Spaces:
Sleeping
Sleeping
fix
Browse files- README.md +38 -1
- app.py +99 -345
- monitor.py +259 -0
- quantize.py +197 -0
- requirements.txt +6 -5
README.md
CHANGED
@@ -10,4 +10,41 @@ pinned: false
|
|
10 |
short_description: Automatically quantizes Sculptor models
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
short_description: Automatically quantizes Sculptor models
|
11 |
---
|
12 |
|
13 |
+
# Ursa Minor Quantization Monitor
|
14 |
+
|
15 |
+
This Space automatically generates quantized versions of the [Sculptor-AI/Ursa_Minor](https://huggingface.co/Sculptor-AI/Ursa_Minor) model and uploads them to the [Sculptor-AI/Ursa_Minor_Quantized](https://huggingface.co/Sculptor-AI/Ursa_Minor_Quantized) repository.
|
16 |
+
|
17 |
+
## Features
|
18 |
+
|
19 |
+
- Monitors the source repository for updates
|
20 |
+
- Automatically generates quantized versions when the source model is updated
|
21 |
+
- Displays a progress bar during quantization
|
22 |
+
- Shows an "up to date" indicator when all quantizations are complete
|
23 |
+
- Handles out-of-memory errors gracefully
|
24 |
+
|
25 |
+
## Quantization Types
|
26 |
+
|
27 |
+
The following quantizations are generated in order from smallest to largest:
|
28 |
+
|
29 |
+
| Type | Size (GB) | Notes |
|
30 |
+
|------|-----------|-------|
|
31 |
+
| GGUF Q2_K | 0.8 | |
|
32 |
+
| GGUF Q3_K_S | 0.9 | |
|
33 |
+
| GGUF Q3_K_M | 0.9 | lower quality |
|
34 |
+
| GGUF Q3_K_L | 1.0 | |
|
35 |
+
| GGUF IQ4_XS | 1.0 | |
|
36 |
+
| GGUF Q4_K_S | 1.0 | fast, recommended |
|
37 |
+
| GGUF Q4_K_M | 1.1 | fast, recommended |
|
38 |
+
| GGUF Q5_K_S | 1.2 | |
|
39 |
+
| GGUF Q5_K_M | 1.2 | |
|
40 |
+
| GGUF Q6_K | 1.4 | very good quality |
|
41 |
+
| GGUF Q8_0 | 1.7 | fast, best quality |
|
42 |
+
| GGUF f16 | 3.2 | 16 bpw, overkill |
|
43 |
+
|
44 |
+
## Setup
|
45 |
+
|
46 |
+
To run this Space, you need to set an `HF_TOKEN` environment variable with write access to the destination repository.
|
47 |
+
|
48 |
+
## Note About Free Compute Tier
|
49 |
+
|
50 |
+
The Hugging Face free compute tier has limited memory. This Space is designed to handle out-of-memory errors gracefully, but larger quantizations may fail due to memory constraints. If you need to generate larger quantizations, consider upgrading to a paid compute tier.
|
app.py
CHANGED
@@ -1,360 +1,114 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
import gradio as gr
|
4 |
-
import
|
5 |
-
import
|
6 |
-
import shutil
|
7 |
-
from huggingface_hub import HfApi, login, Repository
|
8 |
import time
|
|
|
9 |
import threading
|
10 |
|
11 |
-
# Initialize
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
subprocess.run(["make", "convert"], check=True)
|
36 |
-
os.chdir("..")
|
37 |
-
print("llama.cpp installed successfully")
|
38 |
-
else:
|
39 |
-
print("llama.cpp already installed")
|
40 |
-
|
41 |
-
def clone_repo_shallow(repo_id, target_dir):
|
42 |
-
"""Clone only the necessary files from a repo to save space"""
|
43 |
-
print(f"Cloning {repo_id} to {target_dir}...")
|
44 |
-
|
45 |
-
# Create a sparse checkout to save space
|
46 |
-
cmd = [
|
47 |
-
"git", "clone",
|
48 |
-
"--depth=1",
|
49 |
-
"--filter=blob:none",
|
50 |
-
f"https://huggingface.co/{repo_id}",
|
51 |
-
target_dir
|
52 |
-
]
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
# Safetensors is preferred (usually smaller)
|
63 |
-
for pattern in ["*.safetensors", "consolidated.*.pt", "pytorch_model.bin", "*.bin"]:
|
64 |
-
cmd = ["find", directory, "-name", pattern]
|
65 |
-
result = subprocess.run(cmd, capture_output=True, text=True)
|
66 |
-
if result.stdout:
|
67 |
-
model_files.extend(result.stdout.strip().split('\n'))
|
68 |
-
|
69 |
-
# Filter out empty strings and sort by size (prefer smaller files for HF format)
|
70 |
-
model_files = [f for f in model_files if f]
|
71 |
-
if not model_files:
|
72 |
-
return []
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
cmd = ["find", directory, "-name", "config.json"]
|
77 |
-
result = subprocess.run(cmd, capture_output=True, text=True)
|
78 |
-
if result.stdout:
|
79 |
-
config_file = result.stdout.strip().split('\n')[0]
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
|
88 |
-
#
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
target_repo_id = f"{repo_id}-gguf"
|
134 |
-
|
135 |
-
# Create the output repository if it doesn't exist
|
136 |
-
progress(0.4, "Creating target repository...")
|
137 |
-
try:
|
138 |
-
api.create_repo(repo_id=target_repo_id, exist_ok=True)
|
139 |
-
except Exception as e:
|
140 |
-
return f"Error creating repository: {str(e)}"
|
141 |
-
|
142 |
-
success_count = 0
|
143 |
-
progress_step = 0.5 / len(quant_types)
|
144 |
-
progress_value = 0.4
|
145 |
-
|
146 |
-
# Process each quantization type
|
147 |
-
for quant_name, quant_type in quant_types.items():
|
148 |
-
progress_value += progress_step
|
149 |
-
progress(progress_value, f"Processing {quant_name} quantization...")
|
150 |
-
|
151 |
-
output_file = os.path.join(output_dir, f"{repo_name}-{quant_name}.gguf")
|
152 |
-
|
153 |
-
# Convert to GGUF format
|
154 |
-
print(f"Converting to {quant_name}...")
|
155 |
-
convert_cmd = [
|
156 |
-
"python3",
|
157 |
-
os.path.join("llama.cpp", "convert.py"),
|
158 |
-
f"--model-type", model_type,
|
159 |
-
f"--outtype", "f16",
|
160 |
-
f"--outfile", output_file
|
161 |
-
]
|
162 |
-
|
163 |
-
# Add model path
|
164 |
-
convert_cmd.append(model_file)
|
165 |
-
|
166 |
-
try:
|
167 |
-
# First convert to GGUF format (without quantization)
|
168 |
-
subprocess.run(convert_cmd, check=True)
|
169 |
-
|
170 |
-
# Then quantize if needed
|
171 |
-
if quant_type != "f16":
|
172 |
-
quant_output = output_file.replace(".gguf", f"-{quant_type}.gguf")
|
173 |
-
quantize_cmd = [
|
174 |
-
os.path.join("llama.cpp", "quantize"),
|
175 |
-
output_file,
|
176 |
-
quant_output,
|
177 |
-
quant_type
|
178 |
-
]
|
179 |
-
subprocess.run(quantize_cmd, check=True)
|
180 |
-
# Replace the output file with the quantized version
|
181 |
-
os.remove(output_file)
|
182 |
-
os.rename(quant_output, output_file)
|
183 |
-
|
184 |
-
# Upload to HF
|
185 |
-
progress(progress_value + (progress_step * 0.7), f"Uploading {quant_name}...")
|
186 |
-
api.upload_file(
|
187 |
-
path_or_fileobj=output_file,
|
188 |
-
path_in_repo=f"{repo_name}-{quant_name}.gguf",
|
189 |
-
repo_id=target_repo_id,
|
190 |
-
commit_message=f"Add {quant_name} quantized version"
|
191 |
-
)
|
192 |
-
|
193 |
-
success_count += 1
|
194 |
-
except Exception as e:
|
195 |
-
print(f"Error processing {quant_name}: {str(e)}")
|
196 |
-
|
197 |
-
progress(1.0, "Completed!")
|
198 |
-
if success_count > 0:
|
199 |
-
return f"Successfully created {success_count} quantized versions in {target_repo_id}"
|
200 |
else:
|
201 |
-
|
202 |
|
203 |
-
|
204 |
-
return f"Error: {str(e)}"
|
205 |
-
|
206 |
-
# Webhook handler - this will be called when the repo is updated
|
207 |
-
def setup_webhook(repo_id, target_repo=None, webhook_url=None):
|
208 |
-
"""Set up a webhook for repository updates"""
|
209 |
-
if not hf_token:
|
210 |
-
return "HF_TOKEN not set. Cannot set up webhook."
|
211 |
-
|
212 |
-
if not target_repo:
|
213 |
-
target_repo = f"{repo_id}-gguf"
|
214 |
|
215 |
-
#
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
if not space_id:
|
220 |
-
return "Cannot determine current Space ID. Please specify webhook_url manually."
|
221 |
-
|
222 |
-
webhook_url = f"https://huggingface.co/spaces/{space_id}/webhook"
|
223 |
-
|
224 |
-
try:
|
225 |
-
# Add webhook to the source repository
|
226 |
-
api.add_webhook(
|
227 |
-
repo_id=repo_id,
|
228 |
-
webhook_url=webhook_url,
|
229 |
-
webhook_type="repo-update"
|
230 |
-
)
|
231 |
-
return f"Webhook set up for {repo_id} -> {webhook_url}"
|
232 |
-
except Exception as e:
|
233 |
-
return f"Error setting up webhook: {str(e)}"
|
234 |
-
|
235 |
-
# Create Gradio interface
|
236 |
-
with gr.Blocks() as interface:
|
237 |
-
gr.Markdown("# GGUF Quantizer (Free Tier)")
|
238 |
-
gr.Markdown("Automatically create GGUF quantized versions of Hugging Face models")
|
239 |
-
|
240 |
-
with gr.Tab("Quantize Model"):
|
241 |
-
with gr.Row():
|
242 |
-
repo_id = gr.Textbox(label="Model Repository ID (e.g., 'mistralai/Mistral-7B-v0.1')")
|
243 |
-
|
244 |
-
with gr.Row():
|
245 |
-
q4_k_m = gr.Checkbox(label="Q4_K_M (4-bit, balanced quality/size)", value=True)
|
246 |
-
q5_k_m = gr.Checkbox(label="Q5_K_M (5-bit, higher quality)", value=False)
|
247 |
-
q8_0 = gr.Checkbox(label="Q8_0 (8-bit, highest quality)", value=False)
|
248 |
-
|
249 |
-
quantize_btn = gr.Button("Quantize Model")
|
250 |
-
output = gr.Textbox(label="Status")
|
251 |
-
|
252 |
-
def process_quantize(repo_id, q4_k_m, q5_k_m, q8_0, progress=gr.Progress()):
|
253 |
-
selected_types = {}
|
254 |
-
if q4_k_m:
|
255 |
-
selected_types["Q4_K_M"] = "q4_k_m"
|
256 |
-
if q5_k_m:
|
257 |
-
selected_types["Q5_K_M"] = "q5_k_m"
|
258 |
-
if q8_0:
|
259 |
-
selected_types["Q8_0"] = "q8_0"
|
260 |
-
|
261 |
-
if not selected_types:
|
262 |
-
return "Please select at least one quantization type"
|
263 |
-
|
264 |
-
return quantize_model(repo_id, selected_types, progress)
|
265 |
-
|
266 |
-
quantize_btn.click(
|
267 |
-
process_quantize,
|
268 |
-
inputs=[repo_id, q4_k_m, q5_k_m, q8_0],
|
269 |
-
outputs=output
|
270 |
-
)
|
271 |
|
272 |
-
|
273 |
-
|
274 |
-
## Set up automatic quantization
|
275 |
-
|
276 |
-
This will set up a webhook to trigger quantization whenever the source repository is updated.
|
277 |
-
Note: This requires HF_TOKEN to be set in Space secrets.
|
278 |
-
""")
|
279 |
-
|
280 |
-
webhook_repo_id = gr.Textbox(label="Source Repository ID")
|
281 |
-
webhook_btn = gr.Button("Set Up Webhook")
|
282 |
-
webhook_output = gr.Textbox(label="Webhook Status")
|
283 |
-
|
284 |
-
webhook_btn.click(
|
285 |
-
setup_webhook,
|
286 |
-
inputs=[webhook_repo_id],
|
287 |
-
outputs=webhook_output
|
288 |
-
)
|
289 |
|
290 |
-
|
291 |
-
|
292 |
-
## Instructions
|
293 |
-
|
294 |
-
### How to use this Space:
|
295 |
-
|
296 |
-
1. **Manual Quantization**: Enter a model repository ID and select quantization types
|
297 |
-
2. **Automatic Quantization**: Set up a webhook to trigger quantization when the model is updated
|
298 |
-
|
299 |
-
### Adding HF_TOKEN to Space Secrets:
|
300 |
-
|
301 |
-
1. Go to your Space Settings
|
302 |
-
2. Click on "Repository Secrets"
|
303 |
-
3. Add a new secret with key `HF_TOKEN` and your Hugging Face API token as value
|
304 |
-
|
305 |
-
### Limitations (Free Tier):
|
306 |
-
|
307 |
-
- Limited memory: Very large models may fail to process
|
308 |
-
- Limited storage: Files are processed in streaming mode, but temp files still need space
|
309 |
-
- Limited compute: Quantization may take longer than on paid tiers
|
310 |
-
- Jobs might be interrupted if they run too long
|
311 |
-
""")
|
312 |
-
|
313 |
-
# Start Flask server to handle webhooks
|
314 |
-
from flask import Flask, request, jsonify
|
315 |
-
import threading
|
316 |
-
|
317 |
-
app = Flask(__name__)
|
318 |
-
|
319 |
-
@app.route('/webhook', methods=['POST'])
|
320 |
-
def handle_webhook():
|
321 |
-
try:
|
322 |
-
payload = request.json
|
323 |
-
|
324 |
-
# Check if this is a repo update event
|
325 |
-
event_type = payload.get('event')
|
326 |
-
if event_type == 'repo-update':
|
327 |
-
repo_id = payload.get('repo', {}).get('name')
|
328 |
-
|
329 |
-
if repo_id:
|
330 |
-
# Run quantization in background
|
331 |
-
threading.Thread(target=lambda: quantize_model(
|
332 |
-
repo_id,
|
333 |
-
{"Q4_K_M": "q4_k_m"} # Default to just Q4_K_M to save resources
|
334 |
-
)).start()
|
335 |
-
|
336 |
-
return jsonify({"status": "quantization scheduled"})
|
337 |
-
|
338 |
-
return jsonify({"status": "event ignored"})
|
339 |
-
except Exception as e:
|
340 |
-
return jsonify({"status": "error", "message": str(e)})
|
341 |
-
|
342 |
-
# Launch both the Gradio and Flask apps
|
343 |
-
import nest_asyncio
|
344 |
-
import uvicorn
|
345 |
-
from threading import Thread
|
346 |
-
|
347 |
-
nest_asyncio.apply()
|
348 |
-
|
349 |
-
# Launch the Gradio interface
|
350 |
-
def launch_gradio():
|
351 |
-
interface.launch(debug=False)
|
352 |
-
|
353 |
-
# Launch the Flask webhook handler
|
354 |
-
def launch_flask():
|
355 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
356 |
|
357 |
-
#
|
358 |
if __name__ == "__main__":
|
359 |
-
|
360 |
-
launch_gradio()
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import json
|
3 |
+
import os
|
|
|
|
|
4 |
import time
|
5 |
+
from monitor import setup_monitor, check_repo_updates, get_status
|
6 |
import threading
|
7 |
|
8 |
+
# Initialize status
|
9 |
+
if not os.path.exists("status.json"):
|
10 |
+
status = {
|
11 |
+
"last_checked": None,
|
12 |
+
"is_up_to_date": False,
|
13 |
+
"current_quantization": None,
|
14 |
+
"completed_quantizations": [],
|
15 |
+
"failed_quantizations": [],
|
16 |
+
"progress": 0,
|
17 |
+
"status_message": "Initializing...",
|
18 |
+
"out_of_memory": False,
|
19 |
+
"last_successful_quant": None
|
20 |
+
}
|
21 |
+
with open("status.json", "w") as f:
|
22 |
+
json.dump(status, f)
|
23 |
+
|
24 |
+
# Start the monitoring thread
|
25 |
+
monitor_thread = threading.Thread(target=setup_monitor, daemon=True)
|
26 |
+
monitor_thread.start()
|
27 |
+
|
28 |
+
# Define the Gradio interface
|
29 |
+
with gr.Blocks() as demo:
|
30 |
+
gr.Markdown("# Ursa Minor Quantization Monitor")
|
31 |
+
gr.Markdown("This Space automatically generates quantized versions of the [Sculptor-AI/Ursa_Minor](https://huggingface.co/Sculptor-AI/Ursa_Minor) model.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
with gr.Row():
|
34 |
+
with gr.Column():
|
35 |
+
status_indicator = gr.Markdown("Loading status...")
|
36 |
+
last_checked = gr.Markdown("Last checked: Never")
|
37 |
+
|
38 |
+
with gr.Column():
|
39 |
+
check_button = gr.Button("Check for updates now")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
with gr.Row():
|
42 |
+
progress_bar = gr.Progress(label="Quantization Progress")
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
with gr.Row():
|
45 |
+
completed_box = gr.Dataframe(
|
46 |
+
headers=["Quantization", "Size (GB)", "Status", "Notes"],
|
47 |
+
datatype=["str", "str", "str", "str"],
|
48 |
+
label="Quantization Status"
|
49 |
+
)
|
50 |
|
51 |
+
# Function to update the UI
|
52 |
+
def update_ui():
|
53 |
+
status = get_status()
|
54 |
+
|
55 |
+
# Update status indicator
|
56 |
+
if status["out_of_memory"]:
|
57 |
+
status_text = f"⚠️ **Out of Memory Error** - The Space ran out of memory while processing {status['last_successful_quant']}. Try using a paid compute tier for larger models."
|
58 |
+
elif status["is_up_to_date"]:
|
59 |
+
status_text = "✅ **Up to date** - All quantizations are complete."
|
60 |
+
elif status["current_quantization"]:
|
61 |
+
status_text = f"🔄 **Processing** - Currently quantizing {status['current_quantization']}."
|
62 |
+
else:
|
63 |
+
status_text = "⏳ **Waiting** - Checking for updates..."
|
64 |
+
|
65 |
+
# Update last checked time
|
66 |
+
last_checked_text = f"Last checked: {status['last_checked'] if status['last_checked'] else 'Never'}"
|
67 |
+
|
68 |
+
# Update progress bar
|
69 |
+
progress_value = status["progress"] / 100 if status["progress"] else 0
|
70 |
+
|
71 |
+
# Update quantization status table
|
72 |
+
quantization_types = [
|
73 |
+
["GGUF Q2_K", "0.8", "", ""],
|
74 |
+
["GGUF Q3_K_S", "0.9", "", ""],
|
75 |
+
["GGUF Q3_K_M", "0.9", "", "lower quality"],
|
76 |
+
["GGUF Q3_K_L", "1.0", "", ""],
|
77 |
+
["GGUF IQ4_XS", "1.0", "", ""],
|
78 |
+
["GGUF Q4_K_S", "1.0", "", "fast, recommended"],
|
79 |
+
["GGUF Q4_K_M", "1.1", "", "fast, recommended"],
|
80 |
+
["GGUF Q5_K_S", "1.2", "", ""],
|
81 |
+
["GGUF Q5_K_M", "1.2", "", ""],
|
82 |
+
["GGUF Q6_K", "1.4", "", "very good quality"],
|
83 |
+
["GGUF Q8_0", "1.7", "", "fast, best quality"],
|
84 |
+
["GGUF f16", "3.2", "", "16 bpw, overkill"]
|
85 |
+
]
|
86 |
+
|
87 |
+
# Update status for each quantization
|
88 |
+
for quant in quantization_types:
|
89 |
+
quant_name = quant[0]
|
90 |
+
if quant_name in status["completed_quantizations"]:
|
91 |
+
quant[2] = "✅ Complete"
|
92 |
+
elif quant_name in status["failed_quantizations"]:
|
93 |
+
quant[2] = "❌ Failed"
|
94 |
+
elif quant_name == status["current_quantization"]:
|
95 |
+
quant[2] = "🔄 In progress"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
else:
|
97 |
+
quant[2] = "⏳ Waiting"
|
98 |
|
99 |
+
return status_text, last_checked_text, progress_value, quantization_types
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
# Function to handle manual update check
|
102 |
+
def check_updates():
|
103 |
+
check_repo_updates(force=True)
|
104 |
+
return update_ui()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
# Connect buttons and set up timed refresh
|
107 |
+
check_button.click(check_updates, outputs=[status_indicator, last_checked, progress_bar, completed_box])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
# Auto-refresh every 10 seconds
|
110 |
+
demo.load(update_ui, outputs=[status_indicator, last_checked, progress_bar, completed_box], every=10)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
+
# Launch the app
|
113 |
if __name__ == "__main__":
|
114 |
+
demo.launch()
|
|
monitor.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
import requests
|
5 |
+
from datetime import datetime
|
6 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
7 |
+
from quantize import quantize_model
|
8 |
+
|
9 |
+
# Define the quantization types in order from smallest to largest
|
10 |
+
QUANTIZATION_TYPES = [
|
11 |
+
"GGUF Q2_K",
|
12 |
+
"GGUF Q3_K_S",
|
13 |
+
"GGUF Q3_K_M",
|
14 |
+
"GGUF Q3_K_L",
|
15 |
+
"GGUF IQ4_XS",
|
16 |
+
"GGUF Q4_K_S",
|
17 |
+
"GGUF Q4_K_M",
|
18 |
+
"GGUF Q5_K_S",
|
19 |
+
"GGUF Q5_K_M",
|
20 |
+
"GGUF Q6_K",
|
21 |
+
"GGUF Q8_0",
|
22 |
+
"GGUF f16"
|
23 |
+
]
|
24 |
+
|
25 |
+
# Mapping of quantization types to llama.cpp quantization parameters
|
26 |
+
QUANT_PARAMS = {
|
27 |
+
"GGUF Q2_K": "q2_k",
|
28 |
+
"GGUF Q3_K_S": "q3_k_s",
|
29 |
+
"GGUF Q3_K_M": "q3_k_m",
|
30 |
+
"GGUF Q3_K_L": "q3_k_l",
|
31 |
+
"GGUF IQ4_XS": "iq4_xs",
|
32 |
+
"GGUF Q4_K_S": "q4_k_s",
|
33 |
+
"GGUF Q4_K_M": "q4_k_m",
|
34 |
+
"GGUF Q5_K_S": "q5_k_s",
|
35 |
+
"GGUF Q5_K_M": "q5_k_m",
|
36 |
+
"GGUF Q6_K": "q6_k",
|
37 |
+
"GGUF Q8_0": "q8_0",
|
38 |
+
"GGUF f16": "f16"
|
39 |
+
}
|
40 |
+
|
41 |
+
# Source and destination repositories
|
42 |
+
SOURCE_REPO = "Sculptor-AI/Ursa_Minor"
|
43 |
+
DESTINATION_REPO = "Sculptor-AI/Ursa_Minor_Quantized" # This should be created in advance
|
44 |
+
|
45 |
+
def get_status():
|
46 |
+
"""Read the current status from the status file"""
|
47 |
+
try:
|
48 |
+
with open("status.json", "r") as f:
|
49 |
+
return json.load(f)
|
50 |
+
except Exception as e:
|
51 |
+
print(f"Error reading status: {e}")
|
52 |
+
return {
|
53 |
+
"last_checked": None,
|
54 |
+
"is_up_to_date": False,
|
55 |
+
"current_quantization": None,
|
56 |
+
"completed_quantizations": [],
|
57 |
+
"failed_quantizations": [],
|
58 |
+
"progress": 0,
|
59 |
+
"status_message": "Error reading status",
|
60 |
+
"out_of_memory": False,
|
61 |
+
"last_successful_quant": None
|
62 |
+
}
|
63 |
+
|
64 |
+
def update_status(updates):
|
65 |
+
"""Update the status file with the provided updates"""
|
66 |
+
try:
|
67 |
+
status = get_status()
|
68 |
+
status.update(updates)
|
69 |
+
with open("status.json", "w") as f:
|
70 |
+
json.dump(status, f)
|
71 |
+
except Exception as e:
|
72 |
+
print(f"Error updating status: {e}")
|
73 |
+
|
74 |
+
def get_repo_last_modified(repo_id):
|
75 |
+
"""Get the last modified date of the repository"""
|
76 |
+
try:
|
77 |
+
url = f"https://huggingface.co/api/models/{repo_id}"
|
78 |
+
response = requests.get(url)
|
79 |
+
response.raise_for_status()
|
80 |
+
data = response.json()
|
81 |
+
return data.get("lastModified")
|
82 |
+
except Exception as e:
|
83 |
+
print(f"Error checking repository: {e}")
|
84 |
+
return None
|
85 |
+
|
86 |
+
def check_repo_updates(force=False):
|
87 |
+
"""Check if the source repository has been updated and start quantization if needed"""
|
88 |
+
now = datetime.now().isoformat()
|
89 |
+
update_status({"last_checked": now})
|
90 |
+
print(f"Checking for updates to {SOURCE_REPO}...")
|
91 |
+
|
92 |
+
# Get current status
|
93 |
+
status = get_status()
|
94 |
+
|
95 |
+
# If we're already processing, don't check for updates
|
96 |
+
if status["current_quantization"] and not force:
|
97 |
+
print("Already processing, skipping update check")
|
98 |
+
return
|
99 |
+
|
100 |
+
# If we had an out of memory error and this isn't a forced check, skip
|
101 |
+
if status["out_of_memory"] and not force:
|
102 |
+
print("Previous run had an out of memory error, skipping automatic update check")
|
103 |
+
return
|
104 |
+
|
105 |
+
# Check if the source repo has been updated
|
106 |
+
last_modified = get_repo_last_modified(SOURCE_REPO)
|
107 |
+
|
108 |
+
if not last_modified:
|
109 |
+
print("Couldn't get repository information, skipping update")
|
110 |
+
return
|
111 |
+
|
112 |
+
# Determine if we need to process quantizations
|
113 |
+
need_to_process = False
|
114 |
+
if force:
|
115 |
+
print("Forced update check, processing quantizations")
|
116 |
+
need_to_process = True
|
117 |
+
elif "source_last_modified" not in status or status["source_last_modified"] != last_modified:
|
118 |
+
print("Source repository has been updated, processing quantizations")
|
119 |
+
need_to_process = True
|
120 |
+
update_status({"source_last_modified": last_modified})
|
121 |
+
else:
|
122 |
+
print("Source repository hasn't changed, no processing needed")
|
123 |
+
|
124 |
+
# Check if all quantizations are complete
|
125 |
+
all_completed = all(quant in status["completed_quantizations"] for quant in QUANTIZATION_TYPES)
|
126 |
+
if all_completed:
|
127 |
+
update_status({"is_up_to_date": True})
|
128 |
+
|
129 |
+
return
|
130 |
+
|
131 |
+
# Reset status for a new processing run
|
132 |
+
if need_to_process:
|
133 |
+
update_status({
|
134 |
+
"is_up_to_date": False,
|
135 |
+
"progress": 0,
|
136 |
+
"out_of_memory": False,
|
137 |
+
"status_message": "Starting quantization process...",
|
138 |
+
"completed_quantizations": [],
|
139 |
+
"failed_quantizations": [],
|
140 |
+
"current_quantization": None
|
141 |
+
})
|
142 |
+
|
143 |
+
# Start the first quantization
|
144 |
+
start_next_quantization()
|
145 |
+
|
146 |
+
def start_next_quantization():
|
147 |
+
"""Start the next quantization in the queue"""
|
148 |
+
status = get_status()
|
149 |
+
|
150 |
+
# Check if we had an out of memory error
|
151 |
+
if status["out_of_memory"]:
|
152 |
+
print("Previous run had an out of memory error, not starting next quantization")
|
153 |
+
return
|
154 |
+
|
155 |
+
# Find the next quantization to process
|
156 |
+
completed = set(status["completed_quantizations"])
|
157 |
+
failed = set(status["failed_quantizations"])
|
158 |
+
processed = completed.union(failed)
|
159 |
+
|
160 |
+
next_quant = None
|
161 |
+
for quant in QUANTIZATION_TYPES:
|
162 |
+
if quant not in processed:
|
163 |
+
next_quant = quant
|
164 |
+
break
|
165 |
+
|
166 |
+
if not next_quant:
|
167 |
+
# All quantizations are complete
|
168 |
+
update_status({
|
169 |
+
"is_up_to_date": True,
|
170 |
+
"current_quantization": None,
|
171 |
+
"progress": 100,
|
172 |
+
"status_message": "All quantizations complete"
|
173 |
+
})
|
174 |
+
print("All quantizations complete!")
|
175 |
+
return
|
176 |
+
|
177 |
+
# Start the next quantization
|
178 |
+
update_status({
|
179 |
+
"current_quantization": next_quant,
|
180 |
+
"progress": 0,
|
181 |
+
"status_message": f"Starting {next_quant} quantization..."
|
182 |
+
})
|
183 |
+
|
184 |
+
print(f"Starting quantization: {next_quant}")
|
185 |
+
|
186 |
+
try:
|
187 |
+
# Run the quantization
|
188 |
+
success = quantize_model(
|
189 |
+
SOURCE_REPO,
|
190 |
+
DESTINATION_REPO,
|
191 |
+
next_quant,
|
192 |
+
QUANT_PARAMS[next_quant]
|
193 |
+
)
|
194 |
+
|
195 |
+
if success:
|
196 |
+
# Quantization completed successfully
|
197 |
+
print(f"Quantization {next_quant} completed successfully")
|
198 |
+
status = get_status()
|
199 |
+
completed = status["completed_quantizations"]
|
200 |
+
completed.append(next_quant)
|
201 |
+
|
202 |
+
update_status({
|
203 |
+
"completed_quantizations": completed,
|
204 |
+
"current_quantization": None,
|
205 |
+
"last_successful_quant": next_quant,
|
206 |
+
"progress": 100,
|
207 |
+
"status_message": f"Completed {next_quant} quantization"
|
208 |
+
})
|
209 |
+
|
210 |
+
# Start the next quantization
|
211 |
+
start_next_quantization()
|
212 |
+
else:
|
213 |
+
# Quantization failed
|
214 |
+
print(f"Quantization {next_quant} failed")
|
215 |
+
status = get_status()
|
216 |
+
failed = status["failed_quantizations"]
|
217 |
+
failed.append(next_quant)
|
218 |
+
|
219 |
+
update_status({
|
220 |
+
"failed_quantizations": failed,
|
221 |
+
"current_quantization": None,
|
222 |
+
"progress": 0,
|
223 |
+
"status_message": f"Failed {next_quant} quantization"
|
224 |
+
})
|
225 |
+
|
226 |
+
# Try the next quantization
|
227 |
+
start_next_quantization()
|
228 |
+
|
229 |
+
except MemoryError:
|
230 |
+
# Handle out of memory error
|
231 |
+
print(f"Out of memory error during {next_quant} quantization")
|
232 |
+
status = get_status()
|
233 |
+
failed = status["failed_quantizations"]
|
234 |
+
failed.append(next_quant)
|
235 |
+
|
236 |
+
update_status({
|
237 |
+
"failed_quantizations": failed,
|
238 |
+
"current_quantization": None,
|
239 |
+
"out_of_memory": True,
|
240 |
+
"progress": 0,
|
241 |
+
"status_message": f"Out of memory during {next_quant} quantization"
|
242 |
+
})
|
243 |
+
|
244 |
+
def setup_monitor():
|
245 |
+
"""Set up the scheduled monitoring"""
|
246 |
+
scheduler = BackgroundScheduler()
|
247 |
+
# Check for updates every hour
|
248 |
+
scheduler.add_job(check_repo_updates, 'interval', hours=1)
|
249 |
+
scheduler.start()
|
250 |
+
|
251 |
+
# Do an initial check
|
252 |
+
check_repo_updates()
|
253 |
+
|
254 |
+
try:
|
255 |
+
# Keep the thread alive
|
256 |
+
while True:
|
257 |
+
time.sleep(60)
|
258 |
+
except (KeyboardInterrupt, SystemExit):
|
259 |
+
scheduler.shutdown()
|
quantize.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
import tempfile
|
4 |
+
import time
|
5 |
+
import json
|
6 |
+
import shutil
|
7 |
+
from huggingface_hub import HfApi, Repository, snapshot_download
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
def update_progress(progress):
|
11 |
+
"""Update the progress in the status file"""
|
12 |
+
try:
|
13 |
+
with open("status.json", "r") as f:
|
14 |
+
status = json.load(f)
|
15 |
+
|
16 |
+
status["progress"] = progress
|
17 |
+
|
18 |
+
with open("status.json", "w") as f:
|
19 |
+
json.dump(status, f)
|
20 |
+
except Exception as e:
|
21 |
+
print(f"Error updating progress: {e}")
|
22 |
+
|
23 |
+
def quantize_model(source_repo, dest_repo, quant_name, quant_type):
|
24 |
+
"""
|
25 |
+
Download the model, quantize it, and upload to the destination repo
|
26 |
+
|
27 |
+
Args:
|
28 |
+
source_repo: HF repo ID for the source model
|
29 |
+
dest_repo: HF repo ID for the destination repo
|
30 |
+
quant_name: Name of the quantization (for display)
|
31 |
+
quant_type: llama.cpp quantization parameter
|
32 |
+
|
33 |
+
Returns:
|
34 |
+
bool: True if successful, False otherwise
|
35 |
+
"""
|
36 |
+
try:
|
37 |
+
update_progress(5)
|
38 |
+
|
39 |
+
# Create temporary directories
|
40 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
41 |
+
model_dir = os.path.join(temp_dir, "model")
|
42 |
+
output_dir = os.path.join(temp_dir, "output")
|
43 |
+
os.makedirs(output_dir, exist_ok=True)
|
44 |
+
|
45 |
+
# Update status
|
46 |
+
with open("status.json", "r") as f:
|
47 |
+
status = json.load(f)
|
48 |
+
status["status_message"] = f"Downloading {source_repo}..."
|
49 |
+
with open("status.json", "w") as f:
|
50 |
+
json.dump(status, f)
|
51 |
+
|
52 |
+
# Download the model
|
53 |
+
print(f"Downloading {source_repo}...")
|
54 |
+
snapshot_download(
|
55 |
+
repo_id=source_repo,
|
56 |
+
local_dir=model_dir,
|
57 |
+
local_dir_use_symlinks=False
|
58 |
+
)
|
59 |
+
|
60 |
+
update_progress(30)
|
61 |
+
|
62 |
+
# Find the model file (assuming it's a .bin file)
|
63 |
+
model_files = [f for f in os.listdir(model_dir) if f.endswith(".bin")]
|
64 |
+
if not model_files:
|
65 |
+
print("No model file found")
|
66 |
+
return False
|
67 |
+
|
68 |
+
model_file = os.path.join(model_dir, model_files[0])
|
69 |
+
output_file = os.path.join(output_dir, f"Ursa_Minor-{quant_type}.gguf")
|
70 |
+
|
71 |
+
# Update status
|
72 |
+
with open("status.json", "r") as f:
|
73 |
+
status = json.load(f)
|
74 |
+
status["status_message"] = f"Quantizing to {quant_name}..."
|
75 |
+
with open("status.json", "w") as f:
|
76 |
+
json.dump(status, f)
|
77 |
+
|
78 |
+
# Run quantization
|
79 |
+
print(f"Quantizing to {quant_type}...")
|
80 |
+
command = [
|
81 |
+
"python", "-m", "llama_cpp.quantize",
|
82 |
+
model_file,
|
83 |
+
output_file,
|
84 |
+
f"--{quant_type}"
|
85 |
+
]
|
86 |
+
|
87 |
+
try:
|
88 |
+
# Start the quantization process
|
89 |
+
process = subprocess.Popen(
|
90 |
+
command,
|
91 |
+
stdout=subprocess.PIPE,
|
92 |
+
stderr=subprocess.STDOUT,
|
93 |
+
universal_newlines=True
|
94 |
+
)
|
95 |
+
|
96 |
+
# Monitor output for progress
|
97 |
+
for line in process.stdout:
|
98 |
+
print(line, end="")
|
99 |
+
if "Quantizing tensors" in line and ":" in line:
|
100 |
+
try:
|
101 |
+
# Parse progress from output
|
102 |
+
parts = line.split(":")
|
103 |
+
if len(parts) >= 2:
|
104 |
+
progress_str = parts[1].strip()
|
105 |
+
if "/" in progress_str:
|
106 |
+
current, total = map(int, progress_str.split("/"))
|
107 |
+
progress = 30 + int(60 * current / total)
|
108 |
+
update_progress(progress)
|
109 |
+
except Exception as e:
|
110 |
+
print(f"Error parsing progress: {e}")
|
111 |
+
|
112 |
+
# Wait for process to complete
|
113 |
+
process.wait()
|
114 |
+
|
115 |
+
if process.returncode != 0:
|
116 |
+
print(f"Quantization failed with return code {process.returncode}")
|
117 |
+
return False
|
118 |
+
|
119 |
+
except MemoryError:
|
120 |
+
print("Out of memory during quantization")
|
121 |
+
raise
|
122 |
+
except Exception as e:
|
123 |
+
print(f"Error during quantization: {e}")
|
124 |
+
return False
|
125 |
+
|
126 |
+
update_progress(90)
|
127 |
+
|
128 |
+
# Upload to Hugging Face
|
129 |
+
print(f"Uploading {quant_name} to {dest_repo}...")
|
130 |
+
|
131 |
+
# Update status
|
132 |
+
with open("status.json", "r") as f:
|
133 |
+
status = json.load(f)
|
134 |
+
status["status_message"] = f"Uploading {quant_name} to Hugging Face..."
|
135 |
+
with open("status.json", "w") as f:
|
136 |
+
json.dump(status, f)
|
137 |
+
|
138 |
+
# Login to HF if token is available
|
139 |
+
token = os.environ.get("HF_TOKEN")
|
140 |
+
if not token:
|
141 |
+
print("HF_TOKEN environment variable not set")
|
142 |
+
return False
|
143 |
+
|
144 |
+
api = HfApi(token=token)
|
145 |
+
|
146 |
+
# Create the repo if it doesn't exist
|
147 |
+
try:
|
148 |
+
api.create_repo(
|
149 |
+
repo_id=dest_repo,
|
150 |
+
exist_ok=True,
|
151 |
+
private=False
|
152 |
+
)
|
153 |
+
except Exception as e:
|
154 |
+
print(f"Error creating repo: {e}")
|
155 |
+
return False
|
156 |
+
|
157 |
+
# Clone the repo
|
158 |
+
repo_dir = os.path.join(temp_dir, "repo")
|
159 |
+
repo = Repository(
|
160 |
+
local_dir=repo_dir,
|
161 |
+
clone_from=dest_repo,
|
162 |
+
token=token
|
163 |
+
)
|
164 |
+
|
165 |
+
# Copy the quantized model to the repo
|
166 |
+
output_file_name = os.path.basename(output_file)
|
167 |
+
shutil.copy(output_file, os.path.join(repo_dir, output_file_name))
|
168 |
+
|
169 |
+
# Create or update README.md
|
170 |
+
readme_path = os.path.join(repo_dir, "README.md")
|
171 |
+
if os.path.exists(readme_path):
|
172 |
+
with open(readme_path, "r") as f:
|
173 |
+
readme_content = f.read()
|
174 |
+
else:
|
175 |
+
readme_content = f"# Ursa Minor Quantized Models\n\nThis repository contains quantized versions of the [Sculptor-AI/Ursa_Minor](https://huggingface.co/Sculptor-AI/Ursa_Minor) model.\n\n## Available Quantizations\n\n"
|
176 |
+
|
177 |
+
# Add or update the quantization entry in the README
|
178 |
+
quant_entry = f"- **{quant_name}**: [{output_file_name}](/{dest_repo}/blob/main/{output_file_name})\n"
|
179 |
+
if quant_entry not in readme_content:
|
180 |
+
readme_content += quant_entry
|
181 |
+
with open(readme_path, "w") as f:
|
182 |
+
f.write(readme_content)
|
183 |
+
|
184 |
+
# Commit and push
|
185 |
+
repo.git_add()
|
186 |
+
repo.git_commit(f"Add {quant_name} quantization")
|
187 |
+
repo.git_push()
|
188 |
+
|
189 |
+
update_progress(100)
|
190 |
+
return True
|
191 |
+
|
192 |
+
except MemoryError:
|
193 |
+
# Special handling for memory errors
|
194 |
+
raise
|
195 |
+
except Exception as e:
|
196 |
+
print(f"Error in quantization process: {e}")
|
197 |
+
return False
|
requirements.txt
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
-
gradio>=3.
|
2 |
-
huggingface_hub>=0.16.
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
1 |
+
gradio>=3.40.1
|
2 |
+
huggingface_hub>=0.16.4
|
3 |
+
requests>=2.31.0
|
4 |
+
apscheduler>=3.10.1
|
5 |
+
tqdm>=4.66.1
|
6 |
+
llama-cpp-python>=0.2.10
|