import torch from transformers import AutoProcessor, AutoModelForVision2Seq from PIL import Image import requests import matplotlib.pyplot as plt device = "cuda" if torch.cuda.is_available() else "cpu" # Load processor and model processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") model = AutoModelForVision2Seq.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") def perform_ocr(image_path: str): # Load image image = Image.open(image_path).convert("RGB") # Preprocess image inputs = processor(images=image, return_tensors="pt").to(device) # Generate text with torch.no_grad(): generated_ids = model.generate(**inputs) # Decode generated text extracted_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return extracted_text # Example usage if __name__ == "__main__": IMAGE_PATH = "Images\Hindi-to-English-sentences-translation.jpg" # Replace with the path to your image # Perform OCR extracted_text = perform_ocr(IMAGE_PATH) # Display results print("Extracted Text:", extracted_text) # Show image img = Image.open(IMAGE_PATH) plt.imshow(img) plt.axis("off") plt.show()