Spaces:
Runtime error
Runtime error
File size: 7,181 Bytes
b6d5990 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import os
import cv2
import torch
import argparse
import numpy as np
import torch.nn as nn
from models.TMC import ETMC
from models import image
#Set random seed for reproducibility.
torch.manual_seed(42)
# Define the audio_args dictionary
audio_args = {
'nb_samp': 64600,
'first_conv': 1024,
'in_channels': 1,
'filts': [20, [20, 20], [20, 128], [128, 128]],
'blocks': [2, 4],
'nb_fc_node': 1024,
'gru_node': 1024,
'nb_gru_layer': 3,
}
def get_args(parser):
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--data_dir", type=str, default="datasets/train/fakeavceleb*")
parser.add_argument("--LOAD_SIZE", type=int, default=256)
parser.add_argument("--FINE_SIZE", type=int, default=224)
parser.add_argument("--dropout", type=float, default=0.2)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--hidden", nargs="*", type=int, default=[])
parser.add_argument("--hidden_sz", type=int, default=768)
parser.add_argument("--img_embed_pool_type", type=str, default="avg", choices=["max", "avg"])
parser.add_argument("--img_hidden_sz", type=int, default=1024)
parser.add_argument("--include_bn", type=int, default=True)
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--lr_factor", type=float, default=0.3)
parser.add_argument("--lr_patience", type=int, default=10)
parser.add_argument("--max_epochs", type=int, default=500)
parser.add_argument("--n_workers", type=int, default=12)
parser.add_argument("--name", type=str, default="MMDF")
parser.add_argument("--num_image_embeds", type=int, default=1)
parser.add_argument("--patience", type=int, default=20)
parser.add_argument("--savedir", type=str, default="./savepath/")
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--n_classes", type=int, default=2)
parser.add_argument("--annealing_epoch", type=int, default=10)
parser.add_argument("--device", type=str, default='cpu')
parser.add_argument("--pretrained_image_encoder", type=bool, default = False)
parser.add_argument("--freeze_image_encoder", type=bool, default = False)
parser.add_argument("--pretrained_audio_encoder", type = bool, default=False)
parser.add_argument("--freeze_audio_encoder", type = bool, default = False)
parser.add_argument("--augment_dataset", type = bool, default = True)
for key, value in audio_args.items():
parser.add_argument(f"--{key}", type=type(value), default=value)
def model_summary(args):
'''Prints the model summary.'''
model = ETMC(args)
for name, layer in model.named_modules():
print(name, layer)
def load_multimodal_model(args):
'''Load multimodal model'''
model = ETMC(args)
ckpt = torch.load('checkpoints/model_best.pt', map_location = torch.device('cpu'))
model.load_state_dict(ckpt,strict = False)
model.eval()
return model
def load_img_modality_model(args):
'''Loads image modality model.'''
rgb_encoder = image.ImageEncoder(args)
ckpt = torch.load('checkpoints/model_best.pt', map_location = torch.device('cpu'))
rgb_encoder.load_state_dict(ckpt,strict = False)
rgb_encoder.eval()
return rgb_encoder
def load_spec_modality_model(args):
spec_encoder = image.RawNet(args)
ckpt = torch.load('checkpoints/model_best.pt', map_location = torch.device('cpu'))
spec_encoder.load_state_dict(ckpt,strict = False)
spec_encoder.eval()
return spec_encoder
#Load models.
parser = argparse.ArgumentParser(description="Train Models")
get_args(parser)
args, remaining_args = parser.parse_known_args()
assert remaining_args == [], remaining_args
multimodal = load_multimodal_model(args)
spec_model = load_spec_modality_model(args)
img_model = load_img_modality_model(args)
def preprocess_img(face):
face = face / 255
face = cv2.resize(face, (256, 256))
face = face.transpose(2, 0, 1) #(W, H, C) -> (C, W, H)
face_pt = torch.unsqueeze(torch.Tensor(face), dim = 0)
return face_pt
def preprocess_audio(audio_file):
audio_pt = torch.unsqueeze(torch.Tensor(audio_file), dim = 0)
return audio_pt
def deepfakes_spec_predict(input_audio):
x, _ = input_audio
audio = preprocess_audio(x)
spec_grads = spec_model.forward(audio)
multimodal_grads = multimodal.spec_depth[0].forward(spec_grads)
out = nn.Softmax()(multimodal_grads)
max = torch.argmax(out, dim = -1) #Index of the max value in the tensor.
max_value = out[max] #Actual value of the tensor.
max_value = np.argmax(out[max].detach().numpy())
if max_value > 0.5:
preds = round(100 - (max_value*100), 3)
text2 = f"The audio is REAL."
else:
preds = round(max_value*100, 3)
text2 = f"The audio is FAKE."
return text2
def deepfakes_image_predict(input_image):
face = preprocess_img(input_image)
img_grads = img_model.forward(face)
multimodal_grads = multimodal.clf_rgb[0].forward(img_grads)
out = nn.Softmax()(multimodal_grads)
max = torch.argmax(out, dim=-1) #Index of the max value in the tensor.
max = max.cpu().detach().numpy()
max_value = out[max] #Actual value of the tensor.
max_value = np.argmax(out[max].detach().numpy())
if max_value > 0.5:
preds = round(100 - (max_value*100), 3)
text2 = f"The image is REAL."
else:
preds = round(max_value*100, 3)
text2 = f"The image is FAKE."
return text2
def preprocess_video(input_video, n_frames = 5):
v_cap = cv2.VideoCapture(input_video)
v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Pick 'n_frames' evenly spaced frames to sample
if n_frames is None:
sample = np.arange(0, v_len)
else:
sample = np.linspace(0, v_len - 1, n_frames).astype(int)
#Loop through frames.
frames = []
for j in range(v_len):
success = v_cap.grab()
if j in sample:
# Load frame
success, frame = v_cap.retrieve()
if not success:
continue
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = preprocess_img(frame)
frames.append(frame)
v_cap.release()
return frames
def deepfakes_video_predict(input_video):
'''Perform inference on a video.'''
video_frames = preprocess_video(input_video)
real_grads = []
fake_grads = []
for face in video_frames:
img_grads = img_model.forward(face)
multimodal_grads = multimodal.clf_rgb[0].forward(img_grads)
out = nn.Softmax()(multimodal_grads)
real_grads.append(out.cpu().detach().numpy()[0])
print(f"Video out tensor shape is: {out.shape}, {out}")
fake_grads.append(out.cpu().detach().numpy()[0])
real_grads_mean = np.mean(real_grads)
fake_grads_mean = np.mean(fake_grads)
if real_grads_mean > fake_grads_mean:
res = round(real_grads_mean * 100, 3)
text = f"The video is REAL."
else:
res = round(100 - (real_grads_mean * 100), 3)
text = f"The video is FAKE."
return text
|