Spaces:
Sleeping
Sleeping
Samarth991
commited on
Commit
·
989332e
1
Parent(s):
40568e3
adding Prompt
Browse files
app.py
CHANGED
@@ -5,7 +5,6 @@ from langchain.document_loaders import PDFMinerLoader,CSVLoader ,UnstructuredWor
|
|
5 |
from langchain.text_splitter import CharacterTextSplitter
|
6 |
from langchain.embeddings import SentenceTransformerEmbeddings
|
7 |
from langchain.vectorstores import FAISS
|
8 |
-
from langchain import HuggingFaceHub
|
9 |
from langchain.chains import RetrievalQA
|
10 |
from langchain.prompts import PromptTemplate
|
11 |
from langchain.docstore.document import Document
|
@@ -51,6 +50,20 @@ def process_youtube_link(link, document_name="youtube-content"):
|
|
51 |
logger.error(f'Error in reading document. {err}')
|
52 |
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
def youtube_chat(youtube_link,API_key,llm='HuggingFace',temperature=0.1,max_tokens=1096,char_length=1500):
|
55 |
|
56 |
document = process_youtube_link(link=youtube_link)
|
@@ -69,11 +82,12 @@ def youtube_chat(youtube_link,API_key,llm='HuggingFace',temperature=0.1,max_toke
|
|
69 |
)
|
70 |
else:
|
71 |
chat = chatops.get_openai_chat_model(API_key=API_key)
|
|
|
72 |
|
73 |
qa = RetrievalQA.from_chain_type(llm=chat,
|
74 |
chain_type='stuff',
|
75 |
retriever=vector_db.as_retriever(),
|
76 |
-
|
77 |
return_source_documents=True
|
78 |
)
|
79 |
return "Youtube link Processing completed ..."
|
@@ -85,7 +99,6 @@ def infer(question, history):
|
|
85 |
# # res.append(pair)
|
86 |
|
87 |
# chat_history = res
|
88 |
-
print("Question in infer :",question)
|
89 |
result = qa({"query": question})
|
90 |
matching_docs_score = vector_db.similarity_search_with_score(question)
|
91 |
|
|
|
5 |
from langchain.text_splitter import CharacterTextSplitter
|
6 |
from langchain.embeddings import SentenceTransformerEmbeddings
|
7 |
from langchain.vectorstores import FAISS
|
|
|
8 |
from langchain.chains import RetrievalQA
|
9 |
from langchain.prompts import PromptTemplate
|
10 |
from langchain.docstore.document import Document
|
|
|
50 |
logger.error(f'Error in reading document. {err}')
|
51 |
|
52 |
|
53 |
+
def create_prompt():
|
54 |
+
prompt_template = """As a chatbot asnwer the questions regarding the content in the video.
|
55 |
+
Use the following context to answer.
|
56 |
+
If you don't know the answer, just say I don't know.
|
57 |
+
|
58 |
+
{context}
|
59 |
+
|
60 |
+
Question: {question}
|
61 |
+
Answer :"""
|
62 |
+
prompt = PromptTemplate(
|
63 |
+
template=prompt_template, input_variables=["context", "question"]
|
64 |
+
)
|
65 |
+
return prompt
|
66 |
+
|
67 |
def youtube_chat(youtube_link,API_key,llm='HuggingFace',temperature=0.1,max_tokens=1096,char_length=1500):
|
68 |
|
69 |
document = process_youtube_link(link=youtube_link)
|
|
|
82 |
)
|
83 |
else:
|
84 |
chat = chatops.get_openai_chat_model(API_key=API_key)
|
85 |
+
chain_type_kwargs = {"prompt": create_prompt()}
|
86 |
|
87 |
qa = RetrievalQA.from_chain_type(llm=chat,
|
88 |
chain_type='stuff',
|
89 |
retriever=vector_db.as_retriever(),
|
90 |
+
chain_type_kwargs=chain_type_kwargs,
|
91 |
return_source_documents=True
|
92 |
)
|
93 |
return "Youtube link Processing completed ..."
|
|
|
99 |
# # res.append(pair)
|
100 |
|
101 |
# chat_history = res
|
|
|
102 |
result = qa({"query": question})
|
103 |
matching_docs_score = vector_db.similarity_search_with_score(question)
|
104 |
|