Spaces:
Runtime error
Runtime error
Remove GLIDE composition due to memory.
Browse files
app.py
CHANGED
@@ -1,31 +1,19 @@
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
-
"""Copy of
|
3 |
|
4 |
Automatically generated by Colaboratory.
|
5 |
|
6 |
Original file is located at
|
7 |
-
|
8 |
"""
|
9 |
|
10 |
-
|
11 |
-
# from IPython.display import display
|
12 |
import torch as th
|
13 |
-
import numpy as np
|
14 |
-
|
15 |
-
from glide_text2im.download import load_checkpoint
|
16 |
-
from glide_text2im.model_creation import (
|
17 |
-
create_model_and_diffusion,
|
18 |
-
model_and_diffusion_defaults,
|
19 |
-
model_and_diffusion_defaults_upsampler
|
20 |
-
)
|
21 |
|
22 |
from composable_diffusion.download import download_model
|
23 |
from composable_diffusion.model_creation import create_model_and_diffusion as create_model_and_diffusion_for_clevr
|
24 |
from composable_diffusion.model_creation import model_and_diffusion_defaults as model_and_diffusion_defaults_for_clevr
|
25 |
|
26 |
-
|
27 |
-
from PIL import Image, ImageDraw, ImageFont
|
28 |
-
|
29 |
from torch import autocast
|
30 |
from diffusers import StableDiffusionPipeline
|
31 |
|
@@ -33,182 +21,14 @@ from diffusers import StableDiffusionPipeline
|
|
33 |
# On CPU, generating one sample may take on the order of 20 minutes.
|
34 |
# On a GPU, it should be under a minute.
|
35 |
|
36 |
-
has_cuda =
|
37 |
device = th.device('cpu' if not th.cuda.is_available() else 'cuda')
|
38 |
-
cpu = th.device('cpu')
|
39 |
|
40 |
-
#
|
41 |
pipe = StableDiffusionPipeline.from_pretrained(
|
42 |
"CompVis/stable-diffusion-v1-4",
|
43 |
use_auth_token='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'
|
44 |
-
).to(
|
45 |
-
|
46 |
-
# Create base model.
|
47 |
-
timestep_respacing = 100 # @param{type: 'number'}
|
48 |
-
options = model_and_diffusion_defaults()
|
49 |
-
options['use_fp16'] = has_cuda
|
50 |
-
options['timestep_respacing'] = str(timestep_respacing) # use 100 diffusion steps for fast sampling
|
51 |
-
model, diffusion = create_model_and_diffusion(**options)
|
52 |
-
model.eval()
|
53 |
-
if has_cuda:
|
54 |
-
model.convert_to_fp16()
|
55 |
-
model.to(cpu)
|
56 |
-
model.load_state_dict(load_checkpoint('base', cpu))
|
57 |
-
print('total base parameters', sum(x.numel() for x in model.parameters()))
|
58 |
-
|
59 |
-
# Create upsampler model.
|
60 |
-
options_up = model_and_diffusion_defaults_upsampler()
|
61 |
-
options_up['use_fp16'] = has_cuda
|
62 |
-
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
|
63 |
-
model_up, diffusion_up = create_model_and_diffusion(**options_up)
|
64 |
-
model_up.eval()
|
65 |
-
if has_cuda:
|
66 |
-
model_up.convert_to_fp16()
|
67 |
-
model_up.to(cpu)
|
68 |
-
model_up.load_state_dict(load_checkpoint('upsample', cpu))
|
69 |
-
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))
|
70 |
-
|
71 |
-
|
72 |
-
def show_images(batch: th.Tensor):
|
73 |
-
""" Display a batch of images inline. """
|
74 |
-
scaled = ((batch + 1) * 127.5).round().clamp(0, 255).to(th.uint8).cpu()
|
75 |
-
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
|
76 |
-
display(Image.fromarray(reshaped.numpy()))
|
77 |
-
|
78 |
-
|
79 |
-
def compose_language_descriptions(prompt, guidance_scale, steps):
|
80 |
-
options['timestep_respacing'] = str(steps)
|
81 |
-
_, diffusion = create_model_and_diffusion(**options)
|
82 |
-
|
83 |
-
# @markdown `prompt`: when composing multiple sentences, using `|` as the delimiter.
|
84 |
-
prompts = [x.strip() for x in prompt.split('|')]
|
85 |
-
|
86 |
-
batch_size = 1
|
87 |
-
# Tune this parameter to control the sharpness of 256x256 images.
|
88 |
-
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
|
89 |
-
upsample_temp = 0.980 # @param{type: 'number'}
|
90 |
-
|
91 |
-
masks = [True] * len(prompts) + [False]
|
92 |
-
# coefficients = th.tensor([0.5, 0.5], device=device).reshape(-1, 1, 1, 1)
|
93 |
-
masks = th.tensor(masks, dtype=th.bool, device=device)
|
94 |
-
|
95 |
-
# sampling function
|
96 |
-
def model_fn(x_t, ts, **kwargs):
|
97 |
-
half = x_t[:1]
|
98 |
-
combined = th.cat([half] * x_t.size(0), dim=0)
|
99 |
-
model_out = model(combined, ts, **kwargs)
|
100 |
-
eps, rest = model_out[:, :3], model_out[:, 3:]
|
101 |
-
cond_eps = eps[masks].mean(dim=0, keepdim=True)
|
102 |
-
# cond_eps = (coefficients * eps[masks]).sum(dim=0)[None]
|
103 |
-
uncond_eps = eps[~masks].mean(dim=0, keepdim=True)
|
104 |
-
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
|
105 |
-
eps = th.cat([half_eps] * x_t.size(0), dim=0)
|
106 |
-
return th.cat([eps, rest], dim=1)
|
107 |
-
|
108 |
-
##############################
|
109 |
-
# Sample from the base model #
|
110 |
-
##############################
|
111 |
-
|
112 |
-
# Create the text tokens to feed to the model.
|
113 |
-
def sample_64(prompts):
|
114 |
-
tokens_list = [model.tokenizer.encode(prompt) for prompt in prompts]
|
115 |
-
outputs = [model.tokenizer.padded_tokens_and_mask(
|
116 |
-
tokens, options['text_ctx']
|
117 |
-
) for tokens in tokens_list]
|
118 |
-
|
119 |
-
cond_tokens, cond_masks = zip(*outputs)
|
120 |
-
cond_tokens, cond_masks = list(cond_tokens), list(cond_masks)
|
121 |
-
|
122 |
-
full_batch_size = batch_size * (len(prompts) + 1)
|
123 |
-
uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
|
124 |
-
[], options['text_ctx']
|
125 |
-
)
|
126 |
-
|
127 |
-
# Pack the tokens together into model kwargs.
|
128 |
-
model_kwargs = dict(
|
129 |
-
tokens=th.tensor(
|
130 |
-
cond_tokens + [uncond_tokens], device=device
|
131 |
-
),
|
132 |
-
mask=th.tensor(
|
133 |
-
cond_masks + [uncond_mask],
|
134 |
-
dtype=th.bool,
|
135 |
-
device=device,
|
136 |
-
),
|
137 |
-
)
|
138 |
-
|
139 |
-
# Sample from the base model.
|
140 |
-
model.del_cache()
|
141 |
-
samples = diffusion.p_sample_loop(
|
142 |
-
model_fn,
|
143 |
-
(full_batch_size, 3, options["image_size"], options["image_size"]),
|
144 |
-
device=device,
|
145 |
-
clip_denoised=True,
|
146 |
-
progress=True,
|
147 |
-
model_kwargs=model_kwargs,
|
148 |
-
cond_fn=None,
|
149 |
-
)[:batch_size]
|
150 |
-
model.del_cache()
|
151 |
-
|
152 |
-
# Show the output
|
153 |
-
return samples
|
154 |
-
|
155 |
-
##############################
|
156 |
-
# Upsample the 64x64 samples #
|
157 |
-
##############################
|
158 |
-
|
159 |
-
def upsampling_256(prompts, samples):
|
160 |
-
tokens = model_up.tokenizer.encode("".join(prompts))
|
161 |
-
tokens, mask = model_up.tokenizer.padded_tokens_and_mask(
|
162 |
-
tokens, options_up['text_ctx']
|
163 |
-
)
|
164 |
-
|
165 |
-
# Create the model conditioning dict.
|
166 |
-
model_kwargs = dict(
|
167 |
-
# Low-res image to upsample.
|
168 |
-
low_res=((samples + 1) * 127.5).round() / 127.5 - 1,
|
169 |
-
|
170 |
-
# Text tokens
|
171 |
-
tokens=th.tensor(
|
172 |
-
[tokens] * batch_size, device=device
|
173 |
-
),
|
174 |
-
mask=th.tensor(
|
175 |
-
[mask] * batch_size,
|
176 |
-
dtype=th.bool,
|
177 |
-
device=device,
|
178 |
-
),
|
179 |
-
)
|
180 |
-
|
181 |
-
# Sample from the base model.
|
182 |
-
model_up.del_cache()
|
183 |
-
up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"])
|
184 |
-
up_samples = diffusion_up.ddim_sample_loop(
|
185 |
-
model_up,
|
186 |
-
up_shape,
|
187 |
-
noise=th.randn(up_shape, device=device) * upsample_temp,
|
188 |
-
device=device,
|
189 |
-
clip_denoised=True,
|
190 |
-
progress=True,
|
191 |
-
model_kwargs=model_kwargs,
|
192 |
-
cond_fn=None,
|
193 |
-
)[:batch_size]
|
194 |
-
model_up.del_cache()
|
195 |
-
|
196 |
-
# Show the output
|
197 |
-
return up_samples
|
198 |
-
|
199 |
-
# sampling 64x64 images
|
200 |
-
samples = sample_64(prompts)
|
201 |
-
# show_images(samples)
|
202 |
-
|
203 |
-
# upsample from 64x64 to 256x256
|
204 |
-
upsamples = upsampling_256(prompts, samples)
|
205 |
-
# show_images(upsamples)
|
206 |
-
|
207 |
-
out_img = upsamples[0].permute(1, 2, 0)
|
208 |
-
out_img = (out_img + 1) / 2
|
209 |
-
out_img = (out_img.detach().cpu() * 255.).to(th.uint8)
|
210 |
-
out_img = out_img.numpy()
|
211 |
-
return out_img
|
212 |
|
213 |
|
214 |
# create model for CLEVR Objects
|
@@ -238,8 +58,8 @@ clevr_model.eval()
|
|
238 |
if has_cuda:
|
239 |
clevr_model.convert_to_fp16()
|
240 |
|
241 |
-
clevr_model.to(
|
242 |
-
clevr_model.load_state_dict(th.load(download_model('clevr_pos'),
|
243 |
print('total clevr_pos parameters', sum(x.numel() for x in clevr_model.parameters()))
|
244 |
|
245 |
|
@@ -300,37 +120,10 @@ def stable_diffusion_compose(prompt, scale, steps):
|
|
300 |
def compose(prompt, version, guidance_scale, steps):
|
301 |
try:
|
302 |
with th.no_grad():
|
303 |
-
if version == '
|
304 |
-
clevr_model.to(cpu)
|
305 |
-
pipe.to(cpu)
|
306 |
-
model.to(device)
|
307 |
-
model_up.to(device)
|
308 |
-
return compose_language_descriptions(prompt, guidance_scale, steps)
|
309 |
-
elif version == 'Stable_Diffusion_1v_4':
|
310 |
-
clevr_model.to(cpu)
|
311 |
-
model.to(cpu)
|
312 |
-
model_up.to(cpu)
|
313 |
-
pipe.to(device)
|
314 |
return stable_diffusion_compose(prompt, guidance_scale, steps)
|
315 |
else:
|
316 |
-
|
317 |
-
model.to(cpu)
|
318 |
-
model_up.to(cpu)
|
319 |
-
clevr_model.to(device)
|
320 |
-
# simple check
|
321 |
-
is_text = True
|
322 |
-
for char in prompt:
|
323 |
-
if char.isdigit():
|
324 |
-
is_text = False
|
325 |
-
break
|
326 |
-
if is_text:
|
327 |
-
img = Image.new('RGB', (512, 512), color=(255, 255, 255))
|
328 |
-
d = ImageDraw.Draw(img)
|
329 |
-
font = ImageFont.load_default()
|
330 |
-
d.text((0, 256), "input should be similar to the example using 2D coordinates.", fill=(0, 0, 0), font=font)
|
331 |
-
return img
|
332 |
-
else:
|
333 |
-
return compose_clevr_objects(prompt, guidance_scale, steps)
|
334 |
except Exception as e:
|
335 |
print(e)
|
336 |
return None
|
@@ -348,24 +141,20 @@ examples = [
|
|
348 |
[examples_5, 'Stable_Diffusion_1v_4', 15, 50],
|
349 |
[examples_4, 'Stable_Diffusion_1v_4', 15, 50],
|
350 |
[examples_6, 'Stable_Diffusion_1v_4', 15, 50],
|
351 |
-
[examples_1, 'GLIDE', 15, 100],
|
352 |
-
[examples_2, 'GLIDE', 15, 100],
|
353 |
[examples_3, 'CLEVR Objects', 10, 100]
|
354 |
]
|
355 |
|
356 |
-
import gradio as gr
|
357 |
-
|
358 |
title = 'Compositional Visual Generation with Composable Diffusion Models'
|
359 |
-
description = '<p>Demo for Composable Diffusion<ul><li>~30s per
|
360 |
|
361 |
iface = gr.Interface(compose,
|
362 |
inputs=[
|
363 |
"text",
|
364 |
-
gr.Radio(['Stable_Diffusion_1v_4', '
|
365 |
gr.Slider(2, 30),
|
366 |
gr.Slider(10, 200)
|
367 |
],
|
368 |
-
outputs='image',
|
369 |
title=title, description=description, examples=examples)
|
370 |
|
371 |
-
iface.launch(enable_queue=True
|
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
+
"""Copy of demo.ipynb
|
3 |
|
4 |
Automatically generated by Colaboratory.
|
5 |
|
6 |
Original file is located at
|
7 |
+
https://colab.research.google.com/github/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch/blob/main/notebooks/demo.ipynb
|
8 |
"""
|
9 |
|
10 |
+
import gradio as gr
|
|
|
11 |
import torch as th
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
from composable_diffusion.download import download_model
|
14 |
from composable_diffusion.model_creation import create_model_and_diffusion as create_model_and_diffusion_for_clevr
|
15 |
from composable_diffusion.model_creation import model_and_diffusion_defaults as model_and_diffusion_defaults_for_clevr
|
16 |
|
|
|
|
|
|
|
17 |
from torch import autocast
|
18 |
from diffusers import StableDiffusionPipeline
|
19 |
|
|
|
21 |
# On CPU, generating one sample may take on the order of 20 minutes.
|
22 |
# On a GPU, it should be under a minute.
|
23 |
|
24 |
+
has_cuda = th.cuda.is_available()
|
25 |
device = th.device('cpu' if not th.cuda.is_available() else 'cuda')
|
|
|
26 |
|
27 |
+
# init stable diffusion model
|
28 |
pipe = StableDiffusionPipeline.from_pretrained(
|
29 |
"CompVis/stable-diffusion-v1-4",
|
30 |
use_auth_token='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'
|
31 |
+
).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
|
34 |
# create model for CLEVR Objects
|
|
|
58 |
if has_cuda:
|
59 |
clevr_model.convert_to_fp16()
|
60 |
|
61 |
+
clevr_model.to(device)
|
62 |
+
clevr_model.load_state_dict(th.load(download_model('clevr_pos'), device))
|
63 |
print('total clevr_pos parameters', sum(x.numel() for x in clevr_model.parameters()))
|
64 |
|
65 |
|
|
|
120 |
def compose(prompt, version, guidance_scale, steps):
|
121 |
try:
|
122 |
with th.no_grad():
|
123 |
+
if version == 'Stable_Diffusion_1v_4':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
return stable_diffusion_compose(prompt, guidance_scale, steps)
|
125 |
else:
|
126 |
+
return compose_clevr_objects(prompt, guidance_scale, steps)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
except Exception as e:
|
128 |
print(e)
|
129 |
return None
|
|
|
141 |
[examples_5, 'Stable_Diffusion_1v_4', 15, 50],
|
142 |
[examples_4, 'Stable_Diffusion_1v_4', 15, 50],
|
143 |
[examples_6, 'Stable_Diffusion_1v_4', 15, 50],
|
|
|
|
|
144 |
[examples_3, 'CLEVR Objects', 10, 100]
|
145 |
]
|
146 |
|
|
|
|
|
147 |
title = 'Compositional Visual Generation with Composable Diffusion Models'
|
148 |
+
description = '<p>Demo for Composable Diffusion<ul><li>~30s per Stable-Diffusion example</li><li>~10s per CLEVR Object example</li>(<b>Note</b>: time is varied depending on what gpu is used.)</ul></p><p>See more information from our <a href="https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/">Project Page</a>.</p><ul><li>One version is based on the released <a href="https://github.com/openai/glide-text2im">GLIDE</a> and <a href="https://github.com/CompVis/stable-diffusion/">Stable Diffusion</a> for composing natural language description.</li><li>Another is based on our pre-trained CLEVR Object Model for composing objects. <br>(<b>Note</b>: We recommend using <b><i>x</i></b> in range <b><i>[0.1, 0.9]</i></b> and <b><i>y</i></b> in range <b><i>[0.25, 0.7]</i></b>, since the training dataset labels are in given ranges.)</li></ul><p>When composing multiple sentences, use `|` as the delimiter, see given examples below.</p><p><b>Note: When using Stable Diffusion, black images will be returned if the given prompt is detected as problematic. For composing GLIDE model, we recommend using the Colab demo in our <a href="https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/">Project Page</a>.</b></p>'
|
149 |
|
150 |
iface = gr.Interface(compose,
|
151 |
inputs=[
|
152 |
"text",
|
153 |
+
gr.Radio(['Stable_Diffusion_1v_4', 'CLEVR Objects'], type="value", label='version'),
|
154 |
gr.Slider(2, 30),
|
155 |
gr.Slider(10, 200)
|
156 |
],
|
157 |
+
outputs='image',
|
158 |
title=title, description=description, examples=examples)
|
159 |
|
160 |
+
iface.launch(enable_queue=True)
|