from datetime import datetime from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_parse import LlamaParse from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI import os from dotenv import load_dotenv import gradio as gr import markdowm as md import base64 # Load environment variables load_dotenv() llm_models = [ "mistralai/Mixtral-8x7B-Instruct-v0.1", "meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2", "tiiuae/falcon-7b-instruct", # "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", # "deepseek-ai/deepseek-vl2", ## 54GB > 10GB # "deepseek-ai/deepseek-vl2-small", ## 32GB > 10GB # "deepseek-ai/deepseek-vl2-tiny", ## high response time # "deepseek-ai/deepseek-llm-7b-chat", ## 13GB > 10GB # "deepseek-ai/deepseek-math-7b-instruct", ## 13GB > 10GB # "deepseek-ai/deepseek-coder-33b-instruct", ## 66GB > 10GB # "deepseek-ai/DeepSeek-R1-Zero", ## 688GB > 10GB # "mistralai/Mixtral-8x22B-Instruct-v0.1", ## 281GB>10GB # "NousResearch/Yarn-Mistral-7b-64k", ## 14GB>10GB # "impira/layoutlm-document-qa", ## ERR # "Qwen/Qwen1.5-7B", ## 15GB # "Qwen/Qwen2.5-3B", ## high response time # "google/gemma-2-2b-jpn-it", ## high response time # "impira/layoutlm-invoices", ## bad req # "google/pix2struct-docvqa-large", ## bad req # "google/gemma-7b-it", ## 17GB > 10GB # "google/gemma-2b-it", ## high response time # "HuggingFaceH4/zephyr-7b-beta", ## high response time # "HuggingFaceH4/zephyr-7b-gemma-v0.1", ## bad req # "microsoft/phi-2", ## high response time # "TinyLlama/TinyLlama-1.1B-Chat-v1.0", ## high response time # "mosaicml/mpt-7b-instruct", ## 13GB>10GB # "google/flan-t5-xxl" ## high respons time # "NousResearch/Yarn-Mistral-7b-128k", ## 14GB>10GB # "Qwen/Qwen2.5-7B-Instruct", ## 15GB>10GB ] embed_models = [ "BAAI/bge-small-en-v1.5", # 33.4M "NeuML/pubmedbert-base-embeddings", "BAAI/llm-embedder", # 109M "BAAI/bge-large-en" # 335M ] # Global variable for selected model selected_llm_model_name = llm_models[0] # Default to the first model in the list selected_embed_model_name = embed_models[0] # Default to the first model in the list vector_index = None # Initialize the parser parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown') # Define file extractor with various common extensions file_extractor = { '.pdf': parser, # PDF documents '.docx': parser, # Microsoft Word documents '.doc': parser, # Older Microsoft Word documents '.txt': parser, # Plain text files '.csv': parser, # Comma-separated values files '.xlsx': parser, # Microsoft Excel files (requires additional processing for tables) '.pptx': parser, # Microsoft PowerPoint files (for slides) '.html': parser, # HTML files (web pages) # '.rtf': parser, # Rich Text Format files # '.odt': parser, # OpenDocument Text files # '.epub': parser, # ePub files (e-books) # Image files for OCR processing '.jpg': parser, # JPEG images '.jpeg': parser, # JPEG images '.png': parser, # PNG images # '.bmp': parser, # Bitmap images # '.tiff': parser, # TIFF images # '.tif': parser, # TIFF images (alternative extension) # '.gif': parser, # GIF images (can contain text) # Scanned documents in image formats '.webp': parser, # WebP images '.svg': parser, # SVG files (vector format, may contain embedded text) } # File processing function def load_files(file_path: str, embed_model_name: str): try: global vector_index document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data() embed_model = HuggingFaceEmbedding(model_name=embed_model_name) vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model) print(f"Parsing done for {file_path}") filename = os.path.basename(file_path) return f"Ready to give response on {filename}" except Exception as e: return f"An error occurred: {e}" # Function to handle the selected model from dropdown def set_llm_model(selected_model): global selected_llm_model_name selected_llm_model_name = selected_model # Update the global variable # print(f"Model selected: {selected_model_name}") # return f"Model set to: {selected_model_name}" # Respond function that uses the globally set selected model def respond(message, history): try: # Initialize the LLM with the selected model llm = HuggingFaceInferenceAPI( model_name=selected_llm_model_name, contextWindow=8192, # Context window size (typically max length of the model) maxTokens=1024, # Tokens per response generation (512-1024 works well for detailed answers) temperature=0.3, # Lower temperature for more focused answers (0.2-0.4 for factual info) topP=0.9, # Top-p sampling to control diversity while retaining quality frequencyPenalty=0.5, # Slight penalty to avoid repetition presencePenalty=0.5, # Encourages exploration without digressing too much token=os.getenv("TOKEN") ) # Set up the query engine with the selected LLM query_engine = vector_index.as_query_engine(llm=llm) bot_message = query_engine.query(message) print(f"\n{datetime.now()}:{selected_llm_model_name}:: {message} --> {str(bot_message)}\n") return f"{selected_llm_model_name}:\n{str(bot_message)}" except Exception as e: if str(e) == "'NoneType' object has no attribute 'as_query_engine'": return "Please upload a file." return f"An error occurred: {e}" def encode_image(image_path): with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode('utf-8') # Encode the images github_logo_encoded = encode_image("Images/github-logo.png") linkedin_logo_encoded = encode_image("Images/linkedin-logo.png") website_logo_encoded = encode_image("Images/ai-logo.png") # UI Setup with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]), css='footer {visibility: hidden}') as demo: gr.Markdown("# DocBot📄🤖") with gr.Tabs(): with gr.TabItem("Intro"): gr.Markdown(md.description) with gr.TabItem("DocBot"): with gr.Accordion("=== IMPORTANT: READ ME FIRST ===", open=False): guid = gr.Markdown(md.guide) with gr.Row(): with gr.Column(scale=1): file_input = gr.File(file_count="single", type='filepath', label="Step-1: Upload document") # gr.Markdown("Dont know what to select check out in Intro tab") embed_model_dropdown = gr.Dropdown(embed_models, label="Step-2: Select Embedding", interactive=True) with gr.Row(): btn = gr.Button("Submit", variant='primary') clear = gr.ClearButton() output = gr.Text(label='Vector Index') llm_model_dropdown = gr.Dropdown(llm_models, label="Step-3: Select LLM", interactive=True) with gr.Column(scale=3): gr.ChatInterface( fn=respond, chatbot=gr.Chatbot(height=500), theme = "soft", show_progress='full', # cache_mode='lazy', textbox=gr.Textbox(placeholder="Step-4: Ask me questions on the uploaded document!", container=False) ) gr.HTML(md.footer.format(github_logo_encoded, linkedin_logo_encoded, website_logo_encoded)) # Set up Gradio interactions llm_model_dropdown.change(fn=set_llm_model, inputs=llm_model_dropdown) btn.click(fn=load_files, inputs=[file_input, embed_model_dropdown], outputs=output) clear.click(lambda: [None] * 3, outputs=[file_input, embed_model_dropdown, output]) # Launch the demo with a public link option if __name__ == "__main__": demo.launch()