import clip_model from clip_model import clip_image_search from clip_model import get_image_embeddings from clip_model import make_train_valid_dfs import gradio as gr import os import pandas as pd import subprocess import zipfile image_path = "./Images" captions_path = "." data_source = 'flickr8k.zip' print("\n\n") print("Going to unzip dataset") with zipfile.ZipFile(data_source, 'r') as zip_ref: zip_ref.extractall('.') print("unzip of dataset is done") #============================================= cmd = "pwd" output1 = subprocess.check_output(cmd, shell=True).decode("utf-8") print("result of pwd command") print(output1) print("Going to prepare captions.csv") df = pd.read_csv("captions.txt") df['id'] = [id_ for id_ in range(df.shape[0] // 5) for _ in range(5)] df.to_csv("captions.csv", index=False) df = pd.read_csv("captions.csv") print("Finished in preparing captions.csv") print("\n\n") print("Going to invoke make_train_valid_dfs") _, valid_df = make_train_valid_dfs() print("Going to invoke make_train_valid_dfs") model, image_embeddings = get_image_embeddings(valid_df, "best.pt") def generate_images(text, num_images=6): # # Generate image embeddings # Generate images using a suitable image generation model (not included here) # generated_images = clip_image_search(text) generated_images = clip_image_search(model, image_embeddings, text, image_filenames=valid_df['image'].values, n=6) return generated_images # Gradio interface def create_demo(): with gr.Blocks() as demo: text_input = gr.Textbox(label="Enter text") submit_button = gr.Button("Generate Images") image_gallery = gr.Gallery(label="Generated Images", height="auto") def generate_and_update(text): if text: generated_images = generate_images(text) else: generated_images = [] # Handle empty input return generated_images submit_button.click(fn=generate_and_update, inputs=text_input, outputs=image_gallery) return demo if __name__ == "__main__": demo = create_demo() demo.launch()