import os import tensorflow as tf os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED' import matplotlib as mpl mpl.rcParams['figure.figsize'] = (12, 12) mpl.rcParams['axes.grid'] = False import numpy as np import PIL.Image import tensorflow_hub as hub def tensor_to_image(tensor): tensor = tensor * 255 tensor = np.array(tensor, dtype=np.uint8) if np.ndim(tensor) > 3: assert tensor.shape[0] == 1 tensor = tensor[0] return PIL.Image.fromarray(tensor) def load_img(path_to_img): max_dim = 512 img = tf.io.read_file(path_to_img) img = tf.image.decode_image(img, channels=3) img = tf.image.convert_image_dtype(img, tf.float32) shape = tf.cast(tf.shape(img)[:-1], tf.float32) long_dim = max(shape) scale = max_dim / long_dim new_shape = tf.cast(shape * scale, tf.int32) img = tf.image.resize(img, new_shape) img = img[tf.newaxis, :] return img def convert_img(pil_image): max_dim = 512 # Конвертируем PIL изображение в тензор img = tf.convert_to_tensor(np.array(pil_image)) # Убедимся, что изображение имеет 3 канала (RGB) if img.shape[-1] != 3: img = tf.stack([img, img, img], axis=-1) img = tf.image.convert_image_dtype(img, tf.float32) shape = tf.cast(tf.shape(img)[:-1], tf.float32) long_dim = max(shape) scale = max_dim / long_dim new_shape = tf.cast(shape * scale, tf.int32) img = tf.image.resize(img, new_shape) img = img[tf.newaxis, :] return img def convert_img_break(pil_image): max_dim = 512 # Преобразуем PIL изображение в тензор img = tf.keras.preprocessing.image.img_to_array(pil_image) img = tf.image.convert_image_dtype(img, tf.float32) shape = tf.cast(tf.shape(img)[:-1], tf.float32) long_dim = max(shape) scale = max_dim / long_dim new_shape = tf.cast(shape * scale, tf.int32) img = tf.image.resize(img, new_shape) img = img[tf.newaxis, :] return img class StyleStealer: def __init__(self, model): self.model = model def steal_break(self, content_img, style_img): return tensor_to_image(self.model(tf.constant(convert_img_break(content_img)), tf.constant(convert_img_break(style_img)))[0]) def steal(self, content_img, style_img): return tensor_to_image(self.model(tf.constant(convert_img(content_img)), tf.constant(convert_img(style_img)))[0]) if __name__ == "__main__": content_path = "images/input_4.jpg" style_path = "images/style_6.png" content_image = load_img(content_path) style_image = load_img(style_path) print("Loading model...") hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2') print("Model loaded") stylized_image = hub_model(tf.constant(content_image), tf.constant(style_image))[0] tensor_to_image(stylized_image).save("output.jpg")