Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
|
4 |
+
# Load model and tokenizer
|
5 |
+
@st.cache_resource()
|
6 |
+
def load_model():
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("google/pegasus-xsum")
|
8 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("google/pegasus-xsum")
|
9 |
+
return tokenizer, model
|
10 |
+
|
11 |
+
tokenizer, model = load_model()
|
12 |
+
|
13 |
+
st.title("Text Summarization with Pegasus-XSum")
|
14 |
+
st.write("Enter text below and get a summarized version using the Pegasus model.")
|
15 |
+
|
16 |
+
# User input
|
17 |
+
text_input = st.text_area("Enter text to summarize:", "")
|
18 |
+
|
19 |
+
if st.button("Summarize"):
|
20 |
+
if text_input:
|
21 |
+
# Tokenize input
|
22 |
+
inputs = tokenizer(text_input, return_tensors="pt", truncation=True, max_length=512)
|
23 |
+
|
24 |
+
# Generate summary
|
25 |
+
summary_ids = model.generate(**inputs, max_length=60, min_length=10, length_penalty=2.0, num_beams=4)
|
26 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
27 |
+
|
28 |
+
# Display summary
|
29 |
+
st.subheader("Summary:")
|
30 |
+
st.write(summary)
|
31 |
+
else:
|
32 |
+
st.warning("Please enter some text to summarize.")
|