import gradio as gr from huggingface_hub import InferenceClient, hf_hub_download import json # Initialize the model client client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def load_website_data(): try: # Download the latest crawl data file_path = hf_hub_download( repo_id="SmokeyBandit/SletcherSystems", filename="data/latest_crawl.json", repo_type="dataset" ) with open(file_path, 'r') as f: return json.load(f) except Exception as e: print(f"Error loading website data: {e}") return None WEBSITE_DATA = load_website_data() def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Augment system message with website data if available if WEBSITE_DATA: system_message = f"{system_message}\n\nWebsite Content:\n{WEBSITE_DATA['content'][:2000]}" messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value="You are a friendly chatbot assistant for SletcherSystems. Answer questions based on the website content.", label="System message" ), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()