import gradio as gr import requests from PIL import Image from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor import spaces import os from huggingface_hub import login login(os.getenv('hf_token')) @spaces.GPU def infer_ocrvqa(image, question): model = PaliGemmaForConditionalGeneration.from_pretrained("google/paligemma-3b-ft-ocrvqa-896").to("cuda") processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-ft-ocrvqa-896") inputs = processor(images=image,text=question, return_tensors="pt").to("cuda") predictions = model.generate(**inputs, max_new_tokens=100) return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n") @spaces.GPU def infer_doc(image, question): model = PaliGemmaForConditionalGeneration.from_pretrained("google/paligemma-3b-ft-docvqa-896").to("cuda") processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-ft-docvqa-896") inputs = processor(images=image, text=question, return_tensors="pt").to("cuda") predictions = model.generate(**inputs, max_new_tokens=100) return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n") css = """ #mkd { height: 500px; overflow: auto; border: 1px solid #ccc; } """ with gr.Blocks(css=css) as demo: gr.HTML("

PaliGemma для VQA/OCR 📄

") gr.HTML("

Использование модели as is без файнтюнинга на документах. ⚡

") with gr.Tab(label="Ответы на вопросы по документам"): with gr.Row(): with gr.Column(): input_img = gr.Image(label="Input Document") question = gr.Text(label="Question") submit_btn = gr.Button(value="Submit") output = gr.Text(label="Answer") submit_btn.click(infer_doc, [input_img, question], [output]) with gr.Tab(label="Чтение текста со сканов"): with gr.Row(): with gr.Column(): input_img = gr.Image(label="Input Document") question = gr.Text(label="Question") submit_btn = gr.Button(value="Submit") output = gr.Text(label="Infer") submit_btn.click(infer_ocrvqa, [input_img, question], [output]) demo.launch(debug=True)