Shreyas094's picture
Update app.py
177c5b5 verified
raw
history blame
9.44 kB
import os
import json
import re
import gradio as gr
import pandas as pd
from tempfile import NamedTemporaryFile
from typing import List
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_core.output_parsers import StrOutputParser
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.llms import HuggingFaceHub
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
from langchain_core.documents import Document
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
# Memory database to store question-answer pairs
memory_database = {}
conversation_history = []
def load_and_split_document_basic(file):
"""Loads and splits the document into pages."""
loader = PyPDFLoader(file.name)
data = loader.load_and_split()
return data
def load_and_split_document_recursive(file: NamedTemporaryFile) -> List[Document]:
"""Loads and splits the document into chunks."""
loader = PyPDFLoader(file.name)
pages = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len,
)
chunks = text_splitter.split_documents(pages)
return chunks
def get_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
def create_or_update_database(data, embeddings):
if os.path.exists("faiss_database"):
db = FAISS.load_local("faiss_database", embeddings, allow_dangerous_deserialization=True)
db.add_documents(data)
else:
db = FAISS.from_documents(data, embeddings)
db.save_local("faiss_database")
def clear_cache():
if os.path.exists("faiss_database"):
os.remove("faiss_database")
return "Cache cleared successfully."
else:
return "No cache to clear."
def get_similarity(text1, text2):
vectorizer = TfidfVectorizer().fit_transform([text1, text2])
return cosine_similarity(vectorizer[0:1], vectorizer[1:2])[0][0]
prompt = """
Answer the question based on the following information:
Conversation History:
{history}
Context from documents:
{context}
Current Question: {question}
If the question is referring to the conversation history, use that information to answer.
If the question is not related to the conversation history, use the context from documents to answer.
If you don't have enough information to answer, say so.
Provide a concise and direct answer to the question:
"""
def get_model(temperature, top_p, repetition_penalty):
return HuggingFaceHub(
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
model_kwargs={
"temperature": temperature,
"top_p": top_p,
"repetition_penalty": repetition_penalty,
"max_length": 1000
},
huggingfacehub_api_token=huggingface_token
)
def generate_chunked_response(model, prompt, max_tokens=1000, max_chunks=5):
full_response = ""
for i in range(max_chunks):
chunk = model(prompt + full_response, max_new_tokens=max_tokens)
chunk = chunk.strip()
if chunk.endswith((".", "!", "?")):
full_response += chunk
break
full_response += chunk
return full_response.strip()
def manage_conversation_history(question, answer, history, max_history=5):
history.append({"question": question, "answer": answer})
if len(history) > max_history:
history.pop(0)
return history
def is_related_to_history(question, history, threshold=0.3):
if not history:
return False
history_text = " ".join([f"{h['question']} {h['answer']}" for h in history])
similarity = get_similarity(question, history_text)
return similarity > threshold
def ask_question(question, temperature, top_p, repetition_penalty):
global conversation_history
if not question:
return "Please enter a question."
if question in memory_database:
answer = memory_database[question]
else:
embed = get_embeddings()
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
model = get_model(temperature, top_p, repetition_penalty)
history_str = "\n".join([f"Q: {item['question']}\nA: {item['answer']}" for item in conversation_history])
if is_related_to_history(question, conversation_history):
context_str = "No additional context needed. Please refer to the conversation history."
else:
retriever = database.as_retriever()
relevant_docs = retriever.get_relevant_documents(question)
context_str = "\n".join([doc.page_content for doc in relevant_docs])
prompt_val = ChatPromptTemplate.from_template(prompt)
formatted_prompt = prompt_val.format(history=history_str, context=context_str, question=question)
answer = generate_chunked_response(model, formatted_prompt)
answer = re.split(r'Question:|Current Question:', answer)[-1].strip()
memory_database[question] = answer
conversation_history = manage_conversation_history(question, answer, conversation_history)
return answer
def update_vectors(files, use_recursive_splitter):
if not files:
return "Please upload at least one PDF file."
embed = get_embeddings()
total_chunks = 0
for file in files:
if use_recursive_splitter:
data = load_and_split_document_recursive(file)
else:
data = load_and_split_document_basic(file)
create_or_update_database(data, embed)
total_chunks += len(data)
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files."
def extract_db_to_excel():
embed = get_embeddings()
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
documents = database.docstore._dict.values()
data = [{"page_content": doc.page_content, "metadata": json.dumps(doc.metadata)} for doc in documents]
df = pd.DataFrame(data)
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
excel_path = tmp.name
df.to_excel(excel_path, index=False)
return excel_path
def export_memory_db_to_excel():
data = [{"question": question, "answer": answer} for question, answer in memory_database.items()]
df_memory = pd.DataFrame(data)
data_history = [{"question": item["question"], "answer": item["answer"]} for item in conversation_history]
df_history = pd.DataFrame(data_history)
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
excel_path = tmp.name
with pd.ExcelWriter(excel_path, engine='openpyxl') as writer:
df_memory.to_excel(writer, sheet_name='Memory Database', index=False)
df_history.to_excel(writer, sheet_name='Conversation History', index=False)
return excel_path
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Chat with your PDF documents")
with gr.Row():
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
update_button = gr.Button("Update Vector Store")
use_recursive_splitter = gr.Checkbox(label="Use Recursive Text Splitter", value=False)
update_output = gr.Textbox(label="Update Status")
update_button.click(update_vectors, inputs=[file_input, use_recursive_splitter], outputs=update_output)
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(label="Conversation")
question_input = gr.Textbox(label="Ask a question about your documents")
submit_button = gr.Button("Submit")
with gr.Column(scale=1):
temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1)
repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1)
def chat(question, history):
answer = ask_question(question, temperature_slider.value, top_p_slider.value, repetition_penalty_slider.value)
history.append((question, answer))
return "", history
submit_button.click(chat, inputs=[question_input, chatbot], outputs=[question_input, chatbot])
extract_button = gr.Button("Extract Database to Excel")
excel_output = gr.File(label="Download Excel File")
extract_button.click(extract_db_to_excel, inputs=[], outputs=excel_output)
export_memory_button = gr.Button("Export Memory Database to Excel")
memory_excel_output = gr.File(label="Download Memory Excel File")
export_memory_button.click(export_memory_db_to_excel, inputs=[], outputs=memory_excel_output)
clear_button = gr.Button("Clear Cache")
clear_output = gr.Textbox(label="Cache Status")
clear_button.click(clear_cache, inputs=[], outputs=clear_output)
if __name__ == "__main__":
demo.launch()