Shreyas094 commited on
Commit
8ec7ba0
·
verified ·
1 Parent(s): 1b48f51

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +75 -9
app.py CHANGED
@@ -243,19 +243,26 @@ def retry_last_response(history, use_web_search, model, temperature, num_calls):
243
 
244
  return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls)
245
 
246
- def respond(message, history, model, temperature, num_calls, use_web_search, selected_docs):
247
  logging.info(f"User Query: {message}")
248
  logging.info(f"Model Used: {model}")
249
  logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
250
-
251
  logging.info(f"Selected Documents: {selected_docs}")
 
252
 
253
  try:
 
 
 
 
 
 
 
254
  if use_web_search:
255
  for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
256
  response = f"{main_content}\n\n{sources}"
257
  first_line = response.split('\n')[0] if response else ''
258
- # logging.info(f"Generated Response (first line): {first_line}")
259
  yield response
260
  else:
261
  embed = get_embeddings()
@@ -289,17 +296,25 @@ def respond(message, history, model, temperature, num_calls, use_web_search, sel
289
  first_line = partial_response.split('\n')[0] if partial_response else ''
290
  logging.info(f"Generated Response (first line): {first_line}")
291
  yield partial_response
 
292
  except Exception as e:
293
  logging.error(f"Error with {model}: {str(e)}")
294
  if "microsoft/Phi-3-mini-4k-instruct" in model:
295
  logging.info("Falling back to Mistral model due to Phi-3 error")
296
  fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
297
- yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search, selected_docs)
298
  else:
299
  yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
300
 
301
  logging.basicConfig(level=logging.DEBUG)
302
 
 
 
 
 
 
 
 
303
  def get_response_from_cloudflare(prompt, context, query, num_calls=3, temperature=0.2, search_type="pdf"):
304
  headers = {
305
  "Authorization": f"Bearer {API_TOKEN}",
@@ -467,6 +482,43 @@ css = """
467
  }
468
  """
469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
470
  uploaded_documents = []
471
 
472
  def display_documents():
@@ -483,6 +535,13 @@ use_web_search = gr.Checkbox(label="Use Web Search", value=True)
483
 
484
  custom_placeholder = "Ask a question (Note: You can toggle between Web Search and PDF Chat in Additional Inputs below)"
485
 
 
 
 
 
 
 
 
486
  demo = gr.ChatInterface(
487
  respond,
488
  additional_inputs=[
@@ -490,7 +549,8 @@ demo = gr.ChatInterface(
490
  gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
491
  gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
492
  use_web_search,
493
- document_selector
 
494
  ],
495
  title="AI-powered Web Search and PDF Chat Assistant",
496
  description="Chat with your PDFs or use web search to answer questions. Toggle between Web Search and PDF Chat in Additional Inputs below.",
@@ -522,11 +582,17 @@ demo = gr.ChatInterface(
522
  analytics_enabled=False,
523
  textbox=gr.Textbox(placeholder=custom_placeholder, container=False, scale=7),
524
  chatbot = gr.Chatbot(
525
- show_copy_button=True,
526
- likeable=True,
527
- layout="bubble",
528
- height=400,
 
529
  )
 
 
 
 
 
530
  )
531
 
532
  # Add file upload functionality
 
243
 
244
  return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls)
245
 
246
+ def respond(message, history, model, temperature, num_calls, use_web_search, selected_docs, instruction_key=None):
247
  logging.info(f"User Query: {message}")
248
  logging.info(f"Model Used: {model}")
249
  logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
 
250
  logging.info(f"Selected Documents: {selected_docs}")
251
+ logging.info(f"Instruction Key: {instruction_key}")
252
 
253
  try:
254
+ if instruction_key:
255
+ # This is a summary generation request
256
+ instruction = INSTRUCTION_PROMPTS[instruction_key]
257
+ context_str = get_context_for_summary(selected_docs)
258
+ message = f"{instruction}\n\nUsing the following context from the PDF documents:\n{context_str}\nGenerate a detailed summary."
259
+ use_web_search = False # Ensure we use PDF search for summaries
260
+
261
  if use_web_search:
262
  for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
263
  response = f"{main_content}\n\n{sources}"
264
  first_line = response.split('\n')[0] if response else ''
265
+ logging.info(f"Generated Response (first line): {first_line}")
266
  yield response
267
  else:
268
  embed = get_embeddings()
 
296
  first_line = partial_response.split('\n')[0] if partial_response else ''
297
  logging.info(f"Generated Response (first line): {first_line}")
298
  yield partial_response
299
+
300
  except Exception as e:
301
  logging.error(f"Error with {model}: {str(e)}")
302
  if "microsoft/Phi-3-mini-4k-instruct" in model:
303
  logging.info("Falling back to Mistral model due to Phi-3 error")
304
  fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
305
+ yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search, selected_docs, instruction_key)
306
  else:
307
  yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
308
 
309
  logging.basicConfig(level=logging.DEBUG)
310
 
311
+ INSTRUCTION_PROMPTS = {
312
+ "Asset Managers": "Summarize the key financial metrics, assets under management, and performance highlights for this asset management company.",
313
+ "Consumer Finance Companies": "Provide a summary of the company's loan portfolio, interest income, credit quality, and key operational metrics.",
314
+ "Mortgage REITs": "Summarize the REIT's mortgage-backed securities portfolio, net interest income, book value per share, and dividend yield.",
315
+ # Add more instruction prompts as needed
316
+ }
317
+
318
  def get_response_from_cloudflare(prompt, context, query, num_calls=3, temperature=0.2, search_type="pdf"):
319
  headers = {
320
  "Authorization": f"Bearer {API_TOKEN}",
 
482
  }
483
  """
484
 
485
+ def get_context_for_summary(selected_docs):
486
+ embed = get_embeddings()
487
+ if os.path.exists("faiss_database"):
488
+ database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
489
+ retriever = database.as_retriever(search_kwargs={"k": 5}) # Retrieve top 5 most relevant chunks
490
+
491
+ # Create a generic query that covers common financial summary topics
492
+ generic_query = "financial performance revenue profit assets liabilities cash flow key metrics highlights"
493
+
494
+ relevant_docs = retriever.get_relevant_documents(generic_query)
495
+ filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
496
+
497
+ if not filtered_docs:
498
+ return "No relevant information found in the selected documents for summary generation."
499
+
500
+ context_str = "\n".join([doc.page_content for doc in filtered_docs])
501
+ return context_str
502
+ else:
503
+ return "No documents available for summary generation."
504
+
505
+ def get_context_for_query(query, selected_docs):
506
+ embed = get_embeddings()
507
+ if os.path.exists("faiss_database"):
508
+ database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
509
+ retriever = database.as_retriever(search_kwargs={"k": 3}) # Retrieve top 3 most relevant chunks
510
+
511
+ relevant_docs = retriever.get_relevant_documents(query)
512
+ filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
513
+
514
+ if not filtered_docs:
515
+ return "No relevant information found in the selected documents for the given query."
516
+
517
+ context_str = "\n".join([doc.page_content for doc in filtered_docs])
518
+ return context_str
519
+ else:
520
+ return "No documents available to answer the query."
521
+
522
  uploaded_documents = []
523
 
524
  def display_documents():
 
535
 
536
  custom_placeholder = "Ask a question (Note: You can toggle between Web Search and PDF Chat in Additional Inputs below)"
537
 
538
+ instruction_dropdown = gr.Dropdown(choices=list(INSTRUCTION_PROMPTS.keys()), label="Select Entity Type", value=list(INSTRUCTION_PROMPTS.keys())[0])
539
+ summary_button = gr.Button("Generate Summary")
540
+
541
+ def generate_summary(instruction_key, history, model, temperature, num_calls, use_web_search, selected_docs):
542
+ summary_response = next(respond("", history, model, temperature, num_calls, use_web_search, selected_docs, instruction_key))
543
+ return history + [("Generate summary for " + instruction_key, summary_response)]
544
+
545
  demo = gr.ChatInterface(
546
  respond,
547
  additional_inputs=[
 
549
  gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
550
  gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
551
  use_web_search,
552
+ document_selector,
553
+ instruction_dropdown,
554
  ],
555
  title="AI-powered Web Search and PDF Chat Assistant",
556
  description="Chat with your PDFs or use web search to answer questions. Toggle between Web Search and PDF Chat in Additional Inputs below.",
 
582
  analytics_enabled=False,
583
  textbox=gr.Textbox(placeholder=custom_placeholder, container=False, scale=7),
584
  chatbot = gr.Chatbot(
585
+ show_copy_button=True,
586
+ likeable=True,
587
+ layout="bubble",
588
+ height=400,
589
+ )
590
  )
591
+
592
+ summary_button.click(
593
+ generate_summary,
594
+ inputs=[instruction_dropdown, demo.chatbot, demo.additional_inputs[0], demo.additional_inputs[1], demo.additional_inputs[2], demo.additional_inputs[3], demo.additional_inputs[4]],
595
+ outputs=[demo.chatbot]
596
  )
597
 
598
  # Add file upload functionality