
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
4 |
+
os.environ['OMP_NUM_THREADS'] = '1'
|
5 |
+
os.environ['OPENBLAS_NUM_THREADS'] = '1'
|
6 |
+
os.environ['MKL_NUM_THREADS'] = '1'
|
7 |
+
os.environ['VECLIB_MAXIMUM_THREADS'] = '1'
|
8 |
+
os.environ['NUMEXPR_NUM_THREADS'] = '1'
|
9 |
+
|
10 |
+
import streamlit as st
|
11 |
+
import torch
|
12 |
+
import numpy as np
|
13 |
+
import pandas as pd
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
import shap
|
16 |
+
from sklearn.preprocessing import MinMaxScaler
|
17 |
+
import plotly.graph_objects as go
|
18 |
+
import io
|
19 |
+
from matplotlib.figure import Figure
|
20 |
+
|
21 |
+
# Set page config
|
22 |
+
st.set_page_config(
|
23 |
+
page_title="Waste Properties Predictor",
|
24 |
+
page_icon="🔄",
|
25 |
+
layout="wide"
|
26 |
+
)
|
27 |
+
|
28 |
+
# Custom CSS to improve the app's appearance
|
29 |
+
st.markdown("""
|
30 |
+
<style>
|
31 |
+
.stApp {
|
32 |
+
max-width: 1200px;
|
33 |
+
margin: 0 auto;
|
34 |
+
}
|
35 |
+
.main {
|
36 |
+
padding: 2rem;
|
37 |
+
}
|
38 |
+
.stButton>button {
|
39 |
+
width: 100%;
|
40 |
+
}
|
41 |
+
</style>
|
42 |
+
""", unsafe_allow_html=True)
|
43 |
+
|
44 |
+
# Load the trained model and recreate the architecture for both friction and cohesion
|
45 |
+
class Net(torch.nn.Module):
|
46 |
+
def __init__(self, input_size):
|
47 |
+
super(Net, self).__init__()
|
48 |
+
self.fc1 = torch.nn.Linear(input_size, 64)
|
49 |
+
self.fc2 = torch.nn.Linear(64, 1000)
|
50 |
+
self.fc3 = torch.nn.Linear(1000, 200)
|
51 |
+
self.fc4 = torch.nn.Linear(200, 8)
|
52 |
+
self.fc5 = torch.nn.Linear(8, 1)
|
53 |
+
self.dropout = torch.nn.Dropout(0.2)
|
54 |
+
|
55 |
+
# Initialize weights
|
56 |
+
self.apply(self._init_weights)
|
57 |
+
|
58 |
+
def _init_weights(self, module):
|
59 |
+
if isinstance(module, torch.nn.Linear):
|
60 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
61 |
+
if module.bias is not None:
|
62 |
+
module.bias.data.zero_()
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
x = torch.nn.functional.relu(self.fc1(x))
|
66 |
+
x = self.dropout(x)
|
67 |
+
x = torch.nn.functional.relu(self.fc2(x))
|
68 |
+
x = self.dropout(x)
|
69 |
+
x = torch.nn.functional.relu(self.fc3(x))
|
70 |
+
x = self.dropout(x)
|
71 |
+
x = torch.nn.functional.relu(self.fc4(x))
|
72 |
+
x = self.dropout(x)
|
73 |
+
x = self.fc5(x)
|
74 |
+
return x
|
75 |
+
|
76 |
+
@st.cache_resource
|
77 |
+
def load_model_and_data():
|
78 |
+
# Set device and random seeds
|
79 |
+
np.random.seed(32)
|
80 |
+
torch.manual_seed(42)
|
81 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
82 |
+
|
83 |
+
# Load data
|
84 |
+
data = pd.read_excel("Data_syw.xlsx")
|
85 |
+
X = data.iloc[:, list(range(1, 17)) + list(range(21, 23))]
|
86 |
+
|
87 |
+
# Friction data
|
88 |
+
y_friction = data.iloc[:, 28].values
|
89 |
+
correlation_with_friction = abs(X.corrwith(pd.Series(y_friction)))
|
90 |
+
selected_features_friction = correlation_with_friction[correlation_with_friction > 0.1].index
|
91 |
+
X_friction = X[selected_features_friction]
|
92 |
+
|
93 |
+
# Cohesion data
|
94 |
+
y_cohesion = data.iloc[:, 25].values
|
95 |
+
correlation_with_cohesion = abs(X.corrwith(pd.Series(y_cohesion)))
|
96 |
+
selected_features_cohesion = correlation_with_cohesion[correlation_with_cohesion > 0.1].index
|
97 |
+
X_cohesion = X[selected_features_cohesion]
|
98 |
+
|
99 |
+
# Initialize and fit scalers for friction
|
100 |
+
scaler_X_friction = MinMaxScaler()
|
101 |
+
scaler_y_friction = MinMaxScaler()
|
102 |
+
scaler_X_friction.fit(X_friction)
|
103 |
+
scaler_y_friction.fit(y_friction.reshape(-1, 1))
|
104 |
+
|
105 |
+
# Initialize and fit scalers for cohesion
|
106 |
+
scaler_X_cohesion = MinMaxScaler()
|
107 |
+
scaler_y_cohesion = MinMaxScaler()
|
108 |
+
scaler_X_cohesion.fit(X_cohesion)
|
109 |
+
scaler_y_cohesion.fit(y_cohesion.reshape(-1, 1))
|
110 |
+
|
111 |
+
# Load models
|
112 |
+
friction_model = Net(input_size=len(selected_features_friction)).to(device)
|
113 |
+
friction_model.load_state_dict(torch.load('friction_model.pt'))
|
114 |
+
friction_model.eval()
|
115 |
+
|
116 |
+
cohesion_model = Net(input_size=len(selected_features_cohesion)).to(device)
|
117 |
+
cohesion_model.load_state_dict(torch.load('cohesion_model.pt'))
|
118 |
+
cohesion_model.eval()
|
119 |
+
|
120 |
+
return (friction_model, X_friction.columns, scaler_X_friction, scaler_y_friction,
|
121 |
+
cohesion_model, X_cohesion.columns, scaler_X_cohesion, scaler_y_cohesion,
|
122 |
+
device, X_friction, X_cohesion)
|
123 |
+
|
124 |
+
def predict_friction(input_values, model, scaler_X, scaler_y, device):
|
125 |
+
# Scale input values
|
126 |
+
input_scaled = scaler_X.transform(input_values)
|
127 |
+
input_tensor = torch.FloatTensor(input_scaled).to(device)
|
128 |
+
|
129 |
+
# Make prediction
|
130 |
+
with torch.no_grad():
|
131 |
+
prediction_scaled = model(input_tensor)
|
132 |
+
prediction = scaler_y.inverse_transform(prediction_scaled.cpu().numpy().reshape(-1, 1))
|
133 |
+
|
134 |
+
return prediction[0][0]
|
135 |
+
|
136 |
+
def predict_cohesion(input_values, model, scaler_X, scaler_y, device):
|
137 |
+
# Scale input values
|
138 |
+
input_scaled = scaler_X.transform(input_values)
|
139 |
+
input_tensor = torch.FloatTensor(input_scaled).to(device)
|
140 |
+
|
141 |
+
# Make prediction
|
142 |
+
with torch.no_grad():
|
143 |
+
prediction_scaled = model(input_tensor)
|
144 |
+
prediction = scaler_y.inverse_transform(prediction_scaled.cpu().numpy().reshape(-1, 1))
|
145 |
+
|
146 |
+
return prediction[0][0]
|
147 |
+
|
148 |
+
def calculate_shap_values(input_values, model, X, scaler_X, scaler_y, device):
|
149 |
+
def model_predict(X):
|
150 |
+
X_scaled = scaler_X.transform(X)
|
151 |
+
X_tensor = torch.FloatTensor(X_scaled).to(device)
|
152 |
+
with torch.no_grad():
|
153 |
+
scaled_pred = model(X_tensor).cpu().numpy()
|
154 |
+
return scaler_y.inverse_transform(scaled_pred.reshape(-1, 1)).flatten()
|
155 |
+
|
156 |
+
try:
|
157 |
+
# Set random seed for reproducibility
|
158 |
+
np.random.seed(42)
|
159 |
+
|
160 |
+
# Use a fixed background dataset
|
161 |
+
# Take a sample size that's at most the size of the dataset
|
162 |
+
n_samples = min(50, len(X))
|
163 |
+
background_indices = np.random.choice(len(X), size=n_samples, replace=False)
|
164 |
+
background = X.iloc[background_indices].values
|
165 |
+
|
166 |
+
# Create explainer with more samples for stability
|
167 |
+
explainer = shap.KernelExplainer(model_predict, background)
|
168 |
+
shap_values = explainer.shap_values(input_values.values, nsamples=200) # Reduced from 500 to 200
|
169 |
+
|
170 |
+
if isinstance(shap_values, list):
|
171 |
+
shap_values = np.array(shap_values[0])
|
172 |
+
|
173 |
+
return shap_values[0], explainer.expected_value
|
174 |
+
except Exception as e:
|
175 |
+
st.error(f"Error calculating SHAP values: {str(e)}")
|
176 |
+
return np.zeros(len(input_values.columns)), 0.0
|
177 |
+
|
178 |
+
@st.cache_resource
|
179 |
+
def create_background_data(X, n_samples=50): # Changed from 100 to 50
|
180 |
+
"""Create and cache background data for SHAP calculations"""
|
181 |
+
np.random.seed(42)
|
182 |
+
# Ensure n_samples is not larger than dataset
|
183 |
+
n_samples = min(n_samples, len(X))
|
184 |
+
background_indices = np.random.choice(len(X), size=n_samples, replace=False)
|
185 |
+
return X.iloc[background_indices].values
|
186 |
+
|
187 |
+
def create_waterfall_plot(shap_values, feature_names, base_value, input_data, title):
|
188 |
+
# Create SHAP explanation object
|
189 |
+
explanation = shap.Explanation(
|
190 |
+
values=shap_values,
|
191 |
+
base_values=base_value,
|
192 |
+
data=input_data,
|
193 |
+
feature_names=list(feature_names)
|
194 |
+
)
|
195 |
+
|
196 |
+
# Create figure
|
197 |
+
fig = plt.figure(figsize=(12, 8))
|
198 |
+
shap.plots.waterfall(explanation, show=False)
|
199 |
+
plt.title(f'{title} - Local SHAP Value Contributions')
|
200 |
+
plt.tight_layout()
|
201 |
+
|
202 |
+
# Save plot to a buffer
|
203 |
+
buf = io.BytesIO()
|
204 |
+
plt.savefig(buf, format='png', bbox_inches='tight', dpi=300)
|
205 |
+
plt.close(fig)
|
206 |
+
buf.seek(0)
|
207 |
+
return buf
|
208 |
+
|
209 |
+
def main():
|
210 |
+
st.title("🔄 Waste Properties Predictor")
|
211 |
+
st.write("This app predicts both friction angle and cohesion based on waste composition and characteristics.")
|
212 |
+
|
213 |
+
try:
|
214 |
+
# Load models and data
|
215 |
+
(friction_model, friction_features, scaler_X_friction, scaler_y_friction,
|
216 |
+
cohesion_model, cohesion_features, scaler_X_cohesion, scaler_y_cohesion,
|
217 |
+
device, X_friction, X_cohesion) = load_model_and_data()
|
218 |
+
|
219 |
+
# Create and cache background data for SHAP calculations
|
220 |
+
# No need to store these since they're not used
|
221 |
+
# friction_background = create_background_data(X_friction)
|
222 |
+
# cohesion_background = create_background_data(X_cohesion)
|
223 |
+
|
224 |
+
# Combine all unique features
|
225 |
+
all_features = sorted(list(set(friction_features) | set(cohesion_features)))
|
226 |
+
|
227 |
+
st.header("Input Parameters")
|
228 |
+
|
229 |
+
# Add file upload option
|
230 |
+
uploaded_file = st.file_uploader("Upload Excel file with input values", type=['xlsx', 'xls'])
|
231 |
+
|
232 |
+
# Initialize input values from the data file
|
233 |
+
input_values = {}
|
234 |
+
|
235 |
+
# Load default values from Data_syw.xlsx
|
236 |
+
default_data = pd.read_excel("Data_syw.xlsx")
|
237 |
+
if len(default_data) > 0:
|
238 |
+
for feature in all_features:
|
239 |
+
if feature in default_data.columns:
|
240 |
+
input_values[feature] = float(default_data[feature].iloc[0])
|
241 |
+
|
242 |
+
# Override with uploaded file if provided
|
243 |
+
if uploaded_file is not None:
|
244 |
+
try:
|
245 |
+
# Read the uploaded file
|
246 |
+
df = pd.read_excel(uploaded_file)
|
247 |
+
if len(df) > 0:
|
248 |
+
# Use the first row of the uploaded file
|
249 |
+
for feature in all_features:
|
250 |
+
if feature in df.columns:
|
251 |
+
input_values[feature] = float(df[feature].iloc[0])
|
252 |
+
except Exception as e:
|
253 |
+
st.error(f"Error reading file: {str(e)}")
|
254 |
+
|
255 |
+
st.write("Enter the waste composition and characteristics below to predict both friction angle and cohesion.")
|
256 |
+
|
257 |
+
# Create two columns for input
|
258 |
+
col1, col2 = st.columns(2)
|
259 |
+
|
260 |
+
# Create input fields for each feature
|
261 |
+
for i, feature in enumerate(all_features):
|
262 |
+
with col1 if i < len(all_features)//2 else col2:
|
263 |
+
# Get min and max values considering both friction and cohesion datasets
|
264 |
+
if feature in X_friction.columns and feature in X_cohesion.columns:
|
265 |
+
min_val = min(float(X_friction[feature].min()), float(X_cohesion[feature].min()))
|
266 |
+
max_val = max(float(X_friction[feature].max()), float(X_cohesion[feature].max()))
|
267 |
+
elif feature in X_friction.columns:
|
268 |
+
min_val = float(X_friction[feature].min())
|
269 |
+
max_val = float(X_friction[feature].max())
|
270 |
+
else:
|
271 |
+
min_val = float(X_cohesion[feature].min())
|
272 |
+
max_val = float(X_cohesion[feature].max())
|
273 |
+
|
274 |
+
# Use the value from input_values if available, otherwise use 0
|
275 |
+
default_value = input_values.get(feature, 0.0)
|
276 |
+
|
277 |
+
input_values[feature] = st.number_input(
|
278 |
+
f"{feature}",
|
279 |
+
min_value=min_val,
|
280 |
+
max_value=max_val,
|
281 |
+
value=default_value,
|
282 |
+
help=f"Range: {min_val:.2f} to {max_val:.2f}"
|
283 |
+
)
|
284 |
+
|
285 |
+
# Create DataFrames for both predictions
|
286 |
+
friction_input_df = pd.DataFrame([[input_values.get(feature, 0) for feature in friction_features]],
|
287 |
+
columns=friction_features)
|
288 |
+
cohesion_input_df = pd.DataFrame([[input_values.get(feature, 0) for feature in cohesion_features]],
|
289 |
+
columns=cohesion_features)
|
290 |
+
|
291 |
+
if st.button("Predict Properties"):
|
292 |
+
with st.spinner("Calculating predictions and SHAP values..."):
|
293 |
+
# Make predictions
|
294 |
+
friction_prediction = predict_friction(friction_input_df, friction_model, scaler_X_friction, scaler_y_friction, device)
|
295 |
+
cohesion_prediction = predict_cohesion(cohesion_input_df, cohesion_model, scaler_X_cohesion, scaler_y_cohesion, device)
|
296 |
+
|
297 |
+
# Set random seed before SHAP calculations
|
298 |
+
np.random.seed(42)
|
299 |
+
torch.manual_seed(42)
|
300 |
+
if torch.cuda.is_available():
|
301 |
+
torch.cuda.manual_seed(42)
|
302 |
+
|
303 |
+
# Calculate SHAP values using cached background data
|
304 |
+
friction_shap_values, friction_base_value = calculate_shap_values(friction_input_df, friction_model, X_friction, scaler_X_friction, scaler_y_friction, device)
|
305 |
+
cohesion_shap_values, cohesion_base_value = calculate_shap_values(cohesion_input_df, cohesion_model, X_cohesion, scaler_X_cohesion, scaler_y_cohesion, device)
|
306 |
+
|
307 |
+
# Display results
|
308 |
+
st.header("Prediction Results")
|
309 |
+
col1, col2 = st.columns(2)
|
310 |
+
|
311 |
+
with col1:
|
312 |
+
st.metric("Friction Angle", f"{friction_prediction:.2f}°")
|
313 |
+
|
314 |
+
with col2:
|
315 |
+
st.metric("Cohesion", f"{cohesion_prediction:.2f} kPa")
|
316 |
+
|
317 |
+
# Create and display waterfall plots
|
318 |
+
col1, col2 = st.columns(2)
|
319 |
+
|
320 |
+
with col1:
|
321 |
+
st.subheader("Friction Angle SHAP Analysis")
|
322 |
+
friction_waterfall_plot = create_waterfall_plot(
|
323 |
+
shap_values=friction_shap_values,
|
324 |
+
feature_names=friction_features,
|
325 |
+
base_value=friction_base_value,
|
326 |
+
input_data=friction_input_df.values[0],
|
327 |
+
title="Friction Angle"
|
328 |
+
)
|
329 |
+
st.image(friction_waterfall_plot)
|
330 |
+
|
331 |
+
with col2:
|
332 |
+
st.subheader("Cohesion SHAP Analysis")
|
333 |
+
cohesion_waterfall_plot = create_waterfall_plot(
|
334 |
+
shap_values=cohesion_shap_values,
|
335 |
+
feature_names=cohesion_features,
|
336 |
+
base_value=cohesion_base_value,
|
337 |
+
input_data=cohesion_input_df.values[0],
|
338 |
+
title="Cohesion"
|
339 |
+
)
|
340 |
+
st.image(cohesion_waterfall_plot)
|
341 |
+
|
342 |
+
except Exception as e:
|
343 |
+
st.error(f"An error occurred: {str(e)}")
|
344 |
+
st.info("Please try refreshing the page. If the error persists, contact support.")
|
345 |
+
|
346 |
+
if __name__ == "__main__":
|
347 |
+
main()
|
cohesion_model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb057d6ede51c755acc5c8bd66708fd304e57788f528088e5ae39b90920f9222
|
3 |
+
size 1073754
|
friction_model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c26fcb099fc3b77691b2a64e1f69a72843f101dbce382cd2be40a3516899e36c
|
3 |
+
size 1075034
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
torch
|
3 |
+
numpy
|
4 |
+
pandas
|
5 |
+
matplotlib
|
6 |
+
shap
|
7 |
+
scikit-learn
|
8 |
+
plotly
|
9 |
+
openpyxl
|
10 |
+
xlrd
|