import gradio as gr import requests import os # Hugging Face API configuration API_URL = "https://api-inference.huggingface.co/models/nlpconnect/vit-gpt2-image-captioning" API_KEY = os.getenv("HF_API_KEY") # Fetch the API key from Hugging Face secrets headers = {"Authorization": f"Bearer {API_KEY}"} def generate_caption(image): """Queries the Hugging Face API to generate an image caption.""" if not API_KEY: return "API key is missing! Please set it in Hugging Face secrets." try: response = requests.post(API_URL, headers=headers, files={"file": image}) response.raise_for_status() # Raise an error for bad responses result = response.json() return result[0].get("generated_text", "No caption generated.") except requests.exceptions.RequestException as e: return f"Error: {str(e)}" # Gradio UI components title = "✨ Captionator_X ✨" description = """ Upload an image, and let AI describe it for you in a creative and accurate way! This application uses Hugging Face's state-of-the-art image captioning model. """ theme = gr.themes.Monochrome() with gr.Blocks(theme=theme) as app: gr.Markdown(f"
{description}
") with gr.Row(): with gr.Column(): image_input = gr.Image(type="file", label="Upload Your Image", elem_id="image-uploader") with gr.Column(): output_text = gr.Textbox(label="Generated Caption", lines=4, interactive=False, elem_id="output-text", placeholder="Your caption will appear here...") submit_button = gr.Button("✨ Generate Caption ✨", elem_id="submit-btn") submit_button.click(generate_caption, inputs=image_input, outputs=output_text) gr.Markdown("Powered by Hugging Face 🤗 and Gradio 🚀
") app.launch()