from turtle import title import gradio as gr from transformers import pipeline import numpy as np from PIL import Image pipes = { "chinese-clip-vit-base-patch16": pipeline("zero-shot-image-classification", model="OFA-Sys/chinese-clip-vit-base-patch16"), "chinese-clip-vit-large-patch14": pipeline("zero-shot-image-classification", model="OFA-Sys/chinese-clip-vit-large-patch14"), "chinese-clip-vit-large-patch14-336px": pipeline("zero-shot-image-classification", model="OFA-Sys/chinese-clip-vit-large-patch14-336px"), "chinese-clip-vit-huge-patch14": pipeline("zero-shot-image-classification", model="OFA-Sys/chinese-clip-vit-huge-patch14"), } inputs = [ gr.inputs.Image(type='pil'), "text", gr.inputs.Radio(choices=[ "chinese-clip-vit-base-patch16", "chinese-clip-vit-large-patch14", "chinese-clip-vit-large-patch14-336px", "chinese-clip-vit-huge-patch14", ], type="value", default="chinese-clip-vit-base-patch16", label="Model"), ] images="festival.jpg" def shot(image, labels_text, model_name): labels = labels_text.strip(" ").split(",").strip(" ") res = pipes[model_name](images=image, candidate_labels=labels, hypothesis_template= "一张{}的图片。") return {dic["label"]: dic["score"] for dic in res} iface = gr.Interface(shot, inputs, "label", examples=[["festival.jpg", "灯笼, 鞭炮, 对联"], ["cat-dog-music.png", "音乐表演, 体育运动"], ["football-match.jpg", "梅西, C罗, 马奎尔"]], description="Add a picture and a list of labels separated by commas", title="Zero-shot Image Classification") iface.launch()