import os import huggingface_hub, spaces huggingface_hub.snapshot_download(repo_id='tsujuifu/ml-mgie', repo_type='model', local_dir='_ckpt', local_dir_use_symlinks=False) os.system('ls _ckpt') from PIL import Image import numpy as np import torch as T import transformers, diffusers from conversation import conv_templates from mgie_llava import * import gradio as gr def crop_resize(f, sz=512): w, h = f.size if w>h: p = (w-h)//2 f = f.crop([p, 0, p+h, h]) elif h>w: p = (h-w)//2 f = f.crop([0, p, w, p+w]) f = f.resize([sz, sz]) return f def remove_alter(s): # hack expressive instruction if 'ASSISTANT:' in s: s = s[s.index('ASSISTANT:')+10:].strip() if '' in s: s = s[:s.index('')].strip() if 'alternative' in s.lower(): s = s[:s.lower().index('alternative')] if '[IMG0]' in s: s = s[:s.index('[IMG0]')] s = '.'.join([s.strip() for s in s.split('.')[:2]]) if s[-1]!='.': s += '.' return s.strip() DEFAULT_IMAGE_TOKEN = '' DEFAULT_IMAGE_PATCH_TOKEN = '' DEFAULT_IM_START_TOKEN = '' DEFAULT_IM_END_TOKEN = '' PATH_LLAVA = '_ckpt/LLaVA-7B-v1' tokenizer = transformers.AutoTokenizer.from_pretrained(PATH_LLAVA) model = LlavaLlamaForCausalLM.from_pretrained(PATH_LLAVA, low_cpu_mem_usage=True, torch_dtype=T.float16, use_cache=True).cuda() image_processor = transformers.CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=T.float16) tokenizer.padding_side = 'left' tokenizer.add_tokens(['[IMG0]', '[IMG1]', '[IMG2]', '[IMG3]', '[IMG4]', '[IMG5]', '[IMG6]', '[IMG7]'], special_tokens=True) model.resize_token_embeddings(len(tokenizer)) ckpt = T.load('_ckpt/mgie_7b/mllm.pt', map_location='cpu') model.load_state_dict(ckpt, strict=False) mm_use_im_start_end = getattr(model.config, 'mm_use_im_start_end', False) tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) if mm_use_im_start_end: tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) vision_tower = model.get_model().vision_tower[0] vision_tower = transformers.CLIPVisionModel.from_pretrained(vision_tower.config._name_or_path, torch_dtype=T.float16, low_cpu_mem_usage=True).cuda() model.get_model().vision_tower[0] = vision_tower vision_config = vision_tower.config vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0] vision_config.use_im_start_end = mm_use_im_start_end if mm_use_im_start_end: vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN]) image_token_len = (vision_config.image_size//vision_config.patch_size)**2 _ = model.eval() pipe = diffusers.StableDiffusionInstructPix2PixPipeline.from_pretrained('timbrooks/instruct-pix2pix', torch_dtype=T.float16).to('cuda') pipe.set_progress_bar_config(disable=True) pipe.unet.load_state_dict(T.load('_ckpt/mgie_7b/unet.pt', map_location='cpu')) print('--init MGIE--') @spaces.GPU(enable_queue=True) def go_mgie(img, txt, seed, cfg_txt, cfg_img): EMB = ckpt['emb'].cuda() with T.inference_mode(): NULL = model.edit_head(T.zeros(1, 8, 4096).half().to('cuda'), EMB) img, seed = crop_resize(Image.fromarray(img).convert('RGB')), int(seed) inp = img img = image_processor.preprocess(img, return_tensors='pt')['pixel_values'][0] txt = "what will this image be like if '%s'"%(txt) txt = txt+'\n'+DEFAULT_IM_START_TOKEN+DEFAULT_IMAGE_PATCH_TOKEN*image_token_len+DEFAULT_IM_END_TOKEN conv = conv_templates['vicuna_v1_1'].copy() conv.append_message(conv.roles[0], txt), conv.append_message(conv.roles[1], None) txt = conv.get_prompt() txt = tokenizer(txt) txt, mask = T.as_tensor(txt['input_ids']), T.as_tensor(txt['attention_mask']) with T.inference_mode(): _ = model.cuda() out = model.generate(txt.unsqueeze(dim=0).cuda(), images=img.half().unsqueeze(dim=0).cuda(), attention_mask=mask.unsqueeze(dim=0).cuda(), do_sample=False, max_new_tokens=96, num_beams=1, no_repeat_ngram_size=3, return_dict_in_generate=True, output_hidden_states=True) out, hid = out['sequences'][0].tolist(), T.cat([x[-1] for x in out['hidden_states']], dim=1)[0] if 32003 in out: p = out.index(32003)-1 else: p = len(hid)-9 p = min(p, len(hid)-9) hid = hid[p:p+8] out = remove_alter(tokenizer.decode(out)) _ = model.cuda() emb = model.edit_head(hid.unsqueeze(dim=0), EMB) res = pipe(image=inp, prompt_embeds=emb, negative_prompt_embeds=NULL, generator=T.Generator(device='cuda').manual_seed(seed), guidance_scale=cfg_txt, image_guidance_scale=cfg_img).images[0] return res, out go_mgie(np.array(Image.open('./_input/0.jpg').convert('RGB')), 'make the frame red', 13331, 7.5, 1.5) print('--init GO--') with gr.Blocks() as app: gr.Markdown( """ # MagiX: Edit Personalized Images using Gen AI """ ) with gr.Row(): inp, res = [gr.Image(height=384, width=384, label='Input Image', interactive=True), gr.Image(height=384, width=384, label='Goal Image', interactive=True)] with gr.Row(): txt, out = [gr.Textbox(label='Instruction', interactive=True), gr.Textbox(label='Expressive Instruction', interactive=False)] with gr.Row(): seed, cfg_txt, cfg_img = [gr.Number(value=13331, label='Seed', interactive=True), gr.Number(value=7.5, label='Text CFG', interactive=True), gr.Number(value=1.5, label='Image CFG', interactive=True)] with gr.Row(): btn_sub = gr.Button('Submit') btn_sub.click(fn=go_mgie, inputs=[inp, txt, seed, cfg_txt, cfg_img], outputs=[res, out]) app.launch()