Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pinecone
|
3 |
+
import requests
|
4 |
+
import PyPDF2
|
5 |
+
from transformers import AutoTokenizer, AutoModel
|
6 |
+
import torch
|
7 |
+
import re
|
8 |
+
import google.generativeai as genai
|
9 |
+
import os
|
10 |
+
import time
|
11 |
+
from datetime import datetime, timedelta
|
12 |
+
from google.api_core import exceptions
|
13 |
+
|
14 |
+
# Constants
|
15 |
+
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY") # Set in HF Spaces Secrets
|
16 |
+
PINECONE_INDEX_NAME = "diabetes-bot"
|
17 |
+
PINECONE_NAMESPACE = "general"
|
18 |
+
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY") # Set in HF Spaces Secrets
|
19 |
+
MODEL_NAME = "dmis-lab/biobert-base-cased-v1.1"
|
20 |
+
|
21 |
+
# Free tier limits
|
22 |
+
FREE_TIER_RPD_LIMIT = 1500 # Requests per day
|
23 |
+
FREE_TIER_RPM_LIMIT = 15 # Requests per minute
|
24 |
+
FREE_TIER_TPM_LIMIT = 1000000 # Tokens per minute
|
25 |
+
WARNING_THRESHOLD = 0.9 # Stop at 90% of the limit to be safe
|
26 |
+
|
27 |
+
# Usage tracking
|
28 |
+
usage_file = "usage.txt"
|
29 |
+
|
30 |
+
def load_usage():
|
31 |
+
if not os.path.exists(usage_file):
|
32 |
+
return {"requests": [], "tokens": []}
|
33 |
+
with open(usage_file, "r") as f:
|
34 |
+
data = f.read().strip()
|
35 |
+
if not data:
|
36 |
+
return {"requests": [], "tokens": []}
|
37 |
+
requests, tokens = data.split("|")
|
38 |
+
return {
|
39 |
+
"requests": [float(t) for t in requests.split(",") if t],
|
40 |
+
"tokens": [(float(t), float(n)) for t, n in [pair.split(":") for pair in tokens.split(",") if pair]]
|
41 |
+
}
|
42 |
+
|
43 |
+
def save_usage(requests, tokens):
|
44 |
+
with open(usage_file, "w") as f:
|
45 |
+
f.write(",".join(map(str, requests)) + "|" + ",".join(f"{t}:{n}" for t, n in tokens))
|
46 |
+
|
47 |
+
def check_usage():
|
48 |
+
usage = load_usage()
|
49 |
+
now = time.time()
|
50 |
+
|
51 |
+
# Clean up old requests (older than 24 hours)
|
52 |
+
day_ago = now - 24 * 60 * 60
|
53 |
+
usage["requests"] = [t for t in usage["requests"] if t > day_ago]
|
54 |
+
|
55 |
+
# Clean up old token counts (older than 1 minute)
|
56 |
+
minute_ago = now - 60
|
57 |
+
usage["tokens"] = [(t, n) for t, n in usage["tokens"] if t > minute_ago]
|
58 |
+
|
59 |
+
# Count requests per day
|
60 |
+
rpd = len(usage["requests"])
|
61 |
+
rpd_limit = int(FREE_TIER_RPD_LIMIT * WARNING_THRESHOLD)
|
62 |
+
if rpd >= rpd_limit:
|
63 |
+
return False, f"Approaching daily request limit ({rpd}/{FREE_TIER_RPD_LIMIT}). Stopping to stay in free tier. Try again tomorrow."
|
64 |
+
|
65 |
+
# Count requests per minute
|
66 |
+
minute_ago = now - 60
|
67 |
+
rpm = len([t for t in usage["requests"] if t > minute_ago])
|
68 |
+
rpm_limit = int(FREE_TIER_RPM_LIMIT * WARNING_THRESHOLD)
|
69 |
+
if rpm >= rpm_limit:
|
70 |
+
return False, f"Approaching minute request limit ({rpm}/{FREE_TIER_RPM_LIMIT}). Wait a minute and try again."
|
71 |
+
|
72 |
+
# Count tokens per minute
|
73 |
+
tpm = sum(n for t, n in usage["tokens"])
|
74 |
+
tpm_limit = int(FREE_TIER_TPM_LIMIT * WARNING_THRESHOLD)
|
75 |
+
if tpm >= tpm_limit:
|
76 |
+
return False, f"Approaching token limit ({tpm}/{FREE_TIER_TPM_LIMIT} per minute). Wait a minute and try again."
|
77 |
+
|
78 |
+
return True, (rpd, rpm, tpm)
|
79 |
+
|
80 |
+
# Initialize Pinecone
|
81 |
+
pc = pinecone.Pinecone(api_key=PINECONE_API_KEY)
|
82 |
+
index = pc.Index(PINECONE_INDEX_NAME)
|
83 |
+
|
84 |
+
# Initialize BioBERT for embedding queries
|
85 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
86 |
+
model = AutoModel.from_pretrained(MODEL_NAME)
|
87 |
+
if torch.cuda.is_available():
|
88 |
+
model.cuda()
|
89 |
+
|
90 |
+
# Initialize Gemini and check available models
|
91 |
+
genai.configure(api_key=GEMINI_API_KEY)
|
92 |
+
|
93 |
+
# List available models to confirm free tier access
|
94 |
+
available_models = [model.name for model in genai.list_models()]
|
95 |
+
print("Available Gemini models:", available_models)
|
96 |
+
|
97 |
+
# Select a free-tier model (prefer gemini-1.5-pro, fallback to gemini-1.5-flash)
|
98 |
+
preferred_model = "gemini-1.5-pro"
|
99 |
+
if preferred_model in available_models:
|
100 |
+
gemini_model = genai.GenerativeModel(preferred_model)
|
101 |
+
print(f"Using model: {preferred_model}")
|
102 |
+
else:
|
103 |
+
fallback_model = "gemini-1.5-flash"
|
104 |
+
if fallback_model in available_models:
|
105 |
+
gemini_model = genai.GenerativeModel(fallback_model)
|
106 |
+
print(f"Fallback to model: {fallback_model}")
|
107 |
+
else:
|
108 |
+
raise ValueError("No free-tier Gemini model available. Available models: " + str(available_models))
|
109 |
+
|
110 |
+
# Clean text
|
111 |
+
def clean_text(text):
|
112 |
+
text = re.sub(r'<[^>]+>', '', text) # Remove HTML tags
|
113 |
+
text = re.sub(r'[^\x00-\x7F]+', ' ', text) # Remove non-ASCII
|
114 |
+
text = re.sub(r'\s+', ' ', text) # Normalize spaces
|
115 |
+
return text.strip()
|
116 |
+
|
117 |
+
# Embed text using BioBERT
|
118 |
+
def embed_text(text):
|
119 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
120 |
+
if torch.cuda.is_available():
|
121 |
+
inputs = {k: v.cuda() for k, v in inputs.items()}
|
122 |
+
with torch.no_grad():
|
123 |
+
outputs = model(**inputs)
|
124 |
+
embedding = outputs.last_hidden_state[:, 0, :].cpu().numpy()[0]
|
125 |
+
return embedding.tolist()
|
126 |
+
|
127 |
+
# Extract text from PDF (up to 10 pages)
|
128 |
+
def extract_pdf_text(pdf_file):
|
129 |
+
reader = PyPDF2.PdfReader(pdf_file)
|
130 |
+
num_pages = min(len(reader.pages), 10) # Limit to 10 pages
|
131 |
+
text = ""
|
132 |
+
for page in range(num_pages):
|
133 |
+
text += reader.pages[page].extract_text() + "\n"
|
134 |
+
return clean_text(text)
|
135 |
+
|
136 |
+
# Retrieve relevant chunks from Pinecone
|
137 |
+
def retrieve_from_pinecone(query, top_k=5):
|
138 |
+
query_embedding = embed_text(query)
|
139 |
+
results = index.query(
|
140 |
+
namespace=PINECONE_NAMESPACE,
|
141 |
+
vector=query_embedding,
|
142 |
+
top_k=top_k,
|
143 |
+
include_metadata=True
|
144 |
+
)
|
145 |
+
retrieved_chunks = [match["metadata"]["chunk"] for match in results["matches"]]
|
146 |
+
return "\n".join(retrieved_chunks)
|
147 |
+
|
148 |
+
# Count tokens using Gemini API
|
149 |
+
def count_tokens(text):
|
150 |
+
try:
|
151 |
+
response = gemini_model.count_tokens(text)
|
152 |
+
return response.total_tokens
|
153 |
+
except exceptions.QuotaExceeded as e:
|
154 |
+
return 0 # If quota is exceeded, return 0 to avoid counting issues
|
155 |
+
|
156 |
+
# Generate answer using Gemini
|
157 |
+
def generate_answer(query, context):
|
158 |
+
prompt = f"""
|
159 |
+
You are a diabetes research assistant. Answer the following question based on the provided context. If the context is insufficient, use your knowledge to provide a helpful answer, but note if the information might be limited.
|
160 |
+
|
161 |
+
**Question**: {query}
|
162 |
+
|
163 |
+
**Context**:
|
164 |
+
{context}
|
165 |
+
|
166 |
+
**Answer**:
|
167 |
+
"""
|
168 |
+
try:
|
169 |
+
response = gemini_model.generate_content(prompt)
|
170 |
+
return response.text
|
171 |
+
except exceptions.QuotaExceeded as e:
|
172 |
+
return f"Error: Gemini API quota exceeded ({str(e)}). Try again later."
|
173 |
+
except Exception as e:
|
174 |
+
return f"Error generating answer: {str(e)}"
|
175 |
+
|
176 |
+
# Main function to handle user input
|
177 |
+
def diabetes_bot(query, pdf_file=None):
|
178 |
+
# Check usage limits
|
179 |
+
can_proceed, usage_info = check_usage()
|
180 |
+
if not can_proceed:
|
181 |
+
return usage_info
|
182 |
+
|
183 |
+
# Step 1: Get context from PDF if uploaded
|
184 |
+
pdf_context = ""
|
185 |
+
if pdf_file is not None:
|
186 |
+
pdf_context = extract_pdf_text(pdf_file)
|
187 |
+
if pdf_context:
|
188 |
+
pdf_context = f"Uploaded PDF content:\n{pdf_context}\n\n"
|
189 |
+
|
190 |
+
# Step 2: Retrieve relevant chunks from Pinecone
|
191 |
+
pinecone_context = retrieve_from_pinecone(query)
|
192 |
+
if pinecone_context:
|
193 |
+
pinecone_context = f"Pinecone retrieved content (latest research, 2010 onward):\n{pinecone_context}\n\n"
|
194 |
+
|
195 |
+
# Step 3: Combine contexts
|
196 |
+
full_context = pdf_context + pinecone_context
|
197 |
+
if not full_context.strip():
|
198 |
+
full_context = "No relevant context found in Pinecone or uploaded PDF."
|
199 |
+
|
200 |
+
# Step 4: Count tokens for the prompt
|
201 |
+
prompt = f"""
|
202 |
+
You are a diabetes research assistant. Answer the following question based on the provided context. If the context is insufficient, use your knowledge to provide a helpful answer, but note if the information might be limited.
|
203 |
+
|
204 |
+
**Question**: {query}
|
205 |
+
|
206 |
+
**Context**:
|
207 |
+
{full_context}
|
208 |
+
|
209 |
+
**Answer**:
|
210 |
+
"""
|
211 |
+
input_tokens = count_tokens(prompt)
|
212 |
+
if input_tokens == 0: # Quota exceeded during token counting
|
213 |
+
return "Error: Gemini API quota exceeded while counting tokens. Try again later."
|
214 |
+
|
215 |
+
# Update usage
|
216 |
+
usage = load_usage()
|
217 |
+
now = time.time()
|
218 |
+
usage["requests"].append(now)
|
219 |
+
usage["tokens"].append((now, input_tokens))
|
220 |
+
save_usage(usage["requests"], usage["tokens"])
|
221 |
+
|
222 |
+
# Step 5: Generate answer using Gemini
|
223 |
+
answer = generate_answer(query, full_context)
|
224 |
+
|
225 |
+
# Step 6: Count output tokens and update usage
|
226 |
+
output_tokens = count_tokens(answer)
|
227 |
+
if output_tokens == 0: # Quota exceeded during output token counting
|
228 |
+
return answer + "\n\nError: Gemini API quota exceeded while counting output tokens. Usage stats may be incomplete."
|
229 |
+
usage = load_usage()
|
230 |
+
usage["tokens"].append((now, output_tokens))
|
231 |
+
save_usage(usage["requests"], usage["tokens"])
|
232 |
+
|
233 |
+
# Step 7: Show usage stats
|
234 |
+
rpd, rpm, tpm = check_usage()[1]
|
235 |
+
usage_message = f"\n\nUsage: {rpd}/{FREE_TIER_RPD_LIMIT} requests today, {rpm}/{FREE_TIER_RPM_LIMIT} requests this minute, {tpm}/{FREE_TIER_TPM_LIMIT} tokens this minute."
|
236 |
+
|
237 |
+
return answer + usage_message
|
238 |
+
|
239 |
+
# Gradio interface
|
240 |
+
with gr.Blocks() as app:
|
241 |
+
gr.Markdown("""
|
242 |
+
# Diabetes-Bot 🩺
|
243 |
+
Ask questions about diabetes or upload a research paper (up to 10 pages) for Q&A.
|
244 |
+
**Powered by the latest diabetes research (2010 onward). For pre-2010 papers, upload your research PDF!**
|
245 |
+
**Running on Gemini API free tier (1,500 requests/day, 15 requests/minute, 1M tokens/minute). No payment method linked—strictly free!**
|
246 |
+
""")
|
247 |
+
|
248 |
+
with gr.Row():
|
249 |
+
query_input = gr.Textbox(label="Ask a question", placeholder="e.g., What are the latest treatments for type 2 diabetes?")
|
250 |
+
pdf_input = gr.File(label="Upload a PDF (optional, max 10 pages)", file_types=[".pdf"])
|
251 |
+
|
252 |
+
submit_button = gr.Button("Submit")
|
253 |
+
output = gr.Textbox(label="Answer")
|
254 |
+
|
255 |
+
submit_button.click(
|
256 |
+
fn=diabetes_bot,
|
257 |
+
inputs=[query_input, pdf_input],
|
258 |
+
outputs=output
|
259 |
+
)
|
260 |
+
|
261 |
+
# Launch the app
|
262 |
+
app.launch()
|