from langchain.globals import set_verbose from loguru import logger from llm_engineering.application.rag.retriever import ContextRetriever from llm_engineering.infrastructure.opik_utils import configure_opik if __name__ == "__main__": configure_opik() set_verbose(True) query = """ My name is Paul Iusztin. Could you draft a LinkedIn post discussing RAG systems? I'm particularly interested in: - how RAG works - how it is integrated with vector DBs and large language models (LLMs). """ retriever = ContextRetriever(mock=False) documents = retriever.search(query, k=9) logger.info("Retrieved documents:") for rank, document in enumerate(documents): logger.info(f"{rank + 1}: {document}")