Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,20 +1,23 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from PIL import Image
|
| 3 |
import torch
|
|
|
|
| 4 |
from transformers import ViTImageProcessor,pipeline
|
| 5 |
|
| 6 |
model = ViTImageProcessor.from_pretrained('SeyedAli/Food-Image-Classification-VIT')
|
| 7 |
|
| 8 |
def FoodClassification(image):
|
|
|
|
| 9 |
# Encode your PIL Image as a JPEG without writing to disk
|
| 10 |
-
buffer = io.BytesIO(image)
|
| 11 |
-
YourImage.save(buffer, format='JPEG', quality=75)
|
| 12 |
|
| 13 |
-
# You probably want
|
| 14 |
-
desiredObject = buffer.getbuffer()
|
| 15 |
|
| 16 |
pipline = pipeline(task="image-classification", model=model)
|
| 17 |
-
output=pipline(model(Image.open(desiredObject), return_tensors='pt'))
|
|
|
|
| 18 |
return output
|
| 19 |
|
| 20 |
iface = gr.Interface(fn=FoodClassification, inputs="image", outputs="text")
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from PIL import Image
|
| 3 |
import torch
|
| 4 |
+
from torchvision.io import read_image
|
| 5 |
from transformers import ViTImageProcessor,pipeline
|
| 6 |
|
| 7 |
model = ViTImageProcessor.from_pretrained('SeyedAli/Food-Image-Classification-VIT')
|
| 8 |
|
| 9 |
def FoodClassification(image):
|
| 10 |
+
image = read_image(image)
|
| 11 |
# Encode your PIL Image as a JPEG without writing to disk
|
| 12 |
+
# buffer = io.BytesIO(image)
|
| 13 |
+
# YourImage.save(buffer, format='JPEG', quality=75)
|
| 14 |
|
| 15 |
+
# # You probably want
|
| 16 |
+
# desiredObject = buffer.getbuffer()
|
| 17 |
|
| 18 |
pipline = pipeline(task="image-classification", model=model)
|
| 19 |
+
#output=pipline(model(Image.open(desiredObject), return_tensors='pt'))
|
| 20 |
+
output=pipline(image, return_tensors='pt'))
|
| 21 |
return output
|
| 22 |
|
| 23 |
iface = gr.Interface(fn=FoodClassification, inputs="image", outputs="text")
|