Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,90 +1,82 @@
|
|
1 |
-
import
|
2 |
-
from transformers import pipeline
|
3 |
from bs4 import BeautifulSoup
|
4 |
import requests
|
5 |
-
|
6 |
-
import
|
|
|
7 |
|
8 |
# Configure logging
|
9 |
logging.basicConfig(level=logging.DEBUG)
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def summarize_news(query, num_results=3):
|
12 |
logging.debug(f"Query received: {query}")
|
13 |
logging.debug(f"Number of results requested: {num_results}")
|
14 |
|
15 |
-
# Initialize summarization pipeline with a specific model
|
16 |
-
logging.debug("Initializing summarization pipeline...")
|
17 |
-
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
|
18 |
-
|
19 |
# Search for news articles
|
20 |
logging.debug("Searching for news articles...")
|
21 |
-
search_results = search(query, num_results=num_results)
|
22 |
-
articles = []
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
28 |
logging.debug(f"Fetching content from URL: {url}")
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
# Summarize the chunks
|
58 |
-
logging.debug("Summarizing the chunks...")
|
59 |
-
summaries = []
|
60 |
-
for chunk in chunks:
|
61 |
-
summaries.append(summarizer(chunk, max_length=150, min_length=30, do_sample=False)[0]['summary_text'])
|
62 |
-
|
63 |
-
# Concatenate summaries and summarize again for cohesion
|
64 |
-
combined_summary = ' '.join(summaries)
|
65 |
-
final_summary = summarizer(combined_summary, max_length=300, min_length=80, do_sample=False)[0]['summary_text']
|
66 |
-
articles.append((url, final_summary))
|
67 |
-
|
68 |
-
logging.debug(f"Final summary for URL {url}: {final_summary}")
|
69 |
-
except Exception as e:
|
70 |
-
logging.error(f"Error processing URL {url}: {e}")
|
71 |
-
continue
|
72 |
-
|
73 |
-
logging.debug(f"Final summarized articles: {articles}")
|
74 |
-
return format_output(articles)
|
75 |
-
|
76 |
-
def format_output(articles):
|
77 |
-
formatted_text = ""
|
78 |
-
for url, summary in articles:
|
79 |
-
formatted_text += f"URL: {url}\nSummary: {summary}\n\n"
|
80 |
-
return formatted_text
|
81 |
-
|
82 |
iface = gr.Interface(
|
83 |
fn=summarize_news,
|
84 |
-
inputs=["
|
85 |
outputs="textbox",
|
86 |
title="News Summarizer",
|
87 |
-
description="Enter a query to get
|
88 |
)
|
89 |
|
90 |
if __name__ == "__main__":
|
|
|
1 |
+
import logging
|
|
|
2 |
from bs4 import BeautifulSoup
|
3 |
import requests
|
4 |
+
import nltk
|
5 |
+
from transformers import pipeline
|
6 |
+
import gradio as gr
|
7 |
|
8 |
# Configure logging
|
9 |
logging.basicConfig(level=logging.DEBUG)
|
10 |
|
11 |
+
# Initialize the summarization pipeline from Hugging Face Transformers
|
12 |
+
summarizer = pipeline("summarization")
|
13 |
+
|
14 |
+
# Initialize the NLTK sentence tokenizer
|
15 |
+
nltk.download('punkt')
|
16 |
+
|
17 |
+
# Function to fetch content from a given URL
|
18 |
+
def fetch_article_content(url):
|
19 |
+
try:
|
20 |
+
r = requests.get(url)
|
21 |
+
soup = BeautifulSoup(r.text, 'html.parser')
|
22 |
+
results = soup.find_all(['h1', 'p'])
|
23 |
+
text = [result.text for result in results]
|
24 |
+
return ' '.join(text)
|
25 |
+
except Exception as e:
|
26 |
+
logging.error(f"Error fetching content from {url}: {e}")
|
27 |
+
return ""
|
28 |
+
|
29 |
+
# Function to summarize news articles based on a query
|
30 |
def summarize_news(query, num_results=3):
|
31 |
logging.debug(f"Query received: {query}")
|
32 |
logging.debug(f"Number of results requested: {num_results}")
|
33 |
|
|
|
|
|
|
|
|
|
34 |
# Search for news articles
|
35 |
logging.debug("Searching for news articles...")
|
|
|
|
|
36 |
|
37 |
+
articles = []
|
38 |
+
aggregated_content = ""
|
39 |
+
try:
|
40 |
+
news_results = newsapi.get_everything(q=query, language='en', page_size=num_results)
|
41 |
+
logging.debug(f"Search results: {news_results}")
|
42 |
+
|
43 |
+
for article in news_results['articles']:
|
44 |
+
url = article['url']
|
45 |
logging.debug(f"Fetching content from URL: {url}")
|
46 |
+
content = fetch_article_content(url)
|
47 |
+
aggregated_content += content + " "
|
48 |
+
except Exception as e:
|
49 |
+
logging.error(f"Error fetching news articles: {e}")
|
50 |
+
|
51 |
+
# Summarize the aggregated content
|
52 |
+
try:
|
53 |
+
# Chunk the aggregated content into meaningful segments
|
54 |
+
sentences = nltk.sent_tokenize(aggregated_content)
|
55 |
+
|
56 |
+
# Summarize each sentence individually if it's meaningful
|
57 |
+
summaries = []
|
58 |
+
for sentence in sentences:
|
59 |
+
if len(sentence) > 10: # Adjust minimum length as needed
|
60 |
+
summary = summarizer(sentence, max_length=120, min_length=30, do_sample=False)
|
61 |
+
summaries.append(summary[0]['summary_text'])
|
62 |
+
|
63 |
+
# Join all summaries to form final output
|
64 |
+
final_summary = " ".join(summaries)
|
65 |
+
|
66 |
+
logging.debug(f"Final summarized text: {final_summary}")
|
67 |
+
return final_summary
|
68 |
+
|
69 |
+
except Exception as e:
|
70 |
+
logging.error(f"Error during summarization: {e}")
|
71 |
+
return "An error occurred during summarization."
|
72 |
+
|
73 |
+
# Setting up Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
iface = gr.Interface(
|
75 |
fn=summarize_news,
|
76 |
+
inputs=[gr.Textbox(label="Query"), gr.Slider(minimum=1, maximum=10, default=3, label="Number of Results")],
|
77 |
outputs="textbox",
|
78 |
title="News Summarizer",
|
79 |
+
description="Enter a query to get a consolidated summary of the top news articles."
|
80 |
)
|
81 |
|
82 |
if __name__ == "__main__":
|