from datasets import load_dataset import streamlit as st HF_API_TOKEN = st.secrets["HF_API_TOKEN"] PROMPT_COLOR = "#CA437E" def safe_text(text): text = text.replace("\n", "
") return f"
{text}
" def prompt_markup_format(text): return f'<*font color="black">{text}' def generation_markup_format(text): return f"{text}" ds = load_dataset("SaulLu/bloom-generations", use_auth_token=HF_API_TOKEN) ds = ds["train"] possible_prompts = ds.unique("prompt") chosen_prompt = st.selectbox("Chose a prompt", possible_prompts) st.markdown(safe_text(chosen_prompt), unsafe_allow_html=True) sub_ds = ds.filter(lambda exs:[prompt==chosen_prompt for prompt in exs["prompt"]], batched=True) index_sample = st.number_input("Index of the chosen example", min_value=0, max_value=len(sub_ds) - 1, value=0, step=1) sample = sub_ds[index_sample] markdown_text = generation_markup_format(safe_text(sample['generation'])) st.markdown(markdown_text, unsafe_allow_html=True) config = {key:value for key, value in sample.items() if key not in ["prompt", "generation"]} config