Update
Browse files- app.py +98 -52
- requirements.txt +4 -1
app.py
CHANGED
@@ -1,16 +1,18 @@
|
|
1 |
-
import
|
2 |
-
import
|
|
|
3 |
import matplotlib
|
|
|
4 |
import numpy as np
|
5 |
-
import
|
|
|
6 |
from PIL import Image
|
7 |
-
import
|
8 |
-
import torch
|
9 |
-
import tempfile
|
10 |
-
from gradio_imageslider import ImageSlider
|
11 |
from huggingface_hub import hf_hub_download
|
|
|
12 |
|
13 |
from depth_anything_v2.dpt import DepthAnythingV2
|
|
|
14 |
|
15 |
css = """
|
16 |
#img-display-container {
|
@@ -26,78 +28,122 @@ css = """
|
|
26 |
height: 62px;
|
27 |
}
|
28 |
"""
|
|
|
|
|
|
|
|
|
29 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
|
32 |
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
|
33 |
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
|
34 |
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
|
35 |
}
|
36 |
-
|
37 |
'vits': 'Small',
|
38 |
'vitb': 'Base',
|
39 |
'vitl': 'Large',
|
40 |
-
'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
|
41 |
}
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
@spaces.GPU
|
56 |
-
def
|
57 |
-
|
|
|
|
|
|
|
58 |
|
59 |
-
with gr.Blocks(css=css) as demo:
|
60 |
-
gr.Markdown(title)
|
61 |
-
gr.Markdown(description1)
|
62 |
-
gr.Markdown(description2)
|
63 |
-
gr.Markdown("### Depth Prediction demo")
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
|
72 |
-
cmap = matplotlib.colormaps.get_cmap('Spectral_r')
|
73 |
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
h, w = image.shape[:2]
|
78 |
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
raw_depth = Image.fromarray(depth.astype('uint16'))
|
82 |
-
tmp_raw_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
|
83 |
-
raw_depth.save(tmp_raw_depth.name)
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
88 |
|
89 |
-
gray_depth = Image.fromarray(depth)
|
90 |
-
tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
|
91 |
-
gray_depth.save(tmp_gray_depth.name)
|
92 |
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
submit
|
|
|
96 |
|
97 |
example_files = os.listdir('assets/examples')
|
98 |
example_files.sort()
|
99 |
example_files = [os.path.join('assets/examples', filename) for filename in example_files]
|
100 |
-
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_image_slider
|
101 |
|
102 |
|
103 |
if __name__ == '__main__':
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import spaces
|
4 |
import matplotlib
|
5 |
+
|
6 |
import numpy as np
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
from PIL import Image
|
10 |
+
from transformers import pipeline
|
|
|
|
|
|
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
+
from gradio_imageslider import ImageSlider
|
13 |
|
14 |
from depth_anything_v2.dpt import DepthAnythingV2
|
15 |
+
from loguru import logger
|
16 |
|
17 |
css = """
|
18 |
#img-display-container {
|
|
|
28 |
height: 62px;
|
29 |
}
|
30 |
"""
|
31 |
+
|
32 |
+
title = "# Depth Anything: Watch V1 and V2 side by side."
|
33 |
+
description1 = """Please refer to **Depth Anything V2** [paper](https://arxiv.org/abs/2406.09414) for more details."""
|
34 |
+
|
35 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
36 |
+
DEFAULT_V2_MODEL_NAME = "Base"
|
37 |
+
DEFAULT_V1_MODEL_NAME = "Base"
|
38 |
+
|
39 |
+
cmap = matplotlib.colormaps.get_cmap('Spectral_r')
|
40 |
+
|
41 |
+
# --------------------------------------------------------------------
|
42 |
+
# Depth anything V1 configuration
|
43 |
+
# --------------------------------------------------------------------
|
44 |
+
depth_anything_v1_name2checkpoint = {
|
45 |
+
"Small": "LiheYoung/depth-anything-small-hf",
|
46 |
+
"Base": "LiheYoung/depth-anything-base-hf",
|
47 |
+
"Large": "LiheYoung/depth-anything-large-hf",
|
48 |
+
}
|
49 |
+
|
50 |
+
depth_anything_v1_pipelines = {}
|
51 |
+
# --------------------------------------------------------------------
|
52 |
+
# Depth anything V2 configuration
|
53 |
+
# --------------------------------------------------------------------
|
54 |
+
|
55 |
+
depth_anything_v2_configs = {
|
56 |
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
|
57 |
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
|
58 |
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
|
59 |
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
|
60 |
}
|
61 |
+
depth_anything_v2_encoder2name = {
|
62 |
'vits': 'Small',
|
63 |
'vitb': 'Base',
|
64 |
'vitl': 'Large',
|
65 |
+
# 'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
|
66 |
}
|
67 |
+
depth_anything_v2_name2encoder = {v: k for k, v in depth_anything_v2_encoder2name.items()}
|
68 |
+
|
69 |
+
depth_anything_v2_models = {}
|
70 |
+
# --------------------------------------------------------------------
|
71 |
+
|
72 |
+
|
73 |
+
def get_v1_pipe(model_name):
|
74 |
+
return pipeline(task="depth-estimation", model=depth_anything_v1_name2checkpoint[model_name], device=DEVICE)
|
75 |
+
|
76 |
+
|
77 |
+
def get_v2_model(model_name):
|
78 |
+
encoder = depth_anything_v2_name2encoder[model_name]
|
79 |
+
model = DepthAnythingV2(**depth_anything_v2_configs[encoder])
|
80 |
+
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model")
|
81 |
+
state_dict = torch.load(filepath, map_location="cpu")
|
82 |
+
model.load_state_dict(state_dict)
|
83 |
+
model = model.to(DEVICE).eval()
|
84 |
+
return model
|
85 |
+
|
86 |
|
87 |
@spaces.GPU
|
88 |
+
def predict_depth_v1(image, model_name):
|
89 |
+
if model_name not in depth_anything_v1_pipelines:
|
90 |
+
depth_anything_v1_pipelines[model_name] = get_v1_pipe(model_name)
|
91 |
+
pipe = depth_anything_v1_pipelines[model_name]
|
92 |
+
return pipe(image)
|
93 |
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
+
@spaces.GPU
|
96 |
+
def predict_depth_v2(image, model_name):
|
97 |
+
if model_name not in depth_anything_v2_models:
|
98 |
+
depth_anything_v2_models[model_name] = get_v2_model(model_name)
|
99 |
+
model = depth_anything_v2_models[model_name]
|
100 |
+
return model.infer_image(image)
|
101 |
|
|
|
102 |
|
103 |
+
def compute_depth_map_v2(image, model_select: str):
|
104 |
+
depth = predict_depth_v2(image[:, :, ::-1], model_select)
|
105 |
+
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
|
106 |
+
depth = depth.astype(np.uint8)
|
107 |
+
colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8)
|
108 |
+
return colored_depth
|
109 |
|
|
|
110 |
|
111 |
+
def compute_depth_map_v1(image, model_select):
|
112 |
+
pil_image = Image.fromarray(image)
|
113 |
+
depth = predict_depth_v1(pil_image, model_select)
|
114 |
+
depth = np.array(depth["depth"]).astype(np.uint8)
|
115 |
+
colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8)
|
116 |
+
return colored_depth
|
117 |
|
|
|
|
|
|
|
118 |
|
119 |
+
def on_submit(image, model_v1_select, model_v2_select):
|
120 |
+
logger.info(f"Computing depth for V1 model: {model_v1_select} and V2 model: {model_v2_select}")
|
121 |
+
colored_depth_v1 = compute_depth_map_v1(image, model_v1_select)
|
122 |
+
colored_depth_v2 = compute_depth_map_v2(image, model_v2_select)
|
123 |
+
return colored_depth_v1, colored_depth_v2
|
124 |
|
|
|
|
|
|
|
125 |
|
126 |
+
with gr.Blocks(css=css) as demo:
|
127 |
+
gr.Markdown(title)
|
128 |
+
gr.Markdown(description1)
|
129 |
+
gr.Markdown("### Depth Prediction demo")
|
130 |
+
with gr.Row():
|
131 |
+
model_select_v1 = gr.Dropdown(label="Depth Anything V1 Model", choices=list(depth_anything_v1_name2checkpoint.keys()), value=DEFAULT_V1_MODEL_NAME)
|
132 |
+
model_select_v2 = gr.Dropdown(label="Depth Anything V2 Model", choices=list(depth_anything_v2_encoder2name.values()), value=DEFAULT_V2_MODEL_NAME)
|
133 |
+
with gr.Row():
|
134 |
+
gr.Markdown()
|
135 |
+
gr.Markdown("Depth Maps: V1 <-> V2")
|
136 |
+
with gr.Row():
|
137 |
+
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
|
138 |
+
depth_image_slider = ImageSlider(elem_id='img-display-output', position=0.5)
|
139 |
|
140 |
+
submit = gr.Button(value="Compute Depth")
|
141 |
+
submit.click(on_submit, inputs=[input_image, model_select_v1, model_select_v2], outputs=[depth_image_slider])
|
142 |
|
143 |
example_files = os.listdir('assets/examples')
|
144 |
example_files.sort()
|
145 |
example_files = [os.path.join('assets/examples', filename) for filename in example_files]
|
146 |
+
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_image_slider], fn=on_submit)
|
147 |
|
148 |
|
149 |
if __name__ == '__main__':
|
requirements.txt
CHANGED
@@ -4,4 +4,7 @@ torch
|
|
4 |
torchvision
|
5 |
opencv-python
|
6 |
matplotlib
|
7 |
-
huggingface_hub
|
|
|
|
|
|
|
|
4 |
torchvision
|
5 |
opencv-python
|
6 |
matplotlib
|
7 |
+
huggingface_hub
|
8 |
+
transformers
|
9 |
+
numpy==1.*
|
10 |
+
loguru
|