from typing import Tuple, Optional import gradio as gr import supervision as sv import torch from PIL import Image from utils.florence import load_florence_model, run_florence_inference, \ FLORENCE_DETAILED_CAPTION_TASK, \ FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK, FLORENCE_OPEN_VOCABULARY_DETECTION_TASK from utils.modes import INFERENCE_MODES, OPEN_VOCABULARY_DETECTION, \ CAPTION_GROUNDING_MASKS from utils.sam import load_sam_model, run_sam_inference MARKDOWN = """ # Florence2 + SAM2 🔥
GitHub Colab Roboflow YouTube
This demo integrates Florence2 and SAM2 by creating a two-stage inference pipeline. In the first stage, Florence2 performs tasks such as object detection, open-vocabulary object detection, image captioning, or phrase grounding. In the second stage, SAM2 performs object segmentation on the image. **Video segmentation will be available soon.** """ EXAMPLES = [ [OPEN_VOCABULARY_DETECTION, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", 'straw'], [OPEN_VOCABULARY_DETECTION, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", 'napkin'], [OPEN_VOCABULARY_DETECTION, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", 'tail'], [CAPTION_GROUNDING_MASKS, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", None], [CAPTION_GROUNDING_MASKS, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", None], ] DEVICE = torch.device("cuda") FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE) SAM_MODEL = load_sam_model(device=DEVICE) BOX_ANNOTATOR = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX) LABEL_ANNOTATOR = sv.LabelAnnotator( color_lookup=sv.ColorLookup.INDEX, text_position=sv.Position.CENTER_OF_MASS, text_color=sv.Color.from_hex("#FFFFFF"), border_radius=5 ) MASK_ANNOTATOR = sv.MaskAnnotator(color_lookup=sv.ColorLookup.INDEX) def annotate_image(image, detections): output_image = image.copy() output_image = MASK_ANNOTATOR.annotate(output_image, detections) output_image = BOX_ANNOTATOR.annotate(output_image, detections) output_image = LABEL_ANNOTATOR.annotate(output_image, detections) return output_image def on_mode_dropdown_change(text): return [ gr.Textbox(visible=text == OPEN_VOCABULARY_DETECTION), gr.Textbox(visible=text == CAPTION_GROUNDING_MASKS), ] def process( mode_dropdown, image_input, text_input ) -> Tuple[Optional[Image.Image], Optional[str]]: if not image_input: return None, None if mode_dropdown == OPEN_VOCABULARY_DETECTION: if not text_input: return None, None _, result = run_florence_inference( model=FLORENCE_MODEL, processor=FLORENCE_PROCESSOR, device=DEVICE, image=image_input, task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK, text=text_input ) detections = sv.Detections.from_lmm( lmm=sv.LMM.FLORENCE_2, result=result, resolution_wh=image_input.size ) detections = run_sam_inference(SAM_MODEL, image_input, detections) return annotate_image(image_input, detections), None if mode_dropdown == CAPTION_GROUNDING_MASKS: _, result = run_florence_inference( model=FLORENCE_MODEL, processor=FLORENCE_PROCESSOR, device=DEVICE, image=image_input, task=FLORENCE_DETAILED_CAPTION_TASK ) caption = result[FLORENCE_DETAILED_CAPTION_TASK] _, result = run_florence_inference( model=FLORENCE_MODEL, processor=FLORENCE_PROCESSOR, device=DEVICE, image=image_input, task=FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK, text=caption ) detections = sv.Detections.from_lmm( lmm=sv.LMM.FLORENCE_2, result=result, resolution_wh=image_input.size ) detections = run_sam_inference(SAM_MODEL, image_input, detections) return annotate_image(image_input, detections), caption with gr.Blocks() as demo: gr.Markdown(MARKDOWN) mode_dropdown_component = gr.Dropdown( choices=INFERENCE_MODES, value=INFERENCE_MODES[0], label="Mode", info="Select a mode to use.", interactive=True ) with gr.Row(): with gr.Column(): image_input_component = gr.Image( type='pil', label='Upload image') text_input_component = gr.Textbox( label='Text prompt') submit_button_component = gr.Button(value='Submit', variant='primary') with gr.Column(): image_output_component = gr.Image(type='pil', label='Image output') text_output_component = gr.Textbox(label='Caption output', visible=False) with gr.Row(): gr.Examples( fn=process, examples=EXAMPLES, inputs=[ mode_dropdown_component, image_input_component, text_input_component ], outputs=[ image_output_component, text_output_component ], run_on_click=True ) submit_button_component.click( fn=process, inputs=[ mode_dropdown_component, image_input_component, text_input_component ], outputs=[ image_output_component, text_output_component ] ) mode_dropdown_component.change( on_mode_dropdown_change, inputs=[mode_dropdown_component], outputs=[ text_input_component, text_output_component ] ) demo.launch(debug=False, show_error=True)