from turtle import title import gradio as gr from transformers import pipeline import numpy as np from PIL import Image pipes = { "ViT/B-16": pipeline("zero-shot-image-classification", model="OFA-Sys/chinese-clip-vit-base-patch16"), "ViT/L-14": pipeline("zero-shot-image-classification", model="OFA-Sys/chinese-clip-vit-large-patch14"), "ViT/L-14@336px": pipeline("zero-shot-image-classification", model="OFA-Sys/chinese-clip-vit-large-patch14-336px"), "ViT/H-14": pipeline("zero-shot-image-classification", model="OFA-Sys/chinese-clip-vit-huge-patch14"), } inputs = [ gr.inputs.Image(type='pil', label="Image 输入图片"), gr.inputs.Textbox(lines=1, label="Candidate Labels 候选分类标签"), gr.inputs.Radio(choices=[ "ViT/B-16", "ViT/L-14", "ViT/L-14@336px", "ViT/H-14", ], type="value", default="ViT/B-16", label="Model 模型规模"), gr.inputs.Textbox(lines=1, label="Prompt Template Prompt模板 ({}指代候选标签)", default="一张{}的图片。"), ] images="festival.jpg" def shot(image, labels_text, model_name, hypothesis_template): labels = [label.strip(" ") for label in labels_text.strip(" ").split(",")] res = pipes[model_name](images=image, candidate_labels=labels, hypothesis_template=hypothesis_template) return {dic["label"]: dic["score"] for dic in res} lei = "机动车道,非机动车道,人车混行道路,斑马线人行道,主干道路,乡间道路,内部小巷,人行横道,十字路口,丁字路口,岔路口,铁路沿线,铁路路口,高架桥,立交桥,过街天桥,桥梁,天桥上下口,地下隧道,地下人行通道,隧道通行区域,穿山隧道,隧道出入口,水池,河流,湖面,室外停车场,路面划线停车位,城市广场,裸露农田,林区,草坪,树木,公交站台,收费站,检查站,加油站,岗亭,车行道闸,人行闸机,安检机器,铁门,保安亭,门或电动门,人员出入口,车辆出入口,广告牌,横幅,沿街商铺,露天烧烤摊,超市,建筑施工,道路施工,人员卡口,车辆卡口,人行闸机,场所主出入口,安检门,X光安检机,电梯内部,扶梯,楼梯,台阶,室内通道,走廊,前台区域,公共大厅,室内停车场" iface = gr.Interface(shot, inputs, "label", examples=[["festival.jpg", lei, "ViT/B-16", "一张{}的图片。"], ["cat-dog-music.png", "音乐表演, 体育运动", "ViT/B-16", "一张{}的图片。"], ["football-match.jpg", "梅西, C罗, 马奎尔", "ViT/B-16", "一张{}的图片。"]], description="""

Chinese CLIP is a contrastive-learning-based vision-language foundation model pretrained on large-scale Chinese data. For more information, please refer to the paper and official github. Also, Chinese CLIP has already been merged into Huggingface Transformers!

Paper: https://arxiv.org/abs/2211.01335
Github: https://github.com/OFA-Sys/Chinese-CLIP (Welcome to star! 🔥🔥)

To play with this demo, add a picture and a list of labels in Chinese separated by commas. 上传图片,并输入多个分类标签,用英文逗号分隔。可点击页面最下方示例参考。
You can duplicate this space and run it privately: Duplicate Space

""", title="Zero-shot Image Classification (中文零样本图像分类)") iface.launch()