Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,22 +3,13 @@ import torch
|
|
3 |
from transformers import BertTokenizer, BertModel
|
4 |
import pdfplumber
|
5 |
|
6 |
-
# Load the pre-trained BERT model and tokenizer
|
7 |
model_name = "bert-base-uncased"
|
8 |
tokenizer = BertTokenizer.from_pretrained(model_name)
|
9 |
model = BertModel.from_pretrained(model_name)
|
10 |
|
11 |
-
#
|
12 |
-
def
|
13 |
-
with pdfplumber.open(pdf_file) as pdf:
|
14 |
-
text = ""
|
15 |
-
for page in pdf.pages:
|
16 |
-
text += page.extract_text()
|
17 |
-
return text
|
18 |
-
|
19 |
-
# Define a function to classify the extracted text
|
20 |
-
def classify_text(text):
|
21 |
-
# Preprocess the input text
|
22 |
inputs = tokenizer.encode_plus(
|
23 |
text,
|
24 |
add_special_tokens=True,
|
@@ -26,29 +17,44 @@ def classify_text(text):
|
|
26 |
return_attention_mask=True,
|
27 |
return_tensors='pt'
|
28 |
)
|
29 |
-
|
30 |
-
# Use the pre-trained BERT model to extract features from the input text
|
31 |
outputs = model(**inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
|
36 |
-
|
|
|
|
|
|
|
37 |
|
38 |
-
#
|
39 |
-
st.
|
40 |
-
st.write("Upload a PDF file to classify its text using BERT")
|
41 |
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
st.write(extracted_text)
|
50 |
|
51 |
-
# Classify the extracted text
|
52 |
-
if st.button("Classify"):
|
53 |
-
features = classify_text(extracted_text)
|
54 |
-
st.json({"features": features}) # Display the features in JSON format
|
|
|
3 |
from transformers import BertTokenizer, BertModel
|
4 |
import pdfplumber
|
5 |
|
6 |
+
# Load the pre-trained BERT model and tokenizer once
|
7 |
model_name = "bert-base-uncased"
|
8 |
tokenizer = BertTokenizer.from_pretrained(model_name)
|
9 |
model = BertModel.from_pretrained(model_name)
|
10 |
|
11 |
+
# Function to get BERT embeddings
|
12 |
+
def get_embeddings(text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
inputs = tokenizer.encode_plus(
|
14 |
text,
|
15 |
add_special_tokens=True,
|
|
|
17 |
return_attention_mask=True,
|
18 |
return_tensors='pt'
|
19 |
)
|
|
|
|
|
20 |
outputs = model(**inputs)
|
21 |
+
return outputs.last_hidden_state[:, 0, :].detach().numpy()
|
22 |
+
|
23 |
+
# Extract text from PDF
|
24 |
+
def extract_text_from_pdf(pdf_file):
|
25 |
+
with pdfplumber.open(pdf_file) as pdf:
|
26 |
+
text = ""
|
27 |
+
for page in pdf.pages:
|
28 |
+
text += page.extract_text() + "\n" # Add newline for better separation
|
29 |
+
return text
|
30 |
+
|
31 |
+
# Store the PDF text and embeddings
|
32 |
+
pdf_text = ""
|
33 |
+
pdf_embeddings = None
|
34 |
+
|
35 |
+
# Streamlit app
|
36 |
+
st.title("PDF Chatbot using BERT")
|
37 |
|
38 |
+
# PDF file upload
|
39 |
+
pdf_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
40 |
|
41 |
+
if pdf_file:
|
42 |
+
pdf_text = extract_text_from_pdf(pdf_file)
|
43 |
+
pdf_embeddings = get_embeddings(pdf_text)
|
44 |
+
st.success("PDF loaded successfully!")
|
45 |
|
46 |
+
# User input for chatbot
|
47 |
+
user_input = st.text_input("Ask a question about the PDF:")
|
|
|
48 |
|
49 |
+
if st.button("Get Response"):
|
50 |
+
if pdf_text == "":
|
51 |
+
st.warning("Please upload a PDF file first.")
|
52 |
+
else:
|
53 |
+
# Get embeddings for user input
|
54 |
+
user_embeddings = get_embeddings(user_input)
|
55 |
|
56 |
+
# For demonstration, simply return the PDF text.
|
57 |
+
# Implement similarity matching logic here as needed.
|
58 |
+
st.write("### Response:")
|
59 |
+
st.write(pdf_text) # For simplicity, returning all text
|
|
|
60 |
|
|
|
|
|
|
|
|