|
import os |
|
import json |
|
import re |
|
import gradio as gr |
|
import pandas as pd |
|
from tempfile import NamedTemporaryFile |
|
from typing import List |
|
from langchain_core.prompts import ChatPromptTemplate |
|
from langchain_community.vectorstores import FAISS |
|
from langchain_community.document_loaders import PyPDFLoader |
|
from langchain_core.output_parsers import StrOutputParser |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain_text_splitters import RecursiveCharacterTextSplitter |
|
from langchain_community.llms import HuggingFaceHub |
|
from langchain_core.runnables import RunnableParallel, RunnablePassthrough |
|
from langchain_core.documents import Document |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN") |
|
|
|
|
|
memory_database = {} |
|
conversation_history = [] |
|
|
|
def load_and_split_document_basic(file): |
|
"""Loads and splits the document into pages.""" |
|
loader = PyPDFLoader(file.name) |
|
data = loader.load_and_split() |
|
return data |
|
|
|
def load_and_split_document_recursive(file: NamedTemporaryFile) -> List[Document]: |
|
"""Loads and splits the document into chunks.""" |
|
loader = PyPDFLoader(file.name) |
|
pages = loader.load() |
|
|
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size=1000, |
|
chunk_overlap=200, |
|
length_function=len, |
|
) |
|
|
|
chunks = text_splitter.split_documents(pages) |
|
return chunks |
|
|
|
def get_embeddings(): |
|
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") |
|
|
|
def create_or_update_database(data, embeddings): |
|
if os.path.exists("faiss_database"): |
|
db = FAISS.load_local("faiss_database", embeddings, allow_dangerous_deserialization=True) |
|
db.add_documents(data) |
|
else: |
|
db = FAISS.from_documents(data, embeddings) |
|
db.save_local("faiss_database") |
|
|
|
def clear_cache(): |
|
if os.path.exists("faiss_database"): |
|
os.remove("faiss_database") |
|
return "Cache cleared successfully." |
|
else: |
|
return "No cache to clear." |
|
|
|
def get_similarity(text1, text2): |
|
vectorizer = TfidfVectorizer().fit_transform([text1, text2]) |
|
return cosine_similarity(vectorizer[0:1], vectorizer[1:2])[0][0] |
|
|
|
prompt = """ |
|
Answer the question based on the following information: |
|
|
|
Conversation History: |
|
{history} |
|
|
|
Context from documents: |
|
{context} |
|
|
|
Current Question: {question} |
|
|
|
If the question is referring to the conversation history, use that information to answer. |
|
If the question is not related to the conversation history, use the context from documents to answer. |
|
If you don't have enough information to answer, say so. |
|
|
|
Provide a concise and direct answer to the question: |
|
""" |
|
|
|
def get_model(temperature, top_p, repetition_penalty): |
|
return HuggingFaceHub( |
|
repo_id="mistralai/Mistral-7B-Instruct-v0.3", |
|
model_kwargs={ |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"repetition_penalty": repetition_penalty, |
|
"max_length": 1000 |
|
}, |
|
huggingfacehub_api_token=huggingface_token |
|
) |
|
|
|
def generate_chunked_response(model, prompt, max_tokens=1000, max_chunks=5): |
|
full_response = "" |
|
for i in range(max_chunks): |
|
chunk = model(prompt + full_response, max_new_tokens=max_tokens) |
|
chunk = chunk.strip() |
|
if chunk.endswith((".", "!", "?")): |
|
full_response += chunk |
|
break |
|
full_response += chunk |
|
return full_response.strip() |
|
|
|
def manage_conversation_history(question, answer, history, max_history=5): |
|
history.append({"question": question, "answer": answer}) |
|
if len(history) > max_history: |
|
history.pop(0) |
|
return history |
|
|
|
def is_related_to_history(question, history, threshold=0.3): |
|
if not history: |
|
return False |
|
history_text = " ".join([f"{h['question']} {h['answer']}" for h in history]) |
|
similarity = get_similarity(question, history_text) |
|
return similarity > threshold |
|
|
|
def ask_question(question, temperature, top_p, repetition_penalty): |
|
global conversation_history |
|
|
|
if not question: |
|
return "Please enter a question." |
|
|
|
if question in memory_database: |
|
answer = memory_database[question] |
|
else: |
|
embed = get_embeddings() |
|
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) |
|
model = get_model(temperature, top_p, repetition_penalty) |
|
|
|
history_str = "\n".join([f"Q: {item['question']}\nA: {item['answer']}" for item in conversation_history]) |
|
|
|
if is_related_to_history(question, conversation_history): |
|
context_str = "No additional context needed. Please refer to the conversation history." |
|
else: |
|
retriever = database.as_retriever() |
|
relevant_docs = retriever.get_relevant_documents(question) |
|
context_str = "\n".join([doc.page_content for doc in relevant_docs]) |
|
|
|
prompt_val = ChatPromptTemplate.from_template(prompt) |
|
formatted_prompt = prompt_val.format(history=history_str, context=context_str, question=question) |
|
|
|
answer = generate_chunked_response(model, formatted_prompt) |
|
answer = re.split(r'Question:|Current Question:', answer)[-1].strip() |
|
|
|
memory_database[question] = answer |
|
|
|
conversation_history = manage_conversation_history(question, answer, conversation_history) |
|
|
|
return answer |
|
|
|
def update_vectors(files, use_recursive_splitter): |
|
if not files: |
|
return "Please upload at least one PDF file." |
|
|
|
embed = get_embeddings() |
|
total_chunks = 0 |
|
|
|
for file in files: |
|
if use_recursive_splitter: |
|
data = load_and_split_document_recursive(file) |
|
else: |
|
data = load_and_split_document_basic(file) |
|
create_or_update_database(data, embed) |
|
total_chunks += len(data) |
|
|
|
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files." |
|
|
|
def extract_db_to_excel(): |
|
embed = get_embeddings() |
|
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) |
|
|
|
documents = database.docstore._dict.values() |
|
data = [{"page_content": doc.page_content, "metadata": json.dumps(doc.metadata)} for doc in documents] |
|
df = pd.DataFrame(data) |
|
|
|
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp: |
|
excel_path = tmp.name |
|
df.to_excel(excel_path, index=False) |
|
|
|
return excel_path |
|
|
|
def export_memory_db_to_excel(): |
|
data = [{"question": question, "answer": answer} for question, answer in memory_database.items()] |
|
df_memory = pd.DataFrame(data) |
|
|
|
data_history = [{"question": item["question"], "answer": item["answer"]} for item in conversation_history] |
|
df_history = pd.DataFrame(data_history) |
|
|
|
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp: |
|
excel_path = tmp.name |
|
with pd.ExcelWriter(excel_path, engine='openpyxl') as writer: |
|
df_memory.to_excel(writer, sheet_name='Memory Database', index=False) |
|
df_history.to_excel(writer, sheet_name='Conversation History', index=False) |
|
|
|
return excel_path |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Chat with your PDF documents") |
|
|
|
with gr.Row(): |
|
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"]) |
|
update_button = gr.Button("Update Vector Store") |
|
use_recursive_splitter = gr.Checkbox(label="Use Recursive Text Splitter", value=False) |
|
|
|
update_output = gr.Textbox(label="Update Status") |
|
update_button.click(update_vectors, inputs=[file_input, use_recursive_splitter], outputs=update_output) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
chatbot = gr.Chatbot(label="Conversation") |
|
question_input = gr.Textbox(label="Ask a question about your documents") |
|
submit_button = gr.Button("Submit") |
|
with gr.Column(scale=1): |
|
temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1) |
|
top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1) |
|
repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1) |
|
|
|
def chat(question, history): |
|
answer = ask_question(question, temperature_slider.value, top_p_slider.value, repetition_penalty_slider.value) |
|
history.append((question, answer)) |
|
return "", history |
|
|
|
submit_button.click(chat, inputs=[question_input, chatbot], outputs=[question_input, chatbot]) |
|
|
|
extract_button = gr.Button("Extract Database to Excel") |
|
excel_output = gr.File(label="Download Excel File") |
|
extract_button.click(extract_db_to_excel, inputs=[], outputs=excel_output) |
|
|
|
export_memory_button = gr.Button("Export Memory Database to Excel") |
|
memory_excel_output = gr.File(label="Download Memory Excel File") |
|
export_memory_button.click(export_memory_db_to_excel, inputs=[], outputs=memory_excel_output) |
|
|
|
clear_button = gr.Button("Clear Cache") |
|
clear_output = gr.Textbox(label="Cache Status") |
|
clear_button.click(clear_cache, inputs=[], outputs=clear_output) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |