Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import os | |
| import torch | |
| from model import create_effnetb2_model | |
| from timeit import default_timer as timer | |
| # Setup class names | |
| with open("class_names.txt", 'r') as f: | |
| classes = [name.strip() for name in f] | |
| # Model and transforms | |
| model, transform = create_effnetb2_model( | |
| num_classes=len(classes) | |
| ) | |
| model.load_state_dict( | |
| torch.load( | |
| f="model_v3.pth", | |
| map_location=torch.device("cpu") | |
| ) | |
| ) | |
| # Predict function | |
| def predict(img): | |
| start_time = timer() | |
| # Transform the target image and add a batch dimension | |
| img = transform(img).unsqueeze(0) | |
| model.eval() | |
| with torch.inference_mode(): | |
| predictions = torch.softmax(model(img), dim=1) | |
| # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio) | |
| pred_labels_and_probs = {classes[i]: float(predictions[0][i]) for i in range(len(classes))} | |
| pred_time = round(timer() - start_time, 4) | |
| return pred_labels_and_probs, pred_time | |
| example_list = [["examples/" + example] for example in os.listdir("examples")] | |
| # Gradio interface | |
| title = "Clasificador de clima a partir de imágenes (Finetuneado)" | |
| description = "Clasificador de imágenes https://docs.google.com/presentation/d/1V2R1CIK8Iav3Hf8RIoWiypo6xGJg4l_w2TCY06QCoLM/edit?usp=sharing" | |
| demo = gr.Interface(fn=predict, | |
| inputs=gr.Image(type="pil"), | |
| outputs=[gr.Label(num_top_classes=1, label="Predicciones"), | |
| gr.Number(label="Tiempo de Predicción(s)")], | |
| examples=example_list, | |
| title=title, | |
| description=description) | |
| demo.launch(debug=False, | |
| share=False) |