Spaces:
Sleeping
Sleeping
Merge branch 'main' of https://huggingface.co/spaces/Samarth991/Youtube-Video-ChatBot into main
Browse files- README.md +2 -2
- app.py +41 -164
- requirements.txt +4 -5
README.md
CHANGED
@@ -4,10 +4,10 @@ emoji: 🏃
|
|
4 |
colorFrom: green
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
4 |
colorFrom: green
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.44.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,190 +1,67 @@
|
|
|
|
1 |
import time
|
2 |
import gradio as gr
|
3 |
import logging
|
4 |
-
from langchain.document_loaders import PDFMinerLoader,CSVLoader ,UnstructuredWordDocumentLoader,TextLoader,OnlinePDFLoader
|
5 |
-
from langchain.text_splitter import CharacterTextSplitter
|
6 |
-
from langchain.embeddings import SentenceTransformerEmbeddings
|
7 |
-
from langchain.vectorstores import FAISS
|
8 |
-
from langchain.chains import RetrievalQA
|
9 |
-
from langchain.prompts import PromptTemplate
|
10 |
-
from langchain.docstore.document import Document
|
11 |
from youtube_transcript_api import YouTubeTranscriptApi
|
|
|
|
|
12 |
import chatops
|
13 |
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
DEVICE = 'cpu'
|
17 |
-
MAX_NEW_TOKENS = 4096
|
18 |
-
DEFAULT_TEMPERATURE = 0.1
|
19 |
-
DEFAULT_MAX_NEW_TOKENS = 2048
|
20 |
-
MAX_INPUT_TOKEN_LENGTH = 4000
|
21 |
-
DEFAULT_CHAR_LENGTH = 1000
|
22 |
-
|
23 |
-
EXAMPLES = ["https://www.youtube.com/watch?v=aircAruvnKk&ab_channel=3Blue1Brown",
|
24 |
-
"https://www.youtube.com/watch?v=Ilg3gGewQ5U",
|
25 |
-
"https://www.youtube.com/watch?v=WUvTyaaNkzM"
|
26 |
-
]
|
27 |
-
|
28 |
|
|
|
29 |
|
30 |
-
def clear_chat():
|
31 |
-
return []
|
32 |
|
33 |
-
def
|
34 |
video_text = ""
|
|
|
35 |
video_id = video_link.split("watch?v=")[1].split("&")[0]
|
36 |
srt = YouTubeTranscriptApi.get_transcript(video_id)
|
37 |
for text_data in srt:
|
38 |
video_text = video_text + " " + text_data.get("text")
|
39 |
if len(video_text) > max_video_length:
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
print(video_text)
|
44 |
-
return video_text
|
45 |
-
|
46 |
-
def process_documents(documents,data_chunk=1500,chunk_overlap=100):
|
47 |
-
text_splitter = CharacterTextSplitter(chunk_size=data_chunk, chunk_overlap=chunk_overlap,separator='\n')
|
48 |
-
texts = text_splitter.split_documents(documents)
|
49 |
-
return texts
|
50 |
-
|
51 |
-
def process_youtube_link(link, document_name="youtube-content",char_length=1000):
|
52 |
-
try:
|
53 |
-
metadata = {"source": f"{document_name}.txt"}
|
54 |
-
return [Document(page_content=get_text_from_youtube_link(video_link=link,max_video_length=char_length), metadata=metadata)]
|
55 |
-
except Exception as err:
|
56 |
-
logger.error(f'Error in reading document. {err}')
|
57 |
-
|
58 |
|
59 |
-
def create_prompt():
|
60 |
-
prompt_template = """As a chatbot asnwer the questions regarding the content in the video.
|
61 |
-
Use the following context to answer.
|
62 |
-
If you don't know the answer, just say I don't know.
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
Question: {question}
|
67 |
-
Answer :"""
|
68 |
-
prompt = PromptTemplate(
|
69 |
-
template=prompt_template, input_variables=["context", "question"]
|
70 |
-
)
|
71 |
-
return prompt
|
72 |
-
|
73 |
-
def youtube_chat(youtube_link,API_key,llm='HuggingFace',temperature=0.1,max_tokens=1096,char_length=1500):
|
74 |
|
75 |
-
|
76 |
print("docuemt:",document)
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
global qa
|
82 |
-
|
83 |
-
if llm == 'HuggingFace':
|
84 |
-
chat = chatops.get_hugging_face_model(
|
85 |
-
model_id="tiiuae/falcon-7b-instruct",
|
86 |
API_key=API_key,
|
87 |
temperature=temperature,
|
88 |
max_tokens=max_tokens
|
89 |
)
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
history[-1][1] = ""
|
117 |
-
|
118 |
-
for character in response:
|
119 |
-
history[-1][1] += character
|
120 |
-
time.sleep(0.05)
|
121 |
-
yield history
|
122 |
-
|
123 |
-
def add_text(history, text):
|
124 |
-
history = history + [(text, None)]
|
125 |
-
return history, ""
|
126 |
-
|
127 |
-
|
128 |
-
css="""
|
129 |
-
#col-container {max-width: 2048px; margin-left: auto; margin-right: auto;}
|
130 |
-
"""
|
131 |
-
|
132 |
-
title = """
|
133 |
-
<div style="text-align: center;max-width: 2048px;">
|
134 |
-
<h1>Chat with Youtube Videos </h1>
|
135 |
-
<p style="text-align: center;">Upload a youtube link of any video-lecture/song/Research/Conference & ask Questions to chatbot with the tool.
|
136 |
-
<i> Tools uses State of the Art Models from HuggingFace/OpenAI so, make sure to add your key.</i>
|
137 |
-
</p>
|
138 |
-
</div>
|
139 |
-
"""
|
140 |
-
|
141 |
-
with gr.Blocks(css=css) as demo:
|
142 |
-
with gr.Row():
|
143 |
-
with gr.Column(elem_id="col-container"):
|
144 |
-
gr.HTML(title)
|
145 |
-
|
146 |
-
with gr.Column():
|
147 |
-
with gr.Row():
|
148 |
-
LLM_option = gr.Dropdown(['HuggingFace','OpenAI'],label='Select HuggingFace/OpenAI')
|
149 |
-
API_key = gr.Textbox(label="Add API key", type="password",autofocus=True)
|
150 |
-
|
151 |
-
with gr.Group():
|
152 |
-
chatbot = gr.Chatbot(height=270)
|
153 |
-
|
154 |
-
with gr.Row():
|
155 |
-
question = gr.Textbox(label="Type your question !",lines=1).style(full_width=True)
|
156 |
-
with gr.Row():
|
157 |
-
submit_btn = gr.Button(value="Send message", variant="primary", scale = 1)
|
158 |
-
clean_chat_btn = gr.Button("Delete Chat")
|
159 |
-
|
160 |
-
with gr.Column():
|
161 |
-
with gr.Box():
|
162 |
-
youtube_link = gr.Textbox(label="Add your you tube Link",text_align='left',autofocus=True)
|
163 |
-
with gr.Row():
|
164 |
-
load_youtube_bt = gr.Button("Process Youtube Link",).style(full_width = False)
|
165 |
-
langchain_status = gr.Textbox(label="Status", placeholder="", interactive = False)
|
166 |
-
|
167 |
-
with gr.Column():
|
168 |
-
with gr.Accordion(label='Advanced options', open=False):
|
169 |
-
max_new_tokens = gr.Slider(
|
170 |
-
label='Max new tokens',
|
171 |
-
minimum=2048,
|
172 |
-
maximum=MAX_NEW_TOKENS,
|
173 |
-
step=1,
|
174 |
-
value=DEFAULT_MAX_NEW_TOKENS,
|
175 |
-
)
|
176 |
-
temperature = gr.Slider(label='Temperature',minimum=0.1,maximum=4.0,step=0.1,value=DEFAULT_TEMPERATURE,)
|
177 |
-
char_length = gr.Slider(label='Max Character',
|
178 |
-
minimum= DEFAULT_CHAR_LENGTH,
|
179 |
-
maximum = 5*DEFAULT_CHAR_LENGTH,
|
180 |
-
step = 500,value= 1500
|
181 |
-
)
|
182 |
-
|
183 |
-
load_youtube_bt.click(youtube_chat,inputs= [youtube_link,API_key,LLM_option,temperature,max_new_tokens,char_length],outputs=[langchain_status], queue=False)
|
184 |
-
|
185 |
-
clean_chat_btn.click(clear_chat, [], chatbot)
|
186 |
-
|
187 |
-
question.submit(add_text, inputs=[chatbot, question], outputs=[chatbot, question]).then(bot, chatbot, chatbot)
|
188 |
-
submit_btn.click(add_text, inputs=[chatbot, question], outputs=[chatbot, question]).then(bot, chatbot, chatbot)
|
189 |
-
|
190 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
import time
|
3 |
import gradio as gr
|
4 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from youtube_transcript_api import YouTubeTranscriptApi
|
6 |
+
from langchain.docstore.document import Document
|
7 |
+
from langchain_groq import ChatGroq
|
8 |
import chatops
|
9 |
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
12 |
DEVICE = 'cpu'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
DEFAULT_CHAR_LENGTH = 1000
|
15 |
|
|
|
|
|
16 |
|
17 |
+
def youtube_link_dataloader(video_link,max_video_length=1000):
|
18 |
video_text = ""
|
19 |
+
meta_data = {"source": f"{video_link}"}
|
20 |
video_id = video_link.split("watch?v=")[1].split("&")[0]
|
21 |
srt = YouTubeTranscriptApi.get_transcript(video_id)
|
22 |
for text_data in srt:
|
23 |
video_text = video_text + " " + text_data.get("text")
|
24 |
if len(video_text) > max_video_length:
|
25 |
+
video_text = video_text[0:max_video_length]
|
26 |
+
document = [Document(page_content= video_text, metadata= meta_data)]
|
27 |
+
return document
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
def youtube_chat(API_key=None,llm_service='mistralai/Mistral-7B-v0.1',youtube_link=None,char_length=2000):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
video_document = youtube_link_dataloader(video_link=youtube_link,max_video_length=char_length)
|
33 |
print("docuemt:",document)
|
34 |
+
|
35 |
+
if llm_service== 'mistralai/Mistral-7B-v0.1':
|
36 |
+
llm = chatops.get_hugging_face_model(
|
37 |
+
model_id="mistralai/Mistral-7B-v0.1",
|
|
|
|
|
|
|
|
|
|
|
38 |
API_key=API_key,
|
39 |
temperature=temperature,
|
40 |
max_tokens=max_tokens
|
41 |
)
|
42 |
+
elif llm_service == 'OpenAI':
|
43 |
+
llm = chatops.get_openai_chat_model(API_key=API_key)
|
44 |
+
elif llm_service == 'llama3-8b-8192':
|
45 |
+
os.environ["GROQ_API_KEY"] = API_key
|
46 |
+
llm = ChatGroq(model="llama3-8b-8192")
|
47 |
+
|
48 |
+
summarize_chain = load_summarize_chain(llm=llm, chain_type='stuff', verbose = True )
|
49 |
+
results = summarize_chain.invoke({'input_documents':video_document})
|
50 |
+
return results['output_text']
|
51 |
+
|
52 |
+
iface = gr.Interface(
|
53 |
+
fn = youtube_chat,
|
54 |
+
inputs = [
|
55 |
+
gr.Textbox(label="Add API key", type="password"),
|
56 |
+
gr.Dropdown(['mistralai/Mistral-7B-v0.1','llama3-8b-8192'],label='Large Language Model',info='LLM Service'),
|
57 |
+
gr.Textbox(label='You tube link'),
|
58 |
+
gr.Slider(DEFAULT_CHAR_LENGTH,5000,label="Video link Length in seconds",info="Length of video in seconds")
|
59 |
+
],
|
60 |
+
outputs="text",
|
61 |
+
description ="""Summarize your You tube link using Large Language Models
|
62 |
+
The Objective of the space is to use the Large Language models to generate a small Summary of the You tube Link provided.
|
63 |
+
It Facilitates to generate notes if you are using you tube for Educational purposes.
|
64 |
+
""",
|
65 |
+
)
|
66 |
+
|
67 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
openai
|
2 |
tiktoken
|
3 |
-
chromadb
|
4 |
langchain
|
5 |
-
|
6 |
-
|
|
|
7 |
transformers
|
8 |
torch
|
9 |
-
faiss-cpu
|
10 |
sentence-transformers
|
11 |
-
youtube-transcript-api
|
|
|
1 |
openai
|
2 |
tiktoken
|
|
|
3 |
langchain
|
4 |
+
langchain-core
|
5 |
+
langchain-community
|
6 |
+
langchain_groq
|
7 |
transformers
|
8 |
torch
|
|
|
9 |
sentence-transformers
|
10 |
+
youtube-transcript-api
|