import os import pickle import sys import subprocess import imageio import numpy as np import scipy.interpolate import torch from tqdm import tqdm import gradio as gr proc = subprocess.Popen(['git', "clone", 'https://github.com/NVlabs/stylegan3.git' ,"stylegan3"], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) sys.path.insert(0, 'stylegan3') def layout_grid(img, grid_w=None, grid_h=1, float_to_uint8=True, chw_to_hwc=True, to_numpy=True): batch_size, channels, img_h, img_w = img.shape if grid_w is None: grid_w = batch_size // grid_h assert batch_size == grid_w * grid_h if float_to_uint8: img = (img * 127.5 + 128).clamp(0, 255).to(torch.uint8) img = img.reshape(grid_h, grid_w, channels, img_h, img_w) img = img.permute(2, 0, 3, 1, 4) img = img.reshape(channels, grid_h * img_h, grid_w * img_w) if chw_to_hwc: img = img.permute(1, 2, 0) if to_numpy: img = img.cpu().numpy() return img network_pkl='braingan-400.pkl' with open(network_pkl, 'rb') as f: G = pickle.load(f)['G_ema'] def predict(Seed,choices): device = torch.device('cuda') G.eval() G.to(device) shuffle_seed=None w_frames=60*4 kind='cubic' num_keyframes=None wraps=2 psi=1 device=torch.device('cuda') if choices=='4x2': grid_w = 4 grid_h = 2 s1=Seed seeds=(np.arange(s1-16,s1)).tolist() if choices=='2x1': grid_w = 2 grid_h = 1 s1=Seed seeds=(np.arange(s1-4,s1)).tolist() mp4='ex.mp4' truncation_psi=1 num_keyframes=None if num_keyframes is None: if len(seeds) % (grid_w*grid_h) != 0: raise ValueError('Number of input seeds must be divisible by grid W*H') num_keyframes = len(seeds) // (grid_w*grid_h) all_seeds = np.zeros(num_keyframes*grid_h*grid_w, dtype=np.int64) for idx in range(num_keyframes*grid_h*grid_w): all_seeds[idx] = seeds[idx % len(seeds)] if shuffle_seed is not None: rng = np.random.RandomState(seed=shuffle_seed) rng.shuffle(all_seeds) zs = torch.from_numpy(np.stack([np.random.RandomState(seed).randn(G.z_dim) for seed in all_seeds])).to(device) ws = G.mapping(z=zs, c=None, truncation_psi=psi) _ = G.synthesis(ws[:1]) # warm up ws = ws.reshape(grid_h, grid_w, num_keyframes, *ws.shape[1:]) # Interpolation. grid = [] for yi in range(grid_h): row = [] for xi in range(grid_w): x = np.arange(-num_keyframes * wraps, num_keyframes * (wraps + 1)) y = np.tile(ws[yi][xi].cpu().numpy(), [wraps * 2 + 1, 1, 1]) interp = scipy.interpolate.interp1d(x, y, kind=kind, axis=0) row.append(interp) grid.append(row) # Render video. video_out = imageio.get_writer(mp4, mode='I', fps=60, codec='libx264') for frame_idx in tqdm(range(num_keyframes * w_frames)): imgs = [] for yi in range(grid_h): for xi in range(grid_w): interp = grid[yi][xi] w = torch.from_numpy(interp(frame_idx / w_frames)).to(device) img = G.synthesis(ws=w.unsqueeze(0), noise_mode='const')[0] imgs.append(img) video_out.append_data(layout_grid(torch.stack(imgs), grid_w=grid_w, grid_h=grid_h)) video_out.close() return 'ex.mp4' choices=['4x2','2x1'] interface=gr.Interface(fn=predict, title="Brain MR Image Generation with StyleGAN-2", description = "", article = "Author: S.Serdar Helli", inputs=[gr.inputs.Slider( minimum=16, maximum=2**10,label='Seed'),gr.inputs.Radio( choices=choices, default='4x2',label='Image Grid')], outputs=gr.outputs.Video(label='Video')) interface.launch(debug=True)