SkalskiP commited on
Commit
df57751
·
1 Parent(s): 23cb925
Files changed (1) hide show
  1. app.py +25 -8
app.py CHANGED
@@ -13,6 +13,11 @@ This is the demo for a Open Vocabulary Image Segmentation using
13
  [Segment Anything Model](https://github.com/facebookresearch/segment-anything) and
14
  [MetaCLIP](https://github.com/facebookresearch/MetaCLIP) combo.
15
  """
 
 
 
 
 
16
 
17
  DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
18
  SAM_GENERATOR = pipeline(
@@ -78,32 +83,44 @@ def filter_detections(
78
  return detections[filtering_mask]
79
 
80
 
81
- def inference(image_rgb_pil: Image.Image, prompt: str) -> Image.Image:
82
  width, height = image_rgb_pil.size
83
  area = width * height
84
 
85
  detections = run_sam(image_rgb_pil)
86
- detections = detections[detections.area / area > 0.005]
87
  detections = filter_detections(
88
  image_rgb_pil=image_rgb_pil,
89
  detections=detections,
90
  prompt=prompt)
91
 
92
- return annotate(image_rgb_pil=image_rgb_pil, detections=detections)
 
 
 
93
 
94
 
95
  with gr.Blocks() as demo:
96
  gr.Markdown(MARKDOWN)
97
  with gr.Row():
98
  with gr.Column():
99
- input_image = gr.Image(image_mode='RGB', type='pil')
100
  prompt_text = gr.Textbox(label="Prompt", value="dog")
101
- result_image = gr.Image(image_mode='RGB', type='pil')
102
- submit_button = gr.Button("Submit")
 
 
 
 
 
 
 
 
 
103
 
104
  submit_button.click(
105
  inference,
106
  inputs=[input_image, prompt_text],
107
- outputs=result_image)
108
 
109
- demo.launch(debug=False)
 
13
  [Segment Anything Model](https://github.com/facebookresearch/segment-anything) and
14
  [MetaCLIP](https://github.com/facebookresearch/MetaCLIP) combo.
15
  """
16
+ EXAMPLES = [
17
+ ["https://media.roboflow.com/notebooks/examples/dog.jpeg", "dog"],
18
+ ["https://media.roboflow.com/notebooks/examples/dog.jpeg", "building"],
19
+ ["https://media.roboflow.com/notebooks/examples/dog-3.jpeg", "jacket"],
20
+ ]
21
 
22
  DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
23
  SAM_GENERATOR = pipeline(
 
83
  return detections[filtering_mask]
84
 
85
 
86
+ def inference(image_rgb_pil: Image.Image, prompt: str) -> List[Image.Image]:
87
  width, height = image_rgb_pil.size
88
  area = width * height
89
 
90
  detections = run_sam(image_rgb_pil)
91
+ detections = detections[detections.area / area > 0.01]
92
  detections = filter_detections(
93
  image_rgb_pil=image_rgb_pil,
94
  detections=detections,
95
  prompt=prompt)
96
 
97
+ return [
98
+ annotate(image_rgb_pil=image_rgb_pil, detections=detections),
99
+ annotate(image_rgb_pil=Image.new("RGB", (width, height), "black"), detections=detections)
100
+ ]
101
 
102
 
103
  with gr.Blocks() as demo:
104
  gr.Markdown(MARKDOWN)
105
  with gr.Row():
106
  with gr.Column():
107
+ input_image = gr.Image(image_mode='RGB', type='pil', height=500)
108
  prompt_text = gr.Textbox(label="Prompt", value="dog")
109
+ submit_button = gr.Button("Submit")
110
+ gallery = gr.Gallery(label="Result", object_fit="scale-down", preview=True)
111
+ with gr.Row():
112
+ gr.Examples(
113
+ examples=EXAMPLES,
114
+ fn=inference,
115
+ inputs=[input_image, prompt_text],
116
+ outputs=[gallery],
117
+ cache_examples=True,
118
+ run_on_click=True
119
+ )
120
 
121
  submit_button.click(
122
  inference,
123
  inputs=[input_image, prompt_text],
124
+ outputs=gallery)
125
 
126
+ demo.launch(debug=False, show_error=True)