Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import seaborn as sns
|
6 |
+
from sklearn.linear_model import LogisticRegression
|
7 |
+
import pickle
|
8 |
+
import os
|
9 |
+
|
10 |
+
# Set the visual style
|
11 |
+
plt.style.use('ggplot')
|
12 |
+
sns.set_context("talk")
|
13 |
+
plt.rcParams['figure.figsize'] = (12, 8)
|
14 |
+
|
15 |
+
# Function to generate synthetic meeting data
|
16 |
+
def generate_meeting_data(n_meetings=500):
|
17 |
+
"""Generate synthetic meeting data with various parameters."""
|
18 |
+
|
19 |
+
np.random.seed(42) # For reproducibility
|
20 |
+
|
21 |
+
# Generate random meeting features
|
22 |
+
data = {
|
23 |
+
'meeting_id': range(1, n_meetings + 1),
|
24 |
+
'duration_minutes': np.random.choice(
|
25 |
+
[15, 30, 45, 60, 90, 120],
|
26 |
+
size=n_meetings,
|
27 |
+
p=[0.1, 0.25, 0.2, 0.3, 0.1, 0.05]
|
28 |
+
),
|
29 |
+
'n_participants': np.random.randint(2, 15, size=n_meetings),
|
30 |
+
'presenter_talk_percent': np.random.uniform(30, 95, size=n_meetings),
|
31 |
+
'questions_asked': np.random.randint(0, 12, size=n_meetings),
|
32 |
+
'actionable_items': np.random.randint(0, 8, size=n_meetings),
|
33 |
+
'silence_percent': np.random.uniform(0, 40, size=n_meetings),
|
34 |
+
'topic_changes': np.random.randint(1, 10, size=n_meetings),
|
35 |
+
'slides_count': np.random.randint(0, 40, size=n_meetings)
|
36 |
+
}
|
37 |
+
|
38 |
+
# Add meeting types
|
39 |
+
meeting_topics = [
|
40 |
+
"Weekly Status Update", "Quarterly Planning", "Project Kickoff",
|
41 |
+
"Brainstorming Session", "Customer Feedback Review", "Budget Review",
|
42 |
+
"Team Building", "Product Demo", "Strategic Alignment", "Post-Mortem",
|
43 |
+
"OKR Review", "All-Hands", "Happy Hour Planning"
|
44 |
+
]
|
45 |
+
|
46 |
+
data['meeting_type'] = np.random.choice(meeting_topics, size=n_meetings)
|
47 |
+
|
48 |
+
# Convert to dataframe
|
49 |
+
df = pd.DataFrame(data)
|
50 |
+
|
51 |
+
# Calculate the "email score" based on various factors
|
52 |
+
df['email_score'] = (
|
53 |
+
# Longer meetings get lower scores (less email-able)
|
54 |
+
-0.2 * df['duration_minutes'] +
|
55 |
+
# More participants = less email-able
|
56 |
+
-0.5 * df['n_participants'] +
|
57 |
+
# If one person does all the talking, could be an email
|
58 |
+
0.3 * df['presenter_talk_percent'] +
|
59 |
+
# Few questions = could be an email
|
60 |
+
-3 * df['questions_asked'] +
|
61 |
+
# Few action items = could be an email
|
62 |
+
-5 * df['actionable_items'] +
|
63 |
+
# Lots of silence = waste of time
|
64 |
+
0.5 * df['silence_percent'] +
|
65 |
+
# Lots of topic changes = less email-able
|
66 |
+
-2 * df['topic_changes'] +
|
67 |
+
# Many slides = information dump, could be emailed
|
68 |
+
0.2 * df['slides_count'] +
|
69 |
+
# Random noise
|
70 |
+
np.random.normal(0, 15, size=n_meetings)
|
71 |
+
)
|
72 |
+
|
73 |
+
# Normalize to 0-100 scale
|
74 |
+
df['email_score'] = (df['email_score'] - df['email_score'].min()) / (df['email_score'].max() - df['email_score'].min()) * 100
|
75 |
+
df['email_score'] = df['email_score'].round(1)
|
76 |
+
|
77 |
+
# Add binary classification (could have been an email or not)
|
78 |
+
df['could_be_email'] = (df['email_score'] > 65).astype(int)
|
79 |
+
|
80 |
+
return df
|
81 |
+
|
82 |
+
# Function to train the model
|
83 |
+
def train_model(df):
|
84 |
+
# Select features
|
85 |
+
features = [
|
86 |
+
'duration_minutes', 'n_participants', 'presenter_talk_percent',
|
87 |
+
'questions_asked', 'actionable_items', 'silence_percent',
|
88 |
+
'topic_changes', 'slides_count'
|
89 |
+
]
|
90 |
+
|
91 |
+
X = df[features]
|
92 |
+
y = df['could_be_email']
|
93 |
+
|
94 |
+
# Train model
|
95 |
+
model = LogisticRegression(random_state=42)
|
96 |
+
model.fit(X, y)
|
97 |
+
|
98 |
+
return model, features
|
99 |
+
|
100 |
+
# Function to predict whether a meeting could be an email
|
101 |
+
def predict_meeting(
|
102 |
+
duration, participants, presenter_talk, questions,
|
103 |
+
action_items, silence, topic_changes, slides
|
104 |
+
):
|
105 |
+
# Create a dataframe with the input values
|
106 |
+
input_data = pd.DataFrame({
|
107 |
+
'duration_minutes': [duration],
|
108 |
+
'n_participants': [participants],
|
109 |
+
'presenter_talk_percent': [presenter_talk],
|
110 |
+
'questions_asked': [questions],
|
111 |
+
'actionable_items': [action_items],
|
112 |
+
'silence_percent': [silence],
|
113 |
+
'topic_changes': [topic_changes],
|
114 |
+
'slides_count': [slides]
|
115 |
+
})
|
116 |
+
|
117 |
+
# Make prediction
|
118 |
+
probability = model.predict_proba(input_data)[0][1] * 100
|
119 |
+
is_email = model.predict(input_data)[0]
|
120 |
+
|
121 |
+
# Calculate wasted time
|
122 |
+
wasted_minutes = duration * participants if is_email else duration * participants * 0.2
|
123 |
+
wasted_workdays = wasted_minutes / (8 * 60) # assuming 8-hour workday
|
124 |
+
|
125 |
+
# Generate visualization
|
126 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 8))
|
127 |
+
|
128 |
+
# Email-ability gauge chart
|
129 |
+
import matplotlib.patches as mpatches
|
130 |
+
|
131 |
+
# Create a semicircular gauge
|
132 |
+
theta = np.linspace(0, np.pi, 100)
|
133 |
+
r = 1.0
|
134 |
+
|
135 |
+
# Convert email probability to color (red for high, green for low)
|
136 |
+
from matplotlib.colors import LinearSegmentedColormap
|
137 |
+
colors = [(0.0, 0.7, 0.0), (1.0, 1.0, 0.0), (1.0, 0.0, 0.0)] # green -> yellow -> red
|
138 |
+
cmap = LinearSegmentedColormap.from_list('email_cmap', colors, N=100)
|
139 |
+
gauge_color = cmap(probability / 100)
|
140 |
+
|
141 |
+
# Draw the gauge
|
142 |
+
ax1.plot(r * np.cos(theta), r * np.sin(theta), color='gray', linewidth=3)
|
143 |
+
|
144 |
+
# Calculate the position for the needle
|
145 |
+
needle_theta = np.pi * probability / 100
|
146 |
+
ax1.plot([0, r * np.cos(needle_theta)], [0, r * np.sin(needle_theta)], color='black', linewidth=4)
|
147 |
+
|
148 |
+
# Draw colored arc for the current probability
|
149 |
+
theta_prob = np.linspace(0, needle_theta, 100)
|
150 |
+
ax1.fill_between(r * np.cos(theta_prob), 0, r * np.sin(theta_prob), color=gauge_color, alpha=0.7)
|
151 |
+
|
152 |
+
# Add probability text
|
153 |
+
ax1.text(0, -0.2, f"{probability:.1f}% Email-able", ha='center', fontsize=24, fontweight='bold')
|
154 |
+
|
155 |
+
# Add labels
|
156 |
+
ax1.text(-1, 0.1, "Meeting", fontsize=16)
|
157 |
+
ax1.text(1, 0.1, "Email", fontsize=16)
|
158 |
+
|
159 |
+
# Decision text
|
160 |
+
if is_email:
|
161 |
+
decision_text = "VERDICT: This could have been an email!"
|
162 |
+
else:
|
163 |
+
decision_text = "VERDICT: This meeting seems necessary."
|
164 |
+
|
165 |
+
ax1.text(0, -0.4, decision_text, ha='center', fontsize=20,
|
166 |
+
fontweight='bold', color='red' if is_email else 'green')
|
167 |
+
|
168 |
+
# Set axis limits and remove ticks
|
169 |
+
ax1.set_xlim(-1.2, 1.2)
|
170 |
+
ax1.set_ylim(-0.5, 1.2)
|
171 |
+
ax1.axis('off')
|
172 |
+
ax1.set_title("Meeting Email-ability Meter", fontsize=18)
|
173 |
+
|
174 |
+
# Second chart: Wasted time visualization
|
175 |
+
labels = ['This Meeting', 'Annual Impact\n(if weekly)']
|
176 |
+
values = [wasted_minutes, wasted_minutes * 52] # Weekly for a year
|
177 |
+
|
178 |
+
ax2.bar(labels, values, color=['#ff9999', '#ff5555'])
|
179 |
+
|
180 |
+
# Add value labels on top of bars
|
181 |
+
for i, v in enumerate(values):
|
182 |
+
if i == 0:
|
183 |
+
ax2.text(i, v + 5, f"{v:.0f} person-minutes", ha='center', fontsize=14)
|
184 |
+
else:
|
185 |
+
hours = v / 60
|
186 |
+
days = hours / 8
|
187 |
+
ax2.text(i, v + 5, f"{hours:.0f} hours\n({days:.1f} workdays)", ha='center', fontsize=14)
|
188 |
+
|
189 |
+
ax2.set_title("Time Impact Analysis", fontsize=18)
|
190 |
+
ax2.set_ylabel("Wasted Time (person-minutes)", fontsize=14)
|
191 |
+
|
192 |
+
plt.tight_layout()
|
193 |
+
|
194 |
+
return fig, probability, is_email, wasted_minutes, wasted_workdays
|
195 |
+
|
196 |
+
# Create a personalized report
|
197 |
+
def generate_report(
|
198 |
+
meeting_type, duration, participants, presenter_talk, questions,
|
199 |
+
action_items, silence, topic_changes, slides, is_email, probability,
|
200 |
+
wasted_minutes, wasted_workdays
|
201 |
+
):
|
202 |
+
if is_email:
|
203 |
+
title = "📧 THIS MEETING COULD HAVE BEEN AN EMAIL 📧"
|
204 |
+
color = "red"
|
205 |
+
else:
|
206 |
+
title = "✅ This meeting appears to be necessary"
|
207 |
+
color = "green"
|
208 |
+
|
209 |
+
report = f"""
|
210 |
+
<div style="font-family: Arial, sans-serif; padding: 20px; max-width: 800px; margin: 0 auto;">
|
211 |
+
<h1 style="color: {color}; text-align: center;">{title}</h1>
|
212 |
+
|
213 |
+
<div style="background-color: #f5f5f5; border-radius: 10px; padding: 20px; margin-top: 20px;">
|
214 |
+
<h2>Meeting Analysis</h2>
|
215 |
+
<p><strong>Meeting Type:</strong> {meeting_type}</p>
|
216 |
+
<p><strong>Duration:</strong> {duration} minutes</p>
|
217 |
+
<p><strong>Participants:</strong> {participants} people</p>
|
218 |
+
<p><strong>Email-ability Score:</strong> <span style="font-size: 1.2em; font-weight: bold;">{probability:.1f}%</span></p>
|
219 |
+
</div>
|
220 |
+
|
221 |
+
<div style="background-color: #fff3f3; border-radius: 10px; padding: 20px; margin-top: 20px;">
|
222 |
+
<h2>Economic Impact</h2>
|
223 |
+
<p><strong>Time Wasted in This Meeting:</strong> {wasted_minutes:.0f} person-minutes</p>
|
224 |
+
<p><strong>Equivalent Workdays:</strong> {wasted_workdays:.2f} days</p>
|
225 |
+
<p><strong>Annual Impact (if held weekly):</strong> {wasted_workdays * 52:.1f} workdays</p>
|
226 |
+
<p><strong>Estimated Annual Cost:</strong> ${wasted_minutes * 52 * 0.5:.0f}</p>
|
227 |
+
</div>
|
228 |
+
"""
|
229 |
+
|
230 |
+
# Add recommendations based on the analysis
|
231 |
+
report += """
|
232 |
+
<div style="background-color: #f0f8ff; border-radius: 10px; padding: 20px; margin-top: 20px;">
|
233 |
+
<h2>Recommendations</h2>
|
234 |
+
"""
|
235 |
+
|
236 |
+
if is_email:
|
237 |
+
report += """
|
238 |
+
<ul>
|
239 |
+
<li>Convert this meeting to an async email or Slack thread</li>
|
240 |
+
<li>If a meeting is necessary, reduce the participant count by 50%</li>
|
241 |
+
<li>Consider recording a 5-minute video update instead</li>
|
242 |
+
<li>Create a shared document for status updates</li>
|
243 |
+
</ul>
|
244 |
+
"""
|
245 |
+
else:
|
246 |
+
report += """
|
247 |
+
<ul>
|
248 |
+
<li>This meeting seems justified, but consider reducing duration</li>
|
249 |
+
<li>Send an agenda in advance to increase focus</li>
|
250 |
+
<li>Use a timer to keep discussions on track</li>
|
251 |
+
<li>End with clear action items and owners</li>
|
252 |
+
</ul>
|
253 |
+
"""
|
254 |
+
|
255 |
+
report += """
|
256 |
+
</div>
|
257 |
+
|
258 |
+
<div style="text-align: center; font-style: italic; margin-top: 30px; color: #666;">
|
259 |
+
<p>Analysis generated by the Meeting-That-Could-Have-Been-An-Email Detector</p>
|
260 |
+
<p>Results are for entertainment purposes. Actual productivity may vary.</p>
|
261 |
+
</div>
|
262 |
+
</div>
|
263 |
+
"""
|
264 |
+
|
265 |
+
return report
|
266 |
+
|
267 |
+
# Generate dataset and train model when the app starts
|
268 |
+
print("Generating synthetic data and training model...")
|
269 |
+
df = generate_meeting_data()
|
270 |
+
model, features = train_model(df)
|
271 |
+
|
272 |
+
# Create Gradio interface
|
273 |
+
with gr.Blocks(title="Meeting Email Detector") as demo:
|
274 |
+
gr.Markdown(
|
275 |
+
"""
|
276 |
+
# 📧 The Meeting-That-Could-Have-Been-An-Email Detector
|
277 |
+
|
278 |
+
Have you ever sat through a meeting thinking "this could have been an email"?
|
279 |
+
Now you can scientifically prove it! Enter your meeting details below to analyze
|
280 |
+
whether your meeting is necessary or could be replaced with an email.
|
281 |
+
|
282 |
+
*Note: This is a humor project using synthetic data. Results are meant to be entertaining, not prescriptive.*
|
283 |
+
"""
|
284 |
+
)
|
285 |
+
|
286 |
+
with gr.Row():
|
287 |
+
with gr.Column():
|
288 |
+
meeting_type = gr.Dropdown(
|
289 |
+
choices=[
|
290 |
+
"Weekly Status Update", "Quarterly Planning", "Project Kickoff",
|
291 |
+
"Brainstorming Session", "Customer Feedback Review", "Budget Review",
|
292 |
+
"Team Building", "Product Demo", "Strategic Alignment", "Post-Mortem",
|
293 |
+
"OKR Review", "All-Hands", "Happy Hour Planning"
|
294 |
+
],
|
295 |
+
label="Meeting Type",
|
296 |
+
value="Weekly Status Update"
|
297 |
+
)
|
298 |
+
|
299 |
+
duration = gr.Slider(
|
300 |
+
minimum=15, maximum=120, value=60, step=15,
|
301 |
+
label="Duration (minutes)"
|
302 |
+
)
|
303 |
+
|
304 |
+
participants = gr.Slider(
|
305 |
+
minimum=2, maximum=20, value=6, step=1,
|
306 |
+
label="Number of Participants"
|
307 |
+
)
|
308 |
+
|
309 |
+
presenter_talk = gr.Slider(
|
310 |
+
minimum=10, maximum=100, value=70, step=5,
|
311 |
+
label="Presenter Talk Percentage (%)"
|
312 |
+
)
|
313 |
+
|
314 |
+
questions = gr.Slider(
|
315 |
+
minimum=0, maximum=15, value=4, step=1,
|
316 |
+
label="Expected Questions from Audience"
|
317 |
+
)
|
318 |
+
|
319 |
+
with gr.Column():
|
320 |
+
action_items = gr.Slider(
|
321 |
+
minimum=0, maximum=10, value=3, step=1,
|
322 |
+
label="Actionable Items Expected"
|
323 |
+
)
|
324 |
+
|
325 |
+
silence = gr.Slider(
|
326 |
+
minimum=0, maximum=50, value=15, step=5,
|
327 |
+
label="Expected Silence/Awkward Pauses (%)"
|
328 |
+
)
|
329 |
+
|
330 |
+
topic_changes = gr.Slider(
|
331 |
+
minimum=1, maximum=15, value=4, step=1,
|
332 |
+
label="Number of Distinct Topics"
|
333 |
+
)
|
334 |
+
|
335 |
+
slides = gr.Slider(
|
336 |
+
minimum=0, maximum=50, value=10, step=1,
|
337 |
+
label="Number of Slides/Visual Aids"
|
338 |
+
)
|
339 |
+
|
340 |
+
analyze_btn = gr.Button("Analyze This Meeting", variant="primary")
|
341 |
+
|
342 |
+
with gr.Row():
|
343 |
+
with gr.Column():
|
344 |
+
result_plot = gr.Plot(label="Analysis Results")
|
345 |
+
|
346 |
+
with gr.Column():
|
347 |
+
with gr.Row():
|
348 |
+
email_score = gr.Number(label="Email-ability Score (%)")
|
349 |
+
is_email = gr.Checkbox(label="Could Be An Email?")
|
350 |
+
|
351 |
+
with gr.Row():
|
352 |
+
wasted_time = gr.Number(label="Time Wasted (person-minutes)")
|
353 |
+
wasted_days = gr.Number(label="Equivalent Workdays")
|
354 |
+
|
355 |
+
report_html = gr.HTML(label="Detailed Report")
|
356 |
+
|
357 |
+
analyze_btn.click(
|
358 |
+
fn=lambda *args: predict_meeting(*args) + (args[0],), # Include meeting_type in output
|
359 |
+
inputs=[
|
360 |
+
duration, participants, presenter_talk, questions,
|
361 |
+
action_items, silence, topic_changes, slides
|
362 |
+
],
|
363 |
+
outputs=[result_plot, email_score, is_email, wasted_time, wasted_days]
|
364 |
+
).then(
|
365 |
+
fn=generate_report,
|
366 |
+
inputs=[
|
367 |
+
meeting_type, duration, participants, presenter_talk, questions,
|
368 |
+
action_items, silence, topic_changes, slides, is_email, email_score,
|
369 |
+
wasted_time, wasted_days
|
370 |
+
],
|
371 |
+
outputs=report_html
|
372 |
+
)
|
373 |
+
|
374 |
+
gr.Markdown(
|
375 |
+
"""
|
376 |
+
## How It Works
|
377 |
+
|
378 |
+
This tool uses a machine learning model trained on synthetic data representing thousands of meetings.
|
379 |
+
The model analyzes meeting characteristics to determine whether the meeting could be replaced with asynchronous communication.
|
380 |
+
|
381 |
+
Key factors that make a meeting "email-able":
|
382 |
+
- High presenter talk percentage (one-way information flow)
|
383 |
+
- Few questions from participants
|
384 |
+
- Few actionable outcomes
|
385 |
+
- Many participants relative to the decisions being made
|
386 |
+
|
387 |
+
## About This Project
|
388 |
+
|
389 |
+
This is a humor project that pokes fun at corporate meeting culture. While the analysis uses real data science techniques,
|
390 |
+
the underlying data is synthetic. The tool is meant to be entertaining while making us think about how we use our time at work.
|
391 |
+
|
392 |
+
Created as a data science portfolio project to demonstrate data visualization, interactive web apps, and a bit of workplace humor.
|
393 |
+
"""
|
394 |
+
)
|
395 |
+
|
396 |
+
# Launch the app
|
397 |
+
if __name__ == "__main__":
|
398 |
+
demo.launch()
|