Shuang59 commited on
Commit
1955fd3
Β·
1 Parent(s): 63a03db

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -19
app.py CHANGED
@@ -76,7 +76,10 @@ def show_images(batch: th.Tensor):
76
  display(Image.fromarray(reshaped.numpy()))
77
 
78
 
79
- def compose_language_descriptions(prompt, guidance_scale):
 
 
 
80
  # @markdown `prompt`: when composing multiple sentences, using `|` as the delimiter.
81
  prompts = [x.strip() for x in prompt.split('|')]
82
 
@@ -240,12 +243,15 @@ clevr_model.load_state_dict(th.load(download_model('clevr_pos'), device))
240
  print('total clevr_pos parameters', sum(x.numel() for x in clevr_model.parameters()))
241
 
242
 
243
- def compose_clevr_objects(prompt, guidance_scale):
244
  coordinates = [[float(x.split(',')[0].strip()), float(x.split(',')[1].strip())]
245
  for x in prompt.split('|')]
246
  coordinates += [[-1, -1]] # add unconditional score label
247
  batch_size = 1
248
 
 
 
 
249
  def model_fn(x_t, ts, **kwargs):
250
  half = x_t[:1]
251
  combined = th.cat([half] * kwargs['y'].size(0), dim=0)
@@ -281,24 +287,23 @@ def compose_clevr_objects(prompt, guidance_scale):
281
  out_img = (out_img + 1) / 2
282
  out_img = (out_img.detach().cpu() * 255.).to(th.uint8)
283
  out_img = out_img.numpy()
284
- Image.fromarray(out_img).convert('RGB').save('test.png')
285
 
286
  return out_img
287
 
288
 
289
- def stable_diffusion_compose(prompt, scale):
290
  with autocast('cpu' if not has_cuda else 'cuda'):
291
- image = pipe(prompt, guidance_scale=scale)["sample"][0]
292
  return image
293
 
294
 
295
- def compose(prompt, version, guidance_scale):
296
  if version == 'GLIDE':
297
- return compose_language_descriptions(prompt, guidance_scale)
298
  elif version == 'Stable_Diffusion_1v_4':
299
- return stable_diffusion_compose(prompt, guidance_scale)
300
  else:
301
- return compose_clevr_objects(prompt, guidance_scale)
302
 
303
 
304
  examples_1 = 'a camel | a forest'
@@ -309,20 +314,28 @@ examples_5 = 'a white church on a hill | birds flying around the church'
309
  examples_6 = 'a boat in a desert | a pink sky'
310
  examples_7 = 'mountains in the background | a blue sky | cows on a pasture'
311
  examples = [
312
- [examples_7, 'Stable_Diffusion_1v_4', 10],
313
- [examples_4, 'Stable_Diffusion_1v_4', 10],
314
- [examples_5, 'Stable_Diffusion_1v_4', 10],
315
- [examples_6, 'Stable_Diffusion_1v_4', 10],
316
- [examples_1, 'GLIDE', 10],
317
- [examples_2, 'GLIDE', 10],
318
- [examples_3, 'CLEVR Objects', 10]]
 
319
 
320
  import gradio as gr
321
 
322
  title = 'Compositional Visual Generation with Composable Diffusion Models'
323
- description = '<p>Demo for Composable Diffusion<ul><li>~30s per GLIDE/Stable-Diffusion example</li><li>~10s per CLEVR Object example</li>(<b>Note</b>: time is varied depending on what gpu is used.)</ul></p><p>See more information from our <a href="https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/">Project Page</a>.</p><ul><li>One version is based on the released <a href="https://github.com/openai/glide-text2im">GLIDE</a> and <a href="https://github.com/CompVis/stable-diffusion/">Stable Diffusion</a> for composing natural language description.</li><li>Another is based on our pre-trained CLEVR Object Model for composing objects. <br>(<b>Note</b>: We recommend using <b><i>x</i></b> in range <b><i>[0.1, 0.9]</i></b> and <b><i>y</i></b> in range <b><i>[0.25, 0.7]</i></b>, since the training dataset labels are in given ranges.)</li></ul><p>When composing multiple sentences, use `|` as the delimiter, see given examples below.</p>'
324
-
325
- iface = gr.Interface(compose, inputs=["text", gr.Radio(['Stable_Diffusion_1v_4', 'GLIDE', 'CLEVR Objects'], type="value", label='version'), gr.Slider(2, 20)], outputs='image',
 
 
 
 
 
 
 
326
  title=title, description=description, examples=examples)
327
 
328
  iface.launch()
 
76
  display(Image.fromarray(reshaped.numpy()))
77
 
78
 
79
+ def compose_language_descriptions(prompt, guidance_scale, steps):
80
+ options['timestep_respacing'] = str(steps)
81
+ _, diffusion = create_model_and_diffusion(**options)
82
+
83
  # @markdown `prompt`: when composing multiple sentences, using `|` as the delimiter.
84
  prompts = [x.strip() for x in prompt.split('|')]
85
 
 
243
  print('total clevr_pos parameters', sum(x.numel() for x in clevr_model.parameters()))
244
 
245
 
246
+ def compose_clevr_objects(prompt, guidance_scale, steps):
247
  coordinates = [[float(x.split(',')[0].strip()), float(x.split(',')[1].strip())]
248
  for x in prompt.split('|')]
249
  coordinates += [[-1, -1]] # add unconditional score label
250
  batch_size = 1
251
 
252
+ clevr_options['timestep_respacing'] = str(int(steps))
253
+ _, clevr_diffusion = create_model_and_diffusion_for_clevr(**clevr_options)
254
+
255
  def model_fn(x_t, ts, **kwargs):
256
  half = x_t[:1]
257
  combined = th.cat([half] * kwargs['y'].size(0), dim=0)
 
287
  out_img = (out_img + 1) / 2
288
  out_img = (out_img.detach().cpu() * 255.).to(th.uint8)
289
  out_img = out_img.numpy()
 
290
 
291
  return out_img
292
 
293
 
294
+ def stable_diffusion_compose(prompt, scale, steps):
295
  with autocast('cpu' if not has_cuda else 'cuda'):
296
+ image = pipe(prompt, guidance_scale=scale, num_inference_steps=steps)["sample"][0]
297
  return image
298
 
299
 
300
+ def compose(prompt, version, guidance_scale, steps):
301
  if version == 'GLIDE':
302
+ return compose_language_descriptions(prompt, guidance_scale, steps)
303
  elif version == 'Stable_Diffusion_1v_4':
304
+ return stable_diffusion_compose(prompt, guidance_scale, steps)
305
  else:
306
+ return compose_clevr_objects(prompt, guidance_scale, steps)
307
 
308
 
309
  examples_1 = 'a camel | a forest'
 
314
  examples_6 = 'a boat in a desert | a pink sky'
315
  examples_7 = 'mountains in the background | a blue sky | cows on a pasture'
316
  examples = [
317
+ [examples_7, 'Stable_Diffusion_1v_4', 10, 50],
318
+ [examples_4, 'Stable_Diffusion_1v_4', 10, 50],
319
+ [examples_5, 'Stable_Diffusion_1v_4', 10, 50],
320
+ [examples_6, 'Stable_Diffusion_1v_4', 10, 50],
321
+ [examples_1, 'GLIDE', 10, 100],
322
+ [examples_2, 'GLIDE', 10, 100],
323
+ [examples_3, 'CLEVR Objects', 10, 100]
324
+ ]
325
 
326
  import gradio as gr
327
 
328
  title = 'Compositional Visual Generation with Composable Diffusion Models'
329
+ description = '<p>Demo for Composable Diffusion<ul><li>~30s per GLIDE/Stable-Diffusion example</li><li>~10s per CLEVR Object example</li>(<b>Note</b>: time is varied depending on what gpu is used.)</ul></p><p>See more information from our <a href="https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/">Project Page</a>.</p><ul><li>One version is based on the released <a href="https://github.com/openai/glide-text2im">GLIDE</a> and <a href="https://github.com/CompVis/stable-diffusion/">Stable Diffusion</a> for composing natural language description.</li><li>Another is based on our pre-trained CLEVR Object Model for composing objects. <br>(<b>Note</b>: We recommend using <b><i>x</i></b> in range <b><i>[0.1, 0.9]</i></b> and <b><i>y</i></b> in range <b><i>[0.25, 0.7]</i></b>, since the training dataset labels are in given ranges.)</li></ul><p>When composing multiple sentences, use `|` as the delimiter, see given examples below.</p><p><b>Note</b>: When using more steps, the results can improve.</p>'
330
+
331
+ iface = gr.Interface(compose,
332
+ inputs=[
333
+ "text",
334
+ gr.Radio(['Stable_Diffusion_1v_4', 'GLIDE', 'CLEVR Objects'], type="value", label='version'),
335
+ gr.Slider(2, 15),
336
+ gr.Slider(10, 200)
337
+ ],
338
+ outputs='image',
339
  title=title, description=description, examples=examples)
340
 
341
  iface.launch()