import gradio as gr from fastai.vision.all import * import skimage learn = load_learner('model.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return pred title = "Bird Species Classifier" description = "A bird species classifier trained on Kaggle dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces(Only identifies bird species)." examples = ['3.jpg','5.jpg','images.jpeg'] enable_queue=True gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(224, 224)),outputs=gr.outputs.Label(num_top_classes=1),title=title,description=description,examples=examples,enable_queue=enable_queue).launch()