Spaces:
Running
Running
Commit
Β·
868e837
1
Parent(s):
85d85cc
init
Browse files- README.md +0 -12
- SuSy.pt +3 -0
- app.py +272 -4
- requirements.txt +31 -0
- resnet_inception.pth +3 -0
README.md
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
---
|
2 |
-
title: Combined Model
|
3 |
-
emoji: π
|
4 |
-
colorFrom: pink
|
5 |
-
colorTo: red
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 5.32.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SuSy.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa10fae300ee2742c7a373b6c3332c2595b461954b8f5616d2d382ef2751020e
|
3 |
+
size 50810392
|
app.py
CHANGED
@@ -1,7 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
demo
|
7 |
-
demo.launch()
|
|
|
1 |
+
"""
|
2 |
+
Unified AI-Image & Deepfake Detector
|
3 |
+
===================================
|
4 |
+
β’ Combines a generic AI-image detector (Swin-V2 + SuSy) *and*
|
5 |
+
a deepfake-specialist face detector (Inception-ResNet V1).
|
6 |
+
β’ Always runs both experts β fuses their calibrated scores.
|
7 |
+
β’ Works on images **and** short videos (β€ 30 s).
|
8 |
+
|
9 |
+
Add/keep in requirements.txt (versions pinned earlier):
|
10 |
+
torch torchvision facenet-pytorch transformers torchcam captum timm
|
11 |
+
mediapipe opencv-python-headless pillow scikit-image matplotlib
|
12 |
+
gradio fpdf pandas numpy absl-py ttach
|
13 |
+
"""
|
14 |
+
|
15 |
+
# βββββββββββββββββββββ bootstrap for extra wheels ββββββββββββββββββββββ
|
16 |
+
import os, uuid, warnings, math, tempfile
|
17 |
+
from pathlib import Path
|
18 |
+
from typing import List, Tuple
|
19 |
+
|
20 |
+
warnings.filterwarnings("ignore")
|
21 |
+
|
22 |
+
def _ensure_deps():
|
23 |
+
try:
|
24 |
+
import mediapipe, fpdf # noqa: F401
|
25 |
+
except ImportError:
|
26 |
+
os.system("pip install --quiet --upgrade mediapipe fpdf")
|
27 |
+
|
28 |
+
_ensure_deps()
|
29 |
+
|
30 |
+
# βββββββββββββββββββββββββββββββ imports βββββββββββββββββββββββββββββββ
|
31 |
+
import cv2
|
32 |
import gradio as gr
|
33 |
+
import numpy as np
|
34 |
+
import torch
|
35 |
+
import torch.nn.functional as F
|
36 |
+
from PIL import Image
|
37 |
+
from fpdf import FPDF
|
38 |
+
import mediapipe as mp
|
39 |
+
from facenet_pytorch import InceptionResnetV1, MTCNN
|
40 |
+
from pytorch_grad_cam import GradCAM
|
41 |
+
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
42 |
+
from torchvision import transforms
|
43 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
44 |
+
from torchcam.methods import GradCAM as TCGradCAM
|
45 |
+
from captum.attr import Saliency
|
46 |
+
from skimage.feature import graycomatrix, graycoprops
|
47 |
+
import matplotlib.pyplot as plt
|
48 |
+
import pandas as pd
|
49 |
+
|
50 |
+
# βββββββββββββββββββββββββ runtime / models ββββββββββββββββββββββββββββ
|
51 |
+
plt.set_loglevel("ERROR")
|
52 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
53 |
+
|
54 |
+
# Deep-fake specialist
|
55 |
+
_face_det = MTCNN(select_largest=False, post_process=False, device=device).eval().to(device)
|
56 |
+
_df_model = InceptionResnetV1(pretrained="vggface2", classify=True, num_classes=1, device=device)
|
57 |
+
_df_model.load_state_dict(torch.load("resnet_inception.pth", map_location="cpu")["model_state_dict"])
|
58 |
+
_df_model.to(device).eval()
|
59 |
+
_df_cam = GradCAM(_df_model, target_layers=[_df_model.block8.branch1[-1]],
|
60 |
+
use_cuda=device.type == "cuda")
|
61 |
+
|
62 |
+
# Helper: robust layer fetch
|
63 |
+
def _get_layer(model, name: str):
|
64 |
+
mods = dict(model.named_modules())
|
65 |
+
return mods.get(name) or next(m for n, m in mods.items() if n.endswith(name))
|
66 |
+
|
67 |
+
# Binary AI-image detector (Swin-V2)
|
68 |
+
BIN_ID = "haywoodsloan/ai-image-detector-deploy"
|
69 |
+
_bin_proc = AutoImageProcessor.from_pretrained(BIN_ID)
|
70 |
+
_bin_mod = AutoModelForImageClassification.from_pretrained(BIN_ID).to(device).eval()
|
71 |
+
_CAM_LAYER_BIN = "encoder.layers.3.blocks.1.layernorm_after"
|
72 |
+
_bin_cam = TCGradCAM(_bin_mod, target_layer=_get_layer(_bin_mod, _CAM_LAYER_BIN))
|
73 |
+
|
74 |
+
# Generator classifier (SuSy β ScriptModule β Captum only)
|
75 |
+
_susy_mod = torch.jit.load("SuSy.pt").to(device).eval()
|
76 |
+
_GEN_CLASSES = ["Stable Diffusion 1.x", "DALLΒ·E 3",
|
77 |
+
"MJ V5/V6", "Stable Diffusion XL", "MJ V1/V2"]
|
78 |
+
_PATCH, _TOP = 224, 5
|
79 |
+
_to_tensor = transforms.ToTensor()
|
80 |
+
_to_gray = transforms.Compose([transforms.PILToTensor(), transforms.Grayscale()])
|
81 |
+
|
82 |
+
# βββββββββββββββ calibration placeholders (optional tune) ββββββββββββββ
|
83 |
+
_calib_df_slope, _calib_df_inter = 1.0, 0.0
|
84 |
+
_calib_ai_slope, _calib_ai_inter = 1.0, 0.0
|
85 |
+
|
86 |
+
def _calibrate_df(p: float) -> float:
|
87 |
+
return 1 / (1 + math.exp(-(_calib_df_slope * (p + _calib_df_inter))))
|
88 |
+
|
89 |
+
def _calibrate_ai(p: float) -> float:
|
90 |
+
return 1 / (1 + math.exp(-(_calib_ai_slope * (p + _calib_ai_inter))))
|
91 |
+
|
92 |
+
# βββββββββββββββββββββββββββββ misc helpers ββββββββββββββββββββββββββββ
|
93 |
+
UNCERTAIN_GAP = 0.10
|
94 |
+
MIN_FRAMES, MAX_SAMPLES = 4, 20
|
95 |
+
|
96 |
+
def _extract_landmarks(rgb: np.ndarray) -> Tuple[np.ndarray, np.ndarray | None]:
|
97 |
+
mesh = mp.solutions.face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1)
|
98 |
+
res = mesh.process(rgb); mesh.close()
|
99 |
+
if not res.multi_face_landmarks:
|
100 |
+
return rgb, None
|
101 |
+
h, w, _ = rgb.shape
|
102 |
+
out = rgb.copy()
|
103 |
+
for lm in res.multi_face_landmarks[0].landmark:
|
104 |
+
cx, cy = int(lm.x * w), int(lm.y * h)
|
105 |
+
cv2.circle(out, (cx, cy), 1, (0, 255, 0), -1)
|
106 |
+
return out, None
|
107 |
+
|
108 |
+
def _overlay_cam(cam: np.ndarray, base: np.ndarray) -> Image.Image:
|
109 |
+
cam = (cam - cam.min()) / (cam.max() - cam.min() + 1e-6)
|
110 |
+
heat = Image.fromarray((plt.cm.jet(cam)[:, :, :3] * 255).astype(np.uint8))\
|
111 |
+
.resize((base.shape[1], base.shape[0]), Image.BICUBIC)
|
112 |
+
return Image.blend(Image.fromarray(base).convert("RGBA"), heat.convert("RGBA"), alpha=0.45)
|
113 |
+
|
114 |
+
def _render_pdf(title: str, verdict: str, conf: dict, pages: List[Image.Image]) -> str:
|
115 |
+
out = Path(f"/tmp/report_{uuid.uuid4().hex}.pdf")
|
116 |
+
pdf = FPDF(); pdf.set_auto_page_break(True, 15); pdf.add_page()
|
117 |
+
pdf.set_font("Helvetica", size=14); pdf.cell(0, 10, title, ln=True, align="C")
|
118 |
+
pdf.ln(4); pdf.set_font("Helvetica", size=12)
|
119 |
+
pdf.multi_cell(0, 6, f"Verdict: {verdict}\n"
|
120 |
+
f"Confidence β Real {conf['real']:.3f} Fake {conf['fake']:.3f}")
|
121 |
+
for idx, img in enumerate(pages):
|
122 |
+
pdf.ln(4); pdf.set_font("Helvetica", size=11)
|
123 |
+
pdf.cell(0, 6, f"Figure {idx+1}", ln=True)
|
124 |
+
tmp = Path(tempfile.mktemp(suffix=".jpg")); img.save(tmp)
|
125 |
+
pdf.image(str(tmp), x=10, w=90); tmp.unlink(missing_ok=True)
|
126 |
+
pdf.output(out)
|
127 |
+
return str(out)
|
128 |
+
|
129 |
+
# ββββββββββββββββββββββββββ SuSy helpers (saliency) ββββββββββββββββββββ
|
130 |
+
def _susy_cam(tensor: torch.Tensor, class_idx: int) -> np.ndarray:
|
131 |
+
sal = Saliency(_susy_mod)
|
132 |
+
grad = sal.attribute(tensor, target=class_idx).abs().mean(1, keepdim=True)
|
133 |
+
return grad.squeeze().detach().cpu().numpy()
|
134 |
+
|
135 |
+
def _susy_predict(img: Image.Image):
|
136 |
+
w, h = img.size
|
137 |
+
npx, npy = max(1, w // _PATCH), max(1, h // _PATCH)
|
138 |
+
patches = np.zeros((npx * npy, _PATCH, _PATCH, 3), dtype=np.uint8)
|
139 |
+
for i in range(npx):
|
140 |
+
for j in range(npy):
|
141 |
+
x, y = i * _PATCH, j * _PATCH
|
142 |
+
patches[i*npy + j] = np.array(img.crop((x, y, x+_PATCH, y+_PATCH))
|
143 |
+
.resize((_PATCH, _PATCH)))
|
144 |
+
contrasts = []
|
145 |
+
for p in patches:
|
146 |
+
g = _to_gray(Image.fromarray(p)).squeeze(0).numpy()
|
147 |
+
glcm = graycomatrix(g, [5], [0], 256, symmetric=True, normed=True)
|
148 |
+
contrasts.append(graycoprops(glcm, "contrast")[0, 0])
|
149 |
+
idx = np.argsort(contrasts)[::-1][:_TOP]
|
150 |
+
tens = torch.from_numpy(patches[idx].transpose(0, 3, 1, 2)).float() / 255.0
|
151 |
+
with torch.no_grad():
|
152 |
+
probs = _susy_mod(tens.to(device)).softmax(-1).mean(0).cpu().numpy()[1:]
|
153 |
+
return dict(zip(_GEN_CLASSES, probs))
|
154 |
+
|
155 |
+
# βββββββββββββββββββββββββββββ fusion math βββββββββββββββββββββββββββββ
|
156 |
+
def _fuse(p_ai: float, p_df: float) -> float:
|
157 |
+
return 1 - (1 - p_ai) * (1 - p_df)
|
158 |
+
|
159 |
+
def _verdict(p: float) -> str:
|
160 |
+
return "uncertain" if abs(p - 0.5) <= UNCERTAIN_GAP else ("fake" if p > 0.5 else "real")
|
161 |
+
|
162 |
+
# βββββββββββββββββββββββββββ IMAGE PIPELINE ββββββββββββββββββββββββββββ
|
163 |
+
def _predict_image(pil: Image.Image):
|
164 |
+
gallery: List[Image.Image] = []
|
165 |
+
|
166 |
+
# Deep-fake path
|
167 |
+
try:
|
168 |
+
face = _face_det(pil)
|
169 |
+
except Exception:
|
170 |
+
face = None
|
171 |
+
if face is not None:
|
172 |
+
ft = F.interpolate(face.unsqueeze(0), (256, 256), mode="bilinear",
|
173 |
+
align_corners=False).float() / 255.0
|
174 |
+
p_df_raw = torch.sigmoid(_df_model(ft.to(device))).item()
|
175 |
+
p_df = _calibrate_df(p_df_raw)
|
176 |
+
crop_np = (ft.squeeze(0).permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
|
177 |
+
cam_df = _df_cam(ft, [ClassifierOutputTarget(0)])[0]
|
178 |
+
gallery.append(_overlay_cam(cam_df, crop_np))
|
179 |
+
gallery.append(Image.fromarray(_extract_landmarks(
|
180 |
+
cv2.cvtColor(np.array(pil), cv2.COLOR_BGR2RGB))[0]))
|
181 |
+
else:
|
182 |
+
p_df = 0.5
|
183 |
+
|
184 |
+
# Binary AI model
|
185 |
+
inp_bin = _bin_proc(images=pil, return_tensors="pt").to(device)
|
186 |
+
logits = _bin_mod(**inp_bin).logits.softmax(-1)[0]
|
187 |
+
p_ai_raw = logits[0].item()
|
188 |
+
p_ai = _calibrate_ai(p_ai_raw)
|
189 |
+
winner_idx = 0 if p_ai_raw >= logits[1].item() else 1
|
190 |
+
inp_bin_h = {k: v.clone().detach().requires_grad_(True) for k, v in inp_bin.items()}
|
191 |
+
cam_bin = _bin_cam(winner_idx, scores=_bin_mod(**inp_bin_h).logits)[0]
|
192 |
+
gallery.append(_overlay_cam(cam_bin, np.array(pil)))
|
193 |
+
|
194 |
+
# Generator breakdown (SuSy) if AI
|
195 |
+
bar_plot = gr.update(visible=False)
|
196 |
+
if p_ai_raw > logits[1].item():
|
197 |
+
gen_probs = _susy_predict(pil)
|
198 |
+
bar_plot = gr.update(value=pd.DataFrame(gen_probs.items(), columns=["class", "prob"]),
|
199 |
+
visible=True)
|
200 |
+
susy_in = _to_tensor(pil.resize((224, 224))).unsqueeze(0).to(device)
|
201 |
+
g_idx = _susy_mod(susy_in)[0, 1:].argmax().item() + 1
|
202 |
+
cam_susy = _susy_cam(susy_in, g_idx)
|
203 |
+
gallery.append(_overlay_cam(cam_susy, np.array(pil)))
|
204 |
+
|
205 |
+
# Fusion
|
206 |
+
p_final = _fuse(p_ai, p_df)
|
207 |
+
verdict = _verdict(p_final)
|
208 |
+
conf = {"real": round(1-p_final, 4), "fake": round(p_final, 4)}
|
209 |
+
pdf = _render_pdf("Unified Detector", verdict, conf, gallery[:3])
|
210 |
+
|
211 |
+
return verdict, conf, gallery, bar_plot, pdf
|
212 |
+
|
213 |
+
# βββββββββββββββββββββββββββ VIDEO PIPELINE ββββββββββββββββββββββββββββ
|
214 |
+
def _sample_idx(n): # max 20 evenly spaced
|
215 |
+
return list(range(n)) if n <= MAX_SAMPLES else np.linspace(0, n-1, MAX_SAMPLES, dtype=int)
|
216 |
+
|
217 |
+
def _predict_video(path: str):
|
218 |
+
cap = cv2.VideoCapture(path); total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) or 1
|
219 |
+
probs, frames = [], []
|
220 |
+
for i in _sample_idx(total):
|
221 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
222 |
+
ok, frm = cap.read()
|
223 |
+
if not ok:
|
224 |
+
continue
|
225 |
+
pil = Image.fromarray(cv2.cvtColor(frm, cv2.COLOR_BGR2RGB))
|
226 |
+
verdict, conf, _, _, _ = _predict_image(pil)
|
227 |
+
probs.append(conf["fake"])
|
228 |
+
if len(frames) < MIN_FRAMES:
|
229 |
+
frames.append(Image.fromarray(frm))
|
230 |
+
cap.release()
|
231 |
+
if not probs:
|
232 |
+
blank = Image.new("RGB", (256, 256))
|
233 |
+
return "No frames analysed", {"real": 0, "fake": 0}, [blank]
|
234 |
+
|
235 |
+
p_final = float(np.mean(probs))
|
236 |
+
return _verdict(p_final), {"real": round(1-p_final, 4), "fake": round(p_final, 4)}, frames
|
237 |
+
|
238 |
+
# βββββββββββββββββββββββββββββββββ UI ββββββββββββββββββββββββββββββββββ
|
239 |
+
_css = "footer{visibility:hidden!important}.logo,#logo{display:none!important}"
|
240 |
+
|
241 |
+
with gr.Blocks(css=_css, title="Unified AI-Fake & Deepfake Detector") as demo:
|
242 |
+
gr.Markdown("""
|
243 |
+
## Unified AI-Fake & Deepfake Detector
|
244 |
+
Upload an **image** or a short **video**.
|
245 |
+
The app fuses two complementary models, then shows heat-maps & a PDF report.
|
246 |
+
""")
|
247 |
+
|
248 |
+
with gr.Tab("Image"):
|
249 |
+
with gr.Row():
|
250 |
+
with gr.Column(scale=1):
|
251 |
+
img_in = gr.Image(label="Upload image", type="pil")
|
252 |
+
btn_i = gr.Button("Analyze")
|
253 |
+
with gr.Column(scale=2):
|
254 |
+
txt_v = gr.Textbox(label="Verdict", interactive=False)
|
255 |
+
lbl_c = gr.Label(label="Confidence")
|
256 |
+
gal = gr.Gallery(label="Explanations", columns=3, height=320)
|
257 |
+
bar = gr.BarPlot(x="class", y="prob", title="Likely generator",
|
258 |
+
y_label="probability", visible=False)
|
259 |
+
pdf_f = gr.File(label="Download PDF report")
|
260 |
+
|
261 |
+
btn_i.click(_predict_image, img_in, [txt_v, lbl_c, gal, bar, pdf_f])
|
262 |
+
|
263 |
+
with gr.Tab("Video"):
|
264 |
+
with gr.Row():
|
265 |
+
with gr.Column(scale=1):
|
266 |
+
vid_in = gr.Video(label="Upload MP4/AVI", format="mp4")
|
267 |
+
btn_v = gr.Button("Analyze")
|
268 |
+
with gr.Column(scale=2):
|
269 |
+
txt_vv = gr.Textbox(label="Verdict", interactive=False)
|
270 |
+
lbl_cv = gr.Label(label="Confidence")
|
271 |
+
gal_v = gr.Gallery(label="Sample frames", columns=4, height=240)
|
272 |
|
273 |
+
btn_v.click(_predict_video, vid_in, [txt_vv, lbl_cv, gal_v])
|
|
|
274 |
|
275 |
+
demo.launch(share=True, show_api=False)
|
|
requirements.txt
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.1.2
|
2 |
+
torchvision==0.16.2
|
3 |
+
torchaudio==2.1.2 # optional but same CUDA tag
|
4 |
+
|
5 |
+
# vision / CAM libs
|
6 |
+
facenet-pytorch==2.5.2
|
7 |
+
grad-cam==1.4.6
|
8 |
+
torchcam==0.4.0
|
9 |
+
captum==0.8.0
|
10 |
+
ttach==0.0.3 # grad-cam helper
|
11 |
+
|
12 |
+
# AI-detector deps
|
13 |
+
transformers==4.52.4
|
14 |
+
timm==1.0.15
|
15 |
+
huggingface_hub>=0.22
|
16 |
+
|
17 |
+
# utils
|
18 |
+
opencv-python-headless==4.7.0.72
|
19 |
+
mediapipe==0.10.21
|
20 |
+
Pillow>=10.1 # <ββ drop the old pin
|
21 |
+
scikit-image==0.25.2 # requires Pillow β₯ 10.1
|
22 |
+
scikit-learn==1.6.1
|
23 |
+
matplotlib>=3.8
|
24 |
+
numpy>=1.26
|
25 |
+
pandas
|
26 |
+
absl-py==2.3.0 # mediapipe dep
|
27 |
+
|
28 |
+
# UI
|
29 |
+
gradio==5.23.2
|
30 |
+
pydantic==2.10.6
|
31 |
+
wheel
|
resnet_inception.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:794ebe83c6a7d7959c30c175030b4885e2b9fa175f1cc3e582236595d119f52b
|
3 |
+
size 282395989
|