File size: 22,424 Bytes
cfab4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c131d7d
 
 
 
 
 
 
 
cfab4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05c1555
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfab4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05c1555
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfab4f2
 
 
 
 
 
 
 
 
 
 
 
c131d7d
 
 
 
cfab4f2
 
 
 
c131d7d
 
 
 
cfab4f2
 
c131d7d
 
 
cfab4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05c1555
 
 
cfab4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05c1555
 
 
 
 
 
 
cfab4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c131d7d
 
 
 
 
 
cfab4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05c1555
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfab4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
"""
AutoEIS Hugging Face Space Application
Optimized for limited resources with workflow integration
"""

import gradio as gr
import pandas as pd
import numpy as np
import base64
import json
import requests
import io
import os
import psutil
import gc
from typing import Dict, Any, Optional, Tuple
from datetime import datetime
import traceback
import asyncio
import aiohttp
from urllib.parse import parse_qs, urlparse

# Import AutoEIS with error handling
try:
    import autoeis as ae
except ImportError as e:
    print(f"Warning: AutoEIS import issue: {e}")
    ae = None

# Memory monitoring
def get_memory_usage():
    """Get current memory usage in MB"""
    process = psutil.Process(os.getpid())
    return process.memory_info().rss / 1024 / 1024

def check_memory_available():
    """Check if enough memory is available"""
    memory_mb = get_memory_usage()
    available_mb = psutil.virtual_memory().available / 1024 / 1024
    return available_mb > 500  # Need at least 500MB free

# Global variables for workflow integration
workflow_context = {
    "workflow_id": None,
    "node_id": None,
    "callback_url": None,
    "auth_token": None
}

# Optimized parameters for HF Spaces
HF_OPTIMIZED_PARAMS = {
    "iters": 30,  # Increased for better circuit detection
    "complexity": 10,  # Increased for better circuit detection  
    "generations": 20,  # Increased for better circuit detection
    "population_size": 50,  # Keep moderate for memory
    "tol": 1e-3,  # Tighter tolerance for better fits
    "parallel": True,  # Enable parallel processing
    "terminals": "RLP",  # R: resistor, L: inductor, P: constant-phase element
    "seed": 42  # Random seed for reproducibility
}

def parse_workflow_params(request: gr.Request) -> Dict[str, Any]:
    """Parse workflow parameters from URL or headers"""
    params = {}
    
    # Try to get params from URL query string
    if request and hasattr(request, 'query_params'):
        query_params = dict(request.query_params)
        if 'params' in query_params:
            try:
                encoded_params = query_params['params']
                decoded = base64.b64decode(encoded_params)
                params = json.loads(decoded)
            except Exception as e:
                print(f"Error parsing URL params: {e}")
    
    return params

def decode_csv_data(encoded_data: str) -> pd.DataFrame:
    """Decode base64 CSV data to DataFrame"""
    try:
        csv_bytes = base64.b64decode(encoded_data)
        csv_string = csv_bytes.decode('utf-8')
        df = pd.read_csv(io.StringIO(csv_string))
        return df
    except Exception as e:
        print(f"Error decoding CSV: {e}")
        return None

async def send_callback(results: Dict[str, Any]) -> bool:
    """Send results back to workflow system"""
    if not workflow_context["callback_url"]:
        return False
    
    try:
        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {workflow_context['auth_token']}"
        }
        
        payload = {
            "workflow_id": workflow_context["workflow_id"],
            "node_id": workflow_context["node_id"],
            "status": "completed",
            "results": results,
            "analysis_timestamp": datetime.utcnow().isoformat() + "Z"
        }
        
        async with aiohttp.ClientSession() as session:
            async with session.post(
                workflow_context["callback_url"],
                json=payload,
                headers=headers,
                timeout=aiohttp.ClientTimeout(total=30)
            ) as response:
                return response.status == 200
    except Exception as e:
        print(f"Callback error: {e}")
        return False

def create_sample_data() -> pd.DataFrame:
    """Create sample EIS data for demonstration"""
    frequencies = np.logspace(5, -2, 50)  # 100kHz to 0.01Hz
    
    # Simple RC circuit simulation
    R0 = 100  # Ohms
    R1 = 500  # Ohms
    C1 = 1e-6  # Farads
    
    omega = 2 * np.pi * frequencies
    Z_R0 = R0
    Z_RC = R1 / (1 + 1j * omega * R1 * C1)
    Z_total = Z_R0 + Z_RC
    
    df = pd.DataFrame({
        'frequency': frequencies,
        'z_real': Z_total.real,
        'z_imag': -Z_total.imag
    })
    
    return df

def detect_column_names(df: pd.DataFrame) -> Dict[str, str]:
    """Auto-detect column names for EIS data"""
    columns = df.columns.tolist()
    mapping = {}
    
    # Frequency column detection
    freq_candidates = ['frequency', 'freq', 'f', 'Hz', 'Frequency']
    for col in columns:
        if any(candidate.lower() in col.lower() for candidate in freq_candidates):
            mapping['frequency'] = col
            break
    
    # Real impedance column detection
    real_candidates = ['z_real', 'real', 'zreal', 'z\'', 'realImpedance', 'real_impedance', 'Re(Z)', 'Re_Z']
    for col in columns:
        if any(candidate.lower() in col.lower().replace('(', '').replace(')', '') for candidate in real_candidates):
            mapping['z_real'] = col
            break
    
    # Imaginary impedance column detection
    imag_candidates = ['z_imag', 'imag', 'zimag', 'z\'\'', 'imagImpedance', 'imag_impedance', 'Im(Z)', 'Im_Z', '-z\'\'']
    for col in columns:
        if any(candidate.lower() in col.lower().replace('(', '').replace(')', '') for candidate in imag_candidates):
            mapping['z_imag'] = col
            break
    
    return mapping

def analyze_eis_optimized(
    df: pd.DataFrame,
    circuit_model: str = "auto",
    algorithm: str = "lm",
    use_hf_params: bool = True,
    progress_callback=None
) -> Tuple[Dict[str, Any], str, str]:
    """
    Analyze EIS data with HF optimization
    Returns: (results_dict, nyquist_plot, bode_plot)
    """
    if ae is None:
        return {"error": "AutoEIS not available"}, None, None
    
    # Check memory before starting
    if not check_memory_available():
        gc.collect()  # Try garbage collection
        if not check_memory_available():
            return {"error": "Insufficient memory available"}, None, None
    
    try:
        # Auto-detect column names
        column_mapping = detect_column_names(df)
        
        if 'frequency' not in column_mapping:
            return {"error": "Could not find frequency column. Expected names: frequency, freq, f, Hz"}, None, None
        if 'z_real' not in column_mapping:
            return {"error": "Could not find real impedance column. Expected names: z_real, real, realImpedance, Re(Z)"}, None, None
        if 'z_imag' not in column_mapping:
            return {"error": "Could not find imaginary impedance column. Expected names: z_imag, imag, imagImpedance, Im(Z)"}, None, None
        
        # Prepare impedance data using detected column names
        freq = df[column_mapping['frequency']].values
        z_real = df[column_mapping['z_real']].values
        z_imag = df[column_mapping['z_imag']].values
        
        # Handle imaginary part sign convention
        # EIS convention: Z = Z' - jZ'' (imaginary part should be negative for typical circuits)
        # If most imaginary values are positive, we might need to flip the sign
        if np.mean(z_imag) > 0:
            z_imag = -z_imag  # Flip sign to follow EIS convention
            if progress_callback:
                progress_callback(0.15, "Adjusted imaginary impedance sign...")
        
        Z = z_real + 1j * z_imag
        
        # Use optimized parameters for HF
        params = HF_OPTIMIZED_PARAMS.copy() if use_hf_params else {}
        
        if progress_callback:
            progress_callback(0.2, "Initializing AutoEIS...")
        
        # Circuit detection with limited complexity
        if circuit_model == "auto":
            if progress_callback:
                progress_callback(0.4, "Detecting circuit model...")
            
            # Use simpler approach for HF - corrected parameter order and names
            circuits_df = ae.core.generate_equivalent_circuits(
                freq,  # Frequency array (correct order)
                Z,     # Impedance array (correct order)
                iters=params.get("iters", 20),
                complexity=params.get("complexity", 8),
                generations=params.get("generations", 15),
                population_size=params.get("population_size", 50),
                tol=params.get("tol", 1e-2),
                parallel=params.get("parallel", True),
                terminals=params.get("terminals", "RLP"),
                seed=params.get("seed", 42)
            )
            
            if circuits_df is not None and len(circuits_df) > 0:
                # Extract the best circuit string from the DataFrame
                circuit_str = circuits_df.iloc[0]['circuitstring']  # Take the best circuit
            else:
                circuit_str = "R0-[R1,C1]"  # Fallback simple circuit
        else:
            circuit_str = circuit_model
        
        if progress_callback:
            progress_callback(0.6, "Fitting circuit parameters...")
        
        # Fit the circuit
        circuit = ae.core.get_parameterized_circuit(circuit_str)
        fitted_params = ae.core.fit_parameters(circuit, freq, Z)
        
        if progress_callback:
            progress_callback(0.8, "Generating plots...")
        
        # Generate plots
        import matplotlib
        matplotlib.use('Agg')  # Non-interactive backend
        import matplotlib.pyplot as plt
        
        # Nyquist plot
        fig_nyquist, ax_nyquist = plt.subplots(figsize=(8, 6))
        ax_nyquist.plot(Z.real, Z.imag, 'bo', label='Data', markersize=6)
        
        # Add fitted curve if available
        if fitted_params:
            Z_fit = circuit(freq, **fitted_params)
            ax_nyquist.plot(Z_fit.real, Z_fit.imag, 'r-', label='Fit', linewidth=2)
        
        ax_nyquist.set_xlabel('Z\' (Ξ©)')
        ax_nyquist.set_ylabel('-Z\'\' (Ξ©)')
        ax_nyquist.set_title('Nyquist Plot')
        ax_nyquist.legend()
        ax_nyquist.grid(True, alpha=0.3)
        ax_nyquist.set_aspect('equal')
        
        # Bode plot
        fig_bode, (ax_mag, ax_phase) = plt.subplots(2, 1, figsize=(8, 8))
        
        Z_mag = np.abs(Z)
        Z_phase = np.angle(Z, deg=True)
        
        ax_mag.loglog(freq, Z_mag, 'bo', label='Data', markersize=6)
        ax_mag.set_ylabel('|Z| (Ξ©)')
        ax_mag.set_title('Bode Plot - Magnitude')
        ax_mag.grid(True, which="both", alpha=0.3)
        ax_mag.legend()
        
        ax_phase.semilogx(freq, Z_phase, 'bo', label='Data', markersize=6)
        
        if fitted_params:
            Z_fit = circuit(freq, **fitted_params)
            ax_mag.loglog(freq, np.abs(Z_fit), 'r-', label='Fit', linewidth=2)
            ax_phase.semilogx(freq, np.angle(Z_fit, deg=True), 'r-', label='Fit', linewidth=2)
        
        ax_phase.set_xlabel('Frequency (Hz)')
        ax_phase.set_ylabel('Phase (Β°)')
        ax_phase.set_title('Bode Plot - Phase')
        ax_phase.grid(True, alpha=0.3)
        ax_phase.legend()
        
        plt.tight_layout()
        
        # Calculate fit quality
        if fitted_params:
            Z_fit = circuit(freq, **fitted_params)
            residuals = Z - Z_fit
            chi_squared = np.sum(np.abs(residuals)**2) / len(Z)
            fit_error = np.sqrt(chi_squared)
        else:
            chi_squared = None
            fit_error = None
        
        # Prepare results
        results = {
            "circuit_model": circuit_str,
            "fit_parameters": fitted_params if fitted_params else {},
            "fit_error": float(fit_error) if fit_error else None,
            "chi_squared": float(chi_squared) if chi_squared else None,
            "memory_usage_mb": get_memory_usage(),
            "column_mapping": column_mapping,
            "data_points": len(freq)
        }
        
        if progress_callback:
            progress_callback(1.0, "Analysis complete!")
        
        # Clean up memory
        gc.collect()
        
        return results, fig_nyquist, fig_bode
        
    except Exception as e:
        error_msg = f"Analysis error: {str(e)}\n{traceback.format_exc()}"
        print(error_msg)
        return {"error": error_msg}, None, None
    finally:
        # Always try to free memory
        gc.collect()

def process_analysis(
    data_file,
    circuit_model,
    algorithm,
    use_optimization,
    progress=gr.Progress()
):
    """Main analysis function for Gradio interface"""
    
    progress(0.1, "Starting analysis...")
    
    # Load data
    if data_file is None:
        progress(0.2, "Using sample data...")
        df = create_sample_data()
    else:
        try:
            df = pd.read_csv(data_file.name)
        except Exception as e:
            return {"error": f"Failed to read CSV: {e}"}, None, None
    
    # Run analysis
    results, nyquist_plot, bode_plot = analyze_eis_optimized(
        df,
        circuit_model=circuit_model,
        algorithm=algorithm,
        use_hf_params=use_optimization,
        progress_callback=progress
    )
    
    return results, nyquist_plot, bode_plot

async def send_to_workflow(results):
    """Send results back to workflow"""
    if workflow_context["callback_url"]:
        success = await send_callback(results)
        return "βœ… Results sent to workflow!" if success else "❌ Failed to send results"
    return "No workflow callback URL configured"

# Create Gradio interface
def create_interface():
    with gr.Blocks(title="AutoEIS Analyzer", theme=gr.themes.Soft()) as app:
        # Header
        gr.Markdown("""
        # πŸ”¬ AutoEIS Analysis Tool
        ### Automated Electrochemical Impedance Spectroscopy Analysis
        
        Optimized for Hugging Face Spaces with workflow integration support.
        """)
        
        # Memory monitor
        with gr.Row():
            memory_display = gr.Textbox(
                label="Memory Usage",
                value=f"{get_memory_usage():.1f} MB",
                interactive=False,
                scale=1
            )
            workflow_info = gr.Textbox(
                label="Workflow Context",
                value="No workflow connected",
                interactive=False,
                scale=3
            )
        
        with gr.Tabs():
            # Data Input Tab
            with gr.Tab("πŸ“Š Data Input"):
                with gr.Row():
                    data_file = gr.File(
                        label="Upload EIS Data (CSV)",
                        file_types=[".csv"],
                        value=None
                    )
                    
                with gr.Row():
                    gr.Markdown("""
                    **Supported CSV Formats (auto-detected):**
                    
                    **Frequency column**: `frequency`, `freq`, `f`, `Hz`
                    **Real impedance**: `z_real`, `real`, `realImpedance`, `Re(Z)`  
                    **Imaginary impedance**: `z_imag`, `imag`, `imagImpedance`, `Im(Z)`
                    
                    βœ… **Your file format is automatically detected!**
                    
                    Leave empty to use sample data.
                    """)
                
                data_preview = gr.DataFrame(
                    label="Data Preview (first 10 rows)",
                    interactive=False
                )
            
            # Parameters Tab
            with gr.Tab("βš™οΈ Parameters"):
                with gr.Row():
                    circuit_model = gr.Dropdown(
                        choices=["auto", "R0-[R1,C1]", "R0-[R1,P1]", "R0-[R1,C1]-[R2,C2]"],
                        value="auto",
                        label="Circuit Model",
                        info="Select 'auto' for automatic detection"
                    )
                    
                    algorithm = gr.Radio(
                        choices=["lm", "trf", "dogbox"],
                        value="lm",
                        label="Fitting Algorithm",
                        info="Levenberg-Marquardt (lm) is usually best"
                    )
                
                with gr.Row():
                    use_optimization = gr.Checkbox(
                        value=True,
                        label="Use HF-optimized parameters",
                        info="Recommended for Hugging Face Spaces (faster, less memory)"
                    )
                
                with gr.Row():
                    gr.Markdown("""
                    **HF-Optimized Settings (when enabled):**
                    - Circuit iterations: 30 (balanced performance/accuracy)
                    - Complexity limit: 10 (prevents overfitting)
                    - Population size: 50 (memory efficient)
                    - Tolerance: 1e-3 (good fit quality)
                    - Components: R (resistors), L (inductors), P (CPE)
                    """)
            
            # Results Tab
            with gr.Tab("πŸ“ˆ Results"):
                with gr.Row():
                    results_json = gr.JSON(
                        label="Analysis Results",
                        value=None
                    )
                
                with gr.Row():
                    nyquist_plot = gr.Plot(
                        label="Nyquist Plot",
                        show_label=True
                    )
                    
                    bode_plot = gr.Plot(
                        label="Bode Plot",
                        show_label=True
                    )
                
                with gr.Row():
                    workflow_btn = gr.Button(
                        "πŸ“€ Send to Workflow",
                        variant="secondary",
                        visible=False
                    )
                    workflow_status = gr.Textbox(
                        label="Workflow Status",
                        interactive=False,
                        visible=False
                    )
        
        # Action buttons
        with gr.Row():
            analyze_btn = gr.Button(
                "πŸš€ Run Analysis",
                variant="primary",
                size="lg"
            )
            
            clear_btn = gr.Button(
                "πŸ”„ Clear",
                variant="secondary"
            )
        
        # Event handlers
        def update_preview(file):
            if file is None:
                df = create_sample_data()
                return df.head(10), f"Memory: {get_memory_usage():.1f} MB"
            try:
                df = pd.read_csv(file.name)
                # Detect column mapping
                mapping = detect_column_names(df)
                missing = []
                if 'frequency' not in mapping:
                    missing.append("frequency")
                if 'z_real' not in mapping:
                    missing.append("real impedance")
                if 'z_imag' not in mapping:
                    missing.append("imaginary impedance")
                
                if missing:
                    status = f"Memory: {get_memory_usage():.1f} MB | ⚠️ Missing: {', '.join(missing)}"
                else:
                    status = f"Memory: {get_memory_usage():.1f} MB | βœ… All columns detected"
                
                return df.head(10), status
            except Exception as e:
                return None, f"Memory: {get_memory_usage():.1f} MB | ❌ Error: {str(e)}"
        
        def clear_all():
            gc.collect()
            return (
                None,  # data_file
                None,  # data_preview
                "auto",  # circuit_model
                "lm",  # algorithm
                True,  # use_optimization
                None,  # results_json
                None,  # nyquist_plot
                None,  # bode_plot
                f"Memory: {get_memory_usage():.1f} MB"  # memory_display
            )
        
        # Wire up events
        data_file.change(
            fn=update_preview,
            inputs=[data_file],
            outputs=[data_preview, memory_display]
        )
        
        analyze_btn.click(
            fn=process_analysis,
            inputs=[
                data_file,
                circuit_model,
                algorithm,
                use_optimization
            ],
            outputs=[
                results_json,
                nyquist_plot,
                bode_plot
            ]
        )
        
        clear_btn.click(
            fn=clear_all,
            outputs=[
                data_file,
                data_preview,
                circuit_model,
                algorithm,
                use_optimization,
                results_json,
                nyquist_plot,
                bode_plot,
                memory_display
            ]
        )
        
        workflow_btn.click(
            fn=lambda r: asyncio.run(send_to_workflow(r)),
            inputs=[results_json],
            outputs=[workflow_status]
        )
        
        # Load workflow params on startup
        def on_load(request: gr.Request):
            params = parse_workflow_params(request)
            if params:
                workflow_context.update({
                    "workflow_id": params.get("workflow_id"),
                    "node_id": params.get("node_id"),
                    "callback_url": params.get("callback_url"),
                    "auth_token": params.get("auth_token")
                })
                
                if params.get("input_data", {}).get("csv_data"):
                    # Decode and process CSV data
                    df = decode_csv_data(params["input_data"]["csv_data"])
                    if df is not None:
                        return f"Workflow: {params.get('workflow_id', 'Unknown')}", True, True
                
                return f"Workflow: {params.get('workflow_id', 'Unknown')}", True, False
            
            return "No workflow connected", False, False
        
        app.load(
            fn=on_load,
            outputs=[workflow_info, workflow_btn, workflow_status]
        )
    
    return app

# Launch the app
if __name__ == "__main__":
    app = create_interface()
    app.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True
    )