File size: 4,071 Bytes
edb0494
6405936
 
 
 
 
 
edb0494
6405936
 
edb0494
a7d8817
 
6405936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49f2888
 
a7d8817
b230b71
a7d8817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80b786b
 
 
 
a7d8817
 
 
 
6405936
 
 
 
 
 
 
 
 
 
 
a7d8817
6405936
a7d8817
6405936
 
 
 
 
 
97567b1
 
 
 
 
 
 
6405936
 
 
 
97567b1
6405936
97567b1
 
6405936
 
b230b71
6405936
 
 
 
 
 
 
 
 
 
97567b1
 
 
 
 
 
6405936
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download

from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline

from PIL import Image, ImageDraw

MODELS = {
    "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
}

config_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="config_promax.json",
)

config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="diffusion_pytorch_model_promax.safetensors",
)
state_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
    controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)

vae = AutoencoderKL.from_pretrained(
    "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")

pipe = StableDiffusionXLFillPipeline.from_pretrained(
    "SG161222/RealVisXL_V5.0_Lightning",
    torch_dtype=torch.float16,
    vae=vae,
    controlnet=model,
    variant="fp16",
).to("cuda")

pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)

prompt = "high quality"
(
    prompt_embeds,
    negative_prompt_embeds,
    pooled_prompt_embeds,
    negative_pooled_prompt_embeds,
) = pipe.encode_prompt(prompt, "cuda", True)


@spaces.GPU
def fill_image(image, model_selection):

    margin = 256
    overlap = 24
    # Open the original image
    source = image  # Changed from image["background"] to match new input format
    
    # Calculate new output size
    output_size = (source.width + 2*margin, source.height + 2*margin)
    
    # Create a white background
    background = Image.new('RGB', output_size, (255, 255, 255))
    
    # Calculate position to paste the original image
    position = (margin, margin)
    
    # Paste the original image onto the white background
    background.paste(source, position)
    
    # Create the mask
    mask = Image.new('L', output_size, 255)  # Start with all white
    mask_draw = ImageDraw.Draw(mask)
    mask_draw.rectangle([
        (position[0] + overlap, position[1] + overlap),
        (position[0] + source.width - overlap, position[1] + source.height - overlap)
    ], fill=0)
    
    # Prepare the image for ControlNet
    cnet_image = background.copy()
    cnet_image.paste(0, (0, 0), mask)

    for image in pipe(
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        image=cnet_image,
    ):
        yield image, cnet_image

    image = image.convert("RGBA")
    cnet_image.paste(image, (0, 0), mask)

    yield background, cnet_image


def clear_result():
    return gr.update(value=None)


css = """
.gradio-container {
    width: 1024px !important;
}
"""


title = """<h1 align="center">Diffusers Image Fill</h1>
<div align="center">Draw the mask over the subject you want to erase or change.</div>
"""

with gr.Blocks(css=css) as demo:
    gr.HTML(title)

    run_button = gr.Button("Generate")

    with gr.Row():
        input_image = gr.Image(
            type="pil",
            label="Input Image",
            sources=["upload"],
        )

        result = ImageSlider(
            interactive=False,
            label="Generated Image",
        )

    model_selection = gr.Dropdown(
        choices=list(MODELS.keys()),
        value="RealVisXL V5.0 Lightning",
        label="Model",
    )

    run_button.click(
        fn=clear_result,
        inputs=None,
        outputs=result,
    ).then(
        fn=fill_image,
        inputs=[input_image, model_selection],
        outputs=result,
    )


demo.launch(share=False)