Kaileh57 commited on
Commit
29e0bb8
·
1 Parent(s): 0cd0ab4
Files changed (1) hide show
  1. setup.sh +25 -194
setup.sh CHANGED
@@ -1,207 +1,37 @@
1
  #!/bin/bash
2
  set -e
3
 
4
- echo "Setting up GGUF Quantizer..."
5
 
6
- # Clone a minimal version of llama.cpp repository just for reference
7
  if [ ! -d "llama.cpp" ]; then
8
- echo "Creating llama.cpp directory..."
9
- mkdir -p llama.cpp
10
  fi
11
 
12
- # Create a minimal conversion script that doesn't depend on llama.cpp
13
- echo "Creating conversion script..."
14
- cat > llama.cpp/convert.py << 'EOL'
15
- #!/usr/bin/env python3
16
- import os
17
- import sys
18
- import argparse
19
- import torch
20
- import json
21
- import shutil
22
- from pathlib import Path
23
-
24
- def mock_convert_to_gguf(model_path, output_path, model_type="f16"):
25
- """
26
- Mock conversion function that creates a dummy GGUF file
27
- For demonstration purposes in the free tier
28
- """
29
- print(f"Converting {model_path} to {output_path} as {model_type}")
30
-
31
- # Create a mock output file with some metadata
32
- model_name = os.path.basename(model_path)
33
-
34
- # Try to get some real model info if possible
35
- config_path = os.path.join(model_path, "config.json")
36
- model_info = {
37
- "name": model_name,
38
- "type": model_type,
39
- "created": "2025-03-09",
40
- "format": "GGUF"
41
- }
42
-
43
- if os.path.exists(config_path):
44
- try:
45
- with open(config_path, 'r') as f:
46
- config = json.load(f)
47
- if "model_type" in config:
48
- model_info["architecture"] = config["model_type"]
49
- if "vocab_size" in config:
50
- model_info["vocab_size"] = config["vocab_size"]
51
- except Exception as e:
52
- print(f"Error reading config: {e}")
53
-
54
- # Save model info as a small file
55
- with open(output_path, 'w') as f:
56
- f.write(json.dumps(model_info, indent=2))
57
-
58
- # Make the file a reasonable size to simulate a real model
59
- # Just append some data to make it look like a real file
60
- with open(output_path, 'ab') as f:
61
- f.write(b'\0' * 1024 * 1024) # Add 1MB of data
62
-
63
- print(f"Mock conversion completed: {output_path}")
64
- return True
65
-
66
- def main():
67
- parser = argparse.ArgumentParser(description="Convert model to GGUF format")
68
- parser.add_argument("model_path", help="Path to the model directory")
69
- parser.add_argument("--outfile", help="Output file path")
70
- parser.add_argument("--outtype", default="f16", help="Output type")
71
- args = parser.parse_args()
72
-
73
- try:
74
- output_path = args.outfile
75
- if not output_path:
76
- output_path = f"{os.path.basename(args.model_path)}.gguf"
77
-
78
- success = mock_convert_to_gguf(args.model_path, output_path, args.outtype)
79
- return 0 if success else 1
80
- except Exception as e:
81
- print(f"Error: {e}")
82
- return 1
83
-
84
- if __name__ == "__main__":
85
- sys.exit(main())
86
- EOL
87
- chmod +x llama.cpp/convert.py
88
-
89
- # Create a quantization script
90
- echo "Creating quantization script..."
91
- cat > llama.cpp/quantize.py << 'EOL'
92
- #!/usr/bin/env python3
93
- import os
94
- import sys
95
- import argparse
96
- import json
97
- import shutil
98
- from pathlib import Path
99
-
100
- def mock_quantize(input_path, output_path, quant_type):
101
- """
102
- Mock quantization function that creates a dummy GGUF file
103
- For demonstration purposes in the free tier
104
- """
105
- print(f"Quantizing {input_path} to {output_path} with {quant_type}")
106
-
107
- # Read the input file if it exists
108
- model_info = {}
109
- if os.path.exists(input_path):
110
- try:
111
- with open(input_path, 'r') as f:
112
- content = f.read(1024 * 10) # Read first 10KB (metadata should be at start)
113
- # Try to parse JSON from the beginning of the file
114
- try:
115
- start_json = content.strip().split('{', 1)[0] + '{'
116
- end_json = '}'
117
- json_str = start_json + content.split(start_json, 1)[1].split(end_json, 1)[0] + end_json
118
- model_info = json.loads(json_str)
119
- except:
120
- # If that fails, assume the first part might be JSON
121
- try:
122
- model_info = json.loads(content.split('\0', 1)[0])
123
- except:
124
- print("Could not parse input file metadata")
125
- except Exception as e:
126
- print(f"Error reading input file: {e}")
127
-
128
- # Update with quantization info
129
- model_info.update({
130
- "quantization": quant_type,
131
- "bits_per_token": get_bits_per_token(quant_type),
132
- "quantized_at": "2025-03-09"
133
- })
134
-
135
- # Create the output file with updated metadata
136
- with open(output_path, 'w') as f:
137
- f.write(json.dumps(model_info, indent=2))
138
-
139
- # Make the file a reasonable size based on the quantization type
140
- size_factor = get_size_factor(quant_type)
141
- with open(output_path, 'ab') as f:
142
- f.write(b'\0' * int(1024 * 1024 * size_factor)) # Add data proportional to quantization
143
-
144
- print(f"Mock quantization completed: {output_path}")
145
- return True
146
-
147
- def get_bits_per_token(quant_type):
148
- """Get the bits per token for the quantization type"""
149
- if quant_type == "f16":
150
- return 16
151
- elif quant_type.startswith("Q8"):
152
- return 8
153
- elif quant_type.startswith("Q6"):
154
- return 6
155
- elif quant_type.startswith("Q5"):
156
- return 5
157
- elif quant_type.startswith("Q4"):
158
- return 4
159
- elif quant_type.startswith("Q3"):
160
- return 3
161
- elif quant_type.startswith("Q2"):
162
- return 2
163
- else:
164
- return 4 # Default
165
-
166
- def get_size_factor(quant_type):
167
- """Get the size factor for the quantization type (in MB)"""
168
- if quant_type == "f16":
169
- return 3.0
170
- elif quant_type.startswith("Q8"):
171
- return 1.5
172
- elif quant_type.startswith("Q6"):
173
- return 1.2
174
- elif quant_type.startswith("Q5"):
175
- return 1.0
176
- elif quant_type.startswith("Q4"):
177
- return 0.9
178
- elif quant_type.startswith("Q3"):
179
- return 0.8
180
- elif quant_type.startswith("Q2"):
181
- return 0.7
182
- else:
183
- return 1.0 # Default
184
-
185
- def main():
186
- parser = argparse.ArgumentParser(description="Quantize GGUF model")
187
- parser.add_argument("input_file", help="Input GGUF file")
188
- parser.add_argument("output_file", help="Output quantized GGUF file")
189
- parser.add_argument("quant_type", help="Quantization type")
190
- args = parser.parse_args()
191
-
192
- try:
193
- success = mock_quantize(args.input_file, args.output_file, args.quant_type)
194
- return 0 if success else 1
195
- except Exception as e:
196
- print(f"Error: {e}")
197
- return 1
198
 
199
- if __name__ == "__main__":
200
- sys.exit(main())
201
- EOL
202
- chmod +x llama.cpp/quantize.py
203
 
204
  # Initialize state file
 
205
  if [ ! -f "state.json" ]; then
206
  echo "Initializing state file..."
207
  echo '{"last_checked": null, "last_commit_hash": null, "is_up_to_date": true, "is_processing": false, "current_quant": null, "progress": 0, "total_quants": 12, "completed_quants": [], "failed_quants": [], "out_of_memory": false, "last_error": null, "status_message": "Ready to check for updates"}' > state.json
@@ -215,3 +45,4 @@ mkdir -p temp_outputs
215
  echo "Setup completed successfully"
216
 
217
 
 
 
1
  #!/bin/bash
2
  set -e
3
 
4
+ echo "Setting up for real GGUF quantization..."
5
 
6
+ # Clone llama.cpp
7
  if [ ! -d "llama.cpp" ]; then
8
+ echo "Cloning llama.cpp repository..."
9
+ git clone --depth=1 https://github.com/ggerganov/llama.cpp
10
  fi
11
 
12
+ cd llama.cpp
13
+
14
+ # Get conversion script
15
+ echo "Setting up conversion script..."
16
+ if [ -f "convert.py" ]; then
17
+ echo "Found existing convert.py script"
18
+ elif [ -f "convert-hf-to-gguf.py" ]; then
19
+ echo "Found convert-hf-to-gguf.py"
20
+ cp convert-hf-to-gguf.py convert.py
21
+ elif [ -f "examples/convert-hf-to-gguf.py" ]; then
22
+ echo "Found examples/convert-hf-to-gguf.py"
23
+ cp examples/convert-hf-to-gguf.py convert.py
24
+ else
25
+ echo "Cannot find conversion script. Using Python alternative."
26
+ # Install required packages
27
+ pip install -q transformers torch
28
+ fi
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
+ # Install required packages for the conversion script
31
+ pip install -q transformers torch
 
 
32
 
33
  # Initialize state file
34
+ cd ..
35
  if [ ! -f "state.json" ]; then
36
  echo "Initializing state file..."
37
  echo '{"last_checked": null, "last_commit_hash": null, "is_up_to_date": true, "is_processing": false, "current_quant": null, "progress": 0, "total_quants": 12, "completed_quants": [], "failed_quants": [], "out_of_memory": false, "last_error": null, "status_message": "Ready to check for updates"}' > state.json
 
45
  echo "Setup completed successfully"
46
 
47
 
48
+