Shuu12121 commited on
Commit
a925f1c
·
verified ·
1 Parent(s): 54553f4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -58
app.py CHANGED
@@ -1,64 +1,45 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ import torch
3
+ from sentence_transformers import SentenceTransformer
4
+ from torch.nn.functional import cosine_similarity
5
+
6
+ # モデルの読み込み
7
+ model = SentenceTransformer("Shuu12121/CodeCloneDetection-ModernBERT-Owl")
8
+ model.eval()
9
+
10
+ # 閾値設定(安定性の高い0.9推奨)
11
+ THRESHOLD = 0.9
12
+
13
+
14
+ def detect_clone(code1, code2):
15
+ if not code1.strip() or not code2.strip():
16
+ return "❌ どちらのコードも入力してください", ""
17
+
18
+ with torch.no_grad():
19
+ embeddings = model.encode([code1, code2], convert_to_tensor=True)
20
+ sim_score = cosine_similarity(embeddings[0].unsqueeze(0), embeddings[1].unsqueeze(0)).item()
21
+
22
+ result = (
23
+ f"🟢 類似度: {sim_score:.4f}\n→ これらのコードは **クローン** と判定されます。"
24
+ if sim_score >= THRESHOLD
25
+ else f"🔴 類似度: {sim_score:.4f}\n→ これらのコードは **クローンではありません**。"
26
+ )
27
+ return result, sim_score
28
+
29
+ # Gradioインターフェースの作成
30
+ demo = gr.Interface(
31
+ fn=detect_clone,
32
+ inputs=[
33
+ gr.Textbox(label="コードスニペット1", lines=10, placeholder="例: def add(a, b): return a + b"),
34
+ gr.Textbox(label="コードスニペット2", lines=10, placeholder="例: def sum(x, y): return x + y"),
35
+ ],
36
+ outputs=[
37
+ gr.Markdown(label="判定結果"),
38
+ gr.Number(label="Cosine Similarity")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  ],
40
+ title="Code Clone Detection with ModernBERT-Owl 🦉",
41
+ description="Shuu12121/CodeModernBERT-Owl によって構築された Sentence-BERT モデルを使用し、コードクローンを検出します。"
42
  )
43
 
 
44
  if __name__ == "__main__":
45
  demo.launch()