Spaces:
Paused
Paused
Shreyas094
commited on
Commit
•
a65ba38
1
Parent(s):
463f840
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,8 @@ import os
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
from huggingface_hub import login
|
|
|
|
|
5 |
|
6 |
# Directly assign your Hugging Face token here
|
7 |
hf_token = "your_hugging_face_api_token"
|
@@ -19,24 +21,49 @@ try:
|
|
19 |
except ImportError:
|
20 |
raise ImportError("The sentencepiece library is required for this tokenizer. Please install it with `pip install sentencepiece`.")
|
21 |
|
|
|
|
|
|
|
|
|
22 |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
|
23 |
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=hf_token)
|
24 |
|
|
|
|
|
|
|
25 |
# Check if a GPU is available and if not, fall back to CPU
|
26 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
-
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# Example text input
|
30 |
text_input = "How did Tesla perform in Q1 2024?"
|
31 |
|
|
|
|
|
|
|
32 |
# Tokenize the input text
|
33 |
inputs = tokenizer(text_input, return_tensors="pt").to(device)
|
34 |
|
35 |
-
#
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
# Decode the generated tokens to a readable string
|
39 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
40 |
|
41 |
# Print the response
|
42 |
-
print(response)
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
from huggingface_hub import login
|
5 |
+
import time
|
6 |
+
import torch.quantization
|
7 |
|
8 |
# Directly assign your Hugging Face token here
|
9 |
hf_token = "your_hugging_face_api_token"
|
|
|
21 |
except ImportError:
|
22 |
raise ImportError("The sentencepiece library is required for this tokenizer. Please install it with `pip install sentencepiece`.")
|
23 |
|
24 |
+
# Start time to measure execution time
|
25 |
+
start_time = time.time()
|
26 |
+
|
27 |
+
# Load tokenizer and model
|
28 |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
|
29 |
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=hf_token)
|
30 |
|
31 |
+
# Quantize the model
|
32 |
+
quantized_model = torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8)
|
33 |
+
|
34 |
# Check if a GPU is available and if not, fall back to CPU
|
35 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
36 |
+
quantized_model.to(device)
|
37 |
+
|
38 |
+
# Measure time for loading tokenizer, model, and quantization
|
39 |
+
loading_time = time.time() - start_time
|
40 |
+
print(f"Time taken to load tokenizer, model, and quantize: {loading_time:.2f} seconds")
|
41 |
|
42 |
# Example text input
|
43 |
text_input = "How did Tesla perform in Q1 2024?"
|
44 |
|
45 |
+
# Start time for inference
|
46 |
+
inference_start_time = time.time()
|
47 |
+
|
48 |
# Tokenize the input text
|
49 |
inputs = tokenizer(text_input, return_tensors="pt").to(device)
|
50 |
|
51 |
+
# Measure time for tokenization
|
52 |
+
tokenization_time = time.time() - inference_start_time
|
53 |
+
|
54 |
+
# Generate a response
|
55 |
+
outputs = quantized_model.generate(**inputs, max_length=150, do_sample=False)
|
56 |
+
|
57 |
+
# Measure time for inference
|
58 |
+
inference_time = time.time() - inference_start_time
|
59 |
+
print(f"Time taken for inference with quantized model: {inference_time:.2f} seconds")
|
60 |
|
61 |
# Decode the generated tokens to a readable string
|
62 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
63 |
|
64 |
# Print the response
|
65 |
+
print(f"Generated response: {response}")
|
66 |
+
|
67 |
+
# Total execution time
|
68 |
+
total_time = time.time() - start_time
|
69 |
+
print(f"Total execution time with quantized model: {total_time:.2f} seconds")
|