import streamlit as st from langchain_core.messages import AIMessage, HumanMessage from langchain_community.document_loaders import WebBaseLoader from langchain_openai import ChatOpenAI from langchain_chroma import Chroma from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain.chains.history_aware_retriever import create_history_aware_retriever from langchain.chains.retrieval import create_retrieval_chain from langchain.chains.combine_documents import create_stuff_documents_chain from dotenv import load_dotenv import os load_dotenv() llm = ChatOpenAI(temperature=0.5, model="mistralai/mistral-7b-instruct:free",base_url="https://openrouter.ai/api/v1",api_key=os.getenv("OPENAI_API_KEY")) def get_vector_store(url): loader = WebBaseLoader(url) documents = loader.load() # splitting into chunks text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) documents_chunks = text_splitter.split_documents(documents=documents) # converting the chunks into embeddings embeddings = HuggingFaceEndpointEmbeddings(huggingfacehub_api_token=os.getenv("HF_TOKEN")) # store the embeddings in a database vector_store = Chroma.from_documents(documents_chunks, embeddings) return vector_store def get_context_retiriever(vector_store): retriever = vector_store.as_retriever() prompt = ChatPromptTemplate.from_messages([ MessagesPlaceholder(variable_name="chat_history"), ("user", "{input}"), ("user", "Given the above conversation, generate a search query to look up in order to get information relevant to the conversation") ]) retriever_chain = create_history_aware_retriever(llm=llm, retriever=retriever, prompt=prompt) return retriever_chain def get_conversational_chain(retriever_chain): prompt = ChatPromptTemplate.from_messages([ ("system", "Answer the user's questions based on the below context:\n\n{context}"), MessagesPlaceholder(variable_name="chat_history"), ("user", "{input}"), ]) stuff_documnets_chain = create_stuff_documents_chain(llm, prompt) return create_retrieval_chain(retriever_chain, stuff_documnets_chain) def get_response(user_input): retriever_chain = get_context_retiriever(st.session_state.vector_store) conversational_chain = get_conversational_chain(retriever_chain) response = conversational_chain.invoke({ "chat_history": st.session_state.chat_history, "input": user_input }) return response['answer'] st.set_page_config(page_title="Chat with websites", page_icon="🤖") st.title("Chat with websites") st.caption("Follow me on Github: [samagra44](https://github.com/samagra44)") with st.sidebar: st.header("Settings") website_url = st.text_input("Website URL") if website_url is None or website_url == "": st.info("Please enter a website URL") else: if "chat_history" not in st.session_state: st.session_state.chat_history = [ AIMessage(content="Hello, I am a bot. How can I help you?"), ] if "vector_store" not in st.session_state: st.session_state.vector_store = get_vector_store(website_url) user_query = st.chat_input("Type your message here...") if user_query is not None and user_query != "": response = get_response(user_query) st.session_state.chat_history.append(HumanMessage(content=user_query)) st.session_state.chat_history.append(AIMessage(content=response)) for message in st.session_state.chat_history: if isinstance(message, AIMessage): with st.chat_message("AI"): st.write(message.content) elif isinstance(message, HumanMessage): with st.chat_message("Human"): st.write(message.content)